TW201343964A - Composite cutter - Google Patents

Composite cutter Download PDF

Info

Publication number
TW201343964A
TW201343964A TW101113486A TW101113486A TW201343964A TW 201343964 A TW201343964 A TW 201343964A TW 101113486 A TW101113486 A TW 101113486A TW 101113486 A TW101113486 A TW 101113486A TW 201343964 A TW201343964 A TW 201343964A
Authority
TW
Taiwan
Prior art keywords
alloy
weight
composite tool
composite
substrate
Prior art date
Application number
TW101113486A
Other languages
Chinese (zh)
Other versions
TWI521090B (en
Inventor
Chi-San Chen
Chih-Chao Yang
Heng-Yi Chai
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW101113486A priority Critical patent/TWI521090B/en
Priority to CN201210125091.2A priority patent/CN103373013B/en
Publication of TW201343964A publication Critical patent/TW201343964A/en
Application granted granted Critical
Publication of TWI521090B publication Critical patent/TWI521090B/en

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A composite cutter is provided. The composite cutter includes a substrate and a multi-element alloy nitride film covered on a surface of the substrate. A alloy composition of the multi-element alloy nitride film includes five to seven metal elements. The metal elements include at least aluminum(Al), chromium(Cr) and iron(Fe), wherein a weight percent of Al in the alloy composition is 1.57-11.18 wt%.

Description

複合刀具Compound tool

本發明是有關於一種複合刀具,且特別是有關於一種基材表面有多元合金氮化物薄膜之複合刀具。The present invention relates to a composite tool, and more particularly to a composite tool having a multi-alloy nitride film on the surface of the substrate.

陶金複合材料通常被應用於需要高硬度之模具與切削刀具基材材料,包括車刀、銑刀、絞刀、刨刀、鋸片、鑽頭、衝頭、剪切模、成型模、抽製模、擠型模、手錶零件等,其中以碳化鎢超硬複合材料最為廣泛應用。然而,目前碳化鎢模具、刀具在使用上皆面臨硬度不足、耐溫性不足與耐磨耗性不足等問題。Pottery composites are commonly used in mold and cutting tool substrates that require high hardness, including turning tools, milling cutters, reamers, planers, saw blades, drill bits, punches, shear dies, forming dies, and drawing dies. Extrusion molds, watch parts, etc., among which tungsten carbide superhard composite materials are most widely used. However, at present, tungsten carbide molds and tools are faced with problems such as insufficient hardness, insufficient temperature resistance, and insufficient wear resistance.

在目前的技術中,主要是針對陶金複合材料本身的性質,或其表面的性能進行改善。就基材材料本身而言,例如,在中華民國專利第I347978號中,揭露一種使用多元合金(multi-element alloy)取代常用的鈷金屬做為碳化鎢超硬複合材料之結合金屬,所得到的碳化鎢/多元合金超硬複合材料,是具高韌性之基材材料。In the current technology, the properties of the ceramic gold composite itself, or the properties of the surface thereof, are mainly improved. In the case of the substrate material itself, for example, in the Republic of China Patent No. I347978, a composite metal using a multi-element alloy instead of a conventional cobalt metal as a tungsten carbide superhard composite material is disclosed. Tungsten carbide/multi-alloy superhard composite is a substrate material with high toughness.

就表面處理而言,則是藉由鍍膜技術在基材表面上披覆硬質薄膜。所述硬質薄膜大致可分為單一層硬質薄膜與多層硬質薄膜。單一層硬質薄膜種類很多,例如廣泛使用的Ti、Cr、Zr、Al或W之氮化物與碳化物、或少數可達超硬膜程度的立方硼化氮膜(Cubic Boron Nitride,cBN)及類鑽碳膜。另外,由於大多數過渡金屬氮化物具有相當的相互溶解度,故還能藉由金屬元素的選擇與元素間比例的調配而得例如(TiAl)N、(TiZr)N、(TiCr)N、(TiAlV)N等的氮化物。目前現有技術的單一層硬質薄膜多使用三元合金。In terms of surface treatment, a hard film is coated on the surface of the substrate by a coating technique. The hard film can be roughly divided into a single layer of a hard film and a multilayer hard film. There are many types of single-layer hard films, such as nitrides and carbides of widely used Ti, Cr, Zr, Al or W, or a few cubic boron nitride films (Cubic Boron Nitride, cBN) and the like. Drill a carbon film. In addition, since most transition metal nitrides have considerable mutual solubility, it is also possible to obtain, for example, (TiAl)N, (TiZr)N, (TiCr)N, (TiAlV) by the selection of the metal element and the ratio between the elements. N, etc. nitride. At present, a single-layer hard film of the prior art uses a ternary alloy.

