TW201344926A - 化合物太陽電池之製法 - Google Patents

化合物太陽電池之製法 Download PDF

Info

Publication number
TW201344926A
TW201344926A TW102106518A TW102106518A TW201344926A TW 201344926 A TW201344926 A TW 201344926A TW 102106518 A TW102106518 A TW 102106518A TW 102106518 A TW102106518 A TW 102106518A TW 201344926 A TW201344926 A TW 201344926A
Authority
TW
Taiwan
Prior art keywords
layer
solar cell
substrate
sputtering
buffer layer
Prior art date
Application number
TW102106518A
Other languages
English (en)
Inventor
Seiki TERAJI
Kazunori Kawamura
Hiroto Nishii
Taichi Watanabe
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of TW201344926A publication Critical patent/TW201344926A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3417Arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

為提供一種可低成本地製造高轉換效率之化合物太陽電池之方法,係當假設相對基板之層形成面呈垂直狀延伸之假想中心軸時,在該假想中心軸之兩側,以使對向之狀態配置2片濺鍍用之陰極靶材,且藉使用高頻(RF)電源,或經重疊直流(DC)電源之高頻(RF)電源之濺鍍法,可進行緩衝層之形成。

Description

化合物太陽電池之製法 技術領域
本發明係有關於效率良好地製造化合物太陽電池的方法,且該化合物太陽電池具有高轉換效率(以下稱為「轉換效率」),且光吸收層使用由Ib族、IIIb及VIb族之元素構成之CuInSe2(CIS)或使Ga固溶於該CIS中之Cu(In,Ga)Se2(CIGS)化合物半導體(I-III-VI族化合物半導體)。
背景技術
在太陽電池中,光吸收層使用CIS或CIGS(以下稱為「CIGS系」)化合物半導體之化合物太陽電池具有有高轉換效率且可形成薄膜狀,並且因光照射造成之轉換效率劣化少之優點是已知的。
在如此之光吸收層使用CIGS系化合物半導體之化合物太陽電池之緩衝層中,一般使用藉化學析出法形成之CdS或Zn(O,S)等(例如,參照專利文獻1)。但是,藉化學析出法形成緩衝層時,在真空下形成CIGS系化合物半導體層後,一旦在大氣下取出且形成緩衝層,需要再在真空下形成透明電極層,有生產性差之問題。
因此,為解決該問題,有人提出不在大氣下取出 而在真空下連續地藉濺鍍法進行上述化合物太陽電池之緩衝層之形成的方案(例如,參照專利文獻2)。
先行技術文獻 專利文獻
專利文獻1:日本特開2002-343987號公報
專利文獻2:日本特開2002-124688號公報
發明概要
不過,雖然如專利文獻2所述,使用通用之磁控管濺鍍裝置作為濺鍍裝置且在真空下連續地形成緩衝層時,生產效率高,但是已判明的是會產生因在濺鍍時產生之電漿中之負離子或高能電子,對緩衝層及光吸收層產生破壞,且化合物太陽電池之特性降低的新問題。這在為提高生產性而增大施加於陰極靶材之電力時,特別更顯著地呈現,因此非常希望改善這種情形。
本發明係鑑於上述課題而作成者,且目的在於提供一種製造可不在大氣下取出而在真空下連續地進行緩衝層之形成,並且具有高轉換效率之化合物太陽電池的方法。
