TW201320201A - Method for manufacturing semiconductor device, and semiconductor device - Google Patents

Method for manufacturing semiconductor device, and semiconductor device Download PDF

Info

Publication number
TW201320201A
TW201320201A TW101141101A TW101141101A TW201320201A TW 201320201 A TW201320201 A TW 201320201A TW 101141101 A TW101141101 A TW 101141101A TW 101141101 A TW101141101 A TW 101141101A TW 201320201 A TW201320201 A TW 201320201A
Authority
TW
Taiwan
Prior art keywords
layer
fin
columnar
upper portion
insulating film
Prior art date
Application number
TW101141101A
Other languages
Chinese (zh)
Inventor
Fujio Masuoka
Hiroki Nakamura
Original Assignee
Unisantis Elect Singapore Pte
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisantis Elect Singapore Pte filed Critical Unisantis Elect Singapore Pte
Publication of TW201320201A publication Critical patent/TW201320201A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

An objective of this invention is to provide a manufacturing method of SGT, which is a gate-last process, allowing parasitic capacitance between gate wiring and substrate to be reduced, and to provide a resultant SGT structure thereof. For attaining the above-described objective, this invention includes: a first step of forming a fin-shaped silicon layer on a silicon substrate, forming a first insulation film around the fin-shaped silicon layer, and forming a pillar-shaped silicon layer on an upper part of the fin-shaped silicon layer; a step of implanting an impurity in an upper part of the pillar-shaped silicon layer, an upper part of the fin-shaped silicon layer and a lower part of the pillar-shaped silicon layer to form a diffusion layer after the above-described step; a step of creating a gate insulation film, a polysilicon gate electrode and a polysilicon gate wiring after the above-described step; a step of forming a silicide on an upper part of the diffusion layer on the upper part of the fin-shaped after the above-described step; a step of depositing an inter-layered insulation film, exposing the polysilicon gate electrode and the polysilicon gate wiring, etching the polysilicon gate electrode and the polysilicon wiring, and then depositing a metal to form a metal gate electrode and a metal gate wiring after the above-described step; and a step of forming a contact after the above-described step.

Description

半導體裝置的製造方法及半導體裝置 Semiconductor device manufacturing method and semiconductor device

本發明係關於半導體裝置的製造方法及半導體裝置。 The present invention relates to a method of manufacturing a semiconductor device and a semiconductor device.

半導體積體電路中,尤其是使用MOS電晶體的積體電路係不斷朝高積體化邁進。伴隨著上述高積體化,使用於其中的MOS電晶體亦不斷細微化至奈米區域。隨著MOS電晶體不斷的細微化,亦出現了難以抑制漏電流(leak current)、為了確保必要電流量的需求而無法縮小電路之佔有面積等問題。為了解決該等問題,已提案有將源極(source)、閘極(gate)、汲極(drain)配置於相對於基板的垂直方向,且閘極包圍柱狀半導體層之構造的SGT(surrounding gate transistor,環繞閘極電晶體)(例如:專利文獻1、專利文獻2、專利文獻3)。 In semiconductor integrated circuits, in particular, integrated circuits using MOS transistors are constantly moving toward higher integration. Along with the above-described high integration, the MOS transistor used therein is also continuously fined to the nano-region. With the gradual miniaturization of the MOS transistor, there has been a problem that it is difficult to suppress the leakage current, and it is impossible to reduce the occupied area of the circuit in order to secure the required amount of current. In order to solve such problems, SGT (surrounding) in which a source, a gate, and a drain are disposed in a vertical direction with respect to a substrate and a gate surrounds the columnar semiconductor layer has been proposed. A gate transistor (around a gate transistor) (for example, Patent Document 1, Patent Document 2, and Patent Document 3).

藉由於閘極電極不使用多晶矽(polysilicon)而使用金屬(metal),而可抑制空乏化且使閘極電極低電阻化。然而,於形成金屬閘極之後的步驟則必須為經常考慮到因金屬閘極所致之金屬污染的製造步驟。 By using a metal because the gate electrode does not use polysilicon, it is possible to suppress the depletion and reduce the resistance of the gate electrode. However, the step after forming the metal gate must be a manufacturing step that often takes into account metal contamination due to the metal gate.

另外,於以往之MOS電晶體中,為了兼顧金屬閘極製程與高溫製程,故於實際的製品中採用於高溫製程後作成金屬閘極的金屬閘極後(gate-last)形成工序(非專利文獻1)。以多晶矽作成閘極,之後,在堆積層間絕緣膜後,藉由化學機械研磨使多晶矽閘極露出,將多晶矽閘極蝕刻後,堆積金屬。因此,為了於SGT中亦兼顧金屬閘極製程 與高溫製程,故必須使用於高溫製程後作成金屬閘極的金屬閘極後形成工序。於SGT中,由於柱狀矽層的上部位於較閘極高的位置,故為了使用金屬閘極製程必須研擬對策。 In addition, in the conventional MOS transistor, in order to balance the metal gate process and the high-temperature process, a metal gate-gate formation process (non-patent) for forming a metal gate after a high-temperature process is used in an actual product. Document 1). After the polysilicon is used as a gate, after the interlayer insulating film is deposited, the polysilicon gate is exposed by chemical mechanical polishing, and the polysilicon gate is etched to deposit metal. Therefore, in order to also take care of the metal gate process in the SGT And high-temperature process, it must be used in the high-temperature process to form a metal gate after the metal gate formation process. In the SGT, since the upper portion of the columnar layer is located at a position higher than the gate, it is necessary to develop countermeasures in order to use the metal gate process.

另外,為了減低閘極配線與基板間的寄生電容,於以往之MOS電晶體中係使用第1絕緣膜。例如於FINFET(Fin Field-effect transistor,鰭式場效電晶體,可參照非專利文獻2)中,係於1個鰭狀半導體層的周圍形成第1絕緣膜,回蝕(etch back)第1絕緣膜,露出鰭狀半導體層,減低閘極配線與基板間的寄生電容。因此,於SGT中為了減低閘極配線與基板間的寄生電容而必須使用第1絕緣膜。於SGT中除了鰭狀半導體之外,尚有柱狀半導體層,故為了形成柱狀半導體層必須研擬對策。 Further, in order to reduce the parasitic capacitance between the gate wiring and the substrate, the first insulating film is used in the conventional MOS transistor. For example, a FINFET (Fin Field-effect transistor, FN Field Effect Transistor, Non-Patent Document 2) is formed by forming a first insulating film around one fin-shaped semiconductor layer and etching back the first insulating film. The film exposes the fin-shaped semiconductor layer to reduce parasitic capacitance between the gate wiring and the substrate. Therefore, in the SGT, it is necessary to use the first insulating film in order to reduce the parasitic capacitance between the gate wiring and the substrate. In the SGT, in addition to the fin-shaped semiconductor, there is a columnar semiconductor layer, so it is necessary to develop countermeasures for forming the columnar semiconductor layer.

[先前技術文獻] [Previous Technical Literature] (專利文獻) (Patent Literature)

(專利文獻1):日本特開平2-71556號公報 (Patent Document 1): Japanese Patent Laid-Open No. 2-71556

(專利文獻2):日本特開平2-188966號公報 (Patent Document 2): Japanese Patent Publication No. 2-188966

(專利文獻3):日本特開平3-145761號公報 (Patent Document 3): Japanese Patent Laid-Open No. 3-145761

(非專利文獻) (Non-patent literature)

(非專利文獻1):IEDM2007 IEDM2007 K. Mistry et. al, pp 247-250 (Non-Patent Document 1): IEDM2007 IEDM2007 K. Mistry et. al, pp 247-250

(非專利文獻2):IEDM2010 CC. Wu, et. al, 27.1.1-27.1.4. (Non-Patent Document 2): IEDM2010 CC. Wu, et. al, 27.1.1-27.1.4.

在此,本發明之目的為提供一種減低閘極配線與基板間的寄生電容且為閘極後形成製程的SGT之製造方法及其結果的SGT之構造。 Accordingly, an object of the present invention is to provide a SGT manufacturing method and a result thereof for reducing the parasitic capacitance between a gate wiring and a substrate and forming a process after the gate.

本發明的半導體裝置的製造方法,係具有:於矽基板上形成鰭狀矽層,於前述鰭狀矽層的周圍形成第1絕緣膜,於前述鰭狀矽層的上部形成柱狀矽層的第1步驟;前述柱狀矽層的直徑係與前述鰭狀矽層的寬度相同,前述第1步驟後,於前述柱狀矽層上部、前述鰭狀矽層上部、及前述柱狀矽層下部植入雜質而形成擴散層的第2步驟;前述第2步驟後,作成閘極絕緣膜、多晶矽閘極電極、及多晶矽閘極配線的第3步驟;前述閘極絕緣膜係覆蓋前述柱狀矽層的周圍和上部,前述多晶矽閘極電極係覆蓋閘極絕緣膜,前述多晶矽閘極電極及前述多晶矽閘極配線形成後的多晶矽的上表面係位於較前述柱狀矽層上部的前述擴散層上的前述閘極絕緣膜更高的位置;前述第3步驟後,於前述鰭狀矽層上部的前述擴散層上部形成矽化物的第4步驟; 前述第4步驟後,堆積層間絕緣膜,露出前述多晶矽閘極電極及前述多晶矽閘極配線,蝕刻前述多晶矽閘極電極及前述多晶矽閘極配線後,堆積金屬,以形成金屬閘極電極與金屬閘極配線的第5步驟,前述金屬閘極配線係延伸於與連接於前述金屬閘極電極的前述鰭狀矽層正交的方向;前述第5步驟後,形成接觸部的第6步驟,前述柱狀矽層上部的前述擴散層與前述接觸部為直接連接。 A method of manufacturing a semiconductor device according to the present invention includes: forming a fin-shaped germanium layer on a germanium substrate, forming a first insulating film around the fin-shaped germanium layer, and forming a columnar germanium layer on an upper portion of the fin-shaped germanium layer; a first step; the diameter of the columnar layer is the same as the width of the fin layer, and after the first step, the upper portion of the columnar layer, the upper portion of the fin layer, and the lower portion of the columnar layer a second step of forming a diffusion layer by implanting impurities; a third step of forming a gate insulating film, a polysilicon gate electrode, and a polysilicon gate wiring after the second step; the gate insulating film covering the columnar crucible In the periphery and the upper portion of the layer, the polysilicon gate electrode covers the gate insulating film, and the upper surface of the polysilicon gate after the polysilicon gate electrode and the polysilicon gate wiring are formed on the diffusion layer above the columnar layer a higher position of the gate insulating film; and a fourth step of forming a germanide on the upper portion of the diffusion layer in the upper portion of the finned layer after the third step; After the fourth step, an interlayer insulating film is deposited to expose the polysilicon gate electrode and the polysilicon gate wiring, and after etching the polysilicon gate electrode and the polysilicon gate wiring, metal is deposited to form a metal gate electrode and a metal gate. In a fifth step of the pole wiring, the metal gate wiring extends in a direction orthogonal to the finned layer connected to the metal gate electrode, and after the fifth step, a sixth step of forming a contact portion, the pillar The diffusion layer on the upper portion of the crucible layer is directly connected to the contact portion.

