TW201708555A - High strength alpha/beta titanium alloy - Google Patents

High strength alpha/beta titanium alloy Download PDF

Info

Publication number
TW201708555A
TW201708555A TW105136978A TW105136978A TW201708555A TW 201708555 A TW201708555 A TW 201708555A TW 105136978 A TW105136978 A TW 105136978A TW 105136978 A TW105136978 A TW 105136978A TW 201708555 A TW201708555 A TW 201708555A
Authority
TW
Taiwan
Prior art keywords
ksi
titanium alloy
alloy
weight
mpa
Prior art date
Application number
TW105136978A
Other languages
Chinese (zh)
Other versions
TWI631222B (en
Inventor
大衛J 布萊恩
約翰V 馬堤歐尼
湯瑪斯D 貝哈
Original Assignee
冶聯科技地產有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/888,699 external-priority patent/US20120076611A1/en
Priority claimed from US12/903,851 external-priority patent/US10513755B2/en
Application filed by 冶聯科技地產有限責任公司 filed Critical 冶聯科技地產有限責任公司
Publication of TW201708555A publication Critical patent/TW201708555A/en
Application granted granted Critical
Publication of TWI631222B publication Critical patent/TWI631222B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/008Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of light alloys, e.g. extruded
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Catalysts (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Golf Clubs (AREA)

Abstract

An alpha/beta titanium alloy comprising, in percent by weight based on total alloy weight: 3.9 to 4.5 aluminum; 2.2 to 3.0 vanadium; 1.2 to 1.8 iron; 0.24 to 0.30 oxygen; up to 0.08 carbon; up to 0.05 nitrogen; up to 0.015 hydrogen; titanium; and up to a total of 0.30 of other elements. A non-limiting embodiment of the alpha/beta titanium alloy comprises an aluminum equivalent value in the range of 6.4 to 7.2, exhibits a yield strength in the range of 120 ksi (827.4 MPa) to 155 ksi (1,069 MPa), exhibits an ultimate tensile strength in the range of 130 ksi (896.3 MPa) to 165 ksi (1,138 MPa), and exhibits a ductility in the range of 12 to 30 percent elongation.

Description

高強度α/β鈦合金 High strength α/β titanium alloy

本發明係關於高強度之延性α/β鈦合金。 This invention relates to high strength ductile alpha/beta titanium alloys.

相關申請案之交叉參考 Cross-reference to related applications

本申請案為部分接續申請案,本案根據35 U.S.C.§ 120主張2010年10月13日申請且名稱為「高強度α/β鈦合金扣件及扣件原料(High Strength Alpha/Beta Titanium Alloy Fasteners and Fastener Stock)」之同在申請中之美國專利申請案第12/903,851號的優先權,該案為部分接續申請案,其根據35 U.S.C.§ 120主張2010年9月23日申請且名稱為「高強度α/β鈦合金扣件及扣件原料(High Strength Alpha/Beta Titanium Alloy Fasteners and Fastener Stock)」之同在申請中之美國專利申請案第12/888,699號的優先權。申請案第12/903,851號及第12/888,699號之整體揭示內容以引用的方式併入本文中。 This application is a partial application. The case is based on 35 USC § 120 and is filed on October 13, 2010 and is entitled “High Strength Alpha/beta Titanium Alloy Fasteners and High Strength Alpha/Beta Titanium Alloy Fasteners and The benefit of the present application is the priority of U.S. Patent Application Serial No. 12/903,851, which is incorporated herein by reference. The priority of U.S. Patent Application Serial No. 12/888,699, the entire disclosure of which is incorporated herein by reference. The entire disclosure of the application Serial Nos. 12/903,851 and 12/888,699 is incorporated herein by reference.

鈦合金通常展現高強度重量比,耐腐蝕且在中等高溫下抗蠕變。因此,鈦合金用於航天、航空、國防、船舶及汽車應用中,包括例如起落架部件、機架、防彈衣、船體及機械扣件。 Titanium alloys typically exhibit high strength to weight ratios, are corrosion resistant and resist creep at moderate temperatures. Titanium alloys are therefore used in aerospace, aerospace, defense, marine, and automotive applications, including, for example, landing gear components, frames, body armor, hulls, and mechanical fasteners.

減輕飛行器或其他移動載具之重量可節約燃料。因此,舉例而言,航天工業具有極大的動力來減輕飛行器重量。鈦及鈦合金由於其強度重量比高而為飛行器應用中達成重量減輕的吸引人的材料。航天應用中所用之大多數鈦合金零件由Ti-6Al-4V合金(ASTM 5級;UNS R56400;AMS 4928、AMS 4911)製成,其為α/β鈦合金。 Reducing the weight of an aircraft or other moving vehicle saves fuel. Thus, for example, the aerospace industry has tremendous power to reduce aircraft weight. Titanium and titanium alloys are attractive materials for weight reduction in aircraft applications due to their high strength to weight ratio. Most titanium alloy parts used in aerospace applications are made of Ti-6Al-4V alloy (ASTM Class 5; UNS) R56400; AMS 4928, AMS 4911) made of an alpha/beta titanium alloy.

Ti-6Al-4V合金為最常見的鈦基製造材料之一,估計其在整個鈦基材料市場佔50%以上。Ti-6Al-4V合金用於許多應用中,該等應用受益於合金之輕質、耐腐蝕性及在低溫至中溫下之高強度的有利組合。舉例而言,Ti-6Al-4V合金用於製造飛行器引擎組件、飛行器結構組件、扣件、高效能汽車組件、醫療裝置組件、運動設備、船舶應用組件及化學加工設備組件。 Ti-6Al-4V alloy is one of the most common titanium-based materials and is estimated to account for more than 50% of the entire titanium-based material market. Ti-6Al-4V alloys are used in many applications that benefit from the advantageous combination of light weight, corrosion resistance and high strength at low to medium temperatures. For example, Ti-6Al-4V alloys are used in the manufacture of aircraft engine components, aircraft structural components, fasteners, high performance automotive components, medical device components, sports equipment, marine application components, and chemical processing equipment components.

Ti-6Al-4V合金軋延產品一般在軋延退火狀態下或在固溶處理及老化(STA)狀態下使用。如本文中所使用,「軋延退火狀態」係指鈦合金在「軋延退火」熱處理後之狀態,其中在高溫(例如1200-1500℉/649-816℃)下使工件退火約1-8小時並在靜止空氣中冷卻。工件在α+β相區內熱加工後,進行軋延退火熱處理。在室溫下,在軋延退火狀態下,直徑為約2至4吋(5.08至10.16cm)之Ti-6Al-4V合金圓桿的最小規定極限拉伸強度為130ksi(896MPa)且最小規定屈服強度為120ksi(827MPa)。軋延退火Ti-6Al-4V板通常根據規格AMS 4911來製造,而軋延退火Ti-6Al-4V桿通常根據規格AMS 4928來製造。 The rolled product of Ti-6Al-4V alloy is generally used in a rolling annealing state or in a solution treatment and aging (STA) state. As used herein, "rolling annealing state" refers to the state of the titanium alloy after "rolling annealing" heat treatment, wherein the workpiece is annealed at a high temperature (for example, 1200-1500 °F / 649-816 ° C) about 1-8 Hour and cool in still air. After the workpiece is thermally processed in the α + β phase region, a rolling annealing heat treatment is performed. At room temperature, the minimum specified ultimate tensile strength of a Ti-6Al-4V alloy round rod having a diameter of about 2 to 4 吋 (5.08 to 10.16 cm) is 130 ksi (896 MPa) and a minimum specified yield at a rolling annealed condition. The strength is 120 ksi (827 MPa). Rolling annealed Ti-6Al-4V sheets are typically manufactured according to specification AMS 4911, while rolling annealed Ti-6Al-4V rods are typically manufactured according to specification AMS 4928.

以全文引用的方式併入本文中之美國專利第5,980,655號(「'655專利」)揭示一種α/β鈦合金,其包含2.90至5.00重量%鋁、2.00至3.00重量%釩、0.40至2.00重量%鐵、0.20至0.30重量%氧、附帶雜質及鈦。'655專利中所揭示之α/β鈦合金在本文中稱為「'655合金」。以總合金重量計,'655合金中之市售合金組成標稱地包括4.00重量%鋁、2.50重量%釩、1.50重量%鐵、0.25重量%氧、附帶雜質及鈦,且可在本文中稱為Ti-4Al-2.5V-1.5Fe-0.25O合金。 U.S. Pat. % iron, 0.20 to 0.30% by weight of oxygen, incidental impurities and titanium. The alpha/beta titanium alloy disclosed in the '655 patent is referred to herein as "the '655 alloy." The commercially available alloy composition in the '655 alloy nominally includes 4.00% by weight aluminum, 2.50% by weight iron, 1.50% by weight iron, 0.25% by weight oxygen, incidental impurities, and titanium, and may be referred to herein as the total alloy weight. It is a Ti-4Al-2.5V-1.5Fe-0.25O alloy.