為達上述目的,本發明之要旨是一種化合物太陽電池之製法,係在基板上,至少依序具有I-III-VI族化合物半導體層、緩衝層及透明電極層之化合物太陽電池之製法,其特徵在於當假設相對上述基板之層形成面呈垂直狀 延伸之假想中心軸時,在該假想中心軸之兩側,以對向之狀態配置2片濺鍍用之陰極靶材,且藉使用高頻(RF)電源,或經重疊直流(DC)電源之高頻(RF)電源之濺鍍法,進行上述緩衝層之形成。
本發明之化合物太陽電池之製法,係一種至少依序具有I-III-VI族化合物半導體層、緩衝層及透明電極層之化合物太陽電池之製法,且可藉特殊之濺鍍法形成上述緩衝層。因此,可接續I-III-VI族化合物半導體層之形成,在真空下連續地進行緩衝層之形成,且可提高化合物太陽電池之生產效率。而且,當假設相對基板之層形成面呈垂直狀延伸之假想中心軸時,在該假想中心軸之兩側,以使對向之狀態配置2片濺鍍用之陰極靶材,且藉使用高頻(RF)電源,或經重疊直流(DC)電源之高頻(RF)電源之濺鍍法,進行上述緩衝層之形成,因此可將產生之電子關在上述兩陰極靶材之間,且可同時實現高速形成緩衝層,及減少對I-III-VI族化合物半導體層造成之破壞。因此,藉本發明之製法得到之化合物太陽電池係以低成本製造,且亦具有高轉換效率。
又,上述2片對向的陰極靶材被配置成朝向基板側擴大之大略V字形時,可以更高速形成緩衝層,且可謀求化合物太陽電池之進一步之低成本化。
又,上述2片對向的陰極靶材呈平行地配置時,可將更多發生之電子關在上述兩陰極間,且可謀求進一步 減少對I-III-VI族化合物半導體層造成之破壞。
1‧‧‧基板
2‧‧‧背面電極層
3‧‧‧CIGS光吸收層(化合物半導體層)
4‧‧‧緩衝層
5‧‧‧透明電極層
6,6'‧‧‧陰極靶材
7‧‧‧對向面
X‧‧‧假想中心軸
θ‧‧‧角度
圖1是藉本發明一實施形態得到之CIGS太陽電池之截面圖。
圖2是用以形成上述CIGS太陽電池之緩衝層之濺鍍裝置中陰極靶材與基板之位置關係之說明圖。
圖3是顯示上述濺鍍裝置中陰極靶材與基板之位置關係之另一例的說明圖。
圖4是顯示上述濺鍍裝置中陰極靶材與基板之位置關係之另一例的說明圖。
用以實施發明之形態
接著,說明用以實施發明之形態。
圖1是藉本發明一實施形態得到之CIGS太陽電池之截面圖。該CIGS太陽電池係寬度20mm×長度20mm×厚度53μm之大小,且依序具有基板1、背面電極層2(厚度800nm)、由黃銅礦化合物構成之CIGS光吸收層(化合物半導體層)3(厚度2μm)、緩衝層4(厚度70nm)、及由ITO構成之透明電極層5(厚度200nm),且上述緩衝層4係藉特殊濺鍍法形成。以下,詳細說明該CIGS太陽電池及其製法。又,在圖1中,各層之厚度、大小、外觀等係模式地顯示,且與實際不同(以下之圖中亦同)。
上述基板1使用脫脂之SUS430(寬度20mm×長度20mm×厚度50μm)。又,形成在上述基板1上之背面電極層2 係由鉬(Mo)構成,且如此之背面電極層2可藉濺鍍法、蒸鍍法、噴墨法形成。在該實施形態中,使用濺鍍法形成。
此外,形成在背面電極層2上之CIGS光吸收層(化合物半導體層)3係由含有銅(Cu)、銦(In)、鎵(Ga)、硒(Se)之4元素之化合物半導體構成。形成如此之CIGS光吸收層3之方法可舉真空蒸鍍法、硒化/硫化法、濺鍍法等為例。在該實施形態中,使用多源蒸鍍法。
又,在該實施形態中,在形成CIGS光吸收層3之前,在背面電極層2上,蒸鍍NaF使其厚度成為40nm,藉此進行Na之微量添加,然後如下所述地形成CIGS光吸收層3。即,首先,在真空蒸鍍裝置之腔室內,分別配置Ga、In、Cu、Se作為蒸鍍源。接著,令上述腔室內之真空度為1×10-4Pa,且以升溫速度550℃/小時加熱,使基板1成為550℃。又,加熱使上述各蒸鍍源之Cu(1100℃)、In(780℃)、Ga(950℃)、Se(140℃)分別成為括弧內之溫度,且同時蒸發各蒸鍍源,藉此形成上述CIGS光吸收層3。