另外,於矽基板上形成用以形成鰭狀矽層的第1阻劑,蝕刻矽基板,形成前述鰭狀矽層,以去除前述第1阻劑;於前述鰭狀矽層的周圍堆積第1絕緣膜,回蝕前述第1絕緣膜,露出前述鰭狀矽層的上部,以與前述鰭狀矽層正交的方式形成第2阻劑,蝕刻前述鰭狀矽層,去除前述第2阻劑,藉此,以使前述鰭狀矽層與前述第2阻劑正交的部分成為前述柱狀矽層的方式形成前述柱狀矽層。 Further, a first resist for forming a fin-shaped germanium layer is formed on the germanium substrate, and the germanium substrate is etched to form the fin-shaped germanium layer to remove the first resist; and the first layer is deposited around the fin-shaped layer The insulating film etches back the first insulating film to expose an upper portion of the fin-shaped germanium layer, forms a second resist so as to be orthogonal to the fin-shaped germanium layer, and etches the fin-shaped germanium layer to remove the second resist Thereby, the columnar tantalum layer is formed such that the portion in which the fin-shaped tantalum layer and the second resist are orthogonal to each other is the columnar tantalum layer.

另外,係在具有:形成於矽基板上的鰭狀矽層、形成於前述鰭狀矽層周圍的第1絕緣膜、以及形成於前述鰭狀矽層上部的柱狀矽層的構造中,堆積第2氧化膜,於前述第2氧化膜上形成第1氮化膜,蝕刻前述第1氮化膜且使其殘留成側牆狀,植入雜質, 於前述柱狀矽層上部與前述鰭狀矽層上部形成擴散層,去除前述第1氮化膜與前述第2氧化膜,進行熱處理。 In addition, the fin-shaped enamel layer formed on the ruthenium substrate, the first insulating film formed around the fin-shaped ruthenium layer, and the columnar ruthenium layer formed on the upper portion of the fin-shaped ruthenium layer are stacked. In the second oxide film, a first nitride film is formed on the second oxide film, and the first nitride film is etched and left in a side wall shape to implant impurities. A diffusion layer is formed on the upper portion of the columnar layer and the upper portion of the fin layer, and the first nitride film and the second oxide film are removed to perform heat treatment.

另外,係在具有:形成於矽基板上的鰭狀矽層、形成於前述鰭狀矽層周圍的第1絕緣膜、及形成於前述鰭狀矽層上部的柱狀矽層;形成於前述鰭狀矽層的上部和前述柱狀矽層的下部的擴散層;以及形成於前述柱狀矽層的上部的擴散層的構造中,形成閘極絕緣膜,堆積多晶矽,以使前述多晶矽平坦化後的多晶矽的上表面成為較前述柱狀矽層上部的擴散層上的前述閘極絕緣膜更高的位置的方式進行平坦化,堆積第2氮化膜,以形成用以形成多晶矽閘極電極及多晶矽閘極配線的第3阻劑,蝕刻前述第2氮化膜,蝕刻前述多晶矽,以形成前述多晶矽閘極電極及前述多晶矽閘極配線,蝕刻前述閘極絕緣膜,以去除第3阻劑。 Further, the present invention includes a fin-shaped germanium layer formed on the germanium substrate, a first insulating film formed around the fin-shaped germanium layer, and a columnar germanium layer formed on the upper portion of the fin-shaped germanium layer; a diffusion layer of a lower portion of the ruthenium layer and a lower portion of the columnar ruthenium layer; and a structure of a diffusion layer formed on an upper portion of the columnar ruthenium layer, forming a gate insulating film, and depositing polysilicon to planarize the polysilicon The upper surface of the polysilicon is planarized so as to be higher than the gate insulating film on the diffusion layer on the upper portion of the columnar layer, and the second nitride film is deposited to form a polysilicon gate electrode and The third resist of the polysilicon gate wiring etches the second nitride film, etches the polysilicon to form the polysilicon gate electrode and the polysilicon gate wiring, and etches the gate insulating film to remove the third resist.

另外,堆積第3氮化膜,蝕刻前述第3氮化膜且使其殘留成側牆狀,堆積金屬,以於鰭狀矽層上部的擴散層的上部形成矽化物。 Further, the third nitride film is deposited, the third nitride film is etched and left in a side wall shape, and a metal is deposited to form a germanide on the upper portion of the diffusion layer on the upper portion of the fin layer.

另外,堆積第4氮化膜,堆積層間絕緣膜並使其平坦化,使多晶矽閘極電極及多晶矽閘極配線露出,去除前述多晶矽閘極電極及前述多晶矽閘極配線,於原存有前述多晶矽閘極電極及前述多晶矽閘極配線的部份埋入金屬,蝕刻前述金屬,使柱狀矽層上部的擴散層上的閘極絕緣膜露出,以形成金屬閘極電極、金屬閘極配線。 Further, the fourth nitride film is deposited, the interlayer insulating film is deposited and planarized, and the polysilicon gate electrode and the polysilicon gate wiring are exposed, and the polysilicon gate electrode and the polysilicon gate wiring are removed, and the polysilicon is originally stored. A portion of the gate electrode and the polysilicon gate wiring is buried with a metal, and the metal is etched to expose a gate insulating film on the diffusion layer on the upper portion of the columnar layer to form a metal gate electrode and a metal gate wiring.

另外,本發明的半導體裝置係具有: 形成於矽基板上的鰭狀矽層;形成於前述鰭狀矽層的周圍的第1絕緣膜;形成於前述鰭狀矽層上的柱狀矽層;其中,前述柱狀矽層的直徑係與前述鰭狀矽層的寬度相同;形成於前述鰭狀矽層上部、及前述柱狀矽層下部的擴散層;形成於前述柱狀矽層上部的擴散層;形成於前述鰭狀矽層上部的擴散層的上部的矽化物;形成於前述柱狀矽層之周圍的閘極絕緣膜;形成於前述閘極絕緣膜之周圍的金屬閘極電極;延伸於與連接於前述金屬閘極電極的前述鰭狀矽層正交的方向的金屬閘極配線;以及在形成於前述柱狀矽層上部的擴散層上所形成的接觸部;形成於前述柱狀矽層上部的擴散層與前述接觸部係直接連接。 Further, the semiconductor device of the present invention has: a fin-shaped germanium layer formed on the germanium substrate; a first insulating film formed around the fin-shaped germanium layer; a columnar germanium layer formed on the fin-shaped germanium layer; wherein the diameter of the columnar germanium layer is a diffusion layer formed on the upper portion of the fin-shaped layer and the lower portion of the columnar layer; a diffusion layer formed on an upper portion of the columnar layer; formed on the upper portion of the fin layer a telluride on the upper portion of the diffusion layer; a gate insulating film formed around the columnar layer; a metal gate electrode formed around the gate insulating film; extending over and connected to the metal gate electrode a metal gate wiring in a direction in which the fin-shaped germanium layer is orthogonal; a contact portion formed on the diffusion layer formed on the upper portion of the columnar tantalum layer; a diffusion layer formed on an upper portion of the columnar tantalum layer and the contact portion Direct connection.

依據本發明,即可提供一種減低閘極配線與基板間的寄生電容,且為閘極後形成製程的SGT製造方法及其結果的SGT構造。 According to the present invention, it is possible to provide an SGT structure in which a method of manufacturing a SGT for reducing a parasitic capacitance between a gate wiring and a substrate and forming a gate after the gate and a result thereof.

由於鰭狀矽層、第1絕緣膜、柱狀矽層形成係以習知FINFET的製造方法為基礎,故可容易地形成。 Since the fin-shaped tantalum layer, the first insulating film, and the columnar tantalum layer formation system are based on a conventional FINFET manufacturing method, they can be easily formed.

此外,以往雖於柱狀矽層上部形成矽化物,但由於多 晶矽的堆積溫度較用以形成矽化物的溫度高,故矽化物必須在形成多晶矽閘極之後形成, In addition, in the past, a telluride was formed on the upper portion of the columnar layer, but many The deposition temperature of the wafer is higher than the temperature at which the germanide is formed, so the germanide must be formed after the formation of the polysilicon gate.