由於難以冷加工Ti-6Al-4V合金,故合金一般係在高溫下,一般在α2固溶線溫度以上加工(例如鍛造、輥軋、拉伸及其類似加工)。Ti-6Al-4V合金由於例如在冷變形期間破裂(亦即工件破損)之發生率高而 無法有效地冷加工來增加強度。然而,如以全文引用的方式併入本文中之美國專利申請公開案第2004/0221929號中所述,令人驚訝地且出乎意料地發現,'655合金具有相當大的可冷變形度/可冷加工度。 Since it is difficult to cold-process the Ti-6Al-4V alloy, the alloy is generally processed at a high temperature, generally above the α 2 solvus temperature (for example, forging, rolling, drawing, and the like). The Ti-6Al-4V alloy increases strength because it has a high incidence of cracking (i.e., workpiece breakage) during cold deformation and cannot be effectively cold worked. However, as described in U.S. Patent Application Publication No. 2004/0221929, which is incorporated by reference in its entirety, it is surprisingly and unexpectedly found that the '655 alloy has a considerable cold deformability/ Cold workability.

'655合金令人驚訝地可進行冷加工以達成高強度,同時仍保留可加工之延展度。可加工之延展度在本文中定義為合金展現大於6%伸長率之狀態。又,'655合金之強度與Ti-6Al-4V合金可達成之強度相當。舉例而言,如'655專利之表6中所示,針對Ti-6Al-4V合金量測得之拉伸應力為145.3ksi(1,002MPa),而'655合金之測試樣品展現在138.7ksi至142.7ksi(956.3MPa至983.9MPa)之範圍內的拉伸強度。 The '655 alloy is surprisingly cold workable to achieve high strength while still retaining processable elongation. Processable ductility is defined herein as the state in which the alloy exhibits an elongation greater than 6%. Moreover, the strength of the '655 alloy is comparable to the strength that can be achieved with the Ti-6Al-4V alloy. For example, as shown in Table 6 of the '655 patent, the tensile stress measured for the Ti-6Al-4V alloy is 145.3 ksi (1,002 MPa), while the test sample for the '655 alloy is shown at 138.7 ksi to 142.7. Tensile strength in the range of ksi (956.3 MPa to 983.9 MPa).

航天材料規格6946B(AMS 6946B)規定的化學組成範圍比'655專利之申請專利範圍中所述者更有限。AMS 6946B中所規定之合金保留'655專利中元素範圍界限更寬廣的可成形性,但AMS 6946B所允許之機械強度性質最小值低於市售Ti-6Al-4V合金所規定之最小值。舉例而言,根據AMS-4911L,0.125吋(3.175mm)厚的Ti-6Al-4V板之最小拉伸強度為134ksi(923.9MPa)且最小屈服強度為126ksi(868.7MPa)。相比之下,根據AMS 6946B,0.125吋(3.175mm)厚的Ti-4Al-2.5V-1.5Fe-0.25O板之最小拉伸強度為130ksi(896.3MPa)且最小屈服強度為115ksi(792.9MPa)。 The chemical composition range specified by aerospace material specification 6946B (AMS 6946B) is more limited than that described in the '655 patent application. The alloys specified in AMS 6946B retain a broader range of formability in the '655 patent, but the minimum mechanical strength properties allowed by AMS 6946B are below the minimum values specified for commercially available Ti-6Al-4V alloys. For example, according to AMS-4911L, the 0.125 inch (3.175 mm) thick Ti-6Al-4V plate has a minimum tensile strength of 134 ksi (923.9 MPa) and a minimum yield strength of 126 ksi (868.7 MPa). In contrast, according to AMS 6946B, the minimum tensile strength of 0.125 吋 (3.175 mm) thick Ti-4Al-2.5V-1.5Fe-0.25O sheet is 130 ksi (896.3 MPa) and the minimum yield strength is 115 ksi (792.9 MPa). ).

假設仍需要經由減輕飛行器及其他載具之重量來降低燃料消耗,則需要改良之延性α/β鈦合金,其較佳展現類似於或優於Ti-6Al-4V α/β鈦合金所展現之機械性質的機械性質。 Assuming that there is still a need to reduce fuel consumption by mitigating the weight of aircraft and other vehicles, there is a need for improved ductile alpha/beta titanium alloys that preferably exhibit similar or superior performance to Ti-6Al-4V alpha/beta titanium alloys. Mechanical properties of mechanical properties.

根據本發明之一態樣,以總合金重量計,α/β鈦合金包含:3.9至4.5重量%鋁;2.2至3.0重量%釩;1.2至1.8重量%鐵;0.24至0.30重量%氧;至多0.08重量%碳;至多0.05重量%氮;至多0.015重量%氫;鈦;及至多總共0.30重量%其他元素。 According to one aspect of the invention, the alpha/beta titanium alloy comprises: 3.9 to 4.5 wt% aluminum; 2.2 to 3.0 wt% vanadium; 1.2 to 1.8 wt% iron; 0.24 to 0.30 wt% oxygen; 0.08 wt% carbon; up to 0.05 wt% nitrogen; up to 0.015 wt% hydrogen; titanium; and up to a total of 0.30 wt% other elements.

根據本發明之另一態樣,以總合金重量計,α/β鈦合金基本上由以下組成:3.9至4.5重量%鋁;2.2至3.0重量%釩;1.2至1.8重量%鐵;0.24至0.30重量%氧;至多0.08重量%碳;至多0.05重量%氮;至多0.015重量%氫;鈦;及至多總共0.30重量%其他元素。 According to another aspect of the invention, the alpha/beta titanium alloy consists essentially of 3.9 to 4.5 wt% aluminum; 2.2 to 3.0 wt% vanadium; 1.2 to 1.8 wt% iron; 0.24 to 0.30, based on the weight of the total alloy. % by weight of oxygen; up to 0.08% by weight of carbon; up to 0.05% by weight of nitrogen; up to 0.015% by weight of hydrogen; titanium; and up to a total of 0.30% by weight of other elements.

圖1為包含本發明之合金之非限制性實施例之桿及線的極限拉伸強度及屈服強度與鋁當量之關係圖;圖2為包含本發明之合金之非限制性實施例之0.5吋(1.27cm)直徑線的極限拉伸強度及屈服強度與鋁當量之關係圖;及圖3為包含本發明之合金之非限制性實施例之1吋(2.54cm)厚板的拉伸強度、屈服強度及伸長率%與鋁當量之關係圖。 1 is a graph of ultimate tensile strength and yield strength versus aluminum equivalent for a rod and wire comprising a non-limiting embodiment of the alloy of the present invention; and FIG. 2 is a 0.5 非 non-limiting example of an alloy comprising the present invention. (1.27 cm) diametrical line of ultimate tensile strength and yield strength versus aluminum equivalent; and Figure 3 is a tensile strength of a 1 吋 (2.54 cm) thick plate comprising a non-limiting embodiment of the alloy of the present invention, Graph of yield strength and elongation % versus aluminum equivalent.

本文所述之合金及相關方法的特點及優點可參考附圖來充分瞭解。 The features and advantages of the alloys and related methods described herein are fully understood by reference to the drawings.

讀者經考量以下實施方式將瞭解本發明之合金及相關方法之某些非限制性實施例的以上詳情以及其他詳情。 The above details and other details of certain non-limiting embodiments of the alloys and related methods of the present invention will be appreciated by the reader upon consideration of the following embodiments.

在本發明之非限制性實施例之描述中,除了在操作實例中或另有說明,所有表示數量或特徵之數字均應理解為在所有情況下由術語「約」修飾。因此,除非有相反說明,否則以下描述中所述之任何數值參數均為近似值,其可視設法藉由本發明之方法獲得之所需材料的性質而變化。最低限度地且不希望均等論(doctrine of equivalents)之應用限於申請專利範圍,各數值參數至少應根據所報導之有效數位的數字且藉由應用一般捨入技術來理解。 In the description of the non-limiting embodiments of the present invention, unless otherwise indicated herein, Accordingly, any numerical parameters set forth in the following description are approximations unless otherwise indicated, which may vary depending upon the nature of the material desired to be obtained by the method of the present invention. The application of the minimal and undesired doctrine of equivalents is limited to the scope of the patent application, and the numerical parameters should be understood at least in accordance with the number of significant digits reported and by applying the general rounding technique.