然而,例如立方硼化氮膜,其本身為非熱穩定性,使得材料在高溫時易與基材發生相互擴散,導致硬度大幅下降,而限制其應用範圍。多層硬質薄膜則多是由上述單層薄膜組合而成。However, for example, the cubic boron nitride film itself is non-thermally stable, so that the material easily diffuses with the substrate at a high temperature, resulting in a sharp drop in hardness and limits its application range. Multilayer hard films are often composed of the above single layer films.

本發明提出一種複合刀具,包括基材以及披覆於基材表面上的多元合金氮化物薄膜,其中所述多元合金氮化物薄膜的合金成分包括五至七種金屬元素。前述金屬元素至少包括鋁元素、鉻元素及鐵元素,其中鋁元素佔上述合金成分的重量百分比為約1.57wt%~11.18wt%。The present invention provides a composite tool comprising a substrate and a multi-component alloy nitride film coated on the surface of the substrate, wherein the alloy composition of the multi-alloy nitride film comprises five to seven metal elements. The foregoing metal element includes at least an aluminum element, a chromium element, and an iron element, wherein the aluminum element accounts for about 1.57 wt% to 11.18 wt% by weight of the above alloy component.

在本發明之一實施例中,上述之基材例如是陶金材料。In an embodiment of the invention, the substrate is, for example, a pottery gold material.

在本發明之一實施例中,上述之陶金材料例如是碳化鎢/多元合金複合材料。In an embodiment of the invention, the above-mentioned ceramic gold material is, for example, a tungsten carbide/multicomponent alloy composite.

在本發明之一實施例中,上述之陶金材料例如是碳化鎢、碳化鈦、碳化矽、氮化硼或氧化鋁的複合材料。In an embodiment of the invention, the above-mentioned ceramic gold material is, for example, a composite material of tungsten carbide, titanium carbide, tantalum carbide, boron nitride or aluminum oxide.

在本發明之一實施例中,上述之每一金屬元素佔合金成分的重量百分比例如約小於50%。In an embodiment of the invention, each of the metal elements comprises, for example, less than about 50% by weight of the alloy component.

在本發明之一實施例中,上述之鉻元素佔合金成分的重量百分比例如是約10.22wt%~33.67wt%;鐵元素佔所述合金成分的重量百分比例如是約11.00wt%~35.27wt%。In one embodiment of the present invention, the above-mentioned chromium element accounts for about 10.22% by weight to 33.67% by weight of the alloy component; and the weight percentage of the iron element to the alloy component is, for example, about 11.00% by weight to 35.27% by weight. .

在本發明之一實施例中,上述之金屬元素更包括至少二元素是選自鈷(Co)、鎳(Ni)、錳(Mn)、矽(Si)、鈦(Ti)與釩(V)所組成之群組。In an embodiment of the invention, the metal element further comprises at least two elements selected from the group consisting of cobalt (Co), nickel (Ni), manganese (Mn), cerium (Si), titanium (Ti) and vanadium (V). The group formed.

在本發明之一實施例中,上述之鈷元素佔合金成分的重量百分比例如是約大於0至39.39wt%。In an embodiment of the invention, the cobalt element as a percentage by weight of the alloy component is, for example, greater than about 0 to 39.39 wt%.

在本發明之一實施例中,上述之鎳元素佔合金成分的重量百分比例如是約大於0至36.33wt%。In an embodiment of the invention, the nickel element as a percentage by weight of the alloy component is, for example, greater than about 0 to 36.33 wt%.

在本發明之一實施例中,上述之錳元素佔合金成分的重量百分比例如是約大於0至19.84wt%。In an embodiment of the invention, the weight percentage of the manganese element to the alloy component is, for example, greater than about 0 to 19.84% by weight.

在本發明之一實施例中,上述之矽元素佔合金成分的重量百分比例如是約大於0至9.10wt%。In an embodiment of the invention, the above-mentioned cerium element accounts for, for example, more than 0 to 9.10% by weight of the alloy component.

在本發明之一實施例中,上述之鈦元素佔合金成分的重量百分比例如是約大於0至15.51wt%。In an embodiment of the invention, the titanium element as a percentage by weight of the alloy component is, for example, greater than about 0 to 15.51% by weight.

在本發明之一實施例中,上述之釩元素佔合金成分的重量百分比例如是約大於0至32.99wt%。In an embodiment of the invention, the vanadium element accounts for, for example, more than 0 to 32.99% by weight of the alloy component.

