TW201531666A - 測量裝置 - Google Patents

測量裝置 Download PDF

Info

Publication number
TW201531666A
TW201531666A TW104114715A TW104114715A TW201531666A TW 201531666 A TW201531666 A TW 201531666A TW 104114715 A TW104114715 A TW 104114715A TW 104114715 A TW104114715 A TW 104114715A TW 201531666 A TW201531666 A TW 201531666A
Authority
TW
Taiwan
Prior art keywords
melt
sheet
coil
thin plate
magnetic field
Prior art date
Application number
TW104114715A
Other languages
English (en)
Other versions
TWI548860B (zh
Inventor
Gary J Rosen
Frank Sinclair
Alexander Soskov
James S Buff
Original Assignee
Varian Semiconductor Equipment
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Semiconductor Equipment filed Critical Varian Semiconductor Equipment
Publication of TW201531666A publication Critical patent/TW201531666A/zh
Application granted granted Critical
Publication of TWI548860B publication Critical patent/TWI548860B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/1206Accessories for subsequent treating or working cast stock in situ for plastic shaping of strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/143Plants for continuous casting for horizontal casting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/10Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
    • G01B7/105Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance for measuring thickness of coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/10Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
    • G01B7/107Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance for measuring objects while moving
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • Y10T117/1008Apparatus with means for measuring, testing, or sensing with responsive control means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1036Seed pulling including solid member shaping means other than seed or product [e.g., EDFG die]
    • Y10T117/1044Seed pulling including solid member shaping means other than seed or product [e.g., EDFG die] including means forming a flat shape [e.g., ribbon]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1036Seed pulling including solid member shaping means other than seed or product [e.g., EDFG die]
    • Y10T117/1044Seed pulling including solid member shaping means other than seed or product [e.g., EDFG die] including means forming a flat shape [e.g., ribbon]
    • Y10T117/1048Pulling includes a horizontal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1068Seed pulling including heating or cooling details [e.g., shield configuration]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1076Apparatus for crystallization from liquid or supercritical state having means for producing a moving solid-liquid-solid zone
    • Y10T117/1088Apparatus for crystallization from liquid or supercritical state having means for producing a moving solid-liquid-solid zone including heating or cooling details

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一種材質的薄板配置在相同材質的熔融物中。在一實例中,此薄板是利用冷卻板來形成。激發線圈和感測線圈配置在冷卻板的下游。此激發線圈和感測線圈使用渦電流來測定位於熔融物頂部的固體薄板的厚度。

