TW201545371A - Method of manufacturing solar cell - Google Patents

Method of manufacturing solar cell Download PDF

Info

Publication number
TW201545371A
TW201545371A TW103118621A TW103118621A TW201545371A TW 201545371 A TW201545371 A TW 201545371A TW 103118621 A TW103118621 A TW 103118621A TW 103118621 A TW103118621 A TW 103118621A TW 201545371 A TW201545371 A TW 201545371A
Authority
TW
Taiwan
Prior art keywords
substrate
solar cell
layer
solution
manufacturing
Prior art date
Application number
TW103118621A
Other languages
Chinese (zh)
Other versions
TWI573286B (en
Inventor
Chih-Wei Chang
Original Assignee
Motech Ind Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motech Ind Inc filed Critical Motech Ind Inc
Priority to TW103118621A priority Critical patent/TWI573286B/en
Priority to CN201410331501.8A priority patent/CN105322047A/en
Publication of TW201545371A publication Critical patent/TW201545371A/en
Application granted granted Critical
Publication of TWI573286B publication Critical patent/TWI573286B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A method of manufacturing a solar cell comprises: preparing a substrate and roughening a first surface of the substrate; simultaneously forming a p-n junction in the substrate and an oxide layer on the substrate; subjecting the substrate to a wet-process surface treatment; forming a passivation layer and an anti-reflective layer on the substrate; and forming an electrode on the substrate. The wet-process surface treatment includes: isolating an edge of the substrate using a first acid; neutralizing the substrate using a first alkaline solution; removing the oxide layer from the substrate using a second acid; and forming Si-OH groups on a second surface of the substrate using a second alkaline solution. The Si-OH groups are hydrophilic and stable, and can facilitate formation of a high quality passivation layer to passivative and protect the substrate. Therefore, the present invention can achieve the purpose of high photoelectric conversion efficiency.

Description

太陽能電池的製造方法 Solar cell manufacturing method

本發明是有關於一種太陽能電池的製造方法,特別是指一種矽晶太陽能電池的製造方法。 The present invention relates to a method of fabricating a solar cell, and more particularly to a method of fabricating a twinned solar cell.

近年來由於高轉換效率的太陽能電池愈來愈受到重視,因此,如何製作出具高轉換效率且高能量產出之太陽能電池實為一重要課題。其中,Passivated Emitter and Rear Contact(簡稱PERC)之類型的太陽能電池在採用適當的背面鈍化技術後,其光電轉換效率能提升至20%以上。這是因為該PERC太陽能電池之一可產生光伏效應的矽基板(Silicon Substrate)的表面若經鈍化處理,例如形成一鈍化層配置於該基板之一背面上,即可透過該鈍化層修補、降低該基板表面或內部的缺陷,並能大幅減少載子複合(Recombination)的機會,從而達到高光電轉換效率之目的。 In recent years, solar cells with high conversion efficiency have received increasing attention. Therefore, how to produce solar cells with high conversion efficiency and high energy output is an important issue. Among them, the solar cell of the type of Passivated Emitter and Rear Contact (PERC) can increase the photoelectric conversion efficiency to more than 20% after adopting appropriate back passivation technology. The reason is that if the surface of the silicon substrate which can generate a photovoltaic effect is passivated, for example, a passivation layer is formed on the back surface of one of the substrates, the passivation layer can be repaired and lowered. Defects on the surface or inside of the substrate, and can greatly reduce the chance of carrier recombination, thereby achieving high photoelectric conversion efficiency.

由此可知,如何有效減少該基板之背面處載子的複合機會,將決定該PERC太陽能電池的光電轉換效率。至於形成該鈍化層的方法,一般通常採用真空鍍膜方式,例如物理氣相沉積(PVD)或化學氣相沉積(CVD)。除此 之外,也有業者採用原子層沉積法(ALD)的手段,以原子級尺度堆疊沉積以形成該鈍化層,並具有較優異的膜層品質。 It can be seen that how to effectively reduce the recombination opportunity of the carrier at the back side of the substrate will determine the photoelectric conversion efficiency of the PERC solar cell. As for the method of forming the passivation layer, a vacuum coating method such as physical vapor deposition (PVD) or chemical vapor deposition (CVD) is generally employed. In addition to this In addition, some employers use atomic layer deposition (ALD) methods to deposit and deposit on the atomic scale to form the passivation layer, and have superior film quality.