基於上述,本發明藉由在刀具基材的表面披覆單一層的多元合金氮化物薄膜,因其與基材之間具有高鍵結力,且多元合金氮化物薄膜使用之合金成分具五至七種金屬元素,具高硬度、高耐磨耗性與高耐溫性的特性,故能增強刀具之硬度、耐磨耗性與耐溫性。Based on the above, the present invention employs a single layer of a multi-alloy nitride film on the surface of the tool substrate because of its high bonding force with the substrate, and the alloy composition of the multi-alloy nitride film has five to Seven kinds of metal elements, with high hardness, high wear resistance and high temperature resistance, can enhance the hardness, wear resistance and temperature resistance of the tool.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

本發明提供一種複合刀具,能增加刀具之硬度、耐磨耗性及耐溫性增加。The invention provides a composite cutter which can increase the hardness, wear resistance and temperature resistance of the cutter.

本發明藉由在刀具基材的表面披覆單一層的多元合金氮化物薄膜,因其與基材之間具有高鍵結力,且多元合金氮化物薄膜使用之合金成分具五至七種金屬元素,具高硬度、高耐磨耗性與高耐溫性的特性,故能增強刀具之硬度、耐磨耗性與耐溫性。The present invention coats a single layer of a multi-alloy nitride film on the surface of the tool substrate because of its high bonding force with the substrate, and the alloy composition of the multi-alloy nitride film has five to seven metals. The element has high hardness, high wear resistance and high temperature resistance, so it can enhance the hardness, wear resistance and temperature resistance of the tool.

圖1為繪示根據一實施例之複合刀具的示意圖。請參照圖1,複合刀具10包括基材100以及披覆於基材表面上的多元合金氮化物薄膜110。基材100的材料例如是陶金材料;舉例來說,基材100的材料包括碳化鎢、碳化鈦、碳化矽、氮化硼或氧化鋁複合材料,在又一實施例中,基材100的材料可以是具較高韌性的碳化鎢/多元合金複合材料。而所述陶金材料中含有的金屬例如擇自週期表碳、鋁、鉻、鈷、銅、鐵、鎳、釩、錳、及鈦元素族群中之數種元素。1 is a schematic view of a composite tool in accordance with an embodiment. Referring to FIG. 1, the composite tool 10 includes a substrate 100 and a multi-component alloy nitride film 110 coated on the surface of the substrate. The material of the substrate 100 is, for example, a ceramic gold material; for example, the material of the substrate 100 includes tungsten carbide, titanium carbide, tantalum carbide, boron nitride or aluminum oxide composite, and in yet another embodiment, the substrate 100 The material can be a tungsten carbide/multicomponent alloy composite with higher toughness. The metal contained in the pottery gold material is selected, for example, from several elements of the periodic group of carbon, aluminum, chromium, cobalt, copper, iron, nickel, vanadium, manganese, and titanium.

至於多元合金氮化物薄膜110,其合金成分可包括五至七種金屬元素,且至少包括鋁元素、鉻元素、鐵元素。所述鋁元素佔所述合金成分的重量百分比約為1.57wt%~11.18wt%。在一實施例中,多元合金氮化物薄膜110中的各個金屬元素佔合金成分的重量百分比例如小於50%。此外,除上述鋁、鉻和鐵元素之外,多元合金氮化物薄膜110之合金成分還可選自鈷、鎳、錳、矽、鈦與釩元素所組成之群組中的至少兩種元素。並且,以合金成分之總量計,鉻元素的重量百分比為約10.22wt%~33.67wt%、鐵元素的重量百分比為約11.00wt%~35.27wt%、鈷元素的重量百分比為約大於0至39.39wt%、鎳元素的重量百分比為約大於0至36.33wt%、錳元素的重量百分比為約大於0至19.84wt%、矽元素的重量百分比為約大於0至9.10wt%、鈦元素的重量百分比為約大於0至15.51wt%及釩元素的重量百分比為約大於0至32.99wt%。As for the multi-alloy nitride film 110, the alloy composition may include five to seven metal elements, and at least includes an aluminum element, a chromium element, and an iron element. The aluminum element accounts for about 1.57 wt% to 11.18 wt% by weight of the alloy component. In one embodiment, each of the metal elements in the multi-alloy nitride film 110 accounts for less than 50% by weight of the alloy component. Further, in addition to the above-described aluminum, chromium and iron elements, the alloy composition of the multi-alloy nitride film 110 may be selected from at least two elements selected from the group consisting of cobalt, nickel, manganese, lanthanum, titanium and vanadium. And, the weight percentage of the chromium element is about 10.22 wt% to 33.67 wt%, the weight percentage of the iron element is about 11.00 wt% to 35.27 wt%, and the weight percentage of the cobalt element is about greater than 0 to the total amount of the alloy component. 39.39 wt%, the weight percentage of the nickel element is about more than 0 to 36.33 wt%, the weight percentage of the manganese element is about more than 0 to 19.84 wt%, the weight percentage of the lanthanum element is about more than 0 to 9.10 wt%, and the weight of the titanium element. The percentage is about greater than 0 to 15.51 wt% and the weight percent of vanadium element is greater than about 0 to 32.99 wt%.