因此,若欲於矽柱上部形成矽化物,則需於形成多晶矽閘極後,於多晶矽閘極電極的上部開孔,於孔的側壁形成絕緣膜的側牆後,形成矽化物,再於所開設的孔埋入絕緣膜,而會有所謂導致製程數增加的缺點,故在形成多晶矽閘極電極與多晶矽閘極配線前形成擴散層,以多晶矽閘極電極覆蓋柱狀矽層,而僅於鰭狀矽層上部形成矽化物,藉此,由於可採用以多晶矽作成閘極,之後堆積層間絕緣膜後,藉由化學機械研磨而使多晶矽閘極電極露出,蝕刻多晶矽閘極後,堆積金屬之習知金屬閘極後形成的製造方法,故可容易地形成金屬閘極SGT。 Therefore, if a telluride is to be formed on the upper portion of the mast, it is necessary to open a hole in the upper portion of the polysilicon gate electrode after forming the polysilicon gate, and form a germanium on the sidewall of the hole to form a germanium compound. The hole is buried in the insulating film, and there is a disadvantage that the number of processes is increased. Therefore, a diffusion layer is formed before the formation of the polysilicon gate electrode and the polysilicon gate wiring, and the columnar layer is covered by the polysilicon gate electrode, and only A telluride is formed on the upper portion of the finned layer, whereby a polysilicon is used as a gate, and after the interlayer insulating film is deposited, the polysilicon gate electrode is exposed by chemical mechanical polishing, and the polysilicon gate is etched, and the metal is deposited. Since the manufacturing method of the metal gate is conventionally formed, the metal gate SGT can be easily formed.

以下,參照第2圖至第42圖說明用以形成本發明實施形態的SGT構造的製造步驟。 Hereinafter, the manufacturing steps for forming the SGT structure according to the embodiment of the present invention will be described with reference to Figs. 2 to 42.

首先,顯示於矽基板上形成鰭狀矽層,於鰭狀矽層之周圍形成第1絕緣膜,於鰭狀矽層的上部形成柱狀矽層的製造方法。如第2圖所示,於矽基板101上形成用以形成鰭狀矽層的第1阻劑(resist)102。 First, a method of forming a fin-shaped tantalum layer on a tantalum substrate, forming a first insulating film around the fin-shaped tantalum layer, and forming a columnar tantalum layer on the upper portion of the fin-shaped tantalum layer is shown. As shown in FIG. 2, a first resist 102 for forming a fin-shaped germanium layer is formed on the germanium substrate 101.

如第3圖所示,蝕刻矽基板101,形成鰭狀矽層103。此例中雖以阻劑作為遮罩而形成鰭狀矽層,但亦可使用氧化膜或氮化膜等硬遮罩(hard mask)。 As shown in FIG. 3, the germanium substrate 101 is etched to form a fin-shaped germanium layer 103. In this example, a fin layer is formed by using a resist as a mask, but a hard mask such as an oxide film or a nitride film may be used.

如第4圖所示,去除第1阻劑102。 As shown in Fig. 4, the first resist 102 is removed.

如第5圖所示,於鰭狀矽層103的周圍堆積第1絕緣 膜104。作為第1絕緣膜,亦可使用以高密度電漿而得的氧化膜或低壓化學氣相堆積(chemical vapor deposition)而得的氧化膜。 As shown in FIG. 5, the first insulation is deposited around the finned layer 103. Film 104. As the first insulating film, an oxide film obtained by high-density plasma or an oxide film obtained by low-pressure chemical vapor deposition can also be used.

如第6圖所示,回蝕第1絕緣膜104,露出鰭狀矽層103的上部。到目前為止,係與專利文獻2的鰭狀矽層的製法相同。 As shown in Fig. 6, the first insulating film 104 is etched back to expose the upper portion of the fin-shaped germanium layer 103. Up to now, it has been produced in the same manner as the fin-shaped layer of Patent Document 2.

如第7圖所示,以與鰭狀矽層103正交的方式形成第2阻劑105。鰭狀矽層103與阻劑105正交的部分即為成為柱狀性層的部分。由於可使用線狀的阻劑,故在圖案化後阻劑倒下的可能性低,而成為穩定的製程(precess)。 As shown in FIG. 7, the second resist 105 is formed to be orthogonal to the fin-shaped germanium layer 103. The portion of the fin-shaped layer 103 that is orthogonal to the resist 105 is a portion that becomes a columnar layer. Since a linear resist can be used, the possibility of the resist falling down after patterning is low, and it becomes a stable precess.

如第8圖所示,蝕刻鰭狀矽層103。鰭狀矽層103與第2阻劑105正交的部份成為柱狀矽層106。因此,柱狀矽層106的直徑係成為鰭狀矽層的寬度相同。而成為於鰭狀矽層103的上部形成有柱狀矽層106,且於鰭狀矽層103的周圍形成有第1絕緣膜104的構造。 As shown in Fig. 8, the fin layer 103 is etched. A portion of the finned layer 103 orthogonal to the second resist 105 is a columnar layer 106. Therefore, the diameter of the columnar layer 106 is the same as the width of the fin layer. On the other hand, a columnar layer 106 is formed on the upper portion of the finned layer 103, and a structure of the first insulating film 104 is formed around the fin layer 103.

如第9圖所示,去除第2阻劑105。 As shown in Fig. 9, the second resist 105 is removed.

其次,顯示為了成為閘極後形成,而用以於柱狀矽層上部與鰭狀矽層上部與柱狀矽層下部注入雜質而形成擴散層的製造方法。如第10圖所示,堆積第2氧化膜107,形成第1氮化膜108。之後,由於柱狀矽層上部係由閘極絕緣膜及多晶矽閘極電極所覆蓋,故於被覆蓋前在柱狀矽層上部形成擴散層。 Next, a method for forming a diffusion layer by implanting impurities into the upper portion of the columnar ruthenium layer and the upper portion of the fin-shaped ruthenium layer and the lower portion of the columnar ruthenium layer in order to form a gate electrode is shown. As shown in Fig. 10, the second oxide film 107 is deposited to form the first nitride film 108. Thereafter, since the upper portion of the columnar layer is covered by the gate insulating film and the polysilicon gate electrode, a diffusion layer is formed on the upper portion of the columnar layer before being covered.

如第11圖所示,蝕刻第1氮化膜108,並使其殘存為側壁狀。 As shown in Fig. 11, the first nitride film 108 is etched and left as a sidewall.

如第12圖所示,注入砷、磷、或硼等雜質,於柱狀矽層上部形成擴散層110,於鰭狀矽層103上部形成擴散層109、111。 As shown in Fig. 12, impurities such as arsenic, phosphorus, or boron are implanted, a diffusion layer 110 is formed on the upper portion of the columnar layer, and diffusion layers 109 and 111 are formed on the upper portion of the fin layer 103.

如第13圖所示,去除第1氮化膜108和第2氧化膜107。 As shown in Fig. 13, the first nitride film 108 and the second oxide film 107 are removed.

如第14圖所示進行熱處理。鰭狀矽層103上部的擴散層109、111係接觸而成為擴散層112。為了藉由以上步驟而設為「閘極後形成」,於柱狀矽層上部和鰭狀矽層上部和柱狀矽層下部注入雜質而形成擴散層110、112。 The heat treatment was carried out as shown in Fig. 14. The diffusion layers 109 and 111 on the upper portion of the fin-shaped germanium layer 103 are in contact with each other to form the diffusion layer 112. In order to form "gate after formation" by the above steps, impurities are implanted into the upper portion of the columnar layer and the upper portion of the fin layer and the lower portion of the columnar layer to form diffusion layers 110 and 112.

其次,顯示為了設為「閘極後形成」,以多晶矽作成多晶矽閘極電極及多晶矽閘極配線的製造方法。為了設為「閘極後形成」,必須於堆積層間絕緣膜後,藉由化學機械研磨而使多晶矽閘極電極及多晶矽閘極配線露出,故必須採用不因化學機械研磨而導致柱狀矽層上部露出的方式。 Next, in order to form "gate after formation", a method of manufacturing a polysilicon gate electrode and a polysilicon gate wiring by polysilicon is shown. In order to form the "gate after the gate", it is necessary to expose the polysilicon gate electrode and the polysilicon gate wiring by chemical mechanical polishing after the interlayer insulating film is deposited. Therefore, it is necessary to use a columnar layer which is not caused by chemical mechanical polishing. The way the upper part is exposed.

如第15圖所示,形成閘極絕緣膜113,堆積多晶矽114,並使其平坦化。平坦化後的多晶矽的上表面係成為較柱狀矽層106上部的擴散層110之上的閘極絕緣膜113更高的位置。藉此,為了設為「閘極後形成」而於堆積層間絕緣膜後,藉由化學機械研磨而使多晶矽閘極及多晶矽閘極配線露出時,則成為不會因化學機械研磨而使柱狀矽層上部露出的方式。 As shown in Fig. 15, the gate insulating film 113 is formed, and the polysilicon 114 is deposited and planarized. The upper surface of the planarized polysilicon is higher than the gate insulating film 113 above the diffusion layer 110 on the upper portion of the columnar layer 106. Therefore, in order to form the "gate after the gate", after the interlayer insulating film is deposited, the polysilicon gate and the polysilicon gate wiring are exposed by chemical mechanical polishing, so that the columnar shape is not caused by chemical mechanical polishing. The way the upper part of the enamel layer is exposed.

另外,堆積第2氮化膜115。該第2氮化膜115係為於鰭狀矽層上部形成矽化物時,阻礙於多晶矽閘極電極及多晶矽閘極配線上部形成矽化物的膜。 Further, the second nitride film 115 is deposited. The second nitride film 115 is a film that prevents germanium formation on the upper portion of the polysilicon gate electrode and the polysilicon gate wiring when a germanide is formed on the upper portion of the fin layer.

如第16圖所示,形成用以形成多晶矽閘極電極及多晶矽閘極配線的第3阻劑116。較佳係使成為閘極配線的部分與鰭狀矽層103正交。此乃為了減低閘極配線與基板間的寄生電容。 As shown in Fig. 16, a third resist 116 for forming a polysilicon gate electrode and a polysilicon gate wiring is formed. It is preferable that the portion to be the gate wiring is orthogonal to the fin-shaped layer 103. This is to reduce the parasitic capacitance between the gate wiring and the substrate.

如第17圖所示,蝕刻第2氮化膜115。 As shown in Fig. 17, the second nitride film 115 is etched.