提及以全文或部分引用的方式併入本文中之任何專利、公開案或其他揭示材料僅在以下程度上併入本文中:所併入之材料不與本發明中所述之現有定義、陳述或其他揭示材料衝突。因此,必要時,如 本文中所述之揭示內容與以引用的方式併入本文中之任何材料有衝突時,以本文中所述之揭示內容為準。提及以引用的方式併入本文中但與本文中所述之現有定義、陳述或其他揭示材料衝突的任何材料或其一部分或其一部分僅在以下程度上併入:所併入之材料與現有揭示材料之間不出現衝突。 Any patents, publications, or other disclosures that are incorporated herein by reference in their entirety are hereby incorporated by reference to the extent of the extents Or other revealing material conflicts. Therefore, if necessary, such as In the event that the disclosure herein is inconsistent with any of the materials incorporated by reference, the disclosure herein is subject to the disclosure. Any material or a portion thereof or a portion thereof that is incorporated herein by reference but that conflicts with the existing definitions, statements, or other disclosure materials described herein is only incorporated to the extent that the Reveal the conflict between materials.

本發明之α/β鈦合金的非限制性實施例包含以下、由以下組成或基本上由以下組成:3.9至4.5重量%鋁;2.2至3.0重量%釩;1.2至1.8重量%鐵;0.24至0.30重量%氧;至多0.08重量%碳;至多0.05重量%氮;至多0.015重量%氮;鈦;及至多總共0.30重量%其他元素。在本發明之某些非限制性實施例中,可存在於α/β鈦合金中之其他元素(作為至多0.30重量%其他元素之一部分)包括硼、錫、鋯、鉬、鉻、鎳、矽、銅、鈮、鉭、錳、釔及鈷中之一或多者,且在某些非限制性實施例中,每一該種其他元素之重量含量為0.10或小於0.10,但有兩個例外。該等例外為硼及釔,若其完全作為其他元素之一部分存在時,則以小於0.005重量%之個別濃度存在。 Non-limiting examples of the alpha/beta titanium alloy of the present invention comprise, consist of, or consist essentially of: 3.9 to 4.5 wt% aluminum; 2.2 to 3.0 wt% vanadium; 1.2 to 1.8 wt% iron; 0.24 to 0.30% by weight of oxygen; up to 0.08% by weight of carbon; up to 0.05% by weight of nitrogen; up to 0.015% by weight of nitrogen; titanium; and up to a total of 0.30% by weight of other elements. In certain non-limiting embodiments of the invention, other elements that may be present in the alpha/beta titanium alloy (as part of up to 0.30% by weight of other elements) include boron, tin, zirconium, molybdenum, chromium, nickel, niobium. And one or more of copper, ruthenium, osmium, manganese, ruthenium and cobalt, and in certain non-limiting embodiments, each of the other elements has a weight content of 0.10 or less, but with two exceptions . The exceptions are boron and bismuth, which are present in individual concentrations of less than 0.005% by weight if they are present wholly as part of one of the other elements.

I. 合金組成 I. Alloy composition

本發明之合金的非限制性實施例包含鈦、鋁、釩、鐵及氧。只要以下討論之組成中陳述合金元素,則應瞭解其餘包括鈦及附帶雜質。 Non-limiting examples of alloys of the present invention include titanium, aluminum, vanadium, iron, and oxygen. As long as the alloying elements are stated in the composition of the following discussion, it should be understood that the remainder includes titanium and incidental impurities.

A. 鋁 A. Aluminum

鋁為鈦合金中之α相強化劑。本發明之α/β鈦合金的非限制性實施例中鋁之組成範圍比'655專利中所揭示之鋁範圍窄。又,根據本發明之合金的某些非限制性實施例之鋁的最小含量大於AMS 6946B中所述之最小含量。已觀察到此等組成特點使得合金更一致地展現與Ti-6Al-4V合金相似之機械性質。本發明之α/β鈦合金中鋁之最小濃度為3.9重量%。本發明之α/β鈦合金中鋁之最大濃度為4.5重量%。 Aluminum is an alpha phase enhancer in titanium alloys. In a non-limiting embodiment of the alpha/beta titanium alloy of the present invention, the compositional range of aluminum is narrower than the range of aluminum disclosed in the '655 patent. Again, the minimum content of aluminum in certain non-limiting embodiments of the alloys according to the present invention is greater than the minimum levels described in AMS 6946B. These compositional characteristics have been observed to make the alloy exhibit a more consistent mechanical properties similar to those of the Ti-6Al-4V alloy. The minimum concentration of aluminum in the α/β titanium alloy of the present invention is 3.9% by weight. The maximum concentration of aluminum in the α/β titanium alloy of the present invention is 4.5% by weight.

B. 釩 B. Vanadium

釩為鈦合金中之β相穩定劑。本發明之α/β鈦合金中釩之最小濃度大於'655專利中所揭示及AMS 6946B中所述之最小濃度。已觀察到此組成特點提供α相與β相之體積分率的最佳、控制平衡。α相與β相之平衡使得本發明合金具有極佳延性及可成形性。釩以2.2重量%之最小濃度存在於本發明之α/β鈦合金中。本發明之α/β鈦合金中釩之最大濃度為3.0重量%。 Vanadium is a beta phase stabilizer in titanium alloys. The minimum concentration of vanadium in the alpha/beta titanium alloy of the present invention is greater than the minimum concentration as disclosed in the '655 patent and as described in AMS 6946B. This compositional feature has been observed to provide an optimal, controlled balance of the volume fraction of the alpha phase and the beta phase. The balance of the alpha phase and the beta phase allows the alloy of the invention to have excellent ductility and formability. Vanadium is present in the alpha/beta titanium alloy of the present invention at a minimum concentration of 2.2% by weight. The maximum concentration of vanadium in the α/β titanium alloy of the present invention is 3.0% by weight.

C. 鐵 C. Iron

鐵為鈦合金中之共析β穩定劑。與'655專利中所述之合金相比,本發明之α/β鈦合金包括較大最小濃度及較窄範圍之鐵。已觀察到此等特點提供α相與β相之體積分率的最佳、控制平衡。該平衡使得本發明之合金具有極佳延性及可成形性。鐵以1.2重量%之最小濃度存在於本發明之α/β合金中。本發明之α/β鈦合金中鐵之最大濃度為1.8重量%。 Iron is an eutectoid beta stabilizer in titanium alloys. The alpha/beta titanium alloy of the present invention comprises a greater minimum concentration and a narrower range of iron than the alloys described in the '655 patent. These characteristics have been observed to provide an optimal, controlled balance of the volume fraction of the alpha phase and the beta phase. This balance allows the alloy of the present invention to have excellent ductility and formability. Iron is present in the alpha/beta alloy of the present invention at a minimum concentration of 1.2% by weight. The maximum concentration of iron in the α/β titanium alloy of the present invention is 1.8% by weight.

D. 氧 D. Oxygen

氧為鈦合金中之α相強化劑。本發明之α/β鈦合金中氧之組成範圍比'655專利中及AMS 6946B規格中所揭示之範圍窄。又,本發明之合金的非限制性實施例中氧之最小濃度大於'655專利及AMS 6946B規格中之最小濃度。已觀察到此等組成特點使得本發明之合金一致地展現與某些Ti-6Al-4V機械性質相似之機械性質。本發明之α/β鈦合金中氧之最小濃度為0.24重量%。本發明之α/β鈦合金中氧之最大濃度為0.30重量%。 Oxygen is an alpha phase enhancer in titanium alloys. The composition range of oxygen in the α/β titanium alloy of the present invention is narrower than that disclosed in the '655 patent and the AMS 6946B specification. Again, the minimum concentration of oxygen in the non-limiting embodiment of the alloy of the present invention is greater than the minimum concentration in the '655 patent and AMS 6946B specifications. These compositional features have been observed to allow the alloys of the present invention to consistently exhibit mechanical properties similar to those of certain Ti-6Al-4V mechanical properties. The minimum concentration of oxygen in the α/β titanium alloy of the present invention is 0.24% by weight. The maximum concentration of oxygen in the α/β titanium alloy of the present invention is 0.30% by weight.

除包括如上文所論述之鈦、鋁、釩、鐵及氧外,本發明之α/β鈦合金的某些非限制性實施例包括總濃度不超過0.30重量%之其他元素。在某些非限制性實施例中,此等其他元素包括硼、錫、鋯、鉬、鉻、鎳、矽、銅、鈮、鉭、錳、釔及鈷中之一或多者,其中除了兩個 例外,每一該種元素之重量%為0.10或小於0.10。該等例外為硼及釔。若存在於本發明之合金中,則硼及釔每一者之重量%小於0.005。 In addition to including titanium, aluminum, vanadium, iron, and oxygen as discussed above, certain non-limiting examples of the alpha/beta titanium alloys of the present invention include other elements having a total concentration of no more than 0.30% by weight. In certain non-limiting embodiments, such other elements include one or more of boron, tin, zirconium, molybdenum, chromium, nickel, ruthenium, copper, ruthenium, osmium, manganese, ruthenium, and cobalt, with the exception of two One Exceptionally, the weight % of each such element is 0.10 or less than 0.10. The exceptions are boron and antimony. If present in the alloy of the present invention, the weight percent of each of boron and rhodium is less than 0.005.