又,上述CIGS光吸收層3中Cu、In、Se之組成比宜滿足0.7<Cu/(Ga+In)<0.95(莫耳比)之式。這是因為可滿足該式時,可阻止Cu(2-x)Se過剩地取入上述CIGS光吸收層3內,且層全體可呈Cu稍微不足之狀態。又,同屬元素之Ga與In之比宜在0.10<Ga/(Ga+In)<0.40(莫耳比)之範圍內。在該實施形態中,上述CIGS光吸收層3之組成係Cu/III族為0.89、Ga/III族為0.31(莫耳比)。
又,在上述CIGS光吸收層3上形成緩衝層4,但 是可當假設相對上述基板1之層形成面呈垂直狀延伸之假想中心軸時,在該假想中心軸之兩側,以使對向之狀態配置2片濺鍍用之陰極靶材,且藉使用高頻(RF)電源,或經重疊直流(DC)電源之高頻(RF)電源之濺鍍法,進行該緩衝層4之形成。這是本發明之最大特徵。
更詳細地說明上述緩衝層4之形成時,首先,準 備2片由Zn0.85Mg0.15構成之組成之濺鍍用陰極靶材,如圖2所示,假設由基板1之層形成面呈垂直狀延伸之假想中心軸X,且在包夾該假想中心軸X之兩側使該等2片濺鍍用之陰極靶材6,6'對向地配置。在該實施形態中,將上述兩陰極靶材6、6'配置成朝向基板側擴大之大略V字形,且該兩陰極靶材6、6'之大略V字形程度可使上述假想中心軸X與陰極靶材6之對向面7形成之角度θ為10°。又,使用高頻(RF)電源進行對上述兩陰極靶材6、6'之施加。又,在圖2中,省略形成在基板1上之背面電極層2及CIGS光吸收層3之圖示(以下圖中亦同)。
接著,形成在上述緩衝層4上之透明電極層5係由 厚度200nm之ITO構成,且藉使用ITO靶材(In2O3,90[原子數%],SnO2,10[原子數%])及高頻(RF)電源之濺鍍法,在濺鍍速度20nm/分之條件下形成。除了上述濺鍍法以外,如此之透明電極層5可藉蒸鍍法、金屬有機化學蒸氣沈積法(MOCVD法)等形成,又,就550nm波長而言,透明電極層5之透光率宜超過80%,且在該實施形態中,就550nm波長而言,透明電極層5之透光率為90%。
藉透過如此之步驟,可得到在基板1上,形成背 面電極層2、CIGS光吸收層3、緩衝層4、透明電極層5之CIGS太陽電池。
依據該製法,由於可藉特殊濺鍍法形成,故可接 續I-III-VI族化合物半導體層之形成,在真空下連續地形成緩衝層4,且可提高CIGS太陽電池之生產效率。又,準備2片濺鍍用之陰極靶材6、6',且相對由基板1之層形成面呈垂直狀延伸之假想中心軸X,在包夾該假想中心軸X之兩側使該等2片濺鍍用之陰極靶材6,6'對向地配置,並且利用使用高頻(RF)電源之方法進行上述緩衝層4之形成,因此可同時實現高速形成緩衝層4,及減少對I-III-VI族化合物半導體層造成之破壞。而且,由於上述2片之對向陰極靶材6,6'配置成朝向基板1側擴大之大略V字形,故可以更高速形成緩衝層4,且可謀求CIGS太陽電池之進一步之低成本化。
又,在上述實施形態中,使用脫脂之SUS430作為基板1,但是除此以外,可使用玻璃基板、金屬基板、樹脂基板等。上述玻璃基板可舉鹼金屬元素之含量極少之低鹼玻璃、不含鹼金屬元素之無鹼玻璃、鈉鈣玻璃等為例。但是,使用低鹼玻璃、無鹼玻璃、金屬基板、樹脂基板時,如上述實施形態所示,在CIGS光吸收層3形成中或形成後,最好添加微量Na。
又,在上述實施形態中,基板1之厚度為50μm,但是不限於此且可為任意之厚度。特別地,基板1之厚度宜在5至200μm之範圍內,且在10至100μm之範圍內更佳。即, 這是因為厚度過厚時,CIGS太陽電池之彎曲性受損,且彎曲CIGS太陽電池時施加之應力變大,恐有對CIGS光吸收層3等之積層構造造成破壞之虞,相反地,過薄時,有製造CIGS太陽電池時,基板1彎曲,且CIGS太陽電池之製品不良率變高之傾向。
此外,在此述實施形態中,使用單片型基板作為 基板1,但是不限於此,亦可使用其他形狀。特別地,使用長條狀基板時,可使用卷對卷方式或步進卷方式製造CIGS太陽電池,且可進一步提高生產性。又,上述「長條狀」係指長度方向為寬度方向10倍以上者,且使用30倍以上者更佳。