根據上述實施例所得的多元合金氮化物薄膜110因具高硬度與高耐磨耗性,且與陶金材料之類的基材100間有高附著性,使得包括多元合金氮化物薄膜110之複合刀具10也連帶具高硬度、高耐磨耗性等特性。在本文中,所謂的高硬度是指硬度介於約24 GPa至38 Gpa之間;所謂的高耐磨耗性是指磨耗速率小於1×10-5 mm3/N‧m;及所謂的高附著性為鍵結力大於60 N。The multi-alloy nitride film 110 obtained according to the above embodiment has high adhesion and high wear resistance, and has high adhesion to the substrate 100 such as a pottery gold material, so that the composite including the multi-alloy nitride film 110 The tool 10 is also equipped with high hardness and high wear resistance. As used herein, the so-called high hardness means that the hardness is between about 24 GPa and 38 Gpa; the so-called high wear resistance means that the abrasion rate is less than 1×10 -5 mm 3 /N‧m; and the so-called high Adhesion is greater than 60 N.

以下藉由具體實例詳細說明本實施例之特點及功效,然而這些實例並非用以限制本發明。The features and effects of the present embodiments are described in detail below by way of specific examples, which are not intended to limit the invention.

實例1Example 1

以碳化鎢/多元合金複合材料為基材,藉由使用高密度電弧離子蒸鍍系統(High Density Arc Ion Planting system)以AlCoCrFeNi(莫耳比為1:1:1:1:1)多元合金靶材,於基材上進行氮化物薄膜鍍膜。其所使用之其他各鍍膜參數如下文之表1所示。Using a tungsten carbide/multi-alloy composite material as a substrate, a high-density arc ion evaporation system (High Density Arc Ion Planting system) is used to coat AlCoCrFeNi (molar ratio 1:1:1:1:1) multi-alloy target A nitride film is deposited on the substrate. The other coating parameters used are as shown in Table 1 below.

意即,在實例1中,除了改變鍍膜時的氮氣流量(0 sccm、5 sccm及10 sccm)外,試片1、試片2及試片3是由使用表1中所示之各鍍膜參數於基材上進行各多元合金氮化物薄膜鍍膜而得到。所製得之試片先以XRD繞射分析鍍膜的微結構,如圖2所示;接著,利用奈米壓痕試驗機(nanoindenter)量測所獲得之各多元合金氮化物薄膜的硬度,以找出較佳之氮氣流量。其硬度量測結果顯示在下文之表2中。That is, in Example 1, except that the nitrogen flow rate (0 sccm, 5 sccm, and 10 sccm) at the time of plating was changed, the test piece 1, the test piece 2, and the test piece 3 were subjected to the respective coating parameters shown in Table 1. It is obtained by performing coating of each multi-alloy nitride film on a substrate. The prepared test piece was first analyzed by XRD diffraction, and the microstructure of the coating was as shown in FIG. 2; then, the hardness of each of the obtained multi-component alloy nitride films was measured by a nanoindenter. Find the better nitrogen flow rate. The hardness measurement results are shown in Table 2 below.

由圖2可知,當氮氣流量為0 sccm時,所製得試片1鍍膜的XRD圖譜中可看出BCC(110)繞射峰,得知試片1鍍膜具有BCC晶體結構,但當氮氣流量增加到5 sccm與10 sccm時,所製得試片2、試片3鍍膜的XRD圖譜中已無BCC(110)繞射峰,代表所鍍製的多元合金薄膜確實為一氮化物,而呈現非晶質狀態。請參照表2,在氮氣流量為10 sccm下進行鍍膜而得之試片3,其四個受測點之平均硬度為30.85±0.52 GPa,此平均硬度皆高於試片1及2的平均硬度。因此,在隨後的實例中,將使用氮氣流量為10 sccm的條件進行鍍膜。It can be seen from Fig. 2 that when the flow rate of nitrogen gas is 0 sccm, the BCC (110) diffraction peak can be seen in the XRD pattern of the test piece 1 obtained, and it is found that the test piece 1 has a BCC crystal structure, but when the nitrogen flow rate When increased to 5 sccm and 10 sccm, there is no BCC (110) diffraction peak in the XRD pattern of the test piece 2 and the test piece 3, which means that the plated multi-alloy film is indeed a nitride. Amorphous state. Referring to Table 2, the test piece 3 obtained by coating at a nitrogen flow rate of 10 sccm has an average hardness of 30.85 ± 0.52 GPa, and the average hardness is higher than the average hardness of the test pieces 1 and 2. . Therefore, in the subsequent examples, plating was carried out using a nitrogen gas flow rate of 10 sccm.