附帶雜質亦可存在於本發明之α/β鈦合金中。舉例而言,可存在至多約0.008重量%碳。可存在至多約0.05重量%氮。可存在至多約0.015重量%氫。其他可能存在之附帶雜質對於一般熟習冶金技術者將顯而易見。 The incidental impurities may also be present in the α/β titanium alloy of the present invention. For example, up to about 0.008% by weight carbon can be present. There may be up to about 0.05% by weight nitrogen. There may be up to about 0.015% by weight hydrogen. Other incidental impurities that may be present will be apparent to those of ordinary skill in the art of metallurgy.

表1提供(i)本發明之α/β鈦合金的某些非限制性實施例及(ii)'655專利中所揭示及AMS 6946B中所規定之某些合金之組成的總結。 Table 1 provides a summary of (i) certain non-limiting examples of the alpha/beta titanium alloys of the present invention and (ii) the compositions of certain alloys as disclosed in the '655 patent and as specified in AMS 6946B.

本發明者出乎意料地發現,提供鋁、氧及鐵之最小含量大於'655專利中所教示之最小含量的本發明合金可提供一致地展現例如至少與軋延退火Ti-6Al-4V合金之某些機械性質相似之機械性質(諸如強度)的α/β鈦合金。本發明者亦出乎意料地發現,相對於'655專利中所揭示之 彼等最小值及範圍,增加鐵及釩之最小含量及使其範圍變窄可提供在軋延退火形式下展現α相與β相之體積分率之最佳及控制平衡的合金。本發明之α/β鈦合金的此最佳相平衡提供延性比Ti-6Al-4V合金改良、同時保留'655專利中所揭示及AMS 6946B中所規定之合金延性之合金實施例。 The inventors have unexpectedly discovered that alloys of the present invention that provide a minimum level of aluminum, oxygen, and iron greater than the minimum levels taught in the '655 patent can provide consistent display of, for example, at least annealed Ti-6Al-4V alloys. Some α/β titanium alloys with similar mechanical properties (such as strength). The inventors have also unexpectedly discovered that it is disclosed in relation to the '655 patent. Their minimum and range, increasing the minimum content of iron and vanadium and narrowing their range provide an alloy that exhibits the best and controlled balance of the volume fraction of the alpha and beta phases in the rolling annealed form. This optimum phase balance of the alpha/beta titanium alloy of the present invention provides an alloying example that is more ductile than the Ti-6Al-4V alloy while retaining the ductility of the alloys as disclosed in the '655 patent and as specified in AMS 6946B.

熟習此項技術者瞭解,金屬材料之強度及延性一般展現反比關係。換言之,一般而言,當金屬材料之強度增加時,材料之延性降低。因為一般針對軋延退火鈦合金觀察到強度與延性之間的反比關係,所以未預期本發明之α/β鈦合金具有增加之機械強度與保留之延性的組合。增加之機械強度與保留之延性之出乎意料且令人驚訝的組合為本發明之合金實施例的尤其有利特點。令人驚訝地觀察到,本發明之軋延退火合金的實施例展現與Ti-6Al-4V合金相當之強度而不展現延性降低。 Those skilled in the art understand that the strength and ductility of metallic materials generally exhibit an inverse relationship. In other words, in general, as the strength of the metal material increases, the ductility of the material decreases. Since the inverse relationship between strength and ductility is generally observed for roll-rolled annealed titanium alloys, the α/β titanium alloy of the present invention is not expected to have a combination of increased mechanical strength and retained ductility. The unexpected and surprising combination of increased mechanical strength and retained ductility is a particularly advantageous feature of the alloy embodiments of the present invention. Surprisingly, it has been observed that the embodiment of the roll-annealed alloy of the present invention exhibits comparable strength to the Ti-6Al-4V alloy without exhibiting a decrease in ductility.

已觀察到鋁當量值(Aleq)為至少6.3或更佳為至少6.4的本發明之α/β合金的某些非限制性實施例展現至少與Ti-6Al-4V合金之強度相當的強度。亦已觀察到該等合金展現優於鋁當量值通常為約7.5之Ti-6Al-4V合金的延性。如本文中所使用,「鋁當量值」或「鋁當量」(Aleq)意謂等於合金中鋁濃度(重量%)加上合金中氧濃度(重量%)之10倍的值。換言之,合金之鋁當量可如下測定:Aleq=Al(wt.%)+10(O(wt.%))。 Certain non-limiting examples of the alpha/beta alloys of the present invention having an aluminum equivalent value (Al eq ) of at least 6.3 or more preferably at least 6.4 have been observed to exhibit strengths at least comparable to those of Ti-6Al-4V alloys. . It has also been observed that these alloys exhibit ductility superior to Ti-6Al-4V alloys having an aluminum equivalent value of typically about 7.5. As used herein, "aluminum equivalent value" or "aluminum equivalent" (Al eq ) means a value equal to 10 times the concentration of aluminum in the alloy (% by weight) plus the oxygen concentration (% by weight) in the alloy. In other words, the aluminum equivalent of the alloy can be determined as follows: Al eq = Al (wt.%) + 10 (O (wt.%) ).

雖然認識到鈦合金之機械性質一般受所測試試樣之尺寸影響,但在本發明之非限制性實施例中,α/β鈦合金之鋁當量值為至少6.4,或在某些實施例中在6.4至7.2之範圍內,及屈服強度為至少120ksi(827.4MPa),或在某些實施例中為至少130ksi(896.3MPa)。 While recognizing that the mechanical properties of titanium alloys are generally affected by the size of the sample being tested, in a non-limiting embodiment of the invention, the alpha equivalent of the alpha/beta titanium alloy is at least 6.4, or in certain embodiments The range is in the range of 6.4 to 7.2, and the yield strength is at least 120 ksi (827.4 MPa), or in some embodiments at least 130 ksi (896.3 MPa).

在本發明之其他非限制性實施例中,α/β鈦合金之鋁當量值為至少6.4,或在某些實施例中在6.4至7.2之範圍內,及屈服強度在120 ksi(827.4MPa)至155ksi(1,069MPa)之範圍內。 In other non-limiting embodiments of the invention, the alpha/beta titanium alloy has an aluminum equivalent value of at least 6.4, or in certain embodiments, in the range of 6.4 to 7.2, and a yield strength of 120. Ksi (827.4 MPa) to 155 ksi (1,069 MPa).

在其他非限制性實施例中,本發明之α/β鈦合金的鋁當量值為至少6.4,或在某些實施例中在6.4至7.2之範圍內,及極限拉伸強度為至少130ksi(896.3MPa),或在某些實施例中為至少140ksi(965.3MPa)。 In other non-limiting embodiments, the alpha/beta titanium alloy of the present invention has an aluminum equivalent value of at least 6.4, or in certain embodiments, in the range of 6.4 to 7.2, and an ultimate tensile strength of at least 130 ksi ( 896.3 MPa), or in some embodiments at least 140 ksi (965.3 MPa).

在本發明之其他非限制性實施例中,本發明之α/β鈦合金的鋁當量值為至少6.4,或在某些實施例中在6.4至7.2之範圍內,及極限拉伸強度在130ksi(896.3MPa)至165ksi(1,138MPa)之範圍內。 In other non-limiting embodiments of the invention, the alpha/beta titanium alloy of the invention has an aluminum equivalent weight of at least 6.4, or in certain embodiments in the range of 6.4 to 7.2, and an ultimate tensile strength at It is in the range of 130 ksi (896.3 MPa) to 165 ksi (1,138 MPa).

在其他非限制性實施例中,本發明之α/β鈦合金的鋁當量值為至少6.4,或在某些實施例中在6.4至7.2之範圍內,及延性為至少12%或至少16%(伸長率%)。 In other non-limiting embodiments, the alpha/beta titanium alloy of the present invention has an aluminum equivalent value of at least 6.4, or in certain embodiments, in the range of 6.4 to 7.2, and ductility of at least 12% or at least 16 %(Elongation%).

在其他非限制性實施例中,本發明之α/β鈦合金的鋁當量值為至少6.4,或在某些實施例中在6.4至7.2之範圍內,及延性在12%至30%(伸長率%或「% el」)之範圍內。 In other non-limiting embodiments, the alpha/beta titanium alloys of the present invention have an aluminum equivalent weight of at least 6.4, or in certain embodiments from 6.4 to 7.2, and ductility of from 12% to 30% ( Elongation % or "% el").

雖然根據本發明之某些非限制性實施例,6.3為Aleq之絕對最小值,但本發明者已確定需要至少6.4之Aleq值來達成與Ti-6Al-4V合金所展現之強度相同的強度。亦認識到在本發明之α/β鈦合金的其他非限制性實施例中,Aleq之最大值為7.5且根據本文所揭示之其他非限制性實施例的強度與延性之關係適用。 Although 6.3 is the absolute minimum of Al eq in accordance with certain non-limiting embodiments of the present invention, the inventors have determined that an Al eq value of at least 6.4 is required to achieve the same strength as exhibited by the Ti-6Al-4V alloy. strength. It is also recognized that in other non-limiting embodiments of the alpha/beta titanium alloy of the present invention, the maximum value of Al eq is 7.5 and the relationship between strength and ductility in accordance with other non-limiting embodiments disclosed herein applies.

