TW201436206A - Embedded resistor - Google Patents

Embedded resistor Download PDF

Info

Publication number
TW201436206A
TW201436206A TW102107510A TW102107510A TW201436206A TW 201436206 A TW201436206 A TW 201436206A TW 102107510 A TW102107510 A TW 102107510A TW 102107510 A TW102107510 A TW 102107510A TW 201436206 A TW201436206 A TW 201436206A
Authority
TW
Taiwan
Prior art keywords
layer
interlayer dielectric
resistor
trench
dielectric layer
Prior art date
Application number
TW102107510A
Other languages
Chinese (zh)
Other versions
TWI570926B (en
Inventor
Ching-Wen Hung
Chih-Sen Huang
Po-Chao Tsao
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW102107510A priority Critical patent/TWI570926B/en
Publication of TW201436206A publication Critical patent/TW201436206A/en
Application granted granted Critical
Publication of TWI570926B publication Critical patent/TWI570926B/en

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

An embedded resistor including a first interdielectric layer, a cap layer, a resistive layer and a cap film is provided. The first interdielectric layer is located on a substrate. The cap layer is located on the first interdielectric layer, wherein the cap layer has a trench. The resistive layer conformally covers the trench, thereby having a U-shaped cross-sectional profile. The cap film is located in the trench and on the resistive layer. Or, an embedded thin film resistor including a first interdielectric layer, a cap layer and a bulk resistive layer is provided. The first interdielectric layer is located on a substrate. The cap layer is located on the first interdielectric layer, wherein the cap layer has a trench. The bulk resistive layer is located in the trench.

Description

埋入式電阻 Buried resistor

本發明係關於一種電阻,且特別係關於一種埋入式電阻。 This invention relates to a resistor, and in particular to a buried resistor.

半導體晶片製程中,常利用多晶矽材料來形成高阻抗電阻,這種電阻可以取代作為負載(load)的電晶體(transistor)。例如在靜態隨機存取記憶體(static random access memory,SRAM)內的電晶體可由多晶矽所形成的負載電阻取代,使SRAM內電晶體數量減少,而達到節省成本、提高積集度(integration)的目的。 In the semiconductor wafer process, a polysilicon material is often used to form a high-impedance resistor, which can replace a transistor as a load. For example, a transistor in a static random access memory (SRAM) can be replaced by a load resistor formed by polysilicon, so that the number of transistors in the SRAM is reduced, thereby achieving cost saving and integration. purpose.

常見之負載電阻可概分為多晶矽電阻(polysilicon resistor)以及擴散電阻(diffusion resistor)兩種。多晶矽電阻包含有一摻雜多晶矽層,且其阻抗可以利用多晶矽層內之摻質濃度予以調整控制。至於擴散電阻則是先利用離子佈植在一半導體基底內形成一摻雜層,然後再利用熱擴散的方式來活化摻雜層內之離子,以調整其阻抗。一般而言,無論是多晶矽電阻或擴散電阻,大多具有一類似三明治結構,其兩側結構定義為一低阻抗區域,用來製作內連線之接觸插塞,以使電阻與其他導線產生電連接,至於被夾於兩側低阻抗區域間之高阻抗區域則為電阻之主要結構,用來提供電子元件或電路設計中需求之高阻抗。隨著電子產 品之多樣化及微小化,應用負載電阻之電路設計亦日趨複雜,而對於負載電阻所佔據之體積、所形成之位置以及所能提供之高阻抗等條件亦愈來愈趨嚴苛。 Common load resistors can be broadly classified into polysilicon resistors and diffusion resistors. The polysilicon resistor includes a doped polysilicon layer, and its impedance can be adjusted and controlled by the dopant concentration in the polysilicon layer. As for the diffusion resistance, ions are implanted in a semiconductor substrate to form a doped layer, and then the ions in the doped layer are activated by thermal diffusion to adjust the impedance. In general, most of the polysilicon resistors or diffusion resistors have a sandwich-like structure, and the two sides of the structure are defined as a low-impedance region, which is used to make the contact plug of the interconnect to make the electrical connection with other wires. As for the high-impedance region sandwiched between the low-impedance regions on both sides, it is the main structure of the resistor, which is used to provide high impedance required in electronic components or circuit design. With electronics With the diversification and miniaturization of products, the circuit design using load resistors is becoming more and more complicated, and the conditions such as the volume occupied by the load resistor, the position formed, and the high impedance that can be provided are becoming more and more severe.

本發明提出一種埋入式電阻,其先在材料層中形成溝渠,再將電阻材料填入其中以形成具有U型剖面結構或者塊狀之埋入式的電阻。 The present invention provides a buried resistor which first forms a trench in a material layer and then fills a resistive material therein to form a buried resistor having a U-shaped cross-sectional structure or a block shape.

本發明提供一種埋入式電阻,包含有一第一層間介電層、一蓋層、一電阻層以及一蓋膜。第一層間介電層位於一基底上。蓋層位於第一層間介電層上,其中蓋層具有一溝渠。電阻層順應覆蓋溝渠,因而具有一U型的剖面結構。蓋膜位於溝渠中以及電阻層上。 The invention provides a buried resistor comprising a first interlayer dielectric layer, a cap layer, a resistive layer and a cover film. The first interlayer dielectric layer is on a substrate. The cap layer is on the first interlayer dielectric layer, wherein the cap layer has a trench. The resistive layer conforms to the trench and thus has a U-shaped cross-sectional structure. The cover film is located in the trench and on the resistive layer.

本發明提供一種埋入式電阻,包含有一第一層間介電層、一蓋層以及一塊狀電阻層。第一層間介電層位於一基底上。蓋層位於第一層間介電層上,其中蓋層具有一溝渠。塊狀電阻層位於溝渠中。 The invention provides a buried resistor comprising a first interlayer dielectric layer, a cap layer and a block-shaped resistor layer. The first interlayer dielectric layer is on a substrate. The cap layer is on the first interlayer dielectric layer, wherein the cap layer has a trench. The bulk resistive layer is located in the trench.

基於上述,本發明提出一種埋入式電阻,其先在蓋層等材料層中形成溝渠,再將具有U型剖面結構的電阻層或者塊狀電阻層形成於溝渠中,以形成埋入式的電阻。如此一來,本發明可解決形成於不同區域(例如電晶體區以及電阻區)之欲形成接觸插塞之溝渠因深度差異過大而造成蝕刻不足或過蝕刻的問題;或者,形成於此些溝渠之接觸插塞因長短差異太大而造成填洞不足或過填的問題;甚至在形成接觸插塞後研磨層間介電層 時,高度較短之接觸插塞會因層間介電層之研磨而完全被移除。再者,由於本發明為埋入式電阻,故可避免習知在蝕刻電阻層以將其圖案化時,造成之電阻層底層過蝕刻(undercut)的問題。 Based on the above, the present invention provides a buried resistor which first forms a trench in a material layer such as a cap layer, and then forms a resistive layer or a bulk resistive layer having a U-shaped cross-sectional structure in the trench to form a buried type. resistance. In this way, the present invention can solve the problem of insufficient etching or over-etching due to excessive difference in depth of the trenches formed to form the contact plugs formed in different regions (for example, the transistor region and the resistive region); or, forming the trenches The contact plug has a problem of insufficient filling or overfilling due to the difference in length and length; even the interlayer dielectric layer is polished after the contact plug is formed. The shorter contact plugs are completely removed by the grinding of the interlayer dielectric layer. Furthermore, since the present invention is a buried resistor, it is possible to avoid the problem of undercut of the underlayer of the resistive layer when the resistive layer is etched to pattern it.

10‧‧‧絕緣結構 10‧‧‧Insulation structure

20、20a‧‧‧緩衝層 20, 20a‧‧‧ buffer layer

110、110a‧‧‧基底 110, 110a‧‧‧ base

120‧‧‧第一層間介電層 120‧‧‧First interlayer dielectric layer

130‧‧‧蓋層 130‧‧‧ cover

140、140a‧‧‧電阻層 140, 140a‧‧‧resistive layer

140’、140a’‧‧‧塊狀電阻層 140’, 140a’‧‧‧ block resistance layer

142、142a‧‧‧垂直部 142, 142a‧‧‧ vertical

150、150a‧‧‧蓋膜 150, 150a‧‧ ‧ cover film

160‧‧‧第二層間介電層 160‧‧‧Second interlayer dielectric layer

A‧‧‧第一區 A‧‧‧First District

B‧‧‧第二區 B‧‧‧Second District

C1‧‧‧插槽接觸插塞 C1‧‧‧Slot contact plug

C2‧‧‧接觸插塞 C2‧‧‧Contact plug

D‧‧‧源/汲極區 D‧‧‧ source/bungee area

DG‧‧‧犧牲閘極 DG‧‧‧sacrificial gate

E1、E2‧‧‧蝕刻製程 E1, E2‧‧‧ etching process

G‧‧‧閘極 G‧‧‧ gate

K‧‧‧磊晶結構 K‧‧‧ epitaxial structure

M‧‧‧MOS電晶體 M‧‧‧MOS transistor

P1、P2‧‧‧圖案化光阻 P1, P2‧‧‧ patterned photoresist

R1、R2、R3‧‧‧溝渠 R1, R2, R3‧‧‧ Ditch

T1、T2、T4、T5、T7‧‧‧頂面 T1, T2, T4, T5, T7‧‧‧ top surface

T3、T6‧‧‧頂端 T3, T6‧‧‧ top

第1-4圖係繪示本發明一第一實施例之埋入式電阻製程之剖面示意圖。 1 to 4 are schematic cross-sectional views showing a buried resistor process according to a first embodiment of the present invention.

第5圖係繪示本發明一另一實施例之埋入式電阻製程之剖面示意圖。 FIG. 5 is a schematic cross-sectional view showing a buried resistor process according to another embodiment of the present invention.

第6-9圖係繪示本發明一第二實施例之埋入式電阻製程之剖面示意圖。 6-9 are schematic cross-sectional views showing a buried resistor process according to a second embodiment of the present invention.

第10圖係繪示本發明一另一實施例之埋入式電阻製程之剖面示意圖。 FIG. 10 is a cross-sectional view showing a buried resistor process according to another embodiment of the present invention.

第11圖係繪示本發明第一實施例之具有犧牲閘極之埋入式電阻之剖面示意圖。 Figure 11 is a cross-sectional view showing a buried resistor having a sacrificial gate according to a first embodiment of the present invention.

第12圖係繪示本發明第二實施例之具有犧牲閘極之埋入式電阻之剖面示意圖。 Figure 12 is a cross-sectional view showing a buried resistor having a sacrificial gate according to a second embodiment of the present invention.

第1-4圖係繪示本發明一第一實施例之埋入式電阻製程之剖面示意圖。如第1圖所示,一基底110包含一第一區A以及一第二區B,其中在本實施例中之第一區A為一電晶體區,而第二區B為一電阻區。一第一層間介電層120形成於第一區A以及第二區B之基底110上。第一層間介電層120可例如為一氧化層,但本發明不以此為限。一MOS電晶體M則設置於第一區A的第一層間介電層120中。複數個絕緣結構10則分別位於MOS電晶體M旁的第二區B以及第一區A中。在本實施例中, 第二區B係為形成電阻於第一層間介電層120上方,因而特別設置絕緣結構10為一塊狀絕緣結構於大部分之第二區B的基底10中,以防止後續形成之電阻或連接電阻之接觸插塞等貫穿第一層間介電層120至基底110時漏電,但本發明不以此為限。在其他實施例中,第二區B之基底110中之絕緣結構10亦可由複數個之絕緣結構組成,或者第二區B之基底110中亦可能無絕緣結構位於其中。另外,設置於第一區A之基底110中之絕緣結構10則係為使MOS電晶體M與其他未繪示之電晶體等半導體元件電性絕緣。 1 to 4 are schematic cross-sectional views showing a buried resistor process according to a first embodiment of the present invention. As shown in FIG. 1, a substrate 110 includes a first region A and a second region B, wherein in the embodiment, the first region A is a transistor region, and the second region B is a resistance region. A first interlayer dielectric layer 120 is formed on the substrate 110 of the first region A and the second region B. The first interlayer dielectric layer 120 can be, for example, an oxide layer, but the invention is not limited thereto. A MOS transistor M is disposed in the first interlayer dielectric layer 120 of the first region A. A plurality of insulating structures 10 are respectively located in the second region B and the first region A beside the MOS transistor M. In this embodiment, The second region B is formed to form a resistor over the first interlayer dielectric layer 120. Therefore, the insulating structure 10 is particularly provided with a bulk insulating structure in the substrate 10 of the majority of the second region B to prevent subsequent formation of the resistor. The contact plug or the like connecting the resistors leaks through the first interlayer dielectric layer 120 to the substrate 110, but the invention is not limited thereto. In other embodiments, the insulating structure 10 in the substrate 110 of the second region B may also be composed of a plurality of insulating structures, or the substrate 110 of the second region B may have no insulating structure therein. In addition, the insulating structure 10 disposed in the substrate 110 of the first region A is used to electrically insulate the MOS transistor M from other semiconductor elements such as transistors not shown.

接著,形成一蓋層130於第一層間介電層120上。蓋層130則例如為一氮化矽層,或者為一已摻雜碳之氮化矽層等,但本發明不以此為限。蓋層130可隔絕MOS電晶體M之一閘極G(,特別是當閘極G為一金屬閘極),以防止其於後續製程中受損,或者與後續形成於上方之金屬導線等電連接而漏電或短路。接著,例如進行一微影暨蝕刻製程,圖案化蓋層130及第一層間介電層120而形成複數個溝渠(未繪示)暴露出MOS電晶體M之一源/汲極區D,然後填入金屬(未繪示)並將其平坦化而形成複數個插槽接觸插塞C1(Slot Contacts)或複數個柱狀接觸插塞(未繪示)於第一層間介電層120以及蓋層130中,並電連接MOS電晶體M。MOS電晶體M又可包含磊晶結構K於閘極G側邊的基底110中且可部分區域與源/汲極區D重疊;以及,金屬矽化物(未繪示)於源/汲極區D與插槽接觸插塞C1之間,而此金屬矽化物可於欲形成插槽接觸插塞C1之溝渠形成前或形成後形成之。插槽接觸插塞C1可例如由鎢或銅等金屬所組成,但本發明不以此為限。之後,形成一圖案化光阻P1覆蓋第一區 A,但暴露出第二區B之欲形成電阻的區域。形成圖案化光阻P1的方法可例如先全面覆蓋一光阻(未繪示),再圖案之。 Next, a cap layer 130 is formed on the first interlayer dielectric layer 120. The cap layer 130 is, for example, a tantalum nitride layer, or a carbonized tantalum nitride layer or the like, but the invention is not limited thereto. The cap layer 130 can isolate one of the gates G of the MOS transistor M (in particular, when the gate G is a metal gate) to prevent damage in subsequent processes, or to be electrically connected to the metal wires formed subsequently. Connected and leaked or shorted. Then, for example, a lithography and etching process is performed, and the cap layer 130 and the first interlayer dielectric layer 120 are patterned to form a plurality of trenches (not shown) to expose a source/drain region D of the MOS transistor M. Then, a metal (not shown) is filled in and planarized to form a plurality of slot contact plugs C1 (Slot Contacts) or a plurality of columnar contact plugs (not shown) in the first interlayer dielectric layer 120. And in the cap layer 130, and electrically connected to the MOS transistor M. The MOS transistor M may further comprise an epitaxial structure K in the substrate 110 on the side of the gate G and may partially overlap the source/drain region D; and a metal telluride (not shown) in the source/drain region D is in contact with the socket contact plug C1, and the metal halide can be formed before or after the formation of the trench in which the slot contact plug C1 is to be formed. The slot contact plug C1 may be composed of, for example, a metal such as tungsten or copper, but the invention is not limited thereto. Thereafter, a patterned photoresist P1 is formed to cover the first region. A, but exposes the area of the second zone B where resistance is to be formed. The method of forming the patterned photoresist P1 may, for example, firstly cover a photoresist (not shown) and then pattern it.

接著進行一蝕刻製程E1,並搭配圖案化光阻P1而蝕刻暴露出的蓋層130,以於蓋層130中形成一溝渠R1。在本實施例中,蓋層130與第一層間介電層120為不同材料,故在進行蝕刻製程E1時,可以第一層間介電層120作為蝕刻停止層,使蝕刻停止於第一層間介電層120上;但在其他實施例中,蝕刻製程E1亦可能蝕刻部分的第一層間介電層120,因而使溝渠R1位於蓋層130以及部分的第一層間介電層120中。如第2圖所示,在完成蝕刻製程E1之後,去除圖案化光阻P1並清除蝕刻後的殘餘物。 Then, an etching process E1 is performed, and the exposed cap layer 130 is etched in conjunction with the patterned photoresist P1 to form a trench R1 in the cap layer 130. In this embodiment, the cap layer 130 and the first interlayer dielectric layer 120 are made of different materials. Therefore, when the etching process E1 is performed, the first interlayer dielectric layer 120 can be used as an etch stop layer to stop the etching. On the interlayer dielectric layer 120; however, in other embodiments, the etching process E1 may also etch a portion of the first interlayer dielectric layer 120, thereby placing the trench R1 in the cap layer 130 and a portion of the first interlayer dielectric layer. 120. As shown in FIG. 2, after the etching process E1 is completed, the patterned photoresist P1 is removed and the residue after etching is removed.

如第3圖所示,選擇性形成一緩衝層20順應地覆蓋蓋層130以及溝渠R1。緩衝層20可例如為一氧化層,但本發明不以此為限。緩衝層20可進一步隔絕插槽接觸插塞C1,防止後續形成於其上之電阻等金屬層等製程過程中,損傷插槽接觸插塞C1。接著,依序形成一電阻層(未繪示)以及一蓋膜(未繪示)全面覆蓋蓋層130(或緩衝層20),並再利用緩衝層20(或蓋層130)當作停止層來進行一化學機械研磨等之平坦化製程,用以移除位於蓋層130正上方之電阻層(未繪示)、以及蓋膜(未繪示),而形成一電阻層140順應覆蓋溝渠R1以及一蓋膜150位於溝渠R1中之電阻層140上並填滿溝渠R1,如此電阻層140則具有一U型的剖面結構。電阻層140例如為一氮化鈦層或一氮化鉭層,但本發明不以此為限。蓋膜150可例如為氮化矽層等介電材。 As shown in FIG. 3, a buffer layer 20 is selectively formed to conformably cover the cap layer 130 and the trench R1. The buffer layer 20 can be, for example, an oxide layer, but the invention is not limited thereto. The buffer layer 20 can further isolate the socket contact plug C1 from the metal layer such as a resistor formed thereon, and damage the socket contact plug C1. Then, a resistive layer (not shown) and a cover film (not shown) are sequentially formed to completely cover the cap layer 130 (or the buffer layer 20), and the buffer layer 20 (or the cap layer 130) is used as a stop layer. A planarization process such as chemical mechanical polishing is performed to remove a resistive layer (not shown) directly above the cap layer 130, and a cap film (not shown) to form a resistive layer 140 conforming to the trench R1. And a cover film 150 is located on the resistive layer 140 in the trench R1 and fills the trench R1, such that the resistive layer 140 has a U-shaped cross-sectional structure. The resistive layer 140 is, for example, a titanium nitride layer or a tantalum nitride layer, but the invention is not limited thereto. The cover film 150 may be, for example, a dielectric material such as a tantalum nitride layer.

如此一來,緩衝層20則會設置於蓋層130上,但暴露出電阻層140以及蓋膜150。在本實施例中,緩衝層20又延伸至溝渠R1內並覆蓋溝渠R1但位於電阻層140的下方。並且,位於蓋層130上之緩衝層20的一頂面T1與蓋膜150的一頂面T2齊平;U型的電阻層140則具有至少一垂直部142平行於溝渠R1之側面,且蓋膜150的頂面T2與垂直部142的頂端T3齊平。 As a result, the buffer layer 20 is disposed on the cap layer 130, but the resistive layer 140 and the cap film 150 are exposed. In the present embodiment, the buffer layer 20 extends into the trench R1 and covers the trench R1 but is located below the resistive layer 140. Moreover, a top surface T1 of the buffer layer 20 on the cap layer 130 is flush with a top surface T2 of the cover film 150; the U-shaped resistive layer 140 has at least one vertical portion 142 parallel to the side of the trench R1, and the cover The top surface T2 of the film 150 is flush with the top end T3 of the vertical portion 142.

在另一實施例中,如第5圖所示,其以一塊狀電阻層140’取代前述之第一實施例之電阻層140以及蓋膜150。換言之,在前述形成緩衝層20之後,形成電阻層(未繪示)全面覆蓋蓋層130(或緩衝層20)時,並將溝渠R1填滿,然後再利用緩衝層20(或蓋層130)當作停止層來進行一化學機械研磨等之平坦化製程,用以移除溝渠R1以外之電阻層,如此可形成塊狀電阻層140’。在此實施例中則不再另外形成蓋膜150,且塊狀電阻層140’的一頂面T7會齊平於緩衝層20的頂面T1。 In another embodiment, as shown in Fig. 5, the resistive layer 140 and the cover film 150 of the first embodiment described above are replaced by a one-piece resistive layer 140'. In other words, after the buffer layer 20 is formed, a resistive layer (not shown) is formed to completely cover the cap layer 130 (or the buffer layer 20), and the trench R1 is filled, and then the buffer layer 20 (or the cap layer 130) is used. A planarization process such as chemical mechanical polishing is performed as a stop layer to remove the resistance layer other than the trench R1, so that the bulk resistance layer 140' can be formed. In this embodiment, the cover film 150 is no longer formed, and a top surface T7 of the bulk resistive layer 140' is flush with the top surface T1 of the buffer layer 20.

以下繼續接續第一實施例之第3圖之步驟,然而以下之製程步驟亦適用於前述第5圖之實施例。 The steps of Figure 3 of the first embodiment are continued below, however the following process steps are also applicable to the embodiment of Figure 5 above.