又,在上述實施形態中,以由Mo構成之單層形 成背面電極層2,但是,此外,亦可單層或多數層地形成鎢、Ti、Cr等。又,其厚度(多數層時,各層之厚度之合計)亦可任意地設定,但是,特別地,宜在10至1000μm之範圍內。
又,當基板1具有背面電極層2之機能時(具有導 電性時等),亦可不設置該背面電極層2。又,來自基板1之不純物熱擴散時,CIGS太陽電池之性能下降,因此以防止這種情形為目的,可在基板1與CIGS光吸收層3之間(基板1或背面電極層2上),亦可設置防止金屬擴散層(未圖示)。如此之防止金屬擴散層可使用Cr、Ni、NiCr、Co等,藉濺鍍法、蒸鍍法、溶膠凝膠法、液相析出法等形成。
又,在上述實施形態中,CIGS光吸收層3之厚度 為2μm,但是不限於此且可為任意之厚度。特別地,CIGS 光吸收層3之厚度宜為1.0至3.0μm之範圍內,且在1.5至2.5μm之範圍內更佳。這是因為CIGS光吸收層3之厚度過薄時,有吸收光之量變少,且CIGS太陽電池之性能下降之傾向,相反地,過厚時,有形成CIGS光吸收層3花費之時間增加,且生產性差之傾向。
又,在上述實施形態中,使用由Zn0.85Mg0.15構成 之組成之濺鍍用陰極靶材6、6'形成緩衝層4,但是,此外,亦可使用CdS、ZnMgO、ZnMgCaO、ZnMgSrO、ZnSrO、ZnO、ZnS、Zn(OH)2、In2O3、In2S3、及該等之混晶之Zn(O,S,OH)、Zn(O,S)等作為陰極靶材6、6'。又,陰極靶材6、6'與得到之層(緩衝層4)之組成不同時,亦可事先使用含有大量不足之元素之組成的陰極靶材6、6'。此外,在上述實施形態中,單層地形成緩衝層4,但是亦可多層地形成。
又,在上述實施形態中,用以形成緩衝層4之濺 鍍時,如圖2所示,將陰極靶材6、6'配置成朝向基板1擴大之大略V字形,且該兩陰極靶材6、6'之大略V字形程度可使上述假想中心軸X與陰極靶材6、6'形成之角度θ為10°。但是,上述角度θ不限於該例。但是,上述角度θ在5至10°之範圍內時,可以更少之電力形成緩衝層4,因此是理想的。
此外,依據陰極靶材6、6'之組成或濺鍍之條件, 亦可將上述兩陰極靶材6、6'不配置成朝向基板側擴大之大略V字形,如圖3所示,可平行地配置兩陰極靶材6、6'。又,如圖4所示,亦可相對於假想中心軸X,以只傾斜角度θ之形狀只配置其中一陰極靶材(在該例中係陰極靶材6)。
又,在上述實施形態中,緩衝層4形成之濺鍍時, 對上述兩陰極靶材6、6'之施加可使用高頻(RF)電源,但是亦可使用經重疊直流(DC)電源之高頻(RF)電源取代該高頻(RF)電源。經重疊直流電源(DC)在高頻(RF)電源上時,與只藉高頻(RF)電源進行施加時比較,可藉較少之投入電力(消耗電力)加快濺鍍速度,並且可進一步抑制CIGS光吸收層3表面之變質及緩衝層4結晶性下降等之電漿破壞。
相對於此,單獨以直流電源(DC)進行對上述兩陰 極靶材6、6'之施加時,放電電壓變高,且因此射入基板1及形成中之緩衝層4內之粒子及離子之運動能量變大。因此,粒子及離子可打入CIGS光吸收層3表面,且再濺鍍CIGS光吸收層3表面,恐有CIGS光吸收層3表面狀態變質之虞,且不理想。又,藉高能粒子及離子,在形成中之緩衝層4內,生成結晶核之機率增大,且難以產生均一之配向成長,可考慮為結晶配向成為不規則。
又,在上述實施例中,使用ITO作為透明電極層 5,但是,此外,可使用IZO、氧化鋅鋁(Al:ZnO)等。又,該厚度亦可任意地設定,但是,特別地,宜在50至300nm之範圍內。
實施例
其次,與比較例一併說明實施形態。但是,本發明不限定於以下實施例。
[實施例1]
(背面電極層之形成)
首先,在由脫脂之SUS430(寬度20mm×長度20mm×厚度50μm)構成之基板表面上,使用磁控管濺鍍裝置(ULVAC公司製,SH-450),且放電氣體使用氬,並且使用使濺鍍壓力成為1Pa之直流(DC)電源,且在濺鍍速度60nm/分之條件下,形成由厚度0.8μm之Mo構成之背面電極層。