根據一非限制性實施例,本發明之α/β鈦合金的鋁當量值為至少6.4,屈服強度為至少120ksi(827.4MPa),極限拉伸強度為至少130ksi(896.3MPa),及延性為至少12%(伸長率%)。 According to one non-limiting embodiment, the alpha/beta titanium alloy of the present invention has an aluminum equivalent value of at least 6.4, a yield strength of at least 120 ksi (827.4 MPa), an ultimate tensile strength of at least 130 ksi (896.3 MPa), and ductility. At least 12% (elongation %).

根據另一非限制性實施例,本發明之α/β鈦合金的鋁當量值為至少6.4,屈服強度為至少130ksi(896.3MPa),極限拉伸強度為至少140ksi(965.3MPa),及延性為至少12%。 According to another non-limiting embodiment, the alpha/beta titanium alloy of the present invention has an aluminum equivalent value of at least 6.4, a yield strength of at least 130 ksi (896.3 MPa), an ultimate tensile strength of at least 140 ksi (965.3 MPa), and ductility. At least 12%.

在又一非限制性實施例中,本發明之α/β鈦合金的鋁當量值在6.4 至7.2之範圍內,屈服強度在120ksi(827.4MPa)至155ksi(1,069MPa)之範圍內,極限拉伸強度在130ksi(896.3MPa)至165ksi(1,138MPa)之範圍內,及延性在12%至30%(伸長率%)之範圍內。 In yet another non-limiting embodiment, the alpha equivalent of the alpha/beta titanium alloy of the present invention is at 6.4 Within the range of 7.2, the yield strength is in the range of 120 ksi (827.4 MPa) to 155 ksi (1,069 MPa), the ultimate tensile strength is in the range of 130 ksi (896.3 MPa) to 165 ksi (1,138 MPa), and the ductility is 12% to Within 30% (elongation %).

在一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均極限拉伸強度(UTS):UTS14.767(Aleq)+48.001。 In one non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation: UTS 14.767 (Al eq ) + 48.001.

在另一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均屈服強度(YS):YS13.338(Aleq)+46.864。 In another non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits an average yield strength (YS) that satisfies the following equation: YS 13.338 (Al eq ) + 46.864.

在又一非限制性實施例中,本發明之α/β鈦合金展現以下平均延性:%el3.3669(Aleq)-1.9417。 In yet another non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits the following average ductility: %el 3.3669 (Al eq )-1.9417.

在另一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均極限拉伸強度(UTS):UTS14.767(Aleq)+48.001;滿足以下方程式之平均屈服強度(YS):YS13.338(Aleq)+46.864;及滿足以下方程式之平均延性:%el3.3669(Aleq)-1.9417。 In another non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation: UTS 14.767(Al eq )+48.001; the average yield strength (YS) satisfying the following equation: YS 13.338(Al eq )+46.864; and satisfy the average ductility of the following equation: %el 3.3669 (Al eq )-1.9417.

在一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均極限拉伸強度(UTS):UTS12.414(Aleq)+64.429。 In one non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation: UTS 12.414 (Al eq ) + 64.429.

在另一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均屈服強度(YS):YS13.585(Aleq)+44.904。 In another non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits an average yield strength (YS) that satisfies the following equation: YS 13.585 (Al eq ) + 44.904.

在又一非限制性實施例中,本發明之α/β鈦合金展現以下平均延性:%el4.1993(Aleq)+7.4409。 In yet another non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits the following average ductility: %el 4.1993 (Al eq ) + 7.4409.

在另一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均極限拉伸強度(UTS):UTS12.414(Aleq)+64.429;滿足以下方程式之平均屈服強度(YS):YS13.585(Aleq)+44.904;及滿足以下方程式之平均延性:%el4.1993(Aleq)+7.4409。 In another non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation: UTS 12.414(Al eq )+64.429; the average yield strength (YS) satisfying the following equation: YS 13.585(Al eq )+44.904; and satisfy the average ductility of the following equation: %el 4.1993 (Al eq ) + 7.4409.

在一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均極限拉伸強度(UTS): UTS10.087(Aleq)+76.785。 In one non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation: UTS 10.087 (Al eq ) + 76.785.

在另一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均屈服強度(YS):YS13.911(Aleq)+39.435。 In another non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits an average yield strength (YS) that satisfies the following equation: YS 13.911 (Al eq ) + 39.435.

在又一非限制性實施例中,本發明之α/β鈦合金展現以下平均延性:%el1.1979(Aleq)+8.5604。 In yet another non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits the following average ductility: %el 1.1979(Al eq )+8.5604.

在又一非限制性實施例中,本發明之α/β鈦合金展現滿足以下方程式之平均極限拉伸強度(UTS):UTS10.087(Aleq)+76.785;滿足以下方程式之平均屈服強度(YS):YS13.911(Aleq)+39.435;及滿足以下方程式之單位為伸長率%(%el)的平均延性:%el1.1979(Aleq)+8.5604。 In yet another non-limiting embodiment, the alpha/beta titanium alloy of the present invention exhibits an average ultimate tensile strength (UTS) that satisfies the following equation: UTS 10.087(Al eq )+76.785; the average yield strength (YS) satisfying the following equation: YS 13.911(Al eq )+39.435; and the unit of the following equation is the average ductility of elongation % (%el): %el 1.1979(Al eq )+8.5604.

已測定,與Ti-6Al-4V合金相比,本發明之α/β鈦合金的非限制性實施例展現相似或更高機械強度、更高延性及改良之可成形性。因此,有可能在航天、航空、船舶、汽車及其他應用中使用由本發明之合金形成之物品作為Ti-6Al-4V合金物品之替代品。本發明之合金之實施例的高強度及延性允許製造具有高耐受性且目前無法由Ti-6Al- 4V合金製成之某些軋延成品形狀。 It has been determined that non-limiting examples of the alpha/beta titanium alloys of the present invention exhibit similar or higher mechanical strength, higher ductility, and improved formability than Ti-6Al-4V alloys. Therefore, it is possible to use articles formed from the alloy of the present invention as an alternative to Ti-6Al-4V alloy articles in aerospace, aerospace, marine, automotive, and other applications. The high strength and ductility of the examples of the alloys of the present invention allow for the manufacture of high tolerance and are currently not available from Ti-6Al- Some rolled finished shapes made of 4V alloy.

本發明之一態樣係有關包含本發明之合金及/或由本發明之合金製成的製品。該等製品之某些非限制性實施例可選自飛行器引擎組件、飛行器結構組件、汽車組件、醫療裝置組件、運動設備組件、船舶應用組件及化學加工設備組件。一般技術者現在或今後所知且可包含本發明之α/β鈦合金實施例及/或由其製成之其他製品係在本文所揭示之實施例的範疇內。藉由成形及其他製造技術包含本發明之合金及/或由本發明之合金製成的製品現在或將來為一般技術者所知。 One aspect of the invention pertains to articles comprising the alloy of the invention and/or articles made from the alloys of the invention. Certain non-limiting embodiments of such articles may be selected from the group consisting of aircraft engine components, aircraft structural components, automotive components, medical device components, sports equipment components, marine application components, and chemical processing equipment components. The alpha/beta titanium alloy embodiments of the present invention and/or other articles made therefrom, which are known to those of ordinary skill in the art and which may be included herein, are within the scope of the embodiments disclosed herein. Articles comprising the alloy of the invention and/or alloys of the invention by forming and other manufacturing techniques are now or will be known to those of ordinary skill in the art.

以下實例意欲進一步描述某些非限制性實施例,而不限制本發明之範疇。一般技術者應瞭解,在僅由申請專利範圍限定之本發明範疇內可能存在以下實例之變化形式,以及本文未特定描述之其他實施例。 The following examples are intended to further describe certain non-limiting embodiments without limiting the scope of the invention. It will be appreciated by those skilled in the art that variations of the following examples, and other embodiments not specifically described herein, may be present within the scope of the invention as defined by the appended claims.

實例1Example 1

使用習知真空電弧再熔(VAR)、電漿弧熔化(PAM)或電子束冷膛熔解(EB)進行初熔來鑄造具有本發明之組成的α/β鈦合金鑄錠,且使用VAR再熔。鑄錠之組成包括於上表1之「本發明之非限制性實施例」欄中所列的範圍內。 The α/β titanium alloy ingot having the composition of the present invention is cast by conventional vacuum arc remelting (VAR), plasma arc melting (PAM) or electron beam cold crucible melting (EB), and VAR is used again. melt. The composition of the ingot is included in the range listed in the column "Non-Limited Embodiments of the Invention" in Table 1 above.

