TW201511161A - Systems and methods for automatically verifying correct die removal from film frames - Google Patents

Systems and methods for automatically verifying correct die removal from film frames Download PDF

Info

Publication number
TW201511161A
TW201511161A TW103119786A TW103119786A TW201511161A TW 201511161 A TW201511161 A TW 201511161A TW 103119786 A TW103119786 A TW 103119786A TW 103119786 A TW103119786 A TW 103119786A TW 201511161 A TW201511161 A TW 201511161A
Authority
TW
Taiwan
Prior art keywords
wafer
die
image
film frame
composite image
Prior art date
Application number
TW103119786A
Other languages
Chinese (zh)
Other versions
TWI546879B (en
Inventor
Ajharali Amanullah
Tim-Hing Lai
Jing Lin
Lian-Seng Ng
Soon-Guan Tan
Original Assignee
Asti Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asti Holdings Ltd filed Critical Asti Holdings Ltd
Publication of TW201511161A publication Critical patent/TW201511161A/en
Application granted granted Critical
Publication of TWI546879B publication Critical patent/TWI546879B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • G06T7/337Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67271Sorting devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20221Image fusion; Image merging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Abstract

A skeleton wafer inspection system includes an expansion table displaceable relative to a camera configured for capturing segmental images of a skeleton wafer on a film frame. During segmental image capture, illumination is directed to the top and/or bottom of the film frame. Segmental images are digitally stitched together to produce a composite image, which can be processed to identify die presence or absence therein at active area die positions having counterpart die positions in a process wafer map. A composite image of a diced wafer on a film frame can also be generated, and used as a navigation aid or guide during die sort operations, or to verify whether a die sort apparatus has correctly detected a reference die prior to die sort operations. A composite image of a skeleton wafer can similarly be generated for use as a navigation aid or guide for film frame repopulation operations.

Description

自動查驗晶粒從膠膜框架正確移開的系統與方法System and method for automatically checking that a die is properly removed from a film frame

本發明係有關查驗膠膜框架所承載的晶粒(例如由黏著在膠膜框架上的晶圓所提供)是否已在晶粒分類作業期間正確從膠膜框架移開的系統與方法。The present invention relates to systems and methods for verifying that the grains carried by the film frame (e.g., provided by wafers adhered to the film frame) have been properly removed from the film frame during the grain sorting operation.

半導體元件製造涉及多種程序,一般可分為前端製程或後端製程。前端製程包括多層半導體裝置的製造,從半導體裸晶圓開始,在晶圓上形成元件或晶粒陣列,其中每個晶粒皆對應於不同半導體元件(例如預定納入積體電路封裝中的積體電路晶片)。在前端製程之後,晶圓接著經歷後端製程,包括進行半導體晶粒的電性測試,以確定晶粒的電性良好或不良;並按照預定的測試標準來進行晶粒的目視檢查。The manufacture of semiconductor components involves a variety of procedures and can generally be divided into front-end processes or back-end processes. The front-end process includes the fabrication of a multi-layer semiconductor device, starting from a bare semiconductor wafer, forming an array of elements or dies on the wafer, wherein each die corresponds to a different semiconductor component (eg, an integrated body that is intended to be incorporated into an integrated circuit package) Circuit chip). After the front-end process, the wafer then undergoes a back-end process, including performing an electrical test of the semiconductor die to determine the electrical or poor quality of the die; and performing a visual inspection of the die in accordance with predetermined test criteria.

加工晶圓圖Processing wafer map

對於每片晶圓而言,在最初前端製程期間,都會建構「加工圖」或「加工晶圓圖」(PW圖)。PW圖是一種數位資料集,依據前端與後端製程期間所執行的電性測試及目視檢查結果,記錄晶圓的哪些晶粒良好、哪些晶粒有瑕疵。For each wafer, a "process map" or a "process wafer map" (PW map) is constructed during the initial front-end process. The PW diagram is a digital dataset that records which grains are good and which are defective based on the electrical and visual inspections performed during the front-end and back-end processes.

晶圓通常是圓形。位於晶圓邊緣或最外端的晶粒通常不用於製造。因此,PW圖通常僅儲存晶圓內部區域或「有效區域」或「有效晶粒區域」的資料,晶粒將在該範圍內予以製造,此有效區域通常小於晶圓的總表面積。有效區域內的晶粒可稱作有效晶粒;有效區域外的晶粒可稱作未加工晶粒、空殼晶粒,或因具有「鏡子般」反射的未加工表面而稱作鏡面晶粒。在大部分情況下,PW圖所包含的資料集僅涉及晶圓有效區域內的晶粒,再加上空殼或鏡面晶粒的一些資料,以便確定及複查一或多個參考晶粒的位置。因此,晶圓的PW圖並未完全呈現出實際晶圓的每個格子位置,而是呈現出整片晶圓的一部分,其大致上或基本上對應於晶圓的有效區域,晶粒20是在該區域予以製造。每一片晶圓都帶有一個實體晶圓識別碼(ID),例如條碼,且每一片晶圓的PW圖皆以數位方式連結至實體晶圓ID。晶圓的PW圖在前端及後端製程期間「跟隨」晶圓,並在晶圓接受每一組電性測試及目視檢查期間持續更新。在PW圖中,對應於每個有效區域晶粒位置的資料欄位以特定代碼予以更新,其記錄對應的晶粒20電性良好或不良、以及目視良好或有瑕疵。Wafers are usually circular. The dies located at the edge or at the outermost end of the wafer are typically not used for fabrication. Therefore, the PW map typically stores only the internal regions of the wafer or the "effective region" or "effective grain region" where the die will be fabricated, which is typically less than the total surface area of the wafer. The grains in the effective region may be referred to as effective grains; the grains outside the effective region may be referred to as unprocessed grains, empty shell grains, or mirrored grains due to a "mirror-like" reflection of the unmachined surface. . In most cases, the data set contained in the PW diagram involves only the grains in the effective area of the wafer, plus some information on the empty or mirrored grains to determine and review the position of one or more reference grains. . Therefore, the PW map of the wafer does not fully represent each grid position of the actual wafer, but presents a portion of the entire wafer that substantially or substantially corresponds to the effective area of the wafer, and the die 20 is It is manufactured in this area. Each wafer has a physical wafer identification (ID), such as a bar code, and the PW map of each wafer is digitally linked to the physical wafer ID. The wafer's PW pattern "follows" the wafer during the front-end and back-end processes and is continuously updated as the wafer undergoes each set of electrical and visual inspections. In the PW diagram, the data fields corresponding to the die position of each active area are updated with a specific code that records that the corresponding die 20 is electrically good or bad, and that the grain is good or flawed.

圖1顯示先前工藝中一種典型的半導體元件製造系統100的部分製程方塊圖,涉及後端半導體製程的特定面向,如下文所述。1 shows a partial process block diagram of a typical semiconductor component fabrication system 100 in a prior art, relating to a particular aspect of a backend semiconductor process, as described below.

第一目視檢查First visual inspection

設置第一目視檢查系統、設備、或模組102,其至少包括一套圖像採集系統,且其被用來執行晶圓的第一目視檢查,以找出晶圓上因形成方式不正確而有瑕疵、或具有表面瑕疵、或尺寸不正確的晶粒。Providing a first visual inspection system, apparatus, or module 102 that includes at least one set of image acquisition systems and that is used to perform a first visual inspection of the wafer to find that the wafer is formed in an incorrect manner There are defects, or grains with surface defects or incorrect dimensions.

凸塊製程與第二目視檢查Bump process and second visual inspection

對於各種元件而言,在第一目視檢查之後,晶圓接著經歷凸塊製程,將焊料凸塊配置或「點」在晶圓晶粒的預定位置上。「凸塊後」的第二目視檢查模組104是用來目視檢查晶圓晶粒,以評估晶粒上的焊球位置及平整度,並找出焊球不符預定平整度或尺寸的那些晶粒。For various components, after the first visual inspection, the wafer then undergoes a bump process to place or "point" the solder bumps at predetermined locations on the wafer die. The "bump behind" second visual inspection module 104 is used to visually inspect the wafer grains to evaluate the position and flatness of the solder balls on the die, and to find those crystals in which the solder balls do not conform to the predetermined flatness or size. grain.

在第一及第二目視檢查期間,若晶粒經辨識為目視合格,第一及/或第二目視檢查模組102, 104便按照晶粒在晶圓上的位置,在PW圖上記錄一個目視合格代碼。至於具有某種目視瑕疵的晶粒,第一及/或第二目視檢查模組102, 104便在PW圖上登記一個對應的目視不合格代碼。During the first and second visual inspections, if the die is identified as being visually acceptable, the first and/or second visual inspection modules 102, 104 record one on the PW map in accordance with the position of the die on the wafer. Visually pass the code. For a die having a certain visual acuity, the first and/or second visual inspection modules 102, 104 register a corresponding visual failure code on the PW map.

第一部分切割First part cutting

經過凸塊後第二目視檢查之後,以黏性膠膜將晶圓黏在膠膜框架上,並送至第一切割系統、設備、或模組106,晶圓在上面接受部分或第一次切割,沿著上面的x – y格線讓晶圓上的晶粒彼此分離,使得晶粒之間存在縫隙,且晶粒因此基本上彼此完全電氣隔離。在此部分切割之後,晶圓並未被完全切割穿透,且晶粒仍被晶圓的下方部分承載住。After the second visual inspection after the bump, the wafer is adhered to the film frame by the adhesive film and sent to the first cutting system, device, or module 106, and the wafer receives the portion or the first time thereon. The dicing, along the upper x - y grid lines, separates the dies on the wafer from one another such that there are gaps between the dies and the dies are thus substantially completely electrically isolated from each other. After this partial dicing, the wafer is not completely cut through and the die is still carried by the lower portion of the wafer.

電性測試Electrical test

在部分切割之後,晶圓被送至電性測試系統、設備、或模組108,其對晶圓晶粒執行一組電性測試,例如運用晶圓探針。對於每個晶粒而言,對應的電性測試合格或不合格代碼,以及晶粒的電性測試結果,皆由電性測試模組108記錄在PW圖上。After partial dicing, the wafer is sent to an electrical test system, device, or module 108 that performs a set of electrical tests on the wafer dies, such as using a wafer probe. For each die, the corresponding electrical test pass or fail code, and the electrical test results of the die are recorded by the electrical test module 108 on the PW map.

最終切割Final cutting

在電性測試之後,晶圓被送至最終或第二切割系統、設備、或模組110,並接受最終切割程序,晶圓藉此被完全切割穿透,而個別晶粒則與晶圓及彼此完全分離或隔離。關於第二切割程序,晶粒所黏附的黏性膠膜以放射狀拉伸,藉此增加個別晶粒之間的分隔,在晶粒分類作業期間,便於晶粒從膠膜框架選擇性移開,下文將作進一步敘述。經過第二切割程序之後,個別晶粒仍留在膠膜框架上、第一切割程序前後其在晶圓上所佔的相對位置,但晶粒間分隔稍大。舉例而言,晶圓製程可能在晶粒間建立寬度約40微米的「街道」。在第二切割程序之後,膠膜框架上的晶粒間分隔可達約70 – 100微米,取決於施加到承載晶粒的膠膜之拉伸量。After the electrical test, the wafer is sent to the final or second cutting system, device, or module 110 and subjected to a final dicing process whereby the wafer is completely cut through and the individual dies are wafer and Completely separated or isolated from each other. Regarding the second cutting process, the adhesive film adhered by the crystal grains is radially stretched, thereby increasing the separation between the individual crystal grains, and facilitating the selective removal of the crystal grains from the adhesive film frame during the grain sorting operation. This will be further described below. After the second cutting process, the individual dies remain on the film frame, and their relative positions on the wafer before and after the first dicing process, but the intergranular separation is slightly larger. For example, a wafer process may create a "street" of about 40 microns in width between the dies. After the second cutting process, the inter-die separation on the film frame can be up to about 70 - 100 microns, depending on the amount of stretch applied to the film carrying the die.

圖2A顯示一種典型的完全切割晶圓5及對應的數個切割分離晶粒20,其以一層薄薄的黏性膠膜11黏著在膠膜框架12上。在圖2A中,切割分離晶粒20係按照格子排列,格子是在切割程序之前便已在晶圓上定好佈局。如圖2A所示,且如上文所述,切割分離晶粒20彼此是以橫向及縱向切割溝槽或格線30, 32隔開,其對應於晶粒20之間的晶圓街道,且晶圓沿著其作切割。任何特定晶粒20皆可位於格線30, 32上的特定格子位置。依此所製造的晶圓及切割晶圓5可包括一個參考晶粒21,下文將作進一步敘述。2A shows a typical fully diced wafer 5 and a corresponding plurality of dicing separation dies 20 adhered to the film frame 12 by a thin layer of viscous film 11. In Fig. 2A, the dicing and separating dies 20 are arranged in a grid which has been laid out on the wafer prior to the dicing process. As shown in FIG. 2A, and as described above, the dicing separation grains 20 are spaced apart from each other by lateral or longitudinal cutting trenches or grid lines 30, 32, which correspond to wafer streets between the dies 20, and crystal The circle is cut along it. Any particular die 20 can be located at a particular grid location on the grids 30,32. The wafer and dicing wafer 5 thus fabricated may include a reference die 21 as will be further described below.

晶粒分類作業與第三目視檢查Grain classification operation and third visual inspection

在第二切割程序之後,膠膜框架12上的切割晶圓5被送至第三、後續、或最終目視檢查模組112,其執行第三目視檢查程序,以便找出切割分離晶粒20因切割作業所產生的目視瑕疵。在第三目視檢查期間,PW圖再度以適當類型的目視合格/不合格代碼予以更新。After the second cutting process, the dicing wafer 5 on the film frame 12 is sent to a third, subsequent, or final visual inspection module 112 that performs a third visual inspection procedure to find the dicing separation die 20 Visual inspection caused by cutting operations. During the third visual inspection, the PW map is again updated with the appropriate type of visual pass/fail code.

以此方式,在最終/第三目視檢查之後,PW圖表明先前所有電性測試及目視檢查的累計結果,指出膠膜框架12上的哪些晶粒20:(a)電性良好/合格;(b)電性不良;(c)目視良好/合格;以及(d)目視有瑕疵。關於目視瑕疵,PW圖可表明每一個晶粒20 是否具有一或多項特定種類的瑕疵,例如尺寸瑕疵、刮痕、碎裂、邊緣不均勻、焊料凸塊共面度錯誤、及/或其他類型的錯誤,以及瑕疵是否落入預定的公差標準內。In this way, after the final/third visual inspection, the PW diagram indicates the cumulative results of all previous electrical and visual inspections, indicating which grains 20 on the film frame 12: (a) good electrical/qualified; b) poor electrical performance; (c) good/qualified visual; and (d) visually flawed. With regard to visual inspection, the PW map can indicate whether each of the dies 20 has one or more specific types of defects, such as size 瑕疵, scratches, chipping, edge unevenness, solder bump coplanarity errors, and/or other types. The error, and whether the flaw falls within the predetermined tolerance standard.

依據PW圖上的電性測試及目視檢查結果,元件分類機或晶粒分類系統、設備、或模組114可執行晶粒分類程序,經由取放設備或機制,將晶粒20從膠膜框架選擇性移開,該選擇性移開作業係依據每個晶粒先前的電性測試及目視檢查結果。關於晶粒分類程序,PW圖經過更新,以儲存取放編碼器位置、數值、或計數,通常是針對參考晶粒21的編碼器位置參考之(例如參考晶粒21的中央)。該編碼器位置對應於晶粒分類作業期間的每個考量中晶粒20的真實或實際空間座標,亦即真實/實際空間位置。取放設備包括一套高解析度的成像系統,具有圖像拍攝裝置(例如相機)。晶粒分類設備114包括一張膠膜框架擴展台,其在取放作業期間承載著切割晶圓5,其方式為相關領域的普通技術人員所瞭解。Based on the electrical and visual inspection results on the PW map, the component sorter or die sorting system, apparatus, or module 114 may perform a die sorting procedure to pass the die 20 from the film frame via pick and place equipment or mechanisms. Selective removal, the selective removal operation is based on previous electrical and visual inspection results for each die. Regarding the die classification procedure, the PW map is updated to store the pick and place encoder position, value, or count, typically for the encoder position reference of the reference die 21 (e.g., with reference to the center of the die 21). The encoder position corresponds to the real or actual spatial coordinate of the die 20 in each consideration during the die sorting operation, ie the real/actual spatial position. The pick and place device includes a high resolution imaging system with an image capture device (eg, a camera). The die sorting device 114 includes a film frame expansion station that carries the dicing wafer 5 during the pick and place operation, as will be appreciated by those of ordinary skill in the relevant art.

在晶粒分類期間,電性不良的晶粒20應留在膠膜框架12上,才不會被放入下游或最終產品中。電性良好且目視合格的晶粒20應選擇性地從膠膜框架12取出,並送至特定目的地,通常是一個捲帶式組件120,以便它們用於下游或最終產品。在各種情況下,電性良好但具有一或多種目視瑕疵(例如落在特定公差標準外)的晶粒20,可選擇性地從膠膜框架12取出,並依據目視瑕疵類別,送至一或多個其他特定目的地,例如一組目視不合格箱或盤122,之後該晶粒20可作進一步評估或重新加工。During grain classification, the poorly performing grains 20 should remain on the film frame 12 so as not to be placed in the downstream or final product. The electrically and visually acceptable dies 20 should be selectively removed from the film frame 12 and sent to a particular destination, typically a tape and reel assembly 120, for use in downstream or final products. In each case, the die 20, which is electrically good but has one or more visual defects (e.g., falling outside of a particular tolerance standard), can be selectively removed from the film frame 12 and sent to one or A plurality of other specific destinations, such as a set of visually unacceptable bins or trays 122, can then be further evaluated or reworked.

晶粒分類設備114 選擇性地將晶粒20分類至特定最終目的地,例如捲帶式組件120或特定不合格箱或盤122,按照一組可選擇或可程式化的分類代碼,將特定最終晶粒目的地與對應於電性測試及目視檢查結果的PW圖代碼連結起來。在下文所考量的最簡單情況下,可定義一組簡化的分類,如表1所示,只有電性良好且目視良好的晶粒20,亦即「良好晶粒」,被取出並送至捲帶式組件120(PT);而電性不良的晶粒20、以及電性良好但目視不良的晶粒20,亦即「不良晶粒」,將不被取出(NP),故仍留在膠膜框架12上。The die sorting device 114 selectively sorts the die 20 to a particular final destination, such as a tape and reel component 120 or a particular defective bin or disc 122, which will be specifically finalized according to a set of selectable or programmable classification codes. The die destination is linked to the PW map code corresponding to the electrical test and visual inspection results. In the simplest case considered below, a simplified set of classifications can be defined. As shown in Table 1, only the crystals 20 that are electrically good and visually good, that is, "good grains", are taken out and sent to the volume. The tape assembly 120 (PT); and the poorly-performing crystal grains 20 and the electrically good but poorly-looking crystal grains 20, that is, "bad grains", will not be taken out (NP), so they remain in the glue. On the membrane frame 12.

按照預先選擇標準應留在膠膜框架12上的晶粒20可稱作「留下的」晶粒。由於晶粒分類期間從膠膜框架12選擇性取出、選取、或移開晶粒20,故切割晶圓5具有「鏤空」外觀,變成「鏤空晶圓」。因此,在進行切割晶圓5的晶粒分類作業之前,切割晶圓5是「未鏤空化」或「非鏤空晶圓」;在進行切割晶圓5的晶粒分類作業期間,隨著越來越多的晶粒20被移開,切割晶圓5逐步變成鏤空;而在切割晶圓5的晶粒分類作業完成或大致完成之後,膠膜框架12便承載著一片鏤空晶圓。The dies 20 that should remain on the film frame 12 in accordance with pre-selection criteria may be referred to as "leaved" grains. Since the die 20 is selectively removed, selected, or removed from the film frame 12 during the grain sorting, the dicing wafer 5 has a "hollowed" appearance and becomes a "hollowed wafer." Therefore, before performing the die sorting operation of the dicing wafer 5, the dicing wafer 5 is "not vacant" or "non-hollowed wafer"; during the grading operation of the dicing wafer 5, The more the die 20 is removed, the dicing wafer 5 is gradually turned into a hollow; and after the die sorting operation of the dicing wafer 5 is completed or substantially completed, the film frame 12 carries a hollowed-out wafer.

圖2B顯示一種典型的鏤空晶圓10,其對應於圖2A的切割晶圓5,晶粒20已從上面被選擇性取出,留在上面的晶粒20只剩:(a)電性不良,以及(b)電性良好但目視有瑕疵、不合格、或不能使用的晶粒,它們留在鏤空晶圓10上,成為留下的晶粒,以表1的簡化分類代碼組作為基準。在圖2B中,(a)因電性有瑕疵而留下的晶粒24是以陰影區表示,(b)電性合格但目視有瑕疵、應留在鏤空晶圓10上的晶粒25是以斜線區表示;以及(c)電性良好、已從鏤空晶圓10移開的晶粒26,亦即正確「空缺」的鏤空晶圓晶粒位置26,是以無陰影或空白區表示。2B shows a typical hollow wafer 10 corresponding to the dicing wafer 5 of FIG. 2A. The die 20 has been selectively removed from above, leaving only the die 20 remaining thereon: (a) poor electrical, And (b) grains that are electrically good but visually flawed, unacceptable, or unusable, which remain on the hollow wafer 10 as the remaining grains, using the simplified classification code set of Table 1 as a reference. In FIG. 2B, (a) the crystal grains 24 left by the electrical defects are indicated by hatched areas, and (b) the crystal grains 25 which are electrically qualified but visually flawed and should remain on the hollow wafer 10 are And (c) the die 26, which is electrically good and has been removed from the hollow wafer 10, that is, the correctly "empty" hollow wafer die position 26, is represented by a non-shadow or blank area.

理想的情況下,在完成晶粒分類之後,(a)所有電性良好的晶粒皆已正確從切割晶圓5移開;且(b)所有仍留在鏤空晶圓10上的晶粒都是應留在鏤空晶圓10上的晶粒。可惜的是,晶粒分類期間可能發生多種錯誤,導致應留下的晶粒無意間從膠膜框架12被取出;及/或應取出的良好晶粒無意間仍留在膠膜框架12上。上述晶粒分類錯誤可能具有重大的不利經濟後果。舉例而言,若應留下的晶粒被放入下游或最終產品中,例如經封裝的IC或電路板,則形成的產品將無法確實符合一或多項性能要求,導致下游產品可能發生故障。在該階段,經濟損失除了製造不良、應留下的晶粒之成本以外,亦包括製造有瑕疵的最終產品之成本。測試、召回、及重新加工該最終產品,可能導致所有相關當事人的重大損失。因此,在下游捲帶進行分發之前,在晶粒分類期間偵測出錯誤十分重要。Ideally, after the die classification is completed, (a) all of the electrically good dies have been properly removed from the dicing wafer 5; and (b) all of the dies remaining on the vented wafer 10 are It is the die that should be left on the hollow wafer 10. Unfortunately, various errors may occur during grain classification, resulting in grains that are left unintentionally removed from the film frame 12; and/or good grains that should be removed are inadvertently left on the film frame 12. The above-mentioned grain classification errors may have significant adverse economic consequences. For example, if the remaining die is placed in a downstream or final product, such as a packaged IC or board, the resulting product will not be able to meet one or more performance requirements, resulting in a downstream product failure. At this stage, in addition to the cost of manufacturing defective, grain that should be left behind, the economic loss also includes the cost of manufacturing the defective end product. Testing, recalling, and reprocessing the final product may result in significant loss to all parties involved. Therefore, it is important to detect errors during grain classification before the downstream tape is distributed.

晶粒分類錯誤類別及其如何發生Grain classification error categories and how they occur

一般而言,晶粒分類錯誤的原因可歸類如下:(A)參考晶粒偵測及重新偵測錯誤;(B)一般晶粒偵測故障;(C)晶粒邊緣轉譯錯誤;(D)其他轉譯錯誤;以及(E)其他錯誤原因,如下文所詳述。In general, the causes of grain classification errors can be classified as follows: (A) reference grain detection and re-detection errors; (B) general grain detection failure; (C) grain edge translation error; (D) Other translation errors; and (E) other causes of errors, as detailed below.

(A)參考晶粒偵測及重新偵測錯誤(A) Reference die detection and redetection error

為了準確執行晶粒分類作業,取放設備首先必須正確識別一個參考結構或參考晶粒。再度參見圖2A與2B,參考晶粒21係對應於某個特定晶圓位置,相對於該位置:(a)晶圓上的每個其他晶粒20的位置或座標可被參考或檢索,因而切割晶圓5也可被參考或檢索;以及(b)逐晶粒的PW圖結果可被參考或檢索,使得晶粒分類設備114可選擇性將晶粒20分類至由分類代碼所定義的預定目的地。舉例而言,按照表1簡化分類代碼,在確認出參考晶粒21的位置之後,取放設備便可:(a)參照切割晶圓5上的良好晶粒及留下的晶粒位置,因而(b)在晶粒分類作業期間識別應從切割晶圓5取出的晶粒20。In order to accurately perform the grain sorting operation, the pick and place equipment must first correctly identify a reference structure or reference grain. Referring again to Figures 2A and 2B, the reference die 21 corresponds to a particular wafer location relative to the location: (a) the position or coordinates of each of the other dies 20 on the wafer can be referenced or retrieved, thus The dicing wafer 5 can also be referenced or retrieved; and (b) the die-by-die PW map results can be referenced or retrieved such that the dies sorting device 114 can selectively classify the dies 20 into predetermined schedules defined by the classification code. destination. For example, the classification code is simplified according to Table 1. After confirming the position of the reference die 21, the pick and place device can: (a) refer to the good grain on the dicing wafer 5 and the remaining grain position, thus (b) Identifying the dies 20 that should be removed from the dicing wafer 5 during the singulation operation.

許多情況下,參考晶粒21包含晶圓上的一個獨特結構特徵,具有一組不同圖案,可由機器視覺/圖像處理演算法自動識別。該獨特結構特徵可為特定晶粒上的不同圖案、一道刻痕、或是晶圓外側邊緣上某個平面的特定角落。若演算法夠健全強大,自動識別參考晶粒21很可能會成功,而晶粒分類作業可準確展開。然而,存在取放設備無法準確找出或識別參考晶粒21的情況。該情況可歸咎於一或多項因素,例如:In many cases, the reference die 21 contains a unique structural feature on the wafer with a different set of patterns that can be automatically identified by machine vision/image processing algorithms. The unique structural feature can be a different pattern on a particular die, a score, or a particular corner of a plane on the outer edge of the wafer. If the algorithm is robust and powerful, the automatic identification of the reference die 21 is likely to be successful, and the die sorting operation can be performed accurately. However, there are cases where the pick and place device cannot accurately find or identify the reference die 21. This situation can be attributed to one or more factors, such as:

(i) 在進行晶圓切割之前,晶圓黏著在膠膜框架12的作業不準確。在該情況下,晶圓的黏貼位置稍微偏離預定位置,例如縱向及/或橫向+/- 1 mm。因此,相機可能無法在預定位置偵測到參考晶粒21的存在,在該情況下,取放作業將停止。(i) The adhesion of the wafer to the film frame 12 is inaccurate prior to wafer dicing. In this case, the adhesion position of the wafer is slightly deviated from a predetermined position, such as longitudinal and/or lateral +/- 1 mm. Therefore, the camera may not be able to detect the presence of the reference die 21 at the predetermined position, in which case the pick and place operation will stop.

(ii) 膠膜拉伸。如上文所述,承載切割晶圓5的膠膜11予以拉伸,以增加膠膜框架12上的晶粒間分離(例如從原本的約40微米增至約70 – 100微米),以便取放作業的進行。每個晶粒20的位移錯誤是拉伸所導致的晶粒間分離之淨增加量。此錯誤將隨著切割晶圓5被檢索多個晶粒位置而倍增。因此,膠膜框架12上的膠膜11之拉伸,可能造成被檢索的參考晶粒21稍微偏離相機的相對位置,導致取放設備無法偵測到參考晶粒21的存在。再一次,取放作業將停止。(ii) Film stretching. As described above, the film 11 carrying the dicing wafer 5 is stretched to increase the intergranular separation on the film frame 12 (e.g., from about 40 microns to about 70 - 100 microns) for pick and place. The work is carried out. The displacement error of each of the crystal grains 20 is a net increase in the intergranular separation caused by the stretching. This error will multiply as the dicing wafer 5 is retrieved for multiple die positions. Therefore, the stretching of the film 11 on the film frame 12 may cause the retrieved reference die 21 to slightly deviate from the relative position of the camera, resulting in the pick-and-place device failing to detect the presence of the reference die 21. Once again, the pick and place job will stop.

(iii) 參考晶粒21上出現外來粒子,可能造成成像系統無法偵測到參考晶粒21的存在,因為外來粒子會扭曲或改變被偵測的晶粒的邊緣特性,因而對於偵測晶粒所使用的邊緣偵測演算法造成不利影響。(iii) The presence of foreign particles on the reference die 21 may cause the imaging system to be unable to detect the presence of the reference die 21 because the foreign particles may distort or change the edge characteristics of the detected die, thus detecting the die The edge detection algorithm used has an adverse effect.

在以上任何情況下,由於參考晶粒21不能被偵測到,所以晶粒分類作業將無法開始。需要使用者或作業員介入,以便教導或重新訓練取放設備識別參考晶粒21。透過作業員的介入,可能選到錯誤的參考晶粒21,例如鄰近原本預定的參考晶粒21的晶粒20。若選到錯誤的參考晶粒21,會發生嚴重的系統性錯誤,導致晶粒分類設備114開始從切割晶圓5上的錯誤起點或起始晶粒位置取出晶粒20。如同預期,不良、應留下的晶粒可能代替良好、應取出的晶粒被取出,導致不良、應留下的晶粒,即「NP」或膠膜框架12上的不取出晶粒,被送至捲帶。In any of the above cases, since the reference die 21 cannot be detected, the die sorting operation cannot be started. A user or operator intervention is required to teach or retrain the pick and place device identification reference die 21. Through the intervention of the operator, it is possible to select the wrong reference die 21, such as the die 20 adjacent to the originally predetermined reference die 21. If the wrong reference die 21 is selected, a severe systemic error can occur, causing the die sorting device 114 to begin taking the die 20 from the wrong starting point or starting die position on the dicing wafer 5. As expected, the bad, should leave crystal grains may replace the good, the crystal grains to be taken out are taken out, resulting in defects, crystal grains that should be left, that is, "NP" or the unremoved crystal grains on the film frame 12, Send to the tape.

(B)一般晶粒偵測錯誤(B) General grain detection error

識別出參考晶粒21之後,晶粒分類設備114接著移動或指示擴展台移動切割晶圓5,以逐晶粒作為基準(亦即跨越預定的晶粒間分隔距離),及/或以下一個最接近的晶粒作為基準(當導航或移動跨越一或多個沒有晶粒20、「空缺」的格子位置時),以便以理想方式定位出成像系統相機下方的切割晶圓5上的每個有效區域晶粒20。在每個應留下晶粒20的切割晶圓位置,成像系統試圖自動識別晶粒20的邊界或邊緣。若成像系統成功識別晶粒邊緣,則成像系統可確定晶粒的中心點,因而便可進行任何晶粒相對於相機視野範圍中心的重新定位。接下來晶粒分類設備114可按照PW圖所指示的晶粒位置,確定相機下方的晶粒20是良好的晶粒或是應留下的晶粒,使得晶粒20可被選擇性取出或留在膠膜框架12上。依據已確定的晶粒中心點,晶粒分類設備114接下來可移動切割晶圓5達晶粒間的分隔距離,至相鄰晶粒20的預期所在位置,以此類推。After identifying the reference die 21, the die sorting device 114 then moves or instructs the docking station to move the dicing wafer 5 to be referenced by die (ie, spanning a predetermined inter-die separation distance), and/or one of the following Proximity grains serve as a reference (when navigating or moving across one or more grid positions without dies 20, "vacancies") to ideally position each of the dicing wafers 5 below the imaging system camera Regional grain 20. At each dicing wafer location where the dies 20 should be left, the imaging system attempts to automatically identify the boundaries or edges of the dies 20. If the imaging system successfully identifies the edge of the die, the imaging system can determine the center point of the die so that any grain can be repositioned relative to the center of the field of view of the camera. Next, the die sorting device 114 can determine that the die 20 under the camera is a good die or a die that should be left according to the grain position indicated by the PW map, so that the die 20 can be selectively taken out or left. On the film frame 12. Based on the determined grain center points, the die sorting device 114 can then move the dicing wafer 5 up to the separation distance between the dies, to the expected location of the adjacent dies 20, and so on.

若由於晶粒20上出現外來粒子等因素,造成成像系統無法識別膠膜框架12上的晶粒20的邊緣(例如晶粒20所在但無法進行自動邊緣偵測的格子位置上),則晶粒分類作業便會停止。此時需要作業員介入,重新定位或重新檢索切割晶圓5,以便查驗成像系統相機下方的晶粒存在及晶粒偵測。作業員重新定位/重新檢索切割晶圓5的動作可能導致錯誤晶粒20被放在相機下方,例如實際上應被放在相機下方的晶粒20的最近鄰居。因此,取出作業重新開始,並從錯誤的晶粒位置繼續,導致從該晶粒位置起,發生系統性取出錯誤。此系統性錯誤可能導致晶粒20被取出並送至錯誤目的地(例如應留下的晶粒被取出並送至捲帶,或良好的晶粒被取出並送至不合格箱),及/或良好的晶粒被留在鏤空晶圓10上。If the imaging system cannot recognize the edge of the die 20 on the film frame 12 due to the presence of foreign particles or the like on the die 20 (for example, at a lattice position where the die 20 is located but cannot perform automatic edge detection), the die The sorting job will stop. At this point, the operator is required to intervene, reposition or re-retrieve the cut wafer 5 in order to verify the presence of the die and the grain detection under the camera of the imaging system. The operator repositioning/re-retrieving the action of cutting the wafer 5 may result in the erroneous die 20 being placed under the camera, such as the nearest neighbor of the die 20 that should actually be placed under the camera. Therefore, the take-out operation is resumed and continues from the wrong die position, resulting in a systematic take-out error from the die position. This systematic error may cause the die 20 to be removed and sent to the wrong destination (eg, the remaining die is removed and sent to the tape, or a good die is removed and sent to the reject bin), and / Or a good die is left on the hollow wafer 10.

(C)晶粒邊緣轉譯錯誤(C) Grain edge translation error

在晶粒分類作業期間,擴展台接受指示,連續送出每個後續晶粒20至成像系統的相機,使得每個晶粒位置都能進行選擇性取放作業。如上文所述,成像系統是使用機器視覺/圖像處理演算法來識別晶粒特徵,例如晶粒邊緣;一或多種晶粒內結構或特徵,例如一行焊料凸塊或電路線/金屬化,其所具有的目視或光學特性可能模擬晶粒邊緣的光學特性。圖3顯示典型的一列晶粒20,其中每個晶粒20都包括晶粒內特徵40,例如一或多行焊料凸塊,圖像處理演算法可能將其誤判為晶粒邊緣。During the die sorting operation, the docking station accepts an instruction to continuously feed each subsequent die 20 to the camera of the imaging system so that each die position can be selectively picked and put. As noted above, imaging systems use machine vision/image processing algorithms to identify grain features, such as grain edges; one or more intra-grain structures or features, such as a row of solder bumps or circuit lines/metallization, The visual or optical properties it has may mimic the optical properties of the grain edges. 3 shows a typical array of dies 20, each of which includes intra-grain features 40, such as one or more rows of solder bumps, which may be misinterpreted as grain edges by an image processing algorithm.

若圖像處理演算法不正確地將一組晶粒內特徵40識別為晶粒邊緣,則圖像處理演算法將不正確地識別晶粒中心位置,而後續指示擴展台至下一個預定晶粒位置的動作將含有轉譯錯誤。視整體晶粒尺寸及晶粒內特徵位置而定,該晶粒邊緣轉譯錯誤可能總計達晶粒整體跨距的顯著部分(例如相對於晶粒的中心位置約0.3 mm)。此外,經由整條晶粒列逐晶粒移動或檢索,該晶粒邊緣轉譯錯誤可能累積,因為成像系統可能繼續不正確且不可預知地將晶粒內特徵40識別成晶粒邊緣。此外,晶粒20所在膠膜11的拉伸也可能增添及惡化晶粒邊緣轉譯錯誤的累積。If the image processing algorithm incorrectly identifies a set of intra-grain features 40 as grain edges, the image processing algorithm will incorrectly identify the die center position and subsequently indicate the extension to the next predetermined die. The action of the position will contain a translation error. Depending on the overall grain size and the intra-grain feature location, this grain edge translation error may amount to a significant portion of the overall grain span (eg, about 0.3 mm relative to the center position of the die). In addition, the grain edge translation errors may accumulate through the entire grain array moving or retrieving from the die, as the imaging system may continue to identify the intra-grain features 40 as grain edges incorrectly and unpredictably. In addition, the stretching of the film 11 in which the crystal grains 20 are located may also increase and deteriorate the accumulation of grain edge translation errors.

如圖3所示,當一列晶粒20中有許多應留下的晶粒20沒有被取出時,通常會發生此問題。在該情況下,取放設備「略過」應留下的晶粒20。在略過時,成像系統運用圖像處理演算法,沿著列辨識每個晶粒20。然而,由於上文所述的累積檢索錯誤,取放設備可能檢索切割晶圓5至錯誤晶粒20的位置,因此應留下的晶粒可能被不正確地取出並送至捲帶。As shown in Figure 3, this problem typically occurs when there are many of the grains 20 in a column of grains 20 that are left undrawn. In this case, the pick and place device "slights" the die 20 that should be left. When skipped, the imaging system uses an image processing algorithm to identify each die 20 along the column. However, due to the cumulative retrieval error described above, the pick and place device may retrieve the location of the dicing wafer 5 to the erroneous die 20, so the dies that should be left may be incorrectly removed and sent to the tape.

(D)其他轉譯錯誤(D) Other translation errors

若需要從某個當前格子位置跨越多個居間格子位置導航或橫越至某個目標格子位置,傳統晶粒分類設備114是以下一個最接近的晶粒作為基準,從當前格子位置導航至目標格子位置,直到抵達目標格子位置為止。傳統晶粒分類設備114利用此類導航技術,沿著導航路徑從當前格子位置至目標格子位置,檢查多個晶粒20的存在及位置(例如盡可能多的晶粒20),以便降低檢索或定位轉譯錯誤累積的可能性,其可能導致取出作業期間的晶粒定位錯誤。應注意的是,空缺的格子位置造成該格子位置內的自動偵測晶粒邊緣或邊界以便查驗導航定位不可行,因此橫越多個空缺的格子位置增加轉譯錯誤累積的可能性。If it is required to navigate from a certain grid position across a plurality of interlaced grid positions or traverse to a target grid position, the conventional die sorting device 114 uses the following closest die as a reference to navigate from the current grid position to the target grid. Position until you reach the target grid position. The conventional grain sorting device 114 utilizes such navigation techniques to examine the presence and location of a plurality of dies 20 (eg, as many dies 20 as possible) along the navigation path from the current grid position to the target grid location to reduce retrieval or The possibility of locating translation errors accumulates, which may result in grain location errors during the fetch job. It should be noted that the vacant grid position causes automatic detection of grain edges or boundaries within the grid position to verify navigational positioning is not feasible, so the grid position across multiple vacancies increases the likelihood of accumulation of translation errors.

可惜的是,傳統晶粒分類設備無法可靠、高準確度地從當前格子位置跨越多個居間格子位置直接導航至目標格子位置。此外,上述以下一個最接近的晶粒作為基準的導航技術速度緩慢,對於產能造成不利影響。Unfortunately, conventional die sorting devices cannot directly and conveniently navigate from the current grid position across multiple intervening grid locations to the target grid location with high accuracy. In addition, the following one of the closest dies as the reference navigation technology is slow and adversely affects productivity.

(E)造成晶粒分類錯誤的其他因素(E) Other factors that cause errors in grain classification

其他類型的問題也可能引發晶粒分類錯誤。舉例而言,晶粒分類所使用的PW圖是一種局部PW圖,是從存在於個別主機系統的主機PW圖所產生。在某些情況下,局部PW圖可能與主機PW圖不符。Other types of problems can also cause grain classification errors. For example, the PW map used for die categorization is a partial PW map generated from a host PW map present in an individual host system. In some cases, the local PW map may not match the host PW map.

目前的晶粒分類錯誤偵測技術Current grain classification error detection technology

欲查驗良好的晶粒20已正確從切割晶圓5選取,可手動或經由特定自動化程序來檢查鏤空晶圓,如下文所詳述。To find that the good die 20 has been properly selected from the dicing wafer 5, the stencil wafer can be inspected manually or via a specific automated procedure, as described in more detail below.

手動鏤空晶圓檢查Manually hollowing out wafer inspection

完成一整盒黏在膠膜框架12上的切割晶圓10的晶粒分類作業之後,作業員從盒中檢索一片鏤空晶圓10。作業員額外取得(例如從一套後端製造系統)一份列印資料,其提供對應於PW圖的目視呈現。此列印資料具有與鏤空晶圓10本身相同的尺寸或直徑,並以目視方式針對鏤空晶圓10上的每個原始晶粒位置表明,該位置上的晶粒20是否應留在鏤空晶圓10上。After completing the die sorting operation of the entire wafer of the dicing wafer 10 adhered to the film frame 12, the operator retrieves a hollow wafer 10 from the cartridge. The operator additionally obtains (for example, from a set of back-end manufacturing systems) a printed material that provides a visual representation corresponding to the PW map. This print material has the same size or diameter as the hollow wafer 10 itself, and visually indicates for each original grain position on the hollow wafer 10 whether the die 20 at that location should remain in the hollow wafer 10 on.

接著作業員在背光條件下將列印資料疊放在鏤空晶圓10上,目視比對實際鏤空晶圓10與此列印資料,以便手動查驗電性不良的晶粒是否被不正確地從鏤空晶圓10移開。手動查驗既費時又容易出錯,對於產能及產量均造成不利影響。視晶圓尺寸、晶粒尺寸、以及作業員的手動檢查策略而定,一名作業員進行一片鏤空晶圓10的部分檢查可能需要5 – 20分鐘以上。更具體言之,列印資料可能不是完美符合鏤空晶圓10,及/或鏤空晶圓晶粒20可能沒對準列印資料。此外,上述作業由於過度單調,作業員手動錯誤的可能性大,當技術演變使得晶圓直徑逐漸加大而元件晶粒尺寸越來越小時尤其如此。舉例而言,在300 mm晶圓上製造出2 mm2或更小的晶粒20,一片晶圓承載著上千個晶粒20。The printer overlays the printed data on the hollow wafer 10 under backlight conditions, visually compares the actual wafer 10 and the printed data to manually check whether the poorly-performing crystal grains are incorrectly cut from the hollow. The wafer 10 is removed. Manual inspections are time consuming and error prone, adversely affecting both capacity and output. Depending on the wafer size, die size, and the operator's manual inspection strategy, it may take more than 5 – 20 minutes for an operator to perform a partial inspection of a hollow wafer 10 . More specifically, the printed material may not be perfectly aligned with the hollow wafer 10, and/or the hollow wafer die 20 may not be aligned with the printed material. In addition, the above-mentioned operations are too monotonous, and the possibility of manual error by the operator is large, especially when the technology evolves to gradually increase the diameter of the wafer and the size of the element grain becomes smaller. For example, a die 20 of 2 mm 2 or less is fabricated on a 300 mm wafer, and one wafer carries thousands of die 20 .