如第18圖所示,蝕刻多晶矽114,形成多晶矽閘極電極14a及多晶矽閘極配線114b。 As shown in Fig. 18, the polysilicon 114 is etched to form a polysilicon gate electrode 14a and a polysilicon gate wiring 114b.

如第19圖所示,蝕刻閘極絕緣膜113。 As shown in Fig. 19, the gate insulating film 113 is etched.

如第20圖所示,去除第3阻劑116。 As shown in Fig. 20, the third resist 116 is removed.

藉由以上步驟而顯示為了設為「閘極後形成」,而以多晶矽形成多晶矽閘極電極及多晶矽閘極配線的製造方法。形成多晶矽閘極電極114a及多晶矽閘極配線114b後的多晶矽的上表面,係成為較柱狀矽層106上部之擴散層110上的閘極絕緣膜113更高的位置。 In the above procedure, a method of manufacturing a polysilicon gate electrode and a polysilicon gate wiring by polysilicon is shown in order to form "gate after formation". The upper surface of the polysilicon after forming the polysilicon gate electrode 114a and the polysilicon gate wiring 114b is higher than the gate insulating film 113 on the diffusion layer 110 on the upper portion of the columnar layer 106.

其次,顯示於鰭狀矽層上部形成矽化物的製造方法。其特徵在於,在多晶矽閘極電極114a及多晶矽閘極配線114b上部與柱狀矽層106上部的擴散層110沒有形成矽化物。若欲於柱狀矽層106上部的擴散層110形成矽化物則將增加製造步驟。 Next, a method of producing a telluride is shown on the upper portion of the finned layer. It is characterized in that no germanide is formed on the diffusion layer 110 on the upper portion of the polysilicon gate electrode 114a and the polysilicon gate wiring 114b and the upper portion of the columnar layer 106. If a telluride is to be formed on the diffusion layer 110 on the upper portion of the columnar layer 106, the manufacturing steps will be increased.

如第21圖所示,堆積第3氮化膜117。 As shown in Fig. 21, the third nitride film 117 is deposited.

如第22圖所示,蝕刻第3氮化膜117而殘留成側牆(side wall)狀。 As shown in Fig. 22, the third nitride film 117 is etched and remains in a side wall shape.

如第23圖所示,堆積鎳(Ni)、鈷(Co)等金屬,將矽化物118形成於鰭狀矽層103上部的擴散層112的上部。此 時,多晶矽閘極電極114a及多晶矽閘極配線114b係由第3氮化膜117、第2氮化膜115所覆蓋,柱狀矽層106上的擴散層110係由閘極絕緣膜113、多晶矽閘極電極114a及多晶矽閘極配線114b所覆蓋,因此沒有形成矽化物。 As shown in Fig. 23, a metal such as nickel (Ni) or cobalt (Co) is deposited, and a telluride 118 is formed on the upper portion of the diffusion layer 112 on the upper portion of the fin-shaped layer 103. this When the polysilicon gate electrode 114a and the polysilicon gate wiring 114b are covered by the third nitride film 117 and the second nitride film 115, the diffusion layer 110 on the columnar layer 106 is composed of a gate insulating film 113 and a polysilicon. Since the gate electrode 114a and the polysilicon gate wiring 114b are covered, no germanide is formed.

藉由以上步驟而顯示於鰭狀矽層上部形成矽化物的製造方法。 The method for producing a telluride is formed on the upper portion of the fin-shaped layer by the above steps.

其次,顯示堆積層間絕緣膜後,藉由化學機械研磨而使多晶矽閘極電極及多晶矽閘極配線露出,蝕刻多晶矽閘極電極及多晶矽閘極配線後,堆積金屬的閘極後形成的製造方法。 Next, after the interlayer insulating film is deposited, a polysilicon gate electrode and a polysilicon gate wiring are exposed by chemical mechanical polishing, and a polysilicon gate electrode and a polysilicon gate wiring are etched, and a metal gate is deposited.

如第24圖所示,為了保護矽化物118而堆積第4氮化膜140。 As shown in Fig. 24, the fourth nitride film 140 is deposited to protect the germanide 118.

如第25圖所示,堆積層間絕緣膜119,藉由化學機械研磨而平坦化。 As shown in Fig. 25, the interlayer insulating film 119 is deposited and planarized by chemical mechanical polishing.

如第26圖所示,藉由化學機械研磨而使多晶矽閘極電極114a及多晶矽閘極配線114b露出。 As shown in Fig. 26, the polysilicon gate electrode 114a and the polysilicon gate wiring 114b are exposed by chemical mechanical polishing.

如第27圖所示,蝕刻多晶矽閘極電極114a及多晶矽閘極配線114b。較佳為使用溼蝕刻。 As shown in Fig. 27, the polysilicon gate electrode 114a and the polysilicon gate wiring 114b are etched. It is preferred to use wet etching.

如第28圖所示堆積金屬120,並使之平坦化,且於原具有多晶矽閘極電極114a及多晶矽閘極配線114b的部份埋入金屬120。較佳為使用原子層堆積。 The metal 120 is deposited and planarized as shown in Fig. 28, and the metal 120 is buried in a portion having the polysilicon gate electrode 114a and the polysilicon gate wiring 114b. It is preferred to use atomic layer stacking.

如第29圖所示,蝕刻金屬120,露出柱狀矽層106上部的擴散層110上的閘極絕緣膜113。形成金屬閘極電極120a、金屬閘極配線120b。顯示了堆積層間絕緣膜後,藉 由化學機械研磨使多晶矽閘極露出,將多晶矽閘極蝕刻後,堆積金屬的閘極後形成的製造方法。 As shown in Fig. 29, the metal 120 is etched to expose the gate insulating film 113 on the diffusion layer 110 on the upper portion of the columnar layer 106. A metal gate electrode 120a and a metal gate wiring 120b are formed. After showing the accumulation of interlayer insulating film, borrow A manufacturing method in which a polysilicon gate is exposed by chemical mechanical polishing, and a gate of a metal is deposited after etching a polysilicon gate.

其次,顯示用以形成接觸部(contact)的製造方法。由於在柱狀矽層106上部的擴散層110並未形成有矽化物,故接觸部與柱狀矽層106上部的擴散層110將成為直接連接。如第30圖所示,堆積層間絕緣膜121並使之平坦化。 Next, a manufacturing method for forming a contact is shown. Since the diffusion layer 110 on the upper portion of the columnar layer 106 is not formed with a germanide, the contact portion and the diffusion layer 110 on the upper portion of the columnar layer 106 are directly connected. As shown in Fig. 30, the interlayer insulating film 121 is deposited and planarized.

如第31圖所示,於柱狀矽層106上部形成用以形成接觸孔的第4阻劑122。 As shown in Fig. 31, a fourth resist 122 for forming a contact hole is formed in the upper portion of the columnar layer 106.

如第32圖所示,蝕刻層間絕緣膜121,形成接觸孔123。 As shown in Fig. 32, the interlayer insulating film 121 is etched to form a contact hole 123.

如第33圖所示,去除第4阻劑122。 As shown in Fig. 33, the fourth resist 122 is removed.

如第34圖所示,在金屬閘極配線120b上、鰭狀矽層103上形成用以形成接觸孔的第5阻劑124。 As shown in Fig. 34, a fifth resist 124 for forming a contact hole is formed on the metal gate wiring 120b and the fin-shaped germanium layer 103.

如第35圖所示,蝕刻層間絕緣膜121、119而形成接觸孔125、126。 As shown in Fig. 35, the interlayer insulating films 121 and 119 are etched to form contact holes 125 and 126.

如第36圖所示,去除第5阻劑124。 As shown in Fig. 36, the fifth resist 124 is removed.

如第37圖所示,蝕刻氮化膜140與閘極絕緣膜113,使矽化物118與擴散層110露出。 As shown in Fig. 37, the nitride film 140 and the gate insulating film 113 are etched to expose the germanide 118 and the diffusion layer 110.

如第38圖所示,堆積金屬,以形成接觸部143、127、128。藉由以上步驟而顯示用以形成接觸部的製造方法。由於在柱狀矽層106上部的擴散層110並未形成有矽化物,故接觸部127與柱狀矽層106上部的擴散層110係直接連接。 As shown in Fig. 38, metal is deposited to form contact portions 143, 127, 128. The manufacturing method for forming the contact portion is shown by the above steps. Since the diffusion layer 110 on the upper portion of the columnar layer 106 is not formed with a germanide, the contact portion 127 is directly connected to the diffusion layer 110 on the upper portion of the columnar layer 106.

其次,顯示用以形成金屬配線層的製造方法。 Next, a manufacturing method for forming a metal wiring layer is shown.

如第39圖所示,堆積金屬129。 As shown in Fig. 39, metal 129 is deposited.

如第40圖所示,形成用以形成金屬配線的第6阻劑130、131、132。 As shown in Fig. 40, sixth resists 130, 131, and 132 for forming metal wiring are formed.

如第41圖所示,蝕刻金屬129,以形成金屬配線133、134、135。 As shown in Fig. 41, the metal 129 is etched to form metal wirings 133, 134, and 135.

如第42圖所示,去除第6阻劑130、131、132。 As shown in Fig. 42, the sixth resists 130, 131, 132 are removed.

藉由以上步驟而顯示用以形成金屬配線層的製造方法。 The manufacturing method for forming the metal wiring layer is shown by the above steps.

將上述製造方法的結果示於第1圖。 The results of the above production method are shown in Fig. 1.