Description

測量裝置 【關於聯邦政府贊助研發的聲明】
美國政府擁有本發明的已付款證書,並且有權在特定的情況下要求專利所有人按照美國能源部(U.S.Department of Energy)所授予的合約第DE-EE0000595號中列出的合理條款來頒發許可證給他人。
本發明有關於一種利用熔融物來形成薄板,且特別是有關於利用熔融物來形成的固體薄板的厚度的測量。
矽晶圓(wafers)或矽薄板(sheets)可應用於積體電路產業,而這些矽晶圓或矽薄板也可應用於太陽能電池產業。大多數太陽能電池都是用矽晶圓(諸如單晶體矽晶圓)來製成。目前,晶體矽太陽能電池的主要成本是用來在其上面製造太陽能電池的晶圓。太陽能電池的效率,或者在標準照度(standard illumination)下產生的功率值,部分受到此晶圓品質的限制。由於人們對太陽能電池的需求隨著人們對綠色能源的需求而增加,所以太陽能電 池產業的一個目標是減小成本/功率之比(ratio)。在不降低品質的前提下任何程度地減小製造晶圓的成本都會使成本/功率之比減小,且使得這種清潔能源技術得到更廣泛的應用。
效率最高的矽太陽能電池可具有大於20%的效率。這些效率最高的矽太陽能電池是利用電子級(electronics-grade)單晶矽晶圓來製成。此類晶圓是從使用捷拉斯基法(Czochralski method)而成長起來的單晶矽圓柱形晶錠(boule)上鋸切(sawing)薄片(slices)而製成。這些薄片的厚度可小於200μm。在後續的鋸切制程中,每個晶圓會產生大約200μm的切口損耗(kerf loss),或者因鋸條寬度而造成的損耗。圓柱形晶錠或晶圓也可能需要做成方形,以便製造成方形太陽能電池。方形化(squaring)和切口損耗都會導致材料浪費和材料成本提高。隨著太陽能電池變得越來越薄,每次切割所造成的矽浪費百分比增大。鋸切技術的局限性會影響獲得薄太陽能電池的能力。
其他太陽能電池是用從多晶矽錠(polycrystalline silicon ingots)上鋸切的晶圓來製成。多晶矽錠比單晶矽成長得快,然而,所形成的晶圓中會有較多的缺陷或晶界(grain boundaries),所以品質較差,這會造成太陽能電池效率低。多晶矽錠的鋸切制程與單晶矽錠或晶錠一樣效率低。
另一種可減少矽浪費的辦法是在執行了離子植入(ion implantation)後從矽錠上分裂(cleaving)晶圓。舉例而言,將氫、氦或其他惰性氣體離子植入到矽錠的表面下以形成植入區。然後 執行熱處理、物理處理或化學處理,以便沿著此植入區而從矽錠上分裂晶圓。藉由離子植入來進行分裂可製造無切口損耗的晶圓,同時也已經證實使用此方法來製造矽晶圓很經濟。
再一種辦法是,從熔融物上垂直拉伸矽帶(ribbon of silicon),然後使被拉伸的矽冷卻下來並且凝固成薄板(sheet)。在冷卻和凝固過程中被驅散的潛熱(latent heat)必須沿著垂直的矽帶來散熱,這導致沿著矽帶形成很大的溫度梯度。此溫度梯度使晶體矽帶受到應力作用,會形成品質較差的多晶粒(multi-grain)矽。矽帶的寬度和厚度也會因溫度梯度而受限制。
從熔融物上水平地形成薄板比從矽錠上切割矽片要便宜,而且可消除切口損耗或因方形化而造成的損耗。從熔融物上水平地形成薄板也可能比使用氫離子從矽錠上分裂矽或其他垂直拉伸矽帶的方法便宜。此外,與垂直拉伸的矽帶相比,從熔融物上水平地分離薄板可改善薄板的結晶品質。諸如能夠降低材料成本的晶體成長法(crystal growth method)將會是使矽太陽能電池的成本降低的主要使能(enabling)步驟。然而,此薄板的厚度必須均勻,或者對於特定的太陽能電池設計而言必須具有指定的數值。因此,在生產過程中必須對厚度進行控制。許多厚度測量裝置都無法承受熔融物的高溫環境,所以本技術領域需要測量熔融物中的薄板(a sheet in a melt),特別是需要測量熔融物中的薄板的厚度。
依照本發明的第一觀點,提供一種薄板形成裝置。此薄板形成裝置包括一種材質的熔融物以及位於此熔融物中的相同材質的薄板。冷卻板經配置以形成薄板。激發線圈(exciting coil)和感測線圈(sensing coil)配置在冷卻板的下游。電源連接至激發線圈。
依照本發明的第二觀點,提供一種測量方法。此測量方法包括使一種材質的薄板凍結(freezing)在相同材質的熔融物中。使熔融物和薄板流經一通道。使用渦電流(eddy current)來測量薄板的厚度。
一種本發明的第三觀點,提供一種測量裝置。此測量裝置包括激發線圈和感測線圈。電源經配置以便為激發線圈供電,從而產生隨時間而變化的磁場。控制器經配置以測量感測線圈中的感應磁場。控制器對來自感測線圈的信號進行解碼(interprets),以便估算配置在低阻層(lower resistivity layer)上面的高阻層(higher resistivity layer)的厚度。
10‧‧‧熔融物
12‧‧‧溢道
13‧‧‧薄板
14‧‧‧冷卻板
15、20‧‧‧薄板形成裝置
16‧‧‧容器
17‧‧‧通道
18、19‧‧‧點
22‧‧‧渦電流測量系統
23‧‧‧激發線圈
24‧‧‧感測線圈
25‧‧‧套筒
26‧‧‧箭頭
27‧‧‧控制器
28‧‧‧電源
50‧‧‧磁場
51‧‧‧渦電流
52‧‧‧電流