(CIGS光吸收層之形成)
接著,在上述形成之背面電極層上,形成CIGS光吸收層。即,在真空蒸鍍裝置之腔室內,分別配置Ga(950℃)、In(780℃)、Cu(1100℃)、Se(140℃)作為蒸鍍源,且令上述腔室內之真空度為1×10-4Pa,並且以升溫速度550℃/小時加熱基板至550℃。此時,加熱使上述蒸鍍源分別成為括弧內之溫度,且使該等元素同時地蒸發,藉此在上述背面電極層上形成由黃銅礦構成之CIGS光吸收層。得到之CIGS光吸收層之組成(原子數%)係Cu/III族=0.89、Ga/III族=0.31,且其厚度係2.1μm。
(緩衝層之形成)
接著,在上述形成之CIGS光吸收層上,形成厚度70mm之緩衝層。緩衝層係使用圖2所示之2片陰極靶材配置成大略V字形之對向濺鍍裝置(角度θ=10°),藉以下條件形成。即,使用由Zn0.85Mg0.15構成之組成作為濺鍍用陰極靶材,且濺鍍時之放電氣體使用Ar,又,在濺鍍壓力0.3Pa、濺鍍速度15nm/分之條件下,可使用高頻(RF)電源。又,分析上述陰極靶材之組成後,結果相對於Mg,Ca混合有大約3%(原子數%)。
(透明電極層之形成)
又,在上述形成之緩衝層上,形成透明電極層。透明電極層係使用磁控管濺鍍裝置(ULVAC公司製,SH-450),且藉下述條件形成。即,使用ITO(In2O3:90[原子數%],SnO2:10[原子數%])形成之組成作為陰極靶材,且濺鍍時之放電氣體合併使用Ar及Ar流量之1/10之O2氣體。又,使用電力密度1.6W/cm2、濺鍍壓力0.3Pa、濺鍍速度20nm/分、高頻(RF)電源,形成厚度200nm之透明電極層,且得到實施例1之CIGS太陽電池。
[實施例2及3]
除了如下述表1所示地變更緩衝層形成之濺鍍速度以外,與實施例1同樣地,得到實施例2及3之CIGS太陽電池。
[實施例4至6]
除了使用經重疊直流(DC)電源之高頻(RF)電源形成緩衝層,且如下述表1所示地變更濺鍍速度以外,與實施例1同樣地,得到實施例4至6之CIGS太陽電池。
[實施例7及8]
除了在形成緩衝層時,如下述表1所示地變更圖2所示之2片陰極靶材之大略V字程度以外,與實施例1同樣地,得到實施例7及8之CIGS太陽電池。
[實施例9]
除了變更成使用圖3所示之2片陰極靶材平行地配置之對向濺鍍裝置形成緩衝層以外,與實施例1同樣地,得到實施例9之CIGS太陽電池。
[比較例1至6]
除了使用通用之磁控管濺鍍裝置(ULVAC公司製,SH-450:配置與基板之層形成面呈平行之1片陰極靶材)形成緩衝層,且如下述表1所示地變更施加電壓及濺鍍速度以外,與實施例1同樣地,得到比較例1至6之CIGS太陽電池。
[比較例7至9]
除了使用直流(DC)電源形成緩衝層,且如下述表1所示地變更濺鍍速度以外,與實施例1同樣地,得到比較例7至9之CIGS太陽電池。
<轉換效率之測量及轉換效率比之計算>
分別準備20個上述實施例1至9、比較例1至9之CIGS太陽電池,且將擬似太陽光(AM1.5)照射在該等CIGS太陽電池上,使用IV測量系統(山下電裝公司製),測量各個CIGS太陽電池之轉換效率。分別計算得到之轉換效率之平均,及以比較例作為基準(100)時之轉換效率比一併顯示在下述表1中。
上述轉換效率之測量結果顯示實施例1至9之平均轉換效率均超過4%,且該等實施例1至9具有優異之轉換 效率。由此亦可了解的是與使用通用之濺鍍裝置形成緩衝層之比較例4對比,實施例1至9之轉換效率均在114%以上。但是,實施例8及9雖然性能優異,但是在緩衝層形成時,需要較多之電力及時間,有製造成本變高之傾向。
在上述實施例中,顯示了本發明之具體形態,但是上述實施例不過是單純之例示,且不是限定地解釋之例。企圖的是發明所屬技術領域中具有通常知識者可了解之種種變形係在本發明之範圍內。
產業上之可利用性
藉本發明之製法得到之化合物太陽電池是薄型的,且由於轉換效率非常高,故可在種種領域中利用。
1‧‧‧基板
6,6'‧‧‧陰極靶材
7‧‧‧對向面
X‧‧‧假想中心軸
θ‧‧‧角度