此實例1中所產生之鑄錠組成的鋁當量值範圍為約6.0至約7.1。使用各種熱輥軋操作將鑄錠加工成直徑介於0.25吋(0.635cm)與3.25吋(8.255cm)之間的熱輥軋桿及線。在介於1550℉(843.3℃)與1650℉(898.9℃)之間的起始溫度下進行熱輥軋。此溫度範圍低於此實例之合金的α/β轉變溫度,其為約1750℉至約1850℉(約954.4℃至約1010℃),此視實際化學組成而定。熱輥軋後,在1275℉(690.6℃)下使熱輥軋桿及線退火1小時,隨後進行空氣冷卻。實例1中產生之各桿及線樣品的直徑、鋁濃度、鐵濃度、氧濃度及所計算的Aleq提供於表2中。 The ingot composition produced in this Example 1 had an aluminum equivalent value ranging from about 6.0 to about 7.1. The ingot was processed into hot rolled bars and wires having a diameter between 0.25 吋 (0.635 cm) and 3.25 吋 (8.255 cm) using various hot rolling operations. Hot rolling was carried out at an initial temperature between 1550 °F (843.3 °C) and 1650 °F (898.9 °C). This temperature range is lower than the alpha/beta transition temperature of the alloy of this example, which is from about 1750 °F to about 1850 °F (about 954.4 °C to about 1010 °C), depending on the actual chemical composition. After hot rolling, the hot rolled bars and wires were annealed at 1275 °F (690.6 °C) for 1 hour, followed by air cooling. The diameters, aluminum concentrations, iron concentrations, oxygen concentrations, and calculated Al eq of the rod and line samples produced in Example 1 are provided in Table 2.

圖1以圖表形式顯示表2中所列之桿及線樣品的室溫極限拉伸強度(UTS)、屈服強度(YS)及伸長率%(%el)與樣品中合金之鋁當量值的關係。圖1亦包括穿過由線性回歸測定之UTS、YS及%el數據點的趨勢線。可見平均強度與平均伸長率%皆隨Aleq增加而增加。此關係令人驚訝且出乎意料,因為其與強度增加伴有延性降低之一般所觀察到的關係相反。 Figure 1 graphically shows the room temperature ultimate tensile strength (UTS), yield strength (YS), and elongation % (%el) of the rod and wire samples listed in Table 2 and the aluminum equivalent value of the alloy in the sample. relationship. Figure 1 also includes trend lines that pass through the UTS, YS, and %el data points as determined by linear regression. It can be seen that both the average intensity and the average elongation % increase with increasing Al eq . This relationship is surprising and unexpected because it is contrary to the generally observed relationship of increased strength with reduced ductility.

Ti-6Al-4V之典型UTS及YS最小值分別為135ksi(930.8MPa)及125ksi(861.8MPa)。表2中所列之本發明樣品的YS範圍為約125ksi(對於 Aleq為約6.0之樣品)至約141ksi(對於Aleq為約7.1之樣品)。Aleq為約6.4之樣品展現YS為約130ksi(896.3MPa)。表2中所列之本發明樣品的UTS範圍為約135ksi(對於Aleq為約6.0之樣品)至約153ksi(對於Aleq為約7.1之樣品)。Aleq為約6.4之樣品展現YS為約141ksi(972MPa)。 Typical UTS and YS minimum values for Ti-6Al-4V are 135 ksi (930.8 MPa) and 125 ksi (861.8 MPa), respectively. The YS range of the inventive samples listed in Table 2 ranged from about 125 ksi (for samples with Al eq of about 6.0) to about 141 ksi (samples with about 7.1 for Al eq ). A sample with an Al eq of about 6.4 exhibited a YS of about 130 ksi (896.3 MPa). The UTS of the inventive samples listed in Table 2 ranged from about 135 ksi (for samples with Al eq of about 6.0) to about 153 ksi (samples with about 7.1 for Al eq ). A sample with an Al eq of about 6.4 exhibited a YS of about 141 ksi (972 MPa).

實例2Example 2

在室溫下對實例1之直徑為0.5吋(1.27cm)及鋁當量值為約6.5、約6.8及約7.15的線樣品第9-11號進行拉伸測試。拉伸測試之結果在圖2中以圖表形式顯示。所有此等樣品均展現類似或高於商業Ti-6Al-4V合金所展現之強度的拉伸及屈服強度。如同圖1,自圖2可見,Aleq增加使得強度增加,以及平均伸長率%增加。如上文所論述,此趨勢令人驚訝且出乎意料,因為其與強度增加伴有延性降低之一般所觀察到的關係相反。與表示對各種尺寸之樣品進行之測試的圖1相比,表示對相同尺寸之樣品進行之測試的圖2之數據散佈較小,因為機械性質在某種程度上受測試樣品之尺寸影響。 Tensile tests were carried out on line samples Nos. 9-11 of Example 1 having a diameter of 0.5 Å (1.27 cm) and an aluminum equivalent value of about 6.5, about 6.8, and about 7.15 at room temperature. The results of the tensile test are shown graphically in Figure 2. All of these samples exhibited tensile and yield strengths similar to or higher than those exhibited by commercial Ti-6Al-4V alloys. As can be seen from Figure 1, the increase in Al eq results in an increase in strength and an increase in the average elongation %. As discussed above, this trend is surprising and unexpected because it is contrary to the generally observed relationship of increased strength with reduced ductility. The data spread of Figure 2, which represents the test performed on samples of the same size, is smaller compared to Figure 1 which represents tests performed on samples of various sizes, since the mechanical properties are somewhat affected by the size of the test sample.

實例3Example 3

由根據實例1中所述之步驟製造的鑄錠製造經熱輥軋之1吋(2.54cm)厚的板樣品。合金鑄錠具有在上表1之「本發明之非限制性實施例」欄中所列的範圍內之組成,其中鋁及氧濃度及鋁當量值如表3中所列。 A hot rolled 1 吋 (2.54 cm) thick plate sample was made from the ingot made according to the procedure described in Example 1. The alloy ingot has a composition within the range listed in the "Non-Limited Examples of the Invention" column of Table 1 above, wherein the aluminum and oxygen concentrations and aluminum equivalent values are as listed in Table 3.

所有熱輥軋溫度均低於合金之α/β轉變溫度。合金之Aleq值為約6.5至約7.1。使用室溫拉伸測試測定拉伸強度、屈服強度及伸長率%(延性)。拉伸測試結果在圖3中以圖表形式顯示。自圖3可見,如由所計算之鋁當量所指示,包括增加含量之Al及O的合金在室溫下展現的強度至少與Ti-6Al-4V合金所展現之強度相當。此外,觀察到強度隨Aleq增加而增加。另外,本發明合金之平均延性隨著Aleq增加及強度增加而略有增加或保持大致不變。此趨勢令人驚訝且出乎意料,因為其與強度增加伴有延性降低之一般所觀察到的關係相反。 All hot rolling temperatures are below the alpha/beta transition temperature of the alloy. The alloy has an Al eq value of from about 6.5 to about 7.1. Tensile strength, yield strength, and elongation % (ductility) were measured using a room temperature tensile test. The tensile test results are shown graphically in Figure 3. As can be seen from Figure 3, the alloys including the increased levels of Al and O exhibited at least room strength at room temperature as indicated by the calculated aluminum equivalents, at least comparable to the strength exhibited by the Ti-6Al-4V alloy. In addition, it was observed that the intensity increased as the Al eq increased. In addition, the average ductility of the alloys of the present invention increases slightly or remains substantially constant as Al eq increases and strength increases. This trend is surprising and unexpected because it is contrary to the generally observed relationship of increased strength with reduced ductility.

本發明已參考各種例示性、說明性及非限制性實施例來描述。然而,一般技術者應認識到,可在不脫離本發明範疇的情況下對任一所揭示實施例(或其一部分)作出各種取代、修改或組合,本發明範疇僅由申請專利範圍限定。因此,預期且瞭解,本發明涵蓋本文未明確闡述之其他實施例。該等實施例可例如藉由組合及/或改變本文所述之實施例的所揭示步驟、成分、組成部分、組分、元素、特點、態樣及其類似物中之任一者來獲得。因此,本發明不受各種例示性、說明性及非限制性實施例之描述限制,而僅受申請專利範圍限制。以此方式,應瞭解,申請專利範圍可在本發明專利申請案之審查期間進行修正以向本發明添加如本文以不同方式所述的特點。 The invention has been described with reference to various exemplary, illustrative and non-limiting embodiments. However, it is to be understood by those skilled in the art that the invention may be substituted, modified, or combined with any of the disclosed embodiments (or a portion thereof) without departing from the scope of the invention. Therefore, it is contemplated and appreciated that the invention encompasses other embodiments not specifically described herein. The embodiments can be obtained, for example, by combining and/or modifying any of the disclosed steps, ingredients, components, components, elements, features, aspects, and the like. Accordingly, the invention is to be limited by the description of the invention, In this manner, it is to be understood that the scope of the patent application can be modified during the review of the present patent application to add to the present invention features as described herein in various ways.

Claims (11)

一種α/β鈦合金,以總合金重量計,其包含:4.05至4.40重量%鋁;2.2至3.0重量%釩;1.24至1.56重量%鐵;0.24至0.28重量%氧;至多最高0.08重量%碳;至多最高0.05重量%氮;至多最高0.015重量%氫;鈦;及至多總共0.30重量%其他元素;其中該合金包含至少為6.4之鋁當量值,展現至少122ksi(841.2MPa)之屈服強度,展現至少142ksi(979.1MPa)之極限拉伸強度,且展現至少20%之伸長率之延性;及其中當該鋁當量值增加至6.4至7.2之範圍時,平均屈服強度及平均極限拉伸強度增加,且平均延性不減少。 An α/β titanium alloy comprising, by weight of the total alloy, 4.05 to 4.40% by weight of aluminum; 2.2 to 3.0% by weight of vanadium; 1.24 to 1.56% by weight of iron; 0.24 to 0.28% by weight of oxygen; up to 0.08% by weight of carbon Up to 0.05% by weight of nitrogen; up to 0.015% by weight of hydrogen; titanium; and up to 0.30% by weight of other elements; wherein the alloy comprises an aluminum equivalent value of at least 6.4, exhibiting a yield strength of at least 122 ksi (841.2 MPa), Showing an ultimate tensile strength of at least 142 ksi (979.1 MPa) and exhibiting a ductility of at least 20% elongation; and an average yield strength and an average ultimate tensile strength when the aluminum equivalent value is increased to a range of 6.4 to 7.2 Increase, and the average ductility does not decrease. 如請求項1之α/β鈦合金,其中:該等至多總共0.30重量%其他元素包括硼、錫、鋯、鉬、鉻、鎳、矽、銅、鈮、鉭、錳、釔及鈷中之至少一者;存在時,硼及釔中每一者之含量係小於0.005重量%;及存在時,錫、鋯、鉬、鉻、鎳、矽、銅、鈮、鉭、錳及鈷中每一者之含量係不大於0.10重量%。 The α/β titanium alloy of claim 1, wherein: at most a total of 0.30% by weight of other elements include boron, tin, zirconium, molybdenum, chromium, nickel, niobium, copper, lanthanum, cerium, manganese, lanthanum and cobalt. At least one; in the presence of, each of boron and bismuth is less than 0.005% by weight; and in the presence of each of tin, zirconium, molybdenum, chromium, nickel, ruthenium, copper, osmium, iridium, manganese, and cobalt The content is not more than 0.10% by weight. 如請求項1之α/β鈦合金,其中該合金之鋁當量值在6.4至7.2之範圍內,且展現在122ksi(841.2MPa)至155ksi(1,069MPa)之範圍內之屈服強度。 The α/β titanium alloy of claim 1, wherein the alloy has an aluminum equivalent value in the range of 6.4 to 7.2 and exhibits a yield strength in the range of 122 ksi (841.2 MPa) to 155 ksi (1,069 MPa). 如請求項1之α/β鈦合金,其中該合金之鋁當量值在6.4至7.2之範圍內,且展現在142ksi(979.1MPa)至165ksi(1,138MPa)之範圍內之極限拉伸強度。 The α/β titanium alloy of claim 1, wherein the alloy has an aluminum equivalent value in the range of 6.4 to 7.2 and exhibits an ultimate tensile strength in the range of 142 ksi (979.1 MPa) to 165 ksi (1,138 MPa). 如請求項1之α/β鈦合金,其中該合金之鋁當量值在6.4至7.2之範圍內,且展現在20%至30%伸長率之範圍內之延性。 The α/β titanium alloy of claim 1, wherein the alloy has an aluminum equivalent value in the range of 6.4 to 7.2 and exhibits ductility in the range of 20% to 30% elongation. 如請求項1之α/β鈦合金,其中該合金之鋁當量值在6.4至7.2之範圍內,展現在122ksi(841.2MPa)至143.1ksi(986.6MPa)之範圍內之屈服強度,展現在142.3ksi(981.1MPa)至154.6ksi(1,066MPa)之範圍內之極限拉伸強度,且展現在20%至22%伸長率之範圍內之延性。 The α/β titanium alloy of claim 1, wherein the alloy has an aluminum equivalent value in the range of 6.4 to 7.2, exhibiting a yield strength in the range of 122 ksi (841.2 MPa) to 143.1 ksi (986.6 MPa), which is exhibited in The ultimate tensile strength in the range of 142.3 ksi (981.1 MPa) to 154.6 ksi (1,066 MPa) and exhibits ductility in the range of 20% to 22% elongation. 如請求項1之α/β鈦合金,其中以ksi為單位計之該α/β鈦合金之平均極限拉伸強度(UTS)滿足以下方程式:UTS14.767(Aleq)+48.001,標準差為0.6213;其中以ksi為單位計之該α/β鈦合金之平均屈服強度(YS)滿足以下方程式:YS13.338(Aleq)+46.864;標準差為0.4519;且其中以伸長率%測量之該α/β鈦合金平均延性滿足以下方程式:%el3.3669(Aleq)-1.9417,標準差為0.1746;其中Aleq=鋁重量百分比+10(氧)重量百分比。 The α/β titanium alloy of claim 1, wherein the average ultimate tensile strength (UTS) of the α/β titanium alloy in ksi satisfies the following equation: UTS 14.767(Al eq )+48.001, the standard deviation is 0.6213; wherein the average yield strength (YS) of the α/β titanium alloy in ksi satisfies the following equation: YS 13.338(Al eq )+46.864; the standard deviation is 0.4519; and wherein the average ductility of the α/β titanium alloy measured by % elongation satisfies the following equation: %el 3.3669 (Al eq )-1.9417, standard deviation is 0.1746; where Al eq = aluminum weight percent + 10 (oxygen) weight percent. 如請求項1之α/β鈦合金,其中以ksi為單位計之該α/β鈦合金之平均極限拉伸強度(UTS)滿足以下方程式:UTS12.414(Aleq)+64.429,標準差為0.9576;其中以ksi為單位計之該α/β鈦合金之平均屈服強度(YS)滿足以 下方程式:YS13.585(Aleq)+44.904;標準差為0.8138;且其中以該α/β鈦合金伸長率%測量之平均延性滿足以下方程式:%el4.1993(Aleq)-7.4409,標準差為0.1731;其中Aleq=鋁重量百分比+10(氧)重量百分比。 The α/β titanium alloy of claim 1, wherein the average ultimate tensile strength (UTS) of the α/β titanium alloy in ksi satisfies the following equation: UTS 12.414(Al eq )+64.429, the standard deviation is 0.9576; wherein the average yield strength (YS) of the α/β titanium alloy in ksi satisfies the following equation: YS 13.585 (Al eq )+44.904; standard deviation is 0.8138; and wherein the average ductility measured by % elongation of the α/β titanium alloy satisfies the following equation: %el 4.1993 (Al eq )-7.4409, standard deviation is 0.1731; where Al eq = aluminum weight percent + 10 (oxygen) weight percent. 如請求項1之α/β鈦合金,其中以ksi為單位計之該α/β鈦合金之平均極限拉伸強度(UTS)滿足以下方程式:UTS10.087(Aleq)+76.785;其中以ksi為單位計之該α/β鈦合金之平均屈服強度(YS)滿足以下方程式:YS13.911(Aleq)+39.435;且其中以伸長率%測量之該α/β鈦合金平均延性滿足以下方程式:%el1.1979(Aleq)+8.5604;其中Aleq=鋁重量百分比+10(氧)重量百分比。 The α/β titanium alloy of claim 1, wherein the average ultimate tensile strength (UTS) of the α/β titanium alloy in ksi satisfies the following equation: UTS 10.087(Al eq )+76.785; wherein the average yield strength (YS) of the α/β titanium alloy in ksi satisfies the following equation: YS 13.911(Al eq )+39.435; and wherein the average ductility of the α/β titanium alloy measured by % elongation satisfies the following equation: %el 1.1979(Al eq )+8.5604; wherein Al eq = aluminum weight percent + 10 (oxygen) weight percent. 一種製品,其包含如請求項1之合金。 An article comprising the alloy of claim 1. 如請求項10之製品,其中該製品係選自飛行器引擎組件、飛行器結構組件、汽車組件、醫療裝置組件、運動設備組件、船舶應用組件及化學加工設備組件。 The article of claim 10, wherein the article is selected from the group consisting of an aircraft engine component, an aircraft structural component, an automotive component, a medical device component, a sports equipment component, a marine application component, and a chemical processing equipment component.
TW105136978A 2010-09-23 2011-09-22 High strength alpha/beta titanium alloy TWI631222B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US12/888,699 2010-09-23
US12/888,699 US20120076611A1 (en) 2010-09-23 2010-09-23 High Strength Alpha/Beta Titanium Alloy Fasteners and Fastener Stock
US12/903,851 US10513755B2 (en) 2010-09-23 2010-10-13 High strength alpha/beta titanium alloy fasteners and fastener stock
US12/903,851 2010-10-13
US13/108,045 2011-05-16
US13/108,045 US20120076686A1 (en) 2010-09-23 2011-05-16 High strength alpha/beta titanium alloy