成為具有以下構件之構造:鰭狀矽層103,形成於基板101上;第1絕緣膜104,形成於鰭狀矽層103的周圍;柱狀矽層106,形成於鰭狀矽層103上;柱狀矽層106的直徑係與鰭狀矽層103的寬度相同;擴散層112,形成於鰭狀矽層103的上部與柱狀矽層106的下部;擴散層110,形成於柱狀矽層106的上部;矽化物118,形成於鰭狀矽層103的上部的擴散層112的上部;閘極絕緣膜113,形成於柱狀矽層106的周圍;金屬閘極電極120a,形成於閘極絕緣膜的周圍;金屬閘極配線120b,在與連接於金屬閘極電極120a的鰭狀矽層103正交的方向延伸;以及接觸部127,形成於擴散層110上;且擴散層110與接觸部127為直接連接的構造。 The structure has the following structure: a fin-shaped germanium layer 103 is formed on the substrate 101; a first insulating film 104 is formed around the fin-shaped germanium layer 103; and a columnar germanium layer 106 is formed on the fin-shaped germanium layer 103; The diameter of the columnar layer 106 is the same as the width of the fin layer 103; the diffusion layer 112 is formed on the upper portion of the fin layer 103 and the lower portion of the columnar layer 106; and the diffusion layer 110 is formed in the columnar layer An upper portion of 106; a germanide 118 formed on an upper portion of the diffusion layer 112 on the upper portion of the fin-shaped germanium layer 103; a gate insulating film 113 formed around the columnar layer 106; and a metal gate electrode 120a formed on the gate a periphery of the insulating film; a metal gate wiring 120b extending in a direction orthogonal to the fin-shaped germanium layer 103 connected to the metal gate electrode 120a; and a contact portion 127 formed on the diffusion layer 110; and the diffusion layer 110 is in contact with The portion 127 is a directly connected structure.

依據上述說明,即可提供減低閘極配線與基板間的寄生電容,且為閘極後形成製程的SGT製造方法及其結果的SGT構造。 According to the above description, it is possible to provide an SGT structure in which the SGT manufacturing method and the result thereof are formed by reducing the parasitic capacitance between the gate wiring and the substrate, and forming a process after the gate.

101‧‧‧矽基板 101‧‧‧矽 substrate

102‧‧‧阻劑 102‧‧‧Resist

103‧‧‧鰭狀矽層 103‧‧‧Finned layer

104‧‧‧第1絕緣膜 104‧‧‧1st insulating film

105‧‧‧阻劑 105‧‧‧Resist

106‧‧‧柱狀矽層 106‧‧‧ Columnar layer

107‧‧‧氧化膜 107‧‧‧Oxide film

108‧‧‧阻礙雜質植入的膜 108‧‧‧Members that impede the implantation of impurities

109‧‧‧擴散層 109‧‧‧Diffusion layer

110‧‧‧擴散層 110‧‧‧Diffusion layer

111‧‧‧擴散層 111‧‧‧Diffusion layer

112‧‧‧擴散層 112‧‧‧Diffusion layer

113‧‧‧閘極絕緣膜 113‧‧‧gate insulating film

114‧‧‧多晶矽 114‧‧‧Polysilicon

114a‧‧‧多晶矽閘極電極 114a‧‧‧Polysilicon gate electrode

114b‧‧‧多晶矽閘極配線 114b‧‧‧Polysilicon gate wiring

115‧‧‧氮化膜 115‧‧‧ nitride film

116‧‧‧阻劑 116‧‧‧Resist

117‧‧‧氮化膜 117‧‧‧ nitride film

118‧‧‧矽化物 118‧‧‧ Telluride

119‧‧‧層間絕緣膜 119‧‧‧Interlayer insulating film

120‧‧‧金屬 120‧‧‧Metal

120a‧‧‧金屬閘極電極 120a‧‧‧Metal gate electrode

120b‧‧‧金屬閘極配線 120b‧‧‧Metal gate wiring

121‧‧‧層間絕緣膜 121‧‧‧Interlayer insulating film

122‧‧‧阻劑 122‧‧‧Resist

123‧‧‧接觸孔 123‧‧‧Contact hole

124‧‧‧阻劑 124‧‧‧Resist

125‧‧‧接觸孔 125‧‧‧Contact hole

126‧‧‧接觸孔 126‧‧‧Contact hole

127‧‧‧接觸部 127‧‧‧Contacts

128‧‧‧接觸部 128‧‧‧Contacts

129‧‧‧金屬 129‧‧‧Metal

130‧‧‧阻劑 130‧‧‧Resist

131‧‧‧阻劑 131‧‧‧Resist

132‧‧‧阻劑 132‧‧‧Resist

133‧‧‧金屬配線 133‧‧‧Metal wiring

134‧‧‧金屬配線 134‧‧‧Metal wiring

135‧‧‧金屬配線 135‧‧‧Metal wiring

140‧‧‧氮化膜 140‧‧‧ nitride film

143‧‧‧接觸部 143‧‧‧Contacts

第1圖(a)係本發明的半導體裝置的平面圖。第1圖(b)為第1圖(a)的X-X’線的剖面圖。第1圖(c)為第1圖(a)的Y-Y’線的剖面圖。 Fig. 1(a) is a plan view showing a semiconductor device of the present invention. Fig. 1(b) is a cross-sectional view taken along line X-X' of Fig. 1(a). Fig. 1(c) is a cross-sectional view taken along line Y-Y' of Fig. 1(a).

第2圖(a)係本發明的半導體裝置的製造方法的平面圖。第2圖(b)為第2圖(a)的X-X’線的剖面圖。第2圖(c)為第2圖(a)的Y-Y’線的剖面圖。 Fig. 2(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 2(b) is a cross-sectional view taken along line X-X' of Fig. 2(a). Fig. 2(c) is a cross-sectional view taken along line Y-Y' of Fig. 2(a).

第3圖(a)係本發明之半導體裝置的製造方法的平面圖。第3圖(b)為第3圖(a)的X-X’線的剖面圖。第3圖(c)為第3圖(a)的Y-Y’線的剖面圖。 Fig. 3(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 3(b) is a cross-sectional view taken along line X-X' of Fig. 3(a). Fig. 3(c) is a cross-sectional view taken along line Y-Y' of Fig. 3(a).

第4圖(a)係本發明之半導體裝置的製造方法的平面圖。第4圖(b)為第4圖(a)的X-X’線的剖面圖。第4圖(c)為第4圖(a)的Y-Y’線的剖面圖。 Fig. 4(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 4(b) is a cross-sectional view taken along line X-X' of Fig. 4(a). Fig. 4(c) is a cross-sectional view taken along line Y-Y' of Fig. 4(a).

第5圖(a)係本發明之半導體裝置的製造方法的平面圖。第5圖(b)為第5圖(a)的X-X’線的剖面圖。第5圖(c)為第5圖(a)的Y-Y’線的剖面圖。 Fig. 5(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 5(b) is a cross-sectional view taken along line X-X' of Fig. 5(a). Fig. 5(c) is a cross-sectional view taken along line Y-Y' of Fig. 5(a).

第6圖(a)係本發明之半導體裝置的製造方法的平面圖。第6圖(b)為第6圖(a)的X-X’線的剖面圖。第6圖(c)為第6圖(a)的Y-Y’線的剖面圖。 Fig. 6(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 6(b) is a cross-sectional view taken along line X-X' of Fig. 6(a). Fig. 6(c) is a cross-sectional view taken along line Y-Y' of Fig. 6(a).

第7圖(a)係本發明之半導體裝置的製造方法的平面圖。第7圖(b)為第7圖(a)的X-X’線的剖面圖。第7圖(c) 為第7圖(a)的Y-Y’線的剖面圖。 Fig. 7(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 7(b) is a cross-sectional view taken along line X-X' of Fig. 7(a). Figure 7 (c) It is a sectional view of the Y-Y' line of Fig. 7(a).

第8圖(a)係本發明之半導體裝置的製造方法的平面圖。第8圖(b)為第8圖(a)的X-X’線的剖面圖。第8圖(c)為第8圖(a)的Y-Y’線的剖面圖。 Fig. 8(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 8(b) is a cross-sectional view taken along line X-X' of Fig. 8(a). Fig. 8(c) is a cross-sectional view taken along line Y-Y' of Fig. 8(a).

第9圖(a)係本發明之半導體裝置的製造方法的平面圖。第9圖(b)為第9圖(a)的X-X’線的剖面圖。第9圖(c)為第9圖(a)的Y-Y’線的剖面圖。 Fig. 9(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 9(b) is a cross-sectional view taken along line X-X' of Fig. 9(a). Fig. 9(c) is a cross-sectional view taken along line Y-Y' of Fig. 9(a).

第10圖(a)係本發明之半導體裝置的製造方法的平面圖。第10圖(b)為第10圖(a)的X-X’線的剖面圖。第10圖(c)為第10圖(a)的Y-Y’線的剖面圖。 Fig. 10 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 10(b) is a cross-sectional view taken along line X-X' of Fig. 10(a). Fig. 10(c) is a cross-sectional view taken along line Y-Y' of Fig. 10(a).

第11圖(a)係本發明之半導體裝置的製造方法的平面圖。第11圖(b)為第11圖(a)的X-X’線的剖面圖。第11圖(c)為第11圖(a)的Y-Y’線的剖面圖。 Fig. 11(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 11(b) is a cross-sectional view taken along line X-X' of Fig. 11(a). Fig. 11(c) is a cross-sectional view taken along line Y-Y' of Fig. 11(a).

第12圖(a)係本發明之半導體裝置的製造方法的平面圖。第12圖(b)為第12圖(a)的X-X’線的剖面圖。第12圖(c)為第12圖(a)的Y-Y’線的剖面圖。 Fig. 12 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 12(b) is a cross-sectional view taken along line X-X' of Fig. 12(a). Fig. 12(c) is a cross-sectional view taken along line Y-Y' of Fig. 12(a).

第13圖(a)係本發明之半導體裝置的製造方法的平面圖。第13圖(b)為第13圖(a)的X-X’線的剖面圖。第13圖(c)為第13圖(a)的Y-Y’線的剖面圖。 Fig. 13(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 13(b) is a cross-sectional view taken along line X-X' of Fig. 13(a). Fig. 13(c) is a cross-sectional view taken along line Y-Y' of Fig. 13(a).