Claims (3)

  1. 一種化合物太陽電池之製法,該化合物太陽電池係在基板上,至少依序具有I-III-VI族化合物半導體層、緩衝層及透明電極層;該製法之特徵在於:當假設相對上述基板之層形成面呈垂直狀延伸之假想中心軸時,在該假想中心軸之兩側,以使對向之狀態配置2片濺鍍用之陰極靶材,且藉使用高頻(RF)電源,或經重疊直流(DC)電源之高頻(RF)電源之濺鍍法,進行上述緩衝層之形成。
  2. 如申請專利範圍第1項之化合物太陽電池之製法,其中上述2片對向的陰極靶材係配置成朝向基板側擴大之大略V字形。
  3. 如申請專利範圍第1項之化合物太陽電池之製法,其中上述2片對向的陰極靶材係呈平行配置。
TW102106518A 2012-02-27 2013-02-25 化合物太陽電池之製法 TW201344926A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012040151A JP2013175653A (ja) 2012-02-27 2012-02-27 化合物太陽電池の製法

Publications (1)

Publication Number Publication Date
TW201344926A true TW201344926A (zh) 2013-11-01

Family

ID=49082496

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102106518A TW201344926A (zh) 2012-02-27 2013-02-25 化合物太陽電池之製法

Country Status (7)