不過,現有的PERC太陽能電池的製造過程中,特別是在對該基板形成一PN接面(此乃產生光伏效應之來源)之擴散摻雜製程的同時,該基板上會形成一氧化層。一般而言,都是以稀釋後的氫氟酸(HF)溶液來除去該氧化層,但同時氫氟酸溶液也會與該基板表面上的矽產生反應,進而在該基板之背面上形成Si-H鍵結。由於Si-H鍵結具疏水性,在原子層沉積法中Si-H鍵不易與製程中通入的氣體反應,其反應效率低,導致鈍化層的成膜效果不佳。 However, in the manufacturing process of the existing PERC solar cell, especially when a diffusion doping process is formed on the substrate to form a PN junction, which is a source of photovoltaic effect, an oxide layer is formed on the substrate. Generally, the oxide layer is removed by a diluted hydrofluoric acid (HF) solution, but at the same time, the hydrofluoric acid solution also reacts with the ruthenium on the surface of the substrate to form Si on the back surface of the substrate. -H bond. Since the Si-H bond is hydrophobic, the Si-H bond is not easily reacted with the gas introduced in the process in the atomic layer deposition method, and the reaction efficiency is low, resulting in poor film formation of the passivation layer.

關於前述原子層沉積法與基板之表面鍵結的問題,由於Si-OH鍵結具親水性,故在原子層沉積法中Si-OH鍵結會與氣體反應,如此將能有效利用原子層沉積法所帶來的好處,形成品質優良的鈍化層。基於上述的原因,本案提供一種處理基板表面產生Si-OH鍵結的方法,藉此提升鈍化效果以增加太陽能電池的生命週期與開路電壓,進而提高太陽能電池的光電轉換效率。 Regarding the problem of the above-mentioned atomic layer deposition method and the surface bonding of the substrate, since the Si-OH bond is hydrophilic, the Si-OH bond reacts with the gas in the atomic layer deposition method, so that the atomic layer deposition can be effectively utilized. The benefits of the law form a good quality passivation layer. For the above reasons, the present invention provides a method for treating Si-OH bonding on the surface of a substrate, thereby improving the passivation effect to increase the life cycle and open circuit voltage of the solar cell, thereby improving the photoelectric conversion efficiency of the solar cell.

因此,本發明之目的,即在提供一種可提供該基板較佳的鈍化保護,藉以提高太陽能電池的光電轉換效率的太陽能電池的製造方法。 Accordingly, it is an object of the present invention to provide a method of fabricating a solar cell that provides better passivation protection of the substrate, thereby improving the photoelectric conversion efficiency of the solar cell.

於是,本發明太陽能電池的製造方法包含:提 供一基板,該基板包括相對的一第一表面與一第二表面,並粗糙化該基板之第一表面;在該基板內形成一PN接面,且該基板上會形成一氧化層;對該基板進行濕式製程表面處理;在該基板上形成一鈍化層與一抗反射層;以及在該基板上形成一電極。其中,該濕式製程表面處理包括:利用一第一酸液使該基板之邊緣絕緣化;利用一第一鹼液中和化該基板;利用一第二酸液去除該基板上的該氧化層;以及利用一第二鹼液使該基板之第二表面形成Si-OH鍵結。 Thus, the method of manufacturing the solar cell of the present invention comprises: Providing a substrate, the substrate includes an opposite first surface and a second surface, and roughening the first surface of the substrate; forming a PN junction in the substrate, and forming an oxide layer on the substrate; The substrate is subjected to a wet process surface treatment; a passivation layer and an anti-reflection layer are formed on the substrate; and an electrode is formed on the substrate. Wherein the wet process surface treatment comprises: insulating the edge of the substrate with a first acid solution; neutralizing the substrate with a first alkali solution; and removing the oxide layer on the substrate by using a second acid solution And forming a Si-OH bond on the second surface of the substrate using a second lye.

本發明之功效在於:利用該第二鹼液使該第二表面形成Si-OH鍵結,透過Si-OH鍵結具親水性且較為穩定等特性,有助於形成品質優良的該鈍化層。該基板可透過該鈍化層修補、降低該基板表面或內部的缺陷,並能大幅減少載子複合的機會,從而提升鈍化效果以增加太陽能電池的生命週期與開路電壓,達到高光電轉換效率之目的。 The effect of the present invention is that the second surface is used to form Si-OH bonds on the second surface, and the Si-OH bond is hydrophilic and relatively stable, which contributes to the formation of the passivation layer of excellent quality. The substrate can be repaired by the passivation layer to reduce defects on the surface or the inside of the substrate, and the opportunity for recombination of the carrier can be greatly reduced, thereby improving the passivation effect to increase the life cycle and the open circuit voltage of the solar cell, thereby achieving high photoelectric conversion efficiency. .