如第4圖所示,形成一第二層間介電層160於蓋層130(或緩衝層20)、電阻層140以及蓋膜150上,並且再形成複數個接觸插塞C2(Contact Plugs),其中至少二接觸插塞位於第二層間介電層160中並分別電連接電阻層140之兩端,而其餘的接觸插塞則係位於第二層間介電層160、蓋層130以及緩衝層20 中並分別電連接MOS電晶體M的閘極G與相對應之插槽接觸插塞C1。第二層間介電層160可例如為一氧化層,且其可例如由多次製程堆疊覆蓋而得;接觸插塞C2可例如為鎢或銅等金屬所組成,但本發明不以此為限。 As shown in FIG. 4, a second interlayer dielectric layer 160 is formed on the cap layer 130 (or the buffer layer 20), the resistive layer 140, and the cap film 150, and a plurality of contact plugs C2 (Contact Plugs) are formed. At least two contact plugs are located in the second interlayer dielectric layer 160 and electrically connected to the two ends of the resistance layer 140, respectively, and the remaining contact plugs are located in the second interlayer dielectric layer 160, the cap layer 130 and the buffer layer 20 The gate G of the MOS transistor M and the corresponding slot contact plug C1 are electrically connected to each other. The second interlayer dielectric layer 160 can be, for example, an oxide layer, and can be covered, for example, by multiple process stacks; the contact plug C2 can be composed of a metal such as tungsten or copper, but the invention is not limited thereto. .

詳細而言,可先全面覆蓋第二層間介電層(未繪示)於平坦之蓋層130(或緩衝層20)、電阻層140以及蓋膜150上;然後圖案化第二層間介電層160、緩衝層20以及蓋層130,以於第二層間介電層160、緩衝層20以及蓋層130中形成複數個溝渠R2;續之,填入金屬(未繪示)於各溝渠R2中並將其平坦化而形成各接觸插塞C2。此時,位於第二區B中的接觸插塞C2係與電阻層140電連接,而位於第一區A中的接觸插塞C2則與插槽接觸插塞C1以及MOS電晶體M電連接。 In detail, a second interlayer dielectric layer (not shown) may be completely covered on the flat cap layer 130 (or the buffer layer 20), the resistive layer 140, and the cap film 150; then the second interlayer dielectric layer is patterned. 160, the buffer layer 20 and the cap layer 130, to form a plurality of trenches R2 in the second interlayer dielectric layer 160, the buffer layer 20 and the cap layer 130; and subsequently, filled with metal (not shown) in each trench R2 And planarizing it to form each contact plug C2. At this time, the contact plug C2 located in the second region B is electrically connected to the resistance layer 140, and the contact plug C2 located in the first region A is electrically connected to the slot contact plug C1 and the MOS transistor M.

承上,一般而言,MOS電晶體M係位於第一層間介電層120中,而電阻層140若位於蓋層130以上之材料層中,而呈一突出的階梯式的剖面結構,如此一來由同一製程形成之溝渠R2在位於第一區A以及第二區B中的深度差異過大而易產生第一區A之蝕刻不足或者第二區B之過蝕刻的問題;或者,由同一製程填入金屬而分別電連接MOS電晶體M與電阻層140之接觸插塞C2,則會因溝渠R2之深度差異太大而造成第一區A中之溝渠R2填洞不足或第二區B中之溝渠R2金屬過填問題;甚至,在形成接觸插塞C2後研磨第二層間介電層160時,高度較短之接觸插塞甚至會因第二層間介電層160之研磨而完全被移除。以本實施例而言,以埋入式的方法使電阻層140位於蓋層130中,可縮短位於第一區A之接觸插塞C2與位於第二區B之 接觸插塞C2的高度差,而不會有前述之問題。 In general, the MOS transistor M is located in the first interlayer dielectric layer 120, and the resistive layer 140 is in a material layer above the cap layer 130, and has a protruding stepped cross-sectional structure. The difference in the depth of the trench R2 formed by the same process in the first region A and the second region B is too large to easily cause the etching of the first region A or the over etching of the second region B; or, by the same The process is filled with metal and electrically connected to the contact plug C2 of the MOS transistor M and the resistance layer 140 respectively, and the trench R2 in the first region A is insufficiently filled or the second region B is caused by the difference in the depth of the trench R2. The R2 metal overfill problem of the middle trench; even when the second interlayer dielectric layer 160 is polished after the contact plug C2 is formed, the shorter contact plug may even be completely polished by the second interlayer dielectric layer 160 Remove. In this embodiment, the resistive layer 140 is placed in the cap layer 130 in a buried manner, and the contact plug C2 located in the first region A and the second region B can be shortened. The height difference of the contact plug C2 is not caused by the aforementioned problems.

再者,本發明係以埋入式電阻的方法,先於蓋層130中形成溝渠R1,再填入電阻層140於蓋層130中,即可取代前述製程中,直接形成一電阻層於平坦的材料層上,再以蝕刻將其圖案化而形成電阻的方法。如此,可避免在蝕刻電阻層以將其圖案化時,所造成之電阻層底層過蝕刻的問題。 Furthermore, in the method of embedding the resistor, the trench R1 is formed in the cap layer 130, and the resistive layer 140 is filled in the cap layer 130, and the resistor layer can be directly formed in the process. On the material layer, a pattern is formed by etching to form a resistor. In this way, the problem of over-etching the underlayer of the resistive layer caused by etching the resistive layer to pattern it can be avoided.

以下再提出一第二實施例,除了具有第一實施例之優點外,可更進一步改善第一實施例之形成光阻的問題。第6-9圖係繪示本發明一第二實施例之埋入式電阻製程之剖面示意圖。 A second embodiment will be further described below, and in addition to the advantages of the first embodiment, the problem of forming a photoresist of the first embodiment can be further improved. 6-9 are schematic cross-sectional views showing a buried resistor process according to a second embodiment of the present invention.

如第6圖所示,一基底110包含一第一區A以及一第二區B,其中在本實施例中之第二區B為一電阻區,而第一區A為一電晶體區。一第一層間介電層120形成於第一區A以及第二區B之基底110上。第一層間介電層120可例如為一氧化層,但本發明不以此為限。一MOS電晶體M則設置於第一區A的第一層間介電層120中。複數個絕緣結構10則分別位於MOS電晶體旁的第二區B以及第一區A中。在本實施例中,第二區B係為形成電阻於第一層間介電層120上方,因而特別設置有一塊狀絕緣結構10於大部分之第二區B的基底10中,以防止後續形成之電阻或連接電阻之接觸插塞等貫穿第一層間介電層120至基底110時而漏電,但本發明不以此為限。在其他實施例中,第二區B之基底110中之絕緣結構10亦可由複數個之絕緣結構組成,或者第二區B之基底110中亦可能無絕緣結構位於其中。另外,設置於第一區A之基底110中之絕緣結構10則係 為使電晶體M與其他未繪示之電晶體等半導體元件電性絕緣。 As shown in FIG. 6, a substrate 110 includes a first region A and a second region B. The second region B in the embodiment is a resistive region, and the first region A is a transistor region. A first interlayer dielectric layer 120 is formed on the substrate 110 of the first region A and the second region B. The first interlayer dielectric layer 120 can be, for example, an oxide layer, but the invention is not limited thereto. A MOS transistor M is disposed in the first interlayer dielectric layer 120 of the first region A. A plurality of insulating structures 10 are respectively located in the second region B and the first region A beside the MOS transistor. In this embodiment, the second region B is formed to form a resistor above the first interlayer dielectric layer 120, and thus is specifically provided with a bulk insulating structure 10 in the substrate 10 of the majority of the second region B to prevent subsequent The formed resistor or the contact plug or the like connecting the resistors leaks through the first interlayer dielectric layer 120 to the substrate 110, but the invention is not limited thereto. In other embodiments, the insulating structure 10 in the substrate 110 of the second region B may also be composed of a plurality of insulating structures, or the substrate 110 of the second region B may have no insulating structure therein. In addition, the insulating structure 10 disposed in the substrate 110 of the first region A is In order to electrically insulate the transistor M from other semiconductor elements such as transistors not shown.

接著,形成一蓋層130於第一層間介電層120上。蓋層130則例如為一氮化矽層,或者為一已摻雜碳之氮化矽層等,但本發明不以此為限。蓋層130可隔絕MOS電晶體M之一閘極G(特別是當閘極G為一金屬閘極),以防止其於後續製程中受損,或者與後續形成於上方之金屬電連接而漏電或短路。接著,例如進行一微影暨蝕刻製程,圖案化蓋層130及第一層間介電層120而形成溝渠(未繪示)暴露出MOS電晶體M之一源/汲極區D,然後填入金屬(未繪示)並將其平坦化而形成複數個插槽接觸插塞C1(Slot Contacts)或複數個柱狀接觸插塞(未繪示)於第一層間介電層120以及蓋層130中,並電連接MOS電晶體M。插槽接觸插塞C1可例如為鎢或銅等金屬所組成,但本發明不以此為限。MOS電晶體M又可包含磊晶結構K於閘極G側邊的基底110中且可部分區域與源/汲極區D重疊;以及,金屬矽化物(未繪示)於源/汲極區D與插槽接觸插塞C1之間,而此金屬矽化物可於欲形成插槽接觸插塞C1之溝渠形成前或形成後形成之。 Next, a cap layer 130 is formed on the first interlayer dielectric layer 120. The cap layer 130 is, for example, a tantalum nitride layer, or a carbonized tantalum nitride layer or the like, but the invention is not limited thereto. The cap layer 130 can isolate one of the gates G of the MOS transistor M (especially when the gate G is a metal gate) to prevent damage in subsequent processes, or to electrically leak with a metal formed subsequently. Or short circuit. Then, for example, a lithography and etching process is performed to pattern the cap layer 130 and the first interlayer dielectric layer 120 to form a trench (not shown) to expose a source/drain region D of the MOS transistor M, and then fill Inserting a metal (not shown) and planarizing it to form a plurality of slot contact plugs C1 (Slot Contacts) or a plurality of columnar contact plugs (not shown) in the first interlayer dielectric layer 120 and the cover In the layer 130, the MOS transistor M is electrically connected. The slot contact plug C1 may be made of, for example, a metal such as tungsten or copper, but the invention is not limited thereto. The MOS transistor M may further comprise an epitaxial structure K in the substrate 110 on the side of the gate G and may partially overlap the source/drain region D; and a metal telluride (not shown) in the source/drain region D is in contact with the socket contact plug C1, and the metal halide can be formed before or after the formation of the trench in which the slot contact plug C1 is to be formed.

之後,形成一緩衝層20a於平坦之蓋層130上。緩衝層20可例如為一氧化層,但本發明不以此為限。緩衝層20a可進一步隔絕插槽接觸插塞C1,防止後續形成於其上之電阻等金屬層等製程過程中,損傷插槽接觸插塞C1。然後,形成一圖案化光阻P2於緩衝層20a上。一般而言,由於本實施例是先全面形成緩衝層20a再形成圖案化光阻P2,因而可使僅形成於緩衝層20a上的圖案化光阻P2附著性更佳。再者,緩衝層20a之材 質一般為氧化層,而蓋層130之材質一般為氮化層,而圖案化光阻P2亦與氮化層反應致使殘留而無法完全移除,故本實施例將圖案化光阻P2形成於緩衝層20a上即可解決此問題。 Thereafter, a buffer layer 20a is formed on the flat cap layer 130. The buffer layer 20 can be, for example, an oxide layer, but the invention is not limited thereto. The buffer layer 20a can further isolate the socket contact plug C1 from the metal layer such as a resistor formed thereon, and damage the socket contact plug C1. Then, a patterned photoresist P2 is formed on the buffer layer 20a. In general, in this embodiment, the buffer layer 20a is completely formed and the patterned photoresist P2 is formed, so that the patterned photoresist P2 formed only on the buffer layer 20a can be more adhered. Furthermore, the material of the buffer layer 20a The material is generally an oxide layer, and the material of the cap layer 130 is generally a nitride layer, and the patterned photoresist P2 also reacts with the nitride layer to cause residue to be completely removed. Therefore, the patterned photoresist P2 is formed in this embodiment. This problem can be solved by the buffer layer 20a.

然後,進行一蝕刻製程E2,蝕刻暴露出的緩衝層20a以及部分之蓋層130,以於緩衝層20a以及蓋層130中形成一溝渠R3,之後去除圖案化光阻P2,如第7圖所示。在其他實施例中,蝕刻製程E2亦可能蝕刻停止於蓋層130,僅形成溝渠R3於緩衝層20a,本發明不以此為限。接著,如第8圖所示,依序形成一電阻層(未繪示)以及一蓋膜(未繪示)全面覆蓋緩衝層20a以及溝渠R3中的蓋層130,並再利用緩衝層20當作停止層來進行一化學機械研磨等之平坦化製程,用以移除位於緩衝層20a正上方之電阻層(未繪示)以及蓋膜(未繪示),而形成一電阻層140a順應覆蓋溝渠R3表面以及一蓋膜150a位於溝渠R3中以及電阻層140a上,如此電阻層140a則具有一U型的剖面結構。電阻層140a例如為一氮化鈦層或一氮化鉭層,蓋膜150a可例如為一氮化矽層等介電材質,但本發明不以此為限。如此一來,緩衝層20a則會設置於蓋層130上,但暴露出電阻層140a以及蓋膜150a。並且,位於蓋層130上之緩衝層20a的一頂面T4與蓋膜150a的一頂面T5齊平;U型的電阻層140a則具有至少一垂直部142a平行於溝渠R3之側面,且蓋膜150a的頂面T5與垂直部142a的頂端T6齊平。 Then, an etching process E2 is performed to etch the exposed buffer layer 20a and a portion of the cap layer 130 to form a trench R3 in the buffer layer 20a and the cap layer 130, and then remove the patterned photoresist P2, as shown in FIG. Show. In other embodiments, the etching process E2 may also be etched to stop at the cap layer 130, and only the trench R3 is formed on the buffer layer 20a, and the invention is not limited thereto. Then, as shown in FIG. 8, a resistive layer (not shown) and a cover film (not shown) are sequentially formed to completely cover the buffer layer 20a and the cap layer 130 in the trench R3, and the buffer layer 20 is used again. As a stop layer, a planarization process such as chemical mechanical polishing is performed to remove a resistive layer (not shown) directly above the buffer layer 20a and a cap film (not shown) to form a resistive layer 140a to cover the substrate. The surface of the trench R3 and a cap film 150a are located in the trench R3 and the resistive layer 140a, such that the resistive layer 140a has a U-shaped cross-sectional structure. The resistive layer 140a is, for example, a titanium nitride layer or a tantalum nitride layer. The cover film 150a may be a dielectric material such as a tantalum nitride layer, but the invention is not limited thereto. As a result, the buffer layer 20a is disposed on the cap layer 130, but the resistive layer 140a and the cap film 150a are exposed. Moreover, a top surface T4 of the buffer layer 20a on the cap layer 130 is flush with a top surface T5 of the cover film 150a; the U-shaped resistive layer 140a has at least one vertical portion 142a parallel to the side of the trench R3, and the cover The top surface T5 of the film 150a is flush with the top end T6 of the vertical portion 142a.

在另一實施例中,如第10圖所示,其以一塊狀電阻層140a’取代電阻層140a以及蓋膜150a。換言之,在前述形成緩衝層20a之後,形成電阻層(未繪示)全面覆蓋蓋層緩衝層20a時, 即將溝渠R3填滿,然後再平坦化移除溝渠R3以外之電阻層,如此可形成塊狀電阻層140a’。在此實施例中則不再另外形成蓋膜150a。 In another embodiment, as shown in Fig. 10, the resistive layer 140a and the cover film 150a are replaced by a one-piece resistive layer 140a'. In other words, after the formation of the buffer layer 20a, when a resistive layer (not shown) is formed to completely cover the cap layer buffer layer 20a, That is, the trench R3 is filled, and then the resistive layer other than the trench R3 is removed by planarization, so that the bulk resistive layer 140a' can be formed. In this embodiment, the cover film 150a is no longer formed separately.

以下請接續第8圖(或者第10圖)之步驟,如第9圖所示,形成一第二層間介電層160於緩衝層20a、電阻層140a以及蓋膜150a上,並且形成複數個接觸插塞C2(Contact Plugs)。其中至少二接觸插塞位於第二層間介電層160中並分別電連接電阻層140a之兩端,而其餘的接觸插塞則係位於第二層間介電層160、蓋層130以及緩衝層20a中並分別電連接MOS電晶體M的閘極G與相對應之插槽接觸插塞C1。第二層間介電層160可例如為一氧化層,且其可例如有多次製程堆疊覆蓋而得;接觸插塞C2可例如為鎢或銅等金屬所組成,但本發明不以此為限。 Please follow the steps of FIG. 8 (or FIG. 10). As shown in FIG. 9, a second interlayer dielectric layer 160 is formed on the buffer layer 20a, the resistive layer 140a, and the cap film 150a, and a plurality of contacts are formed. Plug C2 (Contact Plugs). At least two contact plugs are located in the second interlayer dielectric layer 160 and electrically connected to the two ends of the resistance layer 140a, respectively, and the remaining contact plugs are located in the second interlayer dielectric layer 160, the cap layer 130 and the buffer layer 20a. The gate G of the MOS transistor M and the corresponding slot contact plug C1 are electrically connected to each other. The second interlayer dielectric layer 160 may be, for example, an oxide layer, and may be covered by, for example, multiple process stacks; the contact plug C2 may be composed of a metal such as tungsten or copper, but the invention is not limited thereto. .

詳細而言,可先全面覆蓋第二層間介電層(未繪示)於平坦之緩衝層20a、電阻層140a以及蓋膜150a上;然後圖案化第二層間介電層160,以於第二層間介電層160中形成複數個溝渠R2;續之,填入金屬(未繪示)於各溝渠R2中並將其平坦化而形成接觸插塞C2。此時,位於第二區B中的接觸插塞C2係與電阻層140電連接,而位於第一區A中的接觸插塞C2則與插槽接觸插塞C1以及MOS電晶體M電連接。 In detail, a second interlayer dielectric layer (not shown) may be completely covered on the flat buffer layer 20a, the resistance layer 140a, and the cover film 150a; then the second interlayer dielectric layer 160 is patterned to be second. A plurality of trenches R2 are formed in the interlayer dielectric layer 160. Thereafter, a metal (not shown) is filled in each of the trenches R2 and planarized to form a contact plug C2. At this time, the contact plug C2 located in the second region B is electrically connected to the resistance layer 140, and the contact plug C2 located in the first region A is electrically connected to the slot contact plug C1 and the MOS transistor M.

如此一來,本實施例亦可具有第一實施例之優點,例如形成於第一區A以及第二區B之溝渠R3因深度不同而造成蝕刻不足或過蝕刻的問題;或者,形成於第一區A以及第二區B 之接觸插塞C2因長短差異太大而造成填洞不足或過填的問題;甚至,在形成接觸插塞C2後研磨第二層間介電層160時,高度較短之接觸插塞C2會因第二層間介電層160之研磨而完全被移除。再者,由於本實施例亦為埋入式電阻層的方法,故可避免習知在蝕刻電阻層以將其圖案化時,造成之電阻層底層過蝕刻的問題。更進一步而言,本實施例又更具有改善光阻附著以及移除的優點。 In this way, the embodiment can also have the advantages of the first embodiment, for example, the trenches R3 formed in the first region A and the second region B are caused by insufficient etching or overetching due to different depths; or Zone A and Zone 2 B The contact plug C2 has a problem of insufficient filling or overfilling due to a large difference in length; even when the second interlayer dielectric layer 160 is polished after forming the contact plug C2, the contact plug C2 having a shorter height is caused by The second interlayer dielectric layer 160 is completely removed by grinding. Moreover, since this embodiment is also a method of embedding the resistive layer, it is possible to avoid the problem of over-etching the underlayer of the resistive layer when etching the resistive layer to pattern it. Still further, this embodiment has the advantage of improving photoresist adhesion and removal.

再者,本發明可進一步在電阻層140或140a下方的第一層間介電層120中選擇性形成至少一犧牲閘極;或者,將第二區B大塊的絕緣結構10替換成複數個較小的絕緣結構,以防止第一層間介電層120或者絕緣結構10產生凹陷。 Furthermore, the present invention may further selectively form at least one sacrificial gate in the first interlayer dielectric layer 120 under the resistive layer 140 or 140a; or replace the bulk of the second region B bulk insulating structure 10 with a plurality of A smaller insulating structure prevents the first interlayer dielectric layer 120 or the insulating structure 10 from being recessed.

如第11圖所示,其繪示本發明第一實施例之具有犧牲閘極之埋入式電阻之剖面示意圖,其中第11圖中之犧牲閘極DG係位於第一層間介電層120中以及電連接電阻層140的接觸插塞C2的正下方,且該等犧牲閘極DG均為一浮接電極。再者,複數個較小的絕緣結構替換掉第二區B大塊的絕緣結構10,且各該較小的絕緣結構係相對應於各犧牲閘極DG或者接觸插塞C2的位置。 FIG. 11 is a cross-sectional view showing a buried resistor having a sacrificial gate according to a first embodiment of the present invention, wherein the sacrificial gate DG in FIG. 11 is located in the first interlayer dielectric layer 120. The contact plug C2 of the middle and electrical connection resistance layer 140 is directly under, and the sacrificial gates DG are all a floating electrode. Furthermore, a plurality of smaller insulating structures replace the insulating structures 10 of the second region B bulk, and each of the smaller insulating structures corresponds to the position of each of the sacrificial gates DG or the contact plugs C2.

然而,在又一實施例中,如第12圖所示,其繪示本發明第二實施例之具有犧牲閘極之埋入式電阻之剖面示意圖,其中位於第一層間介電層120中之犧牲閘極DG係位於電阻層140a的正下方,但與各接觸插塞C2錯位(misalignment)。如此一來,當接觸插塞C2因過蝕刻而延伸至第一層間介電層120時,可改 善寄生電容效應(parasitic capacitance effect)的問題。 However, in still another embodiment, as shown in FIG. 12, a cross-sectional view of a buried resistor having a sacrificial gate according to a second embodiment of the present invention is shown in the first interlayer dielectric layer 120. The sacrificial gate DG is located directly below the resistive layer 140a, but is misaligned with each of the contact plugs C2. In this way, when the contact plug C2 is extended to the first interlayer dielectric layer 120 by over-etching, it can be changed. The problem of parasitic capacitance effect.

當然,第11-12圖僅為應用犧牲閘極DG之二實施例,不論是位於接觸插塞C2正下方或者與接觸插塞C2錯位的犧牲閘極DG,或者延伸穿插於絕緣結構10之基底110a皆可選擇性應用於第一或第二實施例,以及具有U型剖面結構的電阻層140,140a或者塊狀電阻層140’,140a’上。 Of course, Figures 11-12 are only two embodiments of the application of the sacrificial gate DG, whether it is a sacrificial gate DG located directly under the contact plug C2 or offset from the contact plug C2, or extending through the substrate of the insulating structure 10. 110a can be selectively applied to the first or second embodiment, and the resistive layer 140, 140a or the bulk resistive layer 140', 140a' having a U-shaped cross-sectional structure.

綜上所述,本發明提出一種埋入式電阻,其先在蓋層或緩衝層等材料層中形成溝渠,再將具有U型剖面結構的電阻層或者塊狀電阻層形成於溝渠中,以形成埋入式的電阻。如此一來,本發明可解決形成於不同區域(例如電晶體區以及電阻區)之欲形成接觸插塞之溝渠因深度不同而造成蝕刻不足或過蝕刻的問題;或者,形成於此些溝渠之接觸插塞因長短差異太大而造成填洞不足或過填的問題;甚至,在形成接觸插塞後研磨層間介電層時,高度較短之接觸插塞會因層間介電層之研磨而完全被移除。再者,由於本發明為埋入式電阻,故可避免習知在蝕刻電阻層以將其圖案化時,所造成之電阻層底層過蝕刻的問題。 In summary, the present invention provides a buried resistor, which first forms a trench in a material layer such as a cap layer or a buffer layer, and then forms a resistive layer or a bulk resistive layer having a U-shaped cross-sectional structure in the trench to A buried resistor is formed. In this way, the present invention can solve the problem of insufficient etching or over etching caused by different depths of the trenches forming the contact plugs formed in different regions (for example, the transistor region and the resistive region); or, forming the trenches Contact plugs have too much difference in length and length to cause insufficient filling or overfilling; even when the interlayer dielectric layer is polished after forming the contact plug, the shorter contact plug is ground due to the interlayer dielectric layer. Completely removed. Furthermore, since the present invention is a buried resistor, it is possible to avoid the problem of over-etching the underlayer of the resistive layer caused by etching the resistive layer to pattern it.

更進一步而言,如將埋入式的電阻形成於緩衝層中;換言之,其製程係直接將光阻形成於緩衝層上以形成溝渠,再將電阻層形成於溝渠中的方法,可使光阻由於僅形成於緩衝層上而附著性更佳,並且由於緩衝層之材質一般為氧化層,故不會有光阻形成於氮化層(例如蓋層)等其他材料層中,產生反應致使難以移除的問題。 Furthermore, if a buried resistor is formed in the buffer layer; in other words, the process directly forms a photoresist on the buffer layer to form a trench, and then forms a resistive layer in the trench to enable light. Since the barrier is formed only on the buffer layer, the adhesion is better, and since the material of the buffer layer is generally an oxide layer, no photoresist is formed in other material layers such as a nitride layer (for example, a cap layer), and a reaction occurs. A problem that is difficult to remove.

另外,本發明亦可進一步搭配將犧牲閘極形成於第一層間介電層中或者使基底延伸穿插於大塊的絕緣結構中,以防止第一層間介電層或者絕緣結構產生凹陷。更甚者,可選擇將形成於第一層間介電層中之犧牲閘極與接觸插塞錯位,以防止接觸插塞因過蝕刻而延伸至第一層間介電層時減少寄生電容效應的問題。 In addition, the present invention may further be adapted to form a sacrificial gate in the first interlayer dielectric layer or to extend the substrate through the bulk insulating structure to prevent the first interlayer dielectric layer or the insulating structure from being recessed. Moreover, the sacrificial gate and the contact plug formed in the first interlayer dielectric layer may be dislocated to prevent the parasitic capacitance effect when the contact plug extends to the first interlayer dielectric layer by over-etching. The problem.

10‧‧‧絕緣結構 10‧‧‧Insulation structure

20a‧‧‧緩衝層 20a‧‧‧buffer layer

110‧‧‧基底 110‧‧‧Base

120‧‧‧第一層間介電層 120‧‧‧First interlayer dielectric layer

130‧‧‧蓋層 130‧‧‧ cover

140a‧‧‧電阻層 140a‧‧‧resistance layer

150a‧‧‧蓋膜 150a‧‧ ‧ cover film

160‧‧‧第二層間介電層 160‧‧‧Second interlayer dielectric layer

A‧‧‧第一區 A‧‧‧First District

B‧‧‧第二區 B‧‧‧Second District

C1‧‧‧插槽接觸插塞 C1‧‧‧Slot contact plug

C2‧‧‧接觸插塞 C2‧‧‧Contact plug

M‧‧‧MOS電晶體 M‧‧‧MOS transistor

Claims (22)

一種埋入式電阻,包含有:一第一層間介電層,位於一基底上;一蓋層,位於該第一層間介電層上,其中該蓋層具有一溝渠;一電阻層,順應覆蓋該溝渠,因而具有一U型的剖面結構;以及一蓋膜,位於該溝渠中以及該電阻層上。 A buried resistor comprising: a first interlayer dielectric layer on a substrate; a cap layer on the first interlayer dielectric layer, wherein the cap layer has a trench; a resistive layer, The trench is covered so as to have a U-shaped cross-sectional structure; and a cover film is located in the trench and on the resistive layer. 如申請專利範圍第1項所述之埋入式電阻,更包含:一MOS電晶體設置於該電阻層旁邊的該第一層間介電層中。 The buried resistor of claim 1, further comprising: a MOS transistor disposed in the first interlayer dielectric layer beside the resistive layer. 如申請專利範圍第2項所述之埋入式電阻,更包含:複數個插槽接觸插塞(Slot Contacts)設置於該第一層間介電層中以及電連接該MOS電晶體。 The embedded resistor of claim 2, further comprising: a plurality of slot contact plugs disposed in the first interlayer dielectric layer and electrically connected to the MOS transistor. 如申請專利範圍第1項所述之埋入式電阻,其中該電阻層包含一氮化鈦層。 The buried resistor of claim 1, wherein the resistive layer comprises a titanium nitride layer. 如申請專利範圍第1項所述之埋入式電阻,其中該蓋膜包含一介電材。 The embedded resistor of claim 1, wherein the cover film comprises a dielectric material. 如申請專利範圍第1項所述之埋入式電阻,更包含:一緩衝層設置於該蓋層上,但暴露出該電阻層以及該蓋膜。 The buried resistor of claim 1, further comprising: a buffer layer disposed on the cap layer, but exposing the resistive layer and the cap film. 如申請專利範圍第6項所述之埋入式電阻,更包含:該緩衝層延伸至該溝渠內並覆蓋該溝渠但位於該電阻層下方。 The buried resistor of claim 6, further comprising: the buffer layer extending into the trench and covering the trench but below the resistive layer. 如申請專利範圍第6項所述之埋入式電阻,其中該蓋膜的一頂面與該蓋層上之該緩衝層的一頂面齊平。 The embedded resistor of claim 6, wherein a top surface of the cover film is flush with a top surface of the buffer layer on the cover layer. 如申請專利範圍第1項所述之埋入式電阻,其中U型的該電阻層具有至少一垂直部平行於該溝渠之側面,且該蓋膜的一頂面與該垂直部的頂端齊平。 The embedded resistor of claim 1, wherein the U-shaped resistive layer has at least one vertical portion parallel to a side of the trench, and a top surface of the cover film is flush with a top end of the vertical portion . 如申請專利範圍第2項所述之埋入式電阻,更包含:一第二層間介電層,位於該蓋層、該電阻層以及該蓋膜上。 The buried resistor of claim 2, further comprising: a second interlayer dielectric layer on the cap layer, the resistive layer and the cover film. 如申請專利範圍第10項所述之埋入式電阻,更包含:複數個接觸插塞(Contact Plugs),且一部分之該些接觸插塞位於該第二層間介電層中並分別電連接該電阻層,而另一部分之該些接觸插塞位於該第二層間介電層、該蓋層以及該緩衝層中並分別電連接該MOS電晶體。 The embedded resistor according to claim 10, further comprising: a plurality of contact plugs, wherein a part of the contact plugs are located in the second interlayer dielectric layer and electrically connected to the contact plugs respectively The resistive layer, and the other portion of the contact plugs are located in the second interlayer dielectric layer, the cap layer and the buffer layer and electrically connected to the MOS transistors, respectively. 如申請專利範圍第11項所述之埋入式電阻,更包含:至少一犧牲閘極位於該第一層間介電層中以及電連接該電阻層的該些接觸插塞的正下方。 The buried resistor of claim 11, further comprising: at least one sacrificial gate is located directly under the first interlayer dielectric layer and electrically connected to the contact plugs of the resistive layer. 如申請專利範圍第11項所述之埋入式電阻,更包含:至少一犧牲閘極位於該第一層間介電層中以及該電阻層的正下方,但與該些接觸插塞錯位(misalignment)。 The buried resistor of claim 11, further comprising: at least one sacrificial gate is located in the first interlayer dielectric layer and directly under the resistive layer, but is misaligned with the contact plugs ( Misalignment). 一種埋入式電阻,包含有:一第一層間介電層,位於一基底上; 一蓋層,位於該第一層間介電層上,其中該蓋層具有一溝渠;以及一塊狀電阻層,位於該溝渠中。 A buried resistor comprising: a first interlayer dielectric layer on a substrate; a cap layer is disposed on the first interlayer dielectric layer, wherein the cap layer has a trench; and a block-shaped resistive layer is disposed in the trench. 如申請專利範圍第14項所述之埋入式電阻,更包含:一MOS電晶體設置於該塊狀電阻層旁邊的該第一層間介電層中。 The buried resistor of claim 14, further comprising: a MOS transistor disposed in the first interlayer dielectric layer beside the bulk resistive layer. 如申請專利範圍第14項所述之埋入式電阻,更包含:一緩衝層設置於該蓋層上,但暴露出該塊狀電阻層。 The buried resistor according to claim 14, further comprising: a buffer layer disposed on the cap layer, but exposing the block resistor layer. 如申請專利範圍第16項所述之埋入式電阻,更包含:該緩衝層延伸至該溝渠內並覆蓋該溝渠但位於該塊狀電阻層下方。 The buried resistor of claim 16, further comprising: the buffer layer extending into the trench and covering the trench but below the bulk resistive layer. 如申請專利範圍第16項所述之埋入式電阻,其中該塊狀電阻層的一頂面與該蓋層上之該緩衝層的一頂面齊平。 The embedded resistor of claim 16, wherein a top surface of the bulk resistive layer is flush with a top surface of the buffer layer on the cap layer. 如申請專利範圍第14項所述之埋入式電阻,更包含:一第二層間介電層,位於該蓋層以及該塊狀電阻層上。 The buried resistor according to claim 14, further comprising: a second interlayer dielectric layer on the cap layer and the block resistor layer. 如申請專利範圍第19項所述之埋入式電阻,更包含:複數個接觸插塞(Contact Plugs),且一部分之該些接觸插塞位於該第二層間介電層中並分別電連接該塊狀電阻層,而另一部分之該些接觸插塞位於該第二層間介電層、該蓋層以及該緩衝層中並分別電連接該MOS電晶體。 The buried resistor of claim 19, further comprising: a plurality of contact plugs, wherein a part of the contact plugs are located in the second interlayer dielectric layer and electrically connected to the contact plugs respectively The bulk resistive layer, and the other portion of the contact plugs are located in the second interlayer dielectric layer, the cap layer and the buffer layer and electrically connected to the MOS transistors, respectively. 如申請專利範圍第20項所述之埋入式電阻,更包含: 至少一犧牲閘極位於該第一層間介電層中以及電連接該塊狀電阻層的該些接觸插塞的正下方。 The buried resistor as described in claim 20, further comprising: At least one sacrificial gate is located directly under the first interlayer dielectric layer and the contact plugs electrically connected to the bulk resistive layer. 如申請專利範圍第20項所述之埋入式電阻,更包含:至少一犧牲閘極位於該第一層間介電層中以及該塊狀電阻層的正下方,但與該些接觸插塞錯位(misalignment)。 The buried resistor of claim 20, further comprising: at least one sacrificial gate is located in the first interlayer dielectric layer and directly under the bulk resistive layer, but with the contact plugs Misalignment.
TW102107510A 2013-03-04 2013-03-04 Embedded resistor TWI570926B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102107510A TWI570926B (en) 2013-03-04 2013-03-04 Embedded resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102107510A TWI570926B (en) 2013-03-04 2013-03-04 Embedded resistor

Publications (2)

Publication Number Publication Date
TW201436206A true TW201436206A (en) 2014-09-16
TWI570926B TWI570926B (en) 2017-02-11

Family

ID=51943473

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102107510A TWI570926B (en) 2013-03-04 2013-03-04 Embedded resistor

Country Status (1)

Country Link
TW (1) TWI570926B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109390287A (en) * 2017-08-03 2019-02-26 联华电子股份有限公司 Semiconductor component structure and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069398A (en) * 1997-08-01 2000-05-30 Advanced Micro Devices, Inc. Thin film resistor and fabrication method thereof
US7485540B2 (en) * 2005-08-18 2009-02-03 International Business Machines Corporation Integrated BEOL thin film resistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109390287A (en) * 2017-08-03 2019-02-26 联华电子股份有限公司 Semiconductor component structure and its manufacturing method
CN109390287B (en) * 2017-08-03 2021-09-21 联华电子股份有限公司 Semiconductor element structure and manufacturing method thereof

Also Published As

Publication number Publication date
TWI570926B (en) 2017-02-11

Similar Documents

Publication Publication Date Title
US10453849B2 (en) Dynamic random access memory structure and method for forming the same
US9240403B2 (en) Embedded resistor
US20070212874A1 (en) Method for filling shallow isolation trenches and other recesses during the formation of a semiconductor device and electronic systems including the semiconductor device
US8853810B2 (en) Integrated circuits that include deep trench capacitors and methods for their fabrication
KR20110063204A (en) Semiconductor device and method for forming using the same
KR20130134139A (en) Semiconductor device and method for using the same
CN104051614A (en) Embedded resistor
KR100338104B1 (en) Method of manufacturing a semiconductor device
KR101416317B1 (en) Method of forming wiring layer in semiconductor device
TWI570926B (en) Embedded resistor
KR20110001136A (en) Method for manufacturing semiconductor device
KR101120185B1 (en) Method for forming semiconductor device
KR20080000269A (en) Method of forming a contact plug in a semiconductor device
KR101185951B1 (en) Method for manufacturing the semiconductor device
KR100564429B1 (en) Method for manufacturing landing plug
KR20090026619A (en) Semiconductor device and method of manufacturing the same
KR101060718B1 (en) Semiconductor device formation method
KR20090026620A (en) Semiconductor device and method of manufacturing the same
KR100687397B1 (en) Method of manufacturing a semiconductor device
KR101139463B1 (en) Method for Manufacturing Semiconductor Device
US9349813B2 (en) Method for fabricating semiconductor device
KR100850088B1 (en) Method for manufacturing a semiconductor device
KR20090072791A (en) Method for fabricating matal contact in semicondutor device
KR20110011833A (en) Semiconductor device and method for forming using the same
KR20100076752A (en) Method for forming semiconductor device