Country Link
US (1) US20150303346A1 (zh)
EP (1) EP2808904A4 (zh)
JP (1) JP2013175653A (zh)
KR (1) KR20140129037A (zh)
CN (1) CN104137273A (zh)
TW (1) TW201344926A (zh)
WO (1) WO2013129297A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9960314B2 (en) * 2013-09-13 2018-05-01 Nanoco Technologies Ltd. Inorganic salt-nanoparticle ink for thin film photovoltaic devices and related methods
CN105355716A (zh) * 2015-11-18 2016-02-24 北京四方创能光电科技有限公司 一种利用干法缓冲层制作cigs薄膜太阳能电池的方法
CN105714262A (zh) * 2016-05-05 2016-06-29 常州工学院 一种择优生长ito透明导电薄膜的制备方法
KR102158186B1 (ko) * 2017-11-10 2020-09-21 주식회사 조인솔루션 페로브스카이트 태양전지의 흡수층 박막 제조방법 및 페로브스카이트 박막 제조용 스퍼터링 장치
CN112701194B (zh) * 2020-12-29 2023-03-24 晋能清洁能源科技股份公司 一种异质结太阳能电池的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4662616B2 (ja) 2000-10-18 2011-03-30 パナソニック株式会社 太陽電池
JP4549570B2 (ja) 2001-05-15 2010-09-22 昭和シェル石油株式会社 ヘテロ接合薄膜太陽電池の製造方法
JP2003027216A (ja) * 2001-07-18 2003-01-29 Honda Motor Co Ltd 透明導電膜の製造方法および装置
JP2006059657A (ja) * 2004-08-19 2006-03-02 Sharp Corp 対向ターゲット式スパッタ装置、有機エレクトロルミネセンス素子の製造方法及び有機エレクトロルミネセンス素子
JP2006188733A (ja) * 2005-01-06 2006-07-20 Osaka Vacuum Ltd 対向ターゲット式スパッタ装置及び対向ターゲット式スパッタ方法
JP2009270158A (ja) * 2008-05-08 2009-11-19 Canon Anelva Corp マグネトロンスパッタリング装置及び薄膜の製造法
US20100055826A1 (en) * 2008-08-26 2010-03-04 General Electric Company Methods of Fabrication of Solar Cells Using High Power Pulsed Magnetron Sputtering
TW201108425A (en) * 2009-08-26 2011-03-01 Ind Tech Res Inst Solar cell and fabrication method thereof
CN101719457B (zh) * 2009-09-25 2012-05-30 中国科学院电工研究所 一种基于超导线圈的强磁场磁控溅射阴极
JP2011151160A (ja) * 2010-01-21 2011-08-04 Ritsumeikan 薄膜太陽電池、及びその製造方法
KR20130098143A (ko) * 2010-05-04 2013-09-04 인터몰레큘러 인코퍼레이티드 Cigs 태양 전지 제조를 위한 통합적 방법

Also Published As

Publication number Publication date
KR20140129037A (ko) 2014-11-06
EP2808904A1 (en) 2014-12-03
CN104137273A (zh) 2014-11-05
WO2013129297A1 (ja) 2013-09-06
US20150303346A1 (en) 2015-10-22
JP2013175653A (ja) 2013-09-05
EP2808904A4 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
US20160284882A1 (en) Solar Cell
TW201344926A (zh) 化合物太陽電池之製法
TWI580060B (zh) CIGS-based compound solar cells
TWI589011B (zh) 化合物太陽電池及其製造方法
TWI591839B (zh) CIGS Department of compound solar cells
JP2014225567A (ja) Cigs系化合物太陽電池およびその製造方法
WO2014010371A1 (ja) 化合物太陽電池の製法
JP2015162524A (ja) 光電変換素子、太陽電池及び光電変換素子の製造方法
JP2014017377A (ja) 化合物太陽電池およびその製法
KR20150136721A (ko) 고품질 cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법
KR20150118605A (ko) 태양 전지 및 이의 제조방법
KR20150031978A (ko) 태양전지
KR20150136722A (ko) 고품질 cigs 광흡수층을 포함하는 태양전지 및 이의 제조방법