60‧‧‧表面
61‧‧‧方向
62‧‧‧強度
圖1是一種從熔融物上分離薄板的裝置的實施例的剖面側視圖。
圖2是一種從熔融物上拉伸薄板的裝置的實施例的剖面側視圖。
圖3是一種渦電流測量系統的實施例的剖面側視圖。
圖4是激發線圈和感測線圈的透視圖。
圖5是規範化的電流密度相對於垂直位置的一實施例的對比圖表。
圖6是熔融物中的感應電流的頂部透視圖。
圖7是熔融物的表面深度的剖面側視圖。
圖8是表面深度相對於頻率的對比圖表。
下面將描述與太陽能電池有關的裝置與方法的實施例。然而,這些裝置與方法也可用來製造(例如)積體電路、平面面板(flat panels)、發光二極體(light-emitting diodes,LEDs)或熟悉本專業的技術人員所知的其他基板(substrates)。此外,雖然所描述的是矽熔融物,但是熔融物也可包含鍺、矽和鍺、鎵、氮化鎵、碳化矽、其他半導體材料或者熟悉本專業的技術人員所知的其他材料。因此,本發明並不限於下文所述的具體實施例。
圖1是一種從熔融物上分離薄板的裝置的實施例的剖面側視圖。此薄板形成裝置15具有容器16。此容器16可以是(例如)鎢、氮化硼、氮化鋁、鉬、石墨、碳化矽或石英。容器16經配置以容納熔融物10,在一實例中,容器16是坩堝(crucible)。熔融物10可以是矽,薄板13將會形成在熔融物10上。在一實例中,薄板13將會至少部分漂浮在熔融物10內。在圖1中薄板13 繪示為漂浮在熔融物10中,然而薄板13也可至少部分浸沒在熔融物10中,或者可漂浮在熔融物10之上。在一實例中,薄板13僅有10%從熔融物10的上面突起。熔融物10可在薄板形成裝置15內迴圈流動。
此容器16界定了至少一個通道17。此通道17經配置以容納熔融物10,且熔融物10從通道17的第一點18流向第二點19。在一實例中,通道17內的環境是平靜的以防熔融物10中起波紋。例如,壓力差、重力、氣體提升泵(gas-lift pump)、螺杆泵(screw pump)、其他類型的泵或其他運輸方法都會導致熔融物10流動。然後熔融物10會從溢道(spillway)12溢出。此溢道12可以是斜坡、溢流堰(weir)、凸緣(ledge)、小型水壩或者拐角,而不限於圖1所示之實施例。溢道12可為任何使薄板13能夠脫離熔融物10的形狀。
在一特定實施例中,容器16可保持在略高於1685K的溫度。對矽而言,1685K相當於凍結溫度或介面溫度。使容器16保持在略高於熔融物10之凍結溫度的溫度下,冷卻板14便可利用輻射冷卻(radiation cooling)來起作用,以使得位於熔融物10上或位於熔融物10中的薄板13獲得想要的凍結速度。在此特定實施例中,冷卻板14可由單個部分或部件來組成,但是在其他實施例中也可包括多個部分或多個部件。容器16可處在高於熔融物10之熔融溫度的任何溫度下,這樣可防止熔融物10在容器16上凝固。在一實例中,將多個加熱器嵌入(imbedding)到容器16 內並使用多區(multi-zone)溫度控制,便可使容器16的不同區域被加熱到不同的溫度。
薄板形成裝置15包括冷卻板14。此冷卻板14可除熱(heat extraction),使得薄板13可形成在熔融物10上。當冷卻板14的溫度下降到低於熔融物10的凍結溫度時,會導致薄板13凍結在熔融物10上或者熔融物10中。此冷卻板14採用輻射冷卻,可用(例如)石墨、石英或碳化矽來製成。當以預防薄板13中產生瑕疵的方式來形成薄板13時,可減少對熔融物10造成的擾動(disturbances)。
與其他的帶拉伸法(ribbon pulling methods)相比,去除熔化熱(heat of fusion)和透過熔融物10的表面去除熔融物10的熱量可較快地製造薄板13,同時使薄板13保持低缺陷密度。使位於熔融物10表面上的薄板13或漂浮在熔融物10上的薄板13冷卻下來能夠緩慢而大面積地去除潛在的熔化熱,同時具有較大的薄板13提取速度。
冷卻板14在長度和寬度上的尺寸均可增大。就相同的垂直成長速度以及所形成的薄板13的厚度而言,增大長度可加快薄板13提取速度。增大冷卻板14的寬度可形成較寬的薄板13。不同於垂直板拉伸法的是,利用圖1所述之裝置及方法的實施例來製造薄板13,此薄板13的寬度不會受到固有實體限制。
當熔融物10上形成薄板13後,利用溢道12使薄板13脫離熔融物10。熔融物10從通道17的第一點18流向第二點19。 薄板13將隨著熔融物10而流動。薄板13的這種運送可以是一個持續的動作。在一實例中,薄板13的流動速度可與熔融物10表面的流動速度近似相等。因此,在形成和運送薄板13時,薄板13相對於熔融物10的表面而言是靜止不動的。溢道12的形狀或溢道12的方位可更改,以改變熔融物10或薄板13的速度剖面(velocity profile)。
熔融物10是在溢道12處與薄板13分離。在一實施例中,熔融物10的流動會使熔融物10越過溢道12,並且可至少部分運送薄板13越過溢道12。這樣可防止單晶板13斷裂,或者使單晶板13斷裂的可能性最小化,這是因為無外應力施加在薄板13上。當然,薄板13也可拉伸而成,或者在其上施加一些外力。在此特定實施例中,熔融物10將脫離薄板13而溢出溢道12。冷卻作用不會發生在溢道12處,以防對薄板13造成熱衝擊(thermal shock)。在一實施例中,溢道12處的分離是在近等溫條件(near-isothermal conditions)下發生。在一實施例中,薄板13傾向於筆直地越過溢道12。在一些實例中,當薄板13越過溢道12後,此薄板13可被支撐著以防其斷裂。
圖2是一種從熔融物上拉伸薄板的裝置的實施例的剖面側視圖。在本實施例中,薄板形成裝置20藉由從熔融物10上拉伸薄板13來運送薄板13。在本實施例中,熔融物10可不在通道17中流通,且可利用種子(seed)來拉伸薄板13。薄板13可藉由冷卻板14的冷卻來形成,且所形成的薄板13可從熔融物10中抽 出。
圖1所示之實施例和圖2所示之實施例均使用冷卻板14。冷卻板14全長的不同冷卻溫度、熔融物10的不同流速或薄板13的拉伸速度、薄板形成裝置15或薄板形成裝置20的不同部位的長度或者薄板形成裝置15或薄板形成裝置20內的時序(timing)都可用來進行程序控制。若熔融物10是矽,則薄板形成裝置15中可形成多晶板或單晶板一般的薄板13。在圖1或圖2所示之實施例中,薄板形成裝置15或薄板形成裝置20可被封在一個殼體(enclosure)中,這有助於維持想要的溫度。
圖1與圖2僅僅是可利用熔融物10來形成薄板13的薄板形成裝置的兩個實例。其他用來進行水平薄板13成長的裝置或方法也是可行的。雖然本文所述之方法與裝置的實施例是針對圖1所示之薄板形成裝置來進行具體描述,然而這些實施例也適用于任何水平薄板13成長方法或裝置(諸如圖2所示之裝置)。這些實施例也適用于垂直薄板成長方法。因此,本文所述之實施例並不限於圖1所示之特定實施例。
測量薄板13的厚度有許多優點。此類測量可用作生產薄板13用的回饋機制或程序控制系統,這樣可確保形成具有想要的厚度的薄板13。當熔融物10上形成薄板13時,原位測量(In-situ measurement)可對薄板13的厚度進行即時監控。這樣可減少浪費,或者可形成連續的薄板13。
液態矽是一種導電率約為1.39×106S/m的金屬。熔融溫 度下的固態矽是一種導電率為5×104S/m的本徵半導體(intrinsic semiconductor)。因此,固態矽的導電率低於液態矽。此導電率之差可用來進行渦電流測量,以測定薄板13的厚度。
圖3是一種渦電流測量系統的實施例的剖面側視圖。此渦電流測量系統22包括激發線圈23和感測線圈24。在此特定實施例中,激發線圈23配置在感測線圈24內,但是也可以採用其他配置。在一實例中,感測線圈24的周長或直徑大於激發線圈23,如圖4所示,此激發線圈23位於感測線圈24的內部。在一特定實施例中,感測線圈24的直徑約為10mm,且配置在熔融物10的表面上方約0.5mm至1mm之處。激發線圈23與感測線圈24可用(例如)鉬或銅來製成。在另一實例中,激發線圈23與感測線圈24合併為單一線圈。此單一線圈連接至控制器27,此控制器27可感測大電流上方的渦電流所產生的小電壓,其中大電流被用來激發渦電流。
返回到圖3,套筒(sleeve)25圍繞著激發線圈23和感測線圈24。此套筒25可以是(例如)石英或能夠承受熔融物10的溫度的其他材料。在一實例中,套筒25不會對使用渦電流測量系統22而產生的場(fields)帶來影響。渦電流測量系統22配置在冷卻板14的下游,且可位於熔融物10上方的一段距離處,此距離小於環形感測線圈24或激發線圈23的直徑。此渦電流測量系統22可連接至控制器27,控制器27對來自感測線圈24的信號進行解碼。在薄板13的形成過程中,此控制器27可提供程序控 制。電源28可選擇性地為感測線圈24和激發線圈23供電。所用的頻率可以是(例如)1.2MHz、8MHz或100MHz。
渦電流測量系統22的激發線圈23產生隨時間而變化的磁場。所施加的磁場(imposed magnetic field)感應出(induces)再迴圈電動勢(electromotive force,EMF)。在導體(諸如熔融物10)中,此電動勢或此電動勢與導體之間的移動會產生電氣環路(electrical loop)或渦電流。如此一來,熔融物10中產生迴圈電子流。此電氣環路或渦電流會產生感應磁場(induced magnetic field)或電動勢。根據冷次定律(Lenz’s Law),此感應磁場的極性(polarity)會部分抵消所施加的磁場,或者與所施加的磁場方向相反。所施加的磁場越強,導體的導電率越大,或者所施加的磁場變化越快,所產生的渦電流就越大,且感應磁場就越強。
感測線圈24測量與時間有關(time-dependent)的總場(total field),且可提供對應於此總場的信號。根據所施加的場的改變(modification)與大小、頻率的依賴關係,便可確定薄板13的厚度。此厚度在圖3中是用箭頭26來表示。圖5是正規化的電流密度相對於垂直位置的一實施例的對比圖表。圖5顯示為100μm的固態矽位於1.9mm的液態矽上時渦電流密度相對於深度的函數關係的模型。其模擬了勵磁線圈(energizing coil)中的階梯函數(step function)電流。此圖表明緊接在電流開始後的時段裏渦電流的時間演變。在起初的幾奈秒(nanoseconds)裏,由於高頻表面深度(skin depth)較小,所以固體薄膜占總電流的一大部 分。但是隨著時間的推移,較深的液體逐漸控制回應(response)。