此外,手動檢查只能在完成整盒鏤空晶圓10的晶粒分類之後進行。因此,若發生系統性晶粒取出錯誤,影響到多片切割晶圓5,便無法進行避免系統性晶粒選取錯誤從一片切割晶圓5蔓延到盒內另一片切割晶圓5的預防性介入。因此,浪費了大量時間、晶圓加工資源、以及相關製造成本。In addition, manual inspection can only be performed after the grain classification of the full-box hollow wafer 10 is completed. Therefore, if a systematic grain removal error occurs, affecting a plurality of dicing wafers 5, it is impossible to prevent the systemic singulation from being propagated from one dicing wafer 5 to another dicing wafer 5 in the cartridge. . Therefore, a lot of time, wafer processing resources, and related manufacturing costs are wasted.

自動化鏤空晶圓檢查Automated hollow wafer inspection

目前的其他情況是在晶粒分類設備114依據晶圓PW圖及分類代碼完成從切割晶圓5選取晶粒20之後,執行特定類型的自動化光學程序。在該程序中,鏤空晶圓檢查系統所使用的光學檢查系統與晶粒分類作業期間晶粒分類設備114所使用的相同。鏤空晶圓檢查系統係按照分類代碼來分析PW圖。依據此分析,光學檢查系統確定某個有限數量的PW圖區將與對應的鏤空晶圓區作比對,以確定考量中的鏤空晶圓區內的晶粒20是否已正確從鏤空晶圓10移開。任何特定的PW圖區皆對應於晶圓上的一個晶粒20陣列。對應於PW圖區的分類代碼表明,晶粒陣列內的哪些晶粒20是良好晶粒,應已從鏤空晶圓10被選取,以及哪些是留下的晶粒,應該留在鏤空晶圓10上。The other current situation is to perform a specific type of automated optical program after the die sorting device 114 selects the die 20 from the dicing wafer 5 according to the wafer PW map and the classification code. In this procedure, the optical inspection system used in the hollow wafer inspection system is the same as that used by the die sorting device 114 during the die sorting operation. The hollow wafer inspection system analyzes the PW map according to the classification code. Based on this analysis, the optical inspection system determines that a limited number of PW regions will be aligned with the corresponding hollowed wafer regions to determine if the die 20 in the hollowed-out wafer region of the consideration has been properly removed from the wafer 10 Remove. Any particular PW pattern corresponds to an array of dies 20 on the wafer. The classification code corresponding to the PW map area indicates which of the dies 20 within the die array are good dies, should have been selected from the vented wafer 10, and which are the remaining dies, which should be left in the stencil 10 on.

光學檢查系統依據預定標準,識別出PW圖區1, 2, 3, …, Z,相對於對應的鏤空晶圓區作考量,例如至少具有預定百分比不取出或不良晶粒的區,或每個區內所能出現的最大百分比不良晶粒。舉例而言,光學檢查系統依據PW圖內的數據及分類代碼組,確定具有最大數量應留在鏤空晶圓10上的不良晶粒的PW圖區組1, 2, 3, …, Z。這些Z個PW圖區被選來與對應的鏤空晶圓區作比對。待考量的區總數Z及/或每個區的晶粒總數D,皆可針對每批鏤空晶圓預先決定,或可依使用者選擇/程式化。The optical inspection system identifies PW regions 1, 2, 3, ..., Z in accordance with predetermined criteria, with respect to the corresponding hollowed-out wafer regions, such as regions having at least a predetermined percentage of undrawn or defective grains, or each The largest percentage of bad grains that can occur in the area. For example, the optical inspection system determines the PW map groups 1, 2, 3, ..., Z having the largest number of defective dies that should remain on the stencil 10, based on the data and classification code groups in the PW map. These Z PW regions are selected to be aligned with the corresponding hollowed wafer regions. The total number of zones Z to be considered and/or the total number of grains D of each zone may be predetermined for each batch of hollow wafers, or may be selected/programmed by the user.

圖4 顯示一片黏在膠膜框架12上的鏤空晶圓10,及Z = 5個典型的鏤空晶圓區18,用來與Z = 5個對應的PW圖區作比對。每個區皆對應於一個5 x 5的晶粒陣列。圖4所示鏤空晶圓10包括一些留下的晶粒50,以及一些空缺的晶粒位置52;亦即,圖4的晶粒存在50是以深色陰影來表示,而圖4的晶粒空缺52是以淺色陰影來表示。Figure 4 shows a hollow wafer 10 adhered to the film frame 12, and Z = 5 typical hollow wafer areas 18 for comparison with Z = 5 corresponding PW areas. Each zone corresponds to a 5 x 5 array of dies. The hollow wafer 10 shown in FIG. 4 includes some remaining crystal grains 50, and some voided crystal grain positions 52; that is, the crystal grain presence 50 of FIG. 4 is represented by dark shading, and the crystal grains of FIG. Vacancy 52 is represented by a light shade.

鏤空晶圓檢查系統檢索每個考量中的鏤空晶圓區相對於上述參考晶粒21的位置。更具體言之,光學檢查系統以預定晶粒位置作為基準,或以最接近的晶粒位置作為基準,確定相對於參考晶粒21的位置,鏤空晶圓10應被檢索的位置,以便按照對應的Z = 5個PW圖區內的晶粒位置,確定留在每個Z = 5個鏤空晶圓區18內的留下晶粒50 ,實際上是否應留在其各自的鏤空晶圓位置上,以及鏤空晶圓10上空缺的晶粒位置52是否對應於實際上應被取出的晶粒。The hollow wafer inspection system retrieves the position of the hollowed wafer area in each of the considerations relative to the reference die 21 described above. More specifically, the optical inspection system determines the position relative to the reference die 21 with respect to the position of the reference die 21 with the predetermined grain position as a reference or with the closest die position as a reference, so as to correspond to the position Z = 5 grain locations within the PW pattern, determining the remaining grains 50 remaining in each Z = 5 hollow wafer regions 18, whether they should actually remain at their respective hollow wafer locations And whether the die position 52 that is vacant on the hollow wafer 10 corresponds to the die that should actually be taken out.

具體言之,光學檢查系統(a)選擇一個第一PW圖區作考量;以及(b)沿著x及/或y軸,按照預定的切割晶圓晶粒間分隔距離,依據鏤空晶圓參考晶粒的位置來移動鏤空晶圓10,藉此在圖像拍攝裝置的視野範圍內定位出一個對應於第一PW圖區的第一鏤空晶圓區18。接著光學檢查系統(c)將第一鏤空晶圓區18內的一個第一預定晶粒位置定位在圖像拍攝裝置下方,以及(d)試圖確定應留下的晶粒50是否留在此第一預定晶粒位置內,或第一預定晶粒位置是否是空缺的晶粒位置52。接著光學檢查系統(e)確定PW圖是否按照分類代碼來指示晶粒20應留在第一預定晶粒位置,或應從第一預定晶粒位置被取出;以及(f)若發生晶粒分類錯誤(例如不良晶粒無意間從第一預定晶粒位置被取出,或晶粒20不正確地留在第一預定晶粒位置),產生對應於第一晶粒位置的晶粒分類錯誤指示。接下來光學檢查系統(g)移至第一鏤空晶圓區18內的下一個或相鄰的預定晶粒位置,以確定此晶粒位置的晶粒存在或空缺及是否存在任何晶粒分類錯誤;第一鏤空晶圓區18內的每個晶粒位置依此類推。Specifically, the optical inspection system (a) selects a first PW pattern for consideration; and (b) along the x and/or y axes, according to a predetermined dicing wafer inter-die separation distance, according to the hollow wafer reference The position of the die moves the hollow wafer 10, thereby positioning a first hollow wafer region 18 corresponding to the first PW pattern within the field of view of the image capture device. The optical inspection system (c) then positions a first predetermined grain position within the first hollowed wafer area 18 below the image capture device, and (d) attempts to determine if the die 50 to be left remains in this Within a predetermined grain position, or whether the first predetermined grain position is a voided grain location 52. The optical inspection system (e) then determines if the PW map indicates, according to the classification code, that the die 20 should remain at the first predetermined grain position, or should be taken from the first predetermined grain position; and (f) if a grain classification error occurs (For example, a defective grain is inadvertently taken out from the first predetermined grain position, or the die 20 is incorrectly left at the first predetermined grain position), and a grain classification error indication corresponding to the first grain position is generated. Next, the optical inspection system (g) is moved to the next or adjacent predetermined grain position in the first hollowed wafer region 18 to determine the presence or absence of grain in the die position and any grain classification errors. Each grain location within the first hollow wafer region 18 is analogous.

檢查完第一鏤空晶圓區18內的每個晶粒位置之後,光學檢查系統(h)依據預定的切割晶圓晶粒間分隔距離,將鏤空晶圓10移至第二鏤空晶圓區18,並針對第二鏤空晶圓區18內的每個晶粒位置,重複上述晶粒位置逐一光學檢查及晶粒分類錯誤測定。此程序持續進行,直到考量中的Z個鏤空晶圓區18完成相對於對應的Z個PW圖區的檢查為止。接著可將鏤空晶圓10從晶粒分類設備114卸下,並可考量為下一片切割晶圓5進行晶粒分類作業期間的選擇性晶粒取出,接著進行上述自動化鏤空晶圓檢查程序。After examining each of the die positions in the first hollowed wafer area 18, the optical inspection system (h) moves the hollowed wafer 10 to the second hollowed wafer area 18 according to a predetermined separation distance between the die wafers. And repeating the above-described grain position optical inspection and grain classification error determination for each grain position in the second hollow wafer region 18. This process continues until the Z hollowed wafer areas 18 in question complete the inspection relative to the corresponding Z PW areas. The hollow wafer 10 can then be removed from the die sorting apparatus 114 and the selective die removal during the die sorting operation for the next cut wafer 5 can be considered, followed by the automated hollow wafer inspection process described above.

可惜的是,上述傳統自動化鏤空晶圓檢查程序有諸多缺點。首先,傳統鏤空晶圓檢查所使用的參考晶粒21與晶粒分類作業中所使用的參考晶粒相同,這意味著鏤空晶圓檢查系統可能遭受系統性參考晶粒位置錯誤之苦,如上文所述。第二,傳統自動化鏤空晶圓檢查的準確性取決於待考量的晶圓區數目。所檢查的晶圓區數量越大,對於錯誤晶粒20是否被取出的評估越穩健準確。在理想情況下,跨越整片鏤空晶圓10的每個相鄰鏤空晶圓區18皆應相對於其對應的PW圖區作光學檢查,以查驗是否所有經PW圖及分類代碼識別應取出的晶粒20皆已正確從鏤空晶圓10選取,以及所有經PW圖及分類代碼識別為不良的晶粒皆留在鏤空晶圓10上。可惜的是,進行相對於全部相鄰PW圖區的所有相鄰鏤空晶圓區18檢查,可能相當費時,例如,視晶圓尺寸及晶粒尺寸而定,每片鏤空晶圓10介於10 – 20分鐘之間,對製程產能造成不利影響。因此,為了提高產能,只有數量有限的區(例如Z = 5個晶粒區)結合自動化鏤空晶圓採樣演算法接受考量。可惜的是,如果不是相對於對應的PW圖區進行所有鏤空晶圓區18的檢查,表示可能有晶粒分類錯誤沒有被偵測到。第三,傳統鏤空晶圓檢查是以晶圓區作為基準,需要大量時間,因為需要拍攝每個選擇區內每一個晶粒的圖像。由於每個區內的晶粒20沒有成千也有上百,所選擇的區越多,鏤空晶圓檢查所需時間越多。最後一點,想要在圖像拍攝裝置下方準確定位任何特定鏤空晶圓區18及個別晶粒位置可能有困難,因為很可能有大量晶粒從鏤空晶圓10空缺。因此,依據預定晶粒間分隔距離而不是偵測晶粒邊緣來檢索鏤空晶圓10,可能導致鏤空晶圓定位不準確或導航困難,其經常導致鏤空晶圓檢查結果不準確。Unfortunately, the above traditional automated hollow wafer inspection procedures have a number of shortcomings. First, the reference die 21 used in conventional hollow wafer inspection is the same as the reference die used in the die sorting operation, which means that the hollow wafer inspection system may suffer from systematic reference grain position errors, as above. Said. Second, the accuracy of traditional automated hollow wafer inspection depends on the number of wafer areas to be considered. The larger the number of wafer areas examined, the more robust and accurate the evaluation of whether the wrong die 20 is removed. Ideally, each adjacent hollow wafer region 18 spanning the entire hollow wafer 10 should be optically inspected relative to its corresponding PW region to verify that all PW maps and classification codes are identified for removal. The dies 20 have been properly selected from the stencil wafer 10, and all of the dies that are identified as defective by the PW pattern and classification code remain on the stencil wafer 10. Unfortunately, performing inspections of all adjacent hollow wafer regions 18 relative to all adjacent PW regions can be quite time consuming, for example, depending on wafer size and die size, each wafer 10 is between 10 – Between 20 minutes, it has a negative impact on process capacity. Therefore, in order to increase productivity, only a limited number of zones (eg, Z = 5 die zones) are considered in conjunction with an automated hollow wafer sampling algorithm. Unfortunately, if all of the hollowed wafer areas 18 are not inspected relative to the corresponding PW area, it is indicated that there may be a grain classification error that has not been detected. Third, conventional hollow wafer inspection is based on the wafer area and requires a lot of time because images of each die in each selected area need to be taken. Since there are no more than one hundred and hundreds of grains 20 in each zone, the more zones selected, the more time it takes to inspect the wafer. Finally, it may be difficult to accurately locate any particular hollowed wafer area 18 and individual die locations under the image capture device, as it is likely that a large number of dies are vacant from the hollow wafer 10. Therefore, searching for the hollow wafer 10 based on the predetermined inter-die separation distance instead of detecting the grain edge may result in inaccurate positioning of the hollow wafer or difficulty in navigation, which often results in inaccurate inspection results of the hollow wafer.

故需要高度準確、高效產能的自動化檢查鏤空晶圓10的系統與方法,以確定晶粒分類作業期間從切割晶圓5選擇性移開晶粒20時是否發生晶粒分類錯誤。Therefore, there is a need for a highly accurate and efficient throughput automated system for inspecting the wafer 10 to determine if a grain classification error occurs when the die 20 is selectively removed from the dicing wafer 5 during the die sorting operation.

如上文所詳述,手動鏤空晶圓檢查既緩慢又容易出錯。先前自動化技術使用高解析度相機來執行部分鏤空晶圓檢查,以逐晶粒/逐晶粒位置作為基準,利用高解析度相機來檢查鏤空晶圓10上有限數量的晶粒陣列或區18內的個別晶粒20之存在或空缺。先前自動化技術容易發生如上文所述的各種錯誤。此外,關於執行100%的鏤空晶圓檢查,先前自動化方法需要大量或極大量時間,因為必須拍攝每個晶粒位置的高解析度圖像,以查驗鏤空晶圓10上有效晶粒區域格子位置的每個晶粒20之空缺或存在。基於此,儘管十分可取,但使用先前自動化鏤空晶圓檢查技術無法在晶粒分類作業之後執行每一片鏤空晶圓10的100% 鏤空晶圓檢查。Manually hollowing out wafer inspections is slow and error prone, as detailed above. Previous automation techniques used high-resolution cameras to perform partial hollow wafer inspections, using a high-resolution camera to examine a limited number of die arrays or regions 18 on the wafer 10, using a high-resolution camera as a reference. The presence or absence of individual grains 20 is present. Previous automation techniques are prone to various errors as described above. In addition, with regard to performing 100% hollow wafer inspection, previous automated methods required a large amount or a large amount of time because high resolution images of each grain position must be taken to verify the effective grain area lattice position on the hollow wafer 10. The vacancy or presence of each die 20 is present. Based on this, although highly desirable, it is not possible to perform a 100% hollow wafer inspection of each of the hollowed wafers 10 after the die sorting operation using the previously automated hollow wafer inspection technique.

本發明的實施例之目的是要克服先前鏤空晶圓檢查系統與技術的全部或大部分缺點。本文所述實施例提供一種鏤空晶圓檢查程序,使得檢查作業更穩健、高效、且比目前鏤空晶圓檢查技術明顯加快,且其在技術上簡單、不貴、且基本上在任何晶粒分類設備114上都易於執行,使得在晶粒分類作業之後可執行每一片鏤空晶圓10的100% 鏤空晶圓檢查,完全免除或基本上免除因人力介入或其他方式所引發的系統性或其他錯誤。It is an object of embodiments of the present invention to overcome all or most of the shortcomings of previously hollowed out wafer inspection systems and techniques. The embodiments described herein provide a hollow wafer inspection procedure that makes inspection operations more robust, efficient, and significantly faster than current hollow wafer inspection techniques, and which are technically simple, inexpensive, and substantially in any die classification Easily performed on device 114, such that 100% of the wafer inspection of each of the hollowed wafers 10 can be performed after the die sorting operation, completely exempting or substantially eliminating systemic or other errors caused by human intervention or other means. .

本發明的特定實施例涉及下列 一或多項目的:Particular embodiments of the invention relate to one or more of the following:

(a) 執行鏤空晶圓檢查但不使用傳統測試、檢查及晶粒分類程序在進行鏤空晶圓檢查之前所使用的相同參考晶粒;(a) Perform the hollow wafer inspection without using the traditional test, inspection and die sorting procedures for the same reference die used prior to the hollow wafer inspection;

(b) 自動執行100%鏤空晶圓檢查,所使用的圖像拍攝裝置或相機相較於鏤空晶圓檢查之前的晶粒檢查或分類程序所使用的圖像拍攝裝置,具有較低解析度及較大視野範圍;(b) Automated 100% hollow wafer inspection, using image capture devices or cameras with lower resolution than image capture devices used in wafer inspection or sorting procedures prior to hollow wafer inspection Large field of view;

(c) 檢查鏤空晶圓,經由:(c) Examine the hollow wafer via:

(i) 拍攝一組鏤空晶圓的分段圖像,使用上述解析度較低、視野範圍較大的圖像拍攝裝置;(i) taking a segmented image of a set of hollowed out wafers, using an image capture device having a lower resolution and a larger field of view;

(ii) 以數位方式將分段圖像「拼接」在一起,產生複合圖像;(ii) "splicing" the segmented images together in a digital manner to produce a composite image;

(iii) 識別複合圖像內的一個參考原點及/或一個第一/起始晶粒位置;以及(iii) identifying a reference origin and/or a first/starting grain position within the composite image;

(iii) 將對應於個別有效區域晶粒位置的複合圖像內的資料內容,與鏤空晶圓PW圖的資料內容進行比對,以便快速且準確地確定分類作業期間是否發生晶粒取出錯誤(例如是否有任何應留下的晶粒已被錯誤地從切割晶圓移開);(iii) comparing the data content in the composite image corresponding to the die position of the individual effective region with the data content of the hollow wafer PW map to quickly and accurately determine whether a grain removal error occurs during the classification operation ( For example, if any grains that should be left have been mistakenly removed from the dicing wafer);

(d) 在進行對應於切割晶圓的鏤空晶圓檢查之前,產生切割晶圓的複合圖像,並利用此切割晶圓複合圖像作為取放作業的輔助或指南;以及(d) generating a composite image of the diced wafer prior to performing a hollow wafer inspection corresponding to the diced wafer, and utilizing the diced wafer composite image as an aid or guide for the pick and place operation;

(e) 採用傳統晶粒分類設備,並納入少量結構簡單、低成本的元件或裝置,藉此實施一種串聯或統合的晶粒分類/鏤空晶圓檢查系統或設備,其可在切割晶圓5上執行晶粒分類作業,因而產生一片鏤空晶圓10,並立即依據對應的鏤空晶圓複合圖像,自動檢查此鏤空晶圓10。(e) Using conventional die sorting equipment and incorporating a small number of simple, low-cost components or devices to implement a series or integrated die sorting/hollow wafer inspection system or apparatus that can be used to cut wafers 5 The die sorting operation is performed thereon, thereby producing a hollow wafer 10, and the hollow wafer 10 is automatically inspected immediately according to the corresponding composite image of the hollowed wafer.

本發明的實施例亦可包含下列額外目的:Embodiments of the invention may also include the following additional purposes:

(f) 使用切割晶圓複合圖像作為晶粒分類設備/取放設備的導航指南,直接導航至未被取出晶粒的切割晶圓5或鏤空晶圓10上的一或多個目標晶粒位置;以及(f) Using the diced wafer composite image as a navigation guide for the singularity sorting device/pick and place device, direct navigation to the dicing wafer 5 from which the dies are not removed or one or more target dies on the stenciled wafer 10 Location;

(g) 自動查驗晶粒分類設備是否已偵測到正確的參考晶粒21。一旦證實晶粒分類設備已找到未被取出晶粒的切割晶圓5上的正確參考晶粒21,便可開始進行切割晶圓5上的晶粒取出作業。一旦證實晶粒分類設備已找到鏤空晶圓10上的正確參考晶粒21,便可展開鏤空晶圓的復原作業,在復原作業期間,先前從鏤空晶圓10取出的晶粒20被放回膠膜框架12上其原本的有效區域格子位置,且具有高度定位準確度。(g) Automatically check if the die classification device has detected the correct reference die 21. Once it is confirmed that the die sorting apparatus has found the correct reference die 21 on the dicing wafer 5 from which the die has not been taken out, the die removing operation on the dicing wafer 5 can be started. Once it is verified that the die sorting device has found the correct reference die 21 on the hollow wafer 10, the recovery operation of the hollowed wafer can be unfolded, during which the die 20 previously removed from the hollowed wafer 10 is placed back into the glue. The film frame 12 has its original effective area lattice position and has a high degree of positioning accuracy.

按照本發明的一個面向,設置一道自動化程序,用來產生至少一張複合圖像,其對應於至少一個承載切割元件的膠膜框架,該程序包括:提供一個膠膜框架,按照數個格子位置在上面布置切割元件,包括一組有效區域格子位置,所製元件位於裡面;拍攝膠膜框架的一組分段圖像,每張分段圖像對應於膠膜框架所跨越的空間區域的一個預定部分,且至少包括一小組有效區域格子位置;從分段圖像組產生對應於膠膜框架的複合圖像,複合圖像包括圖像資料,表明(a)可駐留元件的每個有效區域格子位置,及(b)每個有效區域格子位置的元件存在或元件空缺;以及經由圖像處理技術來處理複合圖像,以便在複合圖像內確定一個參考原點及一個第一有效區域格子位置,其中的參考原點可包括或等同於複合圖像的一個預定點或一個預定的有效區域格子位置,其代表(a)膠膜框架上的一個對應預定點或預定的有效區域格子位置,及(b)對應於所製元件的加工圖上的一個預定有效區域格子位置,其中的加工圖包括或等同於一個數據結構,其儲存對應於每個有效區域格子位置的資料內容,針對每個有效區域格子位置表明駐留其上的元件是合格或不合格。According to one aspect of the invention, an automated program is provided for generating at least one composite image corresponding to at least one film frame carrying the cutting element, the program comprising: providing a film frame in accordance with a plurality of lattice positions Arranging the cutting element on top, including a set of effective area lattice positions, the component is located inside; taking a set of segmented images of the film frame, each segmented image corresponding to one of the spatial regions spanned by the film frame a predetermined portion, and including at least a set of effective area grid positions; generating a composite image corresponding to the film frame from the segment image group, the composite image including image data indicating (a) each active area of the dwellable element a grid position, and (b) an element presence or component vacancy in each effective area grid position; and processing the composite image via image processing techniques to determine a reference origin and a first effective area grid within the composite image Position, wherein the reference origin may include or be equivalent to a predetermined point of the composite image or a predetermined effective area lattice position, the generation (a) a corresponding predetermined point or predetermined effective area lattice position on the film frame, and (b) a predetermined effective area lattice position on the processed image of the fabricated element, wherein the processed pattern includes or is equivalent to one A data structure that stores data content corresponding to the grid location of each active area, indicating for each valid area grid position that the component resident thereon is pass or fail.

提供膠膜框架的動作至少包括下列一項:(a)在執行一組元件分類作業、從膠膜框架選擇性移開元件之前提供膠膜框架(例如在移開元件之前產生膠膜框架的複合圖像);以及(b)在執行元件分類作業組之後提供膠膜框架(例如在移開元件之後產生膠膜框架的複合圖像)。The action of providing the film frame includes at least one of the following: (a) providing a film frame prior to performing a set of component sorting operations and selectively removing the component from the film frame (eg, creating a composite of the film frame prior to removing the component) And (b) providing a film frame after performing the component sorting work group (eg, producing a composite image of the film frame after removing the component).

拍攝分段圖像組的動作包括引導照明朝向下列至少一項:(a)膠膜框架的頂端表面,以第一組照明參數作為基準,及(b)第一膠膜框架的底端表面,以第二組照明參數作為基準。第一組照明參數及第二組照明參數有助於可靠的圖像處理,辨別出元件存在於格子位置、元件從格子位置空缺、及界定出每個格子位置的格線。拍攝分段圖像組的動作亦包括拍攝每張分段圖像,所使用的圖像拍攝裝置相較於檢查個別元件的微米或次微米級瑕疵所使用的圖像拍攝裝置,分別具有較低解析度及較大視野範圍(例如數倍大)。分段圖像組可包括數張圖像,其對應於膠膜框架整體區域的預定部分,而產生複合圖像包括以數位方式將分段圖像組內的個別分段圖像拼接起來。此拼接動作可涉及連接至少部分對應於膠膜框架鄰近區域的個別分段圖像,方式為對齊下列個別分段圖像:(a)沿著共同邊界組重疊,對應於相同元件的元件邊緣及/或元件特徵,及/或(b)直接彼此相鄰,以編碼器數值作為基準,其表明在拍攝分段圖像組期間膠膜框架的相對實際空間座標。複合圖像可為整片晶圓的圖像。The act of capturing the segmented image set includes directing the illumination toward at least one of: (a) a top surface of the film frame, with the first set of illumination parameters as a reference, and (b) a bottom surface of the first film frame, The second set of lighting parameters is used as a reference. The first set of illumination parameters and the second set of illumination parameters facilitate reliable image processing, identifying the presence of elements in the grid position, the vacancies of the elements from the grid positions, and the grid lines defining each grid position. The action of capturing a segmented image group also includes capturing each segmented image, the image capturing device used having a lower image capturing device than the microscopic or sub-micron level used to inspect individual components, respectively. Resolution and a large field of view (for example, several times larger). The segmented image set may include a plurality of images corresponding to predetermined portions of the entire area of the film frame, and generating the composite image includes splicing the individual segment images within the segmented image group in a digital manner. The splicing action may involve connecting individual segmented images at least partially corresponding to adjacent regions of the film frame by aligning the following individual segmented images: (a) overlapping along a common boundary set, corresponding to component edges of the same component and / or component features, and / or (b) directly adjacent to each other, with the encoder value as a reference, which indicates the relative actual space coordinates of the film frame during the segmentation of the segment image group. The composite image can be an image of the entire wafer.

在產生複合圖像之前可評估一份處方,該處方至少包括下列某幾項:(a)格子資料,包括一些橫向格線及一些縱向格線,其界定出數個格子位置;(b)圖像拍攝裝置參數,包括相對於元件尺寸及晶圓尺寸的圖像拍攝裝置解析度及圖像拍攝裝置視野範圍;(c)至少一組照明參數,在拍攝分段圖像組期間用來控制入射於膠膜框架上的照明特性;(d)待拍攝的一些分段圖像;(e)分段圖像組內的個別分段圖像之間的重疊程度;(f)一組參考原點參數,其表明或定義出相對於數個格子位置的參考原點位置;(g)一個第一有效區域格子位置,其表明有效區域格子位置組內的一個第一元件位置;以及(h)一組參數,其可查驗晶粒分類設備所偵測到的參考晶粒位置。A prescription can be evaluated before the composite image is produced, the prescription including at least the following items: (a) grid data, including some horizontal grid lines and some longitudinal grid lines, which define a plurality of grid positions; (b) Image capture device parameters, including image capture device resolution relative to component size and wafer size, and image capture device field of view; (c) at least one set of illumination parameters used to control incidence during segmentation of the image group Lighting characteristics on the film frame; (d) some segmented images to be photographed; (e) degree of overlap between individual segmented images within the segmented image group; (f) a set of reference origins a parameter indicating or defining a reference origin position relative to a plurality of lattice positions; (g) a first effective region lattice position indicating a first component position within the effective region lattice position group; and (h) a A set of parameters that can be used to examine the position of the reference grain detected by the die sorting device.

參考原點不同於膠膜框架上用來執行元件分類作業組的參考晶粒位置。處理複合圖像的動作包括在複合圖像中識別出數條格線的至少部分,其對應於膠膜框架上的元件之間的數條切割溝槽的至少部分;依據複合圖像內的畫素區域來定義數個格子位置,其邊界是由數條格線內的相鄰橫向格線及相鄰縱向格線所圍住;利用參考原點以及參考原點與第一有效區域格子位置之間的預定空間關係,確定數個格子位置內的有效區域格子位置。The reference origin is different from the reference grain position on the film frame used to perform the component classification work group. The act of processing the composite image includes identifying at least a portion of the plurality of ruled lines in the composite image corresponding to at least a portion of the plurality of cutting grooves between the elements on the film frame; The prime region defines a plurality of lattice positions, the boundary of which is surrounded by adjacent horizontal grid lines and adjacent vertical grid lines in the plurality of grid lines; and the reference origin and the reference origin and the first effective region grid position are utilized The predetermined spatial relationship between the plurality of lattice positions determines the effective area grid position.

處理複合圖像的動作可進一步包括分析每個有效區域格子位置的複合圖像內的畫素數據,以確定元件存在於膠膜框架上的對應有效區域格子位置或元件空缺;以及針對有效區域格子位置組內的每個有效區域格子位置,將複合圖像的資料內容與加工圖的資料內容進行比對,例如用於鏤空晶圓檢查。比對資料內容的動作包括將複合圖像內對應於每個有效區域格子位置的畫素數值與加工圖上對應於該有效區域格子位置的數位代碼進行比對。此程序可包括自動確定:(a)元件分類作業期間是否有一或多個元件被不正確地從膠膜框架移開,及/或(b)元件分類作業之後是否有一或多個元件被不正確地留在膠膜框架上。The act of processing the composite image may further comprise analyzing pixel data within the composite image of each effective region lattice location to determine a corresponding effective region lattice location or component vacancy of the component on the film frame; and for the effective region lattice Each valid area grid position in the location group compares the data content of the composite image with the data content of the processed image, for example, for hollowing out wafer inspection. The act of aligning the data content includes comparing the pixel values corresponding to the grid positions of each of the effective regions in the composite image with the digit codes corresponding to the grid positions of the effective regions on the processed image. The program may include automatically determining: (a) whether one or more components were incorrectly removed from the film frame during the component sorting operation, and/or (b) whether one or more components were incorrect after the component sorting operation The ground is left on the film frame.

在執行元件分類作業組之前針對膠膜框架所產生的複合圖像,可在一組取放作業期間當作導航輔助或指南使用,以便至少定位下列一項:(a)在相同膠膜框架或不同膠膜框架上執行元件分類作業組期間或之後,相對於取放設備的一個有效區域目標格子位置;(b)在相同膠膜框架或不同膠膜框架上執行元件分類作業組期間,相對於取放設備的每個有效區域格子位置;以及(c)在一組膠膜框架復原作業期間,數個格子位置內相對於取放設備的至少一些有效區域格子位置,復原對象為因元件分類作業組而從相同或不同膠膜框架被移開的元件。The composite image produced for the film frame prior to the execution of the component classification work group can be used as a navigation aid or guide during a set of pick and place operations to locate at least one of the following: (a) in the same film frame or The effective lattice target grid position relative to the pick-and-place equipment during or after the actuator sorting operation group on the different film frames; (b) during the component sorting operation group on the same film frame or different film frames, as opposed to Each valid area grid position of the pick and place device; and (c) at least some effective area grid positions within the plurality of grid positions relative to the pick and place apparatus during a set of film frame restoration operations, the restoration object is classified by the component operation Groups of components that are removed from the same or different film frames.

膠膜框架可為第一膠膜框架,其承載一批切割晶圓中的第一切割晶圓,其中膠膜框架的複合圖像包括第一切割晶圓的複合圖像,且其中使用複合圖像作為導航輔助或指南的動作包括:儲存第一切割晶圓的複合圖像作為批次導航複合圖像,可用來當作該批中每片切割晶圓的導航輔助或指南;選擇第二膠膜框架,其承載該批中的第二切割晶圓;產生第二切割晶圓的複合圖像;利用圖像配準技術來確定並矯正批次導航複合圖像與第二切割晶圓複合圖像之間的旋轉偏移。The film frame may be a first film frame carrying a first dicing wafer in a plurality of dicing wafers, wherein the composite image of the film frame comprises a composite image of the first dicing wafer, and wherein the composite image is used Actions such as navigation aids or guides include: storing a composite image of the first cut wafer as a batch navigation composite image that can be used as a navigation aid or guide for each wafer in the batch; selecting a second glue a film frame carrying the second dicing wafer in the batch; generating a composite image of the second dicing wafer; using image registration techniques to determine and correct the composite image of the batch navigation and the second dicing wafer The rotation between the images is offset.

此程序可包括識別出第二切割晶圓上的當前晶粒位置及第二切割晶圓的複合圖像中的對應當前晶粒位置;識別出第二切割晶圓的目標晶粒位置及批次導航複合圖像中的對應目標晶粒位置;利用批次導航圖像及圖像空間至實際空間轉換係數,計算出對應於當前晶粒位置的相對編碼器位置及對應於目標晶粒位置的相對編碼器位置;依據每個計算出來的相對編碼器位置,產生更新的編碼器位置;以及使用更新的編碼器位置,將取放設備從當前晶粒位置直接導航至目標晶粒位置的一組邊界內。The program can include identifying a current die location on the second dicing wafer and a corresponding current dies location in the composite image of the second diced wafer; identifying a target dies location and batch of the second diced wafer Navigating the corresponding target grain position in the composite image; using the batch navigation image and the image space to the actual space conversion coefficient, calculating the relative encoder position corresponding to the current die position and the relative position corresponding to the target grain position Encoder position; generating an updated encoder position based on each calculated relative encoder position; and using the updated encoder position to navigate the pick and place device directly from the current die position to a set of boundaries of the target die position Inside.

此程序可包括查驗晶粒分類設備是否偵測到第二切割晶圓上的正確參考晶粒,方式為:從處方檢索出對應於輔助參考晶粒的相對編碼器位置偏移;將晶粒分類設備從候選參考晶粒位置或候選參考原點直接導航至輔助參考晶粒的預定位置;自動確定輔助參考晶粒是否出現在輔助參考晶粒的預定位置;以及依據輔助參考晶粒是否出現在輔助參考晶粒的預定位置,查驗候選參考晶粒是否為正確參考晶粒。The program can include verifying that the die sorting device detects the correct reference die on the second dicing wafer by retrieving a relative encoder position offset corresponding to the auxiliary reference dies from the recipe; classifying the dies The device directly navigates from the candidate reference die position or the candidate reference origin to a predetermined position of the auxiliary reference die; automatically determines whether the auxiliary reference die appears at a predetermined position of the auxiliary reference die; and according to whether the auxiliary reference die appears in the auxiliary Referring to the predetermined position of the die, it is checked whether the candidate reference die is the correct reference die.

此程序可包括從第二切割晶圓選擇性移開晶粒,以形成一片鏤空晶圓;產生鏤空晶圓的複合圖像;以及利用圖像配準技術來確定並矯正批次導航複合圖像與鏤空晶圓的複合圖像之間的旋轉偏移。The process can include selectively removing the die from the second dicing wafer to form a stenciled wafer; generating a composite image of the stenciled wafer; and utilizing image registration techniques to determine and correct the batch navigation composite image Rotational offset between the composite image with the hollowed out wafer.

此程序可包括從處方檢索出對應於輔助參考晶粒的相對編碼器位置偏移;將取放設備從鏤空晶圓上的候選參考晶粒位置或候選參考原點直接導航至輔助參考晶粒的預定位置;自動確定輔助參考晶粒是否出現在輔助參考晶粒的預定位置;依據輔助參考晶粒是否出現在輔助參考晶粒的預定位置,查驗候選參考晶粒是否為正確參考晶粒;以及依據候選參考晶粒是否為正確參考晶粒的查驗結果,開始進行一組膠膜框架復原作業,膠膜框架復原作業組包括將已從第二切割晶圓移開的晶粒放回第二膠膜框架,以形成替補第二切割晶圓,鏤空晶圓複合圖像及批次導航複合圖像其中之一被用來作為膠膜框架復原作業組期間,導航至第二膠膜框架上的不同晶粒位置的輔助或指南。The program can include retrieving a relative encoder position offset corresponding to the auxiliary reference die from the recipe; navigating the pick and place device directly from the candidate reference die position or candidate reference origin on the hollowed wafer to the auxiliary reference die a predetermined position; automatically determining whether the auxiliary reference die appears at a predetermined position of the auxiliary reference die; and determining whether the candidate reference die is the correct reference die according to whether the auxiliary reference die appears at a predetermined position of the auxiliary reference die; Whether the candidate reference die is the result of the inspection of the correct reference die, starting a set of film frame restoration operations, the film frame recovery operation group includes returning the die that has been removed from the second cutting wafer back to the second film The frame is used to form a substitute second dicing wafer, a hollow wafer composite image and a batch navigation composite image are used as a film frame recovery operation group, and navigate to different crystals on the second film frame Auxiliary or guide to the position of the grain.

經由並行計算程序,複合圖像的產生可與元件分類作業組的執行同時發生。Through the parallel computing program, the generation of the composite image can occur simultaneously with the execution of the component classification job group.

按照本發明的一個面向,設置一套系統,用來產生至少一張複合圖像,對應於至少一個膠膜框架,該膠膜框架承載著切割元件,該切割元件位於數個格子位置的有效格子區域內,此系統包括:一個處理單元;一張擴展台或晶圓台,用來承載及固定住膠膜框架;一組照明光源,在膠膜框架被擴展台或晶圓台承載期間,用來引導照明朝向膠膜框架;一個圖像拍攝裝置;以及一個記憶體,其至少儲存一組程式指令,當指令執行時,會讓處理單元至少執行上述程序的部分。According to one aspect of the invention, a system is provided for generating at least one composite image corresponding to at least one film frame carrying a cutting element, the cutting element being located in an effective lattice of a plurality of lattice positions In the area, the system includes: a processing unit; an extension or wafer table for carrying and fixing the film frame; and a set of illumination sources used during the loading of the film frame by the extension or wafer table. To guide the illumination toward the film frame; an image capture device; and a memory that stores at least a set of program instructions that, when executed, cause the processing unit to execute at least a portion of the program.

處理單元連接到一個元件分類設備,該設備用來執行膠膜框架上的一組元件分類作業,該元件分類作業組涉及依據加工圖資料內容,從膠膜框架選擇性移開元件。此系統可(a)整合進一個用來執行元件分類作業組的元件分類設備中,或(b)與元件分類設備分離。The processing unit is coupled to a component sorting device for performing a set of component sorting operations on the film frame that involves selectively removing components from the film frame in accordance with the contents of the processed image. The system can be (a) integrated into a component sorting device for performing component sorting operations, or (b) separated from component sorting equipment.

照明光源組至少包括下列一項:(a)一個第一照明光源組,在拍攝分段圖像組期間,用來按照第一照明參數組,引導照明朝向膠膜框架的頂端表面,及(b)第二照明光源組,在拍攝分段圖像組期間,用來按照第二照明參數組,引導照明朝向第一膠膜框架的底端表面。圖像拍攝裝置相較於檢查個別元件的微米或次微米級瑕疵所使用的圖像拍攝裝置,具有較低解析度及較大視野範圍。The illumination source set includes at least one of: (a) a first illumination source group for directing illumination toward the top surface of the film frame in accordance with the first illumination parameter set during the segmentation of the segment image group, and (b) And a second illumination source group for guiding the illumination toward the bottom end surface of the first film frame in accordance with the second illumination parameter set during the shooting of the segment image group. The image capture device has a lower resolution and a larger field of view than an image capture device used to inspect micro- or sub-micron 瑕疵 of individual components.

記憶體儲存一份處方,該處方至少包括下列某幾項:(a)格子資料,包括一些橫向格線及一些縱向格線,其界定出數個格子位置;(b)圖像拍攝裝置參數,包括相對於元件尺寸及晶圓尺寸的圖像拍攝裝置解析度及圖像拍攝裝置視野範圍;(c)至少一組照明參數,在拍攝分段圖像組期間用來控制入射於膠膜框架上的照明特性;(d)待拍攝的一些分段圖像;(e)分段圖像組內的個別分段圖像之間的重疊程度;(f)一組參考原點參數,其表明或定義出相對於數個格子位置的參考原點位置;(g)一個第一有效區域格子位置,其表明有效區域格子位置組內的一個第一元件位置;以及(h)一組參數,其可查驗晶粒分類設備所偵測到的參考晶粒位置。The memory stores a prescription that includes at least the following items: (a) grid data, including some horizontal grid lines and some longitudinal grid lines, which define a plurality of grid positions; (b) image capture device parameters, Include image resolution device resolution and image capture device field of view relative to component size and wafer size; (c) at least one set of illumination parameters used to control incidence on the film frame during segmentation of the image group Lighting characteristics; (d) some segmented images to be photographed; (e) degree of overlap between individual segmented images within a segmented image group; (f) a set of reference origin parameters, which indicate or Defining a reference origin position relative to a plurality of grid positions; (g) a first effective area grid position indicating a first element position within the effective area grid position group; and (h) a set of parameters, Check the position of the reference grain detected by the die sorting device.

在本發明中,描述特定圖示中的特定元件,或是考量或使用特定圖示中的特定元件號碼,或是在對應的說明材料中提及,皆可包含其他圖示或相關說明材料中所表示的相同或類似元件或元件號碼。除非另行表明,否則使用「/」表示「及/或」。在本文中,「組」一詞對應於或定義為元件的有限非空集合,在數學上所呈現的基數至少是1(亦即,本文所謂的一組可對應於單一元件組或多個元件組),比照已知的數量定義(例如,數學推理概論:數字、集合、及函數「第11章:有限集合之特性」(如第140頁所述)作者Peter J. Eccles,劍橋大學出版社(1998))。一般而言,視考量中的集合類型而定,一組中的一個元件可包括或等同於一個系統、設備、裝置、結構、結構特徵、目的、程序、實際參數、或數值。本文所敘述的特定數值或數值範圍,應理解為包括或等同於大約數值或數值範圍,例如所述數值的 +/- 20%、+/- 15%、+/- 10%、或 +/- 5% 以內。In the present invention, the specific elements in the specific drawings are described, or the specific element numbers in the specific figures are considered or used in the corresponding description materials, and may be included in other drawings or related description materials. The same or similar component or component number is indicated. Use "/" for "and/or" unless otherwise indicated. As used herein, the term "group" corresponds to or is defined as a finite non-empty set of elements that mathematically exhibits a cardinality of at least one (ie, a set referred to herein may correspond to a single element group or multiple elements). Group), as defined by known quantities (for example, Introduction to Mathematical Reasoning: Numbers, Sets, and Functions "Chapter 11: Characteristics of Finite Sets" (as described on page 140) by Peter J. Eccles, Cambridge University Press (1998)). In general, one element of a group may include or be equivalent to a system, device, device, structure, structural feature, purpose, program, actual parameter, or value, depending on the type of collection in the context. The specific numerical values or ranges of values recited herein are understood to include or are equivalent to the approximate value or range of values, such as +/- 20%, +/- 15%, +/- 10%, or +/- of the stated value. Within 5%.

按照本發明的實施例之鏤空晶圓檢查Hollow wafer inspection in accordance with an embodiment of the present invention

按照本發明的實施例,鏤空晶圓檢查的核心涉及在晶粒分類之後拍攝鏤空晶圓10的分段或部分圖像。所有分段圖像的總和,當正確對齊在一起時,便構成鏤空晶圓的完整圖像。每張分段圖像一次拍攝該區段內的許多晶粒,所使用的圖像拍攝裝置相較於晶粒分類作業所使用的圖像拍攝裝置,具有較低解析度及較大視野範圍。拍攝完這些分段圖像之後,以數位方式將它們「拼接」起來(例如利用圖像處理演算法),以便形成整片鏤空晶圓10的複合圖像。複合圖像以數位方式進行分析,以便針對每個對應於晶圓有效晶粒區域的鏤空晶圓晶粒位置,確定晶粒20是出現在鏤空晶圓10上或是從鏤空晶圓10空缺。更具體言之,利用圖像處理演算法來確定複合鏤空晶圓圖像內的每個有效區域晶粒位置的晶粒存在或晶粒空缺,其對應於實際鏤空晶圓10上的每個對應有效區域晶粒位置。按照本發明的多個實施例,進一步為鏤空晶圓選取圖的每張複合圖像有效區域晶粒位置進行晶粒存在或晶粒空缺資料的編碼,例如分別以數值「1」及「0」表示之。鏤空晶圓選取圖以數位方式與PW圖或PW圖所產生的資料進行比對,以確定切割晶圓5是否已正確被分類。以上程序將在下文作更詳盡說明。In accordance with an embodiment of the present invention, the core of the hollow wafer inspection involves taking a segment or partial image of the hollow wafer 10 after the grain classification. The sum of all segmented images, when properly aligned, constitutes a complete image of the hollowed out wafer. Each segmented image captures many of the dies in the segment at a time, and the image capture device used has a lower resolution and a larger field of view than the image capture device used in the die sorting operation. After the segmented images have been taken, they are "spliced" in a digital manner (e.g., using an image processing algorithm) to form a composite image of the entire hollow wafer 10. The composite image is analyzed in a digital manner to determine whether the die 20 is present on the hollow wafer 10 or vacant from the hollow wafer 10 for each hollow wafer grain position corresponding to the effective grain area of the wafer. More specifically, an image processing algorithm is utilized to determine the presence or grain vacancies of the grain locations of each active region within the composite hollow wafer image, which corresponds to each corresponding on the actual hollow wafer 10 Effective area grain position. According to various embodiments of the present invention, the die presence or the die vacancy data is further coded for each composite image effective region die position of the hollow wafer selection map, for example, the values "1" and "0", respectively. Express it. The hollow wafer selection map is digitally compared with the data generated by the PW or PW map to determine if the dicing wafer 5 has been correctly classified. The above procedure will be explained in more detail below.

典型的鏤空晶圓檢查系統配置Typical hollow wafer inspection system configuration

視實施例詳情而定,可存在自動化鏤空晶圓檢查系統200的一或多個部分:(a)成為元件分類機/晶粒分類設備或晶粒分類與檢查系統114的串聯部分或相關部分;(b)成為集中式系統或鏤空晶圓檢查中樞,其可從一組元件分類機/晶粒分類設備114接收鏤空晶圓10;或(c)成為獨立系統。Depending on the details of the embodiment, there may be one or more portions of the automated hollow wafer inspection system 200: (a) becoming a series or related portion of the component sorter/die sorting device or die sorting and inspection system 114; (b) becoming a centralized system or a hollow wafer inspection center that can receive the hollow wafer 10 from a set of component sorter/die sorting devices 114; or (c) become a stand-alone system.

典型的串聯式晶粒分類及鏤空晶圓檢查系統Typical tandem die classification and hollow wafer inspection system

圖5A顯示對應於圖1的典型半導體元件製造系統101的部分製程之方塊圖,但包含按照本發明實施例的一套自動化鏤空檢查系統(SIS)或鏤空晶圓檢查系統(SWIS) 200。在多個實施例中,SWIS 200被整合進一個元件分類機/晶粒分類機或元件/晶粒分類與檢查系統中或成為其中一部分,用來進行串聯式鏤空晶圓檢查115,其可與傳統元件分類機/晶粒分類設備/晶粒分類與檢查系統114進行整合,例如一套運用iSORT的系統(新加坡半導體技術與儀器(STI)私營有限公司)。SWIS 200可將特定鏤空晶圓檢查結果傳輸至捲帶式組件120或其他系統/設備,以便在鏤空晶圓檢查之後採取補救行動。5A shows a block diagram of a portion of a process corresponding to the exemplary semiconductor component fabrication system 101 of FIG. 1, but including an automated hollow inspection system (SIS) or a hollow wafer inspection system (SWIS) 200 in accordance with an embodiment of the present invention. In various embodiments, the SWIS 200 is integrated into or integrated into a component sorter/die sorter or component/die sorting and inspection system for performing tandem hollow wafer inspection 115, which is The conventional component sorter/die sorting device/die sorting and inspection system 114 is integrated, such as a system using iSORT (Singapore Semiconductor Technology and Instruments (STI) Private Limited). The SWIS 200 can transmit specific hollow wafer inspection results to the tape and reel assembly 120 or other systems/equipment to take remedial action after the hollow wafer inspection.

圖5B是晶粒分類與檢查系統的概括方塊圖,用來按照本發明的實施例作串聯式鏤空晶圓檢查115。晶粒分類與檢查系統115包括一個膠膜框架盒150,可利用一個自動化轉移機制(例如機械手臂,未顯示出來)將承載切割晶圓5的膠膜框架12從盒中移開,並送至一個膠膜框架保留/擴展台210,其在晶粒分類作業之前用來擴展膠膜框架的膠膜11,並在晶粒分類與鏤空晶圓檢查作業期間用來固定住膠膜框架12,下文將作進一步敘述。晶粒分類與檢查系統115進一步包括一個取放設備160,用來從切割晶圓5選擇性取出或選取晶粒20並送至預定目的地。擴展台210可作x-y、z及Q軸(亦即轉軸或 θ)移動,且通常至少位移二個維度(例如沿著x – y軸),及繞著Q軸旋轉,以便以正確方位呈現切割晶圓5,以便取放作業的進行。擴展台210亦可作Z軸移動,以便拉伸或擴展膠膜框架12上的膠膜11,以便取放作業期間從膠膜框架12選取晶粒。Figure 5B is a generalized block diagram of a die sorting and inspection system for use in a tandem hollow wafer inspection 115 in accordance with an embodiment of the present invention. The die sorting and inspection system 115 includes a film frame cassette 150 that can be removed from the cassette and transported to the film frame 12 carrying the dicing wafer 5 using an automated transfer mechanism (e.g., a robotic arm, not shown). A film frame retention/expansion station 210 that is used to expand the film 11 of the film frame prior to the die sorting operation and is used to hold the film frame 12 during grain sorting and hollowing wafer inspection operations, It will be further described. The die sorting and inspection system 115 further includes a pick and place apparatus 160 for selectively removing or picking the die 20 from the dicing wafer 5 and delivering it to a predetermined destination. The stage 210 can be moved as xy, z, and Q axes (ie, axis or θ) and is typically displaced at least two dimensions (eg, along the x-y axis) and rotated about the Q axis to present the cut in the correct orientation. Wafer 5 for picking up operations. The extension table 210 can also be moved in a Z-axis to stretch or expand the film 11 on the film frame 12 for picking up the die from the film frame 12 during pick and place operations.

此晶粒分類與目視檢查系統115亦包括第一相機170,用來拍攝每個被取出晶粒20的高解析度圖像;一台第二相機172,用來進行每個被取出晶粒20的頂端檢查與底端檢查;一台第三相機174,用來進行每個被取出晶粒20的4側檢查;一台第四相機180,用來進行捲帶密封袋檢查;以及一台第五相機182,用來進行密封袋內的裝置檢查。The die classification and visual inspection system 115 also includes a first camera 170 for capturing a high resolution image of each of the extracted dies 20; a second camera 172 for performing each of the extracted dies 20 a top inspection and a bottom inspection; a third camera 174 for performing a 4-side inspection of each of the removed dies 20; a fourth camera 180 for performing a tape-sealed bag inspection; and a A five camera 182 is used to perform device inspection in the sealed bag.

晶粒分類與目視檢查系統115進一步包括一個分段圖像拍攝裝置220(下稱「SWIS圖像拍攝裝置」或「圖像拍攝裝置」),例如相機或數位圖像感測器,可將擴展台210定位於其下方,其用來拍攝鏤空晶圓表面積的分段或區域圖像,下文將作進一步敘述。晶粒分類與目視檢查系統115額外包括一組與圖像拍攝裝置220相關的照明光源/元件,下文亦將詳述。The die classification and visual inspection system 115 further includes a segmented image capturing device 220 (hereinafter referred to as "SWIS image capturing device" or "image capturing device"), such as a camera or a digital image sensor, which can be expanded The stage 210 is positioned below it to capture a segmented or regional image of the surface area of the hollowed wafer, as further described below. The die classification and visual inspection system 115 additionally includes a set of illumination sources/elements associated with the image capture device 220, as will be described in more detail below.

按照本發明的特定實施例,傳統類型的晶粒分類與檢查系統/晶粒分類設備114可用來作串聯式鏤空晶圓檢查,其結構與功能詳情見述於已發布的專利申請 WO2009128790、US20100232915及SG 201103425-3。這類傳統晶粒分類與檢查系統/晶粒分類設備114的結構與功能面向,將為相關領域的普通技術人員所立即瞭解。In accordance with a particular embodiment of the present invention, a conventional type of die sorting and inspection system/die sorting device 114 can be used for tandem hollow wafer inspection, the structure and function of which are described in the published patent application WO2009128790, US20100232915, and SG 201103425-3. The structural and functional aspects of such conventional grain classification and inspection system/die sorting apparatus 114 will be immediately apparent to those of ordinary skill in the relevant art.

其他具代表性的SWIS 配置Other representative SWIS configurations

可設置其他涉及一或多套鏤空晶圓檢查系統(SWIS) 200的半導體製造系統配置,例如SWIS 200與元件分類機/晶粒分類設備114分離的配置。舉例而言,圖5C顯示典型半導體製造系統中與晶粒分類相關的部分之方塊圖,包括按照本發明實施例的多個晶粒分類設備114,用來將鏤空晶圓送至一共同或集中式鏤空晶圓檢查系統200。Other semiconductor manufacturing system configurations involving one or more sets of Hollow Wafer Inspection System (SWIS) 200 may be provided, such as a configuration in which the SWIS 200 is separate from the component sorter/die sorting device 114. For example, Figure 5C shows a block diagram of portions of a typical semiconductor fabrication system associated with die classification, including a plurality of die sorting devices 114 for delivering hollowed wafers to a common or centralized portion in accordance with an embodiment of the present invention. The wafer inspection system 200 is hollowed out.

按照本發明的各種實施例,可在晶粒分類作業之後,自動執行完整的鏤空晶圓檢查,對應於從鏤空晶圓10作實際晶粒選取的檢查或分析,檢查晶圓有效晶粒區域內100%晶粒20可能存在或先前可能存在的鏤空晶圓位置或格子位置。以此方式,按照本發明的實施例,一套SWIS 200可自動:(a)執行100% 鏤空晶圓檢查/分析,藉此可自動查驗鏤空晶圓10上的每個晶粒位置的實際晶粒存在50及實際晶粒空缺52;以及(b)相對於切割晶圓的PW圖(或鏤空晶圓的PW圖),並考量任何相關分類代碼組,確定是否存在任何晶粒分類錯誤 。According to various embodiments of the present invention, a complete hollow wafer inspection can be automatically performed after the die sorting operation, corresponding to inspection or analysis of the actual die selection from the hollow wafer 10, and inspection of the effective grain area of the wafer 100% of the grain 20 may be present or previously may be present in a hollow wafer location or grid location. In this manner, in accordance with an embodiment of the present invention, a set of SWIS 200 can automatically: (a) perform a 100% hollow wafer inspection/analysis whereby the actual crystals at each grain location on the hollow wafer 10 can be automatically verified. The grain presence 50 and the actual grain vacancy 52; and (b) the PW pattern relative to the diced wafer (or the PW pattern of the stencil wafer), and any associated classification code sets are considered to determine if there are any grain classification errors.

典型的SWIS元件之面向The face of a typical SWIS component

圖5D是按照本發明實施例的一套鏤空晶圓檢查系統(SWIS) 200的部分程序之示意圖。如上文所述,SWIS 200可與晶粒分類設備114串聯或位於其內部,或可為中樞或獨立系統。Figure 5D is a schematic illustration of a portion of a program of a hollow wafer inspection system (SWIS) 200 in accordance with an embodiment of the present invention. As described above, the SWIS 200 can be in series or internal to the die sorting device 114, or can be a hub or stand-alone system.

SWIS膠膜框架保留/擴展台SWIS film frame retention / extension table

在一個實施例中,鏤空晶圓檢查系統(SWIS) 200包括一擴展台210,用來穩定保持住一膠膜框架12,沿著膠膜框架12的周圍或邊緣支撐之。更具體言之,擴展台210包括一組周圍支撐構件212,用來接收及穩定保留膠膜框架12的周圍部分(例如經由一插槽結構),經由晶粒20所在的黏性膠膜11,使得膠膜框架12所承載的鏤空晶圓10被定位在擴展台210上一缺口或開口215上方的一預定方位與位置。擴展台210亦包括一支架構件214,周圍支撐構件組212可相對於該支架構件作縱向位移,以放射狀拉伸切割晶圓5的膠膜11,增加晶粒20之間的分離,以便晶粒取出。擴展台210可對應於或等同於出現在傳統晶粒分類設備114的傳統類型膠膜框架保留、擴展、及位移裝置,其方式為相關領域的普通技術人員所立即瞭解。當SWIS 200與晶粒分類設備114串聯時,它們可共用一共同平台,且SWIS 200可與晶粒分類設備114使用同一擴展台210(例如,相同擴展台210可用於晶粒分類及鏤空晶圓檢查作業)。In one embodiment, the Hollow Wafer Inspection System (SWIS) 200 includes an extension station 210 for stably holding a film frame 12 supported along the periphery or edge of the film frame 12. More specifically, the extension table 210 includes a set of surrounding support members 212 for receiving and stabilizing the surrounding portion of the retention film frame 12 (e.g., via a slot structure) via the adhesive film 11 on which the die 20 is located, The hollow wafer 10 carried by the film frame 12 is positioned at a predetermined orientation and position above a notch or opening 215 in the extension table 210. The extension table 210 also includes a bracket member 214. The surrounding support member set 212 is longitudinally displaceable relative to the bracket member to radially stretch the film 11 of the cut wafer 5 to increase the separation between the crystal grains 20 so as to be crystallized. Remove the pellets. The extension station 210 may correspond to or be equivalent to a conventional type of film frame retention, expansion, and displacement device that occurs in conventional grain sorting apparatus 114 in a manner that is immediately apparent to those of ordinary skill in the relevant art. When the SWIS 200 is in series with the die sorting device 114, they can share a common platform, and the SWIS 200 can use the same expansion station 210 as the die sorting device 114 (eg, the same expansion station 210 can be used for die sorting and hollowing out wafers) check homework).

SWIS圖像拍攝裝置與照明光源SWIS image capturing device and illumination source

為了便於鏤空晶圓檢查作業,SWIS 200亦包括(a) 一圖像拍攝裝置220(例如相機或數位圖像感測器),可將擴展台210定位於其下方,用來拍攝鏤空晶圓的表面積的分段區域圖像;以及(b) 一或多個照明光源/元件230, 232,用來照亮鏤空晶圓10,使得從對應分段圖像所產生的鏤空晶圓複合圖像中,可立即識別出晶粒存在、晶粒空缺、及格線30, 32。照明光源230, 232至少包括一第一或下側/後側照明光源組230,用來引導照明從膠膜框架12下方朝向鏤空晶圓10正在被上方圖像拍攝裝置220拍攝的部分;以及第二或上側/頂端照明光源組232,用來引導照明朝向鏤空晶圓10的上側表面。在某些實施例中,SWIS 200可額外配置一組光學元件,擺設在擴展台210與圖像拍攝裝置220之間,以便圖像拍攝作業。To facilitate hollowing out wafer inspection operations, the SWIS 200 also includes (a) an image capture device 220 (eg, a camera or digital image sensor) that can be positioned below the extension station 210 for capturing hollow wafers. a segmented area image of the surface area; and (b) one or more illumination sources/elements 230, 232 for illuminating the hollowed out wafer 10 such that the composite image of the hollowed wafer is generated from the corresponding segmented image , the presence of crystal grains, grain vacancies, and grid lines 30, 32 can be immediately recognized. The illumination source 230, 232 includes at least a first or lower/rear illumination source set 230 for directing illumination from beneath the film frame 12 toward the portion of the hollow wafer 10 being imaged by the upper image capture device 220; A second or upper/top illumination source set 232 is used to direct illumination toward the upper side surface of the hollow wafer 10. In some embodiments, the SWIS 200 can additionally configure a set of optical elements disposed between the extension station 210 and the image capture device 220 for image capture operations.

第一照明光源組230是用來照亮一塊至少和每張分段圖像尺寸一樣大的區域,通常照亮面積稍微更大。因此,第一照明光源組230是用來照亮一塊至少和SWIS圖像拍攝裝置220的視野範圍一樣大的區域。視實施例詳情而定,第一照明光源組230可包括一或多種類型的發光元件,例如LED燈陣列。第二照明光源組232是用來以適當角度(角度可調/可選)引導照明朝向膠膜框架12的上側或頂端表面,使得第二照明光源組232的光輸出可從鏤空晶圓10的表面反射到圖像拍攝裝置220。在一些實施例中,第二照明光源組232可包括或等同於一周圍光源,例如環狀照明裝置(例如包括一或多列沿著圓周設置的LED燈),擺設在SWIS圖像拍攝裝置220與擴展台210之間(例如位於圖像拍攝裝置220與擴展台210之間的照明缺口內)。The first illumination source set 230 is used to illuminate an area that is at least as large as the size of each segmented image, typically illuminating a slightly larger area. Accordingly, the first illumination source set 230 is used to illuminate an area that is at least as large as the field of view of the SWIS image capture device 220. Depending on the details of the embodiment, the first illumination source set 230 can include one or more types of light-emitting elements, such as an array of LED lights. The second illumination source set 232 is used to direct the illumination toward the upper or top surface of the film frame 12 at an appropriate angle (angle adjustable/optional) such that the light output of the second illumination source set 232 can be removed from the wafer 10 The surface is reflected to the image capturing device 220. In some embodiments, the second illumination source set 232 can include or be equivalent to a surrounding light source, such as an annular illumination device (eg, including one or more columns of circumferentially disposed LED lights) disposed on the SWIS image capture device 220. Between the extension station 210 (eg, within an illumination gap between the image capture device 220 and the extension station 210).

照明光源230, 232按照特定照明參數來輸出光,例如一組照明強度、一組照明波長、及/或一組入射角,以便準確可靠地自動識別所拍攝圖像內的畫素區域,其對應於(a)被佔據的鏤空晶圓格子位置/留下的晶粒;(b)空缺的鏤空晶圓格子位置/空缺的晶粒區域;以及(c)切割溝槽或格線30, 32。在各種實施例中,照明入射於膠膜框架的黏性膠膜11上的角度、照明強度、及/或照明波長,可予以變更、調整、或選擇,以便更有利於自動化識別。在某些實施例中,SWIS檢查處方可針對每個有效的照明光源230, 232,納入或指定(例如以可選擇或可程式化的方式)特定照明光源230, 232或欲啟動區段及特定照明參數。The illumination sources 230, 232 output light in accordance with a particular illumination parameter, such as a set of illumination intensities, a set of illumination wavelengths, and/or a set of angles of incidence to accurately and reliably automatically identify pixel regions within the captured image, corresponding to (a) Occupied hollow wafer grid position/left grain; (b) voided wafer grid position/vacant grain area; and (c) cutting trench or grid lines 30, 32. In various embodiments, the angle of illumination, illumination intensity, and/or illumination wavelength incident on the adhesive film 11 of the film frame can be altered, adjusted, or selected to facilitate automated identification. In some embodiments, the SWIS inspection prescription may include or specify (eg, in an alternative or programmable manner) a particular illumination source 230, 232 or a desired segment and specific for each active illumination source 230, 232 Lighting parameters.

SWIS圖像拍攝裝置視野範圍SWIS image capture device field of view

SWIS圖像拍攝裝置220所具有的視野範圍足以拍攝鏤空晶圓空間區域的分段圖像,亦即鏤空晶圓整個表面積的片段部分或區域之圖像,其中任何特定的分段圖像通常拍攝鏤空晶圓整體表面積的顯著或非瑣碎片段(例如,相較於個別晶粒20的面積而言)。舉例而言,SWIS圖像拍攝裝置所提供的視野範圍至少稍微大於圍繞鏤空晶圓整體截面積或表面積的邊框表面積的1/36, 1/25, 1/16, 1/9, 1/6, 1/3, 1/4或1/2,使得每張分段圖像至少拍攝到稍大於鏤空晶圓表面積的1/36, 1/25, 1/16, 1/9, 1/6, 1/3, 1/4或1/2。此外,SWIS圖像拍攝裝置220所具有的解析度足以便於識別切割溝槽或格線30, 32,且便於確定晶粒20是出現在特定鏤空晶圓晶粒/格子位置或對應於該格線30, 32的位置,或是空缺。The SWIS image capturing device 220 has a field of view sufficient to capture a segmented image of the hollowed-out wafer space region, that is, an image of a segment portion or region of the entire surface area of the hollowed out wafer, wherein any particular segmented image is typically taken A significant or non-trivial segment of the overall surface area of the wafer is hollowed out (eg, as compared to the area of the individual dies 20). For example, the SWIS image capture device provides a field of view that is at least slightly larger than 1/36, 1/25, 1/16, 1/9, 1/6 of the surface area of the bezel surrounding the overall cross-sectional area or surface area of the hollowed out wafer. 1/3, 1/4 or 1/2, so that each segmented image is captured at least slightly more than 1/36 of the surface area of the hollowed out wafer, 1/25, 1/16, 1/9, 1/6, 1 /3, 1/4 or 1/2. In addition, the SWIS image capture device 220 has a resolution sufficient to facilitate identification of the dicing trenches or grid lines 30, 32 and to facilitate determining that the dies 20 are present at or corresponding to a particular hollow wafer dies/lattice location. 30, 32 positions, or vacancies.

在一個典型實施例中,SWIS圖像拍攝裝置220提供:(a)比目視檢查或識別/找出個別晶粒20或小陣列晶粒20所使用的圖像拍攝裝置相對較大、明顯較大、或大很多的視野範圍;以及(b)比目視檢查或識別/找出個別晶粒20或小陣列晶粒20所使用的圖像拍攝裝置相對較小、明顯較小、或小很多的解析度。如相關領域的普通技術人員所瞭解,目視檢查個別晶粒20或小陣列晶粒20(例如在上文所述第一、第二、或第三目視檢查期間)所使用的圖像拍攝裝置在其視野範圍內拍攝高或極高解析度的圖像,以便確定任何單一晶粒20的空間範圍內的積體電路結構上是否出現極小或非常小(例如微米級或甚至次微米級)的晶粒內光學瑕疵。In an exemplary embodiment, the SWIS image capture device 220 provides: (a) a relatively large, significantly larger image capture device than is used to visually inspect or identify/find individual die 20 or small array die 20 Or a much larger field of view; and (b) a smaller, significantly smaller, or much smaller resolution than an image capture device used to visually inspect or identify/find individual die 20 or small array die 20 degree. As is known to those of ordinary skill in the relevant art, the image capture device used to visually inspect individual die 20 or small array die 20 (e.g., during the first, second, or third visual inspection described above) is High or very high resolution images are captured in the field of view to determine if very small or very small (eg, micron or even sub-micron) crystals are present on the integrated circuit structure in the spatial extent of any single die 20. Intragranular optical enthalpy.

對照之下,按照本發明的實施例,SWIS圖像拍攝裝置220允許拍攝一組分段圖像,其中每張分段圖像通常拍攝數個晶粒20(例如許多晶粒20),且其所對應的的晶圓表面積部分明顯大於第一、第二、或第三目視檢查作業所拍攝或是晶粒分類作業期間用於晶粒識別/定位所拍攝的單一晶粒20或小陣列晶粒20的表面積。SWIS 200從分段圖像產生整片鏤空晶圓10的複合圖像。分段圖像及複合圖像提供足夠的解析度,可讓SWIS 200:(a)分別偵測或重建分段圖像及複合圖像內的格線;以及(b)評估晶粒存在複合圖像格子位置上或晶粒空缺,其對應於鏤空晶圓的實際格線30, 32所定義的鏤空晶圓格子位置。In contrast, in accordance with an embodiment of the present invention, SWIS image capture device 220 allows for the capture of a set of segmented images, wherein each segmented image typically captures a plurality of dies 20 (eg, a plurality of dies 20), and The corresponding surface area of the wafer is significantly larger than that of the first, second, or third visual inspection operation or the single crystal 20 or small array of crystal grains for grain identification/positioning during the grain sorting operation. 20 surface area. The SWIS 200 produces a composite image of the entire hollow wafer 10 from the segmented image. Segmented images and composite images provide sufficient resolution to allow SWIS 200 to: (a) detect or reconstruct segmented images and grid lines within the composite image separately; and (b) evaluate the presence of a composite image of the grains Like the grid position or the grain vacancy, it corresponds to the hollow wafer grid position defined by the actual grid lines 30, 32 of the hollowed out wafer.

在SWIS作業中,不需識別晶粒內是否存在瑕疵(例如微米或次微米級光學瑕疵)。因此,SWIS圖像拍攝裝置220將具有:(i)比晶粒分類相機低的解析度,以及(ii)相對較大的視野範圍,可讓每張分段圖像拍攝出鏤空晶圓表面積的重大部分或片段。這表示,比起晶粒分類機在拍攝鏤空晶圓整個表面積上每個晶粒20的圖像所使用的相機,可拍攝明顯較少的圖像來產生整片加工鏤空晶圓10的複合圖像,包括其格線30, 32。例如,視實施例詳情而定,對於在大晶圓(例如300 mm晶圓)上所製造的小或極小尺寸晶粒20(例如2 mm x 2 mm或更小的晶粒)而言,SWIS圖像拍攝裝置220所具有的視野範圍可讓所拍攝的每張分段圖像上呈現十幾、數十、數百、或1,000個晶粒20。此外,SWIS圖像拍攝裝置220不必是彩色圖像拍攝裝置,其可為黑白或單色圖像拍攝裝置。In SWIS operations, it is not necessary to identify the presence or absence of defects in the grains (eg, micron or sub-micron optical defects). Therefore, the SWIS image capturing device 220 will have: (i) a lower resolution than the die-dividing camera, and (ii) a relatively large field of view, allowing each segmented image to capture the surface area of the hollowed out wafer. Heavy or fragment. This means that a significantly smaller image can be taken to produce a composite image of the entire processed hollow wafer 10 than the camera used by the die sorter to take an image of each die 20 over the entire surface area of the hollowed wafer. Like, including its grid line 30, 32. For example, depending on the details of the embodiment, for small or very small sized molds 20 (eg, 2 mm x 2 mm or smaller) fabricated on large wafers (eg, 300 mm wafers), SWIS The image capturing device 220 has a field of view that allows ten, tens, hundreds, or 1,000 dies 20 to be displayed on each segmented image taken. Further, the SWIS image capturing device 220 need not be a color image capturing device, which may be a black-and-white or monochrome image capturing device.

鑑於上文所述,按照本發明的實施例,鏤空晶圓檢查並不涉及拍攝個別晶粒20的許多高解析度圖像(例如當一片晶圓的有效晶粒區域包括數百或數千個晶粒20時,數百或數千張個別晶粒圖像)。相較於先前鏤空晶圓檢查技術,如此可節省極顯著或大量的時間(對於100% 鏤空晶圓檢查而言尤其如此)。此外,由於本發明的各種實施例可使用成本較低的低解析度圖像拍攝裝置220,且數種實施例使用相同擴展台210作為晶粒分類設備114,故按照本發明實施例的鏤空晶圓檢查系統,實施起來比先前鏤空晶圓檢查系統便宜。In view of the above, in accordance with embodiments of the present invention, hollow wafer inspection does not involve capturing many high resolution images of individual dies 20 (eg, when the effective grain area of a wafer includes hundreds or thousands of When the grain is 20, hundreds or thousands of individual grain images). This saves a significant amount of time or a significant amount of time compared to previously hollowed out wafer inspection techniques (especially for 100% open wafer inspections). Moreover, since various embodiments of the present invention may use a lower cost low resolution image capture device 220, and several embodiments use the same extension station 210 as the die sorting device 114, the hollowed out crystal in accordance with an embodiment of the present invention The round inspection system is cheaper to implement than previously hollowed out wafer inspection systems.

在典型的實施例中,涉及在晶粒尺寸不小於1 x 1 mm2的8吋晶圓上執行鏤空晶圓檢查作業,SWIS圖像拍攝裝置220可用來拍攝一組9張分段圖像,合起來跨越鏤空晶圓的整個表面積,其視野範圍大約80mm x 80mm,並有一數位圖像感測器可拍攝400萬畫素的數位圖像,可提供大約5µm的解析度。在該典型實施例中,SWIS 200可檢查8吋鏤空晶圓的100% 有效晶粒區域,於5分鐘內、3分鐘內、或大約2 – 2.5分鐘內查驗晶粒正確移開的情形。In a typical embodiment, the hollow wafer inspection operation is performed on an 8-inch wafer having a grain size of not less than 1 x 1 mm2, and the SWIS image capturing device 220 can be used to capture a set of nine segment images. It spans the entire surface area of the hollowed-out wafer, has a field of view of approximately 80mm x 80mm, and has a digital image sensor that can capture a 4 million pixel digital image, providing a resolution of approximately 5μm. In the exemplary embodiment, the SWIS 200 can inspect the 100% effective grain area of the 8 hollow wafers and verify that the grains are properly removed within 5 minutes, within 3 minutes, or within approximately 2 - 2.5 minutes.

相關領域的普通技術人員將瞭解,若晶粒尺寸更小,可增加SWIS圖像拍攝裝置220的解析度,並且拍攝相對更多分段圖像。關於額外/其他典型的SWIS實施例,下方表1針對特定晶粒尺寸及晶圓尺寸,提供典型的SWIS圖像拍攝裝置視野範圍及解析度參數,亦表明鏤空晶圓10全部表面積成像所需的分段圖像數。One of ordinary skill in the relevant art will appreciate that if the grain size is smaller, the resolution of the SWIS image capture device 220 can be increased and relatively more segmented images can be taken. With regard to additional/other typical SWIS embodiments, Table 1 below provides typical SWIS image capture device field of view and resolution parameters for specific grain sizes and wafer sizes, as well as for imaging the entire surface area of the wafer 10 The number of segmented images.

便於鏤空晶圓檢查之照明Easy to hollow out the inspection of wafer inspection

如上文所述,SWIS 200提供一些照明光源230, 232,其有利於運用圖像處理作下列項目的可靠識別:(a)鏤空晶圓切割溝槽或格線30, 32,其界定出格子位置,在晶粒分類作業期間,視電性測試結果、目視檢查結果、及分類代碼而定,晶粒20可能留在切割晶圓5上的格子位置,也可能已被取出及分類;(b)晶粒存在特定的鏤空晶圓格子位置;以及(c)晶粒從其他鏤空晶圓格子位置空缺。As described above, the SWIS 200 provides illumination sources 230, 232 that facilitate the reliable identification of the following items using image processing: (a) hollowing the wafer cutting trenches or grid lines 30, 32, which define the lattice locations. During the die sorting operation, depending on the electrical test results, the visual inspection results, and the classification code, the die 20 may remain in the grid position on the dicing wafer 5, and may have been taken out and classified; (b) The grain has a specific hollow wafer grid position; and (c) the grain is vacant from other hollow wafer grid locations.

如相關領域的普通技術人員所瞭解,在切割晶圓以便分離上面的每個晶粒20期間,鋸子在切穿晶圓時,切入(未切穿)膠膜框架12上的膠膜11。如圖6A與6B所示,切割程序在膠膜11上形成部分深度渠道34。該渠道34位於每個切割晶圓5及鏤空晶圓10上的切割溝槽或格線30, 32底端。As will be appreciated by those of ordinary skill in the relevant art, during dicing of the wafer to separate each of the dies 20 above, the saw cuts (not cut through) the film 11 on the film frame 12 as it cuts through the wafer. As shown in FIGS. 6A and 6B, the cutting process forms a partial depth channel 34 on the film 11. The channel 34 is located at the bottom of each of the dicing wafer 5 and the dicing trenches 10 or the bottom lines 30, 32 of the hollow wafer 10.

留下的晶粒、空缺的晶粒位置、以及切割溝槽30, 32將以不同方式影響被引導至鏤空晶圓10的照明。更具體言之,在對應於SWIS圖像拍攝裝置220的圖像拍攝平面(例如圖像感測器所在的圖像拍攝平面)內的任何特定點上,被引導至鏤空晶圓10的照明到達該點的程度取決於:(a)照明是否從鏤空晶圓10的上方及/或下方提供;以及(b)留下的晶粒、空缺的晶粒位置、或切割溝槽30, 32是否沿著照明的光學路徑呈現。因此,視鏤空晶圓的照明條件而定,留下的晶粒、空缺的晶粒位置、以及切割溝槽30, 32的成像將各自具有不同的光學或目視特性。The remaining grains, the vacant grain locations, and the dicing trenches 30, 32 will affect the illumination that is directed to the hollow wafer 10 in different ways. More specifically, the illumination directed to the hollow wafer 10 is reached at any particular point within the image capture plane corresponding to the SWIS image capture device 220 (eg, the image capture plane in which the image sensor is located). The extent of this point depends on: (a) whether illumination is provided from above and/or below the hollow wafer 10; and (b) the remaining grain, the location of the vacant die, or whether the cutting trenches 30, 32 are along The optical path of the illumination is presented. Thus, depending on the lighting conditions of the hollowed out wafer, the remaining crystal grains, the location of the vacant grains, and the imaging of the dicing trenches 30, 32 will each have different optical or visual characteristics.

關於從鏤空晶圓10下方所提供的照明,留下的晶粒將阻擋照明通向圖像拍攝裝置200;空缺的晶粒位置則允許照明通過膠膜11朝向圖像拍攝裝置220;由於格線的部分深度渠道34,鏤空晶圓格線30, 32將至少部分分散(可能顯著分散)從鏤空晶圓10下方行經的照明朝向圖像拍攝裝置220。縱使分散,圖像拍攝裝置220仍將拍攝到些許行經格線30, 32的照明。關於從鏤空晶圓10上方所提供的照明,留下的晶粒將反射頂端照明,不同於空缺的晶粒位置及格線30, 32。Regarding the illumination provided from below the hollow wafer 10, the remaining dies will block illumination from passing to the image capture device 200; the vacant die position allows illumination to pass through the film 11 towards the image capture device 220; A portion of the depth channel 34, the hollowed-wafer grids 30, 32 will at least partially disperse (possibly disperse) the illumination that travels beneath the hollow wafer 10 toward the image capture device 220. Even if dispersed, the image capture device 220 will still capture some of the illumination of the passing lines 30, 32. Regarding the illumination provided above the hollowed wafer 10, the remaining dies will reflect the top illumination, unlike the vacant die position and grid lines 30,32.

圖7A顯示處於典型照明條件下的鏤空晶圓10的複合圖像1000,在拍攝分段圖像期間提供照明至鏤空晶圓10的頂端與底端,例如經由一第一或下側照明光源230及一第二或上側照明光源232。圖7B顯示鏤空晶圓複合圖像1000的一個放大部分1002,其對應於鏤空晶圓格子位置的一個2 x 7 陣列,彼此以橫向及縱向格線30, 32界定出來。7A shows a composite image 1000 of a hollow wafer 10 under typical illumination conditions, providing illumination to the top and bottom ends of the hollow wafer 10 during the capture of the segmented image, such as via a first or lower side illumination source 230 And a second or upper illumination source 232. Figure 7B shows an enlarged portion 1002 of the hollowed-wafer composite image 1000, which corresponds to a 2 x 7 array of hollowed-wafer grid locations, defined by lateral and longitudinal grid lines 30, 32.

在圖7A與7B的照明條件下,留下的晶粒50呈現出暗或極暗陰影區;空缺的晶粒位置52呈現出無陰影或最低程度/淺陰影區;而切割溝槽30, 32則呈現出相對暗或中等暗的窄線條,其界定出鏤空晶圓的格子位置。一般而言,在適當照明條件下所拍攝的分段圖像所產生的複合圖像1000內:(a)留下的晶粒50 對應於具有一第一平均強度的畫素陣列;(b)空缺的晶粒位置52 對應於具有一第二平均強度的畫素陣列,其不同或明顯不同於第一平均強度;以及(c)切割溝槽30, 32 對應於具有一第三平均強度的窄畫素線條,其不同於第二平均強度且可不同或明顯不同於第一平均強度。留下的晶粒50、空缺的晶粒位置52、以及切割溝槽30, 32的成像,其相對光學或目視特性取決於鏤空晶圓10的頂端及/或底端受到照明的特定條件(例如,有哪些照明光源230, 232作動,及每個照明光源230, 232的照明強度、波長、入射角等照明參數),以及晶粒尺寸及切割溝槽/格線30, 32所界定的晶粒間分隔(取決於格線寬度及膠膜11被拉伸的程度)。In the illumination conditions of Figures 7A and 7B, the remaining grains 50 exhibit dark or very dark shaded areas; the voided grain locations 52 exhibit a shadowless or minimal/lightly shaded area; and the cut trenches 30, 32 A relatively dark or medium dark narrow line is then defined which defines the lattice position of the hollowed out wafer. In general, within a composite image 1000 produced by segmented images taken under appropriate lighting conditions: (a) the remaining dies 50 correspond to a pixel array having a first average intensity; (b) The vacant grain position 52 corresponds to a pixel array having a second average intensity that is different or significantly different from the first average intensity; and (c) the dicing grooves 30, 32 correspond to a narrower having a third average intensity A pixel line that is different from the second average intensity and that may be different or significantly different from the first average intensity. The remaining grains 50, the vacant grain locations 52, and the imaging of the dicing trenches 30, 32, the relative optical or visual properties depend on the particular conditions under which the top and/or bottom ends of the hollow wafer 10 are illuminated (eg, , which illumination source 230, 232 actuation, and illumination parameters such as illumination intensity, wavelength, angle of incidence, etc. of each illumination source 230, 232), and grain size and grain defined by the cut trench/grid 30, 32 Separation (depending on the width of the ruled line and the extent to which the film 11 is stretched).

在各種情況下,為了增加格線30, 32相對於留下的晶粒50及/或空缺的晶粒位置52的整體成像對比,可建立、調整、或修改特定照明條件,包括作動或不作動特定照明光源230, 232及選擇所使用照明的照明參數,使得格線30, 32、留下的晶粒50、及/或空缺的晶粒位置52的成像更易於由圖像處理演算法作光學或目視區別。In various circumstances, specific illumination conditions, including actuation or inactivity, may be established, adjusted, or modified to increase the overall imaging contrast of the grid lines 30, 32 relative to the remaining grain 50 and/or the voided grain location 52. The particular illumination source 230, 232 and the illumination parameters used to select the illumination used, such that the imaging of the grid lines 30, 32, the remaining dies 50, and/or the vacant die position 52 are more easily imaged by the image processing algorithm Or visual difference.

此外,在許多情況下,結構特徵,例如留下的晶粒50外露上側表面上的金屬化或焊料凸塊,將以不同於(例如更強)空缺的晶粒位置50及格線30, 32的方式來反射頂端照明。因此,留下的晶粒50上出現這類結構特徵,可提高圖像處理演算法可靠區別留下的晶粒50與空缺的晶粒位置52及格線30, 32的可能性。舉例而言,圖7D顯示在典型的頂端照明條件下所拍攝的鏤空晶圓10的部分分段圖像。如圖7D所示,在該照明條件下,分段圖像內留下的晶粒50易於與空缺的晶粒位置52及格線30, 32作光學或目視區別。Moreover, in many cases, structural features, such as leaving the metallization or solder bumps on the upper side surface of the die 50, will be different from (eg, stronger) vacant grain locations 50 and grid lines 30, 32 The way to reflect the top illumination. Thus, the presence of such structural features on the remaining grains 50 enhances the likelihood that the image processing algorithm will reliably distinguish between the grain 50 and the vacant grain position 52 and the grid lines 30, 32. For example, Figure 7D shows a partial segmented image of the hollowed wafer 10 taken under typical top lighting conditions. As shown in Fig. 7D, under this illumination condition, the grains 50 remaining in the segmented image are easily optically or visually distinguished from the vacant grain locations 52 and grid lines 30, 32.

在各種實施例中,拍攝分段圖像期間的適當鏤空晶圓照明條件,可為格線30, 32相對於留下的晶粒50及空缺的晶粒位置52之間的正確對比取得平衡。相關領域的普通技術人員將承認,若第一照明光源組230提供給鏤空晶圓10下側的照明強度太大,則格線30, 32與空缺的晶粒位置52之間的對比將變低。然而,在許多情況下,下側照明不應太低,否則留下的晶粒50, 52之間的格線30, 32受到照明及拍攝的方式,可能不利於以圖像處理可靠區別格線30, 32與留下的晶粒50及/或空缺的晶粒位置52。在某些實施例中,可使用準直光(例如準直白光)來提高以成像與圖像處理區別格線30, 32、留下的晶粒50及/或空缺的晶粒位置52的可行性。應注意的是,可在不同照明下拍攝每個區段的分段圖像一張以上(至少一張),以便圖像分析或進行比對。In various embodiments, proper hollowing wafer illumination conditions during the segmentation of the image may be balanced against the correct contrast between the gridlines 30, 32 relative to the remaining die 50 and the voided die location 52. One of ordinary skill in the relevant art will recognize that if the illumination intensity provided by the first illumination source set 230 to the underside of the hollow wafer 10 is too great, the contrast between the gridlines 30, 32 and the voided die location 52 will be low. . However, in many cases, the underside illumination should not be too low, otherwise the grid lines 30, 32 between the remaining dies 50, 52 are illuminated and photographed, which may be detrimental to the reliable discrimination of the grid lines by image processing. 30, 32 with the remaining grain 50 and/or the vacant die position 52. In some embodiments, collimated light (e.g., collimated white light) can be used to increase the likelihood of distinguishing the grid lines 30, 32, the remaining grains 50, and/or the voided grain locations 52 from imaging and image processing. Sex. It should be noted that more than one (at least one) of the segmented images of each segment can be taken under different illumination for image analysis or comparison.