1‧‧‧太陽能電池 1‧‧‧Solar battery

11‧‧‧基板 11‧‧‧Substrate

110‧‧‧PN接面 110‧‧‧PN junction

111‧‧‧第一表面 111‧‧‧ first surface

112‧‧‧第二表面 112‧‧‧ second surface

113‧‧‧側環面 113‧‧‧ side torus

114‧‧‧射極層 114‧‧ ‧ emitter layer

12‧‧‧鈍化層 12‧‧‧ Passivation layer

13‧‧‧抗反射層 13‧‧‧Anti-reflective layer

14‧‧‧電極 14‧‧‧Electrode

141‧‧‧第一電極 141‧‧‧First electrode

142‧‧‧第二電極 142‧‧‧second electrode

5‧‧‧氧化物 5‧‧‧Oxide

6‧‧‧摻雜層 6‧‧‧Doped layer

7‧‧‧氧化層 7‧‧‧Oxide layer

81~85‧‧‧步驟 81~85‧‧‧Steps

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一側視剖視圖,顯示本發明製造方法之一較佳實施例所製得之一太陽能電池的層體結構;圖2是該製造方法之一步驟流程示意圖;及圖3是該製造方法之一步驟流程方塊圖。 Other features and effects of the present invention will be apparent from the following description of the drawings, wherein: Figure 1 is a side elevational view showing one of the preferred embodiments of the manufacturing method of the present invention. FIG. 2 is a schematic flow chart of one step of the manufacturing method; and FIG. 3 is a block flow diagram of one step of the manufacturing method.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。 Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same reference numerals.

參閱圖1,本發明的製造方法之一較佳實施例用於製造一太陽能電池1,在本實施例中,該太陽能電池1舉Passivated Emitter and Rear Contact(簡稱PERC)之電池類型為例說明,但不以此為限。該太陽能電池1包含:一基板11、一鈍化層12、一抗反射層13,以及一電極14。 Referring to FIG. 1, a preferred embodiment of the manufacturing method of the present invention is used to manufacture a solar cell 1. In the embodiment, the solar cell 1 is exemplified by a battery type of a Passivated Emitter and Rear Contact (PERC). But not limited to this. The solar cell 1 comprises a substrate 11, a passivation layer 12, an anti-reflection layer 13, and an electrode 14.

該基板11可為p型或n型的單晶或多晶矽基板,並包括一主要受光的第一表面111、一相對於該第一表面111的第二表面112、一連接於該第一表面111與該第二表面112之周緣且呈環繞狀的側環面113,以及一形成於該第一表面111處之內的射極層114。該第一表面111具有粗糙化結構,藉此降低入射光的反射率以提升入光量。該射極層114配合該第一表面111高低起伏之形貌而配置於該第一表面111內,並與該基板11形成一PN接面110,為產生光伏效應之來源。 The substrate 11 can be a p-type or n-type single crystal or polycrystalline germanium substrate, and includes a first light-receiving first surface 111, a second surface 112 opposite to the first surface 111, and a first surface 111 connected thereto. A side annular surface 113 that is circumferential with the second surface 112 and has a circumferential shape, and an emitter layer 114 formed in the first surface 111. The first surface 111 has a roughened structure, thereby reducing the reflectance of the incident light to increase the amount of incident light. The emitter layer 114 is disposed in the first surface 111 in conjunction with the undulation of the first surface 111, and forms a PN junction 110 with the substrate 11 to generate a photovoltaic effect.

該鈍化層12配置於該第二表面112上,可用於修補、降低該基板11表面或內部的缺陷,並能降低載子表面複合速率(Surface Recombination Velocity,簡稱SRV),提升光電轉換效率。該抗反射層13配合該第一表面111高低起伏之形貌而配置於該第一表面111上,可用於提升光線入射量以及降低載子表面複合速率。 The passivation layer 12 is disposed on the second surface 112 and can be used for repairing and reducing defects on the surface or inside of the substrate 11, and can reduce the Surface Recombination Velocity (SRV) and improve the photoelectric conversion efficiency. The anti-reflective layer 13 is disposed on the first surface 111 in conjunction with the undulation of the first surface 111, and can be used to increase the amount of light incident and reduce the surface recombination rate of the carrier.

該電極14包括一第一電極141與一第二電極 142。該第一電極141位於該抗反射層13上,並穿過該抗反射層13而接觸該基板11的第一表面111;該第二電極142位於該鈍化層12上,並穿過該鈍化層12而接觸該基板11的第二表面112。 The electrode 14 includes a first electrode 141 and a second electrode 142. The first electrode 141 is located on the anti-reflection layer 13 and passes through the anti-reflection layer 13 to contact the first surface 111 of the substrate 11; the second electrode 142 is located on the passivation layer 12 and passes through the passivation layer 12 contacts the second surface 112 of the substrate 11.

參閱圖1、2、3,本發明製造方法之較佳實施例,包含以下步驟:步驟81:提供該基板11,並且粗糙化該基板11之第一表面111以使該第一表面111具有粗糙化結構。 Referring to Figures 1, 2 and 3, a preferred embodiment of the manufacturing method of the present invention comprises the following steps: Step 81: providing the substrate 11 and roughening the first surface 111 of the substrate 11 to make the first surface 111 rough Structure.