實例2Example 2

除了使用如下表3中所示之各莫耳比來進行Al、Co、Cr、Fe及Ni五元合金靶材的成分配製外,以與實例1之試片3相同的鍍膜方式與參數,進行實例2之試片4至試片12的AlCoCrFeNi多元合金靶材鍍膜。在表3中所示之各莫耳比是分別藉由改變鋁的莫耳數(0.2、0.5、1.0)、鉻的莫耳數(0.5、1.0、1.5)、鐵的莫耳數(0.5、1.0、1.5)及鎳的莫耳數(0.5、1.0、1.5)來進行L9(34)田口實驗而得。The same coating method and parameters as those of the test piece 3 of Example 1 were carried out except that each of the molar ratios shown in Table 3 below was used for the composition of the Al, Co, Cr, Fe, and Ni five-element alloy targets. The AlCoCrFeNi multi-alloy target coating of the test piece 4 to the test piece 12 of Example 2. The molar ratios shown in Table 3 are changed by changing the molar number of aluminum (0.2, 0.5, 1.0), the molar number of chromium (0.5, 1.0, 1.5), and the molar number of iron (0.5, 1.0, 1.5) and the molar number of nickel (0.5, 1.0, 1.5) were obtained by L 9 (3 4 ) Taguchi experiment.

接著,藉由使用高密度電弧離子蒸鍍系統,根據各AlCoCrFeNi多元合金靶材莫耳比而得的披覆於碳化鎢/多元合金複合材料基材表面上之各AlCoCrFeNi多元合金氮化物薄膜(試片4至試片12),各別就其硬度、磨耗速率及鍵結力進行量測並評估性質,其結果如表4所示。Next, by using a high-density arc ion evaporation system, each AlCoCrFeNi multi-alloy nitride film coated on the surface of the tungsten carbide/multi-alloy composite substrate according to the molar ratio of each AlCoCrFeNi multi-alloy target (test From sheet 4 to test piece 12), the hardness, the abrasion rate and the bonding force were each measured and evaluated for properties. The results are shown in Table 4.

量測方式包括利用奈米壓痕試驗機進行硬度量測。各試片經過三次實驗並三點量測後,所得之平均硬度介於28 GPa至38 GPa之間,代表這些多元合金氮化物薄膜具有高硬度。另外,由球對盤(ball on disk)磨耗實驗進行量測之磨耗速率,其介於10-6 mm3/N.m至10-7 mm3/N.m之間,表示這些多元合金氮化物薄膜具有高耐磨耗性。再者,利用刮痕測試儀量測各多元合金氮化物薄膜與碳化鎢/多元合金基材之間的鍵結力,其結果介於62 N至73 N之間,表示各多元合金氮化物薄膜與碳化鎢/多元合金基材之間具有高鍵結強度。The measurement method includes hardness measurement using a nanoindentation tester. After three experiments and three measurements, the average hardness of the test pieces was between 28 GPa and 38 GPa, indicating that these multi-alloy nitride films have high hardness. In addition, the wear rate measured by a ball on disk abrasion test is between 10 -6 mm 3 /Nm and 10 -7 mm 3 /Nm, indicating that these multi-alloy nitride films have a high Wear resistance. Furthermore, the bonding force between each of the multi-alloy nitride film and the tungsten carbide/multi-alloy substrate is measured by a scratch tester, and the result is between 62 N and 73 N, indicating each of the multi-alloy nitride films. High bonding strength with tungsten carbide/multi-alloy substrate.

實例3Example 3

使用錳(Mn)取代AlCoCrFeNi多元合金靶材中的鈷,並以如下表5中所示之莫耳比與重量百分比進行成分配製的AlCrFeMnNi多元合金靶材,並以與實例1之試片3相同的鍍膜方式與參數,進行試片13之AlCrFeMnNi多元合金靶材鍍膜。The cobalt in the AlCoCrFeNi multi-alloy target was replaced with manganese (Mn), and the AlCrFeMnNi multi-alloy target prepared by the composition was expressed in the molar ratio and weight percentage shown in Table 5 below, and was the same as the test piece 3 of Example 1. The coating method and parameters of the test piece 13 of the AlCrFeMnNi multi-alloy target coating.

接著,藉由使用高密度電弧離子蒸鍍系統而得的披覆於碳化鎢/多元合金基材表面上的AlCrFeMnNi多元合金氮化物薄膜,就其硬度、磨耗速率及鍵結力加以量測並評估性質,其結果如下文之表6所示。利用奈米壓痕試驗機進行硬度量測,經三次單點量測後,所得之平均硬度為24.3±0.9 GPa,表示AlCrFeMnNi多元合金具有高硬度。Next, the AlCrFeMnNi multi-alloy nitride film coated on the surface of the tungsten carbide/multi-alloy substrate by using a high-density arc ion evaporation system is measured and evaluated for hardness, wear rate and bonding force. Nature, the results are shown in Table 6 below. The hardness was measured by a nanoindentation tester, and after three single-point measurement, the average hardness obtained was 24.3±0.9 GPa, indicating that the AlCrFeMnNi multi-alloy had high hardness.

另外,由球對盤(ballon disk)磨耗實驗進行量測之磨耗速率為7.23×10-7 mm3/N.m,表示AlCrFeMnNi多元合金氮化物薄膜具有高耐磨耗性。再者,利用刮痕測試儀量測AlCrFeMnNi多元合金氮化物薄膜與碳化鎢/多元合金基材之間的鍵結力,其量測結果為69 N,表示兩者之間具有高鍵結強度。In addition, the abrasion rate measured by the ballon disk abrasion test was 7.23 × 10 -7 mm 3 /Nm, indicating that the AlCrFeMnNi multi-alloy nitride film has high wear resistance. Further, the bonding force between the AlCrFeMnNi multi-alloy nitride film and the tungsten carbide/multi-alloy substrate was measured by a scratch tester, and the measurement result was 69 N, indicating a high bonding strength therebetween.

實例4Example 4

除了使用以矽(Si)與鈦(Ti)(容易與氮氣產生反應而形成高硬度氮化物薄膜)取代AlCoCrFeNi多元合金靶材中的鈷與鎳,並以下表7所示之莫耳比與重量百分比進行成分配製之AlCrFeSiTi多元合金靶材外,以與實例1之試片3相同的各鍍膜方式與參數進行試片14的AlCrFeSiTi多元合金靶材鍍膜。In addition to the use of bismuth (Si) and titanium (Ti) (easy to react with nitrogen to form a high hardness nitride film) in place of cobalt and nickel in the AlCoCrFeNi multi-alloy target, and the molar ratio and weight shown in Table 7 below The AlCrFeSiTi multi-alloy target of the test piece 14 was coated with the same coating method and parameters as those of the test piece 3 of Example 1 except for the composition of the AlCrFeSiTi multi-alloy target.

接著,藉由使用高密度電弧離子蒸鍍系統而得的披覆於碳化鎢/多元合金基材表面上的AlCrFeSiTi多元合金氮化物薄膜,就其硬度、磨耗速率及鍵結力加以量測並評估性質,其結果如下文之表8所示。利用奈米壓痕試驗機進行硬度量測,經三次單點量測後,所得之平均硬度為31.9±2.4 GPa,表示AlCrFeSiTi多元合金氮化物薄膜具有高硬度。另外,由球對盤磨耗實驗進行量測之磨耗速率為5.98×10-7 mm3/N.m,表示AlCrFeSiTi多元合金氮化物薄膜具有高耐磨耗性。再者,利用刮痕測試儀量測AlCrFeSiTi多元合金氮化物薄膜與碳化鎢/多元合金基材之間的鍵結力,其量測結果為73 N,表示兩者之間具有高鍵結強度。Next, the AlCrFeSiTi multi-alloy nitride film coated on the surface of the tungsten carbide/multi-alloy substrate by using a high-density arc ion evaporation system is measured and evaluated for hardness, wear rate and bonding force. The nature, the results are shown in Table 8 below. The hardness was measured by a nanoindentation tester, and after three single-point measurement, the average hardness obtained was 31.9±2.4 GPa, indicating that the AlCrFeSiTi multi-alloy nitride film had high hardness. In addition, the wear rate measured by the ball-on-disk abrasion test was 5.98 × 10 -7 mm 3 /Nm, indicating that the AlCrFeSiTi multi-alloy nitride film has high wear resistance. Further, the bonding force between the AlCrFeSiTi multi-alloy nitride film and the tungsten carbide/multi-alloy substrate was measured by a scratch tester, and the measurement result was 73 N, indicating a high bonding strength therebetween.

綜上所述,本發明可於刀具之陶金基材上披覆包括五至七種金屬元素之多元合金氮化物薄膜,而其與基材之間具高附著力,且其具有高硬度、高耐磨耗性與高耐溫性的特性,使得增強刀具之硬度、耐磨耗性與耐溫性。因此,本發明之刀具的表面不易磨損,且可增加進刀速度,故能延長其使用壽命,降低生產成本並提高生產速率。另外,本發明所使用之五至七種金屬元素為選自Al、Co、Cr、Fe、Ni、Si、Ti、Mn及V等金屬元素,故製作鍍膜時使用的多元合金靶材相對容易。此外,在對於硬質薄膜日益增加需求的情況下,本發明所提出如多元合金般的新穎多元複合薄膜,將有利於國內鍍膜工業的發展。In summary, the present invention can coat a multi-alloy nitride film comprising five to seven metal elements on a ceramic gold substrate of a tool, and has high adhesion to the substrate, and has high hardness and high resistance. The characteristics of wear resistance and high temperature resistance make the hardness, wear resistance and temperature resistance of the tool enhanced. Therefore, the surface of the tool of the present invention is not easily worn, and the feed speed can be increased, so that the service life can be prolonged, the production cost can be reduced, and the production rate can be increased. Further, since the five to seven metal elements used in the present invention are metal elements selected from the group consisting of Al, Co, Cr, Fe, Ni, Si, Ti, Mn, and V, it is relatively easy to produce a multi-component alloy target for use in coating. In addition, in the case of increasing demand for hard films, the novel multi-component composite film such as a multi-alloy proposed by the present invention will be advantageous for the development of the domestic coating industry.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

10...複合刀具10. . . Compound tool

100...基材100. . . Substrate

110...多元合金氮化物薄膜110. . . Multi-component alloy nitride film

圖1是繪示根據本發明一實施例之複合刀具的示意圖。1 is a schematic view of a composite tool in accordance with an embodiment of the present invention.

圖2是本發明的實例1所鍍製之薄膜,其XRD分析圖譜。Figure 2 is an XRD analysis pattern of a film plated in Example 1 of the present invention.

10...複合刀具10. . . Compound tool

100...基材100. . . Substrate

110...多元合金氮化物薄膜110. . . Multi-component alloy nitride film

Claims (13)

一種複合刀具,包括一基材以及披覆於所述基材表面的一多元合金氮化物薄膜,其中所述多元合金氮化物薄膜的合金成分包括五至七種金屬元素,所述金屬元素至少包括鋁(Al)、鉻(Cr)及鐵(Fe)元素,其中所述鋁元素佔所述合金成分的重量百分比為1.57wt%~11.18wt%。A composite tool comprising a substrate and a multi-alloy nitride film coated on the surface of the substrate, wherein the alloy composition of the multi-alloy nitride film comprises five to seven metal elements, the metal elements being at least The aluminum (Al), chromium (Cr), and iron (Fe) elements are included, wherein the aluminum element accounts for 1.57 wt% to 11.18 wt% by weight of the alloy component. 如申請專利範圍第1項所述之複合刀具,其中所述基材包括陶金材料。The composite tool of claim 1, wherein the substrate comprises a pottery material. 如申請專利範圍第2項所述之複合刀具,其中所述陶金材料包括碳化鎢/多元合金複合材料。The composite tool of claim 2, wherein the pottery material comprises a tungsten carbide/multicomponent alloy composite. 如申請專利範圍第2項所述之複合刀具,其中所述陶金材料包括碳化鎢、碳化鈦、碳化矽、氮化硼或氧化鋁的複合材料。The composite tool of claim 2, wherein the ceramic material comprises a composite material of tungsten carbide, titanium carbide, tantalum carbide, boron nitride or aluminum oxide. 如申請專利範圍第1項所述之複合刀具,其中每一所述金屬元素佔所述合金成分的重量百分比小於50%。The composite tool of claim 1, wherein each of the metal elements comprises less than 50% by weight of the alloy component. 如申請專利範圍第1項所述之複合刀具,其中所述鉻元素佔所述合金成分的重量百分比為10.22wt%~33.67wt%;所述鐵元素佔所述合金成分的重量百分比為11.00wt%~35.27wt%。The composite tool according to claim 1, wherein the chromium element accounts for 10.22% by weight to 33.67% by weight of the alloy component; and the iron element accounts for 11.00% by weight of the alloy component. %~35.27wt%. 如申請專利範圍第1項所述之複合刀具,其中所述金屬元素更包括至少二元素是選自鈷(Co)、鎳(Ni)、錳(Mn)、矽(Si)、鈦(Ti)與釩(V)所組成之群組。The composite tool according to claim 1, wherein the metal element further comprises at least two elements selected from the group consisting of cobalt (Co), nickel (Ni), manganese (Mn), cerium (Si), and titanium (Ti). A group consisting of vanadium (V). 如申請專利範圍第7項所述之複合刀具,其中所述鈷元素佔所述合金成分的重量百分比為大於0至39.39wt%。The composite tool according to claim 7, wherein the cobalt element accounts for more than 0 to 39.39 wt% of the alloy component. 如申請專利範圍第7項所述之複合刀具,其中所述鎳元素佔所述合金成分的重量百分比為大於0至36.33wt%。The composite tool according to claim 7, wherein the nickel element accounts for more than 0 to 36.33 wt% of the alloy component. 如申請專利範圍第7項所述之複合刀具,其中所述錳元素佔所述合金成分的重量百分比為大於0至19.84wt%。The composite tool of claim 7, wherein the manganese element accounts for more than 0 to 19.84% by weight of the alloy component. 如申請專利範圍第7項所述之複合刀具,其中所述矽元素佔所述合金成分的重量百分比為大於0至9.10wt%。The composite tool according to claim 7, wherein the bismuth element accounts for more than 0 to 9.10% by weight of the alloy component. 如申請專利範圍第7項所述之複合刀具,其中所述鈦元素佔所述合金成分的重量百分比為大於0至15.51wt%。The composite tool according to claim 7, wherein the titanium element accounts for more than 0 to 15.51% by weight of the alloy component. 如申請專利範圍第7項所述之複合刀具,其中所述釩元素佔所述合金成分的重量百分比為大於0至32.99wt%。The composite tool according to claim 7, wherein the vanadium element accounts for more than 0 to 32.99% by weight of the alloy component.
TW101113486A 2012-04-16 2012-04-16 Composite cutter TWI521090B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW101113486A TWI521090B (en) 2012-04-16 2012-04-16 Composite cutter
CN201210125091.2A CN103373013B (en) 2012-04-16 2012-04-25 composite cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101113486A TWI521090B (en) 2012-04-16 2012-04-16 Composite cutter

Publications (2)

Publication Number Publication Date
TW201343964A true TW201343964A (en) 2013-11-01
TWI521090B TWI521090B (en) 2016-02-11

Family

ID=49459131

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101113486A TWI521090B (en) 2012-04-16 2012-04-16 Composite cutter

Country Status (2)

Country Link
CN (1) CN103373013B (en)
TW (1) TWI521090B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104646448B (en) * 2015-02-03 2017-01-04 北京科技大学 AlxcoCrFeNi many primitives alloy wire and preparation method
TWI607880B (en) * 2016-11-04 2017-12-11 國立清華大學 Multi-film structure
CN107587044A (en) * 2017-09-08 2018-01-16 太仓森楚源机械设备有限公司 A kind of ultra-fine drill of high hardness wear-resisting type

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3005371B2 (en) * 1992-10-12 2000-01-31 松下電工株式会社 Surface treatment method for ferritic stainless steel
SE520802C2 (en) * 1997-11-06 2003-08-26 Sandvik Ab Cutting tool coated with alumina and process for its manufacture
DE102007047312A1 (en) * 2007-10-02 2009-04-09 H.C. Starck Gmbh Tool
HUE038152T2 (en) * 2008-07-09 2018-09-28 Oerlikon Surface Solutions Ltd Pfaeffikon Coating system, coated workpiece and method for manufacturing the same
JP5515806B2 (en) * 2010-02-03 2014-06-11 三菱マテリアル株式会社 Surface-coated cutting tool with excellent fracture resistance due to hard coating layer

Also Published As

Publication number Publication date
CN103373013A (en) 2013-10-30
TWI521090B (en) 2016-02-11
CN103373013B (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP5308427B2 (en) Cemented carbide and cutting tools
JP4975194B2 (en) Cutting tools
JP4854359B2 (en) Surface coated cutting tool
EP3040143B1 (en) Coated tool
JPWO2007111301A1 (en) Surface coating tool
JP2013528252A (en) Multilayer nitride hard coating
WO2015093530A1 (en) Coated tool
JP4711691B2 (en) Surface covering member and cutting tool
JP5383259B2 (en) Cutting tools
WO2014104111A1 (en) Cutting tool
CN110191777A (en) Hard coating layer plays the surface-coated cutting tool of excellent wear resistance, wearability
JP2004100004A (en) Coated cemented carbide and production method therefor
TWI521090B (en) Composite cutter
JP2012144766A (en) Coated member
JP2008238314A (en) Cutting tool, its manufacturing method, and cutting method
JP2006205300A (en) Surface-coated member and cutting tool
CN107614167A (en) Hard coating layer plays the excellent resistance to surface-coated cutting tool for collapsing knife
JP4351521B2 (en) Surface coated cutting tool
JP6522985B2 (en) Coated tools
CN106794522B (en) Coated tool
JP4936742B2 (en) Surface coating tools and cutting tools
JP2004223666A (en) Cutting tool for rough machining
JP6050183B2 (en) Cutting tools
JPH03146677A (en) Coated sintered hard alloy for intermittent cutting
KR20130002964A (en) Target and hard coating film-coated cutting tool