Publications (2)

Publication Number Publication Date
TW201708555A true TW201708555A (en) 2017-03-01
TWI631222B TWI631222B (en) 2018-08-01

Family

ID=45870864

Family Applications (2)

Application Number Title Priority Date Filing Date
TW100134192A TWI572721B (en) 2010-09-23 2011-09-22 High strength alpha/beta titanium alloy
TW105136978A TWI631222B (en) 2010-09-23 2011-09-22 High strength alpha/beta titanium alloy

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW100134192A TWI572721B (en) 2010-09-23 2011-09-22 High strength alpha/beta titanium alloy

Country Status (15)

Country Link
US (1) US20120076686A1 (en)
EP (1) EP2619340A1 (en)
JP (1) JP6104164B2 (en)
KR (3) KR20180049165A (en)
CN (1) CN103097559A (en)
AU (1) AU2011305924B2 (en)
BR (1) BR112013005248B1 (en)
CA (1) CA2809035A1 (en)
IL (1) IL224802A (en)
MX (1) MX368806B (en)
NZ (1) NZ607852A (en)
PE (1) PE20131367A1 (en)
RU (1) RU2616676C2 (en)
TW (2) TWI572721B (en)
WO (1) WO2012039929A1 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040221929A1 (en) 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US7837812B2 (en) * 2004-05-21 2010-11-23 Ati Properties, Inc. Metastable beta-titanium alloys and methods of processing the same by direct aging
US10053758B2 (en) * 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US8499605B2 (en) 2010-07-28 2013-08-06 Ati Properties, Inc. Hot stretch straightening of high strength α/β processed titanium
US8613818B2 (en) 2010-09-15 2013-12-24 Ati Properties, Inc. Processing routes for titanium and titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US8652400B2 (en) 2011-06-01 2014-02-18 Ati Properties, Inc. Thermo-mechanical processing of nickel-base alloys
US9957836B2 (en) 2012-07-19 2018-05-01 Rti International Metals, Inc. Titanium alloy having good oxidation resistance and high strength at elevated temperatures
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
CN104152744A (en) * 2014-07-08 2014-11-19 宁夏东方钽业股份有限公司 Low-cost medium-high-strength corrosion-resistant titanium alloy and processing method thereof
CZ2014929A3 (en) * 2014-12-17 2016-05-11 UJP PRAHA a.s. Titanium-based alloy and heat and mechanical treatment process thereof
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US10480050B2 (en) 2015-03-02 2019-11-19 Nippon Steel Corporation Titanium sheet and method for producing the same
CN104762525A (en) * 2015-03-27 2015-07-08 常熟市双羽铜业有限公司 Titanium alloy tube for heat exchanger
CN104831119A (en) * 2015-04-15 2015-08-12 苏州维泰生物技术有限公司 Joint titanium alloy material and preparation method thereof
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
WO2017189460A1 (en) * 2016-04-25 2017-11-02 Arconic Inc. Bcc materials of titanium, aluminum, vanadium, and iron, and products made therefrom
US10851437B2 (en) 2016-05-18 2020-12-01 Carpenter Technology Corporation Custom titanium alloy for 3-D printing and method of making same
CN107058798A (en) * 2016-11-08 2017-08-18 中航装甲科技有限公司 A kind of composite armour material and preparation method thereof
CN106521239B (en) * 2016-11-21 2018-07-20 西北有色金属研究院 A kind of used by nuclear reactor high impact toughness low activation titanium alloy
CN108130485A (en) * 2016-12-01 2018-06-08 北方工业大学 High-strength material for assembly type building connection
CN107335765B (en) * 2017-05-31 2019-06-25 太仓市微贯机电有限公司 A kind of titanium alloy pecker and preparation method thereof for seamless perforating material machine
CN107858558B (en) * 2017-11-23 2019-09-03 北京有色金属研究总院 A kind of Superplastic Titanium Alloys plate and preparation method thereof
EP3502288B1 (en) * 2017-12-21 2020-10-14 Nivarox-FAR S.A. Method for manufacturing a hairspring for clock movement
CN108149066A (en) * 2017-12-28 2018-06-12 宁夏东方钽业股份有限公司 A kind of bicycle use new titanium alloy Ti421 tubing and its processing method
US10913991B2 (en) 2018-04-04 2021-02-09 Ati Properties Llc High temperature titanium alloys
US11001909B2 (en) 2018-05-07 2021-05-11 Ati Properties Llc High strength titanium alloys
CN108467971A (en) * 2018-06-08 2018-08-31 南京赛达机械制造有限公司 A kind of erosion resistant titanium alloy blade of aviation engine
US11268179B2 (en) 2018-08-28 2022-03-08 Ati Properties Llc Creep resistant titanium alloys
EP3671359B1 (en) * 2018-12-21 2023-04-26 Nivarox-FAR S.A. Manufacturing method of a timepiece spiral spring made of titanium

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU1131234C (en) * 1983-06-09 1994-10-30 ВНИИ авиационных материалов Titanium-base alloy
US5980655A (en) * 1997-04-10 1999-11-09 Oremet-Wah Chang Titanium-aluminum-vanadium alloys and products made therefrom
JPH10306335A (en) * 1997-04-30 1998-11-17 Nkk Corp Alpha plus beta titanium alloy bar and wire rod, and its production
US7073559B2 (en) * 2003-07-02 2006-07-11 Ati Properties, Inc. Method for producing metal fibers
US20040221929A1 (en) * 2003-05-09 2004-11-11 Hebda John J. Processing of titanium-aluminum-vanadium alloys and products made thereby
US20060045789A1 (en) * 2004-09-02 2006-03-02 Coastcast Corporation High strength low cost titanium and method for making same
US20080103543A1 (en) * 2006-10-31 2008-05-01 Medtronic, Inc. Implantable medical device with titanium alloy housing
JP2009299110A (en) * 2008-06-11 2009-12-24 Kobe Steel Ltd HIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN INTERMITTENT MACHINABILITY
JP5315888B2 (en) * 2008-09-22 2013-10-16 Jfeスチール株式会社 α-β type titanium alloy and method for melting the same
US9255316B2 (en) * 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
CN102212716B (en) * 2011-05-06 2013-03-27 中国航空工业集团公司北京航空材料研究院 Low-cost alpha and beta-type titanium alloy

Also Published As

Publication number Publication date
RU2013118571A (en) 2014-10-27
TWI572721B (en) 2017-03-01
JP6104164B2 (en) 2017-03-29
WO2012039929A1 (en) 2012-03-29
KR102056035B1 (en) 2019-12-13
BR112013005248B1 (en) 2019-10-01
AU2011305924B2 (en) 2016-04-07
RU2616676C2 (en) 2017-04-18
CA2809035A1 (en) 2012-03-29
KR20190040094A (en) 2019-04-16
BR112013005248A2 (en) 2018-05-02
JP2013539822A (en) 2013-10-28
MX368806B (en) 2019-10-17
TW201224163A (en) 2012-06-16
PE20131367A1 (en) 2013-11-25
TWI631222B (en) 2018-08-01
KR20130099001A (en) 2013-09-05
IL224802A (en) 2017-05-29
EP2619340A1 (en) 2013-07-31
KR20180049165A (en) 2018-05-10
US20120076686A1 (en) 2012-03-29
AU2011305924A1 (en) 2013-03-28
MX2013002312A (en) 2013-05-09
CN103097559A (en) 2013-05-08
NZ607852A (en) 2015-05-29

Similar Documents

Publication Publication Date Title
TWI572721B (en) High strength alpha/beta titanium alloy
ES2812760T3 (en) Titanium alloy
KR101847667B1 (en) High strength alpha/beta titanium alloy fasteners and fastener stock
JP5287062B2 (en) Low specific gravity titanium alloy, golf club head, and method for manufacturing low specific gravity titanium alloy parts
JP5078220B2 (en) Method for forming a metal member, heat treating a titanium-based alloy and manufacturing an aircraft, and an aircraft including a loaded structural member
ES2948640T3 (en) Creep resistant titanium alloys
JP6307623B2 (en) High strength alpha-beta titanium alloy
JPH03274238A (en) Manufacture of high strength titanium alloy excellent in workability and its alloy material as well as plastic working method therefor
JP2009515047A (en) Cold workable titanium alloy
TWI657147B (en) A HIGH STRENGH Ni-BASE ALLOY
TWI612143B (en) Precipitation-hardened nickel-based alloy and method of producing the same
RU2772153C1 (en) Creep-resistant titanium alloys
JP6345016B2 (en) Aluminum alloy plate for hot forming and manufacturing method thereof