步驟82:在該基板11內形成該PN接面110,且該基板11上會形成一氧化層7。在本實施例中,該基板11為p型的單晶矽基板,因此在步驟82中具體是利用高溫爐對該第一表面111進行磷擴散之摻雜製程,使該第一表面111處之內形成摻雜的n型半導體,即為本實施例的射極層114。在此同時,在該第二表面112與該側環面113(統稱為該基板11之邊緣)處之內也會因為該高溫爐內的磷擴散而形成一摻雜層6。此外,該基板11的四周圍(也就是該射極層114與該摻雜層6之外側)外側上同體形成一氧化層7,該氧化層7的材料為含有磷的矽玻璃(或稱磷矽玻璃,Phosphorus Silicon Glass,簡稱PSG)。 Step 82: The PN junction 110 is formed in the substrate 11, and an oxide layer 7 is formed on the substrate 11. In this embodiment, the substrate 11 is a p-type single crystal germanium substrate. Therefore, in step 82, the first surface 111 is subjected to a phosphorus diffusion doping process by using a high temperature furnace, so that the first surface 111 is A doped n-type semiconductor is formed therein, that is, the emitter layer 114 of the present embodiment. At the same time, a doped layer 6 is formed within the second surface 112 and the side annulus 113 (collectively referred to as the edge of the substrate 11) due to diffusion of phosphorus in the high temperature furnace. In addition, an outer oxide layer 7 is formed on the outer side of the substrate 11 (that is, the outer surface of the emitter layer 114 and the outer side of the doped layer 6), and the material of the oxide layer 7 is a bismuth glass containing phosphorus (or Phosphorus Silicon Glass (PSG).

補充說明,在實施上該基板11也可選用n型的單晶矽基板,此時在步驟82中則對該第一表面111進行硼擴散之摻雜製程,使該第一表面111處之內形成摻雜的p型半導體,也就是該射極層114。而同體形成於該基板11的四周圍外側上的該氧化層7的材料則為含有硼的矽玻璃 (或稱硼矽玻璃,Boron Silicon Glass,簡稱BSG)。 In addition, in the implementation, the substrate 11 may also be an n-type single crystal germanium substrate. In step 82, the first surface 111 is subjected to a boron diffusion doping process to make the first surface 111. A doped p-type semiconductor is formed, that is, the emitter layer 114. The material of the oxide layer 7 formed on the outer periphery of the periphery of the substrate 11 is a neodymium glass containing boron. (or Boron Silicon Glass, or BSG for short).

步驟83:對該基板11進行濕式製程表面處理,包括以下的步驟:步驟831:利用一第一酸液使該基板11之邊緣絕緣化。由於該摻雜層6可導電,容易導致該太陽能電池1產生短路或漏電流的問題,因此在本步驟831中,採用讓該第一酸液接觸該基板11之第二表面112與側環面113而不接觸該基板11的第一表面111的方式,藉此除去位於該第二表面112與該側環面113上的該摻雜層6與該氧化層7,並保留位於該第一表面111上的該氧化層7。本步驟一般可稱為基板11之邊緣(也就是該第二表面112與該側環面113)絕緣化(Edge Isolation)製程,可避免短路或漏電流發生。在實施上,該第一酸液具體可為氫氟酸(HF)溶液、硝酸(HNO3)溶液、硫酸(H2SO4)溶液,或此等之任一組合。 Step 83: Performing a wet process surface treatment on the substrate 11 includes the following steps: Step 831: Insulating the edge of the substrate 11 with a first acid solution. Since the doping layer 6 is electrically conductive, the solar cell 1 is liable to cause a short circuit or a leakage current problem. Therefore, in the step 831, the first acid solution is brought into contact with the second surface 112 and the side annulus of the substrate 11. 113, without contacting the first surface 111 of the substrate 11, thereby removing the doped layer 6 and the oxide layer 7 on the second surface 112 and the side ring surface 113, and remaining on the first surface The oxide layer 7 on 111. This step can be generally referred to as an edge Isolation process of the edge of the substrate 11 (that is, the second surface 112 and the side ring surface 113) to avoid short circuit or leakage current. In practice, the first acid liquid may specifically be a hydrofluoric acid (HF) solution, a nitric acid (HNO 3 ) solution, a sulfuric acid (H 2 SO 4 ) solution, or any combination thereof.

步驟832:利用一第一鹼液中和化該基板11。在該第一酸液作用後,可能會在該第二表面112與該側環面113上產生黑點或棕斑等的氧化物5,或者餘留的少量該摻雜層6未被除去,因此在本步驟832中,利用該第一鹼液中和化該基板11以除去前述氧化物5,並確保完全除去位於該第二表面112與該側環面113上的該摻雜層6,以避免該太陽能電池1產生短路或漏電流的問題,使該基板11的第二表面112與側環面113變得較為平整。在實施上,該第一鹼液具體可為氫氧化鈉(NaOH)溶液,且該第一鹼液 的pH值大於9。 Step 832: neutralizing the substrate 11 with a first lye. After the first acid solution is applied, an oxide 5 such as a black spot or a brown spot may be generated on the second surface 112 and the side ring surface 113, or a small amount of the doped layer 6 may not be removed. Therefore, in this step 832, the substrate 11 is neutralized by the first alkali solution to remove the oxide 5, and the doping layer 6 on the second surface 112 and the side ring surface 113 is completely removed. In order to avoid the problem of short circuit or leakage current of the solar cell 1, the second surface 112 and the side annular surface 113 of the substrate 11 are made relatively flat. In practice, the first alkali liquid may specifically be a sodium hydroxide (NaOH) solution, and the first alkali liquid The pH is greater than 9.