第14圖(a)係本發明之半導體裝置的製造方法的平面圖。第14圖(b)為第14圖(a)的X-X’線的剖面圖。第14圖(c)為第14圖(a)的Y-Y’線的剖面圖。 Fig. 14(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 14(b) is a cross-sectional view taken along line X-X' of Fig. 14(a). Fig. 14(c) is a cross-sectional view taken along line Y-Y' of Fig. 14(a).

第15圖(a)係本發明之半導體裝置的製造方法的平面圖。第15圖(b)為第15圖(a)的X-X’線的剖面圖。第15 圖(c)為第15圖(a)的Y-Y’線的剖面圖。 Fig. 15(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 15(b) is a cross-sectional view taken along line X-X' of Fig. 15(a). 15th Figure (c) is a cross-sectional view taken along line Y-Y' of Figure 15 (a).

第16圖(a)係本發明之半導體裝置的製造方法的平面圖。第16圖(b)為第16圖(a)的X-X’線的剖面圖。第16圖(c)為第16圖(a)的Y-Y’線的剖面圖。 Fig. 16(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 16(b) is a cross-sectional view taken along line X-X' of Fig. 16(a). Fig. 16(c) is a cross-sectional view taken along line Y-Y' of Fig. 16(a).

第17圖(a)係本發明之半導體裝置的製造方法的平面圖。第17圖(b)為第17圖(a)的X-X’線的剖面圖。第17圖(c)為第17圖(a)的Y-Y’線的剖面圖。 Fig. 17 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 17(b) is a cross-sectional view taken along line X-X' of Fig. 17(a). Fig. 17 (c) is a cross-sectional view taken along line Y-Y' of Fig. 17 (a).

第18圖(a)係本發明之半導體裝置的製造方法的平面圖。第18圖(b)為第18圖(a)的X-X’線的剖面圖。第18圖(c)為第18圖(a)的Y-Y’線的剖面圖。 Fig. 18(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 18(b) is a cross-sectional view taken along line X-X' of Fig. 18(a). Fig. 18(c) is a cross-sectional view taken along line Y-Y' of Fig. 18(a).

第19圖(a)係本發明之半導體裝置的製造方法的平面圖。第19圖(b)為第19圖(a)的X-X’線的剖面圖。第19圖(c)為第19圖(a)的Y-Y’線的剖面圖。 Fig. 19 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 19(b) is a cross-sectional view taken along line X-X' of Fig. 19(a). Fig. 19(c) is a cross-sectional view taken along line Y-Y' of Fig. 19(a).

第20圖(a)係本發明之半導體裝置的製造方法的平面圖。第20圖(b)為第20圖(a)的X-X’線的剖面圖。第20圖(c)為第20圖(a)的Y-Y’線的剖面圖。 Fig. 20 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 20(b) is a cross-sectional view taken along line X-X' of Fig. 20(a). Fig. 20(c) is a cross-sectional view taken along line Y-Y' of Fig. 20(a).

第21圖(a)係本發明之半導體裝置的製造方法的平面圖。第21圖(b)為第21圖(a)的X-X’線的剖面圖。第21圖(c)為第21圖(a)的Y-Y’線的剖面圖。 Fig. 21 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 21(b) is a cross-sectional view taken along line X-X' of Fig. 21(a). Fig. 21 (c) is a cross-sectional view taken along line Y-Y' of Fig. 21 (a).

第22圖(a)係本發明之半導體裝置的製造方法的平面圖。第22圖(b)為第22圖(a)的X-X’線的剖面圖。第22圖(c)為第22圖(a)的Y-Y’線的剖面圖。 Fig. 22 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 22(b) is a cross-sectional view taken along line X-X' of Fig. 22(a). Fig. 22 (c) is a cross-sectional view taken along line Y-Y' of Fig. 22 (a).

第23圖(a)係本發明之半導體裝置的製造方法的平面圖。第23圖(b)為第23圖(a)的X-X’線的剖面圖。第23 圖(c)為第23圖(a)的Y-Y’線的剖面圖。 Fig. 23(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 23(b) is a cross-sectional view taken along line X-X' of Fig. 23(a). 23rd Figure (c) is a cross-sectional view taken along line Y-Y' of Figure 23 (a).

第24圖(a)係本發明之半導體裝置的製造方法的平面圖。第24圖(b)為第24圖(a)的X-X’線的剖面圖。第24圖(c)為第24圖(a)的Y-Y’線的剖面圖。 Fig. 24(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 24(b) is a cross-sectional view taken along line X-X' of Fig. 24(a). Fig. 24(c) is a cross-sectional view taken along line Y-Y' of Fig. 24(a).

第25圖(a)係本發明之半導體裝置的製造方法的平面圖。第25圖(b)為第25圖(a)的X-X’線的剖面圖。第25圖(c)為第25圖(a)的Y-Y’線的剖面圖。 Fig. 25(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 25(b) is a cross-sectional view taken along line X-X' of Fig. 25(a). Fig. 25(c) is a cross-sectional view taken along line Y-Y' of Fig. 25(a).

第26圖(a)係本發明之半導體裝置的製造方法的平面圖。第26圖(b)為第26圖(a)的X-X’線的剖面圖。第26圖(c)為第26圖(a)的Y-Y’線的剖面圖。 Fig. 26(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 26(b) is a cross-sectional view taken along line X-X' of Fig. 26(a). Fig. 26(c) is a cross-sectional view taken along line Y-Y' of Fig. 26(a).

第27圖(a)係本發明之半導體裝置的製造方法的平面圖。第27圖(b)為第27圖(a)的X-X’線的剖面圖。第27圖(c)為第27圖(a)的Y-Y’線的剖面圖。 Fig. 27 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 27(b) is a cross-sectional view taken along line X-X' of Fig. 27(a). Fig. 27(c) is a cross-sectional view taken along line Y-Y' of Fig. 27(a).

第28圖(a)係本發明之半導體裝置的製造方法的平面圖。第28圖(b)為第28圖(a)的X-X’線的剖面圖。第28圖(c)為第28圖(a)的Y-Y’線的剖面圖。 Fig. 28 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 28(b) is a cross-sectional view taken along line X-X' of Fig. 28(a). Fig. 28(c) is a cross-sectional view taken along line Y-Y' of Fig. 28(a).

第29圖(a)係本發明之半導體裝置的製造方法的平面圖。第29圖(b)為第29圖(a)的X-X’線的剖面圖。第29圖(c)為第29圖(a)的Y-Y’線的剖面圖。 Fig. 29 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 29 (b) is a cross-sectional view taken along the line X-X' of Fig. 29 (a). Fig. 29 (c) is a cross-sectional view taken along line Y-Y' of Fig. 29 (a).

第30圖(a)係本發明之半導體裝置的製造方法的平面圖。第30圖(b)為第30圖(a)的X-X’線的剖面圖。第30圖(c)為第30圖(a)的Y-Y’線的剖面圖。 Fig. 30 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 30(b) is a cross-sectional view taken along line X-X' of Fig. 30(a). Fig. 30(c) is a cross-sectional view taken along line Y-Y' of Fig. 30(a).

第31圖(a)係本發明之半導體裝置的製造方法的平面圖。第31圖(b)為第31圖(a)的X-X’線的剖面圖。第31 圖(c)為第31圖(a)的Y-Y’線的剖面圖。 Fig. 31 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 31 (b) is a cross-sectional view taken along line X-X' of Fig. 31 (a). 31st Figure (c) is a cross-sectional view taken along line Y-Y' of Figure 31 (a).

第32圖(a)係本發明之半導體裝置的製造方法的平面圖。第32圖(b)為第32圖(a)的X-X’線的剖面圖。第32圖(c)為第32圖(a)的Y-Y’線的剖面圖。 Fig. 32 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 32(b) is a cross-sectional view taken along line X-X' of Fig. 32(a). Fig. 32 (c) is a cross-sectional view taken along line Y-Y' of Fig. 32 (a).

第33圖(a)係本發明之半導體裝置的製造方法的平面圖。第33圖(b)為第33圖(a)的X-X’線的剖面圖。第33圖(c)為第33圖(a)的Y-Y’線的剖面圖。 Fig. 33(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 33(b) is a cross-sectional view taken along line X-X' of Fig. 33(a). Fig. 33(c) is a cross-sectional view taken along line Y-Y' of Fig. 33(a).

第34圖(a)係本發明之半導體裝置的製造方法的平面圖。第34圖(b)為第34圖(a)的X-X’線的剖面圖。第34圖(c)為第34圖(a)的Y-Y’線的剖面圖。 Figure 34(a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 34(b) is a cross-sectional view taken along line X-X' of Fig. 34(a). Fig. 34(c) is a cross-sectional view taken along line Y-Y' of Fig. 34(a).

第35圖(a)係本發明之半導體裝置的製造方法的平面圖。第35圖(b)為第35圖(a)的X-X’線的剖面圖。第35圖(c)為第35圖(a)的Y-Y’線的剖面圖。 Fig. 35 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 35(b) is a cross-sectional view taken along line X-X' of Fig. 35(a). Fig. 35(c) is a cross-sectional view taken along line Y-Y' of Fig. 35(a).

第36圖(a)係本發明之半導體裝置的製造方法的平面圖。第36圖(b)為第36圖(a)的X-X’線的剖面圖。第36圖(c)為第36圖(a)的Y-Y’線的剖面圖。 Fig. 36 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 36 (b) is a cross-sectional view taken along line X-X' of Fig. 36 (a). Fig. 36 (c) is a cross-sectional view taken along line Y-Y' of Fig. 36 (a).

第37圖(a)係本發明之半導體裝置的製造方法的平面圖。第37圖(b)為第37圖(a)的X-X’線的剖面圖。第37圖(c)為第37圖(a)的Y-Y’線的剖面圖。 Fig. 37 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 37(b) is a cross-sectional view taken along line X-X' of Fig. 37(a). Fig. 37 (c) is a cross-sectional view taken along line Y-Y' of Fig. 37 (a).

第38圖(a)係本發明之半導體裝置的製造方法的平面圖。第38圖(b)為第38圖(a)的X-X’線的剖面圖。第38圖(c)為第38圖(a)的Y-Y’線的剖面圖。 Fig. 38 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 38(b) is a cross-sectional view taken along line X-X' of Fig. 38(a). Fig. 38 (c) is a cross-sectional view taken along line Y-Y' of Fig. 38 (a).

第39圖(a)係本發明之半導體裝置的製造方法的平面圖。第39圖(b)為第39圖(a)的X-X’線的剖面圖。第39 圖(c)為第39圖(a)的Y-Y’線的剖面圖。 Fig. 39 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 39 (b) is a cross-sectional view taken along line X-X' of Fig. 39 (a). 39th Figure (c) is a cross-sectional view taken along line Y-Y' of Figure 39 (a).

第40圖(a)係本發明之半導體裝置的製造方法的平面圖。第40圖(b)為第40圖(a)的X-X’線的剖面圖。第40圖(c)為第40圖(a)的Y-Y’線的剖面圖。 Fig. 40 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 40 (b) is a cross-sectional view taken along line X-X' of Fig. 40 (a). Fig. 40 (c) is a cross-sectional view taken along line Y-Y' of Fig. 40 (a).

第41圖(a)係本發明之半導體裝置的製造方法的平面圖。第41圖(b)為第41圖(a)的X-X’線的剖面圖。第41圖(c)為第41圖(a)的Y-Y’線的剖面圖。 Fig. 41 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 41 (b) is a cross-sectional view taken along line X-X' of Fig. 41 (a). Fig. 41 (c) is a cross-sectional view taken along line Y-Y' of Fig. 41 (a).

第42圖(a)係本發明之半導體裝置的製造方法的平面圖。第42圖(b)為第42圖(a)的X-X’線的剖面圖。第42圖(c)為第42圖(a)的Y-Y’線的剖面圖。 Fig. 42 (a) is a plan view showing a method of manufacturing a semiconductor device of the present invention. Fig. 42(b) is a cross-sectional view taken along line X-X' of Fig. 42(a). Fig. 42 (c) is a cross-sectional view taken along line Y-Y' of Fig. 42 (a).

理由:須用整個圖式[第1圖(a)至(c)]才能顯示完整技術特徵。Reason: The entire schema [Fig. 1 (a) to (c)] must be used to show the complete technical features.

101‧‧‧矽基板 101‧‧‧矽 substrate

103‧‧‧鰭狀矽層 103‧‧‧Finned layer

104‧‧‧第1絕緣膜 104‧‧‧1st insulating film

106‧‧‧柱狀矽層 106‧‧‧ Columnar layer

110‧‧‧擴散層 110‧‧‧Diffusion layer

112‧‧‧擴散層 112‧‧‧Diffusion layer

113‧‧‧閘極絕緣膜 113‧‧‧gate insulating film

117‧‧‧氮化膜 117‧‧‧ nitride film

120‧‧‧金屬 120‧‧‧Metal

120a‧‧‧金屬閘極電極 120a‧‧‧Metal gate electrode

120b‧‧‧金屬閘極配線 120b‧‧‧Metal gate wiring

121‧‧‧層間絕緣膜 121‧‧‧Interlayer insulating film

127‧‧‧接觸部 127‧‧‧Contacts

128‧‧‧接觸部 128‧‧‧Contacts

133‧‧‧金屬配線 133‧‧‧Metal wiring

134‧‧‧金屬配線 134‧‧‧Metal wiring

135‧‧‧金屬配線 135‧‧‧Metal wiring

140‧‧‧氮化膜 140‧‧‧ nitride film

143‧‧‧接觸部 143‧‧‧Contacts

Claims (7)

一種半導體裝置的製造方法,係具有下述步驟:於矽基板上形成鰭狀矽層,於前述鰭狀矽層的周圍形成第1絕緣膜,於前述鰭狀矽層的上部形成柱狀矽層的第1步驟;前述柱狀矽層的直徑係與前述鰭狀矽層的寬度相同,前述第1步驟後,於前述柱狀矽層上部、前述鰭狀矽層上部、及前述柱狀矽層下部植入雜質而形成擴散層的第2步驟;前述第2步驟後,作成閘極絕緣膜、多晶矽閘極電極、及多晶矽閘極配線的第3步驟;前述閘極絕緣膜係覆蓋前述柱狀矽層的周圍和上部,前述多晶矽閘極電極係覆蓋閘極絕緣膜,前述多晶矽閘極電極及前述多晶矽閘極配線形成後的多晶矽的上表面係位於較前述柱狀矽層上部的前述擴散層上的前述閘極絕緣膜更高的位置;前述第3步驟後,於前述鰭狀矽層上部的前述擴散層上部形成矽化物的第4步驟;前述第4步驟後,堆積層間絕緣膜,露出前述多晶矽閘極電極及前述多晶矽閘極配線,蝕刻前述多晶矽閘極電極及前述多晶 矽閘極配線後,堆積金屬,以形成金屬閘極電極與金屬閘極配線的第5步驟;前述金屬閘極配線係延伸於與連接於前述金屬閘極電極的前述鰭狀矽層正交的方向;前述第5步驟後,形成接觸部的第6步驟;前述柱狀矽層上部的前述擴散層與前述接觸部為直接連接。 A method of manufacturing a semiconductor device, comprising: forming a fin-shaped germanium layer on a germanium substrate, forming a first insulating film around the fin-shaped germanium layer, and forming a columnar germanium layer on an upper portion of the fin-shaped germanium layer The first step; the diameter of the columnar layer is the same as the width of the fin layer, and after the first step, the upper portion of the columnar layer, the upper portion of the fin layer, and the columnar layer a second step of forming a diffusion layer by implanting impurities in the lower portion; a third step of forming a gate insulating film, a polysilicon gate electrode, and a polysilicon gate wiring after the second step; the gate insulating film covering the columnar shape In the periphery and the upper portion of the germanium layer, the polysilicon gate electrode covers the gate insulating film, and the upper surface of the polysilicon gate after the polysilicon gate electrode and the polysilicon gate wiring are formed on the diffusion layer above the columnar layer a higher position of the upper gate insulating film; a fourth step of forming a germanide on the upper portion of the diffusion layer in the upper portion of the finned layer after the third step; and a fourth step after the step Film, the polysilicon gate electrode is exposed and the polysilicon gate wiring, etching the polysilicon gate electrode and the polycrystal a fifth step of depositing a metal to form a metal gate electrode and a metal gate wiring after the gate wiring; the metal gate wiring extending orthogonal to the finned layer connected to the metal gate electrode Direction; after the fifth step, the sixth step of forming the contact portion; and the diffusion layer on the upper portion of the columnar layer is directly connected to the contact portion. 如申請專利範圍第1項所述之半導體裝置的製造方法,其中,於矽基板上形成用以形成鰭狀矽層的第1阻劑,蝕刻矽基板,形成前述鰭狀矽層,去除前述第1阻劑;於前述鰭狀矽層的周圍堆積第1絕緣膜,回蝕前述第1絕緣膜,露出前述鰭狀矽層的上部,以與前述鰭狀矽層正交的方式形成第2阻劑,蝕刻前述鰭狀矽層,去除前述第2阻劑,藉此,以使前述鰭狀矽層與前述第2阻劑正交的部分成為前述柱狀矽層的方式形成前述柱狀矽層。 The method of manufacturing a semiconductor device according to claim 1, wherein a first resist for forming a fin-shaped germanium layer is formed on the germanium substrate, and the germanium substrate is etched to form the fin-shaped germanium layer, and the first layer is removed. a resisting agent; a first insulating film is deposited around the fin-shaped germanium layer, and the first insulating film is etched back to expose an upper portion of the fin-shaped germanium layer, and a second resistor is formed to be orthogonal to the fin-shaped germanium layer And etching the fin-shaped ruthenium layer to remove the second resist, thereby forming the columnar ruthenium layer such that a portion of the fin-shaped ruthenium layer and the second resist is a columnar ruthenium layer . 如申請專利範圍第1項所述之半導體裝置的製造方法,其中,係在具有形成於矽基板上的鰭狀矽層、形成於前述鰭狀矽層周圍的第1絕緣膜、以及形成於前述鰭狀矽層上部的柱狀矽層的構造中,堆積第2氧化膜,於前述第2氧化膜上形成第1氮化膜,蝕刻前述第1氮化膜且使其殘留成側牆狀,植 入雜質,於前述柱狀矽層上部與前述鰭狀矽層上部形成擴散層,去除前述第1氮化膜與前述第2氧化膜,進行熱處理。 The method of manufacturing a semiconductor device according to the first aspect of the invention, further comprising: forming a fin-shaped germanium layer formed on the germanium substrate, forming a first insulating film formed around the fin-shaped germanium layer, and forming the In the structure of the columnar tantalum layer in the upper portion of the fin-shaped layer, a second oxide film is deposited, a first nitride film is formed on the second oxide film, and the first nitride film is etched and left in a side wall shape. plant Into the impurity, a diffusion layer is formed on the upper portion of the columnar layer and the upper portion of the fin layer, and the first nitride film and the second oxide film are removed to perform heat treatment. 如申請專利範圍第1項所述之半導體裝置的製造方法,其中,係在於具有:形成於矽基板上的鰭狀矽層、形成於前述鰭狀矽層之周圍的第1絕緣膜、形成於前述鰭狀矽層上部的柱狀矽層;形成於前述鰭狀矽層的上部和前述柱狀矽層的下部的擴散層;以及形成於前述柱狀矽層的上部的擴散層的構造中,形成閘極絕緣膜,堆積多晶矽,以使前述多晶矽平坦化後的多晶矽的上表面成為較前述柱狀矽層上部的擴散層上的前述閘極絕緣膜更高的位置的方式進行平坦化,堆積第2氮化膜,形成用以形成多晶矽閘極電極及多晶矽閘極配線的第3阻劑,並蝕刻前述第2氮化膜,蝕刻前述多晶矽,以形成前述多晶矽閘極電極及前述多晶矽閘極配線,蝕刻前述閘極絕緣膜,以去除第3阻劑。 The method of manufacturing a semiconductor device according to the first aspect of the invention, comprising: a fin-shaped germanium layer formed on a germanium substrate; and a first insulating film formed around the fin-shaped germanium layer; a columnar layer of the upper portion of the fin-shaped layer; a diffusion layer formed on an upper portion of the fin-shaped layer and a lower portion of the columnar layer; and a structure of a diffusion layer formed on an upper portion of the columnar layer Forming a gate insulating film and depositing polysilicon to planarize and stack the upper surface of the polysilicon which is flattened by the polysilicon to a position higher than the gate insulating film on the diffusion layer on the upper portion of the columnar layer a second resist film forming a third resist for forming a polysilicon gate electrode and a polysilicon gate wiring, etching the second nitride film, and etching the polysilicon to form the polysilicon gate electrode and the polysilicon gate Wiring, etching the gate insulating film to remove the third resist. 如申請專利範圍第4項所述之半導體裝置的製造方法,其中,堆積第3氮化膜,蝕刻前述第3氮化膜且使其殘留成側牆狀,堆積金屬,於鰭狀矽層上部的擴散層的上部形成矽化物。 The method of manufacturing a semiconductor device according to claim 4, wherein the third nitride film is deposited, the third nitride film is etched and left in a side wall shape, and the metal is deposited on the upper portion of the finned layer. The upper portion of the diffusion layer forms a telluride. 如申請專利範圍第5項所述之半導體裝置的製造方法,其中,堆積第4氮化膜,堆積層間絕緣膜並使其平坦化,使多晶矽閘極電極及多晶矽閘極配線露出,去除 前述多晶矽閘極電極及前述多晶矽閘極配線,於原為前述多晶矽閘極電極及前述多晶矽閘極配線的部份埋入金屬,蝕刻前述金屬,使柱狀矽層上部的擴散層上的閘極絕緣膜露出,以形成金屬閘極電極、金屬閘極配線。 The method of manufacturing a semiconductor device according to claim 5, wherein the fourth nitride film is deposited, the interlayer insulating film is deposited and planarized, and the polysilicon gate electrode and the polysilicon gate wiring are exposed and removed. The polysilicon gate electrode and the polysilicon gate wiring are buried in a portion of the polysilicon gate electrode and the polysilicon gate wiring, and the metal is etched to form a gate on the diffusion layer on the upper portion of the columnar layer The insulating film is exposed to form a metal gate electrode and a metal gate wiring. 一種半導體裝置,係具有:形成於矽基板上的鰭狀矽層;形成於前述鰭狀矽層的周圍的第1絕緣膜;形成於前述鰭狀矽層上的柱狀矽層;其中,前述柱狀矽層的直徑係與前述鰭狀矽層的寬度相同;形成於前述鰭狀矽層上部、及前述柱狀矽層下部的擴散層;形成於前述柱狀矽層上部的擴散層;形成於前述鰭狀矽層上部的擴散層的上部的矽化物;形成於前述柱狀矽層之周圍的閘極絕緣膜;形成於前述閘極絕緣膜之周圍的金屬閘極電極;延伸於與連接於前述金屬閘極電極的前述鰭狀矽層正交的方向的金屬閘極配線;以及於形成在前述柱狀矽層上部的擴散層上所形成的接觸部;形成於前述柱狀矽層上部的擴散層與前述接觸部係直接連接。 A semiconductor device comprising: a fin-shaped germanium layer formed on a germanium substrate; a first insulating film formed around the fin-shaped germanium layer; and a columnar germanium layer formed on the fin-shaped germanium layer; wherein The diameter of the columnar layer is the same as the width of the fin layer; the diffusion layer formed on the upper portion of the fin layer and the lower portion of the columnar layer; and the diffusion layer formed on the upper portion of the columnar layer; a telluride on an upper portion of the diffusion layer above the finned layer; a gate insulating film formed around the columnar layer; a gate electrode formed around the gate insulating film; extending and connecting a metal gate wiring in a direction orthogonal to the fin fin layer of the metal gate electrode; and a contact portion formed on the diffusion layer formed on the upper portion of the columnar layer; formed on the upper portion of the columnar layer The diffusion layer is directly connected to the aforementioned contact portion.
TW101141101A 2011-11-09 2012-11-06 Method for manufacturing semiconductor device, and semiconductor device TW201320201A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075789 WO2013069102A1 (en) 2011-11-09 2011-11-09 Semiconductor device manufacturing method, and semiconductor device

Publications (1)

Publication Number Publication Date
TW201320201A true TW201320201A (en) 2013-05-16

Family

ID=48288688

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101141101A TW201320201A (en) 2011-11-09 2012-11-06 Method for manufacturing semiconductor device, and semiconductor device

Country Status (5)

Country Link
JP (1) JP5695745B2 (en)
KR (1) KR20130110181A (en)
CN (1) CN103201842A (en)
TW (1) TW201320201A (en)
WO (1) WO2013069102A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5680801B1 (en) * 2013-06-10 2015-03-04 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP5872054B2 (en) 2013-06-17 2016-03-01 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP5731073B1 (en) * 2013-06-17 2015-06-10 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP5740535B1 (en) 2013-07-19 2015-06-24 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
US9425296B2 (en) * 2013-09-09 2016-08-23 Qualcomm Incorporated Vertical tunnel field effect transistor
WO2015083287A1 (en) * 2013-12-06 2015-06-11 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Semiconductor device and method for manufacturing semiconductor device
JP6121386B2 (en) * 2014-11-14 2017-04-26 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP5861197B2 (en) * 2015-01-07 2016-02-16 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP5869166B2 (en) * 2015-04-08 2016-02-24 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP5890053B2 (en) * 2015-04-27 2016-03-22 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP5977865B2 (en) * 2015-07-03 2016-08-24 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP5989197B2 (en) * 2015-07-13 2016-09-07 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP6055883B2 (en) * 2015-08-20 2016-12-27 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP6033938B2 (en) * 2015-10-01 2016-11-30 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP6200478B2 (en) * 2015-11-11 2017-09-20 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP6080989B2 (en) * 2016-01-06 2017-02-15 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP6174174B2 (en) * 2016-02-05 2017-08-02 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP6326437B2 (en) * 2016-02-17 2018-05-16 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP6154051B2 (en) * 2016-08-09 2017-06-28 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP6329299B2 (en) * 2017-04-20 2018-05-23 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP6328832B2 (en) * 2017-07-05 2018-05-23 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
JP6368836B2 (en) * 2017-07-27 2018-08-01 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. Semiconductor device manufacturing method and semiconductor device
WO2023188379A1 (en) * 2022-03-31 2023-10-05 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Columnar semiconductor storage device and method for producing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034389A (en) * 1997-01-22 2000-03-07 International Business Machines Corporation Self-aligned diffused source vertical transistors with deep trench capacitors in a 4F-square memory cell array
JP2001284598A (en) * 2000-03-31 2001-10-12 Fujitsu Ltd Semiconductor device and manufacturing method thereof
US7262089B2 (en) * 2004-03-11 2007-08-28 Micron Technology, Inc. Methods of forming semiconductor structures
KR101202158B1 (en) * 2007-12-05 2012-11-15 유니산티스 일렉트로닉스 싱가포르 프라이빗 리미티드 Semiconductor device
KR101031476B1 (en) * 2008-07-25 2011-04-26 주식회사 하이닉스반도체 All around gate type semiconductor device and manufacturing method of the same
JP4577592B2 (en) * 2009-04-20 2010-11-10 日本ユニサンティスエレクトロニクス株式会社 Manufacturing method of semiconductor device
JP2009246383A (en) * 2009-07-17 2009-10-22 Renesas Technology Corp Semiconductor device
JP5006379B2 (en) * 2009-09-16 2012-08-22 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Semiconductor device
KR20110101876A (en) * 2010-03-10 2011-09-16 삼성전자주식회사 Semiconductor device with a buried bit line and method of manufacturing the semiconductor device
JP4756221B2 (en) * 2010-06-29 2011-08-24 日本ユニサンティスエレクトロニクス株式会社 Semiconductor memory device

Also Published As

Publication number Publication date
CN103201842A (en) 2013-07-10
KR20130110181A (en) 2013-10-08
JP5695745B2 (en) 2015-04-08
JPWO2013069102A1 (en) 2015-04-02
WO2013069102A1 (en) 2013-05-16

Similar Documents

Publication Publication Date Title
TW201320201A (en) Method for manufacturing semiconductor device, and semiconductor device
US9390978B2 (en) Method for producing semiconductor device and semiconductor device
JP5596237B2 (en) Semiconductor device manufacturing method and semiconductor device
US9299701B2 (en) Method for producing semiconductor device and semiconductor device
US20150194529A1 (en) Semiconductor device
JP5667699B2 (en) Semiconductor device manufacturing method and semiconductor device
US9614075B2 (en) Semiconductor device
JP5662590B2 (en) Semiconductor device manufacturing method and semiconductor device
JP5974066B2 (en) Semiconductor device manufacturing method and semiconductor device
JP6329301B2 (en) Semiconductor device manufacturing method and semiconductor device
JP6284585B2 (en) Semiconductor device manufacturing method and semiconductor device
JP6156883B2 (en) Semiconductor device manufacturing method and semiconductor device
JP6246276B2 (en) Semiconductor device manufacturing method and semiconductor device
JP6026610B2 (en) Semiconductor device manufacturing method and semiconductor device
JP5814437B2 (en) Semiconductor device manufacturing method and semiconductor device
JP5986618B2 (en) Semiconductor device
JP2016225641A (en) Semiconductor device