如上文所述,第一照明光源組230是用來照亮至少和SWIS圖像拍攝裝置視野範圍一樣大的區域。在各種實施例中,第二照明光源組232是用來照亮鏤空晶圓10的整個上側表面;然而,在某些實施例中,第二照明光源組232照亮的範圍小於鏤空晶圓10的整個表面。欲在每張分段圖像中提供適當或理想的對比,以便區別格線30, 32及偵測晶粒存在50與晶粒空缺52,可在拍攝分段圖像之前,建立或選擇一組適當的照明類型及照明參數(例如,構成鏤空晶圓檢查處方的一部分)。這類照明類型及參數可取決於一批考量中的晶圓所製造的晶粒20之種類與尺寸。As described above, the first illumination source set 230 is an area for illuminating at least as large as the field of view of the SWIS image capture device. In various embodiments, the second illumination source set 232 is used to illuminate the entire upper side surface of the hollow wafer 10; however, in some embodiments, the second illumination source set 232 illuminates less than the hollow wafer 10 The entire surface. To provide an appropriate or ideal contrast in each segmented image to distinguish between grids 30, 32 and detect grain presence 50 and die vacancies 52, create or select a set of segments before taking a segmented image Appropriate lighting types and lighting parameters (eg, forming part of a hollow wafer inspection prescription). Such types and parameters of illumination may depend on the type and size of the dies 20 that are fabricated from a batch of wafers under consideration.

處理單元與記憶體Processing unit and memory

SWIS 200進一步包括一處理單元250及一記憶體260,其連接至SWIS圖像拍攝裝置220。處理單元250可執行記憶體260中所儲存的程式指令(例如軟體),包括一或多個程式指令組,用來控制或執行本發明實施例的自動化鏤空晶圓檢查及/或分析程序。舉例而言,記憶體260可包括一鏤空晶圓檢查模組262,其包括上述程式指令組。The SWIS 200 further includes a processing unit 250 and a memory 260 that is coupled to the SWIS image capture device 220. The processing unit 250 can execute program instructions (e.g., software) stored in the memory 260, including one or more sets of program instructions for controlling or executing the automated hollow wafer inspection and/or analysis program of embodiments of the present invention. For example, the memory 260 can include a hollow wafer inspection module 262 that includes the above-described program instruction set.

記憶體260可進一步包括下列至少幾項:The memory 260 can further include at least the following items:

I. 一鏤空晶圓檢查配置/檢查處方記憶體264,其可儲存或參照任何考量中的特定晶圓(例如在一批晶圓中),鏤空晶圓檢查配置/設定數據或鏤空晶圓檢查處方將於下文作進一步敘述;I. A hollow wafer inspection configuration/check prescription memory 264 that can store or reference any particular wafer in question (eg, in a batch of wafers), hollow out wafer inspection configuration/setting data, or hollow wafer inspection The prescription will be further described below;

II. 一圖像記憶體266,用來儲存一組對應於鏤空晶圓10的區域、部分、或片段面積所拍攝的分段圖像,以及用來儲存鏤空晶圓10的分段圖像所產生的複合圖像;II. An image memory 266 for storing a set of segmented images taken corresponding to the area, portion, or segment area of the hollow wafer 10, and a segmented image for storing the hollow wafer 10. a composite image produced;

III. 一工作記憶體268,用來儲存鏤空晶圓檢查程序所產生的資料(例如數據及/或結果),例如:(a)鏤空晶圓選取圖,其表明哪些晶粒20已依據所拍攝的分段圖像相關資料實際從切割晶圓5被選取;以及(b)其他資料,例如選取錯誤圖,其表明發生晶粒選取錯誤的鏤空晶圓位置或格子位置,及可能的對應晶粒選取錯誤類型。III. A working memory 268 for storing data (eg, data and/or results) generated by a hollow wafer inspection process, such as: (a) a hollow wafer selection map indicating which of the dies 20 have been taken The segmented image related material is actually selected from the dicing wafer 5; and (b) other data, such as an error map, indicating the location or lattice position of the hollow wafer where the morphing error occurred, and possible corresponding dies Choose the type of error.

SWIS 200的某些實施例亦可包括一數據儲存單元(例如硬碟機)。處理單元250及記憶體260可經由一傳輸/網路介面單元270連接到半導體製造系統的一或多個其他部分(例如元件分類機/晶粒分類設備114及/或系統控制單元),使得處理單元250可接收、檢索、或存取對應於當前考量中的鏤空晶圓10的PW圖及分類代碼,並且傳輸鏤空晶圓檢查結果(例如對應於選取錯誤圖)到一或多個其他系統、設備、或裝置。Some embodiments of SWIS 200 may also include a data storage unit (e.g., a hard disk drive). Processing unit 250 and memory 260 can be coupled to one or more other portions of the semiconductor fabrication system (eg, component sorter/die sorting device 114 and/or system control unit) via a transport/network interface unit 270 for processing The unit 250 can receive, retrieve, or access a PW map and a classification code corresponding to the hollow wafer 10 in the current consideration, and transmit the hollow wafer inspection result (eg, corresponding to the selected error map) to one or more other systems, Equipment, or device.

典型的晶粒分類與鏤空晶圓檢查作業Typical die classification and hollow wafer inspection

為了讓讀者清楚瞭解本發明實施例的鏤空晶圓檢查模組262所能管理或執行的鏤空晶圓檢查程序,下文將詳述本發明實施例的鏤空晶圓檢查的各種基本概念。In order to provide the reader with a clear understanding of the hollow wafer inspection procedure that can be managed or performed by the hollow wafer inspection module 262 of the embodiment of the present invention, various basic concepts of the hollow wafer inspection of the embodiment of the present invention will be described in detail below.

最初設定考量Initial setting considerations

如上文所述,留下的晶粒50通常包括電性不良的晶粒,因此可定義或選擇特定分類代碼來對應電性不良的晶粒。在某些情況下,留下的晶粒50亦可能包括電性良好但出現一或多種嚴重目視瑕疵(例如缺少焊料凸塊或尺寸錯誤)的晶粒20。因此,可為電性良好但目視有瑕疵、應留在鏤空晶圓10上的晶粒分派一或多個其他分類代碼。然而,必須瞭解的是,留下的晶粒50之定義係取決於分類代碼的定義方式。舉例而言,可視情況需要,將留下的晶粒50定義為那些電性良好的晶粒20,使得電性不良的晶粒20被取出並送至指定的不合格箱。若電性不良晶粒20的數量遠低於電性良好晶粒的數量,像這樣的晶粒分類作業「逆轉」方式可能更具效率且更可取。接下來可利用較快速的轉台機將留在膠膜框架12上(預期良好)的晶粒20輕鬆地刮入碗中(另一作業),以便進行掃描及送帶作業。在將晶粒20從膠膜框架12刮下來之前,可執行本發明實施例的鏤空晶圓檢查,以查驗是否發生晶粒取出錯誤。As noted above, the remaining grains 50 typically comprise electrically poor grains, so a particular classification code can be defined or selected to correspond to poorly performing grains. In some cases, the remaining die 50 may also include die 20 that is electrically good but exhibits one or more severe visual defects (eg, lack of solder bumps or dimensional errors). Thus, one or more other classification codes can be assigned to the die that is electrically good but visually obscured and should remain on the hollow wafer 10. However, it must be understood that the definition of the remaining grains 50 depends on how the classification code is defined. For example, as needed, the remaining dies 50 are defined as those that are electrically good, such that the electrically defective dies 20 are removed and sent to a designated reject bin. If the number of electrically poor grains 20 is much lower than the number of electrically good grains, a "reversal" approach to such a grain classification operation may be more efficient and preferable. Next, the die 20 remaining on the film frame 12 (expectedly good) can be easily scraped into the bowl (another job) by a faster turntable for scanning and tape feeding operations. Prior to scraping the die 20 from the film frame 12, a hollow wafer inspection of an embodiment of the present invention may be performed to check for a grain removal error.

在針對一或多批承載相同種類半導體裝置的晶圓啟動自動晶粒分類作業之前,由作業員設定或選擇一份定義一組分類代碼的晶粒分類處方。在設定晶粒分類處方時,作業員通常:(a)依據電性測試與目視檢查的綜合結果或可能的結果,決定哪些類別的晶粒20應該被取出;以及(b)針對電性測試與目視檢查的特定綜合結果,分派或選擇適當的分類代碼。Prior to initiating an automated die sorting operation for one or more batches of wafers carrying the same type of semiconductor device, the operator sets or selects a die classification recipe that defines a set of classification codes. When setting up a grain classification prescription, the operator usually: (a) determines which types of dies 20 should be removed based on the combined results or possible results of the electrical and visual inspections; and (b) for electrical testing and Assign a specific classification code to the specific combined results of the visual inspection.

晶粒分類作業期間的PW圖動態更新Dynamic update of PW map during grain classification operation

在一個實施例中,晶粒分類設備115於晶粒分類作業期間進行一組目視檢查作業,每個晶粒20的目視檢查結果被即時更新到PW圖,然後按照分類代碼將晶粒20同時送至預定目的地。表2提供PW圖代碼與分類代碼之間的典型關係,包括晶粒分類作業期間所執行的檢查作業之代碼;表3則提供對應於表2的分類代碼說明。按照表2與表3,電性不良的晶粒成為應留在鏤空晶圓10上的留下晶粒50。電性良好且目視良好的晶粒20將被取出並送至捲帶(PT)。電性不良且目視出現標誌/商標瑕疵、尺寸瑕疵、刮痕、碎裂、或結合尺寸與碎裂瑕疵的晶粒,將按照所分派的分類代碼,被分類至特定箱子或盤子。In one embodiment, the die sorting device 115 performs a set of visual inspection operations during the die sorting operation, and the visual inspection result of each die 20 is immediately updated to the PW map, and then the die 20 is simultaneously sent according to the classification code. To the intended destination. Table 2 provides a typical relationship between the PW diagram code and the classification code, including the code of the inspection job performed during the die classification job; Table 3 provides the classification code description corresponding to Table 2. According to Tables 2 and 3, the poorly-performing grains become the remaining crystal grains 50 which should remain on the hollow wafer 10. The die 20, which is electrically good and visually good, will be taken out and sent to a web (PT). Poor electrical properties and visual signs/marks, size defects, scratches, chippings, or grains of combined size and fragmentation are classified into specific boxes or plates according to the assigned classification code.

因此,在晶粒分類作業期間的目視檢查之前,若典型PW圖的某部分包括表4所示數據:Therefore, some parts of a typical PW diagram include the data shown in Table 4 before the visual inspection during the grain classification operation:

表5的陰影區對應於晶粒分類目視檢查作業中出現特定種類目視瑕疵的被取出晶粒,PW圖係按照所出現的目視瑕疵種類予以更新。The shaded areas of Table 5 correspond to the extracted grains that appear in a particular type of visual field in the grain classification visual inspection operation, and the PW map is updated according to the type of visual field that appears.

SWIS – 晶粒分類設備之互動SWIS – Interaction of die sorting equipment

在配備晶粒分類設備115的串聯式SWIS 配置中,一旦完成留在擴展台210的鏤空晶圓10之晶粒分類作業時,便可開始進行鏤空晶圓檢查作業,查驗晶粒分類作業期間的有效區域晶粒20的取出情形正確或不正確。晶粒分類設備115可移動擴展台210,將鏤空晶圓10定位在SWIS圖像拍攝裝置220下方。至於其他類型的SWIS 配置,可利用其他方式將鏤空晶圓10送至或運至專用的SWIS 200,其方式為相關領域的普通技術人員所立即瞭解。In the tandem SWIS configuration equipped with the die sorting device 115, once the die sorting operation of the hollow wafer 10 remaining on the extension stage 210 is completed, the hollow wafer inspection operation can be started to check the grain sorting operation. The removal of the effective area die 20 is correct or incorrect. The die sorting device 115 can move the docking station 210 to position the hollow wafer 10 below the SWIS image capturing device 220. As with other types of SWIS configurations, the hollow wafer 10 can be sent or shipped to a dedicated SWIS 200 in a manner that is immediately apparent to one of ordinary skill in the relevant art.

分段圖像之拍攝與複合圖像之產生Segmentation image capture and composite image generation

此處敘述在晶粒分類作業之後拍攝一組分段圖像的一個實施例。一旦鏤空晶圓10被定位在SWIS圖像拍攝裝置220下方,SWIS 200便引導拍攝實際鏤空晶圓10的至少一張分段圖像組,並從分段圖像至少產生一張鏤空晶圓複合圖像,下文將作進一步描述。每張分段圖像對應於鏤空晶圓全部表面積的一預定區域、部分、或片段,及/或為鏤空晶圓10所定義的數學或幾何邊界(例如邊框)的一預定區域、部分、或片段。在各種實施例中,完整的分段圖像組跨越或包含100% 或基本上/大致上100% 的鏤空晶圓表面積。因此,完整的分段圖像組至少包括一張圖像,且在各種實施例中包括多張圖像。One embodiment of capturing a set of segmented images after a die sorting operation is described herein. Once the hollow wafer 10 is positioned below the SWIS image capture device 220, the SWIS 200 directs the capture of at least one segmented image group of the actual hollow wafer 10 and generates at least one hollow wafer composite from the segmented image. The image will be further described below. Each segmented image corresponds to a predetermined area, portion, or segment of the entire surface area of the hollowed wafer, and/or a predetermined region, portion, or portion of a mathematical or geometric boundary (eg, a border) defined by the hollowed wafer 10 Fragment. In various embodiments, the complete segmented image set spans or encompasses 100% or substantially/substantially 100% of the hollow wafer surface area. Thus, a complete segmented image set includes at least one image, and in various embodiments includes multiple images.

拍攝分段圖像組之後,SWIS 200以數位方式將分段圖像「拼接」、結合、或聯合起來,以產生鏤空晶圓10的複合或整體圖像。在各種實施例中,鏤空晶圓10的複合圖像是整片實際鏤空晶圓10的虛擬呈現(例如100% 或基本上/大致上100% 的鏤空晶圓10)。因此,該複合圖像包括對應於實際鏤空晶圓10上每個晶粒位置的圖像資料,包括:(a)每個有效區域晶粒位置,及(b)每個空殼晶粒位置。SWIS 200可分析複合圖像內的畫素資料,以確定圖像空間的格線寬度(亦即格線30, 32的成像所跨越的畫素數量),及圖像空間的晶粒尺寸(亦即至少一個晶粒位置的成像所跨越的x與y維度之畫素數量)。如下文所進一步描述,SWIS 200可進一步確定複合圖像內的參考原點/格子位置;及對應於鏤空晶圓有效晶粒區域的複合圖像部分內的第一/起始晶粒位置。接下來SWIS 200可經由數位方式橫越及/或重建鏤空晶圓在圖像空間的實際格子,並針對任何特定複合圖像晶粒位置,識別畫素資料是表明晶粒存在50或是晶粒空缺52。After capturing the segmented image set, the SWIS 200 "splices", combines, or combines the segmented images in a digital manner to produce a composite or overall image of the hollowed wafer 10. In various embodiments, the composite image of the hollowed out wafer 10 is a virtual representation of the entire hollowed out wafer 10 (eg, 100% or substantially/substantially 100% of the hollowed wafer 10). Thus, the composite image includes image data corresponding to each grain location on the actual hollow wafer 10, including: (a) each effective region grain location, and (b) each empty shell grain location. The SWIS 200 analyzes the pixel data in the composite image to determine the grid width of the image space (ie, the number of pixels spanned by the image of the grid lines 30, 32) and the grain size of the image space (also That is, the number of pixels in the x and y dimensions spanned by the imaging of at least one grain position). As further described below, the SWIS 200 can further determine a reference origin/lattice location within the composite image; and a first/starting grain location within the composite image portion corresponding to the effective grain area of the hollowed out wafer. Next, the SWIS 200 can traverse and/or reconstruct the actual grid of the hollow wafer in the image space via a digital method, and for any particular composite image grain position, the pixel data is identified to indicate that the grain exists 50 or the grain. Vacancy 52.

單一或多組完整分段圖像之拍攝Single or multiple sets of full segmentation images

在許多實施例中,SWIS 200 拍攝單一完整分段圖像組,其照明條件中的有效照明光源230, 232及對應的照明參數有助於運用圖像處理,從單一完整分段圖像組所產生的複合圖像可靠識別出格線30, 32、留下的晶粒50、及空缺的晶粒位置52之成像。In many embodiments, the SWIS 200 captures a single complete segmented image set whose effective illumination sources 230, 232 and corresponding illumination parameters in the illumination conditions facilitate the use of image processing from a single complete segmented image set. The resulting composite image reliably identifies the imaging of the grid lines 30, 32, the remaining grains 50, and the voided grain locations 52.

或者,在某些實施例中,可在相同照明或不同照明設定下拍攝多組完整分段圖像,以便圖像分析或進行比對,例如有利於可靠或準確自動確定,複合圖像內的畫素陣列或區域是否對應於格線30, 32、留下的晶粒50、及空缺的晶粒位置52之成像。任何特定的完整分段圖像組皆可在相同或不同照明條件或參數下拍攝。舉例而言,第一組分段圖像可在對應的第一組照明條件下拍攝(例如按照第一組照明強度、第一組照明波長、及/或第一組照明入射角來作動一或二個有效照明光源230, 232);而第二組分段圖像可在不同於第一組照明條件的對應第二組照明條件下拍攝。每組照明條件皆有助於運用圖像處理,可靠識別出格線30, 32、留下的晶粒50、及空缺的晶粒位置52之成像。亦即,拍攝鏤空晶圓10的多組分段圖像,其中每組分段圖像在特定照明條件下對應於鏤空晶圓10的相同、基本上相同、或重疊區域,如此可提升自動識別複合圖像內的格線30, 32、留下的晶粒50、及/或空缺的晶粒位置52之可信度。Alternatively, in some embodiments, multiple sets of full segmented images may be taken at the same illumination or different illumination settings for image analysis or alignment, for example, for reliable or accurate automatic determination, within a composite image Whether the pixel array or region corresponds to the imaging of the grid lines 30, 32, the remaining grains 50, and the vacant grain locations 52. Any particular complete segmented image set can be taken under the same or different lighting conditions or parameters. For example, the first component segment image can be captured under a corresponding first set of illumination conditions (eg, according to the first set of illumination intensities, the first set of illumination wavelengths, and/or the first set of illumination incident angles) Two effective illumination sources 230, 232); and the second component segment image can be taken under a corresponding second set of illumination conditions different from the first set of illumination conditions. Each set of lighting conditions facilitates the use of image processing to reliably identify the image of the ruled lines 30, 32, the remaining grains 50, and the voided grain locations 52. That is, a multi-component segment image of the hollow wafer 10 is taken, wherein each component segment image corresponds to the same, substantially the same, or overlapping region of the hollow wafer 10 under specific illumination conditions, thereby enhancing automatic identification. The confidence of the grid lines 30, 32, the remaining grains 50, and/or the voided grain locations 52 within the composite image.

視實施例詳情而定,第一分段圖像組可經由數位方式拼接起來,以形成鏤空晶圓10的第一綜合圖像;第二分段圖像組可經由數位方式拼接起來,以形成鏤空晶圓10的第二綜合圖像;而第一與第二綜合圖像可經由數位方式結合或聯合起來,以形成複合圖像。或者,第一與第二分段圖像組可同時經由數位方式拼接起來,以形成複合圖像。Depending on the details of the embodiment, the first segment image group may be stitched together by digital means to form a first integrated image of the hollow wafer 10; the second segment image group may be stitched together by digital means to form The second integrated image of the wafer 10 is hollowed out; and the first and second integrated images may be combined or combined digitally to form a composite image. Alternatively, the first and second segmented image groups can be stitched together in a digital manner to form a composite image.

相關領域的普通技術人員將瞭解,可針對整批晶圓所製造的特定種類及尺寸裝置,確定(例如以實驗方式)對應於一或多組分段圖像的分段圖像拍攝順序以及適當的相關照明條件或參數。可將該資料儲存於檔案中,以便鏤空晶圓檢查處方檢索使用;或經由選單選項輸入(例如由技術人員操作)或手動輸入連接至圖形用戶介面。One of ordinary skill in the relevant art will appreciate that segmented image capture sequences corresponding to one or more component segment images can be determined (e.g., experimentally) for a particular type and size device fabricated in a batch of wafers, and appropriate Relevant lighting conditions or parameters. The data can be stored in a file for hollowing out wafer inspection prescription retrieval; or via a menu option input (eg, by a technician) or manual input to a graphical user interface.

在其他實施例中,可產生多張複合圖像,每張皆可對應於一或多組完整的分段圖像。每張複合圖像皆可作個別分析,以便識別出格線30, 32、留下的晶粒50、及/或空缺的晶粒位置52之成像。In other embodiments, multiple composite images may be generated, each of which may correspond to one or more complete segmented images. Each composite image can be individually analyzed to identify the imaging of the grid lines 30, 32, the remaining grains 50, and/or the voided grain locations 52.

切割晶圓分段圖像之拍攝Cutting wafer segmentation image

在某些實施例中,除了拍攝鏤空晶圓10的分段圖像及產生鏤空晶圓複合圖像以外,SWIS 200亦可在晶粒分類作業開始之前,拍攝切割晶圓5的分段圖像以及產生切割晶圓5的複合圖像。在上述實施例中,SWIS 產生對應於切割晶圓5的第一複合圖像,及對應於鏤空晶圓10的第二複合圖像。在晶粒分類作業開始之前建立完全對應於切割晶圓5的第一複合圖像可能有所助益,因為該圖像可作為下列作業的導航輔助或指南:(a)鏤空晶圓檢查,有利於在完成晶粒分類作業之後直接導航至鏤空晶圓10上的特定晶粒位置;及/或(b)晶粒分類本身,在晶粒分類作業期間引導取放設備160。此第一複合圖像可作為同批後續晶圓的導航指南。In some embodiments, in addition to taking a segmented image of the hollowed wafer 10 and producing a composite image of the hollowed out wafer, the SWIS 200 can also take a segmented image of the cut wafer 5 prior to the start of the die sorting operation. And producing a composite image of the dicing wafer 5. In the above embodiment, the SWIS generates a first composite image corresponding to the dicing wafer 5 and a second composite image corresponding to the vented wafer 10. It may be helpful to establish a first composite image that corresponds exactly to the dicing wafer 5 prior to the start of the grain sorting operation, as the image may serve as a navigation aid or guide for the following operations: (a) hollow wafer inspection, advantageously Directly navigating to a particular grain location on the hollow wafer 10 after completion of the die sorting operation; and/or (b) the die classification itself, directing the pick and place device 160 during the die sorting operation. This first composite image can be used as a navigation guide for subsequent wafers in the same batch.

如下文所說明,切割晶圓5的第一複合圖像不僅具有切割晶圓5上每個晶粒20(包括空殼晶粒)的相關資料,亦具有它們相對於參考原點的位置資料。該資料可能有所助益,尤其當晶粒分類作業進行中,有較少晶粒20留在鏤空晶圓10上供晶粒分類設備115參考其位置以便執行取放作業時。以此方式,晶粒分類設備115可使用第一複合圖像資料,更簡易快速地引導取放設備160取出個別或分離的晶粒20。As explained below, the first composite image of the dicing wafer 5 not only has associated data for dicing each of the dies 20 (including the empty slabs) on the wafer 5, but also their positional information relative to the reference origin. This information may be helpful, especially as the grain sorting operation is in progress, with fewer grains 20 remaining on the hollow wafer 10 for the die sorting device 115 to reference its position in order to perform pick and place operations. In this manner, the die sorting device 115 can use the first composite image material to more easily and quickly guide the pick and place device 160 to remove individual or separate dies 20.

視實施例詳情而定,SWIS 200可使用第一複合圖像及/或第二複合圖像,在空間方面至少比對一個複合圖像有效區域晶粒位置與對應PW圖晶粒位置。更具體言之,在確定鏤空晶圓複合圖像內的特定點、位置、及/或晶粒位置方面,產生切割晶圓複合圖像有助於提升圖像處理準確度。Depending on the details of the embodiment, the SWIS 200 may use the first composite image and/or the second composite image to spatially compare at least one composite image effective region die position to the corresponding PW pattern die position. More specifically, in determining a particular point, location, and/or die position within a composite image of a hollowed wafer, creating a composite image of the diced wafer can help improve image processing accuracy.

一旦產生一張切割晶圓複合圖像時,SWIS 200可分析切割晶圓複合圖像,以確定下列一或多項:(a)格線成像的畫素寬度;(b)晶粒20成像的畫素尺寸;(b)參考原點/格子的位置;(c)第一/起始晶粒相對於參考原點/格子位置的位置;以及(d)切割晶圓複合圖像內對應於鏤空晶圓實際格線30, 32的格線30, 32成像之佈局。Once a composite image of the diced wafer is produced, the SWIS 200 can analyze the composite image of the diced wafer to determine one or more of the following: (a) the pixel width of the grid image; (b) the image of the grain 20 image (b) the position of the reference origin/lattice; (c) the position of the first/starting dies relative to the reference origin/lattice position; and (d) the corresponding area of the dicing wafer corresponding to the hollow crystal Circle the actual grid 30, 32 grid lines 30, 32 imaging layout.

SWIS 200可利用一或多個切割晶圓複合圖像參考原點/格子位置、第一/起始晶粒位置、及格子佈局,以分別確定或輔助確定鏤空晶圓複合圖像參考原點/格子位置、第一/起始晶粒位置、及格子佈局。SWIS 200可分別藉由比對從其(例如格子佈局)所確定的切割晶圓複合圖像或資料面向與從其(例如格子佈局)所確定的鏤空晶圓複合圖像或資料面向,額外確定鏤空晶圓相對於切割晶圓10的擴展或拉伸係數。使用從切割晶圓複合圖像所產生的資料以及擴展係數,可:(a)提高確定鏤空晶圓複合圖像內的晶粒位置之統計準確度,例如,當晶粒分類作業之後留在鏤空晶圓10上的晶粒20極少時,或是因晶粒20被取出而造成鏤空晶圓的膠膜11稍微變形的情況下;(b)輔助數位圖像空間導航,或是從鏤空晶圓複合圖像內的一個晶粒位置橫越至另一個晶粒位置;以及(c)輔助真實/實際空間導航,從鏤空晶圓10上的一個晶粒位置橫越至另一個晶粒位置,例如在取放作業期間,因為實際鏤空晶圓10上的晶粒位置/格子位置已與鏤空晶圓複合圖像的晶粒位置/格子位置進行比對,且後者已與切割晶圓複合圖像的晶粒位置/格子位置進行比對。The SWIS 200 may utilize one or more diced wafer composite image reference origin/lattice positions, first/start grain positions, and grid layouts to determine or assist in determining the hollow wafer composite image reference origin/ Lattice position, first/starting grain position, and grid layout. The SWIS 200 can additionally determine the hollowing out by comparing the composite image or data of the cut wafer determined from it (for example, the grid layout) with the composite image or data of the hollowed wafer determined from it (for example, the grid layout). The spread or stretch factor of the wafer relative to the dicing wafer 10. Using the data generated from the diced wafer composite image and the expansion factor, (a) improve the statistical accuracy of determining the grain position within the composite image of the hollowed wafer, for example, leaving the hollow after the grain classification operation When the die 20 on the wafer 10 is extremely small, or the film 11 of the hollowed wafer is slightly deformed due to the removal of the die 20; (b) assisting the digital image space navigation, or from the hollow wafer One grain position within the composite image traverses to another grain location; and (c) assists real/real space navigation, traversing one grain position on the hollow wafer 10 to another grain location, for example During the pick and place operation, since the grain position/grid position on the actual hollow wafer 10 has been aligned with the grain position/grid position of the composite image of the hollowed wafer, and the latter has been combined with the wafer to cut the image The grain position/grid position is aligned.

在特定實施例中,產生切割晶圓複合圖像、確定參考原點/格子位置、確定第一/起始晶粒位置、以及數位重建切割晶圓複合圖像內的切割晶圓格線30, 32,其中至少有幾項可利用並行計算程序發生,即與晶粒分類作業同時執行。為了簡明扼要起見,下文提及鏤空晶圓及鏤空晶圓複合圖像的敘述,可類似或等同地適用於切割晶圓及切割晶圓複合圖像。In a particular embodiment, generating a diced wafer composite image, determining a reference origin/lattice position, determining a first/start grain position, and dicing the wafer grid line 30 within the digitally reconstructed diced wafer composite image, 32, at least some of which can occur using parallel computing procedures, ie, concurrent with the die sorting operation. For the sake of brevity and conciseness, the following description of composite images of hollowed out wafers and hollowed out wafers can be similarly or equally applicable to dicing wafers and dicing wafer composite images.

為了簡明且有助於瞭解起見,下文將敘述鏤空晶圓10單一完整分段圖像組的拍攝,以及單一複合圖像的產生。縱使如此,相關領域的普通技術人員將瞭解,SWIS 200可拍攝鏤空晶圓10的一或多組分段圖像,亦可拍攝切割晶圓5的一或多組分段圖像,以便產生至少一張複合圖像,其方式大致上等同或類似於下文所述。For the sake of brevity and for ease of understanding, the shooting of a single complete segmented image set of the hollowed wafer 10 and the generation of a single composite image will be described below. Even so, one of ordinary skill in the relevant art will appreciate that the SWIS 200 can take images of one or more components of the hollow wafer 10, as well as image one or more segments of the wafer 5 to produce at least A composite image in a manner substantially equivalent or similar to that described below.

複合圖像的有效區域晶粒位置之識別Identification of effective area grain position of composite image

如上文所述,PW圖僅呈現出晶圓全部表面積的一部分、鏤空晶圓10複合圖像的一小組。然而,鏤空晶圓10的複合圖像通常是整片實際鏤空晶圓10的圖像,跨越有效區域晶粒位置及空殼/鏡面晶粒位置。因此,對應於晶圓有效區域晶粒的PW圖晶粒位置可能映射到複合圖像內的多個區域。因此在PW圖的晶粒位置與鏤空晶圓複合圖像內對應於有效區域晶粒位置的晶粒位置小組之間,有必要解決空間對齊或配準的問題。As described above, the PW map presents only a small portion of the total surface area of the wafer, and a small group of composite images of the wafer 10 is hollowed out. However, the composite image of the hollowed wafer 10 is typically an image of the entire wafer that is actually hollowed out, spanning the effective area die position and the empty/mirror grain position. Therefore, the PW pattern grain position corresponding to the wafer effective area grains may be mapped to a plurality of areas within the composite image. Therefore, between the die position of the PW pattern and the die position group corresponding to the effective area die position in the composite image of the hollowed wafer, it is necessary to solve the problem of spatial alignment or registration.

為了解決此問題,SWIS 200在空間上比對、配準、對齊、或識別對應於有效區域晶粒位置的鏤空晶圓複合圖像部分與PW圖有效區域晶粒位置。To address this issue, the SWIS 200 spatially aligns, registers, aligns, or identifies the hollow wafer composite image portion corresponding to the effective region die position and the PW map effective region die position.

鏤空晶圓參考原點或參考格子位置之確定Determination of the reference point of the hollow wafer reference or reference grid

應注意的是,可提供給SWIS 200或SWIS 200所知悉的資料,包括晶圓尺寸、晶粒尺寸、以及膠膜框架12上的切割晶圓方位。複合圖像相對於膠膜框架12的方位亦為其所知悉。在各種實施例中,為了讓SWIS 200在空間方面正確比對鏤空晶圓複合圖像內的每個有效區域晶粒位置與其在實際鏤空晶圓10上及PW圖內的對應有效區域晶粒位置,SWIS 200藉由分析鏤空晶圓的複合圖像來確定:(a)一個參考原點,及/或(b)一個參考格子位置。參考原點或參考格子位置係對應於複合圖像內的一個畫素座標,該畫素座標本身則對應於實際鏤空晶圓10上的一個已知或預定源、點、或格子位置。複合圖像內的一個參考原點可為圖像空間或畫素空間裡的某個特定點。參考格子位置可為圖像空間裡的某個特定點,或是圖像空間裡某個特定位置上的一個畫素陣列。因此,參考格子位置本身可類似於或基本上等同於或定義為參考原點。It should be noted that information known to the SWIS 200 or SWIS 200 can be provided, including wafer size, grain size, and dicing wafer orientation on the film frame 12. The orientation of the composite image relative to the film frame 12 is also known. In various embodiments, in order for the SWIS 200 to spatially correctly align each active area die position within the composite image of the hollowed wafer with its corresponding effective area die position on the actual hollow wafer 10 and in the PW map The SWIS 200 determines by analyzing a composite image of the hollowed out wafer: (a) a reference origin, and/or (b) a reference grid position. The reference origin or reference grid position corresponds to a pixel coordinate within the composite image, which itself corresponds to a known or predetermined source, point, or grid location on the actual hollow wafer 10. A reference origin within a composite image can be a specific point in the image space or pixel space. The reference grid position can be a specific point in the image space or a pixel array at a specific location in the image space. Thus, the reference grid location itself may be similar or substantially equivalent to or defined as a reference origin.

依據參考原點/格子位置,鏤空晶圓複合圖像內的每個有效區域晶粒位置皆可予以確定,包括對應於PW圖內預定第一/起始晶粒位置的第一/起始晶粒位置。複合圖像內的第一/起始晶粒位置係對應於實際鏤空晶圓有效晶粒區域內的某個特定晶粒位置,已知其與參考原點的距離及相對方向。在複合圖像內,第一/起始晶粒位於圖像空間裡與參考原點/格子位置形成某個特定圖像空間距離及相對方向處。一旦確定複合圖像內的第一/起始晶粒位置,對應於每張複合圖像有效區域晶粒位置的複合圖像資料便可與對應的PW圖資料進行比對,以查驗晶粒20已正確或不正確從實際鏤空晶圓的有效區域被取出,下文將作進一步描述。According to the reference origin/lattice position, the grain position of each effective region in the composite image of the hollowed wafer can be determined, including the first/starting crystal corresponding to the predetermined first/starting grain position in the PW pattern. Grain position. The first/starting grain position within the composite image corresponds to a particular grain position within the effective grain area of the actual hollowed wafer, its distance from the reference origin and its relative direction are known. Within the composite image, the first/starting dies are located in the image space at a particular image spatial distance and relative direction from the reference origin/lattice position. Once the first/starting grain position in the composite image is determined, the composite image data corresponding to the grain position of the effective area of each composite image can be compared with the corresponding PW image data to check the grain 20 The effective area of the actual hollowed out wafer has been removed correctly or incorrectly, as further described below.

參考原點/格子位置的用途類似於晶粒分類作業的參考晶粒21,但在本發明的各種實施例中,參考原點/格子位置係對應於鏤空晶圓或晶粒位置,而不是參考晶粒21的位置。亦即,參考原點/格子位置係對應於鏤空晶圓位置或晶粒位置,其不同於參考晶粒21的位置。The reference origin/grid position is similar to the reference die 21 of the die sorting operation, but in various embodiments of the invention, the reference origin/lattice position corresponds to the hollow wafer or die position, rather than a reference The position of the die 21. That is, the reference origin/lattice position corresponds to the hollow wafer position or grain position, which is different from the position of the reference die 21.

確定參考原點的典型方式The typical way to determine the reference origin

鏤空晶圓複合圖像內的參考原點及第一/起始晶粒的相對位置可利用多種方式予以確定。在鏤空晶圓10大致上呈現規則形狀的實施例中,參考原點可定義為鏤空晶圓10的中心點。舉例而言,大部分晶圓為圓形,因此SWIS 200可使用傳統圖像處理技術,藉由識別複合圖像內的至少三個點來確定參考原點,這些點是位於鏤空晶圓10的周圍上。依據這些點,傳統圖像處理技術可確定與鏤空晶圓10具有相同直徑的圓之周長,藉此確定鏤空晶圓的中心點(例如圖像空間裡的一個畫素座標)。即使加工晶圓的周圍部分因為加工或處理作業而缺失,鏤空晶圓中心點的確定動作將不受影響,因為鏤空晶圓的曲率可利用演算法推斷出來且具有高度準確性,其方式為相關領域的普通技術人員所立即瞭解。一旦找出複合圖像內鏤空晶圓10的中心點,便可立即識別複合圖像內第一/起始晶粒的相對位置,因為第一/起始晶粒相對於該參考原點的位置已預先確定,係按照畫素數量或距離及橫向及縱向格線距離(例如考量SWIS圖像拍攝裝置的解析度)。The reference origin in the composite image of the hollowed wafer and the relative position of the first/starting die can be determined in a variety of ways. In embodiments where the hollow wafer 10 generally assumes a regular shape, the reference origin may be defined as the center point of the hollow wafer 10. For example, most wafers are circular, so the SWIS 200 can determine the reference origin by identifying at least three points within the composite image using conventional image processing techniques, which are located at the hollow wafer 10 Around. In accordance with these points, conventional image processing techniques can determine the perimeter of a circle having the same diameter as the hollowed wafer 10, thereby determining the center point of the hollowed out wafer (e.g., a pixel coordinate in the image space). Even if the surrounding portion of the processed wafer is missing due to processing or processing operations, the determination of the center point of the hollowed out wafer will not be affected because the curvature of the hollowed out wafer can be inferred using algorithms and is highly accurate in a manner relevant Those of ordinary skill in the art will immediately understand. Once the center point of the wafer 10 is found in the composite image, the relative position of the first/starting grain in the composite image can be immediately identified because the position of the first/starting die relative to the reference origin It has been determined in advance according to the number of pixels or the distance and the horizontal and vertical grid distance (for example, considering the resolution of the SWIS image capturing device).

在某些實施例中,第一/起始晶粒相對於參考原點的位置之確定方式是:依據加工晶圓的已知實際佈局,識別出複合圖像內的一組格線30, 32,並藉由計算已知第一/起始晶粒位置距離參考原點的橫向及縱向格線30, 32數量,移動至複合圖像內的第一/起始晶粒位置。在上述實施例中,SWIS 200可利用圖像處理演算法來識別出複合圖像內的格線30, 32。在圖像空間裡,格線30, 32是橫向及縱向窄線條,跨越預定數量的畫素(例如3 – 5 畫素,依SWIS圖像拍攝裝置的解析度而定),對應於實際格線寬度。由於晶粒尺寸已知,故複合圖像內每個晶粒位置的橫向及縱向畫素尺寸亦已知。依據晶粒尺寸,可確定複合圖像內的預定格線30, 32,使得複合圖像內的第一/起始晶粒位置及每一個其他有效晶粒位置的相對位置皆可立即予以確定。In some embodiments, the position of the first/starting die relative to the reference origin is determined by identifying a set of grid lines 30, 32 within the composite image based on the known actual layout of the processed wafer. And moving to the first/starting grain position within the composite image by calculating the number of lateral and longitudinal grid lines 30, 32 of the known first/starting grain position distance reference reference origin. In the above embodiment, SWIS 200 may utilize image processing algorithms to identify grid lines 30, 32 within the composite image. In the image space, the grid lines 30, 32 are horizontal and vertical narrow lines spanning a predetermined number of pixels (eg, 3 - 5 pixels, depending on the resolution of the SWIS image capture device), corresponding to the actual grid lines width. Since the grain size is known, the lateral and vertical pixel sizes of each grain position within the composite image are also known. Depending on the grain size, the predetermined grid lines 30, 32 within the composite image can be determined such that the relative position of the first/starting grain location and each of the other effective grain locations within the composite image can be determined immediately.

雖然在某些實施例中,參考原點是定義為鏤空晶圓10的中心(或切割晶圓5或加工晶圓的中心),但在其他實施例的情況未必如此,它們可選擇合適的晶圓特徵來定義或識別參考原點。用來定義參考原點的晶圓特徵取決於考量中的某批晶圓之實際特性,以及該特徵是否可在複合圖像內作簡易且一致的識別。參考原點亦可依據半導體晶圓製造商所提供的資料作選擇,即針對特定種類與尺寸的裝置(例如積體電路)製造特定尺寸晶圓所實施的標準化實際晶圓規格之相關資料。該資料通常包含在一般稱作「實際晶圓標準文件」的文件中,可從各家晶圓製造商取得,其方式為相關領域的普通技術人員所立即瞭解。Although in some embodiments, the reference origin is defined as hollowing out the center of the wafer 10 (or cutting the wafer 5 or the center of the processed wafer), in other embodiments this may not be the case, they may select a suitable crystal. A circle feature defines or identifies a reference origin. The wafer characteristics used to define the reference origin depend on the actual characteristics of a batch of wafers in question and whether the feature can be easily and consistently identified within the composite image. The reference origin can also be selected based on the information provided by the semiconductor wafer manufacturer, that is, the specification of the actual actual wafer specifications for a particular size and size of device (eg, integrated circuit). This material is usually included in a document commonly referred to as the "actual wafer standard document" and is available from various wafer manufacturers in a manner that is immediately known to those of ordinary skill in the relevant art.

圖8A與8B顯示典型實際晶圓標準文件的部分。實際晶圓標準文件所提供的資料包括晶圓最寬橫向尺寸與縱向尺寸,以及在特定尺寸晶圓上製造特定種類與尺寸裝置的參考晶粒21位置。從特定的實際晶圓標準文件中,工程師或技術人員可定義或確定一條橫向參考線及一條縱向參考線,而其交點可定義為參考原點,用來確定第一/起始晶粒的位置(及/或晶圓參考晶粒21的位置)。SWIS 200可分析複合圖像,以識別出預先確定或預先定義的橫向及縱向參考線。舉例而言,表明哪些晶圓格線30, 32被定義為橫向及縱向參考線的資料,可納入鏤空晶圓檢查的設定處方中。Figures 8A and 8B show portions of a typical actual wafer standard file. The actual wafer standard document provides information on the widest lateral and vertical dimensions of the wafer, as well as the location of the reference die 21 for fabricating a particular type and size of device on a particular size wafer. From a specific actual wafer standard document, an engineer or technician can define or define a horizontal reference line and a longitudinal reference line, and the intersection point can be defined as a reference origin to determine the position of the first/starting die. (and/or the position of the wafer reference die 21). The SWIS 200 can analyze the composite image to identify pre-determined or predefined lateral and longitudinal reference lines. For example, data indicating which grid lines 30, 32 are defined as horizontal and vertical reference lines can be included in the prescription for the hollow wafer inspection.

亦可使用額外或其他資料來定義參考原點。舉例而言,在另一個實施例中,晶圓上最接近晶圓ID的最底端橫向格線30可作為橫向參考線,而某條特定縱向格線32(例如與該橫向參考線相交的最左或最右縱向格線30)可定義為縱向參考線。橫向與縱向參考線之間的交點可定義為參考原點,相對於該位置為第一/起始晶粒的預定位置。Additional or additional information may also be used to define the reference origin. For example, in another embodiment, the bottommost lateral grid line 30 on the wafer closest to the wafer ID can be used as a lateral reference line, and a particular longitudinal grid line 32 (eg, intersecting the lateral reference line) The leftmost or rightmost vertical ruled line 30) can be defined as a longitudinal reference line. The intersection between the lateral and longitudinal reference lines may be defined as a reference origin relative to the predetermined position of the first/starting dies.

確定參考格子位置的典型方式Typical way to determine the position of a reference grid

除了確定參考原點以外,某些實施例可經由數位方式從複合圖像識別或重建鏤空晶圓的格子佈局,並確定複合圖像內的參考格子點或位置。接著便可相對於參考格子位置確定第一/起始晶粒的位置。In addition to determining the reference origin, some embodiments may identify or reconstruct the grid layout of the hollowed wafer from the composite image via a digital manner and determine a reference grid point or location within the composite image. The position of the first/starting die can then be determined relative to the reference grid position.

為了以數位方式識別/重建鏤空晶圓的格子佈局,SWIS 200係使用傳統圖像處理技術來分析複合圖像。如上文所述,格線30, 32的成像可依據窄或極窄行列畫素內的畫素強度予以識別,而較大或明顯較大畫素區域內的畫素強度則對應於留下的晶粒50及空缺的晶粒位置52。SWIS 200可經由數位方式來識別/重建複合圖像內的每條橫向格線30及縱向格線32。In order to digitally identify/reconstruct the grid layout of the hollowed out wafer, the SWIS 200 uses conventional image processing techniques to analyze the composite image. As described above, the imaging of the grid lines 30, 32 can be identified by the intensity of the pixels within the narrow or very narrow rows of pixels, while the pixel intensity in the larger or significantly larger pixel regions corresponds to the remaining The grain 50 and the voided grain location 52. The SWIS 200 can identify/reconstruct each horizontal grid line 30 and longitudinal grid line 32 within the composite image via a digital manner.

如相關領域的普通技術人員所瞭解,由於加工或處理,周圍一或多行列的晶粒20可能從晶圓脫落下來。因此,複合圖像內的橫向及/或縱向格線30, 32總數可能小於實際晶圓上的橫向及/或縱向格線30, 32總數。在某些實施例中,SWIS 200可計算複合圖像內的橫向及縱向格線30, 32總數,並分析最外側頂端、底端、左邊、及右邊k 條格線30, 32(例如k = 3、4、或5)的絕對或相對長度,並將該絕對或相對長度與晶圓已知的格子佈局進行比對,依據複合圖像識別出從鏤空晶圓10缺漏的外側一或多行列晶粒20。As will be appreciated by those of ordinary skill in the relevant art, one or more rows of grains 20 may be detached from the wafer due to processing or processing. Thus, the total number of lateral and/or longitudinal grid lines 30, 32 within the composite image may be less than the total number of lateral and/or longitudinal grid lines 30, 32 on the actual wafer. In some embodiments, SWIS 200 can calculate the total number of horizontal and vertical grid lines 30, 32 within the composite image and analyze the outermost top, bottom, left, and right k-line lines 30, 32 (eg, k = The absolute or relative length of 3, 4, or 5), and the absolute or relative length is compared with the known grid layout of the wafer, and one or more rows of outer rows missing from the hollow wafer 10 are identified based on the composite image. Grain 20.

若以數位方式重建的格線30, 32符合晶圓已知的格子佈局,則SWIS 200可將以數位方式重建的格子的某個中心點定義為參考原點,其位於參考格子位置內或與它相鄰(例如最中心或中心的格子位置)。SWIS 200可計算第一/起始晶粒以預定方向距離參考格子位置預定數量的橫向及縱向格線30, 32,藉此確定第一/起始晶粒相對於該參考格子位置的位置。若SWIS 200 確定外側有一或多行列的晶粒20從鏤空晶圓10缺漏,則SWIS 200在確定第一/起始晶粒相對於參考格子位置的位置時,可作適當的橫向及/或縱向格子偏移,以因應缺漏的晶粒20行列。If the grid lines 30, 32 reconstructed in a digital manner conform to the known grid layout of the wafer, the SWIS 200 may define a certain center point of the grid reconstructed in a digital manner as a reference origin, which is located in the reference grid position or It is adjacent (for example, the most central or central grid position). The SWIS 200 may calculate a predetermined number of lateral and longitudinal grid lines 30, 32 of the first/starting dies from the reference grid position in a predetermined direction, thereby determining the position of the first/starting dies relative to the reference grid position. If the SWIS 200 determines that one or more rows of the dies 20 are missing from the hollow wafer 10, the SWIS 200 can make appropriate lateral and/or longitudinal directions when determining the position of the first/starting dies relative to the reference grid position. The grid is offset to accommodate the missing grains 20 rows.

在某些實施例中,SWIS 200可經由識別鏤空晶圓10上留下的晶粒50的縱向及橫向邊緣,額外或以替代方式識別或以數位方式重建格線30, 32。由於格線30, 32鄰近且平行或垂直於該晶粒邊緣,並且延伸越過整片鏤空晶圓10,且已知或大約已知預定格線寬度,故格線重建簡單易行,惟至少須有少量晶粒20留在鏤空晶圓有效區域內對應於多條不同格線30, 32的晶粒位置。In some embodiments, the SWIS 200 may additionally or alternatively identify or digitally reconstruct the grid lines 30, 32 via identifying the longitudinal and lateral edges of the die 50 left on the hollow wafer 10. Since the ruled lines 30, 32 are adjacent and parallel or perpendicular to the edge of the die, and extend across the entire hollow wafer 10, and the known predetermined line width is known or known, the grid reconstruction is simple and easy, but at least A small number of dies 20 remain in the effective area of the hollow wafer corresponding to the grain positions of the plurality of different grid lines 30, 32.

移動至第一/起始晶粒位置及/或圖像空間裡的其他晶粒位置Move to the first/starting die position and/or other die positions in the image space

在各種實施例中,為了查驗對應於鏤空晶圓10上實際格子位置的複合圖像晶粒位置的晶粒存在50或晶粒空缺52(例如有效區域晶粒位置),SWIS 200便連續分析或評估對應於複合圖像晶粒位置的畫素陣列。SWIS 200按照每個晶粒20的圖像空間或畫素空間尺寸,連續移動或朝向、橫越、及/或穿過複合圖像晶粒位置。上述圖像空間晶粒尺寸為預先確定,並與實際晶粒尺寸及SWIS圖像拍攝裝置220的解析度進行比對,且可經由SWIS 分析複合圖像予以確認。In various embodiments, to verify that there are 50 or grain vacancies 52 (e.g., effective area die positions) for the composite image grain locations corresponding to the actual grid locations on the hollow wafer 10, the SWIS 200 is continuously analyzed or A pixel array corresponding to the position of the composite image grain is evaluated. The SWIS 200 continuously moves or faces, traverses, and/or passes through the composite image die position in accordance with the image space or pixel space size of each die 20. The image space grain size is determined in advance, and is compared with the actual grain size and the resolution of the SWIS image capturing device 220, and can be confirmed by analyzing the composite image by SWIS.

一旦SWIS 200 識別出複合圖像的參考原點及/或參考格子位置,在許多實施例中,SWIS 200便可藉由下列方式移動或過渡至複合圖像內的第一/起始晶粒位置:(a)確定或確認從參考原點/格子位置到第一/起始晶粒位置的最短距離(例如沿著最短的對角線);(b)確定或確認從參考原點/格子位置到第一/起始晶粒位置經由晶粒位置路徑的對應預定或最短x – y 晶粒位置;以及(c)沿著該晶粒位置經由晶粒位置路徑逐個別晶粒位置行進以抵達第一/起始晶粒位置。當SWIS 200沿著該路徑行進至每個晶粒位置時,SWIS 200可分析對應於每個晶粒位置的畫素陣列資料,以查驗是否每個預定晶粒位置確實正確與複合圖像裡的晶粒位置對齊。Once the SWIS 200 identifies the reference origin and/or reference grid position of the composite image, in many embodiments, the SWIS 200 can be moved or transitioned to the first/starting die position within the composite image by: : (a) determine or confirm the shortest distance from the reference origin/lattice position to the first/starting grain position (eg along the shortest diagonal); (b) determine or confirm the reference origin/grid position a predetermined or shortest x-y grain position to the first/starting grain position via the grain position path; and (c) traveling along the grain position along the grain position path by individual grain positions to reach the first One / starting grain position. When the SWIS 200 travels along the path to each die position, the SWIS 200 can analyze the pixel array data corresponding to each die position to verify whether each predetermined die position is indeed correct and in the composite image. The grain positions are aligned.

在其他實施例中,SWIS 200可計算或確認參考原點/格子位置與第一/起始晶粒位置之間的x方向畫素數量及y方向畫素數量,並且藉由移動複合圖像內相對於參考原點/參考格子位置的x與y 方向適當數量畫素,直接從參考原點/格子位置移動至第一/起始晶粒位置。In other embodiments, the SWIS 200 may calculate or confirm the number of x-direction pixels and the number of pixels in the y-direction between the reference origin/lattice position and the first/starting grain position, and by moving within the composite image The appropriate number of pixels in the x and y directions relative to the reference origin/reference grid position is moved directly from the reference origin/lattice position to the first/starting grain position.

避免系統性錯誤Avoid systemic errors

對於自動化鏤空晶圓檢查而言,本發明的各種實施例與先前技術之間的一項重大差異在於,在確定參考原點或參考格子位置及第一/起始晶粒位置時,SWIS 200並未使用在晶粒分類作業開始之前自動識別或由作業員手動識別/偵測的相同參考晶粒21。如此做的理由是要避免重複因作業員識別錯誤晶粒作為參考晶粒21所可能發生的任何系統性錯誤。若作業員已識別錯誤晶粒作為參考晶粒21,將會發生系統性晶粒取出錯誤,而利用相同不正確參考晶粒21所執行的鏤空晶圓檢查作業將因此無法偵測到或識別出任何晶粒取出錯誤。為了避免上述系統性錯誤,SWIS 200遂參考實際晶圓上的另一組特徵來定義參考原點或參考格子位置,相對於該位置便可確定鏤空晶圓複合圖像有效區域內其他晶粒的位置,包括第一/起始晶粒。A significant difference between the various embodiments of the present invention and the prior art for automated hollow wafer inspection is that when determining the reference origin or reference grid position and the first/start grain position, the SWIS 200 The same reference die 21 that is automatically identified prior to the start of the die sorting operation or manually identified/detected by the operator is not used. The reason for this is to avoid repeating any systematic errors that may occur as a result of the operator identifying the faulty die as the reference die 21. If the operator has identified the wrong die as the reference die 21, a systematic die take-out error will occur, and the hollow wafer inspection operation performed using the same incorrect reference die 21 will therefore not be detected or recognized. Any grain removal error. In order to avoid the above systematic errors, the SWIS 200 refers to another set of features on the actual wafer to define a reference origin or reference grid position with respect to which the other crystal grains in the effective area of the composite image of the hollow wafer can be determined. Location, including the first/starting die.

可針對整批晶圓所製造的特定種類及尺寸裝置,預先確定參考原點及/或參考格子位置的定義資料,並將該資料儲存於檔案中,以便在開始晶粒分類及鏤空晶圓檢查作業之前,供晶粒分類及鏤空晶圓檢查處方檢索使用。或者,該資料可經由選單選項輸入(例如由技術人員操作)或手動輸入連接至圖形用戶介面。The definition of the reference origin and/or reference grid position can be pre-determined for the specific type and size of the device manufactured by the entire batch of wafers, and the data can be stored in the file for starting the die sorting and hollowing out the wafer inspection. Before the operation, it is used for grain classification and hollow wafer inspection prescription retrieval. Alternatively, the material can be entered via a menu option (eg, operated by a technician) or manually entered into a graphical user interface.

複合圖像與PW圖之間的資料內容比對Comparison of data content between composite image and PW image

經過上述空間比對、對齊、或配準之後,便可進行資料內容比對,SWIS 200在該期間比對下列資料內容:(a)對應於複合圖像內有效區域晶粒位置的圖像資料,與(b) PW圖所包含或使用PW圖所產生的對應晶粒位置之資料(例如按照晶粒分類作業所執行的任何最終目視檢查所更新的資料)。上述資料內容比對有助於自動確定晶粒分類作業期間晶粒20正確或不正確從實際鏤空晶圓的有效區域被取出。After the above spatial comparison, alignment, or registration, the data content comparison can be performed, and the SWIS 200 compares the following data contents during the period: (a) image data corresponding to the effective area grain position in the composite image. And (b) the data of the corresponding grain location generated by the PW diagram or generated using the PW diagram (eg, the updated data by any final visual inspection performed by the grain classification operation). The above data content comparison helps to automatically determine that the die 20 is correctly or incorrectly removed from the active area of the actual hollow wafer during the die sorting operation.

在鏤空晶圓的複合圖像內,對應於每個有效區域晶粒位置的畫素陣列可提供所拍攝的圖像資料(例如畫素數值),表明實際鏤空晶圓10上的晶粒存在50或實際鏤空晶圓10該晶粒位置的晶粒空缺52。上述每個畫素陣列皆具有一畫素區域,其對應於晶粒20的實際尺寸,並取決於SWIS圖像拍攝裝置220的解析度,其方式為相關領域的普通技術人員所立即瞭解。Within the composite image of the hollowed out wafer, a pixel array corresponding to the grain position of each active region can provide captured image data (eg, pixel values) indicating the presence of grains on the actual hollowed wafer 10 50 Or the wafer vacancy 52 of the die position is actually hollowed out. Each of the pixel arrays described above has a pixel area that corresponds to the actual size of the die 20 and depends on the resolution of the SWIS image capture device 220 in a manner that is immediately apparent to those of ordinary skill in the relevant art.

在各種實施例中,利用傳統圖像處理技術來分析鏤空晶圓複合圖像內對應於有效區域晶粒位置的每個畫素陣列,以確定該晶粒位置是否已表明晶粒存在50或晶粒空缺52。舉例而言,晶粒存在50可藉由對應於特定有效晶粒位置且具有第一平均強度的畫素陣列予以表明;而晶粒空缺52可藉由具有第二平均強度的畫素陣列予以表明,且第二平均強度明顯不同於第一平均強度。針對考量中的特定複合圖像有效區域晶粒位置,將其畫素陣列分析結果與該晶粒位置的PW圖數據進行比對,其包含一代碼,該代碼表明對應的實際晶粒20應該已從切割晶圓5被取出,或應該留在鏤空晶圓10上。若任何特定有效區域晶粒位置的複合圖像畫素陣列分析與PW圖數據之間有不一致之處,則已發生取出錯誤。In various embodiments, conventional image processing techniques are utilized to analyze each pixel array corresponding to the effective area grain position within the composite image of the hollowed wafer to determine if the grain position has indicated that the grain is present 50 or crystalline. Grain vacancies 52. For example, the grain presence 50 can be indicated by a pixel array corresponding to a particular effective grain location and having a first average intensity; and the die vacancy 52 can be indicated by a pixel array having a second average intensity And the second average intensity is significantly different from the first average intensity. For the specific composite image effective region grain position in consideration, the pixel array analysis result is compared with the PW map data of the grain position, and includes a code indicating that the corresponding actual die 20 should have It is taken out from the dicing wafer 5 or should be left on the stencil wafer 10. If there is an inconsistency between the composite image pixel array analysis and the PW map data for any particular effective area grain position, a fetch error has occurred.

更具體言之,在某些實施例中,對於複合圖像內的每個有效區域晶粒位置,SWIS 200 直接比較對應於鏤空晶圓複合圖像畫素陣列數值的數學數值與該晶粒位置的PW圖代碼,並使用按照晶粒分類作業期間所執行的任何目視檢查所更新的PW圖。此舉可能涉及SWIS依據複合圖像畫素陣列數值產生鏤空晶圓選取圖,其中對應於每個有效區域晶粒位置的數位代碼,表明晶粒存在於鏤空晶圓複合圖像,或是從鏤空晶圓複合圖像空缺。在某些實施例中,SWIS 200:(a)在指定/選出分類代碼之後,實際從切割晶圓5取出晶粒20之前,從PW圖產生對應於切割晶圓5的鏤空晶圓選取圖;以及(b)將鏤空晶圓複合圖像中對應於晶粒位置的畫素陣列數學數值或鏤空晶圓選取圖與對應晶粒位置的鏤空晶圓選取圖內容進行比對。More specifically, in some embodiments, for each effective region die position within the composite image, SWIS 200 directly compares the mathematical values corresponding to the values of the composite image pixel array of the hollowed wafer and the die position The PW map code and the updated PW map using any visual inspection performed during the die sorting operation. This may involve SWIS generating a hollow wafer selection map based on the composite image pixel array values, where the digit code corresponding to the grain position of each active region indicates that the grain exists in the composite image of the hollowed wafer, or from the hollowed out The wafer composite image is vacant. In some embodiments, the SWIS 200: (a) after the designation/selection of the classification code, the hollow wafer selection map corresponding to the dicing wafer 5 is generated from the PW pattern before the dies 20 are actually removed from the dicing wafer 5; And (b) comparing the pixel array mathematical value corresponding to the grain position in the composite image of the hollowed wafer or the hollow wafer selection map with the content of the hollow wafer selection map corresponding to the die position.

依據部分複合圖像與PW圖之間的資料內容比對,SWIS 200可確定:(a)應該已從切割晶圓5被取出、因此應該已從鏤空晶圓5空缺的晶粒20,是否不正確地留在鏤空晶圓10上;及/或(b)不應該從切割晶圓5被取出、因此應該出現在鏤空晶圓5上的晶粒20,是否從鏤空晶圓10空缺。Based on the data content comparison between the partial composite image and the PW image, the SWIS 200 can determine: (a) the die 20 that should have been taken out of the dicing wafer 5, and thus should have been vacant from the vacant wafer 5, whether or not Properly remaining on the hollow wafer 10; and/or (b) should not be removed from the dicing wafer 5, so the dies 20 that should appear on the vented wafer 5 are vacant from the vented wafer 10.

自動化鏤空晶圓檢查程序Automated hollow wafer inspection program

鑑於上文所述,下文將描述一些流程圖,以便詳述按照本發明實施例的鏤空晶圓檢查程序。圖9是鏤空晶圓檢查的自動化程序300之流程圖;圖10A - 13是按照本發明特定實施例的自動化鏤空晶圓檢查面向相關製程之流程圖。圖9 - 13所述特定鏤空晶圓檢查作業可藉由一串聯式SWIS 200來執行,其與一晶粒分類設備114合作,經由一共同擴展台210接收鏤空晶圓,該擴展台為晶粒分類設備114與SWIS 200所共用;或是藉由一中樞或獨立式SWIS 200來執行,其擁有自己的擴展台210,該擴展台與晶粒分類設備114的擴展台分離。In view of the above, some flow charts will be described below to detail a hollow wafer inspection procedure in accordance with an embodiment of the present invention. 9 is a flow diagram of an automated process 300 for hollow wafer inspection; FIGS. 10A-13 are flow diagrams of automated hollow wafer inspection oriented processes in accordance with certain embodiments of the present invention. The specific hollow wafer inspection operation described in FIGS. 9-13 can be performed by a tandem SWIS 200 that cooperates with a die sorting device 114 to receive a hollow wafer via a common expansion stage 210, the expansion stage being a die The sorting device 114 is shared with the SWIS 200; or by a hub or stand-alone SWIS 200, which has its own extension station 210, which is separate from the extension station of the die sorting device 114.

典型的設定作業Typical setting operation

在圖9中,一般自動化程序300包括一第一程序部分302,涉及執行鏤空晶圓檢查設定作業,涉及設定/配置處方的選擇、檢索、或定義,例如複合圖像產生處方、晶粒分類處方、及/或鏤空晶圓檢查處方。因此,針對每一批具有相同類型半導體裝置的晶圓,在自動晶粒分類作業開始之前,作業員在設定晶粒分類作業的處方時通常會:(a)依據電性測試與目視檢查的綜合結果或可能的結果,決定要取出哪種(哪些)類型的晶粒20;以及(b)針對電性測試與目視檢查的特定綜合結果,分派適當的分類代碼。指定適當分類代碼以確定每個有效區域晶粒20應該:(a)從切割晶圓5被選取並送至特定分類目的地,導致鏤空晶圓10上的晶粒空缺52 ;或是(b)留在鏤空晶圓10上,成為留下的晶粒50。In FIG. 9, the general automation program 300 includes a first program portion 302 that involves performing a hollow wafer inspection setting job involving setting/arranging a recipe selection, retrieval, or definition, such as a composite image generation prescription, a grain classification prescription. And/or hollow wafer inspection prescriptions. Therefore, for each batch of wafers with the same type of semiconductor device, before the start of the automatic die sorting operation, the operator usually sets the prescription for the die sorting operation: (a) based on the combination of electrical testing and visual inspection. The result or possible outcome determines which type(s) of the die 20 to remove; and (b) assigns the appropriate classification code for the specific combined results of the electrical test and the visual inspection. The appropriate classification code is assigned to determine that each active area die 20 should: (a) be selected from the dicing wafer 5 and sent to a particular sort destination, resulting in a vacancy in the die 10 on the wafer 10; or (b) It remains on the hollow wafer 10 and becomes the remaining crystal grains 50.

在一個實施例中,SWIS 200與一晶粒分類及目視檢查系統114串聯,SWIS 設定/配置程序可呈現於圖形用戶介面,成為技術人員或作業員可選擇的視覺對象(例如圖標)。為了回應SWIS 設定/配置程序的選擇,可執行一軟體模組,技術人員或作業員可藉此選擇或定義一份處方,該處方可被定義為複合圖像產生處方或鏤空晶圓檢查處方。視實施例詳情而定,複合圖像產生/鏤空晶圓檢查處方可為獨立處方,或納入晶粒分類處方中。因此,晶粒分類及鏤空晶圓檢查處方可包括對應於傳統晶粒分類處方的資料,以及用來產生複合圖像的額外資料,其有助於鏤空晶圓檢查。對於在晶粒分類作業之後用來檢查整批鏤空晶圓的串聯式SWIS 200而言,鏤空晶圓檢查處方通常應該與晶粒分類作業處方同時建立。In one embodiment, the SWIS 200 is coupled in series with a die sorting and visual inspection system 114, which can be presented to the graphical user interface as a visual object (e.g., an icon) that can be selected by a technician or operator. In response to the SWIS setup/configuration program selection, a software module can be executed by which a technician or operator can select or define a prescription that can be defined as a composite image generation prescription or a hollow wafer inspection prescription. Depending on the details of the embodiment, the composite image generation/snap wafer inspection prescription may be an independent prescription or incorporated into a grain classification recipe. Thus, the die classification and hollow wafer inspection recipes can include data corresponding to conventional grain classification recipes, as well as additional data used to generate composite images that help to hollow out wafer inspections. For tandem SWIS 200, which is used to inspect the entire batch of hollow wafers after the die sorting operation, the hollow wafer inspection prescription should normally be established at the same time as the die sorting job prescription.

設定/配置處方至少可包括下列資料中的幾項:Setting/configuring a prescription can include at least a few of the following materials:

(a)晶圓批次資料及考量中批次內的每個晶圓ID;(a) wafer lot data and each wafer ID in the batch in the consideration;

(b)實際晶圓資料,例如:(i)晶圓尺寸;(ii)晶粒尺寸;(iii)晶圓格子資料,包括對應於晶粒列的橫向格線30數量及對應於晶粒行的縱向格線32數量;(b) actual wafer data, such as: (i) wafer size; (ii) grain size; (iii) wafer grid data, including the number of horizontal grid lines 30 corresponding to the grain columns and corresponding to the grain rows The number of vertical grid lines 32;

(c)SWIS圖像拍攝裝置選擇:(c) SWIS image capture device selection:

(i)視圖像解析度而定,相對於晶粒尺寸的相機視野範圍;(i) depending on the resolution of the image, the field of view of the camera relative to the grain size;

(ii)分段圖像重疊程度;以及(ii) the degree of segmentation image overlap;

(iii)已知晶圓尺寸及圖像拍攝裝置視野範圍與解析度的情況下,待拍攝的分段圖像數量;(iii) the number of segmented images to be captured in the case of known wafer size and field of view and resolution of the image capture device;

(d)照明光源選擇及對應的照明參數;(d) illumination source selection and corresponding illumination parameters;

(e)相對於晶圓格子位置的參考原點及/或參考格子位置定義(例如橫向參考線、縱向參考線的位置);(e) a reference origin and/or a reference grid position definition relative to the wafer grid position (eg, a lateral reference line, a position of the longitudinal reference line);

(f)實際晶圓格子上相對於參考原點及/或參考格子位置的第一/起始晶粒座標;(f) a first/starting grain coordinate on the actual wafer grid relative to the reference origin and/or the reference grid position;

(g)實際參考切割晶圓上的預定輔助參考晶粒位置及/或參考特徵位置,相對於實際參考切割晶圓上的參考原點位置、參考格子位置、及/或第一/起始晶粒,在相對編碼器位置偏移或相對(x, y)座標偏移方面的呈現;(g) actual reference to the predetermined auxiliary reference die position and/or reference feature position on the dicing wafer, relative to the reference origin position on the dicing wafer, reference grid position, and/or first/starting crystal Grain, in the form of relative encoder position offset or relative (x, y) coordinate offset;

(h)每個切割晶圓的左邊、右邊、頂端、及底端或周圍邊緣最外側或外圍的k條格線組(例如3、4、或5條格線)相對於切割期間其在膠膜框架12上的方位之絕對及/或相對長度。(h) the left, right, top, and bottom or peripheral edges of each dicing wafer, the outermost or outermost k-line groups (eg, 3, 4, or 5 grid lines) relative to the glue during the cutting The absolute and/or relative length of the orientation on the membrane frame 12.

局部PW圖健全性之查驗Local PW map soundness inspection

再次參見圖9,在一個實施例中,自動化鏤空晶圓檢查程序300包括一第二程序部分304,涉及查驗晶粒分類設備114在目視檢查及分類作業中所使用的局部PW圖之健全性。Referring again to FIG. 9, in one embodiment, the automated hollow wafer inspection process 300 includes a second program portion 304 that relates to verifying the soundness of the local PW map used by the die sorting device 114 in visual inspection and classification operations.

如上文所說明,PW圖是資料檔案或資料集,包含下列資料:(a)實際晶圓上每個有效區域晶粒20的格子位置;(b)針對上述每個晶粒20所進行的電性測試及目視檢查之結果編碼;以及(c)依據每個晶粒20的電性測試及目視檢查結果所分派的一個分類代碼(目的地/箱子號碼)。此資料通常是按照預定資料檔案格式或資料庫格式予以儲存,例如儲存在一個遠離晶粒分類設備114及SWIS 200的主機伺服器的資料庫內。As explained above, the PW map is a data archive or data set containing the following data: (a) the grid position of the die 20 for each active area on the actual wafer; (b) the electricity for each of the die 20 described above. The result of the sex test and the visual inspection code; and (c) a classification code (destination/box number) assigned according to the electrical test and visual inspection result of each die 20. This information is typically stored in a predetermined data file format or database format, such as in a database of host servers remote from the die sorting device 114 and SWIS 200.

一般而言,在開始進行晶粒分類作業之前,會從主機伺服器檢索考量中晶圓批次內每片特定晶圓的一份PW圖副本。進行方式是從主機伺服器分流出主機PW圖數據,並且局部重建及儲存此資料在晶粒分類設備,成為一張局部PW圖。從主機伺服器分流的資料在局部PW圖中解碼及排序的方式取決於解碼協定。通常訂有資料從主機伺服器資料庫分流及排序的協定。在半導體產業中,對於晶圓上晶粒20的資料進行分流(資料串)所使用的協定稱作SECS/GEM(SEMI設備通訊標準/通用設備模型)協定。然而,此協定有八種變化版本,且每種變化版本都會影響已排序資料集在局部PW圖內的排列方式。此外,並非每一台半導體製造設備都遵守此協定。當偏離分流或排序及解碼主機PW圖資料所使用的特定協定或協定變化版本時,所接收的資料將以不同於預期的方式來呈現;亦即將有轉譯錯誤。使用不正確協定或協定變化版本來解碼主機PW圖資料所發生的錯誤,將意味一些晶粒20及那些晶粒20的所有相關資料,對照於實際晶圓,可能已錯誤呈現在局部PW圖中。當局部PW圖所呈現的晶粒20格子位置與實際晶圓(及主機PW圖)進行比對時,將發生錯誤。In general, a copy of a PW map for each particular wafer in the wafer lot in question is retrieved from the host server before starting the die sorting operation. The method is to separate the host PW map data from the host server, and locally reconstruct and store the data in the die sorting device to become a partial PW map. The manner in which data shunted from the host server is decoded and ordered in the local PW map depends on the decoding protocol. There is usually a contract for distributing and sorting data from the host server repository. In the semiconductor industry, the protocol used for shunting (data strings) of the data on the wafers 20 on the wafer is called the SECS/GEM (SEMI Equipment Communication Standard/General Equipment Model) agreement. However, there are eight variants of this agreement, and each variant version affects how the ordered datasets are arranged within the local PW diagram. In addition, not every semiconductor manufacturing equipment complies with this agreement. When deviating from the particular protocol or protocol variant version used to offload or sequence and decode the host PW map material, the received data will be presented in a different manner than expected; there will also be a translation error. Errors in decoding host PW map data using incorrect protocols or protocol variants will mean that some of the dies 20 and all of the relevant data for those dies 20 may have been incorrectly presented in the local PW map against the actual wafer. . An error will occur when the grain 20 grid position presented by the local PW map is compared to the actual wafer (and host PW map).

如此會發生二種後果。第一,按照該錯誤局部PW圖所執行的取放作業可能導致錯誤晶粒20從切割晶圓5被取出,及/或更新檢查結果至局部PW圖的錯誤晶粒位置。第二,將無法藉由簡單比對實際鏤空晶圓10與局部PW圖來偵測取出錯誤,因為晶粒分類設備114將正確執行錯誤指示。This will have two consequences. First, the pick and place operation performed in accordance with the erroneous partial PW map may result in the erroneous die 20 being removed from the dicing wafer 5 and/or updating the inspection result to the erroneous grain position of the local PW map. Second, it will not be possible to detect the fetch error by simply aligning the actual wafer 10 with the local PW map because the die sorting device 114 will correctly perform the error indication.

在各種實施例中,SWIS 200會在執行進一步鏤空檢查作業之前查核局部PW圖的健全性。或者,晶粒分類設備114可在執行晶粒分類作業之前查核局部PW圖的健全性。亦即,視實施例詳情而定,局部PW圖健全性的查核程序可作為SWIS檢查程序的一環,或作為晶粒分類與檢查作業的一環。為了簡明扼要且有助於瞭解起見,下文將描述由SWIS 200查驗局部PW圖的健全性。然而,相關領域的普通技術人員將立即瞭解,健全性查核亦可由晶粒分類設備114在進行晶粒分類作業之前執行,以避免因局部PW圖缺乏健全性所導致的取出錯誤。In various embodiments, the SWIS 200 will check the sanity of the local PW map prior to performing further hollowing inspection operations. Alternatively, the die sorting device 114 may check the soundness of the local PW map before performing the die sorting operation. That is, depending on the details of the embodiment, the check procedure for the soundness of the partial PW map can be used as a part of the SWIS inspection program or as a part of the grain classification and inspection operation. For the sake of brevity and help in understanding, the soundness of the local PW map checked by the SWIS 200 will be described below. However, one of ordinary skill in the relevant art will immediately appreciate that the sanity check may also be performed by the die sorting device 114 prior to performing the die sorting operation to avoid fetch errors due to lack of soundness of the local PW map.

圖10A是按照本發明的實施例由SWIS 200查驗局部PW圖健全性所執行的典型第一程序400之流程圖。在第一程序部分402中,主機伺服器依據其資料庫內容、按照標準檔案格式產生第一資料集,以呈現主機PW圖。為了簡明起見,第一資料集在本文中定義為第一ASCII檔案。因此,第一ASCII檔案是代表主機PW圖。在第二程序部分404中,主機伺服器將第一ASCII檔案儲存在一個可進入SWIS 200的位置。第一ASCII檔案按照主機端晶圓結果資料庫所提供的電性測試結果,表明加工晶圓或切割晶圓5上每個電性不良晶粒的位置或格子位置。在第一ASCII檔案內,加工晶圓上每個位置的電性不良晶粒可由一個數字或數位編碼/數值予以表明,例如「1」,而其他晶粒位置則可由另一個數字或數位編碼/數值予以表明,例如「0」。第一程序400額外包括第二程序部分404,涉及主機系統儲存或傳輸第一ASCII 資料集至某個可進入晶粒分類設備114的位置、位址、或裝置(例如網路磁碟機位置)。FIG. 10A is a flow diagram of a typical first routine 400 performed by SWIS 200 to verify the health of a local PW map in accordance with an embodiment of the present invention. In the first program portion 402, the host server generates a first data set according to its database content in accordance with a standard file format to present a host PW map. For the sake of brevity, the first data set is defined herein as the first ASCII file. Therefore, the first ASCII file represents the host PW map. In the second program portion 404, the host server stores the first ASCII file in a location accessible to the SWIS 200. The first ASCII file is based on the electrical test results provided by the host-side wafer result database, indicating the position or grid position of each of the electrically defective grains on the processed wafer or the diced wafer 5. In the first ASCII file, the defective dies at each location on the processed wafer can be indicated by a digital or digital code/value, such as "1", while other die positions can be encoded by another digital or digital code. The value indicates, for example, "0". The first program 400 additionally includes a second program portion 404 that relates to the host system storing or transmitting the first ASCII data set to a location, address, or device (e.g., network drive location) accessible to the die sorting device 114. .

圖10B是按照本發明的實施例查驗局部PW圖健全性所執行的典型第二程序410之流程圖。第二健全性查驗程序410可由SWIS 200執行,不需在主機端數據格式與晶粒分類設備數據格式之間轉譯。在各種實施例中,第二健全性查驗程序410包括第一程序部分412,涉及SWIS 200檢索或進入考量中加工晶圓的局部PW圖;以及第二程序步驟414,涉及產生第二ASCII檔案。在第二ASCII檔案內,加工晶圓上的電性不良晶粒位置可由一個數字或數位代碼或數值予以表明,例如「1」,而其他晶粒位置則可由另一個數字或數位代碼或數值予以表明,例如「0」。第二ASCII檔案內對於電性不良晶粒位置的數字或數位編碼/數值類型對應或符合第一ASCII檔案內對於電性不良晶粒位置的數字或數位編碼/數值類型。FIG. 10B is a flow diagram of a typical second routine 410 performed to verify the health of a local PW map in accordance with an embodiment of the present invention. The second sanity check procedure 410 can be performed by the SWIS 200 without translating between the host side data format and the die sorting device data format. In various embodiments, the second sanity inspection program 410 includes a first program portion 412 that involves the SWIS 200 retrieving or entering a partial PW map of the processed wafer in consideration; and a second program step 414 involving generating a second ASCII file. In the second ASCII file, the location of the defective die on the processed wafer can be indicated by a digital or digital code or value, such as "1", while other die positions can be represented by another digital or digital code or value. Indicates, for example, "0". The digital or digital code/value type for the location of the electrically defective die in the second ASCII file corresponds to or conforms to the digital or digital code/value type for the location of the defective die in the first ASCII file.

第二健全性查驗程序410進一步包括第三程序部分416,涉及SWIS 200從主機系統儲存第一ASCII檔案的位置或位址檢索第一ASCII檔案;第四程序部分418,涉及SWIS 200比對第一ASCII檔案與第二ASCII檔案的數據內容;以及第五程序部分420,涉及SWIS 200確定第一與第二ASCII檔案在表明考量中加工晶圓上電性不良晶粒的相同位置方面是否相符。第四程序部分418可涉及一或多項數學作業,例如從一個資料集中減去另一個資料集,其方式為相關領域的普通技術人員所立即瞭解。The second sanity check program 410 further includes a third program portion 416 that involves the SWIS 200 retrieving the first ASCII file from the location or address at which the host system stores the first ASCII file; the fourth program portion 418, which relates to the SWIS 200 comparison first. The data content of the ASCII file and the second ASCII file; and the fifth program portion 420, which relates to the SWIS 200 determining whether the first and second ASCII files match in the same position indicating that the wafer is not properly printed on the wafer. The fourth program portion 418 can involve one or more mathematical tasks, such as subtracting another data set from one data set, as will be immediately apparent to one of ordinary skill in the relevant art.

若第一與第二ASCII檔案在表明考量中加工晶圓上所有電性不良晶粒的對應晶粒位置方面相符,第六程序部分422便會確認局部PW圖相對於主機PW圖呈現健全性,及/或接受局部PW圖,使得進一步作業可依據局部PW圖進行或繼續,包括鏤空晶圓檢查作業。If the first and second ASCII files match the corresponding die positions of all the defective dies on the processed wafer in the consideration, the sixth program portion 422 confirms that the local PW map is sounder relative to the host PW map. And/or accepting a partial PW map such that further work can be performed or continued in accordance with the local PW map, including hollowing out wafer inspection operations.

若第一ASCII檔案與第二ASCII檔案在表明加工晶圓上電性不良晶粒的相同晶粒位置方面不相符,則考量中的局部PW圖已損壞。第二健全性查驗程序410可相應包括第七程序部分430,涉及SWIS 200將局部PW圖標示為不正確,以及第八程序部分432,涉及SWIS 200傳輸加工圖錯誤訊息或通知至主機系統。視實施例詳情而定,加工圖錯誤訊息可包括第二ASCII檔案,或提及參照第二ASCII檔案所在的主機存取位置(例如網路磁碟機位置),以便進行進一步錯誤分析。If the first ASCII file and the second ASCII file do not match the same grain position indicating that the wafer is poorly grown, the local PW pattern in the consideration is damaged. The second sanity check program 410 can accordingly include a seventh program portion 430 that involves the SWIS 200 displaying the partial PW icon as incorrect, and an eighth program portion 432 that involves the SWIS 200 transmitting a process map error message or notification to the host system. Depending on the details of the embodiment, the pattern error message may include a second ASCII file or reference to a host access location (eg, a network drive location) with reference to the second ASCII file for further error analysis.

第二健全性查驗程序410亦可包括第九程序部分434,涉及SWIS 200傳輸分類代碼組至主機系統;以及第十程序部分436,涉及主機系統依據考量中加工晶圓的主機端晶圓結果資料庫資料及所接收的分類代碼,產生經矯正的局部PW圖。在各種實施例中,經矯正的局部PW圖是一個ASCII檔案,其針對每個加工或切割晶圓晶粒位置表明,留在晶粒位置的晶粒20應該:(a)避免取出,導致鏤空晶圓10上該晶粒位置的留下晶粒50;或是(b)取出,導致鏤空晶圓10上空缺的晶粒位置52。在經矯正的局部PW圖內,對應於電性良好晶粒20、應取出的晶粒位置或格子位置可以一個數位代碼或數值表明,例如「0」;而對應於電性不良晶粒20、應避免取出的晶粒位置或格子位置可以另一個數位代碼或數值表明,例如「1」。最後,第二健全性查驗程序410進一步包括第十一程序部分438,涉及主機系統傳輸經矯正的局部PW圖至晶粒分類設備114;或主機系統將經矯正的局部PW圖儲存至某個可進入SWIS 200的位置、位址、或裝置,以及傳輸對應的訊息或通知至SWIS 200。The second soundness verification program 410 can also include a ninth program portion 434, which relates to the SWIS 200 transmission classification code group to the host system; and a tenth program portion 436, which relates to the host system wafer result data of the processing system based on the host system. The library data and the received classification code produce a corrected partial PW map. In various embodiments, the corrected local PW map is an ASCII archive indicating that the grain position of each processed or diced wafer indicates that the die 20 remaining at the grain location should: (a) avoid removal, resulting in hollowing out The grain position of the wafer 10 remains on the wafer 10; or (b) is removed, resulting in a grain location 52 that is vacant on the wafer 10. In the corrected local PW diagram, corresponding to the electrically good crystal grain 20, the grain position or lattice position to be taken out may be represented by a digit code or numerical value, for example, “0”; and corresponding to the electrically defective crystal grain 20, The grain position or grid position that should be avoided should be indicated by another digit code or value, such as "1". Finally, the second soundness verification program 410 further includes an eleventh program portion 438 that involves the host system transmitting the corrected partial PW map to the die sorting device 114; or the host system stores the corrected partial PW map to a certain Enter the location, address, or device of the SWIS 200, and transmit a corresponding message or notification to the SWIS 200.

分段圖像之拍攝與複合圖像之產生Segmentation image capture and composite image generation

圖9的自動化鏤空晶圓檢查程序300進一步包括第三程序部分310,涉及將鏤空晶圓10定位在SWIS圖像拍攝裝置220下方。在SWIS 200與晶粒分類設備114整合或串聯的實施例中,第三程序部分310涉及在晶粒分類設備114完成晶粒分類作業之後,立即移動晶粒分類設備114與SWIS 200共用的擴展台210至SWIS圖像拍攝裝置200下方的預定位置。在SWIS 200未與晶粒分類設備114串聯的實施例中,第三程序部分310涉及至少提供一片鏤空晶圓10至SWIS 200,例如經由一個容納鏤空晶圓10所在膠膜框架12的盒子;轉移膠膜框架12至SWIS 擴展台210,例如經由機械手臂;施加真空至膠膜框架12;再度拉伸膠膜11達某個預定量;以及移動擴展台210的位置,使得其被擺放在SWIS圖像拍攝裝置220下方的預定位置。The automated hollow wafer inspection process 300 of FIG. 9 further includes a third program portion 310 that involves positioning the hollow wafer 10 below the SWIS image capture device 220. In an embodiment in which the SWIS 200 is integrated or in series with the die sorting device 114, the third program portion 310 involves moving the die sharing device 114 and the SWIS 200 common extension station immediately after the die sorting device 114 completes the die sorting operation. 210 to a predetermined position below the SWIS image capturing device 200. In an embodiment where the SWIS 200 is not in series with the die sorting device 114, the third program portion 310 involves providing at least one hollow wafer 10 to the SWIS 200, such as via a box containing the film frame 12 in which the hollow wafer 10 is located; The film frame 12 to the SWIS extension 210, for example via a robotic arm; applying a vacuum to the film frame 12; re-stretching the film 11 to a predetermined amount; and moving the position of the extension table 210 such that it is placed on the SWIS A predetermined position below the image capturing device 220.

如圖9第四程序部分312所示,一旦擴展台210被定位在SWIS圖像拍攝裝置200下方,SWIS圖像拍攝裝置200便可按照上文所述的特定照明參數,啟動第一及/或第二組照明光源230, 232,之後當擴展台210如圖9第五程序部分314所示,按照預定分段圖像拍攝模式位移時,SWIS 200便可開始拍攝鏤空晶圓10的分段圖像。As shown in the fourth program portion 312 of FIG. 9, once the extension station 210 is positioned below the SWIS image capture device 200, the SWIS image capture device 200 can initiate the first and/or in accordance with the particular illumination parameters described above. The second set of illumination sources 230, 232, then when the extension station 210 is displaced in accordance with the predetermined segmentation image capture mode as shown in the fifth program portion 314 of FIG. 9, the SWIS 200 can begin to take a segmentation map of the hollow wafer 10. image.

圖11A與11B是按照本發明的實施例由SWIS圖像拍攝裝置220拍攝鏤空晶圓10的一組分段圖像900a-i以便產生複合圖像1000的典型方法之示意圖。在各種實施例中,每張分段圖像900a-i係對應於數學或幾何周邊的特定區域或部分,例如包圍(例如環繞且稍大於)鏤空晶圓10的邊框950。舉例而言,在用來拍攝多張分段圖像900a-i的實施例中,每張分段圖像900a-i可對應於邊框面積的預定片段,例如邊框面積的1/36, 1/25, 1/16, 1/9, 1/4或1/2。11A and 11B are schematic illustrations of a typical method of capturing a set of segmented images 900a-i of a hollow wafer 10 by SWIS image capture device 220 to produce a composite image 1000, in accordance with an embodiment of the present invention. In various embodiments, each segmented image 900a-i corresponds to a particular region or portion of a mathematical or geometric perimeter, such as a bezel 950 that encloses (eg, wraps around and is slightly larger than) the hollow wafer 10. For example, in an embodiment for capturing a plurality of segmented images 900a-i, each segmented image 900a-i may correspond to a predetermined segment of the border area, such as 1/36 of the border area, 1/ 25, 1/16, 1/9, 1/4 or 1/2.

每張分段圖像900a-i皆包括圖像資料,對應於鏤空晶圓10相對於SWIS圖像拍攝裝置220的特定位置,其方式為相關領域的普通技術人員所立即瞭解。視晶圓尺寸、晶粒尺寸、以及圓形/大致圓形的鏤空晶圓10相對於SWIS圖像拍攝裝置220的位置而定,每張分段圖像900a-i所包括的圖像資料可對應於許多晶粒20,例如數十、數百、或上千個晶粒20。圖像拍攝裝置220的視野範圍僅需足夠拍攝每張分段圖像900a-i即可。如圖11A所示,第一照明光源組230是用來引導照明跨越切割晶圓下側的空間部分,其通常稍微大於(至少一樣大)任何分段圖像所拍攝邊框950的預定片段區域(對應於SWIS圖像拍攝裝置視野範圍)。Each segmented image 900a-i includes image material corresponding to a particular location of the hollow wafer 10 relative to the SWIS image capture device 220 in a manner that is immediately apparent to those of ordinary skill in the relevant art. Depending on the wafer size, grain size, and the position of the circular/substantially circular hollow wafer 10 relative to the position of the SWIS image capture device 220, the image data included in each of the segmented images 900a-i may be Corresponding to many grains 20, such as tens, hundreds, or thousands of grains 20. The field of view of the image capture device 220 need only be sufficient to capture each segmented image 900a-i. As shown in FIG. 11A, the first illumination source set 230 is a portion of the space used to direct illumination across the underside of the cut wafer, which is typically slightly larger (at least as large) as a predetermined segment of the border 950 of any segmented image ( Corresponds to the field of view of the SWIS image capture device).

一般而言,待拍攝的分段圖像900a-i數量取決於一些係數,例如:(a)晶圓尺寸;(b)晶粒尺寸;(c) SWIS圖像拍攝裝置200的特性,例如解析度(通常固定)及視野範圍(通常可調);以及(d)運用圖像處理準確可靠地確定每個格子位置的晶粒存在50或晶粒空缺52所需的複合圖像解析度。在所示典型的實施例中,一共顯示九張分段圖像900a-i,因此,每張分段圖像900a-i對應於邊框950總面積的1/9。在某些實施例中,分段圖像組900是單一圖像,亦即一張分段圖像本身直接作為鏤空晶圓10的複合圖像。In general, the number of segmented images 900a-i to be captured depends on a number of coefficients, such as: (a) wafer size; (b) grain size; (c) characteristics of the SWIS image capture device 200, such as analysis Degree (usually fixed) and field of view (usually adjustable); and (d) image processing to accurately and reliably determine the composite image resolution required for grain presence 50 or grain vacancy 52 at each lattice location. In the exemplary embodiment shown, a total of nine segmented images 900a-i are displayed, such that each segmented image 900a-i corresponds to 1/9 of the total area of the bezel 950. In some embodiments, the segmented image set 900 is a single image, that is, a segmented image itself directly acts as a composite image of the hollowed out wafer 10.

一旦SWIS 200拍攝完分段圖像組900時,SWIS 200便可經由數位方式或演算法,將分段圖像900拼接起來,以形成複合圖像1000,如圖9第六程序部分320所示。為了便於分段圖像拼接,在各種實施例中,每張分段圖像900與其相鄰最接近的分段圖像900(例如考量中分段圖像900的上方、下方及旁邊)重疊達某個預定量。重疊的程度取決於圖像處理演算法能識別任何二張重疊最接近分段圖像900的重疊晶粒特徵(例如晶粒邊緣)之準確程度,使得這些重疊分段圖像900的共同晶粒特徵能夠可靠地相符。通常重疊的程度等於或大約等於一個晶粒尺寸,但並非必須重疊此尺寸。若晶粒20的一或多個部分具有足夠的特徵,使得一張分段圖像900內的晶粒邊緣、邊界、結構、或特徵可與重疊最接近分段圖像900的相同晶粒邊緣、邊界、結構、或特徵正確對齊,則重疊程度可更小。重疊的程度取決於對應於相同晶粒20上相同特徵的重疊畫素可準確相符的程度,而在某些實施例中,分段圖像重疊可小於一個晶粒尺寸。Once the SWIS 200 has taken the segmented image set 900, the SWIS 200 can stitch the segmented images 900 through a digital manner or algorithm to form a composite image 1000, as shown in the sixth program portion 320 of FIG. . To facilitate segmented image stitching, in various embodiments, each segmented image 900 overlaps with its neighboring closest segmented image 900 (eg, above, below, and adjacent to the segmented image 900 in question). a predetermined amount. The degree of overlap depends on the accuracy with which the image processing algorithm can identify any two overlapping overlapping grain features (e.g., grain edges) that are closest to the segmented image 900 such that the common grains of these overlapping segmented images 900 Features can be reliably matched. Usually the degree of overlap is equal to or approximately equal to one grain size, but it is not necessary to overlap this size. If one or more portions of the die 20 have sufficient features such that the grain edges, boundaries, structures, or features within a segmented image 900 can overlap the same grain edge that is closest to the segmented image 900 If the boundaries, structures, or features are properly aligned, the degree of overlap can be smaller. The degree of overlap depends on the extent to which the overlapping pixels corresponding to the same features on the same die 20 can exactly match, while in some embodiments, the segmented image overlap can be less than one grain size.

除了上文所述以外,在拍攝每張分段圖像900時,可使用邊框950周圍內對應於擴展台210相對位置的編碼器資料,以數位方式將分段圖像900拼接起來。依據該編碼器資料,SWIS 200可:(a)確定每張分段圖像900的中心及拍攝每張分段圖像900之間所行經的相對距離,以及(b)以數位方式將每張分段圖像900定位且拼接或結合起來。嚴格來說,不需使用此技術作分段圖像重疊。然而,為了達到更大精確度,在某些實施例中,SWIS 200可在拍攝每張分段圖像時,結合(a)成像處理演算法及(b)擴展台編碼器資料,以數位方式將分段圖像900拼接起來。在上述實施例中,可縮小分段圖像900之間的重疊程度。In addition to the above, when each segmented image 900 is captured, the segmented image 900 can be stitched in a digital manner using encoder data corresponding to the relative position of the extension table 210 within the perimeter of the bezel 950. Based on the encoder data, the SWIS 200 can: (a) determine the center of each segmented image 900 and the relative distance traveled between each segmented image 900, and (b) digitally place each The segmented images 900 are positioned and stitched or combined. Strictly speaking, this technique is not required for segmentation image overlap. However, in order to achieve greater precision, in some embodiments, the SWIS 200 can combine (a) an imaging processing algorithm and (b) an extended station encoder data in a digital manner when capturing each segmented image. The segmented images 900 are stitched together. In the above embodiment, the degree of overlap between the segment images 900 can be reduced.

典型的複合圖像產生程序Typical composite image generation program

圖12是按照本發明實施例的典型複合圖像產生程序500之流程圖。在一個實施例中,複合圖像產生程序500包括第一程序部分502,涉及選擇第一分段圖像900a,以及第二程序部分504,涉及選擇一或多張鄰近第一分段圖像的額外分段圖像900b,f。第三程序部分506涉及經由圖像處理作業來識別周圍參考特徵,例如格線及/或相鄰分段圖像900a,b,f所共用的晶粒邊緣或邊界(例如沿著某個區段晶粒行列的多個晶粒邊緣)。第四程序部分508涉及以數位方式沿著共用或共同周圍參考特徵來配準或對齊考量中的相鄰分段圖像900a,b,f。第五程序部分510涉及儲存經配準的分段圖像組900a,b,f作為中間圖像,以及第六程序部分512,涉及確定是否需作相對於中間圖像的額外分段圖像分析及配準/對齊。若是,則複合圖像產生程序500回到第二程序部分504,以選擇一或多張最接近或鄰近中間圖像的其他分段圖像900,使得一或多張額外分段圖像900可對齊並融入中間圖像。一旦一組跨越整片切割晶圓或鏤空晶圓表面積的分段圖像900完成考量,複合圖像產生程序500便指定或儲存最當前的中間圖像作為複合圖像。Figure 12 is a flow diagram of a typical composite image generation program 500 in accordance with an embodiment of the present invention. In one embodiment, composite image generation program 500 includes a first program portion 502 that involves selecting a first segmented image 900a, and a second program portion 504 that involves selecting one or more adjacent first segmented images. Additional segmented image 900b, f. The third program portion 506 relates to identifying surrounding reference features, such as grid lines and/or grain edges or boundaries shared by adjacent segment images 900a, b, f via image processing jobs (eg, along a certain segment) Multiple grain edges of the grain matrix). The fourth program portion 508 involves registering or aligning adjacent segment images 900a, b, f in consideration along a shared or common surrounding reference feature in a digital manner. The fifth program portion 510 relates to storing the registered segmented image groups 900a, b, f as intermediate images, and a sixth program portion 512 relating to determining whether additional segmentation image analysis is required relative to the intermediate image. And registration/alignment. If so, the composite image generation program 500 returns to the second program portion 504 to select one or more other segmented images 900 that are closest or adjacent to the intermediate image such that the one or more additional segmented images 900 can be Align and blend into the middle image. Once a set of segmented images 900 spanning the entire wafer dicing wafer or hollowed out wafer surface area is considered, the composite image generation program 500 specifies or stores the most current intermediate image as a composite image.

在拼接分段圖像900之後,整片鏤空晶圓10的準確複合圖像1000便形成了,其準確呈現出鏤空晶圓10上每個留下的晶粒50及每個空缺的晶粒位置52的相對位置。After splicing the segmented image 900, an accurate composite image 1000 of the entire stenciled wafer 10 is formed, which accurately presents each of the remaining dies 50 on the vented wafer 10 and the die position of each vacancy The relative position of 52.

找出複合圖像內的第一/起始晶粒位置Find the first/starting grain position in the composite image

在各種實施例中,在複合圖像1000的畫素區域可針對對應的晶粒位置作相對於局部PW圖資料的分析之前,SWIS 200先確定複合圖像畫素區域內代表第一/起始晶粒的預定畫素位置或區域。因此,再度參見圖9,程序300包括第七程序部分330,涉及識別複合圖像內的第一/起始晶粒位置。In various embodiments, before the pixel region of the composite image 1000 can be analyzed for the corresponding grain position relative to the local PW map data, the SWIS 200 first determines that the composite image pixel region represents the first/start The predetermined pixel location or area of the die. Thus, referring again to Figure 9, the routine 300 includes a seventh program portion 330 that relates to identifying a first/starting die position within the composite image.

預定的第一/起始晶粒畫素位置可對應於第一/起始晶粒的中心,或是第一/起始晶粒的特定角落。此預定畫素位置可經由上述一或多種方式予以確定,例如透過圖像處理技術的使用,以數位方式:(a)識別複合圖像1000內的參考原點(例如對應於鏤空晶圓10的中心,或是橫向參考線與縱向參考線的交點),並確定第一/起始晶粒相對於參考原點的預定位置;及/或(b)重建鏤空晶圓的格子佈局並依據此重建佈局來識別參考格子位置,並確定第一/起始晶粒相對於參考格子位置的預定位置。The predetermined first/starting grain pixel position may correspond to the center of the first/starting die or a particular corner of the first/starting die. The predetermined pixel location may be determined via one or more of the above methods, such as by the use of image processing techniques, in a digital manner: (a) identifying a reference origin within the composite image 1000 (eg, corresponding to the hollow wafer 10) a center, or the intersection of the lateral reference line and the longitudinal reference line), and determining a predetermined position of the first/starting die relative to the reference origin; and/or (b) reconstructing the lattice layout of the hollowed wafer and reconstructing therefrom The layout identifies the reference grid location and determines a predetermined location of the first/starting die relative to the reference grid location.

分析複合圖像與識別晶粒取出錯誤Analysis of composite images and identification of crystal removal errors

一旦確定複合圖像1000內第一/起始晶粒的畫素位置時,SWIS 200便可分析複合圖像1000內對應於每個有效區域晶粒位置的畫素區域,如圖9的第八程序部分340所示。依據此分析,SWIS 200可針對每個上述晶粒位置確定,複合圖像是表明鏤空晶圓10上的晶粒存在50或是晶粒空缺52。在各種實施例中,針對每個有效區域晶粒位置所作的畫素區域分析,SWIS 200會產生一張鏤空晶圓選取圖,並註明晶粒存在或晶粒空缺標示或代碼。以此方式,鏤空晶圓選取圖針對每個有效區域晶粒位置指出或以代碼表明,是留下的晶粒50出現在鏤空晶圓10上,或是該晶粒位置空缺52。鏤空晶圓選取圖可為一個資料檔案,例如一個ASCII檔案,其按照預定格式編排,使得裡面的資料內容可與局部PW圖裡的資料作有效比對。Once the pixel position of the first/starting grain in the composite image 1000 is determined, the SWIS 200 can analyze the pixel region corresponding to the grain position of each effective region in the composite image 1000, as shown in FIG. Program portion 340 is shown. Based on this analysis, the SWIS 200 can be determined for each of the above-described die positions, and the composite image is indicative of a grain presence 50 or a grain void 52 on the hollow wafer 10. In various embodiments, for each pixel region analysis of the effective region grain position, the SWIS 200 will generate a hollow wafer pick pattern with an indication of the presence or grain vacancy indication or code. In this manner, the hollow wafer pick pattern is indicated or coded for each active area die position, either that the remaining die 50 is present on the hollow wafer 10 or that the die location is vacant 52. The hollow wafer selection map can be a data file, such as an ASCII file, which is arranged in a predetermined format so that the contents of the data can be effectively compared with the data in the local PW map.

在SWIS 200產生鏤空晶圓選取圖並針對每個有效區域晶粒位置註明晶粒存在及晶粒空缺標示之後,SWIS 200可針對上述晶粒位置比對鏤空晶圓選取圖與局部PW圖數據,以確定這些晶粒位置是否發生任何晶粒取出錯誤,如圖9的第九與第十程序部分350, 352所示。After the SWIS 200 generates a hollow wafer selection map and indicates the presence of the die and the vacancy indication for each effective region die position, the SWIS 200 can compare the wafer selection map and the local PW map data for the above-described die position comparison. To determine if any grain removal errors have occurred at these die locations, as shown in the ninth and tenth program portions 350, 352 of FIG.

圖13是按照本發明實施例產生鏤空晶圓選取圖及識別晶粒取出錯誤的典型程序600之流程圖。在一個實施例中,程序600包括第一程序部分602,涉及選擇複合圖像1000內的第一/起始晶粒位置或下一個/接續的晶粒位置(例如直接相鄰的晶粒位置)。選擇第一/起始晶粒位置可包括選擇複合圖像畫素區域內代表第一/起始晶粒的已知畫素位置,例如對應於第一/起始晶粒中心的畫素位置,或是起始晶粒的預定角落。選擇下一個/接續的晶粒位置可包括從當前或最近的複合圖像晶粒位置移動預定的圖像空間晶粒分隔距離,亦即預定的畫素數量,移動方向對應於有效區域晶粒位置:(a)在晶圓上的實際編排方式,以及(b)在局部PW圖內的測序或排序方式。13 is a flow diagram of a typical process 600 for generating a hollow wafer selection map and identifying a die removal error in accordance with an embodiment of the present invention. In one embodiment, the routine 600 includes a first program portion 602 that relates to selecting a first/starting die location or a next/continuous die location within the composite image 1000 (eg, directly adjacent die locations) . Selecting the first/starting grain position may include selecting a known pixel location within the composite image pixel region representing the first/starting grain, such as a pixel location corresponding to the first/starting grain center, Or the predetermined corner of the starting die. Selecting the next/continuous die position may include shifting a predetermined image space die separation distance from the current or most recent composite image die position, that is, a predetermined number of pixels, the moving direction corresponding to the effective region die position : (a) the actual arrangement on the wafer, and (b) the sequencing or sequencing in the local PW diagram.

一般而言,定義出圖像空間中晶粒間分隔的預定畫素距離係對應於實際晶粒尺寸及鏤空晶圓切割溝槽或格線30, 32的實際寬度,且係依據晶圓的實際佈局、承載切割晶圓5的膠膜11被拉伸的程度、以及SWIS圖像拍攝裝置220的解析度。如相關領域的普通技術人員所將瞭解,由於膠膜11拉伸,鏤空晶圓切割溝槽或格線30, 32的實際寬度大於未切割晶圓格線30, 32的實際寬度。在各種實施例中,鏤空晶圓格線30, 32的畫素寬度可經由傳統圖像處理技術予以確定,例如,與複合圖像1000內第一/起始晶粒的畫素位置之確定結合起來。In general, the predetermined pixel distance defining the inter-die separation in the image space corresponds to the actual grain size and the actual width of the trench-cut trench or grid lines 30, 32, and is based on the actual wafer. The layout, the extent to which the film 11 carrying the dicing wafer 5 is stretched, and the resolution of the SWIS image capturing device 220. As will be appreciated by those of ordinary skill in the relevant art, the actual width of the hollowed wafer trench or grid lines 30, 32 is greater than the actual width of the uncut wafer grids 30, 32 due to the stretch of the film 11. In various embodiments, the pixel width of the hollowed-wafer grid lines 30, 32 can be determined via conventional image processing techniques, for example, in conjunction with the determination of the pixel position of the first/starting grain within the composite image 1000. stand up.

程序600包括第二程序部分604,涉及分析畫素區域內對應於當前所選擇晶粒位置的畫素強度,並以數學方式確定此畫素區域內畫素的平均、中位、或其他統計學上的強度。第三程序部分606,涉及依據以數學方式所確定的此強度,確定當前晶粒位置是晶粒存在50或晶粒空缺52。如上文所述,晶粒存在50將對應於第一平均強度,而晶粒空缺52將對應於第二平均強度,且第二平均強度明顯不同於(例如大於)第一平均強度。The program 600 includes a second program portion 604 that relates to analyzing pixel intensities corresponding to the currently selected grain position within the pixel region and mathematically determining the average, median, or other statistically significant of the pixels within the pixel region. Strength of. The third program portion 606 is operative to determine that the current grain position is a grain presence 50 or a grain vacancy 52 based on the mathematically determined intensity. As described above, the grain presence 50 will correspond to the first average intensity, while the grain void 52 will correspond to the second average intensity, and the second average intensity will be significantly different (eg, greater than) the first average intensity.

第四程序部分608涉及在對應於考量中晶粒位置的鏤空晶圓選取圖位置上儲存晶粒存在標示或晶粒空缺標示。為了有助於進一步瞭解,再度參見圖7A與7B以及圖7C。如上文所述,圖7A顯示鏤空晶圓10的典型複合圖像1000;圖7B顯示鏤空晶圓複合圖像1000的放大部分1002,其對應於鏤空晶圓格子位置的一個2 x 7 陣列,彼此以橫向及縱向格線30, 32界定出來。圖7C表明典型的部分鏤空晶圓選取圖1100內的典型數位編碼,其對應於複合圖像1000的放大部分1002。The fourth program portion 608 relates to storing a grain presence indication or a grain vacancy indication at a hollow wafer pick pattern location corresponding to the grain position in the consideration. For further understanding, see Figures 7A and 7B and Figure 7C again. As described above, FIG. 7A shows a typical composite image 1000 of the hollowed out wafer 10; FIG. 7B shows an enlarged portion 1002 of the hollowed-wafer composite image 1000, which corresponds to a 2 x 7 array of hollowed-wafer lattice locations, It is defined by horizontal and vertical grid lines 30, 32. FIG. 7C illustrates a typical digitally encoded code within a typical partially hollowed wafer selection map 1100 that corresponds to the enlarged portion 1002 of the composite image 1000.

更具體言之,在複合圖像1000的放大部分1002中,總計有五個複合圖像格子位置表明晶粒存在50;總計有九個複合格子位置表明晶粒空缺52。與此相對應,對於鏤空晶圓選取圖1100內對應於特定複合圖像格子位置的任何數據域組,晶粒存在50是以一個數位代碼或數值表明,例如「1」;而晶粒空缺52是以另一個數位代碼或數值表明,例如「0」。以此方式,對於複合圖像1000放大部分1002中含有留下的晶粒50的每個格子位置,鏤空晶圓選取圖1100是以數位「1」來表示該格子位置上留下的晶粒50。相仿地,對於複合圖像1000放大部分1002裡晶粒空缺52的每個格子位置,鏤空晶圓選取圖1100是以數位「0」來表示該空缺晶粒位置52。More specifically, in the enlarged portion 1002 of the composite image 1000, a total of five composite image lattice positions indicate that the crystal grains exist 50; a total of nine composite lattice positions indicate the grain voids 52. Correspondingly, for any data domain group in the map 1100 corresponding to a particular composite image grid position, the die presence 50 is indicated by a digit code or value, such as "1"; and the die vacancy 52 It is indicated by another digit code or value, such as "0". In this manner, for each lattice position of the enlarged image portion 1002 containing the remaining crystal grains 50 in the composite image 1000, the hollow wafer selection pattern 1100 represents the crystal grains 50 left at the lattice position by a digit "1". . Similarly, for each lattice position of the die vacancy 52 in the enlarged portion 1002 of the composite image 1000, the hollow wafer selection map 1100 represents the vacant die position 52 by a digit "0".

再度參見圖13,第五程序部分610涉及確定複合圖像1000內的每個有效區域晶粒位置是否皆已進行過晶粒存在50或晶粒空缺52的考量及分析。若否,則程序600回到第一程序部分602。Referring again to FIG. 13, the fifth program portion 610 is directed to determining whether or not the grain location of each active region within the composite image 1000 has been subjected to grain presence 50 or grain vacancy 52. If no, the routine 600 returns to the first program portion 602.

一旦考量過每個有效區域晶粒位置時,程序600包括第六程序部分 620,涉及比對鏤空晶圓選取圖1100的晶粒存在及晶粒空缺標示與對應晶粒位置的局部PW圖數據,藉此確定是否發生晶粒取出錯誤。對於任何特定的有效區域晶粒位置而言,若鏤空晶圓選取圖1100的晶粒存在或空缺標示與表明該晶粒位置晶粒存在或空缺的局部PW圖數據之間有不一致之處,意味著已發生晶粒取出錯誤。程序600可進一步包括第七程序部分622,涉及產生及儲存晶粒取出/選取錯誤圖,其識別或以代碼表明哪些鏤空晶圓晶粒位置已發生晶粒取出錯誤。在各種實施例中,晶粒選取錯誤圖為整片鏤空晶圓10提供一組數位編碼,該數位編碼表明:(a)晶粒20應該從切割晶圓5被選取但卻不正確地留在鏤空晶圓10上的每個格子位置;以及(b)應留下的晶粒50但卻空缺的每個格子位置。Once the effective area die position is considered, the routine 600 includes a sixth program portion 620 that involves comparing the die presence and die vacancy designation of the wafer 1100 to the local PW map data for the corresponding die position. Thereby determining whether a grain removal error has occurred. For any particular effective area grain position, if there is an inconsistency between the presence or absence of a grain in the wafer selection pattern 1100 and the local PW pattern data indicating the presence or absence of a grain in the grain location, A grain removal error has occurred. The routine 600 can further include a seventh program portion 622 that involves generating and storing a die extraction/selection error map that identifies or indicates in code which of the hollow wafer die locations have undergone a die removal error. In various embodiments, the die selection error map provides a set of digital coded for the entire hollow wafer 10, the digital code indicating that: (a) the die 20 should be selected from the dicing wafer 5 but not properly left in Each grid position on the wafer 10 is hollowed out; and (b) each grid position of the die 50 that is left but vacant.

在某些實施例中,第六程序部分620涉及比對鏤空晶圓選取圖每個晶粒位置的晶粒存在/空缺標示與對應晶粒位置的局部PW圖數據。依據該比對結果,SWIS 200可產生晶粒取出錯誤圖。在其他實施例中,SWIS 200可直接從局部PW圖數據本身產生預定選取圖,其中的預定選取圖係依據局部PW圖數據來表明預定的晶粒存在50及預定的晶粒空缺52,且係按照鏤空晶圓選取圖1100所使用的相同編碼方案(亦即相同的晶粒存在及晶粒空缺標示)。在上述實施例中,SWIS 200只需從預定選取圖減去鏤空晶圓選取圖1100(或反之)便可產生晶粒取出錯誤圖,藉此確定是否已發生晶粒取出錯誤。相減之後,晶粒取出錯誤圖內任何晶粒位置的任何非零結果,皆表明該晶粒位置已發生晶粒取出錯誤。In some embodiments, the sixth program portion 620 is directed to comparing the local PW map data for the die presence/vacancy design and the corresponding die position for each grain location of the hollow wafer pick pattern. Based on the comparison result, the SWIS 200 can generate a grain removal error map. In other embodiments, the SWIS 200 may generate a predetermined selection map directly from the local PW map data itself, wherein the predetermined selection map indicates the predetermined grain presence 50 and the predetermined grain vacancy 52 based on the local PW map data, and is The same coding scheme used in Figure 1100 (i.e., the same die presence and die vacancy designation) is selected for the hollow wafer. In the above embodiment, the SWIS 200 simply subtracts the hollow wafer selection map 1100 from the predetermined selection map (or vice versa) to generate a die extraction error map, thereby determining whether a grain removal error has occurred. After subtraction, any non-zero result of any grain position in the die extraction error map indicates that a grain removal error has occurred at the die position.

再度參見圖9,程序300可包括第十一程序部分360,涉及傳輸晶粒取出錯誤資料,例如晶粒取出錯誤圖,至一或多個其他目的地或系統;及/或儲存晶粒取出錯誤圖在某個可進入另一設備或系統的位置等(例如以資料檔案儲存在區域或網路磁碟機)。儲存或傳輸晶粒選取錯誤圖數據或晶粒空缺錯誤標示,有助於晶粒分類錯誤矯正作業,例如,從僅預定容納電性良好且目視合格的晶粒26的捲帶或其他目的地,取回電性不良晶粒24及/或電性良好但目視不合格的晶粒25。Referring again to FIG. 9, the routine 300 can include an eleventh program portion 360 that involves transmitting a die fetch error data, such as a die fetch error map, to one or more other destinations or systems; and/or storing a die fetch error. The figure is in a location where another device or system can be accessed (for example, in a data file stored in a regional or network drive). Storing or transmitting die-selection error map data or die vacancy error flags facilitates grain classification error correction operations, for example, from tape or other destinations that are only intended to accommodate well-qualified and visually acceptable dies 26 The defective crystal grains 24 and/or the crystal grains 25 which are electrically good but are visually unacceptable are taken back.

按照本發明的實施例,可以極省時的方式檢查100% 的鏤空晶圓10。舉例而言,在一個典型實施中,自動檢查100% 具有1 x 1 mm2 晶粒的8吋鏤空晶圓10以識別鏤空晶圓晶粒存在/晶粒空缺錯誤,可在大約不到3分鐘內執行完畢。此外,按照本發明的實施例,可自動檢查100% 的鏤空晶圓10並識別對應的晶粒存在/晶粒空缺錯誤,且不會明顯影響製造產能(對於製造產能僅有最低、可忽略、趨近零、或基本上/實際上零的影響)。According to an embodiment of the present invention, 100% of the hollow wafer 10 can be inspected in a very time-saving manner. For example, in a typical implementation, 100% of the 8 hollow wafers 10 with 1 x 1 mm2 grains are automatically inspected to identify voided wafer grain presence/grain gap errors, which can be in less than 3 minutes. Finished. In addition, according to an embodiment of the present invention, 100% of the hollow wafer 10 can be automatically inspected and the corresponding grain presence/grain gap error is identified without significantly affecting the manufacturing capacity (the lowest, negligible, for manufacturing capacity) Approaching zero, or substantially/actually zero impact).

鏤空條板之自動化檢查Automated inspection of hollowed strips

在許多半導體製造情況下,元件或裝置可由晶圓以外的基板予以承載、支撐、或托住,而SIS/SWIS 200可執行鏤空檢查作業,查驗元件是否正確從該基板移開。舉例而言,如圖14A與14B所示,元件1220(例如凸塊晶粒20)可由彈性薄條板1200a,b 所承載、支撐、或托住。每個條板1200a,b包括數個不同的條板段1202a-d,其被缺口1204所分隔。每個條板段1202a-d提供數個格子位置,元件1220可駐留其上。每個條板段1202a-d內的格子位置彼此以橫向及縱向格子線1230, 1232界定出來,其方式為相關領域的普通技術人員所立即瞭解。存在不同類型的條板1200a,b,包括:(a)條板1200a,具有孔洞、開口、或參考標誌1206,形成於其周圍或外側邊緣的特定位置;以及(b)條板1200b,缺少上述周圍孔洞、開口、或參考標誌1206。In many semiconductor manufacturing situations, the component or device can be carried, supported, or supported by a substrate other than the wafer, and the SIS/SWIS 200 can perform a hollow inspection operation to verify that the component is properly removed from the substrate. For example, as shown in Figures 14A and 14B, element 1220 (e.g., bump die 20) can be carried, supported, or supported by resilient webs 1200a,b. Each strip 1200a,b includes a plurality of different strip segments 1202a-d that are separated by a notch 1204. Each strip segment 1202a-d provides a plurality of grid locations on which element 1220 can reside. The lattice locations within each strip segment 1202a-d are defined by horizontal and vertical grid lines 1230, 1232, respectively, in a manner that is immediately apparent to those of ordinary skill in the relevant art. There are different types of strips 1200a, b comprising: (a) strips 1200a having holes, openings, or reference marks 1206 formed at specific locations around or outside edges thereof; and (b) strips 1200b lacking the above Peripheral holes, openings, or reference signs 1206.

被承載、支撐、或托住的一或多個條板1200a,b及元件1220可黏附到膠膜框架12,其黏附方式基本上與晶圓相同或類似,使得黏性膠膜11支撐住條板1200a,b及其元件1220,如圖14C與14D所示。條板可沿著每個條板段1202a-d內的橫向及縱向格線1230, 1232作切割。每個條板段1202a-d之間的缺口 1204內的切割可予以避免。如同切割晶圓5黏附到膠膜框架12上的情況,在切割條板之後,切割溝槽34將沿著每個條板段1202a-d內的橫向及縱向格線1230, 1232,部分延伸至黏性膠膜11的深度。The one or more strips 1200a, b and the component 1220 that are carried, supported, or supported can be adhered to the film frame 12 in a manner substantially the same as or similar to the wafer, so that the adhesive film 11 supports the strip. Plates 1200a, b and their components 1220 are shown in Figures 14C and 14D. The slats can be cut along the transverse and longitudinal grids 1230, 1232 within each slat section 1202a-d. Cutting within the gap 1204 between each of the strip segments 1202a-d can be avoided. As if the dicing wafer 5 is adhered to the film frame 12, after cutting the slats, the cutting grooves 34 will extend along the lateral and longitudinal grids 1230, 1232 within each slat section 1202a-d to The depth of the adhesive film 11.

若切割條板1205a具有參考孔洞1206,則切割條板1205a所黏附的膠膜框架12不需具有凹痕或其他參考特徵,因為運用圖像處理來確定切割條板1205a相對於膠膜框架12的方位,以及確定元件1220相對於膠膜框架12的方位,可與運用圖像處理來識別條板的參考孔洞1206一同發生。若切割條板1205b缺少參考孔洞1206,則膠膜框架12可包含一些凹痕13及/或其他參考特徵,以便運用圖像處理來確定每個條板的元件1220相對於膠膜框架12的方位。If the cutting strip 1205a has a reference hole 1206, the film frame 12 to which the cutting strip 1205a is adhered does not need to have indentations or other reference features because image processing is used to determine the cutting strip 1205a relative to the film frame 12. The orientation, as well as the orientation of the determining component 1220 relative to the film frame 12, can occur with reference apertures 1206 that utilize image processing to identify the slats. If the cutting strip 1205b lacks the reference hole 1206, the film frame 12 can include some indentations 13 and/or other reference features to utilize image processing to determine the orientation of the elements 1220 of each strip relative to the film frame 12. .

每個切割條板1205都具有對應的加工圖,其方式類似於上文針對加工晶圓所述,該條板加工圖表明切割條板1205的每個條板段1202a-d內的元件1220之電性測試及目視檢查結果。對應於條板1205的加工圖以及對應於晶圓的PW圖,皆可稱作加工圖、元件加工圖、加工元件圖、或加工晶粒圖,其方式為相關領域的普通技術人員所立即瞭解。Each of the cutting strips 1205 has a corresponding processing pattern similar to that described above for the processing wafer, which illustrates the elements 1220 within each of the strip segments 1202a-d of the cutting strip 1205. Electrical test and visual inspection results. The processing map corresponding to the strip 1205 and the PW map corresponding to the wafer may be referred to as a processing map, a component processing diagram, a processing component diagram, or a processed die pattern, as will be immediately understood by those of ordinary skill in the relevant art. .

有效元件區域可定義為條板1200承載元件之區域,且元件將在一組元件分類作業(例如晶粒分類作業)中從該區域被選擇性移開。每個條板段1202或其部分皆可定義為有效元件區域。有效元件區域係對應於元件加工圖,其方式基本上與上文針對PW圖所述相同或類似。特定條板段1202的第一/起始元件位置通常定義為某個預定的角落格子位置(例如左上格子位置);然而,第一/起始元件位置亦可定義為另一個格子位置。The active component area can be defined as the area in which the strip 1200 carries the component, and the component will be selectively removed from the area in a set of component sorting operations (eg, die sorting operations). Each strip segment 1202 or portion thereof can be defined as an active element region. The active component area corresponds to the component processing map in a manner substantially the same as or similar to that described above for the PW diagram. The first/starting element position of a particular strip segment 1202 is typically defined as a predetermined corner grid position (eg, an upper left grid position); however, the first/starting element position may also be defined as another grid position.

在元件分類作業(例如晶粒分類作業)之後,亦即從切割條板1205選擇性移開或取出元件1220之後,切割條板1205具有「鏤空」外觀,可稱作鏤空條板1210,如圖14E所示。在圖14E中,每個條板段1202a-d內的元件空缺或空缺的格子位置1250是以空白或非陰影區來表明,而元件存在或留下的元件1252是以陰影區來表明。After the component sorting operation (eg, die sorting operation), that is, after the component 1220 is selectively removed or removed from the cutting strip 1205, the cutting strip 1205 has a "hollowed" appearance, which may be referred to as a hollowed out panel 1210, as shown in the figure. 14E is shown. In Figure 14E, the grid locations 1250 for vacancies or vacancies within each of the slab segments 1202a-d are indicated by blank or unshaded regions, while the elements 1252 present or left by the components are indicated by shaded regions.

按照本發明的各種實施例,可執行鏤空條板1210的自動化檢查,以查驗元件1220是否已正確被取出,其方式基本上與上文針對鏤空晶圓10所述相同或類似。更具體言之,在完成元件分類作業之後,便可拍攝考量中鏤空條板1210的分段圖像1310,其方式如圖14F所示。在拍攝特定鏤空條板1210的分段圖像1310a-d期間,鏤空條板1210相對於SWIS圖像拍攝裝置的視野範圍作定位,使得SWIS圖像拍攝裝置220所拍攝的分段圖像1310a-d 跨越鏤空條板整體表面積的部分或片段,尤其是跨越鏤空條板有效元件區域的部分或片段。在圖14F所示典型實施例中,總共拍攝了四張分段圖像1310a-d,每張所對應的空間區域稍微大於單一條板段1202a-d的區域。相關領域的普通技術人員將立即瞭解,鑑於上文所述,在其他實施例中,視條板幾何形狀(亦即長度及/或寬度)、SWIS圖像拍攝裝置視野範圍、及/或元件/晶粒尺寸而定,可拍攝更多或較少分段圖像1310。以此方式,在其他實施例中,個別分段圖像1310可拍攝條板段1202a-d的片段(例如1/2, 1/3, 1/4, 1/5等…),或是拍攝一個以上的條板段1202a-d。In accordance with various embodiments of the present invention, an automated inspection of the hollow strip 1210 can be performed to verify that the component 1220 has been properly removed in a manner substantially the same as or similar to that described above for the hollow wafer 10. More specifically, after the component sorting operation is completed, the segmented image 1310 of the hollowed out panel 1210 can be taken into consideration, as shown in FIG. 14F. During the segmentation of the segmented images 1310a-d of the particular hollowed out panel 1210, the hollowed out panel 1210 is positioned relative to the field of view of the SWIS image capture device such that the segmented image 1310a captured by the SWIS image capture device 220 is d A portion or segment that spans the overall surface area of the hollowed strip, especially a portion or segment that spans the active element area of the hollowed strip. In the exemplary embodiment illustrated in Figure 14F, a total of four segmented images 1310a-d are taken, each corresponding to a spatial region that is slightly larger than the region of a single strip segment 1202a-d. One of ordinary skill in the relevant art will immediately appreciate that, in view of the above, in other embodiments, the strip geometry (i.e., length and/or width), SWIS image capture device field of view, and/or component/ Depending on the grain size, more or less segmented images 1310 can be taken. In this manner, in other embodiments, the individual segmented image 1310 can capture segments of the slab segments 1202a-d (eg, 1/2, 1/3, 1/4, 1/5, etc...), or shoot More than one strip segment 1202a-d.

在拍攝鏤空條板1210的分段圖像期間,可將照明從膠膜框架12及黏附其上的鏤空條板1210下方引導至SWIS圖像拍攝裝置220。亦可將照明從膠膜框架12上方引導至膠膜框架12上所黏附的鏤空條板1210,使得照明可從元件1250的外露表面反射向SWIS圖像拍攝裝置220。During the segmentation of the segmented image of the hollow strip 1210, illumination can be directed from the film frame 12 and the hollow strip 1210 adhered thereto to the SWIS image capture device 220. Illumination can also be directed from above the film frame 12 to the hollow strip 1210 adhered to the film frame 12 such that illumination can be reflected from the exposed surface of the element 1250 to the SWIS image capture device 220.

將所拍攝的分段圖像1310a-d拼接起來,便可形成複合圖像,其方式大致上與上文所述相同或類似;鏤空條板1210每個條板段1202a-d內的第一/起始元件位置(例如對應於某個預定角落的格子位置,例如左上角格子位置)可在複合圖像內予以確定。在確定第一/起始元件位置之前或同時,亦可確定參考原點或格子位置。可針對每個條板段1202a-d進行自動化鏤空條板分析作業。在該作業期間,SWIS 200運用圖像處理來分析鏤空條板複合圖像內的畫素陣列,從條板段1202a-d的第一/起始元件位置開始,確定考量中條板段1202a-d內的每個格子位置是否已表明元件存在1250或元件空缺1252。SWIS 200可針對條板段1202a-d或鏤空條板1210額外產生條板選取圖,其方式類似於上文所述。最後,在產生條板選取圖之後,SWIS 200可比對條板選取圖與條板加工圖,並產生對應於考量中鏤空條板1210的選取錯誤圖,其方式類似於上文所述。選取錯誤資料集可傳輸至一或多個其他系統或設備,以便進行取出錯誤矯正作業。The captured segmented images 1310a-d are stitched together to form a composite image in substantially the same or similar manner as described above; the hollow panel 1210 is first in each of the strip segments 1202a-d The starting component position (e.g., the lattice position corresponding to a predetermined corner, such as the upper left lattice position) can be determined within the composite image. The reference origin or grid position can also be determined before or at the same time as determining the first/starting element position. An automated hollow strip analysis operation can be performed for each strip segment 1202a-d. During this operation, the SWIS 200 uses image processing to analyze the pixel arrays within the composite image of the hollowed-strip, starting from the first/starting component positions of the strip segments 1202a-d, determining the strip segments 1202a-d in question. Whether each grid position within has indicated that the component has a 1250 or component vacancy 1252. The SWIS 200 may additionally generate a strip selection map for the strip segments 1202a-d or the hollow strips 1210 in a manner similar to that described above. Finally, after generating the strip selection map, the SWIS 200 can compare the strip selection map to the strip processing map and generate a selection error map corresponding to the hollowed out strip 1210 in question, in a manner similar to that described above. Selecting an error data set can be transferred to one or more other systems or devices for removal of the error correction work.

在某些實施例中,SWIS 200與元件分類設備115整合串聯,SWIS 200可產生多張鏤空條板複合圖像,每張複合圖像對應於考量中鏤空條板1210的預定條板段1202小組(例如1或2個條板段1202)。舉例而言,第一鏤空條板複合圖像可對應於第一條板段1202a;第二鏤空條板複合圖像可對應於第二條板段1202b;以此類推。在上述實施例中,視條板相對於SWIS圖像拍攝裝置220視野範圍的幾何形狀而定,每張複合圖像可為單一分段圖像1310a-d。一旦完成特定條板段1202a的元件分類時,SWIS圖像拍攝裝置220便可拍攝一組分段圖像(例如1張分段圖像或1張以上的分段圖像),並產生對應於該鏤空條板段1202a的複合圖像,同時或之後可立即進行另一個/下一個切割條板段1202b的元件分類作業。作為與下一個切割條板段1202b的元件分類作業同時進行的並行計算程序,SWIS 200可分析對應於該鏤空條板段1202a所產生的複合圖像,以便參考元件加工圖的適當部分來確定元件1220是否從該鏤空條板段1202a正確被取出。以此方式,SWIS 200可在另一個條板段1202b-d進行元件分類作業的同時,亦即在另一個條板段1202b-d完成元件分類作業之前,確定上一個進行取出作業的條板段1202a是否發生取出錯誤,以便更快速採取矯正行動。In some embodiments, the SWIS 200 is integrated in series with the component sorting device 115, and the SWIS 200 can generate a plurality of hollowed-strip composite images, each composite image corresponding to a predetermined strip segment 1202 of the hollowed out strip 1210 in question. (eg 1 or 2 strip segments 1202). For example, the first hollow strip composite image may correspond to the first strip segment 1202a; the second hollow strip panel composite image may correspond to the second strip segment 1202b; and so on. In the above embodiment, depending on the geometry of the field of view of the SWIS image capture device 220, each composite image may be a single segmented image 1310a-d. Once the component classification of the particular strip segment 1202a is completed, the SWIS image capture device 220 can capture a set of segmented images (eg, one segmented image or more than one segmented image) and generate a corresponding image The composite image of the hollowed-slab section 1202a can be immediately or subsequently subjected to component sorting operations of the other/next cutting strip section 1202b. As a parallel calculation program concurrent with the component sorting operation of the next cutting strip segment 1202b, the SWIS 200 can analyze the composite image corresponding to the hollowed-slab segment 1202a to determine the component with reference to the appropriate portion of the component processing map. Whether 1220 is correctly removed from the hollow strip section 1202a. In this manner, the SWIS 200 can determine the last segment of the stripping operation while the other strip segment 1202b-d is performing the component sorting operation, that is, before the other strip segment 1202b-d completes the component sorting operation. 1202a Whether an error has occurred in order to take corrective action more quickly.

除了上文所述以外,SWIS 200亦可在同一膠膜框架12所承載的下一個切割條板1210b進行元件分類作業的同時,產生並分析對應於膠膜框架12所承載鏤空條板1210a的複合圖像(例如作為並行計算程序)。In addition to the above, the SWIS 200 can also generate and analyze the composite corresponding to the hollow strip 1210a carried by the film frame 12 while performing the component sorting operation on the next cutting strip 1210b carried by the same film frame 12. Image (for example as a parallel computing program).

在一些實施例中,除了產生一或多張對應於鏤空條板1210的複合圖像以外,SWIS 200亦可在晶粒取出作業開始之前,產生切割條板1205的一或多張複合圖像(例如完全或基本上完全存在晶粒的切割條板1205之複合圖像)。拍攝分段圖像1300a-d以便產生一或多張切割條板複合圖像如圖14G所示。分段圖像1300a-d可以數位方式拼接起來,以形成切割條板複合圖像,其方式類似於上文所述。如同切割晶圓複合圖像的情況,切割條板複合圖像可用來提升確定或識別鏤空條板複合圖像的參考原點及/或起始元件位置之準確度;及/或在一或多項元件分類相關程序中作為導航輔助或工具。In some embodiments, in addition to generating one or more composite images corresponding to the hollowed out panel 1210, the SWIS 200 may also produce one or more composite images of the cutting strip 1205 prior to the start of the die removal operation ( For example, a composite image of a dicing strip 1205 that is completely or substantially completely present. The segmented images 1300a-d are taken to produce one or more composite images of the cut strip as shown in Figure 14G. The segmented images 1300a-d can be stitched together in a digital manner to form a composite image of the cut strip in a manner similar to that described above. As in the case of a composite image of a wafer, the composite image of the cut strip can be used to improve the accuracy of determining or identifying the reference origin and/or the position of the starting component of the composite image of the hollowed strip; and/or one or more Used as a navigation aid or tool in component classification related procedures.

切割晶圓複合圖像作為導航輔助/工具Cutting wafer composite image as navigation aid/tool

切割晶圓複合圖像在本質上包括切割晶圓5上每個有效區域晶粒20的位置,且準確為其進行編碼,因此亦呈現出鏤空晶圓10上每個格子位置,或為其進行編碼。故切割晶圓複合圖像有利於準確識別及/或有效導航(例如直接導航)至(a)鏤空晶圓複合圖像內及/或(b)實際切割晶圓5或實際鏤空晶圓10上任何或每個有效區域晶粒位置的邊界內。The dicing of the wafer composite image essentially includes dicing the location of the die 20 of each active region on the wafer 5 and accurately encoding it, thus also exhibiting or staking each lattice location on the wafer 10 coding. Therefore, cutting the wafer composite image facilitates accurate identification and/or effective navigation (eg, direct navigation) to (a) hollowing the wafer composite image and/or (b) actually cutting the wafer 5 or actually stenking the wafer 10 Within the boundaries of any or each effective area grain location.

舉例而言,當切割晶圓5上正在進行晶粒分類作業時,晶粒分類設備115可傳輸取放設備所考量的一或多個晶粒20或每個晶粒20的切割晶圓位置至SWIS 200。 該切割晶圓晶粒位置可呈現為相對座標(例如相對於第一/起始晶粒(0, 0)格子位置的行列座標)或對應於晶粒20的晶粒分類編碼器位置/實際空間座標。接下來SWIS 200可比對、追蹤、監視、或繪製特定切割晶圓複合圖像內的圖像空間晶粒位置,或對應於此切割晶圓複合圖像每個有效區域格子位置的經計算預定編碼器位置,與晶粒分類設備115所考量的對應晶粒位置20,例如在晶粒分類作業期間以即時或接近即時作為基準 。For example, when a die sorting operation is being performed on the dicing wafer 5, the die sorting device 115 can transfer the one or more dies 20 or the dicing wafer position of each die 20 as determined by the pick and place device to SWIS 200. The dicing wafer grain position may be presented as a relative coordinate (eg, row and column coordinates relative to the first/starting grain (0, 0) grid position) or a grain classification encoder position/real space corresponding to the die 20 coordinate. The SWIS 200 can then compare, track, monitor, or plot the image space grain position within the composite image of the particular diced wafer, or the calculated predetermined code corresponding to the grid position of each active region of the diced wafer composite image. The position of the device, corresponding to the die position 20 considered by the die sorting device 115, is for example based on immediate or near instantaneous time during the die sorting operation.

在一些實施例中,依據切割晶圓複合圖像及預定圖像空間至實際空間的轉換係數,對於切割晶圓複合圖像內的任何特定晶粒或格子位置,SWIS 200可計算一個預期的相對實際空間(x, y)位置或座標組,或是一個相對編碼器位置偏移,對應於其在實際切割晶圓5上相對於第一/起始晶粒位置的對應晶粒/格子位置。圖像空間至實際空間的轉換係數可取決於圖像拍攝裝置解析度,而預定相對編碼器位置偏移可取決於編碼器規格,其方式為相關領域的普通技術人員所立即瞭解。在某些實施例中,在切割晶圓5上的晶粒分類作業開始之前,SWIS 200可計算一個預定的相對實際空間(x, y)位置或座標組,或一個預定的相對編碼器位置偏移,對應於切割晶圓5上的每個晶粒/格子位置;並儲存該計算資料於相對的編碼器位置圖中。In some embodiments, the SWIS 200 can calculate an expected relative for any particular die or grid position within the composite image of the diced wafer based on the diced wafer composite image and the conversion factor of the predetermined image space to the actual space. The actual space (x, y) position or coordinate set, or a relative encoder position offset, corresponds to its corresponding die/grid position on the actual dicing wafer 5 relative to the first/start grain position. The conversion factor from image space to real space may depend on the resolution of the image capture device, while the predetermined relative encoder position offset may depend on the encoder specifications in a manner that is immediately apparent to one of ordinary skill in the relevant art. In some embodiments, prior to the start of the die sorting operation on the dicing wafer 5, the SWIS 200 can calculate a predetermined relative physical space (x, y) position or coordinate set, or a predetermined relative encoder position offset. Shift, corresponding to each die/grid position on the dicing wafer 5; and storing the calculation data in the relative encoder position map.

若在晶粒分類作業期間或之後,晶粒分類設備115需要從切割晶圓5上的某個當前晶粒位置跨越一或多個晶粒或格子位置移動至某個特定目標晶粒或格子位置,則晶粒分類設備115可傳輸目標晶粒/格子位置至SWIS 200,而SWIS 200可確定或計算一個適當的預定相對實際空間(x, y)位置或預定相對編碼器位置偏移,對應於實際切割晶圓5上的目標晶粒/格子位置,並傳輸此資料至晶粒分類設備115。晶粒分類設備115可利用此預定相對實際空間(x, y)位置或預定相對編碼器位置偏移來產生一組更新的編碼器位置。因此,擴展台210與晶粒分類設備115可按照更新的編碼器位置組,相對於彼此作移動,使得晶粒分類設備115可直接導航至目標晶粒/格子位置的邊緣內(例如,相對於目標晶粒/格子位置尺寸,大約在目標晶粒/格子位置的中心 +/- 10% - 30% 或 +/- 20% 內)。以此方式,按照本發明的一些實施例,晶粒分類設備115不需以下一個最接近的晶粒作為基準來導航跨越多個格子位置,可節省大量時間,因而提高產能,並且顯著降低索引或位置轉譯錯誤的可能性。在直接導航之後,留在切割晶圓5目標晶粒/格子位置上的晶粒20之特定位置可經由晶粒分類設備成像系統進行查驗,以便準確建立取放設備相對於此晶粒20的位置。If during or after the die sorting operation, the die sorting device 115 needs to move from one of the current die positions on the dicing wafer 5 across one or more die or grid locations to a particular target die or grid location. The die sorting device 115 can transmit the target die/lattice position to the SWIS 200, and the SWIS 200 can determine or calculate an appropriate predetermined relative real space (x, y) position or a predetermined relative encoder position offset, corresponding to The target die/lattice position on the wafer 5 is actually cut and transmitted to the die sorting device 115. The die sorting device 115 may utilize this predetermined relative real space (x, y) position or a predetermined relative encoder position offset to generate a set of updated encoder positions. Thus, the extension station 210 and the die sorting device 115 can move relative to one another in accordance with the updated set of encoder positions such that the die sorting device 115 can navigate directly into the edge of the target die/lattice position (eg, relative to Target die/grid position size, approximately +/- 10% - 30% or +/- 20% of the center of the target die/lattice position). In this manner, in accordance with some embodiments of the present invention, the die sorting device 115 does not require the next closest die as a reference to navigate across multiple grid locations, which can save significant time, thereby increasing throughput and significantly reducing indexing or The possibility of location translation errors. After direct navigation, the particular location of the die 20 remaining at the target die/grid position of the dicing wafer 5 can be verified via the die sorting device imaging system to accurately establish the position of the pick and place device relative to the die 20. .

相關領域的普通技術人員將瞭解,視下列情況而定:(a)擴展台210是否在取放設備保持不動期間移動/可移動,或(b)取放設備是否在擴展台210保持不動期間移動/可移動,上述編碼器位置或更新的編碼器位置可對應或應用於擴展台210的移動或取放設備的移動。One of ordinary skill in the relevant art will appreciate that (a) whether the extension station 210 is moving/movable while the pick-and-place device remains stationary, or (b) whether the pick-and-place device is moving during the extension station 210 remains stationary / Moveable, the above encoder position or updated encoder position may correspond to or be applied to the movement of the extension station 210 or the movement of the pick and place device.

在一批一同接受相同製程的切割晶圓5中,第一切割晶圓5的切割晶圓複合圖像可定義為批次導航切割晶圓複合圖像,在該批次第一或第k片切割晶圓的晶粒分類作業期間(其中k > 1),用來輔助或引導從一個晶粒/格子位置直接導航至另一個晶粒/格子位置。在某些實施例中,依據批次導航複合圖像,SWIS 200可針對切割晶圓有效區域內的每個晶粒/格子位置,產生及儲存預定的相對編碼器位置偏移,其中該相對編碼器位置偏移係參照第一/起始晶粒。In a batch of dicing wafers 5 that receive the same process together, the composite image of the diced wafer of the first dicing wafer 5 can be defined as a composite image of the batch navigation dicing wafer, in the first or kth piece of the batch During the grain sorting operation of the dicing wafer (where k > 1), it is used to assist or guide direct navigation from one die/grid position to another die/grid position. In some embodiments, the SWIS 200 can generate and store a predetermined relative encoder position offset for each die/grid position within the active area of the dicing wafer, based on the batch navigation composite image, wherein the relative encoding The positional offset is referenced to the first/starting die.

若批次導航複合圖像係依據正在接受晶粒分類作業的切割晶圓5所產生,則批次導航複合圖像的旋轉方位與正在擴展台210上的切割晶圓5或是從該切割晶圓5所產生的鏤空晶圓10之旋轉方位相同。亦即,批次導航複合圖像與正在擴展台上的切割晶圓5之間的旋轉方位差為零。然而,若批次導航複合圖像係依據特定切割晶圓5所產生,其不同於擴展台210上正在接受或已完成晶粒分類作業的切割晶圓5,則批次導航複合圖像與擴展台210正在承載的切割晶圓5或鏤空晶圓10之間可能有旋轉方位差或偏移。為了準確從當前或特定晶粒/格子位置直接導航至下一個或目標晶粒/格子位置,可確定旋轉偏移θ。舉例而言,若批次導航複合圖像係依據一批中的第一切割晶圓5所產生,且正在接受晶粒分類作業的切割晶圓5是同批中的第k片切割晶圓5,則SWIS 200可針對該第k片切割晶圓產生複合圖像;確定該第k片切割晶圓在其複合圖像中的中心點;以及經由一或多種傳統圖像配準技術來配準批次導航複合圖像與第k片切割晶圓複合圖像,以確定第k片切割晶圓5的複合圖像與批次導航複合圖像之間的旋轉偏移θ。因此,第k片切割晶圓5的複合圖像可稱作旋轉查核複合圖像。一旦知道旋轉偏移θ時,便可旋轉擴展台210,以便矯正或補償旋轉偏移θ,並可藉由上文所述方式,將晶粒分類設備從第k片切割晶圓上的某個特定晶粒/格子位置直接導航至另一個晶粒/格子位置。If the batch navigation composite image is generated according to the dicing wafer 5 that is undergoing the die sorting operation, the rotation orientation of the batch navigation composite image is the same as the dicing wafer 5 on the expansion stage 210 or from the dicing wafer. The hollow wafer 10 produced by the circle 5 has the same rotational orientation. That is, the rotational orientation difference between the batch navigation composite image and the dicing wafer 5 on the expansion stage is zero. However, if the batch navigation composite image is generated according to the specific dicing wafer 5, which is different from the dicing wafer 5 on the extension stage 210 that is accepting or has completed the singulation operation, the batch navigation composite image and the extension There may be a rotational azimuth difference or offset between the dicing wafer 5 or the hollow wafer 10 being carried by the stage 210. In order to accurately navigate directly from the current or specific die/grid position to the next or target die/grid position, the rotational offset θ can be determined. For example, if the batch navigation composite image is generated according to the first dicing wafer 5 in a batch, and the dicing wafer 5 that is undergoing the die sorting operation is the kth dicing wafer 5 in the same batch The SWIS 200 can generate a composite image for the kth sliced wafer; determine a center point of the kth sliced wafer in its composite image; and register via one or more conventional image registration techniques The batch navigation composite image and the kth slice are cut into a composite image to determine a rotational offset θ between the composite image of the kth sliced wafer 5 and the batch navigation composite image. Therefore, the composite image of the kth slice dicing wafer 5 may be referred to as a rotation check composite image. Once the rotational offset θ is known, the extension stage 210 can be rotated to correct or compensate for the rotational offset θ, and the die sorting device can be cut from the kth slice by one of the methods described above. The specific die/lattice position navigates directly to another die/lattice position.

批次導航複合圖像亦可作為晶粒分類設備在鏤空晶圓10上直接導航的輔助或指南,其方式類似於上文所述。The batch navigation composite image can also serve as an aid or guide for direct navigation of the grain sorting device on the hollow wafer 10 in a manner similar to that described above.

晶粒分類設備偵測正確參考晶粒之典型查驗Typical inspection of the grain classification equipment to detect the correct reference grain

除了上文所述以外,在進行晶粒分類作業從第k片切割晶圓5選擇性取出晶粒20之前,批次導航複合圖像可用來輔助查驗晶粒分類設備115是否已偵測到或選擇了第k片切割晶圓上的正確或實際參考晶粒21。更具體言之,可針對第k片切割晶圓產生切割晶圓複合圖像,並可自動偵測到(例如以上文所述方式)對應的參考原點,例如切割晶圓在該複合圖像裡的中心點。批次導航複合圖像與第k片切割晶圓複合圖像可相對於彼此進行配準,而擴展台210可予以旋轉,以矯正或補償批次導航複合圖像與第k片切割晶圓複合圖像之間的任何旋轉偏移θ。In addition to the above, the batch navigation composite image can be used to assist in checking whether the die sorting device 115 has been detected or not before performing the die sorting operation to selectively extract the die 20 from the kth sliced wafer 5. The correct or actual reference die 21 on the kth sliced wafer is selected. More specifically, a diced wafer composite image can be produced for the kth sliced wafer, and a corresponding reference origin (eg, as described above) can be automatically detected, such as dicing a wafer in the composite image. The center point in it. The batch navigation composite image and the kth sliced wafer composite image may be registered with respect to each other, and the extension stage 210 may be rotated to correct or compensate the batch navigation composite image and the kth sliced wafer composite Any rotation offset between the images θ.

晶粒分類/複合圖像產生/複合圖像導航/鏤空晶圓檢查配置或設定的處方中,可納入相對編碼器位置偏移,其對應於留在或預定留在參考切割晶圓5上的數個輔助參考晶粒,使得每個輔助參考晶粒的(x, y)座標或相對編碼器位置偏移,可相對於參考切割晶圓5上的第一/起始晶粒及/或參考晶粒21位置,準確地予以定義、測量、或知悉。輔助參考晶粒可包括特定類型的晶粒,其具備利於晶粒分類設備115自動偵測的特徵,例如鏡面晶粒或空殼晶粒。In the die classification/composite image generation/composite image navigation/hollow wafer inspection configuration or set prescription, a relative encoder position offset may be included, which corresponds to the remaining or predetermined remaining on the reference dicing wafer 5. A plurality of auxiliary reference dies such that the (x, y) coordinates or relative encoder positions of each of the auxiliary reference dies are offset relative to the first/start dies and/or reference on the dicing wafer 5 The position of the die 21 is accurately defined, measured, or known. The auxiliary reference die may include a particular type of die having features that facilitate automatic detection by the die sorting device 115, such as mirrored die or empty die.

晶粒分類設備115可偵測第k片切割晶圓上的參考晶粒21,例如經由傳統方式,該參考晶粒可能是也可能不是第k片切割晶圓的正確、真實、或實際參考晶粒21。因此,偵測到的參考晶粒21可定義為候選參考晶粒21。在偵測到候選參考晶粒21之後,晶粒分類設備115可利用對應於特定輔助參考晶粒的相對編碼器位置偏移,從候選參考晶粒21的位置,直接導航至某個預定為輔助參考晶粒位置的切割晶圓位置。接下來晶粒分類設備成像系統可拍攝及分析該預定輔助參考晶粒位置的一張圖像,並可拍攝及分析鄰近該預定輔助參考晶粒位置的實際格子位置偏移處的一些圖像,以確定位於預定輔助參考晶粒位置上的晶粒20是否為實際上預定的輔助參考晶粒。若位於預定輔助參考晶粒位置上的晶粒20不是預定的輔助參考晶粒,則候選參考晶粒21不是或很可能不是正確或實際的參考晶粒。晶粒分類設備115可重複以上程序,導航至多個輔助參考晶粒的預定位置,以便提高確定候選參考晶粒21是否為正確參考晶粒21的準確度及可信度。若晶粒分類設備115確認候選參考晶粒21不是實際上真正的參考晶粒21,則可偵測或選擇另一個候選參考晶粒21(例如自動及/或手動),並可重複以上程序。The die sorting device 115 can detect the reference die 21 on the kth slice dicing wafer, for example, by conventional means, the reference die may or may not be the correct, true, or actual reference crystal of the kth slice dicing wafer. Granule 21. Therefore, the detected reference die 21 can be defined as the candidate reference die 21. After detecting the candidate reference die 21, the die sorting device 115 can use the relative encoder position offset corresponding to the particular auxiliary reference die to navigate directly from the position of the candidate reference die 21 to some predetermined aid. The position of the cut wafer with reference to the die position. The subsequent die sorting device imaging system can capture and analyze an image of the predetermined auxiliary reference die position, and can capture and analyze some images at the actual lattice position offset adjacent to the predetermined auxiliary reference die position, A determination is made as to whether the die 20 at a predetermined auxiliary reference die location is a substantially predetermined auxiliary reference die. If the die 20 at the predetermined auxiliary reference die location is not a predetermined auxiliary reference die, the candidate reference die 21 is not or is likely to be a correct or actual reference die. The die sorting device 115 may repeat the above procedure to navigate to predetermined positions of the plurality of auxiliary reference dies to improve the accuracy and reliability of determining whether the candidate reference dies 21 are the correct reference dies 21. If the die sorting device 115 confirms that the candidate reference die 21 is not actually the true reference die 21, then another candidate reference die 21 (eg, automatic and/or manual) may be detected or selected and the above procedure may be repeated.

若對於每個輔助參考晶粒而言,已在對應的預定輔助參考晶粒位置準確偵測到或識別出輔助參考晶粒,則候選參考晶粒21是或極可能是第k片切割晶圓的實際參考晶粒21。一旦確認每個輔助參考晶粒皆已在導航至其預定位置後準確偵測到,便可開始從第k片切割晶圓5選擇性移開晶粒20。If for each of the auxiliary reference dies, the auxiliary reference dies have been accurately detected or identified at the corresponding predetermined auxiliary reference dies, the candidate reference dies 21 are or are likely to be the kth diced wafer Actual reference to the die 21. Once it is confirmed that each of the auxiliary reference dies has been accurately detected after navigating to its predetermined position, the selective removal of the dies 20 from the kth dicing wafer 5 can begin.

因此,按照本發明的實施例,可在晶粒取出作業之前降低或大幅降低偵測到或選擇出不正確參考晶粒21的可能性,故可降低或大幅降低取出作業發生嚴重系統性錯誤的可能性。Therefore, according to the embodiment of the present invention, the possibility of detecting or selecting the incorrect reference die 21 can be reduced or greatly reduced before the die removal operation, so that a serious systematic error in the take-out operation can be reduced or greatly reduced. possibility.

相關領域的普通技術人員將承認,從第k片切割晶圓的候選參考晶粒21位置導航至第k片切割晶圓第一/起始晶粒的預定位置之後,導航至一或多個預定輔助參考晶粒位置的動作可從第k片切割晶圓上的不同位置開始,例如第k片切割晶圓的第一/起始晶粒位置。One of ordinary skill in the relevant art will recognize that after navigating from the candidate reference die 21 position of the kth sliced wafer to the predetermined position of the first/starting die of the kth sliced wafer, navigating to one or more predetermined The act of assisting the reference die position may begin at a different position on the kth slice dicing wafer, such as the first/start grain position of the kth dicing wafer.

典型的鏤空晶圓復原作業Typical hollow wafer restoration operations

完成第k片切割晶圓5的晶粒分類作業之後,第k片切割晶圓5變成第k片鏤空晶圓10,其通常減少許多、大部分、或幾乎/基本上全部有效區域晶粒20。若SWIS 200依據第k片鏤空晶圓複合圖像分析,確定第k片鏤空晶圓10已發生晶粒取出錯誤(例如超出預定數量或百分比的晶粒取出錯誤),則SWIS 200及取放設備160可使用批次導航複合圖像作為進行或引導鏤空晶圓10復原作業的導航指南,將先前被選取並送至捲帶等特定目的地的晶粒20放回。第k片鏤空晶圓10的復原作業基本上是重新創造第k片切割晶圓5,或是創造一片替補第k片切割晶圓5,使得回到膠膜框架12的晶粒20在其有效區域晶粒位置的空間排列上具有高度位置準確度。因此,替補切割晶圓5可重新接受晶粒分類作業,以補救一或多個晶粒取出錯誤。After completing the die sorting operation of the kth dicing wafer 5, the kth dicing wafer 5 becomes the kth stencil wafer 10, which typically reduces many, most, or nearly/substantially all of the effective area die 20 . If the SWIS 200 determines that the k-th hollow wafer 10 has undergone a grain removal error (for example, a predetermined number or percentage of die removal errors) based on the k-th hollow wafer composite image analysis, the SWIS 200 and the pick-and-place device The batch navigation composite image can be used as a navigation guide to conduct or direct the wafer 10 recovery operation, and the die 20 that was previously selected and sent to a particular destination, such as a tape, is placed back. The recovery operation of the kth stencil wafer 10 is basically to recreate the kth dicing wafer 5, or to create a substitute kth dicing wafer 5, so that the die 20 returning to the film frame 12 is effective The spatial arrangement of the regional grain locations has a high degree of positional accuracy. Thus, the alternate dicing wafer 5 can re-accept the die sorting operation to remedy one or more die removal errors.

更具體言之,作為捲帶作業的一環,即晶粒20從第k片切割晶圓5被移開並經由一個捲帶式組件120被送至一個捲帶期間,可儲存晶粒ID以及對應於每個晶粒20的切割晶圓位置/格子位置(例如以被取出晶粒資料檔案的形式儲存在記憶體或資料庫中)。每個晶粒20的實際切割晶圓位置/格子位置皆可藉由晶粒20的編碼器位置予以定義。對於第k片切割晶圓5上每個已被送至捲帶的晶粒20而言,第k片鏤空晶圓10的復原作業可能涉及從捲帶檢索晶粒20,檢索已儲存的對應晶粒ID及切割晶圓位置/格子位置,以及經由取放設備160將晶粒20放回第k片鏤空晶圓10上適當的切割晶圓位置/格子位置。More specifically, as a part of the winding operation, that is, the die 20 is removed from the k-th dicing wafer 5 and sent to a tape via a take-up assembly 120, the die ID and corresponding can be stored. The dicing wafer position/grid position of each die 20 (eg, stored in a memory or database in the form of a fetched die data file). The actual dicing wafer position/grid position of each die 20 can be defined by the encoder position of the die 20. For each die 20 on the k-th slice wafer 5 that has been fed to the tape, the restoration of the kth wafer 10 may involve retrieving the die 20 from the tape and retrieving the stored corresponding crystal The grain ID and the dicing wafer position/grid position, and the dies 20 are placed back into the appropriate dicing wafer position/grid position on the kth stencil wafer 10 via the pick and place apparatus 160.

若在完成第一組晶粒分類作業之後,第k片鏤空晶圓10沒有被移開,仍穩固地由擴展台210保留住,則可知悉定義第k片鏤空晶圓參考原點/格子位置的編碼器位置,例如第k片鏤空晶圓的中心點。因此,第k片鏤空晶圓10可留在擴展台210上直接進行復原。If the kth hollow wafer 10 is not removed after the completion of the first group of die sorting operations, and is still firmly retained by the extension 210, it can be known that the kth hollow wafer reference origin/lattice position is defined. The encoder position, such as the center point of the kth hollow wafer. Therefore, the kth stencil wafer 10 can be left on the extension stage 210 and directly restored.

若第k片鏤空晶圓10的復原作業是在第k片鏤空晶圓從擴展台210移開之後進行,且第k片鏤空晶圓在復原之前被送至該擴展台210或另一擴展台,則SWIS 200可產生第k片鏤空晶圓10的複合圖像,並確定複合圖像內的第k片鏤空晶圓的參考原點,例如其中心點。第k片鏤空晶圓複合圖像可經由一或多項傳統圖像配準技術與批次導航複合圖像配準,而第k片鏤空晶圓10上的參考晶粒21位置可予以查驗或確認,其方式基本上與上文所述相同或類似。If the restoration operation of the kth hollow wafer 10 is performed after the kth hollow wafer is removed from the extension 210, and the kth hollow wafer is sent to the extension 210 or another extension before the restoration The SWIS 200 can generate a composite image of the kth hollow wafer 10 and determine a reference origin of the kth hollow wafer within the composite image, such as its center point. The k-th hollow wafer composite image can be registered with the batch navigation composite image via one or more conventional image registration techniques, and the position of the reference die 21 on the kth hollow wafer 10 can be checked or confirmed. The manner is basically the same as or similar to that described above.

查驗第k片鏤空晶圓10上的參考晶粒21位置之後,晶粒20可按照其被儲存的編碼器位置放回膠膜框架20上,使得被復原的晶粒20準確地位於其有效區域格子位置。After checking the position of the reference die 21 on the kth hollow wafer 10, the die 20 can be placed back onto the film frame 20 according to its stored encoder position, so that the restored die 20 is accurately located in its active area. Plaid position.

典型的SWIS附檢查系統實施例Typical SWIS Attachment Inspection System Example

在一些實施例中,SWIS 200可併入或整合任何類型的檢查系統或設備,該檢查系統或設備是用來處理及檢查膠膜框架20所承載的元件,例如晶粒20,即使檢查系統或設備中沒有納入擴展台210亦然。因此,檢查系統不僅可用來執行原本預定的檢查作業(例如拍攝圖像以便識別晶粒20上的微米或次微米級瑕疵),亦可用來執行獨立鏤空晶圓檢查作業,與晶粒分類設備114分離。In some embodiments, the SWIS 200 can incorporate or integrate any type of inspection system or device that is used to process and inspect the components carried by the film frame 20, such as the die 20, even if the inspection system or The same is true for the expansion station 210 not included in the device. Thus, the inspection system can be used not only to perform originally scheduled inspection operations (e.g., to capture images to identify micron or sub-micron scales on the die 20), but also to perform independent hollow wafer inspection operations, with the die sorting device 114. Separation.

在上述實施例中,檢查系統包括或者經改造後包括:(a)一個圖像拍攝裝置220,用來或可用來拍攝鏤空晶圓10的分段圖像;以及(b)處理資源,用來或可用來(i)產生對應於該鏤空晶圓的複合圖像,(ii)確定每個鏤空晶圓10上的參考原點及/或第一/起始晶粒位置;(iii)接收或檢索對應於鏤空晶圓10的PW圖資料,以及(iv)比對每張鏤空晶圓複合圖像的資料內容與對應PW圖的資料內容,以識別是否已發生一或多種晶粒取出錯誤,其方式基本上與上文所述相同或類似。In the above embodiments, the inspection system includes or is modified to include: (a) an image capture device 220 for or for capturing a segmented image of the hollow wafer 10; and (b) processing resources for Or may be used to (i) generate a composite image corresponding to the hollowed wafer, (ii) determine a reference origin and/or a first/starting die position on each of the hollowed wafers 10; (iii) receive or Retrieving PW map data corresponding to the hollow wafer 10, and (iv) comparing the data content of each of the hollow wafer composite images with the data content of the corresponding PW map to identify whether one or more crystal grain removal errors have occurred, The manner is basically the same as or similar to that described above.

為了協助瞭解,在典型的範例中,設置了如國際專利發表號碼WO/2010082901中所述的光學檢查系統,用來承載、穩固保留、及精確定位經由晶圓台組件黏附在膠膜框架12上的晶圓及切割晶圓5。晶圓台組件可包括一個如國際專利發表號碼WO/2014035346中所述的極平面或超平面晶圓台。該晶圓台組件可承載、穩固保留、及精確定位鏤空晶圓10,其方式為相關領域的普通技術人員所立即瞭解。In order to assist in understanding, in a typical example, an optical inspection system as described in International Patent Publication No. WO/2010082901 is provided for carrying, stabilizing, and accurately positioning the wafer frame 12 via the wafer table assembly. Wafer and dicing wafer 5. The wafer table assembly can include a polar or hyperplanar wafer table as described in International Patent Publication No. WO/2014035346. The wafer stage assembly can carry, securely retain, and accurately position the hollow wafer 10 in a manner that is immediately apparent to those of ordinary skill in the relevant art.

當鏤空晶圓10被上述晶圓台所承載及穩固保留時,膠膜11並未如晶粒分類作業期間產生鏤空晶圓10的切割晶圓5留在擴展台210上時那樣擴展。膠膜11是處於稍微或部分放鬆狀態。因此,鏤空晶圓10上的晶粒間分隔距離將不同於被擴展台210所承載的鏤空晶圓10。縱使如此,鏤空晶圓10上的格線30, 32方位以及相對行列格子位置仍保持不變、基本上不變、或大致不變。因此,晶圓台可放置於已併入檢查系統的SWIS圖像拍攝裝置220下方,以便拍攝鏤空晶圓10的分段圖像。接著便可產生鏤空晶圓複合圖像,並確定鏤空晶圓複合圖像內參考原點及第一/起始晶粒的位置。接著便可比對對應於每個有效區域晶粒位置的鏤空晶圓資料內容(例如畫素陣列數值)與鏤空晶圓PW圖中每個對應晶粒位置的資料內容,以便確定晶粒分類作業期間是否發生一或多種晶粒取出錯誤。When the hollowed wafer 10 is carried by the wafer table and is firmly retained, the film 11 is not expanded as the dicing wafer 5 that caused the hollow wafer 10 during the die sorting operation remains on the extension stage 210. The film 11 is in a slightly or partially relaxed state. Therefore, the inter-die separation distance on the hollow wafer 10 will be different from the hollow wafer 10 carried by the extension stage 210. Even so, the grid lines 30, 32 and the relative row and column positions on the hollow wafer 10 remain unchanged, substantially constant, or substantially unchanged. Thus, the wafer table can be placed under the SWIS image capture device 220 that has been incorporated into the inspection system to take a segmented image of the hollow wafer 10. A composite image of the hollowed wafer is then generated and the position of the reference origin and the first/starting grain within the composite image of the hollowed wafer is determined. Then, the contents of the hollow wafer data corresponding to the grain position of each effective region (for example, the pixel array value) and the data content of each corresponding grain position in the hollow wafer PW map can be aligned to determine the grain sorting operation period. Whether one or more crystal removal errors have occurred.

典型的複合圖像產生製程之面向Typical composite image generation process

圖15A與15B是按照本發明實施例產生複合圖像的程序1400, 1500之流程圖。程序1400, 1500涉及:(a)整批晶粒分類作業,其中的批次導航複合圖像在取放作業期間作為輔助或指南使用;(b)針對晶粒分類作業所產生的每片鏤空晶圓10進行鏤空晶圓檢查作業;以及可能涉及(c)膠膜框架復原作業。15A and 15B are flow diagrams of a process 1400, 1500 for generating a composite image in accordance with an embodiment of the present invention. The procedures 1400, 1500 relate to: (a) a batch of grain sorting operations in which the batch navigation composite image is used as an aid or guide during the pick and place operation; (b) each of the hollow crystals generated for the grain sorting operation Circle 10 performs a hollow wafer inspection operation; and may involve (c) film frame restoration operations.

在一個實施例中,第一程序部分1402涉及從一份處方中檢索複合圖像產生/導航參數以及鏤空晶圓檢查參數。第二程序部分1404涉及選出批次中的第一或下一片切割晶圓5並送至擴展台,第三程序部分1410涉及產生批次導航複合圖像。批次導航複合圖像的產生方式與上文所述相同、基本上相同、或類似,如圖16按照本發明實施例的複合圖像產生程序1600所示。In one embodiment, the first program portion 1402 involves retrieving composite image generation/navigation parameters from a prescription and hollowing out wafer inspection parameters. The second program portion 1404 involves selecting the first or next slice of the cut wafer 5 in the batch and sending it to the extension station, and the third program portion 1410 involves generating a batch navigation composite image. The batch navigation composite image is produced in the same, substantially identical, or similar manner as described above, as shown in Figure 16 in accordance with a composite image generation program 1600 in accordance with an embodiment of the present invention.

第四程序部分1420涉及針對當前切割晶圓5執行晶粒分類作業,使用批次導航複合圖像作為輔助或指南,將晶粒分類設備115直接導航至預定從膠膜框架20移開的每個晶粒20位置,按照對應於切割晶圓5的PW圖辦理。在完成晶粒分類作業之後,第五程序部分1430涉及產生鏤空晶圓複合圖像,其方式如圖16所示。The fourth program portion 1420 involves performing a die sorting operation for the current dicing wafer 5, using the batch navigation composite image as an aid or guide, directing the die sorting device 115 directly to each of the predetermined detachment from the film frame 20. The position of the die 20 is handled in accordance with the PW map corresponding to the dicing wafer 5. After completing the die sorting operation, the fifth program portion 1430 involves generating a composite image of the hollowed wafer in a manner as shown in FIG.

第六程序部分1440涉及檢查100% 鏤空晶圓的有效區域晶粒位置。該100% 鏤空晶圓檢查的進行方式與上文所述相同、基本上相同、或類似,如圖17按照本發明實施例的鏤空晶圓檢查程序1700所示。應注意的是,關於分析晶粒分類錯誤,例如圖17的第二程序部分1720,相對編碼器位置圖有助於確定鏤空晶圓複合圖像資料內容與PW圖資料內容之間的不一致處之性質。對於鏤空晶圓選取圖所示的每個晶粒存在52或晶粒空缺50而言,晶粒/格子位置在相對編碼器位置圖內的相對編碼器位置可與PW圖所儲存的對應晶粒分類設備編碼器位置進行比對。舉例而言,對於鏤空晶圓選取圖所示的應留下晶粒50而言,相對編碼器位置圖中對於應留下晶粒50的相對編碼器位置之間的差異可與PW圖中對應的晶粒/格子位置的晶粒分類設備編碼器位置之間的差異進行比對。對於鏤空晶圓選取圖表明為留下的晶粒50的有效區域晶粒位置而言,若相對編碼器位置差異幅度超過晶粒分類設備編碼器位置差異幅度達某個預定量,例如空間定位錯誤超過晶粒尺寸的20% 左右,這表示在完成晶粒分類作業之後,某個有瑕疵的晶粒20不正確地從膠膜框架12被取出,而不是留在膠膜框架12上。The sixth program portion 1440 involves examining the effective area die position of the 100% hollow wafer. The 100% open wafer inspection is performed in the same, substantially the same, or similar manner as described above, as shown in Figure 17 in accordance with an open wafer inspection program 1700 in accordance with an embodiment of the present invention. It should be noted that with regard to analyzing the grain classification error, such as the second program portion 1720 of FIG. 17, the relative encoder position map helps to determine the inconsistency between the composite image data content of the hollowed wafer and the data content of the PW image. nature. For each grain presence 52 or die vacancy 50 shown in the hollow wafer pick-up, the relative encoder position of the die/grid position in the relative encoder position map can be compared to the corresponding grain stored in the PW map. The classification device encoder positions are compared. For example, for the die 50 to be left as shown in the hollow wafer pick-up, the difference between the relative encoder positions in the encoder position map for the die 50 should be left to correspond to the PW map. The grain/grid position of the grain classification device is compared between the encoder positions. For the hollow wafer picking diagram, the relative encoder grain position of the die 50 is determined to be greater than a certain predetermined amount of the encoder position difference, such as a spatial positioning error. Exceeding about 20% of the grain size, this means that after the die sorting operation is completed, a certain defective die 20 is improperly taken out from the film frame 12 instead of remaining on the film frame 12.

再度參見圖15A,視鏤空晶圓檢查所識別的晶粒選取錯誤數量及/或性質而定,可指示或批准鏤空晶圓10進行復原作業。可經由第七與第八程序部分1450, 1460來進行復原作業。在第九程序部分1462中,經過復原的膠膜框架12可在後續時間重新考量進行晶粒分類作業(例如復原後立即或稍晚)。在某些實施例中,若復原作業獲得批准或指示,則已發生特定數量的晶粒選取錯誤。這可能表示先前所產生的批次導航複合圖像存在一或多個問題。因此,可經由第九程序部分1462選擇另一片切割晶圓5來產生替補批次導航複合圖像,並回到第二程序部分1404。Referring again to Figure 15A, depending on the number and/or nature of the die selection errors identified by the hollow wafer inspection, the hollow wafer 10 can be instructed or approved for recovery operations. The restoration operation can be performed via the seventh and eighth program portions 1450, 1460. In the ninth program portion 1462, the restored film frame 12 can be re-evaluated for subsequent grain sorting operations (e.g., immediately after recovery or later). In some embodiments, a certain number of die selection errors have occurred if the restore operation is approved or indicated. This may indicate one or more problems with the previously generated batch navigation composite image. Accordingly, another piece of the dicing wafer 5 can be selected via the ninth program portion 1462 to generate a substitute lot navigation composite image and returned to the second program portion 1404.

若在第七程序部分1450中,沒有批准或指示膠膜框架復原作業,則在第十至第二十一程序部分1502 –1570中,可考量選擇下一片切割晶圓5;產生旋轉查核複合圖像;查驗是否已在所選擇的切割晶圓5上偵測到正確的參考晶粒21;所選擇切割晶圓5的晶粒分類;對應鏤空晶圓10的鏤空檢查;以及可能的復原作業,如圖15B所示。批次中的每片額外切割晶圓5皆可重複第十至第二十一程序部分1502 – 1570。If, in the seventh program portion 1450, the film frame restoration operation is not approved or instructed, in the tenth to twenty-first program portions 1502 to 1570, the next piece of the dicing wafer 5 may be selected; and the rotation check composite pattern is generated. Detecting whether the correct reference die 21 has been detected on the selected dicing wafer 5; the die classification of the selected dicing wafer 5; the hollowing check corresponding to the stencil wafer 10; and possible recovery operations, As shown in Figure 15B. The tenth to twenty-first program portions 1502 - 1570 can be repeated for each additional wafer 5 in the batch.

圖18是按照本發明實施例查驗是否已在切割晶圓5上選擇正確參考晶粒21的簡化程序1800之流程圖。程序1800包括第一至第十一程序部分1802 – 1840,涉及確定候選參考晶粒是否為實際參考晶粒21,其方式與上文所述基本上相同或類似。18 is a flow diagram of a simplified routine 1800 for verifying that a correct reference die 21 has been selected on a dicing wafer 5 in accordance with an embodiment of the present invention. The program 1800 includes first through eleventh program portions 1802 - 1840 that relate to determining whether the candidate reference die is the actual reference die 21 in substantially the same or similar manner as described above.

圖19是按照本發明實施例復原已選擇性移開晶粒20的膠膜框架12的程序1900之流程圖。程序1900包括第一至第六程序部分1902 – 1920,涉及膠膜框架復原,其方式與上文所述基本上相同或類似。19 is a flow diagram of a process 1900 for restoring a film frame 12 that has selectively removed the die 20 in accordance with an embodiment of the present invention. The program 1900 includes first through sixth program portions 1902 - 1920 relating to film frame restoration in a manner substantially the same as or similar to that described above.

本發明的特定實施例至少因應現有鏤空晶圓檢查技術的一個面向、問題、限制、及/或缺點。雖然本發明已描述某些實施例的特徵、面向、及/或優點,但其他實施例亦可能呈現該特徵、面向、及/或優點,且並非所有實施例都需要呈現該特徵、面向、及/或優點才算落入本發明的範圍內。相關領域的普通技術人員將領會,上文所揭露的許多系統、元件、製程、或替代方案,可結合其他不同系統、元件、製程、及/或應用。此外,相關領域的普通技術人員可對本發明所揭露的各種實施例進行各種變更、修改、及/或改良。該不同系統、元件、製程及/或變更、修改、及/或改良皆包含在本發明及下列申請專利範圍中。Particular embodiments of the present invention address at least one aspect, problem, limitation, and/or disadvantage of existing hollow wafer inspection techniques. Although the present invention has been described in terms of its features, aspects, and/or advantages, other embodiments may present such features, aspects, and/or advantages, and not all embodiments are required to present the features, aspects, and / or advantages are considered to fall within the scope of the present invention. One of ordinary skill in the relevant art will appreciate that many of the systems, components, processes, or alternatives disclosed above can be combined with other different systems, components, processes, and/or applications. In addition, various changes, modifications, and/or improvements may be made to the various embodiments of the invention disclosed herein. The various systems, components, processes and/or variations, modifications, and/or improvements are included in the scope of the invention and the following claims.

10‧‧‧鏤空晶圓
100、101‧‧‧先前工藝的半導體元件製造系統
1000‧‧‧複合圖像
1002‧‧‧放大部分
102‧‧‧第一目視檢查
104‧‧‧第二目視檢查、部分/第一切割
106‧‧‧部分/第一切割、第二目視檢查
108‧‧‧電性測試
11‧‧‧膠膜
110‧‧‧完整/第二切割
1100‧‧‧鏤空晶圓選取圖
112‧‧‧額外/第三目視檢查、最終/第三目視檢查
114、114a、114b、114c‧‧‧元件分類機/晶粒分類
115‧‧‧晶粒分類與檢查系統
12‧‧‧膠膜框架
120‧‧‧捲帶式組件
1200a、1200b‧‧‧條板
1202、1202a、1202b、1202c、1202d‧‧‧條板段
1204‧‧‧缺口
1205a、1205b‧‧‧切割條板
1206‧‧‧參考孔洞
1210a‧‧‧鏤空條板
122‧‧‧目視不合格盤/箱
1220‧‧‧元件
1230‧‧‧橫向格線
1232‧‧‧縱向格線
1250‧‧‧空缺的格子位置
1252‧‧‧存在或留下的元件
13‧‧‧凹痕
1300a、1300b、1300c、1300d‧‧‧分段圖像
1310a、1310b、1310c、1310d‧‧‧分段圖像
1400‧‧‧產生複合圖像的程序
1402-1462‧‧‧步驟
150‧‧‧膠膜框架盒
1500‧‧‧產生複合圖像的程序
1502-1570‧‧‧步驟
160‧‧‧取放設備
1600‧‧‧複合圖像產生程序
1610-1630‧‧‧步驟
170‧‧‧第一相機
1700‧‧‧鏤空晶圓檢查程序
1710-1720‧‧‧步驟
172‧‧‧第二相機
174‧‧‧第三相機
18‧‧‧鏤空晶圓區
180‧‧‧第四相機
1800‧‧‧簡化程序
1802-1840‧‧‧步驟
182‧‧‧第五相機
1900‧‧‧程序
1902-1920‧‧‧步驟
20、24、25、26、50‧‧‧晶粒
200‧‧‧鏤空晶圓檢查
21‧‧‧參考晶粒
210‧‧‧擴展台
212‧‧‧周圍支撐構件
214‧‧‧支架構
215‧‧‧開口
220‧‧‧圖像拍攝裝置
230、232‧‧‧照明光源
250‧‧‧處理單元
262‧‧‧鏤空晶圓檢查模組
264‧‧‧檢查配置記憶體
266‧‧‧圖像記憶體
268‧‧‧工作記憶體
270‧‧‧傳輸/網路介面單元
30、32‧‧‧格線
300‧‧‧自動化程序
302-360‧‧‧步驟
34‧‧‧切割溝槽
40‧‧‧晶粒內特徵
400‧‧‧第一程序
402-438‧‧‧步驟
410‧‧‧第二程序
5‧‧‧切割晶圓
500‧‧‧複合圖像產生程序
502-514‧‧‧步驟
52‧‧‧晶粒空缺位置
600‧‧‧程序
602-622‧‧‧步驟
900a、900b、900c、900d、900e、900f、900g、900h、900i‧‧‧分段圖像
10‧‧‧ hollow wafer
100, 101‧‧‧Previous process semiconductor component manufacturing system
1000‧‧‧Composite image
1002‧‧‧Magnification
102‧‧‧ first visual inspection
104‧‧‧Second visual inspection, partial/first cutting
106‧‧‧Parts/first cut, second visual inspection
108‧‧‧Electrical test
11‧‧‧film
110‧‧‧complete/second cut
1100‧‧‧ hollow wafer selection map
112‧‧‧Additional/Third Visual Inspection, Final/Third Visual Inspection
114, 114a, 114b, 114c‧‧‧ component sorter / die classification
115‧‧‧Graph Classification and Inspection System
12‧‧‧film frame
120‧‧‧ Tape and Reel Components
1200a, 1200b‧‧‧ boards
1202, 1202a, 1202b, 1202c, 1202d‧‧‧ sections
1204‧‧‧ gap
1205a, 1205b‧‧‧ cutting strip
1206‧‧‧Reference hole
1210a‧‧‧ hollow board
122‧‧‧Visually unqualified disc/box
1220‧‧‧ components
1230‧‧‧ transverse grid
1232‧‧‧ vertical grid
1250‧‧‧ vacant grid position
1252‧‧‧ Elements that exist or remain
13‧‧‧ dent
Segmentation images of 1300a, 1300b, 1300c, 1300d‧‧‧
Segment images of 1310a, 1310b, 1310c, 1310d‧‧
1400‧‧‧Programs for generating composite images
1402-1462‧‧‧Steps
150‧‧‧film frame box
1500‧‧‧Programs for generating composite images
1502-1570‧‧‧Steps
160‧‧‧ pick and place equipment
1600‧‧‧Composite image generation program
1610-1630‧‧ steps
170‧‧‧ first camera
1700‧‧‧ hollow wafer inspection program
1710-1720‧‧ steps
172‧‧‧second camera
174‧‧‧ third camera
18‧‧‧Small Wafer Zone
180‧‧‧ fourth camera
1800‧‧‧Simplified procedure
1802-1840‧‧‧Steps
182‧‧‧ fifth camera
1900‧‧‧Program
1902-1920‧‧‧Steps
20, 24, 25, 26, 50‧‧ ‧ grains
200‧‧‧ hollow wafer inspection
21‧‧‧Reference grain
210‧‧‧ Extension station
212‧‧‧ surrounding support members
214‧‧‧ architecture
215‧‧‧ openings
220‧‧‧Image capture device
230, 232‧‧‧ illumination source
250‧‧‧Processing unit
262‧‧‧ hollow wafer inspection module
264‧‧‧Check configuration memory
266‧‧‧ image memory
268‧‧‧ working memory
270‧‧‧Transport/Network Interface Unit
30, 32‧‧ ‧ grid
300‧‧‧Automation procedures
302-360‧‧‧Steps
34‧‧‧Cutting trench
40‧‧‧ In-grain features
400‧‧‧ First procedure
402-438‧‧‧Steps
410‧‧‧ Second procedure
5‧‧‧Cutting wafer
500‧‧‧Composite image generation program
502-514‧‧‧Steps
52‧‧‧ vacancy location
600‧‧‧Program
602-622‧‧‧Steps
900a, 900b, 900c, 900d, 900e, 900f, 900g, 900h, 900i‧‧‧ segmentation images

圖1 顯示一種先前工藝的半導體元件製造系統的部分製程之方塊圖,涉及後端半導體製程的特定面向,包括晶粒分類。 圖2A顯示一種典型的切割晶圓,上面已製造出數個元件或晶粒,該切割晶圓係黏著於一個膠膜框架上。 圖2B顯示一種典型的鏤空晶圓,對應於圖2A的切割晶圓。 圖3顯示一列晶粒,其中的每個晶粒都包括一組特徵,可經由機器視覺演算法詮釋為晶粒邊緣。 圖4顯示一個黏在膠膜框架上的鏤空晶圓,其中的Z = 5個典型的鏤空晶圓區,用來與Z = 5個對應的加工圖區作比對。 圖5A顯示典型半導體元件製造系統的部分製程之方塊圖,包括按照本發明實施例的一套自動化鏤空晶圓檢查系統(SWIS)。 圖5B是晶粒分類與檢查系統的概括方塊圖,用來按照本發明的實施例作串聯式鏤空晶圓檢查。 圖5C顯示典型半導體製造系統中與晶粒分類相關的部分之方塊圖,包括按照本發明實施例的多個晶粒分類設備,用來將鏤空晶圓送至一共同鏤空晶圓檢查系統(SWIS)。 圖5D是按照本發明實施例的典型鏤空晶圓檢查系統(SWIS)元件之示意圖。 圖6A與6B 顯示因切割程序而形成於膠膜框架的膠膜上、切割溝槽內的典型部分深度渠道。 圖7A顯示按照本發明實施例的鏤空晶圓複合圖像,該鏤空晶圓處於典型的照明條件下,對應於提供照明至鏤空晶圓的頂端與底端,以便拍攝分段圖像。 圖7B顯示圖7A鏤空晶圓複合圖像的一個放大部分,對應於鏤空晶圓格子位置的一個2 x 7 陣列,彼此以橫向及縱向切割溝槽或格線界定出來。 圖7C顯示典型的數位編碼,針對圖7B複合圖像的放大部分,表明在典型的部分鏤空晶圓選取圖內的晶粒存在及晶粒空缺。 圖8A與8B顯示典型實際晶圓標準文件的部分。 圖9是按照本發明實施例的自動化鏤空晶圓檢查的自動化程序之流程圖。 圖10A與10B是按照本發明實施例查驗局部PW圖健全性的典型製程之流程圖。 圖11A與11B是按照本發明實施例拍攝鏤空晶圓分段圖像以便產生複合圖像的典型方法之示意圖。 圖12是按照本發明實施例從一組分段圖像產生複合圖像的典型程序之流程圖。 圖13是按照本發明實施例產生鏤空晶圓選取圖及識別晶粒取出錯誤的典型程序之流程圖。 圖14A – 14G顯示典型的條板元件以及由膠膜框架所承載的鏤空條板,該鏤空條板可按照本發明的實施例自動檢查元件取出錯誤。 圖15A – 15B是按照本發明實施例產生複合圖像的典型製程之流程圖。 圖16與17分別是按照本發明實施例產生複合圖像及檢查鏤空晶圓的典型製程之流程圖。 圖18是按照本發明實施例自動查驗晶粒分類設備所偵測或選擇的參考晶粒是否為正確參考晶粒的典型製程之流程圖。 圖19是按照本發明實施例復原膠膜框架的典型製程之流程圖。1 shows a block diagram of a partial process of a prior art semiconductor component fabrication system involving a particular aspect of the backside semiconductor process, including die classification. Figure 2A shows a typical dicing wafer on which several components or dies have been fabricated that are bonded to a film frame. Figure 2B shows a typical hollow wafer corresponding to the dicing wafer of Figure 2A. Figure 3 shows a column of grains, each of which includes a set of features that can be interpreted as grain edges by machine vision algorithms. Figure 4 shows a hollowed-out wafer bonded to a film frame with Z = 5 typical hollowed-out wafer areas for comparison with Z = 5 corresponding processing areas. 5A is a block diagram showing a portion of a typical semiconductor component fabrication system including an automated open wafer inspection system (SWIS) in accordance with an embodiment of the present invention. Figure 5B is a generalized block diagram of a die sorting and inspection system for use in tandem hollow wafer inspection in accordance with an embodiment of the present invention. 5C is a block diagram of a portion of a typical semiconductor fabrication system associated with die classification, including a plurality of die sorting devices for delivering a hollow wafer to a common hollow wafer inspection system (SWIS) in accordance with an embodiment of the present invention. ). Figure 5D is a schematic illustration of a typical open wafer inspection system (SWIS) component in accordance with an embodiment of the present invention. Figures 6A and 6B show typical partial depth channels formed in the film of the film frame due to the cutting process, cutting the grooves. 7A shows a composite image of a hollowed out wafer, under typical illumination conditions, corresponding to providing illumination to the top and bottom ends of the hollowed out wafer to capture a segmented image, in accordance with an embodiment of the present invention. Figure 7B shows an enlarged portion of the composite image of the hollowed wafer of Figure 7A, corresponding to a 2 x 7 array of hollowed-wafer grid locations, defined by lateral and longitudinal cut grooves or grid lines. Figure 7C shows a typical digital encoding, for the enlarged portion of the composite image of Figure 7B, showing the presence of grains and grain vacancies in a typical partially hollowed wafer selection map. Figures 8A and 8B show portions of a typical actual wafer standard file. 9 is a flow diagram of an automated process for automated hollow wafer inspection in accordance with an embodiment of the present invention. 10A and 10B are flow diagrams showing a typical process for verifying the soundness of a partial PW map in accordance with an embodiment of the present invention. 11A and 11B are schematic illustrations of exemplary methods of capturing a hollow wafer segmented image to produce a composite image in accordance with an embodiment of the present invention. Figure 12 is a flow diagram of a typical process for generating a composite image from a set of segmented images in accordance with an embodiment of the present invention. Figure 13 is a flow diagram showing a typical procedure for generating a hollow wafer pick pattern and identifying a die removal error in accordance with an embodiment of the present invention. Figures 14A - 14G show a typical slat element and a hollow strip carried by a film frame that automatically inspects component removal errors in accordance with embodiments of the present invention. 15A-15B are flow diagrams of a typical process for producing a composite image in accordance with an embodiment of the present invention. 16 and 17 are flow diagrams showing a typical process for producing a composite image and inspecting a hollow wafer, respectively, in accordance with an embodiment of the present invention. 18 is a flow diagram of a typical process for automatically checking whether a reference die detected or selected by a die classification device is a correct reference die in accordance with an embodiment of the present invention. Figure 19 is a flow diagram of a typical process for restoring a film frame in accordance with an embodiment of the present invention.

300‧‧‧自動化程序 300‧‧‧Automation procedures

302-360‧‧‧步驟 302-360‧‧‧Steps

Claims (29)

一種自動化方法,用來產生至少一張複合圖像,該複合圖像對應於至少一個承載切割元件的膠膜框架,方法包含:提供一個膠膜框架,按照數個格子位置在上面布置切割元件,數個格子位置包括一組有效區域格子位置,所製元件位於裡面;拍攝膠膜框架的一組分段圖像,每張分段圖像對應於膠膜框架所跨越的空間區域的一個預定部分,且至少包括一小組有效區域格子位置;從分段圖像組產生一張對應於膠膜框架的複合圖像,該複合圖像包括圖像資料,表明(a)可駐留元件的每個有效區域格子位置,及(b)每個有效區域格子位置的元件存在或元件空缺;以及經由圖像處理技術來處理複合圖像,以便在複合圖像內確定一個參考原點及一個第一有效區域格子位置,其中的參考原點包含複合圖像裡的一個預定點或一個預定的有效區域格子位置,其代表(a)膠膜框架上的一個對應預定點或預定的有效區域格子位置,及(b)對應於所製元件的加工圖上的一個預定有效區域格子位置,其中的加工圖包含一個數據結構,其儲存對應於每個有效區域格子位置的資料內容,針對每個有效區域格子位置表明駐留其上的元件是合格或不合格。An automated method for producing at least one composite image corresponding to at least one film frame carrying a cutting element, the method comprising: providing a film frame on which the cutting elements are arranged in a plurality of lattice positions, a plurality of grid positions including a set of effective area grid positions, the components are located inside; a set of segmented images of the film frame, each segment image corresponding to a predetermined portion of the space region spanned by the film frame And comprising at least a set of effective area grid positions; generating a composite image corresponding to the film frame from the segment image group, the composite image comprising image data indicating that (a) each of the dwellable elements is valid Area grid position, and (b) element presence or component vacancy for each effective area grid position; and processing the composite image via image processing techniques to determine a reference origin and a first effective area within the composite image a grid position in which the reference origin includes a predetermined point in the composite image or a predetermined effective area grid position, which represents (a) a film frame a corresponding predetermined point or predetermined effective area grid position, and (b) a predetermined effective area grid position corresponding to the processed image of the fabricated component, wherein the processed image includes a data structure, the storage corresponding to each The data content of the effective area grid position indicates that the component on which the valid area is located is qualified or unqualified for each valid area grid position. 如申請專利範圍第1項的方法,其中的元件是對應於晶圓的半導體晶粒,且其中的膠膜框架至少承載(a)晶圓有效區域格子位置組內已製元件所在的部分,或(b)有效區域格子位置組內已製元件所在的條板。The method of claim 1, wherein the component is a semiconductor die corresponding to the wafer, and wherein the film frame carries at least (a) a portion of the wafer in the effective area of the wafer position group, or (b) The strip in which the component is located in the effective area grid position group. 如申請專利範圍第1或2項的方法,其中的提供膠膜框架至少包含下列一項:(a)在執行一組元件分類作業、從膠膜框架選擇性移開元件之前提供膠膜框架,及(b)在執行元件分類作業組之後提供膠膜框架。The method of claim 1 or 2, wherein the providing the film frame comprises at least one of the following: (a) providing a film frame before performing a group component sorting operation and selectively removing the component from the film frame. And (b) providing a film frame after performing the component sorting operation group. 如申請專利範圍第3項的方法,其中的參考原點不同於膠膜框架上執行元件分類作業組所使用的參考晶粒位置。The method of claim 3, wherein the reference origin is different from the reference grain position used by the actuator sorting operation group on the film frame. 如申請專利範圍第4項的方法,其中的處理複合圖像包含:在複合圖像中識別出數條格線的至少部分,其對應於膠膜框架上的元件之間的數條切割溝槽的至少部分;依據複合圖像內的畫素區域來定義數個格子位置,其邊界是由數條格線內的相鄰橫向格線及相鄰縱向格線所圍住;以及利用參考原點及參考原點與第一有效區域格子位置之間的預定空間關係,確定數個格子位置內的有效區域格子位置。The method of claim 4, wherein processing the composite image comprises: identifying at least a portion of the plurality of ruled lines in the composite image, corresponding to a plurality of cutting grooves between the elements on the film frame At least part of; defining a plurality of lattice positions according to a pixel region in the composite image, the boundary of which is surrounded by adjacent horizontal grid lines and adjacent vertical grid lines within the plurality of grid lines; and using a reference origin And determining a valid area grid position within the plurality of grid positions by a predetermined spatial relationship between the reference origin and the first effective area grid position. 如申請專利範圍第1至5項中任何一項的方法,其中的拍攝分段圖像組包含引導照明朝向下列至少一項:(a)膠膜框架的頂端表面,以第一組照明參數作為基準,及(b)第一膠膜框架的底端表面,以第二組照明參數作為基準。The method of any one of claims 1 to 5 wherein the segmented image group comprises directing illumination toward at least one of: (a) a top surface of the film frame, with the first set of illumination parameters as The reference, and (b) the bottom end surface of the first film frame, with the second set of illumination parameters as a reference. 如申請專利範圍第6項的方法,其中的第一組照明參數及第二組照明參數有助於可靠的圖像處理,辨別出元件存在於格子位置、元件從格子位置空缺、及界定出每個格子位置的格線。The method of claim 6, wherein the first set of illumination parameters and the second set of illumination parameters facilitate reliable image processing, discerning that the component is present at the grid position, the component is vacant from the lattice position, and each is defined The grid line of the grid position. 如申請專利範圍第1至7項中任何一項的方法,其中的拍攝分段圖像組包含拍攝每張分段圖像所使用的圖像拍攝裝置相較於檢查個別元件的微米或次微米級瑕疵所使用的圖像拍攝裝置,分別具有較低解析度及較大視野範圍。The method of any one of claims 1 to 7, wherein the photographing the segment image group comprises using an image capturing device for photographing each segmented image as compared to micro or sub-microns for inspecting individual components. The image capturing devices used in the class have lower resolution and a larger field of view. 如申請專利範圍第1至8項中任何一項的方法,其中的分段圖像組包括數張圖像,其對應於膠膜框架整體區域的預定部分,而其中的產生複合圖像包括以數位方式將分段圖像組內的個別分段圖像拼接起來。The method of any one of clauses 1 to 8, wherein the segmented image group comprises a plurality of images corresponding to predetermined portions of the entire area of the film frame, and wherein the generating of the composite image comprises The digital mode splicing individual segmented images within a segmented image group. 如申請專利範圍第9項的方法,其中的以數位方式將分段圖像組內的個別分段圖像拼接起來包含以數位方式連接至少部分對應於膠膜框架鄰近區域的個別分段圖像,方式為對齊下列個別分段圖像:(a)沿著共同邊界組重疊,對應於相同元件的元件邊緣及/或元件特徵,及/或(b)直接彼此相鄰,以編碼器數值作為基準,其表明在拍攝分段圖像組期間膠膜框架的相對實際空間座標。The method of claim 9, wherein the splicing of the individual segment images in the segmented image group in a digital manner comprises digitally connecting the individual segment images corresponding to at least partially adjacent regions of the film frame. By aligning the following individual segmented images: (a) overlapping along a common boundary group, corresponding to component edges and/or component features of the same component, and/or (b) directly adjacent to each other, with encoder values as A fiducial that indicates the relative actual spatial coordinates of the film frame during the capture of the segmented image set. 如申請專利範圍第1至10項中任何一項的方法,進一步包含在產生複合圖像之前取用一份處方,該處方至少包括下列一項:(a)格子資料,包括一些橫向格線及一些縱向格線,其界定出數個格子位置;(b)圖像拍攝裝置參數,包括相對於元件尺寸及晶圓尺寸的圖像拍攝裝置解析度及圖像拍攝裝置視野範圍;(c)至少一組照明參數,在拍攝分段圖像組期間用來控制入射於膠膜框架上的照明特性;(d)待拍攝的一些分段圖像;(e)分段圖像組內的個別分段圖像之間的重疊程度;(f)一組參考原點參數,其表明或定義出相對於數個格子位置的參考原點位置;(g)一個第一有效區域格子位置,其表明有效區域格子位置組內的一個第一元件位置;以及(h)一組參數,其可查驗晶粒分類設備所偵測到的參考晶粒位置。The method of any one of claims 1 to 10, further comprising taking a prescription prior to producing the composite image, the prescription comprising at least one of the following: (a) grid data including some lateral grid lines and a plurality of vertical grid lines defining a plurality of grid positions; (b) image capture device parameters including image resolution of the image capture device relative to the component size and wafer size and a field of view of the image capture device; (c) at least a set of illumination parameters used to control the illumination characteristics incident on the film frame during the segmentation of the image group; (d) some segmented images to be captured; (e) individual segments within the segmented image group The degree of overlap between the segment images; (f) a set of reference origin parameters that indicate or define a reference origin position relative to a plurality of lattice positions; (g) a first effective region lattice position indicating effective a first component location within the regional grid location group; and (h) a set of parameters that can be used to examine the reference grain location detected by the die classification device. 如申請專利範圍第3至11項中任何一項的方法,進一步包含:分析每個有效區域格子位置的複合圖像內的畫素數據,以確定元件存在於膠膜框架上的對應有效區域格子位置或元件空缺;以及針對有效區域格子位置組內的每個有效區域格子位置,將複合圖像的資料內容與加工圖的資料內容進行比對。The method of any one of claims 3 to 11, further comprising: analyzing pixel data in the composite image of each effective region lattice position to determine a corresponding effective region lattice of the component present on the film frame The position or component is vacant; and the data content of the composite image is compared with the data content of the processed image for each valid region lattice position in the effective region lattice location group. 如申請專利範圍12的方法,其中的比對資料內容包含將複合圖像內對應於每個有效區域格子位置的畫素數值與加工圖上對應於該有效區域格子位置的數位代碼進行比對。The method of claim 12, wherein the comparing the content of the data comprises comparing a pixel value corresponding to a lattice position of each effective region in the composite image with a digit code corresponding to the lattice position of the effective region on the processing map. 如申請專利範圍第12或13項的方法,進一步包含自動確定:(a)元件分類作業期間是否有一或多個元件被不正確地從膠膜框架移開,及/或(b)元件分類作業之後是否有一或多個元件被不正確地留在膠膜框架上。The method of claim 12 or 13, further comprising automatically determining: (a) whether one or more components are incorrectly removed from the film frame during component sorting, and/or (b) component sorting operations Whether one or more components are subsequently incorrectly left on the film frame. 如申請專利範圍第3至14項中任何一項的方法,其中的提供膠膜框架包含在執行元件分類作業組之前提供膠膜框架,而其中的產生複合圖像包含在執行元件分類作業組之前產生膠膜框架的複合圖像。The method of any one of claims 3 to 14, wherein providing the film frame comprises providing a film frame prior to performing the component sorting operation group, wherein the generating the composite image is included before the actuator sorting operation group A composite image of the film frame is produced. 如申請專利範圍第3至15項中任何一項的方法,其中的提供膠膜框架包含在執行元件分類作業組之後提供膠膜框架,而其中的產生複合圖像包含在執行元件分類作業組之後產生膠膜框架的複合圖像。The method of any one of claims 3 to 15, wherein the providing a film frame comprises providing a film frame after the actuator classifying operation group, wherein the generating the composite image is included in the actuator classifying operation group A composite image of the film frame is produced. 如申請專利範圍第15項的方法,進一步包含使用在執行元件分類作業組之前針對膠膜框架所產生的複合圖像,在一組取放作業期間作為導航輔助或指南,以便至少定位下列一項: (a) 在相同膠膜框架或不同膠膜框架上執行元件分類作業組期間或之後,相對於取放設備的一個有效區域目標格子位置; (b) 在相同膠膜框架或不同膠膜框架上執行元件分類作業組期間,相對於取放設備的每個有效區域格子位置;以及 (c) 在一組膠膜框架復原作業期間,數個格子位置內相對於取放設備的至少一些有效區域格子位置,復原對象為因元件分類作業組而從相同或不同膠膜框架被移開的元件。The method of claim 15, further comprising using a composite image generated for the film frame prior to performing the component classification work group as a navigation aid or guide during a set of pick and place operations to locate at least one of the following : (a) an effective area target lattice position relative to the pick-and-place equipment during or after performing the component sorting operation on the same film frame or different film frames; (b) in the same film frame or different film frames During each of the upper component sorting operation groups, relative to each valid area grid position of the pick and place apparatus; and (c) during at least one set of film frame restoration operations, at least some effective areas of the plurality of grid positions relative to the pick and place apparatus The grid position, the restoration object is an element that is removed from the same or different film frames due to the component classification work group. 如申請專利範圍第17項的方法,其中的膠膜框架是第一膠膜框架,其承載一批切割晶圓中的第一切割晶圓,其中膠膜框架的複合圖像包括第一切割晶圓的複合圖像,且其中使用複合圖像作為導航輔助或指南包含:儲存第一切割晶圓的複合圖像作為批次導航複合圖像,可用來當作該批中每片切割晶圓的導航輔助或指南;選擇第二膠膜框架,其承載該批中的第二切割晶圓;產生第二切割晶圓的複合圖像;利用圖像配準技術來確定並矯正批次導航複合圖像與第二切割晶圓複合圖像之間的旋轉偏移。The method of claim 17, wherein the film frame is a first film frame carrying a first dicing wafer in a plurality of dicing wafers, wherein the composite image of the film frame comprises the first dicing crystal A composite image of a circle, and wherein the composite image is used as a navigation aid or guide includes: storing a composite image of the first cut wafer as a batch navigation composite image, which can be used as a wafer for each wafer in the batch Navigation aid or guide; selecting a second film frame carrying the second cut wafer in the batch; generating a composite image of the second cut wafer; using image registration techniques to determine and correct the batch navigation composite image A rotational offset between the image and the composite image of the second diced wafer. 如申請專利範圍第18項的方法,進一步包含:識別出第二切割晶圓上的當前晶粒位置及第二切割晶圓的複合圖像中的對應當前晶粒位置;識別出第二切割晶圓的目標晶粒位置及批次導航複合圖像中的對應目標晶粒位置;利用批次導航圖像及圖像空間至實際空間轉換係數,計算出對應於當前晶粒位置的相對編碼器位置及對應於目標晶粒位置的相對編碼器位置; 依據每個計算出來的相對編碼器位置,產生更新的編碼器位置;以及使用更新的編碼器位置,將取放設備從當前晶粒位置直接導航至目標晶粒位置的一組邊界內。The method of claim 18, further comprising: identifying a current die position on the second dicing wafer and a corresponding current grain position in the composite image of the second dicing wafer; identifying the second dicing crystal The target grain position of the circle and the corresponding target grain position in the batch navigation composite image; using the batch navigation image and the image space to the actual space conversion coefficient, the relative encoder position corresponding to the current die position is calculated And a relative encoder position corresponding to the target die position; generating an updated encoder position based on each calculated relative encoder position; and directing the pick and place device from the current die position using the updated encoder position Within a set of boundaries to the target grain location. 如申請專利範圍第18項的方法,進一步包含查驗晶粒分類設備是否偵測到第二切割晶圓上的正確參考晶粒,方式為:從處方檢索出對應於輔助參考晶粒的相對編碼器位置偏移;將晶粒分類設備從候選參考晶粒位置或候選參考原點直接導航至輔助參考晶粒的預定位置;自動確定輔助參考晶粒是否出現在輔助參考晶粒的預定位置;以及依據輔助參考晶粒是否出現在輔助參考晶粒的預定位置,查驗候選參考晶粒是否為正確參考晶粒。The method of claim 18, further comprising checking whether the die sorting device detects the correct reference die on the second dicing wafer by: retrieving a relative encoder corresponding to the auxiliary reference dies from the prescription Position offset; directing the die sorting device from the candidate reference die position or the candidate reference origin to a predetermined position of the auxiliary reference die; automatically determining whether the auxiliary reference die appears at a predetermined position of the auxiliary reference die; Whether the auxiliary reference die appears at a predetermined position of the auxiliary reference die, and whether the candidate reference die is the correct reference die is checked. 如申請專利範圍第18項的方法,進一步包含:從第二切割晶圓選擇性移開晶粒,以形成一片鏤空晶圓;產生鏤空晶圓的複合圖像;以及利用圖像配準技術來確定並矯正批次導航複合圖像與鏤空晶圓的複合圖像之間的旋轉偏移。The method of claim 18, further comprising: selectively removing the die from the second dicing wafer to form a hollow wafer; generating a composite image of the hollowed out wafer; and utilizing image registration technology to Determine and correct the rotational offset between the composite image of the batch navigation and the composite image of the hollowed out wafer. 如申請專利範圍第21項的方法,進一步包含:從處方檢索出對應於輔助參考晶粒的相對編碼器位置偏移;將取放設備從鏤空晶圓上的候選參考晶粒位置或候選參考原點直接導航至輔助參考晶粒的預定位置;自動確定輔助參考晶粒是否出現在輔助參考晶粒的預定位置;依據輔助參考晶粒是否出現在輔助參考晶粒的預定位置,查驗候選參考晶粒是否為正確參考晶粒;以及依據候選參考晶粒是否為正確參考晶粒的查驗結果,開始進行一組膠膜框架復原作業,膠膜框架復原作業組包括將已從第二切割晶圓移開的晶粒放回第二膠膜框架,以形成替補第二切割晶圓,鏤空晶圓複合圖像及批次導航複合圖像其中之一被用來作為膠膜框架復原作業組期間,導航至第二膠膜框架上的不同晶粒位置的輔助或指南。The method of claim 21, further comprising: retrieving a relative encoder position offset corresponding to the auxiliary reference die from the prescription; picking and dropping the device from the candidate reference die position or candidate reference original on the hollowed out wafer Point directly to the predetermined position of the auxiliary reference die; automatically determine whether the auxiliary reference die appears at a predetermined position of the auxiliary reference die; and check the candidate reference die according to whether the auxiliary reference die appears at a predetermined position of the auxiliary reference die Whether it is the correct reference die; and starting a set of film frame restoration operations based on whether the candidate reference die is the correct reference die, the film frame recovery operation group includes removing the second wafer from the wafer The die is placed back into the second film frame to form a replacement second dicing wafer, and the hollowed-out wafer composite image and the batch navigation composite image are used as a film frame recovery operation group during navigation to Auxiliary or guide to different grain positions on the second film frame. 如申請專利範圍第3項的方法,其中經由並行計算程序,複合圖像的產生與元件分類作業組的執行同時發生。The method of claim 3, wherein the generation of the composite image occurs simultaneously with the execution of the component classification work group via the parallel computing program. 一套系統,用來產生至少一張複合圖像,對應於至少一個膠膜框架,該膠膜框架承載著切割元件,該切割元件位於數個格子位置的有效格子區域內,此系統包含:一個處理單元;一張擴展台或晶圓台,用來承載及固定住膠膜框架;一組照明光源,在膠膜框架被擴展台或晶圓台承載期間,用來引導照明朝向膠膜框架;一個圖像拍攝裝置;以及一個記憶體,其至少儲存一組程式指令,當指令執行時,會讓處理單元執行申請專利範圍1至23任何一項的方法。a system for producing at least one composite image corresponding to at least one film frame carrying a cutting element, the cutting element being located in an effective lattice area of a plurality of lattice positions, the system comprising: Processing unit; an extension station or wafer table for carrying and fixing the film frame; a set of illumination sources for guiding the illumination toward the film frame during the loading of the film frame by the extension table or the wafer table; An image capture device; and a memory that stores at least one set of program instructions that, when executed, causes the processing unit to perform the method of any one of claims 1 to 23. 如申請專利範圍第24項的系統,其中的處理單元連接到一個元件分類設備,該設備用來執行膠膜框架上的一組元件分類作業,該元件分類作業組涉及依據加工圖資料內容,從膠膜框架選擇性移開元件。The system of claim 24, wherein the processing unit is coupled to a component sorting device for performing a group of component sorting operations on the film frame, the component sorting operation group relating to processing material content according to The film frame selectively removes the component. 如申請專利範圍第24或25項的系統,其中的照明光源組至少包括下列一項:(a)一個第一照明光源組,在拍攝分段圖像組期間,用來按照第一照明參數組,引導照明朝向膠膜框架的頂端表面,及(b)第二照明光源組,在拍攝分段圖像組期間,用來按照第二照明參數組,引導照明朝向第一膠膜框架的底端表面。The system of claim 24 or 25, wherein the group of illumination sources comprises at least one of: (a) a first group of illumination sources for use in accordance with the first illumination parameter set during the segmentation of the segment image group; And guiding the illumination toward the top surface of the film frame, and (b) the second illumination source group for guiding the illumination toward the bottom end of the first film frame according to the second illumination parameter set during the shooting of the segment image group surface. 如申請專利範圍第24至26項中任何一項的系統,其中的圖像拍攝裝置相較於檢查個別元件的微米或次微米級瑕疵所使用的圖像拍攝裝置,具有較低解析度及較大視野範圍。The system of any one of claims 24 to 26, wherein the image capturing device has lower resolution and comparison than an image capturing device used to inspect micro- or sub-micron 瑕疵 of individual components. Large field of view. 如申請專利範圍第24至37項中任何一項的系統,其中的記憶體儲存一份處方,該處方至少包括下列某幾項:(a)格子資料,包括一些橫向格線及一些縱向格線,其界定出數個格子位置;(b)圖像拍攝裝置參數,包括相對於元件尺寸及晶圓尺寸的圖像拍攝裝置解析度及圖像拍攝裝置視野範圍;(c)至少一組照明參數,在拍攝分段圖像組期間用來控制入射於膠膜框架上的照明特性;(d)待拍攝的一些分段圖像;(e)分段圖像組內的個別分段圖像之間的重疊程度;(f)一組參考原點參數,其表明或定義出相對於數個格子位置的參考原點位置;(g)一個第一有效區域格子位置,其表明有效區域格子位置組內的一個第一元件位置;以及(h)一組參數,其可查驗晶粒分類設備所偵測到的參考晶粒位置。The system of any one of claims 24 to 37, wherein the memory stores a prescription comprising at least the following items: (a) grid data including some lateral grid lines and some longitudinal grid lines , which defines a plurality of grid positions; (b) image capture device parameters, including image capture device resolution relative to component size and wafer size, and image capture device field of view; (c) at least one set of illumination parameters Used to control the illumination characteristics incident on the film frame during the shooting of the segment image group; (d) some segmented images to be captured; (e) individual segmented images within the segmented image group (f) a set of reference origin parameters indicating or defining a reference origin position relative to a plurality of lattice positions; (g) a first effective region lattice position indicating a valid region lattice position group a first component location; and (h) a set of parameters that can be used to examine the reference grain location detected by the die classification device. 如申請專利範圍第25至28項中任何一項的系統,其中(a)系統整合進一個用來執行元件分類作業組的元件分類設備中,或(b)系統與元件分類設備分離。The system of any one of claims 25 to 28, wherein (a) the system is integrated into a component sorting device for performing a component sorting operation group, or (b) the system is separated from the component sorting device.
TW103119786A 2013-06-07 2014-06-06 Systems and methods for automatically verifying correct die removal from film frames TWI546879B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201361832153P 2013-06-07 2013-06-07

Publications (2)

Publication Number Publication Date
TW201511161A true TW201511161A (en) 2015-03-16
TWI546879B TWI546879B (en) 2016-08-21

Family

ID=52142392

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103119786A TWI546879B (en) 2013-06-07 2014-06-06 Systems and methods for automatically verifying correct die removal from film frames

Country Status (11)

Country Link
US (1) US9934565B2 (en)
EP (1) EP3005412B1 (en)
KR (1) KR101803792B1 (en)
CN (1) CN105408990B (en)
HK (1) HK1220290A1 (en)
MY (1) MY179130A (en)
PH (1) PH12015502724A1 (en)
PT (1) PT3005412T (en)
SG (2) SG11201510385YA (en)
TW (1) TWI546879B (en)
WO (1) WO2014209226A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI699837B (en) * 2017-12-20 2020-07-21 旺矽科技股份有限公司 Multi-grain selection method
TWI747257B (en) * 2019-04-29 2021-11-21 馬來西亞商正齊科技有限公司 A method for inspecting a skeleton wafer

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10916005B2 (en) * 2014-11-24 2021-02-09 Kitov Systems Ltd Automated inspection
KR20180008383A (en) * 2015-05-19 2018-01-24 이스메카 세미컨덕터 홀딩 에스.아. How to adjust the parts handling assembly and parts handling assembly
DE102017001010A1 (en) * 2016-02-05 2017-08-10 Mitutoyo Corporation Image measuring device and program
US9987747B2 (en) * 2016-05-24 2018-06-05 Semes Co., Ltd. Stocker for receiving cassettes and method of teaching a stocker robot disposed therein
JP7090066B2 (en) * 2016-07-13 2022-06-23 ユニバーサル インスツルメンツ コーポレーション Modular die handling system
JP6694362B2 (en) * 2016-09-30 2020-05-13 富士フイルム株式会社 Image inspection method and apparatus, program, and image recording system
JP6673268B2 (en) * 2017-03-14 2020-03-25 オムロン株式会社 Management device, control method of management device, information processing program, and recording medium
CN107199180A (en) * 2017-07-28 2017-09-26 东莞中国科学院云计算产业技术创新与育成中心 Sorting equipment
US10269108B2 (en) * 2017-09-01 2019-04-23 Midea Group Co., Ltd. Methods and systems for improved quality inspection of products using a robot
KR102000081B1 (en) * 2017-09-19 2019-07-17 세메스 주식회사 Die stage unit for testing die and die binding apparatus having the same
US10572991B2 (en) * 2017-11-07 2020-02-25 Kla-Tencor Corporation System and method for aligning semiconductor device reference images and test images
US11468590B2 (en) 2018-04-24 2022-10-11 Cyberoptics Corporation Wireless substrate-like teaching sensor for semiconductor processing
CN109003918B (en) * 2018-07-05 2020-06-30 汕头大学 Active traversal matching method for chips
US11138722B2 (en) * 2018-12-21 2021-10-05 Kla-Tencor Corporation Differential imaging for single-path optical wafer inspection
US10878548B2 (en) * 2019-03-28 2020-12-29 Advanced New Technologies Co., Ltd. Specular reflection reduction using polarized light sources
KR20200144385A (en) * 2019-06-18 2020-12-29 (주)제이티 Device handler and digital code recognition system used therefor
US11551777B2 (en) * 2019-08-09 2023-01-10 Micron Technology, Inc. Apparatus with circuit-locating mechanism
KR102366179B1 (en) * 2019-08-23 2022-02-22 세메스 주식회사 Transger unit and apparatus for treating substrate with the transfer unit
CN112446887B (en) * 2019-09-05 2022-04-08 长鑫存储技术有限公司 Wafer cutting wafer number calculating method and calculating equipment
US11205249B2 (en) * 2019-11-14 2021-12-21 Adobe Inc. Table shifting and skewing
CN111107324A (en) * 2019-12-31 2020-05-05 上海陛通半导体能源科技股份有限公司 Monitoring device and monitoring method of wafer transmission system
US11817326B2 (en) * 2020-03-10 2023-11-14 Pyxis Cf Pte. Ltd. Precision reconstruction for panel-level packaging
CN111553911A (en) * 2020-05-08 2020-08-18 视睿(杭州)信息科技有限公司 Global positioning method and device for industrial particle continuous product
CN111606302A (en) * 2020-06-04 2020-09-01 南通通富微电子有限公司 Sorting method and sorting system for MEMS (micro-electromechanical systems) packaging bodies
US20220005721A1 (en) * 2020-07-02 2022-01-06 Mpi Corporation Method of aligning wafer
KR102427897B1 (en) * 2020-12-03 2022-08-02 에스케이하이닉스 주식회사 method of treating semiconductor die
CN113299573B (en) * 2021-04-28 2022-06-10 长鑫存储技术有限公司 Wafer grinding method and wafer failure analysis method
DE102021119008A1 (en) * 2021-07-30 2023-02-02 Carl Zeiss Multisem Gmbh Method for defect detection in a semiconductor sample in sample images with distortion
CN113533356A (en) * 2021-09-16 2021-10-22 武汉精创电子技术有限公司 Method, device and equipment for detecting crystal grain array defects and readable storage medium
WO2024003608A1 (en) * 2022-06-26 2024-01-04 Nova Ltd Moving apparatus along multiple axes
CN115147422A (en) * 2022-09-05 2022-10-04 武汉精立电子技术有限公司 Method, device and equipment for generating crystal grains at center of wafer and storage medium
CN117274365B (en) * 2023-11-22 2024-02-13 武汉罗博半导体科技有限公司 Wafer solder ball diameter detection method, device, equipment and storage medium

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324298B1 (en) 1998-07-15 2001-11-27 August Technology Corp. Automated wafer defect inspection system and a process of performing such inspection
US7040487B2 (en) 2001-07-14 2006-05-09 Entegris, Inc. Protective shipper
JP2004288792A (en) 2003-03-20 2004-10-14 Lintec Corp Alignment device and alignment method
US7222737B2 (en) * 2003-07-03 2007-05-29 Orthodyne Electronics Corporation Die sorter with reduced mean time to convert
JP4706366B2 (en) 2005-07-22 2011-06-22 株式会社テクノホロン Position detection method
US7494900B2 (en) 2006-05-25 2009-02-24 Electro Scientific Industries, Inc. Back side wafer dicing
US7879514B2 (en) * 2006-08-04 2011-02-01 Asml Netherlands B.V. Lithographic method and patterning device
JP2008103544A (en) 2006-10-19 2008-05-01 Yaskawa Electric Corp Aligner apparatus
US8401272B2 (en) * 2007-08-02 2013-03-19 Asti Holdings Limited Patterned wafer defect inspection system and method
SG156544A1 (en) 2008-04-17 2009-11-26 Semiconductor Technologies Component handler
US8131056B2 (en) * 2008-09-30 2012-03-06 International Business Machines Corporation Constructing variability maps by correlating off-state leakage emission images to layout information
SG164292A1 (en) 2009-01-13 2010-09-29 Semiconductor Technologies & Instruments Pte System and method for inspecting a wafer
SG165186A1 (en) 2009-03-13 2010-10-28 Semiconductor Tech & Instr Inc An apparatus for handling a semiconductor component
JP2012122765A (en) * 2010-12-06 2012-06-28 Hitachi High-Technologies Corp Defect checkup device
KR20120056404A (en) 2010-11-25 2012-06-04 주식회사 엘지실트론 An apparatus for revolving a wafer aligner
SG185839A1 (en) 2011-05-12 2012-12-28 Semiconductor Technologies And Instr Pte Ltd System and method for handling and aligning component panes such as film frames and wafers
KR102111183B1 (en) 2012-08-31 2020-05-14 세미컨덕터 테크놀로지스 앤드 인스트루먼츠 피티이 엘티디 Multifunction wafer and film frame handling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI699837B (en) * 2017-12-20 2020-07-21 旺矽科技股份有限公司 Multi-grain selection method
TWI747257B (en) * 2019-04-29 2021-11-21 馬來西亞商正齊科技有限公司 A method for inspecting a skeleton wafer

Also Published As

Publication number Publication date
CN105408990B (en) 2017-10-10
KR20160021807A (en) 2016-02-26
HK1220290A1 (en) 2017-04-28
EP3005412A4 (en) 2017-03-01
PT3005412T (en) 2020-01-20
PH12015502724B1 (en) 2016-03-14
EP3005412B1 (en) 2019-10-09
PH12015502724A1 (en) 2016-03-14
EP3005412A1 (en) 2016-04-13
WO2014209226A1 (en) 2014-12-31
US9934565B2 (en) 2018-04-03
SG10201708537XA (en) 2017-11-29
TWI546879B (en) 2016-08-21
MY179130A (en) 2020-10-28
SG11201510385YA (en) 2016-01-28
US20160125583A1 (en) 2016-05-05
KR101803792B1 (en) 2018-01-10
CN105408990A (en) 2016-03-16

Similar Documents

Publication Publication Date Title
TWI546879B (en) Systems and methods for automatically verifying correct die removal from film frames
US6324298B1 (en) Automated wafer defect inspection system and a process of performing such inspection
US9347862B2 (en) Setting up a wafer inspection process using programmed defects
CN102738029B (en) Method for detecting specific defect and system used for detecting specific defect
KR20100071621A (en) Appearance inspecting method of semiconductor chip and its device
JP2008032433A (en) Substrate inspection device
JP2008196975A (en) Defect inspection device
KR102572968B1 (en) Wafer inspection method using the deep learning and wafer inspection device for implementing this
KR20190120063A (en) System and method for infrared(ir) inspection
JP2008014650A (en) Surface defect inspection apparatus
JP4768477B2 (en) Image acquisition method of semiconductor chip
JP2010085145A (en) Inspection device and method
KR102616737B1 (en) Wafer prcessing method
KR100520505B1 (en) A method for wafer edge defect inspection
KR101030445B1 (en) Apparatus and method for inspecting die and wire bonding of led chip
JP2013068633A (en) Automated wafer defect inspection system and method for executing inspection
KR20230165183A (en) Wafer prcessing apparatus and system