補充說明的是,由於該第二鹼液蝕刻矽層與摻雜層6的速率比蝕刻氧化層7的速率來得快,因此在本步驟832中,可以將該基板11整個浸泡在該第一鹼液中,此時可透過該氧化層7保護,以避免第一表面111的粗糙化結構被破壞。 In addition, since the rate of etching the ruthenium layer and the doping layer 6 is faster than the rate of etching the oxide layer 7, the substrate 11 can be entirely immersed in the first base in this step 832. In the liquid, it can be protected by the oxide layer 7 at this time to prevent the roughened structure of the first surface 111 from being broken.

步驟833:於溫度為25-27℃的環境下,利用一第二酸液去除該基板11之第一表面111上的該氧化層7。在實施上,該第二酸液為氫氟酸溶液,並且該第二酸液的濃度約為5wt%。 Step 833: removing the oxide layer 7 on the first surface 111 of the substrate 11 by using a second acid solution in an environment of a temperature of 25-27 °C. In practice, the second acid solution is a hydrofluoric acid solution, and the concentration of the second acid solution is about 5% by weight.

步驟834:利用一第二鹼液使該基板11之第二表面112形成Si-OH鍵結。由於該第二酸液是對該基板11的所有表面進行作用,因此該第二酸液去除該第一表面111上的該氧化層7的同時,該第二酸液也會使該第二表面112與該側環面113上的矽產生反應,使得該第二表面112與該側環面113上形成Si-H鍵結。因此,在本步驟834中,於溫度為5~95℃的環境下,使該第二鹼液與前述Si-H鍵結反應而蝕刻該基板11,並進而在該第二表面112與該側環面113上形成Si-OH鍵結。在實施上,該第二鹼液具體可為氫氧化鈉溶液、氫氧化鉀(KOH)溶液或四甲基氫氧化銨(TMAH)溶液,並且該第二鹼液的濃度為5~60wt%。 Step 834: Forming a second surface 112 of the substrate 11 with a second lye to form a Si-OH bond. Since the second acid solution acts on all surfaces of the substrate 11, the second acid solution removes the oxide layer 7 on the first surface 111, and the second acid solution also causes the second surface. 112 reacts with the crucible on the side annulus 113 such that the second surface 112 forms a Si-H bond with the side annulus 113. Therefore, in this step 834, the second lye is reacted with the Si-H bond to etch the substrate 11 in an environment having a temperature of 5 to 95 ° C, and further on the second surface 112 and the side. A Si-OH bond is formed on the toroid 113. In practice, the second lye may specifically be a sodium hydroxide solution, a potassium hydroxide (KOH) solution or a tetramethylammonium hydroxide (TMAH) solution, and the concentration of the second lye is 5 to 60% by weight.

進一步說明的是,該基板11被蝕刻且蝕刻深度小於5μm,前述蝕刻深度是利用基板11重量法計算得知。在本實施例中,蝕刻深度小於5μm為佳,也就是 說,只要該第二鹼液有蝕刻該第二表面112與該側環面113,藉此在該第二表面112與該側環面113上形成Si-OH鍵結,就能達成本發明的目的,當蝕刻深度高於5μm,該基板11被蝕刻消去的量過高,進而降低該基板11的體積而降低該太陽能電池1的光電流產量。 Further, the substrate 11 is etched and the etching depth is less than 5 μm, and the etching depth is calculated by the weight method of the substrate 11. In this embodiment, the etching depth is preferably less than 5 μm, that is, As long as the second lye has etched the second surface 112 and the side annulus 113, thereby forming a Si-OH bond on the second surface 112 and the side annulus 113, the invention can be achieved. Therefore, when the etching depth is higher than 5 μm, the amount of the substrate 11 which is etched away is too high, thereby reducing the volume of the substrate 11 and reducing the photocurrent yield of the solar cell 1.

在本步驟834的作業溫度為5~95℃為佳,作業溫度低於5℃時,該第二鹼液的反應速度過慢而降低生產效率;作業溫度高於95℃時,該第二鹼液的反應速度過快而容易過度蝕刻該基板11,如此將過度降低該基板11的體積而降低該太陽能電池1的光電流產量。 In the step 834, the working temperature is preferably 5 to 95 ° C, and when the working temperature is lower than 5 ° C, the reaction speed of the second alkali liquid is too slow to reduce the production efficiency; when the working temperature is higher than 95 ° C, the second alkali is used. The reaction speed of the liquid is too fast to easily overetch the substrate 11, which will excessively reduce the volume of the substrate 11 and reduce the photocurrent yield of the solar cell 1.