圖3所示之固態矽薄板13具有晶體結構,這使得電子波函數(wavefunctions of the electrons)被局限於週期電勢的本徵函數(eigenfunctions)。如此一來,就矽而言,薄板13的導電率小於熔融物10,渦電流將會減小。就矽而言,測量薄板13時的感應磁場將會小於測量熔融物10時的感應磁場。一個既包含薄板13又包含熔融物10的區域的感應磁場之差將會不同於僅包含熔融物10的區域,且薄板13的厚度可部分根據此差值來計算。
控制器27可使用一種雙頻諧波法(two frequency harmonic approach)。藉由分析低頻來測量熔融物10的頂部。藉由分析高頻來測量薄板13的頂部。在此例中,薄板13的電阻率高於熔融物10。根據雙頻回應之間的差來估算出薄板13的厚度。在另一實例中,可使用兩個以上的頻率,(諸如)以便協助避免雜訊(noise)對測量造成干擾,或者以便能夠測量材料的更大範圍的特性。也可以在非諧波(non-harmonic)法中使用多個頻率。如此一來,可對激發線圈23中的電流的離散脈衝(discrete pulse)使用階梯函數。這種波形無疑含有廣泛的頻率。
圖6是熔融物中的感應電流的頂部透視圖。圖6繪示為從渦電流測量系統俯視而看到的熔融物10的上表面。構成熔融物10中的感應電流的導電電子可在熔融物10中打旋(swirl around),好像陷入水漩渦一樣。如此一來,所施加的磁場50(在圖6中用帶點的區域來表示)產生渦電流51。所施加的磁場50 在(諸如)圖3所示之激發線圈23內擁有電流52。請返回圖6,電流52與渦電流51方向相反。在一實例中,電流52和渦電流51均為交流(alternating current,AC)電流。渦電流51產生其自身的感應磁場。請返回圖3,感測線圈24可部分測量渦電流51的此感應磁場。
圖7是熔融物的表面深度的剖面側視圖。表面效應(skin effect)是指交流電流散布在導體內以使得導體表面附近的電流密度大於其核心處的電流密度的趨勢。固態矽的電阻率高於液態矽,所以表面深度較大。其他材料的電阻率特性是類似的。如圖7所示,激發線圈23保持在磁場強度62下。在薄板13的表面60的下方,磁場強度衰減。表面深度將沿著方向61來測量固體薄板 13中的磁場。表面深度(d)可利用等式來計算。在此 等式中,ρ為電阻率(Ω m),f為頻率(Hz),μ k為介質的相對滲透性(relative permeability),以及μ 0為真空導磁率(magnetic permeability of vacuum),就矽而言,μ 0為4 π×10-7亨利/米。從該等式可以看出,頻率、電阻率和導磁率都影響著表面深度。
渦電流集中在位於激發線圈(諸如圖7所示之激發線圈23)附近的導體的表面附近。隨著與激發線圈23之間距離的增大,渦電流的強度減小。因此,表面效應致使感應磁場和渦電流隨著深度的增加而減小。在一種可能的機構中,表面60附近的渦電流可遮敝來自激發線圈23的磁場,這樣可減弱施加在距離表面60較深處的磁場。當然,其他機構也是可行的。
表面效應會對渦電流測量帶來影響。例如,固態矽和液態矽具有不同的電阻率。所以,就特定的頻率而言,兩者具有不同的表面深度。透過比較,此表面深度之差可用於厚度測量。舉例而言,利用本文所揭露的裝置的各個實施例,可估算出高阻層和低阻層的厚度。
圖8是表面深度相對於頻率的對比圖表。藉由調整渦電流測量系統(諸如帶有圖3所示之激發線圈23)的頻率,便可對固態薄板或液態熔融物進行測量。高頻時可測量固態薄板,而低頻時則可測量液態熔融物。
在一特定實施例中,激發線圈23對電流使用階梯函數。當然,也可使用其他非週期性波形。此階梯函數可具有較短的上升時間。判斷所產生的感應磁場或電動勢的上升形狀可作為確定薄板厚度的一部分來執行。
圖3所示之渦電流測量系統22可用來進行即時程序控制。使用控制器27可提供這種即時程序控制。可經調節以回應薄板13之厚度的兩個參數包括冷卻板14的溫度或熔融物10或薄板13的移動速度。舉例而言,若薄板13太厚,則可提升冷卻板14的溫度,或者可加快熔融物10的移動速度以縮短在冷卻板14下方的停留時間。若薄板13太薄,則可降低冷卻板的溫度,或者可減慢熔融物10的移動速度以延長在冷卻板14下方的停留時間。當然,也可根據這些測量值來採用其他組合方式或調節其他參數。
在一實施例中,用渦電流測量系統22進行測量的固體和 液體具有相同的材質,諸如矽。本文具體論述了固態矽和液態矽的測量,但是本文所揭露的各個實施例也適用於其他材料。
本文所述之具體實施例並非對本發明範圍的限定。實際上,熟悉本專業的技術人員在看過上文描述和所附圖式後,不僅應當清楚瞭解本文所述之實施例,還應當清楚瞭解本發明的其他各個實施例以及對本發明的改良。所以,這些其他實施例和改良也應屬於本發明的範圍。此外,雖然本文是針對特定的環境和特定的用途以特定的實施方式來描述本發明,然而熟悉本專業的技術人員應當瞭解的是,其效用並不限於此,本發明可在任何環境下為了任何用途以有利的方式來實施。因此,本文所述之發明的完整範圍與精髓當視後附之申請專利範圍所界定者為准。
10‧‧‧熔融物
13‧‧‧薄板
14‧‧‧冷卻板
22‧‧‧渦電流測量系統
23‧‧‧激發線圈
24‧‧‧感測線圈
25‧‧‧套筒
26‧‧‧箭頭
27‧‧‧控制器
28‧‧‧電源

Claims (6)

  1. 一種測量裝置,包括:激發線圈和感測線圈;電源,其經配置以便為所述激發線圈供電,從而產生隨時間而變化的磁場;以及控制器,其經配置以測量所述感測線圈中的感應磁場,其中所述控制器對來自所述感測線圈的信號進行解碼,以便估算配置在低阻層上面的高阻層的厚度。
  2. 如申請專利範圍第1項所述之測量裝置,其中所述高阻層是一種材質的固體,所述材質是選自於從矽、鍺以及碳化矽所構成的群組,以及其中所述高阻層位於所述材質的液體頂部。
  3. 如申請專利範圍第1項所述之測量裝置,其中所述控制器經配置以使用雙頻諧波法,其中藉由分析低頻來測量所述低阻層的頂部的位置,藉由分析高頻來測量所述高阻層的頂部,以及其中所述高阻層的厚度是根據所述低頻與所述高頻之間的差來估算。
  4. 如申請專利範圍第1項所述之測量裝置,其中所述激發線圈於電流中使用非週期性波形。
  5. 如申請專利範圍第4項所述之測量裝置,其中所述非週期性波形是指階梯函數。
  6. 如申請專利範圍第1項所述之測量裝置,更包括一個含有所述激發線圈和所述感測線圈在內的線圈。
TW104114715A 2010-08-24 2011-07-19 測量裝置 TWI548860B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/862,187 US9057146B2 (en) 2010-08-24 2010-08-24 Eddy current thickness measurement apparatus

Publications (2)

Publication Number Publication Date
TW201531666A true TW201531666A (zh) 2015-08-16
TWI548860B TWI548860B (zh) 2016-09-11

Family

ID=44511498

Family Applications (2)

Application Number Title Priority Date Filing Date
TW104114715A TWI548860B (zh) 2010-08-24 2011-07-19 測量裝置
TW100125448A TWI494539B (zh) 2010-08-24 2011-07-19 渦電流厚度測量裝置

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW100125448A TWI494539B (zh) 2010-08-24 2011-07-19 渦電流厚度測量裝置

Country Status (7)

Country Link
US (1) US9057146B2 (zh)
EP (1) EP2609235A1 (zh)
JP (1) JP5829276B2 (zh)
KR (1) KR101821340B1 (zh)
CN (1) CN103080388B (zh)
TW (2) TWI548860B (zh)
WO (1) WO2012027031A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9067295B2 (en) * 2012-07-25 2015-06-30 Applied Materials, Inc. Monitoring retaining ring thickness and pressure control
US9957636B2 (en) * 2014-03-27 2018-05-01 Varian Semiconductor Equipment Associates, Inc. System and method for crystalline sheet growth using a cold block and gas jet
TW201940875A (zh) * 2014-10-17 2019-10-16 美商瓦里安半導體設備公司 薄片形成設備、用於測量熔體表面的薄片的厚度的系統及用於在薄片形成設備中測定材料界面的位置的方法
CN104726932B (zh) * 2015-04-09 2017-06-06 江苏盎华光伏工程技术研究中心有限公司 采用籽晶引导的硅片制作设备及其控制方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1173828A (en) 1967-10-19 1969-12-10 Laszlo Urmenyi Method of and Device for Measuring the Thickness of Electrically Conductive Sheet Material
DE2410047A1 (de) 1974-03-02 1975-09-11 Nix Steingroeve Elektro Physik Elektromagnetischer schichtdickenmesser mit umschaltbarer mess-frequenz
JPS5261180A (en) * 1975-11-14 1977-05-20 Toyo Shirikon Kk Horizontal growth of crystal ribbons
JPS5320952A (en) * 1976-08-11 1978-02-25 Toshiba Corp Freezing skin thickness measuring device of continuous casting product
JPS6068142A (ja) * 1983-09-26 1985-04-18 Nippon Steel Corp 気泡ポンプによる溶融金属の移送方法
US4599132A (en) * 1985-01-18 1986-07-08 Energy Materials Corporation Guidance system for low angle silicon ribbon growth
GB8825977D0 (en) * 1988-11-07 1988-12-14 Atomic Energy Authority Uk Eddy current testing system
US5448921A (en) * 1991-02-05 1995-09-12 Direct Measurement Corporation Coriolis mass flow rate meter
CN2172857Y (zh) * 1993-03-10 1994-07-27 北京工业大学 电涡流式炉衬厚度检测仪
DE4402463C2 (de) * 1994-01-28 1998-01-29 Amepa Eng Gmbh Vorrichtung zur diskontinuierlichen Erfassung der Dicke einer Schicht auf einer Metallschmelze
US5781008A (en) * 1994-01-28 1998-07-14 Amepa Engineering Gmbh Instantaneous slag thickness measuring device
US6291992B1 (en) * 1996-07-12 2001-09-18 Shell Oil Company Eddy current inspection technique
JP4874465B2 (ja) * 2000-03-28 2012-02-15 株式会社東芝 渦電流損失測定センサ
US6593738B2 (en) 2001-09-17 2003-07-15 Boris Kesil Method and apparatus for measuring thickness of conductive films with the use of inductive and capacitive sensors
US7112961B2 (en) * 2002-12-13 2006-09-26 Applied Materials, Inc. Method and apparatus for dynamically measuring the thickness of an object
JP4451111B2 (ja) * 2003-10-20 2010-04-14 株式会社荏原製作所 渦電流センサ
JP4617677B2 (ja) * 2004-02-04 2011-01-26 Jfeスチール株式会社 層厚測定方法、システム及び層厚測定方法のプログラム
NL1026043C2 (nl) 2004-04-26 2005-10-27 Stichting Energie Werkwijze en inrichting voor het fabriceren van metalen folies.
AU2007300183B2 (en) 2006-09-28 2012-03-29 Amg Idealcast Solar Corporation Method and apparatus for the production of crystalline silicon substrates
US20080118663A1 (en) * 2006-10-12 2008-05-22 Applied Materials, Inc. Contamination reducing liner for inductively coupled chamber
US8064071B2 (en) 2008-03-14 2011-11-22 Varian Semiconductor Equipment Associates, Inc. Floating sheet measurement apparatus and method
US7855087B2 (en) * 2008-03-14 2010-12-21 Varian Semiconductor Equipment Associates, Inc. Floating sheet production apparatus and method
US7816153B2 (en) * 2008-06-05 2010-10-19 Varian Semiconductor Equipment Associates, Inc. Method and apparatus for producing a dislocation-free crystalline sheet
US8475591B2 (en) * 2008-08-15 2013-07-02 Varian Semiconductor Equipment Associates, Inc. Method of controlling a thickness of a sheet formed from a melt
US7998224B2 (en) 2008-10-21 2011-08-16 Varian Semiconductor Equipment Associates, Inc. Removal of a sheet from a production apparatus

Also Published As

Publication number Publication date
US20120048496A1 (en) 2012-03-01
TWI548860B (zh) 2016-09-11
CN103080388A (zh) 2013-05-01
JP2013537514A (ja) 2013-10-03
KR101821340B1 (ko) 2018-01-23
TWI494539B (zh) 2015-08-01
CN103080388B (zh) 2016-05-25
WO2012027031A1 (en) 2012-03-01
JP5829276B2 (ja) 2015-12-09
EP2609235A1 (en) 2013-07-03
KR20130100289A (ko) 2013-09-10
TW201209375A (en) 2012-03-01
US9057146B2 (en) 2015-06-16

Similar Documents

Publication Publication Date Title
JP6122900B2 (ja) フローティングシートの製造装置及び方法
Kudla et al. Crystallization of 640 kg mc-silicon ingots under traveling magnetic field by using a heater-magnet module
CN111201341B (zh) 具有经改进的机械强度的高电阻率单晶硅锭及晶片
EP2319089B1 (en) Method and apparatus for forming a sheet from the melt
TW200424368A (en) Method and device for the production of a silicon single crystal, silicon single crystal and slicon semiconductor wafers with determined defect distri
KR20170046135A (ko) 저항률 제어방법 및 n형 실리콘 단결정
TWI548860B (zh) 測量裝置
JPH107493A (ja) シリコン半導体基板および太陽電池用基板の製造方法
JP6487015B2 (ja) 溶融体から水平リボンを成長させ、溶融体からの第1材料のリボンを形成する方法
TW201024480A (en) Removal of a sheet from a production apparatus
Boulfrad et al. Enhanced performance in the deteriorated area of multicrystalline silicon wafers by internal gettering
Capper et al. Oscillatory-driven fluid flow control during crystal growth from the melt
US20100080905A1 (en) Solute stabilization of sheets formed from a melt
JP4510948B2 (ja) シリコン単結晶ウェ―ハの製造方法
Wu et al. Minority lifetime degradation of silicon wafers after electric zone melting
Lee et al. The relationship between minority carrier life time and structural defects in silicon ingot grown with single seed
Costa et al. Electric molten zone crystallization of silicon wafers
Cohen et al. Floating crystalline Si-foils for photovoltaic applications

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees