TW201542719A - 使用矽倍半氧烷複合高分子的塑膠塗佈方法 - Google Patents
使用矽倍半氧烷複合高分子的塑膠塗佈方法 Download PDFInfo
- Publication number
- TW201542719A TW201542719A TW104107436A TW104107436A TW201542719A TW 201542719 A TW201542719 A TW 201542719A TW 104107436 A TW104107436 A TW 104107436A TW 104107436 A TW104107436 A TW 104107436A TW 201542719 A TW201542719 A TW 201542719A
- Authority
- TW
- Taiwan
- Prior art keywords
- group
- plastic
- composite polymer
- weight
- coating composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
- C09D183/06—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/20—Diluents or solvents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2300/00—Characterised by the use of unspecified polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2483/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
- C08J2483/04—Polysiloxanes
- C08J2483/06—Polysiloxanes containing silicon bound to oxygen-containing groups
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Silicon Polymers (AREA)
- Paints Or Removers (AREA)
- Laminated Bodies (AREA)
Abstract
本發明係關於一種使用矽倍半氧烷複合高分子的塑膠塗佈方法,更詳細而言,係關於一種如下使用矽倍半氧烷複合高分子的塑膠塗佈方法:使用於一個高分子內包含特定結構之線狀矽倍半氧烷鏈及籠型矽倍半氧烷之矽倍半氧烷複合高分子對塑膠表面進行塗佈,藉此,不僅塗佈步驟較為容易,而且所形成之塗層具有非常高之表面硬度,並具有優異之透明性、耐劃痕性、防水特性、防污特性、耐指紋性、熱穩定性及光澤特性,與塑膠基材之接著力優異,且因與顏料之高相溶性而容易著色。
Description
本發明係關於一種使用矽倍半氧烷複合高分子的塑膠塗佈方法,更詳細而言,係關於一種如下使用矽倍半氧烷複合高分子的塑膠塗佈方法:使用於一個高分子內包含特定結構之線狀矽倍半氧烷鏈及籠型矽倍半氧烷之矽倍半氧烷複合高分子對塑膠表面進行塗佈,藉此,不僅塗佈步驟較為容易,而且所形成之塗層具有非常高之表面硬度,並具有優異之透明性、耐劃痕性、防水特性、防污特性、耐指紋性、熱穩定性及光澤特性,與塑膠基材之接著力優異,且因與顏料之高相溶性而容易著色。
通常而言,塑膠製品因較高之加工性及柔軟性而被應用於大量製品。但由於塑膠材質之表面硬度、耐久性、耐污染性、耐劃痕性、光澤特性及耐熱性較差,故而使用有如下方法:根據塑膠製品之用途,對表面塗佈兩層或多層之各種塗佈劑,以賦予功能性。
作為一例,於大韓民國專利公開案第10-2006-0121334號中揭示有如下塑膠成形品之表面塗佈方法,該塑膠成形品係於塑膠表面形成有機質覆膜,並於其外側再次形成無機質覆膜之後,於真空腔室內進行所有塑膠之物理成形之後,於其表面形成有機質覆膜,並於其外側再次形成無機質覆膜之後,於真空腔室內通過物理、化學蒸鍍而可表現出各種顏色之金屬質感者,該塑膠成形品之表面塗佈方法之特徵在於藉由如下步驟而進行:洗淨步驟,其使用壓縮空氣或其他溶劑進行洗淨並乾燥,以去除殘留於塑膠成形品之表面之各種異物;有機質覆膜步驟,其藉由使用噴塗或浸漬之方法將表面硬化以及與無機質之接著力優異之有機質塗佈於通過上述洗淨步驟而洗淨表面之塑膠成形品上,形成覆膜;無機質覆膜步驟,其藉由使用噴塗或浸漬之方法將無機質塗佈於通過上述有機質覆膜步驟而使表面硬化之塑膠成形品上而形成覆膜,以抑制氣體溶出抑制;及真空蒸鍍步驟,其於真空腔室內進行物理、化學蒸鍍而形成金屬覆膜,以對交叉形成上述有機/無機質覆膜之複合覆膜後之塑膠成形品賦予物理、化學特性以及實現各種顏色之金屬質感;但該方法存在步驟過於複雜,所形成之塗層之耐久性及熱穩定性亦較差之問題,於大韓民國專利公開案第10-2011-0014517號中揭示有如下方法:使用包含胺基甲酸酯系高分子及乙烯性不飽和基之二氧化矽粒子進行表面塗佈而對塑膠進行硬塗,該胺基甲酸酯系高分子於分子內具有乙烯性不飽和基,且經凝膠滲
透層析法測定之品質平均分子量為3,000-200,000,並且玻璃轉移溫度為30%以上;但該方法存在表面硬度、耐污染性及熱穩定性依然處於不令人滿意之水準之問題。
為了解決如上述之問題,本發明之目的在於提供一種如下使用矽倍半氧烷複合高分子的塑膠塗佈方法:使用塗佈溶液於塑膠表面之上進行塗佈,藉此,不僅塗佈步驟較為容易,而且所形成之塗層具有非常高之表面硬度,並具有優異之透明性、耐劃痕性、防水特性、防污特性、耐指紋性、熱穩定性及光澤特性,與塑膠基材之接著力優異,且因與顏料之高相溶性而容易著色。
又,本發明之目的在於提供一種塑膠塗佈組合物,其可對塑膠表面賦予較高之表面硬度以及優異之透明性、耐劃痕性、防水特性、防污特性、耐指紋性、熱穩定性及光澤特性。
又,本發明之目的在於提供一種塑膠,其具有如下塗層:於表面具有非常高之表面硬度,且具有優異之透明性、耐劃痕性、防水特性、防污特性、耐指紋性、熱穩定性及光澤特性,與塑膠基材之接著力優異。
又,本發明之目的在於提供一種物品,其特徵在於包含具有上述塗層之塑膠。
為了達成上述目的,本發明提供一種塑膠塗佈方法,其特徵在於在塑膠表面之上塗佈包含下述化學式1至9中任一者所示之矽倍半氧烷複合高分子之塑膠塗佈組合物並硬化:
[化學式5]
於上述化學式1至9中,
A為,B為,D為
,E為
Y分別獨立為O、NR21或[(SiO3/2R)4+2nO],且至少一個為[(SiO3/2R)4+2nO],X分別獨立為R22或[(SiO3/2R)4+2nR],且至少一個為[(SiO3/2R)4+2nR],R、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20、R21及R22分別獨立為氫;氘;鹵素;胺基;環氧基;環己基環氧基;(甲基)丙烯醯基;硫醇基;異氰酸酯基;腈基;硝基;苯基;經氘、鹵素、胺基、環氧基、(甲基)丙烯醯基、硫醇基、異氰酸酯基、腈基、硝基、苯基取代或未經取代之C1~C40之烷基;C2~C40之烯基;C1~C40之烷氧基;C3~C40之環烷基;C3~C40之雜環烷基;C6~C40之芳基;C3~C40之雜芳基;C3~C40之芳烷基;C3~C40之芳氧
基;或C3~C40之芳基硫醇基,較佳為包含經氘、鹵素、胺基、(甲基)丙烯醯基、硫醇基、異氰酸酯基、腈基、硝基、苯基、環己基環氧基取代或未經取代之C1~C40之烷基、C2~C40之烯基、胺基、環氧基、環己基環氧基、(甲基)丙烯醯基、硫醇基、苯基或異氰酸酯基,a及d分別獨立為1至100,000之整數,較佳為a為3至1000,d為1至500,進而較佳為a為5至300,d為2至100,b分別獨立為1至500之整數,e分別獨立為1或2,較佳為1,n分別獨立為1至20之整數,較佳為3至10。
又,本發明提供一種塑膠塗佈組合物,其包含上述化學式1至9中任一者所示之矽倍半氧烷複合高分子。
又,本發明提供一種矽倍半氧烷複合高分子塗佈塑膠,其特徵在於包含於表面之上塗佈包含上述化學式1至9中任一者所示之矽倍半氧烷複合高分子之塑膠塗佈組合物並硬化而成的硬化物。
又,本發明提供一種物品,其包含上述矽倍半氧烷複合高分子塗佈塑膠。
本發明之塑膠塗佈方法使用於一個高分子內包含特定結構之線狀矽倍半氧烷鏈及籠型矽倍半氧烷之矽倍半氧烷複合高分子對塑膠表面進行塗佈,藉此,不僅塗佈步驟較為容易,而且所形成之塗層具有非常高之表面硬度,並具有優異之透明性、耐劃痕性、防水特性、防污特
性、耐指紋性、熱穩定性及光澤特性,與塑膠基材之接著力優異,可有用地應用於光學膜、保護膜、電子製品構成用塑膠、眼鏡、建築外裝材料、建築內裝材料、塑膠配管、電線被覆材料、光學透鏡、隔音牆、塑膠看板、塑膠造形物、傢俱、照明、天窗、安全帽等各種製品。
以下,詳細說明本發明。
本發明之塑膠塗佈方法提供一種塑膠塗佈方法,其特徵在於在塑膠表面之上塗佈包含下述化學式1至9中任一者所示之矽倍半氧烷複合高分子之塑膠塗佈組合物並硬化:
[化學式3]
[化學式8]
於上述化學式1至9中,
A為,B為,D為
,E為
Y分別獨立為O、NR21或[(SiO3/2R)4+2nO],且至少一個為[(SiO3/2R)4+2nO],X分別獨立為R22或[(SiO3/2R)4+2nR],且至少一個為
[(SiO3/2R)4+2nR],R、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20、R21及R22分別獨立為氫;氘;鹵素;胺基;環氧基;環己基環氧基;(甲基)丙烯醯基;硫醇基;異氰酸酯基;腈基;硝基;苯基;經氘、鹵素、胺基、環氧基、(甲基)丙烯醯基、硫醇基、異氰酸酯基、腈基、硝基、苯基取代或未經取代之C1~C40之烷基;C2~C40之烯基;C1~C40之烷氧基;C3~C40之環烷基;C3~C40之雜環烷基;C6~C40之芳基;C3~C40之雜芳基;C3~C40之芳烷基;C3~C40之芳氧基;或C3~C40之芳基硫醇基,較佳為包含經氘、鹵素、胺基、(甲基)丙烯醯基、硫醇基、異氰酸酯基、腈基、硝基、苯基、環己基環氧基取代或未經取代之C1~C40之烷基、C2~C40之烯基、胺基、環氧基、環己基環氧基、(甲基)丙烯醯基、硫醇基、苯基或異氰酸酯基,a及d分別獨立為1至100,000之整數,較佳為a為3至1000,d為1至500,進而較佳為a為5至300,d為2至100,b分別獨立為1至500之整數,e分別獨立為1或2,較佳為1,n分別獨立為1至20之整數,較佳為3至10。
本發明之塑膠塗佈方法及其所使用之塑膠塗佈組合物將具有上述[A]a及[D]d之重複單元且選擇性地具有[B]b或[E]e重複單元的特定結構之矽倍半氧烷高分子塗佈於塑膠之表面並硬化,藉此,即便僅通過溶液步驟而形成
單一塗層,亦可相對於塑膠而具有優異之表面硬度、透明性、耐劃痕性、防水特性、防污特性、耐指紋性、熱穩定性及光澤特性。
於本發明中,成為塗佈之對象之上述塑膠只要包含塑膠,則無特別限定,作為一例,不僅可為聚乙烯(polyethylene,PE)、聚丙烯(polypropylene,PP)、聚苯乙烯(polystyrene,PS)、聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚醯胺(polyamides,PA,尼龍)、聚酯(polyester,PES)、聚氯乙烯(polyvinyl chloride,PVC)、聚胺基甲酸酯(polyurethanes,PU)、聚碳酸酯(polycarbonate,PC)、高硬度聚碳酸酯(高硬度PC)、聚偏二氯乙烯(polyvinylidene chloride,PVDC)、聚四氟乙烯(polytetrafluoroethylene,PTFE)、聚醚醚酮(polyetheretherketone,PEEK)、聚醚醯亞胺(polyetherimide,PEI)、丙烯酸樹脂等之類之單一塑膠材質,亦可為2種以上之塑膠材料混合而成者,並且亦可為塑膠與玻璃纖維或碳纖維之類之無機纖維混合而成之複合塑膠,形態方面,由於使用溶液步驟,故而亦可包括片材、膜、射出物、造形物及珠而應用於所有塑膠製品。
本發明之上述化學式1所示之矽倍半氧烷複合高分子可包括如下步驟而製造:第1步驟,其於反應器中混合鹼性觸媒及有機溶劑之後,添加有機矽烷化合物並縮合而製造下述化學式10;第2步驟,其於上述第1步驟之後,於反應器中添加酸性觸媒
而將反應液調節為酸性之後添加有機矽烷化合物並攪拌,以將[D]d(OR2)2結構導入至化學式10;及第3步驟,其於上述第2步驟之後,於反應器中添加鹼性觸媒而將反應液轉換為鹼性並實施縮合反應。
於上述式中,R1、R2、R16、D、a及d與化學式1至9中所定義之內容一致。
本發明之上述化學式2所示之矽倍半氧烷複合高分子可進行如下步驟而製造:第1步驟,其於反應器中混合鹼性觸媒及有機溶劑之後,添加有機矽烷化合物並縮合而製造上述化學式10;第2步驟,其於上述第1步驟之後,於反應器中添加酸性觸媒而將反應液調節為酸性之後添加過量之有機矽烷化合物並攪拌,以將[D]d(OR3)2及[D]d(OR4)2結構如化學式2般導入至化學式10;第3步驟,其於上述第2步驟之後,於反應器中添加鹼性觸媒而將反應液轉換為鹼性並實施縮合反應;第4步驟,其於上述第3步驟之後,於反應器中添加鹼性觸媒而將反應液轉換為鹼性並實施縮合反應;及精製步驟,其藉由再結晶而去除經過第3步驟反應而單獨生成之作為
副產物之籠形(cage)結構。
本發明之上述化學式3所示之矽倍半氧烷複合高分子可包括如下步驟而製造:第1步驟,其於反應器中混合鹼性觸媒及有機溶劑之後,添加有機矽烷化合物並縮合而製造上述化學式10;第2步驟,其於上述第1步驟之後,於反應器中添加酸性觸媒而將反應液調節為酸性之後添加有機矽烷化合物並攪拌,以將[D]d(OR5)2結構導入至化學式10;第3步驟,其於上述第2步驟之後,於反應器中添加鹼性觸媒而將反應液轉換為鹼性並實施縮合反應;及第4步驟,其於上述第3步驟之後,於反應器中投入酸性觸媒而將反應液轉換為酸性環境,並且混合有機矽烷化合物並攪拌,以將[E]eX2結構導入至複合高分子之末端。
本發明之上述化學式4所示之矽倍半氧烷複合高分子可包括如下步驟而製造:第1步驟,其於反應器中混合鹼性觸媒及有機溶劑之後,添加有機矽烷化合物並調節縮合度而製造上述化學式10;第2步驟,其於上述第1步驟之後,於反應器中添加酸性觸媒而將反應液調節為酸性之後添加有機矽烷化合物並攪拌,以將[B]b結構及[D]d(OR7)2結構導入至化學式10;及第3步驟,其於上述第2步驟之後,於反應器中添加鹼性觸媒而將反應液轉換為鹼性並實施縮合反應。
本發明之上述化學式5所示之矽倍半氧烷複合高分子可包括如下步驟而製造:
第1步驟,其於反應器中混合鹼性觸媒及有機溶劑之後,添加有機矽烷化合物並縮合而製造上述化學式10;第2步驟,其於上述第1步驟之後,於反應器中添加酸性觸媒而將反應液調節為酸性之後添加過量之有機矽烷化合物並攪拌,以將[B]b結構及[D]d(OR8)2、[D]d(OR9)2結構導入至化學式10;第3步驟,其於上述第2步驟之後,於反應器中添加鹼性觸媒而將反應液轉換為鹼性並實施縮合反應;及第4步驟,其於第3步驟之後,通過再結晶及過濾過程而去除單獨籠形(cage)生成結構。
本發明之上述化學式6所示之矽倍半氧烷複合高分子可包括如下步驟而製造:第1步驟,其於反應器中混合鹼性觸媒及有機溶劑之後,添加有機矽烷化合物並縮合而製造上述化學式10;第2步驟,其於上述第1步驟之後,於反應器中添加酸性觸媒而將反應液調節為酸性之後添加有機矽烷化合物並攪拌,以將[B]b結構及[D]d(OR10)2結構導入至化學式10;第3步驟,其於上述第2步驟之後,於反應器中添加鹼性觸媒而將反應液轉換為鹼性並實施縮合反應;及第4步驟,其於上述第3步驟之後,於反應器中投入酸性觸媒而將反應液轉換為酸性環境,並且混合有機矽烷化合物並攪拌,以將[E]eX2結構導入至複合高分子之末端。
較佳為於製造上述化學式1至6之方法中,本發明之第1步驟之反應液之pH值較佳為9至11.5,第2步驟之反應液之pH值較佳為2至4,第3步驟之反應液之pH值較佳
為8至11.5,導入Ee之第4步驟之反應液之pH值較佳為1.5至4。於為上述範圍內之情形時,不僅所製造之矽倍半氧烷複合高分子之產率較高,而且可提高所製造之矽倍半氧烷複合高分子之機械物性。
本發明之上述化學式7所示之矽倍半氧烷複合高分子可包括如下步驟而製造:第1步驟,其於反應器中混合鹼性觸媒及有機溶劑之後,添加有機矽烷化合物而製造縮合度經調節之2種形態之上述化學式10;第2步驟,其於反應器中添加酸性觸媒而將反應液調節為酸性之後添加有機矽烷化合物並攪拌,以將[B]b結構及[D]d(OR12)2結構導入至上述第1步驟中所獲得之化學式10;第3步驟,其於上述各第2步驟反應之後,於反應器中添加鹼性觸媒而將反應液轉換為鹼性並實施縮合反應;及第4步驟,其將通過上述第3步驟而獲得之2種以上之物質於鹼性條件下縮合而連結。
本發明之上述化學式8所示之矽倍半氧烷複合高分子可包括如下步驟而製造:第1步驟,其於反應器中混合鹼性觸媒及有機溶劑之後,添加有機矽烷化合物而製造縮合度經調節之2種形態之上述化學式10;第2步驟,其於反應器中添加酸性觸媒而將反應液調節為酸性之後添加有機矽烷化合物並攪拌,以將[B]b結構、[D]d(OR14)2結構導入至上述第1步驟中所獲得之化學式10;第3步驟,其於上述各第2步驟反應之後,於反應器中添加鹼性觸媒而將反應液轉換為鹼性並實
施縮合反應;第4步驟,其將通過上述第3步驟而獲得之2種以上之物質於鹼性條件下縮合而連結;第5步驟,其於上述第4步驟之後,於用以導入[D]d(OR13)2之反應器中添加酸性觸媒而將反應液調節為酸性之後添加有機矽烷化合物並攪拌;及第6步驟,其於上述第5步驟反應之後,於反應器中添加鹼性觸媒而將反應液轉換為鹼性並實施縮合反應。
本發明之上述化學式9所示之矽倍半氧烷複合高分子可包括如下步驟而製造:第1步驟,其於反應器中混合鹼性觸媒及有機溶劑之後,添加有機矽烷化合物而製造縮合度經調節之2種形態之上述化學式10;第2步驟,其於反應器中添加酸性觸媒而將反應液調節為酸性之後添加有機矽烷化合物並攪拌,以將[B]b結構導入至上述第1步驟中所獲得之化學式10;第3步驟,其於上述各第2步驟反應之後,於反應器中添加鹼性觸媒而將反應液轉換為鹼性並實施縮合反應;第4步驟,其將通過上述第3步驟而獲得之2種以上之化合物於鹼性條件下縮合而連結;第5步驟,其於上述第4步驟之後,於用以導入[D]d(OR5)2之反應器中添加酸性觸媒而將反應液調節為酸性之後添加有機矽烷化合物並攪拌;第6步驟,其於上述第5步驟反應之後,於反應器中添加鹼性觸媒而將反應液轉換為鹼性並實施縮合反應;及第7步驟,其於上述第6步驟之後,於反應器中投入酸性觸媒而將反應液轉換為酸性環境,並且混合有機矽烷化合物並攪拌,
以將[E]eX2結構導入至複合高分子之末端。
較佳為於製造上述化學式7至9之高分子之方法中,第1步驟之反應液之pH值較佳為9至11.5,第2步驟之反應液之pH值較佳為2至4,第3步驟之反應液之pH值較佳為8至11.5,第4步驟之反應液之pH值較佳為9至11.5,第5步驟之反應液之pH值較佳為2至4,第6步驟之反應液之pH值較佳為8至11.5,導入Ee之第7步驟之反應液之pH值較佳為1.5至4。於為上述範圍內之情形時,不僅所製造之矽倍半氧烷複合高分子之產率較高,而且可提高所製造之矽倍半氧烷複合高分子之機械物性。
又,於需要之情形時,為了於各複合高分子中進而導入[B]b結構及[D]d(OR)2結構,可通過如下兩個步驟而於複合高分子內進而包含[B]b重複單元:於反應器中添加酸性觸媒而將反應液調節為酸性之後添加有機矽烷化合物並攪拌;以及於上述步驟之後,於反應器中添加鹼性觸媒而將反應液轉換為鹼性並實施縮合反應。
又,於需要之情形時,為了於各複合高分子之末端導入[E]eX2結構,可包括如下步驟而於複合高分子之末端進而包含[E]e之重複單元:於反應器中投入酸性觸媒而將反應液轉換為酸性環境,並且混合有機矽烷化合物並攪拌。
於上述矽倍半氧烷複合高分子之製造方法中,作為鹼性觸媒,較佳為使用2種以上之鹼性觸媒之混合觸媒,藉由利用酸性觸媒將其中和及酸化而引發再水解,並
再次使用2種以上之鹼性觸媒之混合觸媒而於鹼性下進行縮合,可於一個反應器內連續地調節酸度及鹼度。
此時,上述鹼性觸媒可將選自由Li、Na、K、Ca及Ba所組成之群中之金屬系鹼性觸媒及選自胺系鹼性觸媒中之2種以上之物質適當地組合而製造。較佳為上述胺系鹼性觸媒可為氫氧化四甲基銨(TMAH),金屬系鹼性觸媒可為氫氧化鉀(KOH)或碳酸氫鈉(NaHCO3)。於上述混合觸媒中,各成分之含量較佳為胺系鹼性觸媒與金屬系鹼性觸媒之比率可於10至90:10至90重量份之比率內任意調節。於為上述範圍內之情形時,具有如下優點:於水解時可使官能基與觸媒之反應性最小化,藉此,Si-OH或Si-烷氧基等有機官能基之缺陷明顯減少,從而可自由地調節縮合度。又,作為上述酸性觸媒,只要為本領域中通常所使用之酸性物質,則可無限制地使用,例如可使用HCl、H2SO4、HNO3、CH3COOH等普通酸性物質,又,亦可使用乳酸(lactic acid、酒石酸(tartaric acid)、順丁烯二酸(maleic acid)、檸檬酸(citric acid)等有機系酸性物質。
於本發明之矽倍半氧烷複合高分子之製造方法中,上述有機溶劑只要為本領域中通常所使用之有機溶劑,則可無限制地使用,例如不僅可使用甲醇、乙醇、異丙醇、丁醇、賽路蘇系等醇類,乳酸系,丙酮、甲基(異丁基)乙基酮等酮類,乙二醇等二醇類,四氫呋喃等呋喃系,二甲基甲醯胺、二甲基乙醯胺,N-甲基-2-吡咯啶酮等極性溶劑,亦可使用己烷、環己烷、環己酮、甲苯、二甲
苯、甲酚、氯仿、二氯苯、二甲基苯、三甲基苯、吡啶、甲基萘、硝基甲烷、丙烯腈(acrylonitrile)、二氯甲烷、十八烷基胺、苯胺、二甲基亞碸、苄醇等各種溶劑。
又,作為上述有機矽烷系化合物,可使用包含本發明之矽倍半氧烷複合高分子之化學式1至9中之R、R1、R2、R3、R4、R5、R6、R7、R8、R9、R10、R11、R12、R13、R14、R15、R16、R17、R18、R19、R20、R21、R22的有機矽烷,較佳為可使用包含具有增加矽倍半氧烷複合高分子之耐化學性而提高非膨潤性之效果之苯基或胺基的有機矽烷化合物,或者包含具有增加複合高分子之硬化密度而提高硬化層之機械強度及硬度之效果之環氧基或(甲基)丙烯醯基的有機矽烷化合物。
作為上述有機矽烷系化合物之具體之例,可列舉:(3-縮水甘油氧基丙基)三甲氧基矽烷、(3-縮水甘油氧基丙基)三乙氧基矽烷、(3-縮水甘油氧基丙基)甲基二甲氧基矽烷、(3-縮水甘油氧基丙基)二甲基乙氧基矽烷、3-(甲基丙烯醯氧基)丙基三甲氧基矽烷、3,4-環氧丁基三甲氧基矽烷、3,4-環氧丁基三乙氧基矽烷、2-(3,4-環氧環己基)乙基三甲氧基矽烷、2-(3,4-環氧環己基)乙基三乙氧基矽烷、胺基丙基三乙氧基矽烷、乙烯基三乙氧基矽烷、乙烯基三第三丁氧基矽烷、乙烯基三異丁氧基矽烷、乙烯基三異丙氧基矽烷、乙烯基三苯氧基矽烷、苯基三乙氧基矽烷、苯基三甲氧基矽烷、胺基丙基三甲氧基矽烷、N-苯基-3-胺基丙基三甲氧基矽烷、二甲基四甲氧基矽氧烷、二苯基四甲
氧基矽氧烷等;亦可單獨使用該等中之1種,或者併用2種以上。為了最終所製造之組合物之物性,更佳為混合2種以上而使用。
於本發明中,上述化學式之重複單元[D]d中所導入之[(SiO3/2R)4+2nO]結構中之n可替換為1至20之整數,較佳為3至10,進而較佳為平均n值為4至5,例如,上述n為4時,若表現經取代之結構,則如下述化學式11所示:
於上述之式中,R與上述中所定義之內容一致。
於本發明中,上述化學式之重複單元[B]b或[E]e中所導入之[(SiO3/2R)4+2nR]結構中之n可替換為1至20之整數,較佳為3至10,進而較佳為平均n值為4至5,例如,若表現上述n為4時之經取代之結構,則如下述化學式12所示:[化學式12]
於上述之式中,R與上述中所定義之內容一致。
作為具體之例,本發明所提出之矽倍半氧烷高分子可為下述表1至18中所記載之高分子。於下述表1至9中,ECHE意指(環氧環己基)乙基,GlyP意指縮水甘油醚氧基丙基,POMMA意指(甲基丙烯醯氧基)丙基,於記載有兩種以上之情形時,意指混合使用。n分別獨立為1至8。
上述化學式1之矽倍半氧烷複合高分子可為下述表1或2中所記載之高分子。
作為具體之例,上述化學式2之矽倍半氧烷複合高分子可為下述表3及4中所記載之高分子。
作為具體之例,上述化學式3之矽倍半氧烷複合高分子可為下述表5及6中所記載之高分子。
作為具體之例,上述化學式4之矽倍半氧烷複合高分子可為下述表7及8中所記載之高分子。
作為具體之例,上述化學式5之矽倍半氧烷複合高分子可為下述表9及10中所記載之高分子。
作為具體之例,上述化學式6之矽倍半氧烷複合高分子可為下述表11及12中所記載之高分子。
作為具體之例,上述化學式7之矽倍半氧烷複合高分子可為下述表13及14中所記載之高分子。
作為具體之例,上述化學式8之矽倍半氧烷複合高分子可為下述表15及16中所記載之高分子。
作為具體之例,上述化學式9之矽倍半氧烷複合高分子可為下述表17及18中所記載之高分子。
關於本發明之上述矽倍半氧烷複合高分子,為了確保優異之保存穩定性而獲得範圍較廣之應用性,縮合度可調節為1至99.9%以上。即,鍵結於末端及中央之Si之烷氧基之含量可相對於高分子整體之鍵結基調節為50%至0.01%。
又,本發明所提出之矽倍半氧烷複合高分子之重量平均分子量可為1,000至1,000,000,較佳為可為5,000至100,000,進而較佳為可為7,000至50,000。於該情形時,可同時提高矽倍半氧烷之加工性及物理特性。
於本發明中,包含上述化學式1至9中任一者所示之矽倍半氧烷複合高分子之塑膠塗佈組合物可使用2種以上之複合高分子,較佳為宜使用化學式3至9中任一者所示之矽倍半氧烷複合高分子。於該情形時,藉由包含重複單元[B]b或[E]e,可進一步提高包括表面硬度在內之透明基板之物性。
於本發明中,於矽倍半氧烷複合高分子為液狀之情形時,上述塑膠塗佈組合物可以無溶劑型單獨塗佈,於矽倍半氧烷複合高分子為固狀之情形時,上述塑膠塗佈組合物係包含有機溶劑而構成。又,塗佈組合物可進而包含起始劑或硬化劑。
較佳為上述塗佈組合物之特徵在於包含上述化學式1至9中任一者所示之矽倍半氧烷複合高分子、與上述複合高分子具有相溶性之本領域中通常所使用之有機溶劑及起始劑,並且可選擇性且追加性地含有硬化劑、塑化
劑、紫外線阻斷劑、其他功能性添加劑等添加劑而提高硬化性、耐熱特性、紫外線阻斷、塑化效果等。
於本發明之塗佈組合物中,相對於塗佈組合物100重量份,上述矽倍半氧烷複合高分子宜包含至少5重量份以上,較佳為包含5至90重量份之量,進而較佳為包含10至50重量份之量。於為上述範圍內之情形時,可進一步提高塗佈組合物之硬化膜之機械物性。
作為上述有機溶劑,不僅可使用甲醇、乙醇、異丙醇、丁醇、賽路蘇系等醇類,乳酸系,丙酮、甲基(異丁基)乙基酮等酮類,乙二醇等二醇類,四氫呋喃等呋喃系,二甲基甲醯胺、二甲基乙醯胺,N-甲基-2-吡咯啶酮等極性溶劑,亦可使用己烷、環己烷、環己酮、甲苯、二甲苯、甲酚、氯仿、二氯苯、二甲基苯、三甲基苯、吡啶、甲基萘、硝基甲烷、丙烯腈(acrylonitrile)、二氯甲烷、十八烷基胺、苯胺、二甲基亞碸、苄醇等各種溶劑,但並不限定於此。上述有機溶劑之量為除開複合高分子、起始劑及選擇性地追加之添加劑後的餘量。
又,於本發明之塗佈組合物中,上述起始劑或硬化劑可根據矽倍半氧烷複合高分子中所含之有機官能基而適當地選擇使用。
作為具體之例,於對上述有機官能基導入不飽和烴、硫醇系、環氧系、胺系、異氰酸酯系等可後硬化之有機系之情形時,可進行使用熱或光之各種硬化。此時,雖然可於高分子本身內謀求熱或光所引起之變化,但較佳
為可藉由稀釋於此種有機溶劑中而謀求硬化步驟。
又,於本發明中,為了複合高分子之硬化及後續反應,可使用各種起始劑,相對於組合物總重量100重量份,上述起始劑較佳為包含0.1-20重量份,於包含上述範圍內之含量時,可同時滿足硬化後之透射率及塗佈穩定性。
又,於對上述有機官能基導入不飽和烴等之情形時,可使用自由基起始劑,作為上述自由基起始劑,可使用三氯苯乙酮(trichloro acetophenone)、二乙氧基苯乙酮(diethoxy acetophenone)、1-苯基-2-羥基-2-甲基丙烷-1-酮(1-phenyl-2-hydroxyl-2-methylpropane-1-one)、1-羥基環己基苯基酮、2-甲基-1-(4-甲基噻吩基)-2-啉基丙烷-1-酮(2-methyl-1-(4-methylthiophenyl)-2-morpholinopropane-1-one)、2,4,6-三甲基苯甲醯基二苯基氧化膦(trimethyl benzoyl diphenylphosphine oxide)、樟腦醌(camphorquinone)、2,2'-偶氮雙(2-甲基丁腈)、2,2'-偶氮雙(2-甲基丁酸)二甲酯、3,3-二甲基-4-甲氧基-二苯基酮、對甲氧基二苯基酮、2,2-二乙氧基苯乙酮、2,2-二甲氧基-1,2-二苯乙烷-1-酮等光自由基起始劑,第三丁基過氧順丁烯二酸、第三丁基過氧化氫、2,4-二氯苯甲醯基過氧化物、1,1-二(第三丁基過氧)-3,3,5-三甲基環己烷、N-4,4'-二(第三丁基過氧)戊酸丁酯等熱自由基起始劑,以及該等之各種混合物等。
又,於上述有機官能基包含環氧基等之情形時,作為光聚合起始劑(陽離子),可使用三苯基鋶、二苯
基-4-(苯硫基)苯基鋶等鋶系,二苯基錪或雙(十二烷基苯基)錪等錪,苯基重氮鎓等重氮鎓,1-苄基-2-氰基吡啶鎓或1-(萘基甲基)-2-氰基吡啶鎓等銨,(4-甲基苯基)[4-(2-甲基丙基)苯基]-六氟磷酸錪,雙(4-第三丁基苯基)六氟磷酸錪,二苯基六氟磷酸錪,二苯基三氟甲磺酸錪,四氟硼酸三苯基鋶,六氟磷酸三對甲苯基鋶,三氟甲磺酸三對甲苯基鋶,以及(2,4-環戊二烯-1-基)[(1-甲基乙基)苯]-Fe等Fe陽離子及BF4 -、PF6 -、SbF6 -等[BQ4]-鎓鹽組合(此處,Q為經至少2個以上之氟或三氟甲基取代之苯基)。
又,作為藉由熱而發揮作用之陽離子起始劑,可無限制地使用三氟甲磺酸鹽、三氟化硼醚錯合物、三氟化硼等之類之陽離子系,或者質子酸觸媒,銨鹽、鏻鹽及鋶鹽等各種鎓鹽,以及甲基三苯基溴化鏻、乙基三苯基溴化鏻、苯基三苯基溴化鏻等,該等起始劑亦可以各種混合形態進行添加,並且亦可與上述所明示之各種自由基起始劑混用。
又,根據上述有機官能基之種類,可使用胺硬化劑類之乙二胺、三伸乙基四胺、四伸乙基五胺、1,3-二胺基丙烷、二伸丙基三胺、3-(2-胺基乙基)胺基-丙基胺、N,N'-雙(3-胺基丙基)-乙二胺、4,9-二氧雜十二烷-1,12-二胺、4,7,10-三氧雜十三烷-1,13-二胺、己二胺、2-甲基五亞甲基二胺、1,3-雙胺甲基環己烷、雙(4-胺基環己基)甲烷、降烯二胺、1,2-二胺基環己烷等。
進而,亦可廣泛地使用鄰苯二甲酸酐、偏苯三
甲酸酐、焦蜜石酸二酐、順丁烯二酸酐、四氫鄰苯二甲酸酐、甲基六氫鄰苯二甲酸酐、甲基四氫鄰苯二甲酸酐、甲基納迪克酸酐、氫化甲基納迪克酸酐、三烷基四氫鄰苯二甲酸酐、十二烯基丁二酸酐、2,4-二乙基戊二酸酐等酸酐硬化劑類。
相對於組合物100重量份,上述硬化劑宜含有0.1-20重量份。
又,作為用以促進上述硬化作用之硬化促進劑,亦可使用乙胍、苯并胍胺、2,4-二胺基-6-乙烯基-第二三等三系化合物,咪唑、2-甲基咪唑、2-乙基-4-甲基咪唑、2-苯咪唑、2-苯基-4-甲基咪唑、乙烯基咪唑、1-甲基咪唑等咪唑系化合物,1,5-二氮雜雙環[4.3.0]壬烯-5、1,8-二氮雜雙環[5.4.0]十一烯-7、三苯基膦、二苯基(對甲苯基)膦、三(烷基苯基)膦、三(烷氧基苯基)膦、乙基三苯基磷酸鏻、四丁基氫氧化鏻、四丁基乙酸鏻、四丁基二氟化氫鏻、四丁基鏻二氫三氟等。
於本發明中,又,為了改善通過硬化步驟或後續反應後之硬度、強度、耐久性、成形性等,可追加性地包含紫外線吸收劑、抗氧化劑、消泡劑、勻化劑、防水劑、阻燃劑、接著改善劑等添加劑。此種添加劑於其使用中並無特別限制,可於不損及基板之特性即柔軟性、透光性、耐熱性、硬度、強度等物性之範圍內適當地添加。相對於組合物100重量份,上述添加劑宜分別獨立地含有0.1-10重量份。
作為本發明中可使用之添加劑,可列舉:經聚醚改質的聚二甲基矽氧烷(Polyether-modified polydimethylsiloxane,例如作為BYK公司製品之BYK-300、BYK-301、BYK-302、BYK-331、BYK-335、BYK-306、BYK-330、BYK-341、BYK-344、BYK-307、BYK-333、BYK-310等)、經聚醚改質的羥基官能性聚二甲基矽氧烷(Polyether modified hydroxyfunctional poly-dimethyl-siloxane,例如BYK公司之BYK-308、BYK-373等)、甲基烷基聚矽氧烷(Methylalkylpolysiloxane,例如BYK-077、BYK-085等)、經聚醚改質的甲基烷基聚矽氧烷(Polyether modified methylalkylpolysiloxane,例如BYK-320、BYK-325等)、經聚酯改質的聚甲基烷基矽氧烷(Polyester modified poly-methyl-alkyl-siloxane,例如BYK-315等)、經芳烷基改質的甲基烷基聚矽氧烷(Aralkyl modified methylalkyl polysiloxane,例如BYK-322、BYK-323等)、經聚酯改質的羥基官能性聚二甲基矽氧烷(Polyester modified hydroxy functional polydimethylsiloxane,例如BYK-370等)丙烯酸官能性經聚酯改質的聚二甲基矽氧烷(Acrylic functional polyester modified polydimethylsiloxane,例如BYK-371、BYK-UV3570等)、經聚醚-聚酯改質的羥基官能性聚二甲基矽氧烷(Polyeher-polyester modified hydroxy functional polydimethylsiloxane,例如BYK-375等)、經聚醚改質的二甲基聚矽氧烷(Polyether modified dimethylpolysiloxane,例
如BYK-345、BYK-348、BYK-346、BYK-UV3510、BYK-332、BYK-337等)、非離子聚丙烯酸共聚物(Non-ionic acrylic copolymer,例如BYK-380等)、離子性聚丙烯酸共聚物(Ionic acrylic copolymer,例如BYK-381等)、聚丙烯酸酯(Polyacrylate,例如BYK-353、BYK-356、BYK-354、BYK-355、BYK-359、BYK-361N、BYK-357、BYK-358N、BYK-352等)、聚甲基丙烯酸酯(Polymethacrylate,例如BYK-390等)、經聚醚改質的丙烯醯基官能性聚二甲基矽氧烷系(Polyether modified acryl functional polydimethylsiloxane,例如BYK-UV3500、BYK-UV3530等)、經聚醚改質的矽氧烷(Polyether modified siloxane,例如BYK-347等)、醇烷氧基化物(Alcohol alkoxylates,例如BYK-DYNWET800等)、丙烯酸酯(Acrylate,例如BYK-392等)、經矽改質的聚丙烯酸酯(OH-官能性)(Silicone modified polyacrylate(OH-functional),例如BYK-Silclean3700等)等。
於本發明中,關於將上述塑膠塗佈組合物塗佈於塑膠表面之上之方法,當然業者可自旋轉塗佈、棒式塗佈、狹縫塗佈、浸漬塗佈、自然塗佈、反向塗佈、輥式塗佈、旋轉塗佈、簾幕塗佈、噴塗、浸漬法、含浸法、凹版塗佈等公知之方法中任意選擇使用,於硬化方法中,當然亦可根據複合高分子之官能基而適當地選擇使用光硬化或熱硬化。較佳為於熱硬化之情形時,硬化溫度為80至
120℃。
於本發明中,上述塗佈組合物之塗佈厚度可任意調節,較佳為0.01至500μm,進而較佳為宜為0.1至300μm之範圍,更較佳為宜為1至100μm之範圍。於為上述範圍內之情形時,不僅可穩定地確保7H以上之表面硬度,而且基板表面特性方面亦表現出優異之物性。尤其於以10μm以上之厚度積層有塗層之情形時,由於表面硬度可穩定地表現出9H,故而亦可用作玻璃之代替品。
提供一種矽倍半氧烷複合高分子塗佈塑膠及包含上述矽倍半氧烷複合高分子塗佈塑膠之製品,該矽倍半氧烷複合高分子塗佈塑膠之特徵在於包含硬化物,該硬化物係塗佈上述化學式1至9中任一者所示之矽倍半氧烷複合高分子之塑膠塗佈組合物並硬化而成,上述矽倍半氧烷複合高分子塗佈塑膠可藉由上述塑膠塗佈方法而製造。
於本發明之矽倍半氧烷複合高分子塗佈塑膠中,矽倍半氧烷複合高分子塗層與塑膠之接著力優異,所形成之矽倍半氧烷複合高分子塗層具有非常高之表面硬度,並具有優異之透明性、耐劃痕性、防水特性、防污特性、耐指紋性、熱穩定性及光澤特性,並且與塑膠基材之接著力優異,可有用地應用於光學膜、保護膜、電子製品構成用塑膠、眼鏡、建築外裝材料、建築內裝材料、塑膠配管、電線被覆材料、光學透鏡、隔音牆、塑膠看板、塑膠造形物、傢俱、照明、天窗、安全帽等各種製品。
以下,為了理解本發明而提出較佳之實施例,
但下述實施例僅係例示本發明者,本發明之範圍並不限定於下述實施例。
於下述本發明之實施例中,ECHETMS意指2-(3,4-環氧環己基)乙基三甲氧基矽烷,GPTMS意指縮水甘油醚氧基丙基三甲氧基矽烷,MAPTMS意指(甲基丙烯醯氧基)丙基三甲氧基矽烷,PTMS意指苯基三甲氧基矽烷,MTMS意指甲基三甲氧基矽烷,ECHETMDS意指二(環氧環己基乙基)四甲氧基二矽氧烷,GPTMDS意指二(縮水甘油醚氧基丙基)四甲氧基二矽氧烷,MAPTMDS意指二(甲基丙烯醯氧基)丙基,PTMDS意指二(苯基)四甲氧基二矽氧烷,MTMDS意指二(甲基)四甲氧基二矽氧烷。
[實施例]
實施例1:包含共聚物1及9之塗佈組合物之製造
關於合成步驟,係如下述般階段性地進行連續水解及縮合。
[實施例1-a]觸媒之製造
為了調節鹼度,於25重量%之氫氧化四甲基銨(Tetramethylammonium hydroxide:TMAH)水溶液中混合10重量%之氫氧化鉀(Potassium hydroxide:KOH)水溶液而準備觸媒1a。
[實施例1-b]線狀矽倍半氧烷結構之合成
於配備冷卻管及攪拌機之經乾燥之燒瓶中滴加蒸餾水5重量份、四氫呋喃15重量份及上述實施例1-a中所製造之觸媒1重量份,於常溫下攪拌1小時後,滴加2-(3,4-
環氧環己基)乙基三甲氧基矽烷20重量份,並再次滴加四氫呋喃15重量份,追加攪拌5小時。滴取攪拌中之混合溶液,藉由洗淨兩次而去除、過濾觸媒及雜質後,可通過IR(InfraRed,紅外線)分析而確認生成於末端基之SI-OH官能基(3200cm-1),測定分子量,結果可確認如化學式4之結構之線狀結構之矽倍半氧烷具有8,000之苯乙烯換算分子量。
[實施例1-c]連續性籠形(cage)結構之生成
於上述實施例1-b混合溶液中非常緩慢地滴加0.36重量%之HCl水溶液5重量份,以pH值具有酸性之方式進行調節,並於4℃之溫度下攪拌30分鐘。其後,一次性滴加二苯基四甲氧基二矽氧烷(Diphenyltetramethoxydisiloxane)5重量份而謀求穩定之水解,攪拌1小時後再次添加實施例1-a中所製造之觸媒7重量份而將混合溶液之pH值調節為鹼性狀態。此時,與線狀高分子分開而單獨形成烷氧基(alkoxy)開放之D結構之前驅物。滴取少量樣品,藉由H-NMR(Nuclear Magnetic Resonance,核磁共振)及IR進行分析而確認甲氧基(methoxy)之殘留率之後,殘留率為20%時,緩緩滴加0.36重量%之HCl水溶液10重量份而將pH值調節為酸性。其後,一次性滴加苯基三甲氧基矽烷(Phenyltrimethoxysilane)1重量份並攪拌15分鐘後,添加1-a中所製造之觸媒20重量份。混合攪拌4小時後進行確認,結果可確認於高分子內生成籠形(cage)形態之高分子。其
後,使溫度變化至常溫,並藉由真空而去除混合溶液內之四氫呋喃,使得所有反應物轉化為水溶液混合物。混合攪拌4小時後,滴取一部分,通過29Si-NMR而進行分析,結果顯示出銳利形態之2個使用苯基(phenyl)而導入之結構之分析波峰,可確認製造出50%以上之如化學式1之A-D高分子而無另外單獨殘留之副產物。又,苯乙烯換算分子量經測定為11,000,n值為4-6。29Si-NMR(CDCl3)δ
[實施例1-d]光硬化型樹脂組合物製造
將上述實施例1-c中所獲得之矽倍半氧烷複合高分子30g以30wt%溶於甲基異丁基酮中而製造100g塗佈組合物。其後,於塗佈組合物100重量份中分別添加3重量份之氯苯乙酮(chloro acetophenone)、1重量份之BYK-347及1重量份之BYK-UV3500,攪拌10分鐘而製造光硬化型塗佈組合物。
[實施例1-e]熱硬化性樹脂組合物之製造
將上述實施例1-c中所獲得之矽倍半氧烷複合高分子50g以50重量%溶於甲基乙基酮中而製造100g塗佈組合物。其後,於所準備之塗佈組合物100重量份中添加1,3-二胺基丙烷3重量份以及BYK-357及BYK-348各1重量份,攪拌10分鐘而製造熱硬化性塗佈組合物。
[實施例1-f]由高分子本身構成之塗佈組合物
僅藉由實施例1-c而無其他組成地構成塗佈組合物。
又,使用下述表19中所記載之單體製造矽倍半
氧烷複合高分子,並製造塗佈組合物。此時,製造方法係對等地使用上述實施例1-b、1-c、1-d、1-e及1-f中所使用之方法。
實施例2:矽倍半氧烷D-A-D結構之複合高分子之合成
使用下述實施例,以製造D-A-D結構之複合高分子,並藉由與上述實施例1中所記載之方法對應之方法製造塗佈組合物。觸媒及線狀結構之製造係同樣地使用實施例1-a及1-b之方法,其後藉由下述方法實施製造,以生成連續性D-A-D結構。
[實施例2-a]過量之連續性籠形(cage)結構之生成
於上述實施例1-b混合溶液中非常緩慢地滴加0.36重量%之HCl水溶液5重量份,以pH值具有酸性之方式進行調節,並於4℃之溫度下攪拌30分鐘。其後,一次性滴加為實施例1-b中所使用之二苯基四甲氧基二矽氧烷(Diphenyltetramethoxydisiloxane)之5倍的25重量份而謀求穩定之水解,攪拌1小時後再次添加實施例1-a中所製造之觸媒7重量份而將混合溶液之pH值調節為鹼性狀態。此時,與線狀高分子分開而單獨形成烷氧基(alkoxy)開放之D結構之前驅物。滴取少量樣品,藉由H-NMR及IR進行分析而確認甲氧基(methoxy)之殘留率之後,殘留率為20%時,緩緩滴加0.36重量%之HCl水溶液10重量份而將pH值調節為酸性。其後,一次性滴加苯基三甲氧基矽烷(Phenyltrimethoxysilane)1重量份並攪拌15分鐘後,添加1-a中所製造之觸媒20重量份。混合攪拌4小時後進行確認,結果可確認於高分子內生成籠形(cage)形態之高分子。其後,使溫度變化至常溫,並藉由真空而去除混合溶液內之四氫呋喃,使得所有反應物轉化為水溶液混合物。混合攪拌4小時後,滴取一部分,通過29Si-NMR而進行分析,結果顯示出銳利形態之2個使用苯基(phenyl)而導入之結構之分析波峰,可確認製造出如化學式1之A-D高分子而無另外單獨殘留之副產物。又,苯乙烯換算分子量經測定為14,000,n值為4-6。又,藉由Si-NMR分析而確認到:不同於A-D結構,於A結構之末端出現之-68ppm附近之波峰消失,A結構之末端全部轉化為D結構而生成為D-A-D結構。
29Si-NMR(CDCl3)δ-72.3(broad),-81.1(sharp),-80.8(sharp),-82.5(broad)
又,使用下述表20中所記載之單體製造矽倍半氧烷複合高分子及塗佈組合物。此時,製造方法係對等地使用上述實施例2中所使用之方法。
實施例3:矽倍半氧烷E-A-D結構之複合高分子之合成
使用下述實施例,以製造E-A-D結構之複合高
分子,並藉由與上述實施例1中所記載之方法對應之方法製造塗佈組合物。觸媒及線狀結構之製造係同樣地使用實施例1之方法,其後,藉由下述方法實施製造,以生成E-A-D結構。
[實施例3-a]鏈末端E結構之生成
於實施例1-c中所獲得之A-D混合物中不另行精製地滴加二氯甲烷20重量份,並滴加0.36重量%之HCl水溶液5重量份,以pH值具有酸性之方式進行調節,並於4℃之溫度下攪拌30分鐘。其後,一次性滴加二甲基四甲氧基矽烷(dimethyltetramethoxysilane)1重量份。此時,於分子結構內尚未水解而存在之部分藉由已與溶劑分離之酸性水溶液層而容易地轉化為水解物,並且藉由有機溶劑層而與所生成之另外之反應物縮合而於末端單元導入E。攪拌5小時後,停止反應之攪拌,並將反應器之溫度調節至常溫。
[實施例3-b]對末端E結構導入籠形(cage)
不另行精製地準備上述實施例3-a中所獲得之結果物之有機層之後,使用3官能單體將末端轉化為籠形(cage)結構。於進行反應中之實施例3-a混合溶液中一次性滴加甲基三甲氧基矽烷(Methyltrimethoxysilane)3重量份而謀求穩定之水解,攪拌24小時後,再次添加實施例1-a中所製造之觸媒3重量份而將混合溶液之pH值調節為鹼性狀態。此時,於E結構末端導入籠形(cage)形態之高分子,並於反應器內連續地進行反應而形成如化學式3之高分子。但由於係與其他副產物一同獲得,故而必須另行精製。其
後,使溫度變化至常溫,藉由真空而去除混合溶液內之四氫呋喃而準備精製。
[實施例3-c]通過沈澱及再結晶的副產物之去除、結果物之獲得
獲得上述實施例3-b中反應結束後之混合物後,使用蒸餾水進行洗淨,於蒸餾水層之pH值為中性時,藉由真空減壓而完全去除溶劑。其後,於甲醇中沈澱2次而去除未反應單體,並以30重量份溶於四氫呋喃與水溶液以9.5:0.5之重量比率混合而成之溶劑中,於-20℃之溫度下保存2天。其目的在於謀求未導入至高分子且因籠形(cage)結構而被封閉之物質之再結晶,使得精製容易進行。
確認到:將結束再結晶過程而獲得之固體物質過濾後,通過真空減壓而一同獲得化學式3之高分子及各種副產物。又,於將GPC(Gel Permeation Chromatography,凝膠滲透層析)結果與NMR結果進行比較時,結果導出銳利(sharp)形態之籠形(Cage)形態而無因各步驟之高分子生長而單獨獲得之低分子,據此推斷,可確認無問題地獲得複合高分子。此時,分子量以苯乙烯換算值計為17,000,n值為4-6,尤其是化學式3之結果如下。
29Si-NMR(CDCl3)δ-68.2,-71.8(sharp)。-72.3(broad),-81.1(sharp),-80.8(sharp),-82.5(broad)
又,使用下述表21中所記載之單體製造矽倍半氧烷複合高分子及塗佈組合物。此時,製造方法係對等地使用上述實施例3中所使用之方法。
實施例4:A-B-D結構之複合矽倍半氧烷高分子之合成
關於合成步驟,係如下述般階段性地進行連續水解及縮合而製造E-A-D結構之複合高分子,並藉由與上述實施例1中所記載之方法對應之方法製造塗佈組合物。
[實施例4-a]用於水解及縮合反應之觸媒之製造
為了調節鹼度,於25wt%之氫氧化四甲基銨(Tetramethylammonium hydroxide:TMAH)水溶液中混合10wt%之氫氧化鉀(Potassium hydroxide:KOH)水溶液而準備觸媒1a。
[實施例4-b]線狀矽倍半氧烷結構之合成(A-B前驅物之合成)
於配備冷卻管及攪拌機之經乾燥之燒瓶中滴加蒸餾水5重量份、四氫呋喃40重量份及上述實施例4-a中所製造之觸媒0.5重量份,於常溫下攪拌1小時後,滴加2-(3,4-環氧環己基)乙基三甲氧基矽烷10重量份,並再次滴加四氫呋喃20重量份滴加,追加攪拌2小時。滴取攪拌中之混合溶液,藉由洗淨兩次而去除、過濾觸媒及雜質後,獲得線狀矽倍半氧烷,通過1H-NMR分析,殘留之烷氧基(alkoxy group)為0.1mmol/g以下。其係用於之後藉由連續反應而導入籠形(cage)之部分。關於線狀結構之形態分析,通過XRD(X-ray diffraction,X射線繞射)分析,確認到整體性結構為線狀結構體。測定分子量,結果可確認線狀結構之矽倍半氧烷具有6,000之苯乙烯換算分子量。
1H-NMR(CDCl3)δ3.7,3.4,3.3(broad),3.1,2.8,2.6,
1.5(broad),0.6。
[實施例4-c]用於鏈內籠形(cage)結構之生成之pH值轉換反應(B、D結構之導入)
於進行反應中之實施例4-b混合溶液中非常緩慢地滴加0.36wt%之HCl水溶液5重量份,以pH值具有酸性之方式進行調節,並於4℃之溫度下攪拌30分鐘。其後,一次性滴加二苯基四甲氧基二矽氧烷(DiPhenyltetramethoxydisiloxane)5重量份,攪拌1小時後,再次添加實施例4-a中所製造之觸媒5重量份而將混合溶液之pH值調節為鹼性狀態。此時,可確認與線狀結構體分開而單獨生成籠形(cage)形態之結構體且被導入至高分子鏈,使溫度變化至常溫,並藉由真空而去除混合溶液內之四氫呋喃,使得所有反應物轉化為水溶液混合物。混合攪拌4小時後,滴取一部分,通過29Si-NMR及1H-NMR而進行分析,結果可確認存在於B結構內之烷氧基(alkoxy group)之量變化為0.025mmol/g,且以約5:5之比率導入有B及D之重複單元。又,苯乙烯換算分子量經測定為10,000。又,雖然導入有籠形(cage)結構,但於高分子之GPC形態下未見單獨籠形(cage)物質之分子量分佈,故而可確認籠形(cage)結構通過連續反應而良好地導入至高分子鏈。
1H-NMR(CDCl3)δ7.5,7.2,3.7,3.4,3.3(broad),3.1,2.8,2.6,1.5(broad),0.6。29Si-NMR(CDCl3)δ-72.5(broad),-81.1(sharp),-80.8(sharp),-79.9(sharp),-82.5(broad)
[實施例4-d]於B結構內導入X(B、D結構之導入)
不另行精製地準備上述實施例4-c中所獲得之結果物之有機層之後,使用3官能單體將末端轉化為籠形(cage)結構。將實施例4-c中所獲得之物質100重量份溶於50重量份之四氫呋喃中之後,加入5重量份之蒸餾水而製造混合溶液。其後,於所製造之混合溶液中添加0.36wt%之HCl 10重量份並攪拌10分鐘之後,一次性滴加甲基三甲氧基矽烷(Methyltrimethoxysilane)3重量份而謀求穩定之水解。攪拌24小時後,再次添加實施例4-a中所製造之觸媒3重量份而將混合溶液之pH值調節為鹼性狀態。此時,於B結構之X部分導入籠形(cage)形態之高分子,並於反應器內連續地進行反應而形成如化學式4之高分子。但由於係與其他副產物一同獲得,故而必須另行精製。其後,使溫度變化至常溫,藉由真空而去除混合溶液內之四氫呋喃而準備精製。
[實施例4-e]通過沈澱及再結晶的副產物去除、結果物之獲得
於上述實施例4-d中反應結束後之混合物中加入二氯甲烷200重量份,與蒸餾水一同進行區分洗淨,於蒸餾水層之pH值為中性時,藉由真空減壓而完全去除溶劑。其後,於甲醇中沈澱2次而去除未反應單體,並以30重量份溶於四氫呋喃與水溶液以9.5:0.5之重量比率混合而成之溶劑中,於-20℃之溫度下保存2天。其目的在於謀求未導入至高分子且因籠形(cage)結構而被封閉之物質之再結晶,使得精製容易進行。
確認到:將結束再結晶過程而獲得之固體物質過濾後,通過真空減壓而獲得化學式4之高分子而無各種副產物。又,於將GPC結果與NMR結果進行比較時,結果導出銳利(Sharp)形態之籠形(cage)形態而無因各步驟之高分子生長而單獨獲得之低分子,據此推斷,可確認無問題地獲得複合高分子。此時,分子量以苯乙烯換算值計可獲得12,000之值,X之n值為4-6,Y之n值為4-6,尤其是化學式4之結果如下。
29Si-NMR(CDCl3)δ-72.5(broad),-81.1(sharp),-80.8(sharp),-79.9(sharp),-81.5(sharp),-82.5(broad)
又,使用下述表22中所記載之單體製造矽倍半氧烷複合高分子及塗佈組合物。此時,製造方法係對等地使用上述實施例4中所使用之方法。
實施例5:D-A-B-D結構之複合矽倍半氧烷高分子之合成
使用下述方法,以製造D-A-B-D結構之複合高分子,並藉由與上述實施例1對等之方法而製造塗佈組合物。
[實施例5-a]用於D結構之過量生成之pH值轉換反應(B、D結構之導入)
於進行反應中之實施例4-b混合溶液中非常緩慢地滴加0.36wt%之HCl水溶液5重量份,以pH值具有酸性之方式進行調節,並於4℃之溫度下攪拌30分鐘。其後,以實施例4-b之5倍即25重量份準備二苯基四甲氧基二矽氧烷(DiPhenyltetramethoxydisiloxane)之量並一次性滴加,攪拌1小時後,再次添加實施例1-a中所製造之觸媒5重量份而將混合溶液之pH值調節為鹼性狀態。反應結束後,使溫度變化至常溫,並藉由真空而去除混合溶液內之四氫呋喃,使得所有反應物轉化為水溶液混合物。混合攪拌4小時後,滴取一部分,通過29Si-NMR及1H-NMR而進行分析,結果可確認存在於B結構內之烷氧基(alkoxy group)之量變
化為0.012mmol/g,且以約1:9之比率導入有B及D之重複單元。又,苯乙烯換算分子量經測定為24,000。又,雖然導入有籠形(cage)結構,但於高分子之GPC形態下未見單獨籠形(cage)物質之分子量分佈,故而可確認籠形(cage)結構通過連續反應而良好地導入至高分子鏈。
1H-NMR(CDCl3)δ7.5,7.2,3.7,3.4,3.3(broad),3.1,2.8,2.6,1.5(broad),0.6。29Si-NMR(CDCl3)δ-72.5(broad),-81.1(sharp),-80.8(sharp),-79.9(sharp),-82.5(broad)
[實施例5-b]於B結構內導入X(B、D結構之導入)
不另行精製地準備上述實施例5-a中所獲得之結果物之有機層之後,使用3官能單體將末端轉化為籠形(cage)結構。將實施例5-a中所獲得之物質100重量份溶於50重量份之四氫呋喃中之後,加入5重量份之蒸餾水而製造混合溶液。其後,於所製造之混合溶液中添加0.36wt%之HCl 10重量份並攪拌10分鐘後,一次性滴加甲基三甲氧基矽烷(Methyltrimethoxysilane)3重量份而謀求穩定之水解。攪拌24小時後,再次添加實施例4-a中所製造之觸媒3重量份而將混合溶液之pH值調節為鹼性狀態。此時,於B結構之X部分導入籠形(cage)形態之高分子,並於反應器內連續地進行反應而形成如化學式5之高分子。但由於係與其他副產物一同獲得,故而必須另行精製。其後,使溫度變化至常溫,藉由真空而去除混合溶液內之四氫呋喃而準備精製。
[實施例5-c]通過沈澱及再結晶的副產物去除、結果物
之獲得
於上述實施例5-b中反應結束後之混合物中加入二氯甲烷200重量份,與蒸餾水一同進行區分洗淨,於蒸餾水層之pH值為中性時,藉由真空減壓而完全去除溶劑。其後,於甲醇中沈澱2次而去除未反應單體,並以30重量份溶於四氫呋喃與水溶液以9.5:0.5之重量比率混合而成之溶劑中,於-20℃之溫度下保存2天。其目的在於謀求未導入至高分子且因籠形(cage)結構而被封閉之物質之再結晶,使得精製容易進行。
確認到:將結束再結晶過程而獲得之固體物質過濾後,通過真空減壓而獲得化學式5之高分子而無各種副產物。又,於將GPC結果與NMR結果進行比較時,結果導出銳利(Sharp)形態之籠形(cage)形態而無因各步驟之高分子生長而單獨獲得之低分子,據此推斷,可確認無問題地獲得複合高分子。此時,分子量以苯乙烯換算值計可獲得16,000之值,X之n值為4-6,Y之n值為4-6,尤其是化學式5之結果如下。
29Si-NMR(CDCl3)δ-72.5(broad),-81.1(sharp),-80.8(sharp),-79.9(sharp),-81.5(sharp),-82.5(broad)
又,使用下述表23中所記載之單體製造矽倍半氧烷複合高分子及塗佈組合物。此時,製造方法係對等地使用上述實施例5中所使用之方法。
[表23]
實施例6:矽倍半氧烷E-A-B-D結構之複合高分子之合成
使用下述方法,以製造E-A-B-D結構之複合高分子,並藉由與上述實施例1對等之方法而製造塗佈組合物。
[實施例6-a]鏈末端E結構之生成
於實施例4-c中所獲得之混合物中不另行精製地滴加二氯甲烷20重量份,並滴加0.36重量%之HCl水溶液5
重量份,以pH值具有酸性之方式進行調節,並於4℃之溫度下攪拌30分鐘。其後,一次性滴加二甲基四甲氧基矽烷(dimethyltetramethoxysilane)1重量份。此時,於分子結構內尚未水解而存在之部分藉由已與溶劑分離之酸性水溶液層而容易地轉化為水解物,並且藉由有機溶劑層而與所生成之另外之反應物縮合而於末端單元導入E。攪拌5小時後,停止反應之攪拌,並將反應器之溫度調節至常溫。
[實施例6-b]對B結構及末端E結構之X導入籠形(cage)
不另行精製地準備上述實施例6-a中所獲得之結果物之有機層之後,使用3官能單體將末端轉化為籠形(cage)結構。於進行反應中之實施例6-a混合溶液中一次性滴加甲基三甲氧基矽烷(Methyltrimethoxysilane)3重量份而謀求穩定之水解,攪拌24小時後,再次添加實施例1-a中所製造之觸媒3重量份而將混合溶液之pH值調節為鹼性狀態。此時,於E結構末端導入籠形(cage)形態之高分子,並於反應器內連續地進行反應而形成如化學式6之高分子。但由於係與其他副產物一同獲得,故而必須另行精製。其後,使溫度變化至常溫,藉由真空而去除混合溶液內之四氫呋喃而準備精製。
[實施例6-c]通過沈澱及再結晶的副產物去除、結果物之獲得
獲得上述實施例6-b中反應結束後之混合物後,使用蒸餾水進行洗淨,於蒸餾水層之pH值為中性時,藉由真空減壓而完全去除溶劑。其後,於甲醇中沈澱2次而去
除未反應單體,並以30重量份溶於四氫呋喃與水溶液以9.5:0.5之重量比率混合而成之溶劑中,於-20℃之溫度下保存2天。其目的在於謀求未導入至高分子且因籠形(cage)結構而被封閉之物質之再結晶,而簡單地進行精製。
確認到:將結束再結晶過程而獲得之固體物質過濾後,通過真空減壓而一同獲得化學式6之高分子及各種副產物。又,於將GPC結果與NMR結果進行比較時,結果導出銳利(Sharp)形態之籠形(cage)形態而無因各步驟之高分子生長而單獨獲得之低分子,據此推斷,可確認無問題地獲得複合高分子。此時,分子量以苯乙烯換算值計可獲得21,000之值,X之n值為4-6,Y之n值為4-6,尤其是化學式6之結果如下。
29Si-NMR(CDCl3)δ-68.2,-71.8(sharp),-72.3(broad),-81.1(sharp),-80.8(sharp),-82.5(broad)
又,使用下述表24中所記載之單體製造矽倍半氧烷複合高分子。此時,製造方法係對等地使用上述實施例6中所使用之方法。
實施例7:矽倍半氧烷A-B-A-D結構之複合高分子之合成
關於合成步驟,係如下述般階段性地進行連續水解及縮合,並使用與上述實施例1同樣之方法製造塗佈組合物。
[實施例7-a]觸媒之製造
為了調節鹼度,於25重量%之氫氧化四甲基銨(Tetramethylammonium hydroxide:TMAH)水溶液中混合10重量%之氫氧化鉀(Potassium hydroxide:KOH)水溶液而準備觸媒1a。
[實施例7-b]線狀矽倍半氧烷之合成(A前驅物)
於配備冷卻管及攪拌機之經乾燥之燒瓶中滴加蒸餾水5重量份、四氫呋喃15重量份及上述實施例7-a中所製造之觸媒1重量份,於常溫下攪拌1小時後,滴加2-(3,4-環氧環己基)乙基三甲氧基矽烷20重量份,並再次滴加四氫呋喃15重量份,追加攪拌5小時。滴取攪拌中之混合溶液,藉由洗淨兩次而去除、過濾觸媒及雜質後,可通過IR分析而確認生成於末端基之SI-OH官能基(3200cm-1),測定分子量,結果可確認線狀結構之矽倍半氧烷具有6,000之苯乙烯換算分子量。
[實施例7-c]線狀矽倍半氧烷結構之合成(A-B前驅物之合成)
於配備冷卻管及攪拌機之經乾燥之燒瓶中滴加蒸餾水5重量份、四氫呋喃40重量份及上述實施例7-a中所
製造之觸媒0.5重量份,於常溫下攪拌1小時後,滴加2-(3,4-環氧環己基)乙基三甲氧基矽烷10重量份,並再次滴加四氫呋喃20重量份,追加攪拌2小時。滴取攪拌中之混合溶液,藉由洗淨兩次而去除、過濾觸媒及雜質後,獲得線狀矽倍半氧烷,通過1H-NMR分析,殘留之烷氧基(alkoxy group)為0.1mmol/g以下。其係用於之後藉由連續反應而導入籠形(cage)之部分。關於線狀結構之形態分析,通過XRD分析,確認到整體性結構為線狀結構體。測定分子量,結果可確認線狀結構之矽倍半氧烷具有8,000之苯乙烯換算分子量。
[實施例7-d]線狀矽倍半氧烷結構之合成(A-B-A前驅物之合成)
於配備冷卻管及攪拌機之經乾燥之燒瓶中滴加蒸餾水5重量份、四氫呋喃5重量份及所製造之實施例7-a觸媒10重量份,於常溫下攪拌1小時後,分別滴加實施例7-b前驅物及7-c前驅物各20重量份,並再次滴加四氫呋喃10重量份,追加攪拌24小時。滴取攪拌中之混合溶液,藉由洗淨兩次而去除、過濾觸媒及雜質後,可通過IR分析而確認生成於末端基之SI-OH官能基(3200cm-1),測定分子量,結果可確認線狀結構之矽倍半氧烷具有15,000之苯乙烯換算分子量。
1H-NMR(CDCl3)δ3.7,3.4,3.3(broad),3.1,2.8,2.6,1.5(broad),0.6。
[實施例7-e]連續性籠形(cage)結構之生成(D結構之導
入)
於上述實施例7-d混合溶液中非常緩慢地滴加0.36重量%之HCl水溶液5重量份,以pH值具有酸性之方式進行調節,並於4℃之溫度下攪拌30分鐘。其後,一次性滴加二苯基四甲氧基二矽氧烷(DiPhenyltetramethoxydisiloxane)5重量份而謀求穩定之水解,攪拌1小時後,再次添加實施例7-a中所製造之觸媒7重量份而將混合溶液之pH值調節為鹼性狀態。此時,與線狀高分子分開而單獨形成烷氧基(alkoxy)開放之D結構之前驅物。滴取少量樣品,藉由H-NMR及IR進行分析而確認甲氧基(methoxy)之殘留率之後,殘留率為10%時,緩緩滴加0.36重量%之HCl水溶液10重量份而將pH值調節為酸性。其後,一次性滴加苯基三甲氧基矽烷(Phenyltrimethoxysilane)1重量份並攪拌15分鐘後,添加1-a中所製造之觸媒20重量份。混合攪拌4小時後進行確認,結果可確認於高分子內生成籠形(cage)形態之高分子。其後,使溫度變化至常溫,並藉由真空而去除混合溶液內之四氫呋喃,使得所有反應物轉化為水溶液混合物。混合攪拌4小時後,滴取一部分,通過29Si-NMR而進行分析,結果顯示出銳利形態之2個使用苯基(phenyl)而導入之結構之分析波峰,可確認製造出如化學式7之高分子而無另外殘留之副產物。又,苯乙烯換算分子量經測定為18,000。
29Si-NMR(CDCl3)δ-68.2,-72.3(broad),-81.1(sharp),-80.8(sharp),-82.5(broad)
[實施例7-f]於B結構內導入X(A-B-A-D結構之完成)
不另行精製地準備上述實施例7-e中所獲得之結果物之有機層之後,使用3官能單體將末端轉化為籠形(cage)結構。將實施例7-e中所獲得之物質100重量份溶於50重量份之四氫呋喃中之後,加入5重量份之蒸餾水而製造混合溶液。其後,於所製造之混合溶液中添加0.36wt%之HCl 10重量份並攪拌10分鐘之後,一次性滴加甲基三甲氧基矽烷(Methyltrimethoxysilane)3重量份而謀求穩定之水解。攪拌24小時後,再次添加實施例7-a中所製造之觸媒3重量份而將混合溶液之pH值調節為鹼性狀態。此時,於B結構之X部分導入籠形(cage)形態之高分子,並於反應器內連續地進行反應而形成如化學式7之高分子。但由於係與其他副產物一同獲得,故而必須另行精製。其後,使溫度變化至常溫,藉由真空而去除混合溶液內之四氫呋喃而準備精製。
[實施例7-g]通過沈澱及再結晶的副產物去除、結果物之獲得
於上述實施例7-f中反應結束後之混合物中加入二氯甲烷200重量份,與蒸餾水一同進行區分洗淨,於蒸餾水層之pH值為中性時,藉由真空減壓而完全去除溶劑。其後,於甲醇中沈澱2次而去除未反應單體,並以30重量份溶於四氫呋喃與水溶液以9.5:0.5之重量比率混合而成之溶劑中,於-20℃之溫度下保存2天。其目的在於謀求未導入至高分子且因籠形(cage)結構而被封閉之物質之再結
晶,使得精製容易進行。
確認到:將結束再結晶過程而獲得之固體物質過濾後,通過真空減壓而獲得化學式7之高分子而無各種副產物。又,於將GPC結果與NMR結果進行比較時,結果導出銳利(Sharp)形態之籠形(cage)形態而無因各步驟之高分子生長而單獨獲得之低分子,據此推斷,可確認無問題地獲得複合高分子。此時,分子量以苯乙烯換算值計為24,000之值,X之n之平均值為4-6,Y之n值為4-6。
又,使用下述表25中所記載之單體製造矽倍半氧烷複合高分子。此時,製造方法係對等地使用上述實施例7中所使用之方法。
實施例8:D-A-B-A-D結構之複合矽倍半氧烷高分子之合成
使用下述實施例,以製造D-A-B-D結構之複合高分子,並藉由與上述實施例1同樣之方法而製造塗佈組合物。
[實施例8-a]用於D結構之過量生成之pH值轉換反應
於進行反應中之實施例7-d混合溶液中非常緩慢地滴加0.36wt%之HCl水溶液15重量份,以pH值具有酸性之方式進行調節,並於4℃之溫度下攪拌30分鐘。其後,以實施例7-e之5倍即25重量份準備二苯基四甲氧基二矽氧烷(DiPhenyltetramethoxydisiloxane)之量並一次性滴加,攪拌1小時後,再次添加實施例7-a中所製造之觸媒20重量份而將混合溶液之pH值調節為鹼性狀態。反應結束後,使溫度變化至常溫,並藉由真空而去除混合溶液內之四氫呋喃,使得所有反應物轉化為水溶液混合物。混合攪拌4小時後,滴取一部分,通過29Si-NMR及1H-NMR而進行分析,結果可確認存在於B結構內之烷氧基(alkoxy group)之量變化為0.006mmol/g,且以約5:5之比率導入有B及D之重複單元。又,苯乙烯換算分子量經測定為32,000。又,雖然導入有籠形(cage)結構,但於高分子之GPC形態下未
見單獨籠形(cage)物質之分子量分佈,故而可確認籠形(cage)結構通過連續反應而良好地導入至高分子鏈。
1H-NMR(CDCl3)δ7.5,7.2,3.7,3.4,3.3(broad),3.1,2.8,2.6,1.5(broad),0.6。29Si-NMR(CDCl3)δ-72.5(broad),-81.1(sharp),-80.8(sharp),-79.9(sharp),-82.5(broad)
[實施例8-b]於B結構內導入X
不另行精製地準備上述實施例8-a中所獲得之結果物之有機層之後,使用3官能單體將末端轉化為籠形(cage)結構。將實施例8-a中所獲得之物質100重量份溶於50重量份之四氫呋喃中之後,加入5重量份之蒸餾水而製造混合溶液。其後,於所製造之混合溶液中添加0.36wt%之HCl 10重量份並攪拌10分鐘後,一次性滴加甲基三甲氧基矽烷(Methyltrimethoxysilane)3重量份而謀求穩定之水解。攪拌24小時後,再次添加實施例7-a中所製造之觸媒3重量份而將混合溶液之pH值調節為鹼性狀態。此時,於B結構之X部分導入籠形(cage)形態之高分子,並於反應器內連續地進行反應而形成如化學式8之高分子。但由於係與其他副產物一同獲得,故而必須另行精製。其後,使溫度變化至常溫,藉由真空而去除混合溶液內之四氫呋喃而準備精製。
[實施例8-c]通過沈澱及再結晶的副產物去除、結果物之獲得
於上述實施例8-b中反應結束後之混合物中加入二氯甲烷200重量份,與蒸餾水一同進行區分洗淨,於蒸
餾水層之pH值為中性時,藉由真空減壓而完全去除溶劑。其後,於甲醇中沈澱2次而去除未反應單體,並以30重量份溶於四氫呋喃與水溶液以9.5:0.5之重量比率混合而成之溶劑中,於-20℃之溫度下保存2天。其目的在於謀求未導入至高分子且因籠形(cage)結構而被封閉之物質之再結晶,使得精製容易進行。
確認到:將結束再結晶過程而獲得之固體物質過濾後,通過真空減壓而獲得化學式1之高分子而無各種副產物。又,於將GPC結果與NMR結果進行比較時,結果導出銳利(Sharp)形態之籠形(cage)形態而無因各步驟之高分子生長而單獨獲得之低分子,據此推斷,可確認無問題地獲得複合高分子。此時,分子量以苯乙烯換算值計可獲得36,000之值,X之n值為4-6,Y之n值為4-6,尤其是化學式8之結果如下。
29Si-NMR(CDCl3)δ-72.5(broad),-81.1(sharp),-80.8(sharp),-79.9(sharp),-81.5(sharp),-82.5(broad)
又,使用下述表26中所記載之單體製造矽倍半氧烷複合高分子及塗佈組合物。此時,製造方法係對等地使用上述實施例8中所使用之方法。
實施例9:矽倍半氧烷E-A-B-A-D結構之複合高分子之合成
使用下述實施例,以製造E-A-B-A-D結構之複合高分子,並藉由與上述實施例1對等之方法而製造塗佈組合物。
[實施例9-a]鏈末端E結構之生成
於實施例7-g中所獲得之混合物中不另行精製地滴加二氯甲烷20重量份,並滴加0.36重量%之HCl水溶液5重量份,以pH值具有酸性之方式進行調節,並於4℃之溫度下攪拌30分鐘。其後,一次性滴加二甲基四甲氧基矽烷(dimethyltetramethoxysilane)1重量份。此時,於分子結構內尚未水解而存在之部分藉由已與溶劑分離之酸性水溶液層而容易地轉化為水解物,並且藉由有機溶劑層而與所生
成之另外之反應物縮合而於末端單元導入E。攪拌5小時後,停止反應之攪拌,並將反應器之溫度調節至常溫。
[實施例9-b]對B結構及末端E結構之X導入籠形(cage)
不另行精製地準備上述實施例9-a中所獲得之結果物之有機層之後,使用3官能單體將末端轉化為籠形(cage)結構。於進行反應中之實施例9-a混合溶液中一次性滴加甲基三甲氧基矽烷(Methyltrimethoxysilane)3重量份而謀求穩定之水解,攪拌24小時後,再次添加實施例7-a中所製造之觸媒3重量份而將混合溶液之pH值調節為鹼性狀態。此時,於E結構末端導入籠形(cage)形態之高分子,並於反應器內連續地進行反應而形成如化學式9之高分子。但由於係與其他副產物一同獲得,故而必須另行精製。其後,使溫度變化至常溫,藉由真空而去除混合溶液內之四氫呋喃而準備精製。
[實施例9-c]通過沈澱及再結晶的副產物去除、結果物之獲得
獲得上述實施例9-b中反應結束後之混合物後,使用蒸餾水進行洗淨,於蒸餾水層之pH值為中性時,藉由真空減壓而完全去除溶劑。其後,於甲醇中沈澱2次而去除未反應單體,並以30重量份溶於四氫呋喃與水溶液以9.5:0.5之重量比率混合而成之溶劑中,於-20℃之溫度下保存2天。其目的在於謀求未導入至高分子且因籠形(cage)結構而被封閉之物質之再結晶,使得精製容易進行。
確認到:將結束再結晶過程而獲得之固體物質
過濾後,通過真空減壓而一同獲得化學式9之高分子及各種副產物。又,於將GPC結果與NMR結果進行比較時,結果導出銳利(Sharp)形態之籠形(cage)形態而無因各步驟之高分子生長而單獨獲得之低分子,據此推斷,可確認無問題地獲得複合高分子。此時,分子量以苯乙烯換算值計可獲得28,000之值,X之n值為4-6,Y之n值為4-6。
又,使用下述表27中所記載之單體製造矽倍半氧烷複合高分子。此時,製造方法係對等地使用上述實施例9中所使用之方法。
[實驗]
於PC(i-components公司,Glastic 0.5 T)、PET(SKC,V5400)、PMMA(EVONIK,Plexiglas OF058)、PVC(新東亞合成股份有限公司,透明PVC膜1mm)及PU(藉由SONG-STOMER之P-7100而製造之膜)上塗佈上述實施例1至9中所製造之塗佈組合物並硬化,測定表面特性。
-表面硬度測定:通常而言,鉛筆硬度法(JIS 5600-5-4)通常係以750g荷重進行評價,於較其苛刻之條件即1kgf荷重下於塗佈面以45度角度將鉛筆以毎秒0.5mm之速度水準移動10mm移動而刮蹭塗佈膜,以所刮蹭之痕跡進行評價。若5次實驗中有2次以上未確認到3mm以上之刮蹭痕跡,則選擇高等級硬度之鉛筆而進行評價,若2次以上確認到刮蹭痕跡,則選擇較該鉛筆硬度低一等級之鉛筆而評價適合塗佈膜之鉛筆硬度,並示於下述表28及表29。關於評價結果,於10um以上之塗佈厚度下,無論基板種類如何,均確認到玻璃水準之9H硬度。
-可靠性評價:於85%、85℃之可靠性腔室中保存240小時,評價彎曲特性(YI(ASTMD1925)),將其結果示於下述表30及表31。
彎曲評價基準為,±0.1mm以內:◎、±0.2mm以內:○、-0.3mm以下或0.3mm以上:X。評價結果為於所有基材中優異。
-劃痕測試(Scratch test)測定(JIS K5600-5-9):利用鋼絲絨(Steel wool)而進行之磨耗評價法係於1kg左右之重量之錘子之頂端捲繞#0000之鋼絲絨(Steel wool)並往返15次而摩擦試驗片,測定其霧度值,而本次之評價係以較其苛刻之條件摩擦試驗片,即摩擦400次,並藉由霧度測定及顯微鏡而進行目測評價。結果為,於霧度增加0.05%以上之情形時,判斷為失敗。確認到:於塗佈厚度為5um以上之塗佈下,對產生於表面之劃痕之耐性優異。
-接著力評價(JIS K5600-5-6):利用刀片以1-5mm之間隔劃割塗佈膜,並於其上貼附透明膠帶,以於拉拽所貼附之膠帶時脫離之個數判斷接著性,此時,利用刀片製作100個網格,以100個中之脫離之個數進行接著性判斷,針對實施例6之光硬化性塗佈組合物之結果示於下述表32及表33。關於記載,100個中之未脫離之個數記載為“(未脫離之個數/100)”,作為示例,若100個未脫離,則記載為“(100/100)”。確認到接著性非常優異。雖未記載於表32及表33中,但本發明之其他實施例之塗佈組合物經過評價,結果確認到接著性非常優異。
如上述表32及表33所示,可確認本發明之塑膠塗佈組合物不僅表現出非常優異之表面硬度,同時其他物性方面亦優異。
Claims (14)
- 一種塑膠塗佈方法,其特徵在於在塑膠表面之上塗佈包含下述化學式1至9中任一者所示之矽倍半氧烷複合高分子之塑膠塗佈組合物並硬化:
- 如請求項1之塑膠塗佈方法,其中上述塑膠選自由聚乙烯(polyethylene,PE)、聚丙烯(polypropylene,PP)、聚苯乙烯(polystyrene,PS)、聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚醯胺(polyamides,PA,尼龍)、聚酯(polyester,PES)、聚氯乙烯(polyvinyl chloride,PVC)、聚胺基甲酸酯(polyurethanes,PU)、聚碳酸酯(polycarbonate,PC)、聚偏二氯乙烯(polyvinylidene chloride,PVDC)、聚四氟乙烯(polytetrafluoroethylene,PTFE)、聚醚醚酮(polyetheretherketone,PEEK)及聚醚醯亞胺(polyetherimide,PEI)所組成之群中之1種以上。
- 如請求項1之塑膠塗佈方法,其中上述塗佈厚度為0.01至500um。
- 一種塑膠塗佈組合物,其包含下述化學式1至9中任一者所示之矽倍半氧烷複合高分子:[化學式1]
- 如請求項4之塑膠塗佈組合物,其中a為3至1000,b為1至500,d為1至500。
- 如請求項4之塑膠塗佈組合物,其中n值之平均為4至5。
- 如請求項4之塑膠塗佈組合物,其中上述矽倍半氧烷複合高分子之重量平均分子量為1,000至1,000,000。
- 如請求項4之塑膠塗佈組合物,其中上述塗佈組合物為無溶劑型。
- 如請求項4之塑膠塗佈組合物,其中上述塗佈組合物包含:上述矽倍半氧烷複合高分子;起始劑;及有機溶劑。
- 如請求項4之塑膠塗佈組合物,其中上述塗佈組合物進一步包含顏料。
- 一種矽倍半氧烷複合高分子塗佈塑膠,其特徵在於包含於表面之上塗佈包含上述化學式1至9中任一者所示之矽倍半氧烷複合高分子之塑膠塗佈組合物並硬化而成的硬化物。
- 如請求項11之矽倍半氧烷複合高分子塗佈塑膠,其中上述矽倍半氧烷複合高分子塗佈塑膠係藉由如請求項1之塑膠塗佈方法而形成。
- 一種物品,其包含如請求項11之矽倍半氧烷複合高分子塗佈塑膠。
- 如請求項13之物品,其中上述物品為光學膜、保護膜、電子製品構成用塑膠、眼鏡、建築外裝材料、建築內裝材料、塑膠配管、電線被覆材料、光學透鏡、隔音牆、塑膠看板、塑膠造形物、傢俱、照明、天窗或安全帽。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
??10-2014-0027159 | 2014-03-07 | ||
KR20140027159 | 2014-03-07 | ||
KR1020150031865A KR102414700B1 (ko) | 2014-03-07 | 2015-03-06 | 실세스퀴옥산 복합 고분자를 이용한 플라스틱코팅방법 |
??10-2015-0031865 | 2015-03-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201542719A true TW201542719A (zh) | 2015-11-16 |
TWI669351B TWI669351B (zh) | 2019-08-21 |
Family
ID=54244770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104107436A TWI669351B (zh) | 2014-03-07 | 2015-03-09 | 使用矽倍半氧烷複合高分子的塑膠塗佈方法 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102414700B1 (zh) |
TW (1) | TWI669351B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7311946B2 (ja) | 2016-06-06 | 2023-07-20 | エヌビーディー ナノテクノロジーズ, インコーポレイテッド | 指紋非視認性コーティングおよびそれを形成する方法 |
KR20200082946A (ko) * | 2018-12-31 | 2020-07-08 | 주식회사 동진쎄미켐 | 합성 수지 코팅 조성물 및 이를 이용한 합성 수지 기재 제조 방법 |
KR20210111946A (ko) * | 2020-03-03 | 2021-09-14 | 삼성디스플레이 주식회사 | 발광 소자 |
US20210341649A1 (en) * | 2020-04-29 | 2021-11-04 | Samsung Display Co., Ltd. | Anti-reflective film and display device including the same |
KR20240104374A (ko) * | 2022-12-28 | 2024-07-05 | 주식회사 동진쎄미켐 | 실세스퀴옥산 고분자 바인더를 함유하는 착색 코팅용 조성물 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4479160B2 (ja) * | 2003-03-11 | 2010-06-09 | チッソ株式会社 | シルセスキオキサン誘導体を用いて得られる重合体 |
WO2011118939A2 (ko) | 2010-03-22 | 2011-09-29 | 주식회사 엘지화학 | 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트 |
JP5425698B2 (ja) * | 2010-04-27 | 2014-02-26 | 株式会社日本触媒 | フレキシブルフィルムとそれを有する金属箔及びそれを用いたプリント配線基板 |
CN102241869B (zh) * | 2010-05-14 | 2013-01-09 | 北京仁创科技集团有限公司 | 一种组合物和由该组合物制备的成型体及其制备方法 |
KR101249798B1 (ko) | 2010-08-18 | 2013-04-03 | 한국과학기술연구원 | 선택적으로 구조가 제어된 폴리실세스퀴옥산의 제조방법 및 이로부터 제조된 폴리실세스퀴옥산 |
US9249313B2 (en) | 2011-09-21 | 2016-02-02 | The United States Of America As Represented By The Secretary Of The Air Force | Synthesis of functional fluorinated polyhedral oligomeric silsesquioxane (F-POSS) |
-
2015
- 2015-03-06 KR KR1020150031865A patent/KR102414700B1/ko active IP Right Grant
- 2015-03-09 TW TW104107436A patent/TWI669351B/zh active
Also Published As
Publication number | Publication date |
---|---|
TWI669351B (zh) | 2019-08-21 |
KR102414700B1 (ko) | 2022-06-29 |
KR20150105611A (ko) | 2015-09-17 |
KR102414700B9 (ko) | 2023-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7111611B2 (ja) | 積層体およびその製造方法 | |
TWI676503B (zh) | 用於避免基材翹曲之塗佈方法、用於避免翹曲現象之基材、及包含該基材之物品 | |
TWI657103B (zh) | 矽倍半氧烷複合高分子及其製造方法(三) | |
TWI668272B (zh) | 包含矽倍半氧烷複合聚合物之熱塑性樹脂組成物 | |
TWI669351B (zh) | 使用矽倍半氧烷複合高分子的塑膠塗佈方法 | |
TW201546125A (zh) | 矽倍半氧烷複合高分子及其製造方法(一) | |
TW201540749A (zh) | 矽倍半氧烷複合高分子及其製造方法(二) | |
TWI656028B (zh) | 表面強化透明基板及其製造方法 | |
TW201602264A (zh) | 使用矽倍半氧烷複合高分子之陶瓷塗佈方法 | |
KR102363820B1 (ko) | 실세스퀴옥산 복합 고분자 및 이의 제조방법 | |
TW201707925A (zh) | 塗布製品及高硬度曲面硬塗布方法 | |
TW201546205A (zh) | 使用矽倍半氧烷複合高分子的金屬塗覆方法 | |
TW201546206A (zh) | 使用矽倍半氧烷複合高分子的木材及木漿塗佈方法 | |
TW201546207A (zh) | 使用矽倍半氧烷複合高分子之纖維塗佈方法 | |
KR102470020B1 (ko) | 실세스퀴옥산 고분자를 이용한 기판 및 그 제조 방법 |