該第二鹼液的濃度設定在5~60wt%為佳,該第二鹼液的濃度低於5wt%時,該第二鹼液的反應速度過慢而降低生產效率;該第二鹼液的濃度高於60wt%時,該第二鹼液的反應速度過快而容易過度蝕刻該基板11,導致該基板11的體積減少而降低該太陽能電池1的光電流產量。 The concentration of the second lye is preferably 5 to 60 wt%, and when the concentration of the second lye is less than 5 wt%, the reaction rate of the second lye is too slow to reduce the production efficiency; the second lye is When the concentration is higher than 60% by weight, the reaction speed of the second alkali liquid is too fast and the substrate 11 is easily over-etched, resulting in a decrease in the volume of the substrate 11 and a decrease in the photocurrent yield of the solar cell 1.

步驟84:在該基板11上形成該鈍化層12與該抗反射層13。在本實施例中,在完成步驟834之後,隨即利用原子層沉積法(ALD)於該基板11之第二表面112沉積該鈍化層12,該鈍化層12的材料例如氧化鋁(AlOX);之後再利用電漿輔助化學氣相沉積法(PECVD)於該基板11之第一表面111沉積該抗反射層13,該抗反射層13的材料例如氮化矽(SiNX)。 Step 84: forming the passivation layer 12 and the anti-reflection layer 13 on the substrate 11. In this embodiment, after the step 834 is completed, the passivation layer 12 is deposited on the second surface 112 of the substrate 11 by atomic layer deposition (ALD), and the material of the passivation layer 12 is, for example, aluminum oxide (AlO X ); The anti-reflective layer 13 is deposited on the first surface 111 of the substrate 11 by plasma-assisted chemical vapor deposition (PECVD), and the material of the anti-reflective layer 13 is, for example, tantalum nitride (SiN X ).

進一步說明的是,原子層沉積法沉積該鈍化層12的過程中,本實施例具體是通入三甲基鋁(TMA)的氣 體,使三甲基鋁與該基板11的Si-OH鍵結反應,藉此以原子級尺度堆疊沉積鋁與氧,進而形成材料為氧化鋁的該鈍化層12。 Further, in the process of depositing the passivation layer 12 by atomic layer deposition, the embodiment is specifically a gas which is fed with trimethylaluminum (TMA). The trimethylaluminum is reacted with the Si-OH bond of the substrate 11, whereby aluminum and oxygen are deposited on the atomic scale stack to form the passivation layer 12 of alumina.

步驟85:在該基板11上形成該電極14。具體可將導電漿料分別網印於該抗反射層13與該鈍化層12上,再透過熱處理將導電漿料分別燒結成該第一電極141與該第二電極142,此時該第一電極141會燒穿該抗反射層13而接觸該第一表面111,而該第二電極142會燒穿該鈍化層12而接觸該第二表面112。在實施上,不需限制該第一電極141與該第二電極142的具體結構,只要可用於將該基板11所產生之電能導出即可。 Step 85: The electrode 14 is formed on the substrate 11. Specifically, the conductive paste can be separately printed on the anti-reflective layer 13 and the passivation layer 12, and the conductive paste is separately sintered into the first electrode 141 and the second electrode 142 by heat treatment. 141 will burn through the anti-reflective layer 13 to contact the first surface 111, and the second electrode 142 will burn through the passivation layer 12 to contact the second surface 112. In practice, the specific structure of the first electrode 141 and the second electrode 142 need not be limited, as long as it can be used to derive the electrical energy generated by the substrate 11.

由以上說明可知,本發明製造方法在步驟834中,利用該第二鹼液使該第二表面112形成Si-OH鍵結,透過Si-OH鍵結具親水性且較為穩定等特性,在步驟84之原子層沉積法中,Si-OH鍵結能與三甲基鋁(TMA)之氣體產生較高的反應效率,並能以原子級尺度堆疊沉積而形成品質優良的該鈍化層12。於是,本發明製造方法所製得之太陽能電池1的基板11的第二表面112可透過該鈍化層12修補、降低表面或內部的缺陷,並能大幅減少載子複合(Recombination)的機會,從而提升鈍化效果以增加該太陽能電池1的生命週期與開路電壓,達到高光電轉換效率之目的。 As apparent from the above description, in the manufacturing method of the present invention, in the step 834, the second surface 112 is formed into a Si-OH bond by the second alkali solution, and the Si-OH bond is hydrophilic and stable. In the atomic layer deposition method of 84, the Si-OH bond can produce a higher reaction efficiency with the gas of trimethylaluminum (TMA), and can be deposited on the atomic scale to form the passivation layer 12 of excellent quality. Therefore, the second surface 112 of the substrate 11 of the solar cell 1 produced by the manufacturing method of the present invention can be repaired through the passivation layer 12, reducing surface or internal defects, and greatly reducing the chance of carrier recombination. The passivation effect is increased to increase the life cycle and open circuit voltage of the solar cell 1 to achieve high photoelectric conversion efficiency.

進一步說明的是,本發明製造方法在步驟834中,是在溫度為5~95℃的環境下進行,前述低溫製程在流 程上較簡易,可省略升溫與降溫等步驟,進而提升生產效率並減少設備成本。除此之外,相對於高溫製程容易使該基板11內形成缺陷而增加載子於該基板11中的複合機率,本發明透過前述低溫製程使該基板11能保持應有的材料品質,亦可避免在步驟82中所形成之該PN接面110的摻雜深度與範圍受到影響,藉此使該基板11保有較佳的使用壽命與穩定性。因此,以上關於該基板11之性質上的提升,配合該鈍化層12之優異的鈍化效果,從而能更進一步提升該太陽能電池1的光電轉換效率。 It is further noted that the manufacturing method of the present invention is carried out in an environment of a temperature of 5 to 95 ° C in the step 834, and the low temperature process is in the flow. The process is relatively simple, and steps such as heating and cooling can be omitted, thereby improving production efficiency and reducing equipment costs. In addition, it is easy to form a defect in the substrate 11 and increase the composite probability of the carrier in the substrate 11 with respect to the high temperature process. The present invention can maintain the material quality of the substrate 11 by the low temperature process. The doping depth and range of the PN junction 110 formed in step 82 are prevented from being affected, thereby providing the substrate 11 with better service life and stability. Therefore, the above-described improvement in the properties of the substrate 11 is combined with the excellent passivation effect of the passivation layer 12, so that the photoelectric conversion efficiency of the solar cell 1 can be further improved.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalent changes and modifications made by the patent application scope and patent specification content of the present invention, All remain within the scope of the invention patent.

1‧‧‧太陽能電池 1‧‧‧Solar battery

11‧‧‧基板 11‧‧‧Substrate

110‧‧‧PN接面 110‧‧‧PN junction

111‧‧‧第一表面 111‧‧‧ first surface

112‧‧‧第二表面 112‧‧‧ second surface

113‧‧‧側環面 113‧‧‧ side torus

114‧‧‧射極層 114‧‧ ‧ emitter layer

12‧‧‧鈍化層 12‧‧‧ Passivation layer

13‧‧‧抗反射層 13‧‧‧Anti-reflective layer

14‧‧‧電極 14‧‧‧Electrode

141‧‧‧第一電極 141‧‧‧First electrode

142‧‧‧第二電極 142‧‧‧second electrode

5‧‧‧氧化物 5‧‧‧Oxide

6‧‧‧摻雜層 6‧‧‧Doped layer

7‧‧‧氧化層 7‧‧‧Oxide layer

Claims (10)

一種太陽能電池的製造方法,包含:提供一基板,該基板包括相對的一第一表面與一第二表面,並粗糙化該基板之第一表面;在該基板內形成一PN接面,且該基板上會形成一氧化層;對該基板進行濕式製程表面處理,包括:利用一第一酸液使該基板之邊緣絕緣化;利用一第一鹼液中和化該基板;利用一第二酸液去除該基板上的該氧化層;及利用一第二鹼液使該基板之第二表面形成Si-OH鍵結;在該基板上形成一鈍化層與一抗反射層;及在該基板上形成一電極。 A method of manufacturing a solar cell, comprising: providing a substrate, the substrate includes an opposite first surface and a second surface, and roughening the first surface of the substrate; forming a PN junction in the substrate, and the Forming an oxide layer on the substrate; performing a wet process surface treatment on the substrate comprises: insulating the edge of the substrate with a first acid solution; neutralizing the substrate with a first alkali solution; using a second An acid solution removes the oxide layer on the substrate; and a second alkali solution is used to form a Si-OH bond on the second surface of the substrate; a passivation layer and an anti-reflection layer are formed on the substrate; and the substrate is formed on the substrate An electrode is formed on the upper surface. 如請求項1所述的太陽能電池的製造方法,其中,該第二鹼液為氫氧化鈉溶液、氫氧化鉀溶液或四甲基氫氧化銨溶液。 The method for producing a solar cell according to claim 1, wherein the second alkali solution is a sodium hydroxide solution, a potassium hydroxide solution or a tetramethylammonium hydroxide solution. 如請求項1所述的太陽能電池的製造方法,其中,該第二鹼液的濃度為5~60wt%。 The method for producing a solar cell according to claim 1, wherein the concentration of the second alkali solution is 5 to 60% by weight. 如請求項1所述的太陽能電池的製造方法,其中,在溫度為5~95℃的環境下,利用該第二鹼液使該第二表面形成Si-OH鍵結。 The method for producing a solar cell according to claim 1, wherein the second surface is Si-OH-bonded by the second alkali solution in an environment having a temperature of 5 to 95 °C. 如請求項1所述的太陽能電池的製造方法,其中,該第二鹼液使該第二表面形成Si-OH鍵結的過程中,該基板 被蝕刻且蝕刻深度小於5μm。 The method of manufacturing a solar cell according to claim 1, wherein the second alkali liquid causes the second surface to form a Si-OH bond, the substrate Etched and etched to a depth of less than 5 μm. 如請求項1所述的太陽能電池的製造方法,其中,利用原子層沉積法於該基板之第二表面沉積該鈍化層。 The method of manufacturing a solar cell according to claim 1, wherein the passivation layer is deposited on the second surface of the substrate by an atomic layer deposition method. 如請求項1所述的太陽能電池的製造方法,其中,利用電漿輔助化學氣相沉積法於該基板之第一表面沉積該抗反射層。 The method of manufacturing a solar cell according to claim 1, wherein the antireflection layer is deposited on the first surface of the substrate by plasma assisted chemical vapor deposition. 如請求項1所述的太陽能電池的製造方法,其中,該第一酸液為氫氟酸溶液、硝酸溶液、硫酸溶液,或此等之任一組合;該第一鹼液為氫氧化鈉溶液;該第二酸液為氫氟酸溶液。 The method for manufacturing a solar cell according to claim 1, wherein the first acid solution is a hydrofluoric acid solution, a nitric acid solution, a sulfuric acid solution, or any combination thereof; the first alkali solution is a sodium hydroxide solution. The second acid solution is a hydrofluoric acid solution. 如請求項1所述的太陽能電池的製造方法,其中,利用該第二鹼液使該第二表面形成Si-OH鍵結之後,緊接著於該基板之第二表面沉積該鈍化層。 The method of manufacturing a solar cell according to claim 1, wherein the passivation layer is deposited on the second surface of the substrate after the second surface is formed into a Si-OH bond by the second alkali solution. 如請求項9所述的太陽能電池的製造方法,其中,利用原子層沉積法於該第二表面沉積該鈍化層。 The method of manufacturing a solar cell according to claim 9, wherein the passivation layer is deposited on the second surface by an atomic layer deposition method.
TW103118621A 2014-05-28 2014-05-28 Method of manufacturing solar cell TWI573286B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103118621A TWI573286B (en) 2014-05-28 2014-05-28 Method of manufacturing solar cell
CN201410331501.8A CN105322047A (en) 2014-05-28 2014-07-11 Method for manufacturing solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103118621A TWI573286B (en) 2014-05-28 2014-05-28 Method of manufacturing solar cell

Publications (2)

Publication Number Publication Date
TW201545371A true TW201545371A (en) 2015-12-01
TWI573286B TWI573286B (en) 2017-03-01

Family

ID=55249048

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103118621A TWI573286B (en) 2014-05-28 2014-05-28 Method of manufacturing solar cell

Country Status (2)

Country Link
CN (1) CN105322047A (en)
TW (1) TWI573286B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2590499A (en) * 2019-12-20 2021-06-30 Singulus Tech Ag Method and wet bench for selectively removing an emitter layer on a single side of a silicon substrate
CN114373831A (en) * 2021-12-30 2022-04-19 通威太阳能(眉山)有限公司 Tunneling oxide layer, N-type double-sided solar crystalline silicon battery and preparation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201218407A (en) * 2010-10-22 2012-05-01 Wakom Semiconductor Corp Method for fabricating a silicon wafer solar cell
TWM467179U (en) * 2013-06-28 2013-12-01 Mh Solar Co Ltd Solar cell with passivation layer

Also Published As

Publication number Publication date
TWI573286B (en) 2017-03-01
CN105322047A (en) 2016-02-10

Similar Documents

Publication Publication Date Title
JP6258576B2 (en) Method for manufacturing photoelectric device
CN105810779B (en) A kind of preparation method of PERC solar cells
CN105576083A (en) N-type double-side solar cell based on APCVD technology and preparation method thereof
CN101820009A (en) Crystal silicon solar cell with selective emitter and preparation method thereof
KR20130092494A (en) Solar cell and method of manufacturing the same
JP2013161847A (en) Solar cell
JP2014239150A (en) Solar cell and solar cell module
CN103904138A (en) Full back side contact crystalline silicon cell and preparation method thereof
CN104157740A (en) N-type two-side solar cell manufacturing method
TWI573286B (en) Method of manufacturing solar cell
JP2016139762A (en) Method of manufacturing solar cell element
CN105244417B (en) Crystalline silicon solar cell and preparation method thereof
CN110047950A (en) A kind of solar cell and preparation method thereof with passivation layer structure
CN110212037A (en) The PERC solar battery and preparation method thereof of Selective long-range DEPT front passivation
KR101065384B1 (en) Solar cell and fabrication method thereof
TWI415272B (en) Method of fabricating rear surface point contact of solar cells
CN103474501A (en) Selective emitter gallium antimonide infrared battery and manufacturing method thereof
KR100995654B1 (en) Solar cell and method for manufacturing the same
JP2014086589A (en) Method for manufacturing solar cell and solar cell
JP6224513B2 (en) Method for manufacturing solar cell element
CN103199154B (en) The preparation method of a kind of double layer antireflection film crystal silicon solar energy battery
US20170092791A1 (en) Solar cell element
CN109860336A (en) A kind of preparation method of solar battery
TWI686958B (en) Solar cell and method of fabricating the same
CN104167460A (en) Manufacturing method of solar energy cell

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees