JP5974066B2 - Semiconductor device manufacturing method and semiconductor device - Google Patents
Semiconductor device manufacturing method and semiconductor device Download PDFInfo
- Publication number
- JP5974066B2 JP5974066B2 JP2014252199A JP2014252199A JP5974066B2 JP 5974066 B2 JP5974066 B2 JP 5974066B2 JP 2014252199 A JP2014252199 A JP 2014252199A JP 2014252199 A JP2014252199 A JP 2014252199A JP 5974066 B2 JP5974066 B2 JP 5974066B2
- Authority
- JP
- Japan
- Prior art keywords
- silicon layer
- fin
- layer
- gate electrode
- columnar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 93
- 238000004519 manufacturing process Methods 0.000 title claims description 76
- 239000010410 layer Substances 0.000 claims description 403
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 280
- 229910052710 silicon Inorganic materials 0.000 claims description 280
- 239000010703 silicon Substances 0.000 claims description 280
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 145
- 229920005591 polysilicon Polymers 0.000 claims description 144
- 238000009792 diffusion process Methods 0.000 claims description 96
- 229910052751 metal Inorganic materials 0.000 claims description 90
- 239000002184 metal Substances 0.000 claims description 90
- 150000004767 nitrides Chemical class 0.000 claims description 49
- 229910021332 silicide Inorganic materials 0.000 claims description 26
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 26
- 239000000758 substrate Substances 0.000 claims description 25
- 239000011229 interlayer Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 17
- 238000005530 etching Methods 0.000 claims description 14
- 238000005498 polishing Methods 0.000 claims description 12
- 239000000126 substance Substances 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 11
- 238000000151 deposition Methods 0.000 claims description 8
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000009413 insulation Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims 1
- 230000003071 parasitic effect Effects 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Description
この発明は半導体装置に関するものである。 The present invention relates to a semiconductor device.
半導体集積回路、なかでもMOSトランジスタを用いた集積回路は、高集積化の一途を辿っている。この高集積化に伴って、その中で用いられているMOSトランジスタはナノ領域まで微細化が進んでいる。MOSトランジスタの微細化が進むと、リーク電流の抑制が困難であり、必要な電流量確保の要請から回路の占有面積をなかなか小さくできない、といった問題があった。この様な問題を解決するために、基板に対してソース、ゲート、ドレインが垂直方向に配置され、ゲートが柱状半導体層を取り囲む構造のSurrounding Gate Transistor(SGT)が提案された(例えば、特許文献1、特許文献2、特許文献3)。 Semiconductor integrated circuits, in particular, integrated circuits using MOS transistors, are becoming increasingly highly integrated. Along with this high integration, the MOS transistors used therein have been miniaturized to the nano region. As the miniaturization of MOS transistors progresses, there is a problem that it is difficult to suppress the leakage current, and the area occupied by the circuit cannot be easily reduced due to a request for securing a necessary amount of current. In order to solve such a problem, a Surrounding Gate Transistor (SGT) having a structure in which a source, a gate, and a drain are arranged in a vertical direction with respect to a substrate and the gate surrounds a columnar semiconductor layer has been proposed (for example, Patent Documents). 1, Patent Document 2, Patent Document 3).
ゲート電極にポリシリコンではなくメタルを用いることにより、空乏化を抑制できかつ、ゲート電極を低抵抗化できる。しかし、メタルゲートを形成した後工程は常にメタルゲートによるメタル汚染を考慮した製造工程にする必要がある。 By using metal instead of polysilicon for the gate electrode, depletion can be suppressed and the resistance of the gate electrode can be reduced. However, the post-process after forming the metal gate must always be a manufacturing process that considers metal contamination by the metal gate.
また、従来のMOSトランジスタにおいて、メタルゲートプロセスと高温プロセスを両立させるために、高温プロセス後にメタルゲートを作成するメタルゲートラストプロセスが実際の製品で用いられている(非特許文献1)。ポリシリコンでゲートを作成し、その後、層間絶縁膜を堆積後、化学機械研磨によりポリシリコンゲートを露出し、ポリシリコンゲートをエッチング後、メタルを堆積している。そのためSGTにおいてもメタルゲートプロセスと高温プロセスを両立させるために、高温プロセス後にメタルゲートを作成するメタルゲートラストプロセスを用いる必要がある。SGTでは、柱状シリコン層がゲートより高い位置にあるため、メタルゲートラストプロセスを用いるための工夫が必要である。 Further, in a conventional MOS transistor, in order to achieve both a metal gate process and a high temperature process, a metal gate last process for creating a metal gate after a high temperature process is used in an actual product (Non-Patent Document 1). After forming a gate with polysilicon, an interlayer insulating film is deposited, then the polysilicon gate is exposed by chemical mechanical polishing, and after etching the polysilicon gate, a metal is deposited. Therefore, also in SGT, in order to make a metal gate process and a high temperature process compatible, it is necessary to use the metal gate last process which produces a metal gate after a high temperature process. In SGT, since the columnar silicon layer is higher than the gate, it is necessary to devise for using the metal gate last process.
また、ゲート配線と基板間の寄生容量を低減するために、従来のMOSトランジスタでは、第1の絶縁膜を用いている。例えばFINFET(非特許文献2)では、1つのフィン状半導体層の周囲に第1の絶縁膜を形成し、第1の絶縁膜をエッチバックし、フィン状半導体層を露出し、ゲート配線と基板間の寄生容量を低減している。そのためSGTにおいてもゲート配線と基板間の寄生容量を低減するために第1の絶縁膜を用いる必要がある。SGTではフィン状半導体層に加えて、柱状半導体層があるため、柱状半導体層を形成するための工夫が必要である。 In order to reduce the parasitic capacitance between the gate wiring and the substrate, the conventional MOS transistor uses the first insulating film. For example, in FINFET (Non-patent Document 2), a first insulating film is formed around one fin-like semiconductor layer, the first insulating film is etched back, the fin-like semiconductor layer is exposed, and the gate wiring and the substrate The parasitic capacitance between them is reduced. Therefore, also in SGT, it is necessary to use the first insulating film in order to reduce the parasitic capacitance between the gate wiring and the substrate. In SGT, since there is a columnar semiconductor layer in addition to the fin-shaped semiconductor layer, a device for forming the columnar semiconductor layer is required.
一方で、一つのダミーパターンから2個のトランジスタを形成するFINFETが知られている(例えば特許文献4)。ダミーパターンの周りに側壁を形成し、その側壁をマスクとして基板をエッチングすることで、フィンを形成し、一つのダミーパターンから2個のトランジスタを形成している。 On the other hand, a FINFET that forms two transistors from one dummy pattern is known (for example, Patent Document 4). Side walls are formed around the dummy pattern, and the substrate is etched using the side walls as a mask to form fins, thereby forming two transistors from one dummy pattern.
そこで、ゲート配線と基板間の寄生容量を低減し、ゲートラストプロセスであり、一つのダミーパターンから2個のトランジスタを形成するSGTの製造方法とその結果であるSGTの構造を提供することを目的とする。 Accordingly, an object of the present invention is to provide a method for manufacturing an SGT in which two transistors are formed from one dummy pattern and a SGT structure as a result, which is a gate last process, reducing parasitic capacitance between the gate wiring and the substrate. And
本発明の半導体装置の製造方法は、
基板上に第1のフィン状シリコン層と第2のフィン状シリコン層を形成し、前記第1のフィン状シリコン層と第2のフィン状シリコン層はそれぞれの端で接続し閉ループを形成しており、前記第1のフィン状シリコン層と第2のフィン状シリコン層の周囲に第一の絶縁膜を形成し、前記第1のフィン状シリコン層の上部に第1の柱状シリコン層を形成し、前記第2のフィン状シリコン層の上部に第2の柱状シリコン層を形成する第1の工程と、前記第1の柱状シリコン層の直径は前記第1のフィン状シリコン層の幅と同じであって、前記第2の柱状シリコン層の直径は前記第2のフィン状シリコン層の幅と同じであって、前記第1の工程の後、前記第1の柱状シリコン層上部と前記第1のフィン状シリコン層上部と前記第1の柱状シリコン層下部に不純物を注入し拡散層を形成し、前記第2の柱状シリコン層上部と前記第2のフィン状シリコン層上部と前記第2の柱状シリコン層下部に不純物を注入し拡散層を形成する第2の工程と、前記第2の工程の後、ゲート絶縁膜と第1のポリシリコンゲート電極と第2のポリシリコンゲート電極とポリシリコンゲート配線を作成する第3の工程と、前記ゲート絶縁膜は前記第1の柱状シリコン層と前記第2の柱状シリコン層の周囲と上部を覆い、前記第1のポリシリコンゲート電極と前記第2のポリシリコンゲート電極はゲート絶縁膜を覆い、前記第1のポリシリコンゲート電極と前記第2のポリシリコンゲート電極及び前記ポリシリコンゲート配線形成後のポリシリコンの上面は、前記第1の柱状シリコン層上部の前記拡散層の上の前記ゲート絶縁膜と前記第2の柱状シリコン層上部の前記拡散層の上の前記ゲート絶縁膜より高い位置であって、前記第3の工程の後、前記第1のフィン状シリコン層上部の前記拡散層上部と前記第2のフィン状シリコン層上部の前記拡散層上部とにシリサイドを形成する第4の工程と、前記第4の工程の後、層間絶縁膜を堆積し、前記第1のポリシリコンゲート電極と前記第2のポリシリコンゲート電極及び前記ポリシリコンゲート配線を露出し、前記第1のポリシリコンゲート電極と前記第2のポリシリコンゲート電極及び前記ポリシリコンゲート配線をエッチング後、金属を堆積し、第1の金属ゲート電極と第2の金属ゲート電極と金属ゲート配線とを形成する第5の工程と、前記第1の金属ゲート電極と第2の金属ゲート電極に接続された前記第1のフィン状シリコン層と第2のフィン状シリコン層に直交する方向に延在する金属ゲート配線であって、前記第5の工程の後、コンタクトを形成する第6の工程と、前記第1の柱状シリコン層上部の前記拡散層と前記コンタクトとは直接接続するのであって、前記第2の柱状シリコン層上部の前記拡散層と前記コンタクトとは直接接続するのであって、を有することを特徴とする。
A method for manufacturing a semiconductor device of the present invention includes:
A first fin-like silicon layer and a second fin-like silicon layer are formed on a substrate, and the first fin-like silicon layer and the second fin-like silicon layer are connected at respective ends to form a closed loop. A first insulating film is formed around the first fin-shaped silicon layer and the second fin-shaped silicon layer, and a first columnar silicon layer is formed on the first fin-shaped silicon layer. A first step of forming a second pillar-shaped silicon layer on the second fin-shaped silicon layer; and a diameter of the first pillar-shaped silicon layer is the same as a width of the first fin-shaped silicon layer. The diameter of the second columnar silicon layer is the same as the width of the second fin-shaped silicon layer, and after the first step, the upper portion of the first columnar silicon layer and the first Fin upper silicon layer and first columnar silicon layer Impurities are implanted into the region to form a diffusion layer, and impurities are implanted into the upper portion of the second columnar silicon layer, the upper portion of the second fin-shaped silicon layer, and the lower portion of the second columnar silicon layer to form a diffusion layer. After the second step, after the second step, a third step of creating a gate insulating film, a first polysilicon gate electrode, a second polysilicon gate electrode, and a polysilicon gate wiring, and the gate insulating film Covers the periphery and top of the first columnar silicon layer and the second columnar silicon layer, the first polysilicon gate electrode and the second polysilicon gate electrode cover a gate insulating film, The upper surface of the polysilicon after forming the polysilicon gate electrode, the second polysilicon gate electrode and the polysilicon gate wiring is above the diffusion layer above the first columnar silicon layer. Higher than the gate insulating film on the diffusion layer above the gate insulating film and the second columnar silicon layer, and after the third step, above the first fin-shaped silicon layer. A fourth step of forming silicide on the upper part of the diffusion layer and the upper part of the second fin-like silicon layer; and after the fourth step, an interlayer insulating film is deposited, and the first poly After exposing the silicon gate electrode, the second polysilicon gate electrode, and the polysilicon gate wiring, and etching the first polysilicon gate electrode, the second polysilicon gate electrode, and the polysilicon gate wiring, the metal And a fifth step of forming a first metal gate electrode, a second metal gate electrode, and a metal gate wiring, and being connected to the first metal gate electrode and the second metal gate electrode A metal gate wiring extending in a direction orthogonal to the first fin-like silicon layer and the second fin-like silicon layer, the sixth step of forming a contact after the fifth step; The diffusion layer above the first columnar silicon layer and the contact are directly connected, and the diffusion layer above the second columnar silicon layer and the contact are directly connected. It is characterized by.
また、前記第1の工程であって、基板上にダミーパターンを形成するために第2の酸化膜を堆積し、ダミーパターンを形成するための第1のレジストを形成し、前記第2の酸化膜をエッチングし、ダミーパターンを形成し、前記第1のレジストを除去し、第1の窒化膜を堆積し、前記第1の窒化膜をエッチングし、サイドウォール状に残存させ、前記ダミーパターンの周りに第1の窒化膜サイドウォールを形成し、前記ダミーパターンを除去し、前記第1の窒化膜サイドウォールをマスクとして前記シリコン基板をエッチングし、それぞれの端で接続し閉ループが形成された第1のフィン状シリコン層と第2のフィン状シリコン層を形成し、前記第1のフィン状シリコン層と第2のフィン状シリコン層の周囲に第一の絶縁膜を形成し、前記第1の窒化膜サイドウォールを除去し、前記第1の絶縁膜をエッチバックし、前記第1のフィン状シリコン層の上部と前記第2のフィン状シリコン層の上部を露出し、前記第1のフィン状シリコン層と前記第2のフィン状シリコンに直交するように第2のレジストを形成し、前記第1のフィン状シリコン層と前記第2のフィン状シリコン層とをエッチングし、前記第2のレジストを除去することにより、前記第1のフィン状シリコン層と前記第2のレジストとが直交する部分が第1の柱状シリコン層となるよう前記第1の柱状シリコン層を形成し、前記第2のフィン状シリコン層と前記第2のレジストとが直交する部分が前記第2の柱状シリコン層となるよう第2の柱状シリコン層を形成することを特徴とする。 In the first step, a second oxide film is deposited on the substrate to form a dummy pattern, a first resist for forming the dummy pattern is formed, and the second oxidation film is formed. The film is etched to form a dummy pattern, the first resist is removed, a first nitride film is deposited, the first nitride film is etched and left in a sidewall shape, and the dummy pattern A first nitride film sidewall is formed around the dummy pattern, the dummy pattern is removed, the silicon substrate is etched using the first nitride film sidewall as a mask, and connected at each end to form a closed loop. Forming a first fin-like silicon layer and a second fin-like silicon layer; forming a first insulating film around the first fin-like silicon layer and the second fin-like silicon layer; Nitride film sidewalls are removed, the first insulating film is etched back, and an upper portion of the first fin-like silicon layer and an upper portion of the second fin-like silicon layer are exposed, and the first fin Forming a second resist so as to be orthogonal to the silicon-like layer and the second fin-like silicon; etching the first fin-like silicon layer and the second fin-like silicon layer; and By removing the resist, the first columnar silicon layer is formed so that a portion where the first fin-shaped silicon layer and the second resist are orthogonal to each other becomes the first columnar silicon layer, and the second columnar silicon layer is formed. The second columnar silicon layer is formed so that a portion where the fin-shaped silicon layer and the second resist are orthogonal to each other becomes the second columnar silicon layer.
また、前記第1の工程後、前記第2の工程であって、第1の工程後の構造全体に第3の酸化膜を堆積し、第2の窒化膜を形成し、前記第2の窒化膜をエッチングし、サイドウォール状に残存させ、不純物を注入し、第1の柱状シリコン層上部と、第1のフィン状シリコン層上部と、第2の柱状シリコン層上部と、第2のフィン状シリコン層上部に拡散層を形成し、前記第2の窒化膜と前記第3の酸化膜を除去し、熱処理を行うことを特徴とする。 In addition, after the first step, a second oxide layer is formed on the entire structure after the first step by depositing a third oxide film to form a second nitride film, and the second nitride layer. The film is etched and left in a sidewall shape, and impurities are implanted, and the first columnar silicon layer upper portion, the first fin-shaped silicon layer upper portion, the second columnar silicon layer upper portion, and the second fin-shaped A diffusion layer is formed on the silicon layer, the second nitride film and the third oxide film are removed, and heat treatment is performed.
前記第2の工程の後、前記第3の工程であって、シリコン柱を取り囲むようにゲート絶縁膜を形成し、ポリシリコンを堆積し、平坦化後の前記ポリシリコンの上面が前記第1の柱状シリコン層上部の拡散層の上の前記ゲート絶縁膜より高く、前記第2の柱状シリコン層上部の拡散層の上の前記ゲート絶縁膜より高い位置となるよう平坦化をし、第3の窒化膜を堆積し、第1のポリシリコンゲート電極と第2のポリシリコンゲート電極及びポリシリコンゲート配線を形成するための第3のレジストを形成し、前記第3の窒化膜をエッチングし、前記ポリシリコンをエッチングし、前記第1のポリシリコンゲート電極と前記第2のポリシリコンゲート電極及び前記ポリシリコンゲート配線を形成し、前記ゲート絶縁膜をエッチングし、前記第3のレジストを除去することを特徴とする。 After the second step, in the third step, a gate insulating film is formed so as to surround the silicon pillar, polysilicon is deposited, and the upper surface of the polysilicon after planarization is the first step. Planarization is performed so as to be higher than the gate insulating film on the diffusion layer above the columnar silicon layer and higher than the gate insulating film on the diffusion layer above the second columnar silicon layer, and the third nitriding is performed. A film is deposited, a third resist for forming a first polysilicon gate electrode, a second polysilicon gate electrode, and a polysilicon gate wiring is formed, the third nitride film is etched, and the poly-silicon film is etched. Etching the silicon, forming the first polysilicon gate electrode, the second polysilicon gate electrode, and the polysilicon gate wiring; etching the gate insulating film; and And removing the resist.
また、前記第3の工程の後の構造全体に、第4の窒化膜を堆積し、前記第4の窒化膜をエッチングし、サイドウォール状に残存させ、金属を堆積し、シリサイドを第1のフィン状シリコン層と第2のフィン状シリコン層の上部の拡散層の上部に形成することを特徴とする。 Further, a fourth nitride film is deposited on the entire structure after the third step, the fourth nitride film is etched, left in a sidewall shape, a metal is deposited, and the silicide is deposited on the first structure. It is characterized by being formed on the upper part of the diffusion layer above the fin-like silicon layer and the second fin-like silicon layer.
また、前記第4の工程の後の構造全体に、第5の窒化膜を堆積し、層間絶縁膜を堆積し、化学機械研磨により平坦化し、化学機械研磨により第1のポリシリコンゲート電極と第2のポリシリコンゲート電極及びポリシリコンゲート配線を露出し、前記第1のポリシリコンゲート電極と前記第2のポリシリコンゲート電極及び前記ポリシリコンゲート配線をエッチングし、金属を堆積し、前記第1のポリシリコンゲート電極と前記第2のポリシリコンゲート電極及び前記ポリシリコンゲート配線があった部分に前記金属を埋めこみ、前記金属をエッチングし、第1の柱状シリコン層上部の拡散層上のゲート絶縁膜と、第2の柱状シリコン層上部の拡散層上のゲート絶縁膜とを露出し、第1の金属ゲート電極、第2の金属ゲート電極、金属ゲート配線を形成することを特徴とする。 Further, a fifth nitride film is deposited on the entire structure after the fourth step, an interlayer insulating film is deposited, planarized by chemical mechanical polishing, and the first polysilicon gate electrode and the first polysilicon film are formed by chemical mechanical polishing. 2 polysilicon gate electrodes and polysilicon gate wirings are exposed, the first polysilicon gate electrode and the second polysilicon gate electrode and the polysilicon gate wiring are etched, metal is deposited, and the first The metal is buried in a portion where the polysilicon gate electrode, the second polysilicon gate electrode, and the polysilicon gate wiring are present, the metal is etched, and gate insulation on the diffusion layer above the first columnar silicon layer is performed. Exposing the film and the gate insulating film on the diffusion layer above the second columnar silicon layer, the first metal gate electrode, the second metal gate electrode, and the metal gate; And forming a line.
また、基板上に形成された第1のフィン状シリコン層と、基板上に形成された、前記第1のフィン状シリコン層と共にそれぞれの端で接続し閉ループを形成する第2のフィン状シリコン層と、前記第1のフィン状シリコン層と前記第2のフィン状シリコン層との周囲に形成された第1の絶縁膜と、前記第1のフィン状シリコン層上に形成された、前記第1のフィン状シリコン層の幅と同じ直径を有する第1のシリコン層と、前記第2のフィン状シリコン層上に形成された、前記第2のフィン状シリコン層の幅と同じ直径を有する第2のシリコン層と、前記第1のフィン状シリコン層上部と前記第1の柱状シリコン層の下部に形成された拡散層と、前記第1の柱状シリコン層の上部に形成された拡散層と、前記第2のフィン状シリコン層の上部と前記第2の柱状シリコン層の下部に形成された拡散層と、前記第2の柱状シリコン層の上部に形成された拡散層と、前記第1のフィン状シリコン層の上部と前記第2のフィン状シリコン層の上部の拡散層の上部に形成されたシリサイドと、前記第1の柱状シリコン層の周囲に形成されたゲート絶縁膜と、前記ゲート絶縁膜の周囲に形成された第1の金属ゲート電極と、前記第2の柱状シリコン層の周囲に形成されたゲート絶縁膜と、前記ゲート絶縁膜の周囲に形成された第2の金属ゲート電極と、前記第1の金属ゲート電極と前記第2の金属ゲート電極に接続された前記第1のフィン状シリコン層と前記第2のフィン状シリコン層に直交する方向に延在する金属ゲート配線と、前記第1の柱状シリコン層上部に形成された拡散層上に形成されたコンタクトと、前記第2の柱状シリコン層上部に形成された拡散層上に形成されたコンタクトと、を有し、前記第1の柱状シリコン層上部に形成された拡散層と前記コンタクトとは直接接続し、前記第2の柱状シリコン層上部に形成された拡散層と前記コンタクトとは直接接続することを特徴とする。 Also, a first fin-like silicon layer formed on the substrate and a second fin-like silicon layer formed on the substrate and connected to each end together with the first fin-like silicon layer to form a closed loop A first insulating film formed around the first fin-like silicon layer and the second fin-like silicon layer, and the first fin-like silicon layer formed on the first fin-like silicon layer. A first silicon layer having the same diameter as the width of the fin-like silicon layer, and a second silicon layer formed on the second fin-like silicon layer and having the same diameter as the width of the second fin-like silicon layer. A silicon layer, a diffusion layer formed above the first fin-like silicon layer and a lower part of the first columnar silicon layer, a diffusion layer formed above the first columnar silicon layer, Top of second fin-like silicon layer A diffusion layer formed below the second columnar silicon layer; a diffusion layer formed above the second columnar silicon layer; an upper portion of the first fin-shaped silicon layer; and the second fin. A silicide formed on a diffusion layer on the upper side of the silicon-like silicon layer, a gate insulating film formed around the first columnar silicon layer, and a first metal gate formed around the gate insulating film An electrode, a gate insulating film formed around the second columnar silicon layer, a second metal gate electrode formed around the gate insulating film, the first metal gate electrode, and the second Formed on the first columnar silicon layer and a metal gate wiring extending in a direction orthogonal to the first fin-like silicon layer and the second fin-like silicon layer connected to the metal gate electrode. Formed on the diffusion layer A contact formed on the diffusion layer formed on the second columnar silicon layer, and the contact between the diffusion layer formed on the first columnar silicon layer and the contact is directly The diffusion layer formed on the second columnar silicon layer and the contact are directly connected to each other.
本発明によれば、ゲート配線と基板間の寄生容量を低減し、ゲートラストプロセスであり、一つのダミーパターンから2個のトランジスタを形成するSGTの製造方法とその結果であるSGTの構造を提供することができる。
ダミーパターンの周りに側壁を形成し、その側壁をマスクとして基板をエッチングすることで、フィンを形成し、一つのダミーパターンから2個のトランジスタを形成するという従来のFINFETの製造方法を元にしたため、一つのダミーパターンから2個のSGTを容易に形成できる。
加えて、従来は柱状シリコン層上部にシリサイドを形成していたが、ポリシリコンの堆積温度がシリサイドを形成するための温度より高いので、シリサイドはポリシリコンゲート形成後に形成しなければならないため、シリコン柱上部にシリサイドを形成しようとすると、ポリシリコンゲート形成後に、ポリシリコンゲート電極の上部に穴を開け、穴の側壁に絶縁膜のサイドウォールを形成した後、シリサイドを形成し、開けた穴に絶縁膜を埋めるという製造工程数の増加という欠点があったので、ポリシリコンゲート電極とポリシリコンゲート配線形成前に拡散層を形成し、柱状シリコン層をポリシリコンゲート電極で覆い、シリサイドをフィン状シリコン層上部にのみ形成することにより、ポリシリコンでゲートを作成し、その後、層間絶縁膜を堆積後、化学機械研磨によりポリシリコンゲートを露出し、ポリシリコンゲートをエッチング後、金属を堆積する従来のメタルゲートラストの製造方法を用いることができるため、メタルゲートSGTを容易に形成できる。
According to the present invention, there is provided a SGT manufacturing method in which two transistors are formed from one dummy pattern, and the resulting SGT structure is a gate last process, reducing parasitic capacitance between the gate wiring and the substrate. can do.
Based on the conventional method of manufacturing a FINFET in which a sidewall is formed around a dummy pattern, the substrate is etched using the sidewall as a mask, fins are formed, and two transistors are formed from one dummy pattern. Two SGTs can be easily formed from one dummy pattern.
In addition, conventionally, silicide is formed on the top of the columnar silicon layer. However, since the deposition temperature of polysilicon is higher than the temperature for forming silicide, the silicide must be formed after forming the polysilicon gate. If silicide is to be formed on the top of the pillar, after forming the polysilicon gate, a hole is formed in the upper portion of the polysilicon gate electrode, a sidewall of the insulating film is formed on the sidewall of the hole, silicide is then formed, and the hole is formed. Since there was a disadvantage of increasing the number of manufacturing steps to fill the insulating film, a diffusion layer was formed before forming the polysilicon gate electrode and polysilicon gate wiring, the columnar silicon layer was covered with the polysilicon gate electrode, and the silicide was finned By forming only on top of the silicon layer, the gate is made with polysilicon, and then the interlayer After depositing the edge film, the polysilicon gate is exposed by chemical mechanical polishing, and after the polysilicon gate is etched, metal can be deposited, so that a conventional metal gate last manufacturing method can be used. it can.
以下に、本発明の実施形態に係るSGTの構造を形成するための製造工程を、図2〜図47を参照して説明する。 Below, the manufacturing process for forming the structure of SGT which concerns on embodiment of this invention is demonstrated with reference to FIGS.
基板上に第1のフィン状シリコン層と第2のフィン状シリコン層を形成し、前記第1のフィン状シリコン層と第2のフィン状シリコン層の周囲に第一の絶縁膜を形成し、前記第1のフィン状シリコン層の上部に第1の柱状シリコン層を形成し、前記第2のフィン状シリコン層の上部に第2の柱状シリコン層を形成する製造方法を示す。図2に示すように、シリコン基板101上にダミーパターンを形成するために第2の酸化膜102を堆積する。窒化膜や、酸化膜とポリシリコンといった積層膜でもよい。
Forming a first fin-like silicon layer and a second fin-like silicon layer on a substrate; forming a first insulating film around the first fin-like silicon layer and the second fin-like silicon layer; A manufacturing method of forming a first columnar silicon layer on the first fin-shaped silicon layer and forming a second columnar silicon layer on the second fin-shaped silicon layer will be described. As shown in FIG. 2, a
図3に示すように、ダミーパターンを形成するための第1のレジスト103を形成する。 As shown in FIG. 3, a first resist 103 for forming a dummy pattern is formed.
図4に示すように、第2の酸化膜102をエッチングし、ダミーパターン102を形成する。
As shown in FIG. 4, the
図5に示すように、第1のレジスト103を除去する。 As shown in FIG. 5, the first resist 103 is removed.
図6に示すように、第1の窒化膜104を堆積する。
As shown in FIG. 6, a
図7に示すように、第1の窒化膜104をエッチングし、サイドウォール状に残存させる。ダミーパターン102の周りに第1の窒化膜サイドウォール104が形成された。この形成された第1の窒化膜サイドウォール104を用いてシリコンをエッチングすることにより、それぞれの端で接続し閉ループが形成された第1のフィン状シリコン層105と第2のフィン状シリコン層106が形成されることとなる。
As shown in FIG. 7, the
図8に示すように、ダミーパターン102を除去する。
As shown in FIG. 8, the
図9に示すように、第1の窒化膜サイドウォール104をマスクとしてシリコン基板101をエッチングし、それぞれの端で接続し閉ループが形成された第1のフィン状シリコン層105と第2のフィン状シリコン層106を形成する。
As shown in FIG. 9, the
図10に示すように、前記第1のフィン状シリコン層105と第2のフィン状シリコン層106の周囲に第一の絶縁膜107を形成する。
第1の絶縁膜として高密度プラズマによる酸化膜や低圧化学気相堆積による酸化膜を用いてもよい。
As shown in FIG. 10, a first
An oxide film formed by high-density plasma or an oxide film formed by low-pressure chemical vapor deposition may be used as the first insulating film.
図11に示すように、第1の窒化膜サイドウォール104を除去する。シリコンエッチング中や酸化膜堆積中に、第1の窒化膜サイドウォール104が除去された場合、この工程は不要である。
As shown in FIG. 11, the 1st nitride
図12に示すように、第1の絶縁膜107をエッチバックし、第1のフィン状シリコン層105の上部と第2のフィン状シリコン層106の上部を露出する。
As shown in FIG. 12, the first insulating
図13に示すように、第1のフィン状シリコン層105と第2のフィン状シリコン106に直交するように第2のレジスト108を形成する。第1のフィン状シリコン層105と第2のフィン状シリコン層106とレジスト108とが直交する部分が柱状シリコン層となる部分である。ライン状のレジストを用いることができるため、パターン後にレジストが倒れる可能性が低く、安定したプロセスとなる。
As shown in FIG. 13, a second resist 108 is formed so as to be orthogonal to the first fin-
図14に示すように、第1のフィン状シリコン層105と第2のフィン状シリコン層106とをエッチングする。第1のフィン状シリコン層105と第2のレジスト108とが直交する部分が第1の柱状シリコン層109となる。第2のフィン状シリコン層106と第2のレジスト108とが直交する部分が第2の柱状シリコン層110となる。従って、第1の柱状シリコン層109の直径は、第1のフィン状シリコン層105の幅と同じとなる。第2の柱状シリコン層110の直径は、第2のフィン状シリコン層106の幅と同じとなる。
As shown in FIG. 14, the first fin-
第1のフィン状シリコン層105の上部に第1の柱状シリコン層109が形成され、第2のフィン状シリコン層106の上部に第2の柱状シリコン層110が形成され、第1のフィン状シリコン層105、第2のフィン状シリコン層106の周囲には第1の絶縁膜107が形成された構造となる。
A first
図15に示すように、第2のレジスト108を除去する。 As shown in FIG. 15, the second resist 108 is removed.
次に、ゲートラストとするために、第1の柱状シリコン層109上部と第1のフィン状シリコン層105上部と第1の柱状シリコン層109下部に不純物を注入し拡散層を形成し、第2の柱状シリコン層110上部と第2のフィン状シリコン層106上部と第2の柱状シリコン層110下部に不純物を注入し拡散層を形成する製造方法を示す。
図16に示すように、第3の酸化膜111を堆積し、第2の窒化膜112を形成する。後に、柱状シリコン層上部は、ゲート絶縁膜及びポリシリコンゲート電極に覆われることとなるので、覆われる前に、柱状シリコン層上部に拡散層を形成する。
Next, in order to obtain a gate last, an impurity is implanted into the upper part of the first
As shown in FIG. 16, the
図17に示すように第2の窒化膜112をエッチングし、サイドウォール状に残存させる。
As shown in FIG. 17, the
図18に示すように砒素やリンやボロンといった不純物を注入し、第1の柱状シリコン層109上部に拡散層113、第1のフィン状シリコン層105上部に拡散層115、116、第2の柱状シリコン層110上部に拡散層114、第2のフィン状シリコン層106上部に拡散層115、116、を形成する。
As shown in FIG. 18, impurities such as arsenic, phosphorus, and boron are implanted, the
図19に示すように第2の窒化膜112と第3の酸化膜111を除去する。
As shown in FIG. 19, the
図20に示すように熱処理を行う。第1のフィン状シリコン層105上部と第2のフィン状シリコン層106上部の拡散層115、116は接触し拡散層117となる。以上よりゲートラストとするために、第1の柱状シリコン層109上部と第1のフィン状シリコン層105上部と第1の柱状シリコン層109下部に不純物を注入し拡散層113、117が形成され、第2の柱状シリコン層110上部と第2のフィン状シリコン層106上部と第2の柱状シリコン層110下部に不純物を注入し拡散層114、117が形成された。
Heat treatment is performed as shown in FIG. The diffusion layers 115 and 116 on the first fin-shaped
次に、ゲートラストとするために、ポリシリコンで第1のポリシリコンゲート電極119bと第2のポリシリコンゲート電極119a及びポリシリコンゲート配線119cを作成する製造方法を示す。ゲートラストとするために層間絶縁膜を堆積後、化学機械研磨によりポリシリコンゲート電極及びポリシリコンゲート配線を露出するのであるから、化学機械研磨により柱状シリコン層上部が露出しないようにする必要がある。
Next, a manufacturing method for forming the first
図21に示すように、ゲート絶縁膜118を形成し、ポリシリコン119を堆積し、平坦化する。平坦化後のポリシリコン119の上面は、第1の柱状シリコン層109上部の拡散層113の上のゲート絶縁膜118より高く、第2の柱状シリコン層110上部の拡散層114の上のゲート絶縁膜118より高い位置とする。これにより、ゲートラストとするために層間絶縁膜を堆積後、化学機械研磨によりポリシリコンゲート電極及びポリシリコンゲート配線を露出したとき、化学機械研磨により柱状シリコン層上部が露出しないようになる。
As shown in FIG. 21, a
また、第3の窒化膜120を堆積する。この第3の窒化膜120は、シリサイドを第1のフィン状シリコン層105上部と第2のフィン状シリコン層106上部に形成するとき、第1のポリシリコンゲート電極119bと第2のポリシリコンゲート電極119a及びポリシリコンゲート配線119c上部にシリサイドが形成されることを阻害する膜である。
A
図22に示すように、第1のポリシリコンゲート電極119bと第2のポリシリコンゲート電極119a及びポリシリコンゲート配線119cを形成するための第3のレジスト121を形成する。第1のフィン状シリコン層105と第2のフィン状シリコン層106とに対してゲート配線となる部分が直交することが望ましい。ゲート配線と基板間の寄生容量が低減するためである。
As shown in FIG. 22, the 3rd resist 121 for forming the 1st
図23に示すように、第3の窒化膜120をエッチングし、ポリシリコン119をエッチングし、第1のポリシリコンゲート電極119bと第2のポリシリコンゲート電極119a及びポリシリコンゲート配線119cを形成する。
As shown in FIG. 23, the
図24に示すように、ゲート絶縁膜118をエッチングする。
As shown in FIG. 24, the
図25に示すように、第3のレジスト121を除去する。
以上によりゲートラストとするために、ポリシリコンで第1のポリシリコンゲート電極119bと第2のポリシリコンゲート電極119a及びポリシリコンゲート配線119cを形成する製造方法が示された。第1のポリシリコンゲート電極119bと第1のポリシリコンゲート電極119a及びポリシリコンゲート配線119c形成後のポリシリコンの上面は、第1の柱状シリコン層109上部の拡散層113の上のゲート絶縁膜118より高く、第2の柱状シリコン層110上部の拡散層114の上のゲート絶縁膜118より高い位置となっている。
As shown in FIG. 25, the 3rd resist 121 is removed.
Thus, a manufacturing method for forming the first
次に、第1のフィン状シリコン層105上部の拡散層117上部と第2のフィン状シリコン層106上部の拡散層117上部とにシリサイドを形成する製造方法を示す。
第1のポリシリコンゲート電極119bと第2のポリシリコンゲート119a及びポリシリコンゲート配線119c上部と第1の柱状シリコン層109上部の拡散層113と第2の柱状シリコン層110上部の拡散層114には、シリサイドを形成しないことが特徴である。第1の柱状シリコン層109上部の拡散層113と第2の柱状シリコン層110上部の拡散層114にシリサイドを形成しようとすると、製造工程が増大する。
図26に示すように、第4の窒化膜122を堆積する。
Next, a manufacturing method for forming silicide on the upper portion of the
The
As shown in FIG. 26, the
図27に示すように、第4の窒化膜122をエッチングし、サイドウォール状に残存させる。
As shown in FIG. 27, the
図28に示すように、ニッケル、コバルトといった金属を堆積し、シリサイド123を第1のフィン状シリコン層105と第2のフィン状シリコン層106の上部の拡散層117の上部に形成する。このとき、第1のポリシリコンゲート電極119bと第2のポリシリコンゲート電極119a及びポリシリコンゲート配線119cは、第4の窒化膜122、第3の窒化膜120に覆われ、第1の柱状シリコン層109上の拡散層113と第2の柱状シリコン層110上の拡散層114とは、ゲート絶縁膜118と第1のポリシリコンゲート電極119bと第2のポリシリコンゲート電極119a及びポリシリコンゲート配線119cに覆われているので、シリサイドが形成されない。
以上により第1のフィン状シリコン層105上部の拡散層117上部と第2のフィン状シリコン層106上部の拡散層117上部とにシリサイドを形成する製造方法が示された。
As shown in FIG. 28, a metal such as nickel or cobalt is deposited, and a
The manufacturing method for forming silicide on the
次に、層間絶縁膜125を堆積し、第1のポリシリコンゲート電極119bと第2のポリシリコンゲート電極119a及びポリシリコンゲート配線119cを露出し、第1のポリシリコンゲート電極119bと第2のポリシリコンゲート電極119a及びポリシリコンゲート配線119cをエッチング後、金属126を堆積し、第1の金属ゲート電極126bと第2の金属ゲート電極126aと金属ゲート配線126cとを形成するゲートラストの製造方法を示す。
図29に示すように、シリサイド123を保護するために、第5の窒化膜124を堆積する。
Next, an
As shown in FIG. 29, in order to protect the
図30に示すように、層間絶縁膜125を堆積し、化学機械研磨により平坦化する。
As shown in FIG. 30, an
図31に示すように、化学機械研磨により第1のポリシリコンゲート電極119bと第2のポリシリコンゲート電極119a及びポリシリコンゲート配線119cを露出する。
As shown in FIG. 31, the first
図32に示すように、第1のポリシリコンゲート電極119bと第2のポリシリコンゲート電極119a及びポリシリコンゲート配線119cをエッチングする。ウエットエッチングが望ましい。
As shown in FIG. 32, the first
図33に示すように金属126を堆積し、平坦化し、第1のポリシリコンゲート電極119bと第2のポリシリコンゲート電極119a及びポリシリコンゲート配線119cがあった部分に金属126を埋めこむ。原子層堆積を用いることが好ましい。
As shown in FIG. 33, a
図34に示すように、金属126をエッチングし、第1の柱状シリコン層109上部の拡散層113上のゲート絶縁膜118と、第2の柱状シリコン層110上部の拡散層114上のゲート絶縁膜118と、を露出する。第1の金属ゲート電極126b、第2の金属ゲート電極126a、金属ゲート配線126cが形成される。
As shown in FIG. 34, the
層間絶縁膜125を堆積し、第1のポリシリコンゲート電極119bと第2のポリシリコンゲート電極119a及びポリシリコンゲート配線119cを露出し、第1のポリシリコンゲート電極119bと第2のポリシリコンゲート電極119a及びポリシリコンゲート配線119cをエッチング後、金属126を堆積し、第1の金属ゲート電極126bと第2の金属ゲート電極126aと金属ゲート配線126cとを形成するゲートラストの製造方法が示された。
An interlayer insulating
次に、コンタクトを形成するための製造方法を示す。第1の柱状シリコン層109上部の拡散層113と第2の柱状シリコン層110上部の拡散層114とにシリサイドを形成しないため、コンタクトと第1の柱状シリコン層109上部の拡散層113とが直接接続され、コンタクトと第2の柱状シリコン層110上部の拡散層114とが直接接続されることとなる。
図35に示すように、層間絶縁膜127を堆積し、平坦化する。
Next, a manufacturing method for forming contacts will be described. Since no silicide is formed in the
As shown in FIG. 35, an
図36に示すように、第1の柱状シリコン層109上部と第2の柱状シリコン層110上部にコンタクト孔を形成するための第4のレジスト128を形成する。
As shown in FIG. 36, the 4th resist 128 for forming a contact hole is formed in the 1st
図37に示すように、層間絶縁膜127をエッチングし、コンタクト孔129を形成する。
As shown in FIG. 37, the
図38に示すように、第4のレジスト128を除去する。 As shown in FIG. 38, the 4th resist 128 is removed.
図39に示すように、金属ゲート配線126c上、第1のフィン状シリコン層105と第2のフィン状シリコン層106上にコンタクト孔を形成するための第5のレジスト130を形成する。
As shown in FIG. 39, a fifth resist 130 for forming contact holes is formed on the
図40に示すように、層間絶縁膜127、125をエッチングし、コンタクト孔131、132を形成する。
As shown in FIG. 40, the
図41に示すように、第5のレジスト130を除去する。 As shown in FIG. 41, the 5th resist 130 is removed.
図42に示すように、層間絶縁膜127とゲート絶縁膜118をエッチングし、シリサイド123と拡散層113、114とを露出する。
As shown in FIG. 42, the
図43に示すように、金属を堆積し、コンタクト133、134、135を形成する。 以上によりコンタクトを形成するための製造方法が示された。第1の柱状シリコン層109上部の拡散層113と第2の柱状シリコン層110上部の拡散層114にシリサイドを形成しないため、コンタクト134と第1の柱状シリコン層109上部の拡散層113とが直接接続され、コンタクト134と第2の柱状シリコン層110上部の拡散層114とが直接接続されることとなる。
As shown in FIG. 43, metal is deposited to form
次に、金属配線層を形成するための製造方法を示す。
図44に示すように、金属136を堆積する。
Next, a manufacturing method for forming the metal wiring layer will be described.
As shown in FIG. 44,
図45に示すように、金属配線を形成するための第6のレジスト137、138、139を形成する。 As shown in FIG. 45, sixth resists 137, 138, and 139 for forming metal wiring are formed.
図46に示すように、金属136をエッチングし、金属配線140、141、142を形成する。
As shown in FIG. 46, the
図47に示すように、第6のレジスト137、138、139を除去する。
以上により金属配線層を形成するための製造方法が示された。
As shown in FIG. 47, the sixth resists 137, 138, and 139 are removed.
Thus, a manufacturing method for forming a metal wiring layer has been shown.
上記製造方法の結果を図1に示す。
基板101上に形成された第1のフィン状シリコン層105と、基板101上に形成された第2のフィン状シリコン層106と、前記第1のフィン状シリコン層105と第2のフィン状シリコン層106はそれぞれの端で接続し閉ループを形成しており、第1のフィン状シリコン層105と第2のフィン状シリコン層106との周囲に形成された第1の絶縁膜107と、第1のフィン状シリコン層105上に形成された第1の柱状シリコン層109と、第2のフィン状シリコン層106上に形成された第2の柱状シリコン層110と、第1の柱状シリコン層109の直径は第1のフィン状シリコン層105の幅と同じであって、第2の柱状シリコン層110の直径は第2のフィン状シリコン層106の幅と同じであって、第1のフィン状シリコン層105の上部と第1の柱状シリコン層109の下部に形成された拡散層117と、第1の柱状シリコン層109の上部に形成された拡散層113と、第2のフィン状シリコン層106の上部と第2の柱状シリコン層110の下部に形成された拡散層117と、第2の柱状シリコン層110の上部に形成された拡散層114と、第1のフィン状シリコン層105の上部と第2のフィン状シリコン層106の上部の拡散層117の上部に形成されたシリサイド123と、第1の柱状シリコン層109の周囲に形成されたゲート絶縁膜118と、ゲート絶縁膜118の周囲に形成された第1の金属ゲート電極126bと、第2の柱状シリコン層110の周囲に形成されたゲート絶縁膜118と、ゲート絶縁膜118の周囲に形成された第2の金属ゲート電極126aと、第1の金属ゲート電極126bと第2の金属ゲート電極126aに接続された第1のフィン状シリコン層105と第2のフィン状シリコン層106に直交する方向に延在する金属ゲート配線126cと、第1の柱状シリコン層109上部に形成された拡散層113上に形成されたコンタクト134と、第2の柱状シリコン層110上部に形成された拡散層114上に形成されたコンタクト134と、を有し、第1の柱状シリコン層109上部に形成された拡散層113とコンタクト134とは直接接続し、第2の柱状シリコン層110上部に形成された拡散層114とコンタクト134とは直接接続する構造となる。
以上から、ゲート配線と基板間の寄生容量を低減し、ゲートラストプロセスであり、一つのダミーパターンから2個のトランジスタを形成するSGTの製造方法とその結果であるSGTの構造が提供されうる。
The result of the manufacturing method is shown in FIG.
First fin-
From the above, it is possible to provide an SGT manufacturing method in which two transistors are formed from one dummy pattern, and a SGT structure as a result, which is a gate last process by reducing the parasitic capacitance between the gate wiring and the substrate.
101.シリコン基板
102.第2の酸化膜、ダミーパターン
103.第1のレジスト
104.第1の窒化膜、第1の窒化膜サイドウォール
105.第1のフィン状シリコン層
106.第2のフィン状シリコン層
107.第一の絶縁膜
108.第2のレジスト
109.第1の柱状シリコン層
110.第2の柱状シリコン層
111.第3の酸化膜
112.第2の窒化膜
113.拡散層
114.拡散層
115.拡散層
116.拡散層
117.拡散層
118.ゲート絶縁膜
119.ポリシリコン
119a.第2のポリシリコンゲート電極
119b.第1のポリシリコンゲート電極
119c.ポリシリコンゲート配線
120.第3の窒化膜
121.第3のレジスト
122.第4の窒化膜
123.シリサイド
124.第5の窒化膜
125.層間絶縁膜
126.金属
126a.第2の金属ゲート電極
126b.第1の金属ゲート電極
126c.金属ゲート配線
127.層間絶縁膜
128.第4のレジスト
129.コンタクト孔
130.第5のレジスト
131.コンタクト孔
132.コンタクト孔
133.コンタクト
134.コンタクト
135.コンタクト
136.金属
137.第6のレジスト
138.第6のレジスト
139.第6のレジスト
140.金属配線
141.金属配線
142.金属配線
101.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014252199A JP5974066B2 (en) | 2014-12-12 | 2014-12-12 | Semiconductor device manufacturing method and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014252199A JP5974066B2 (en) | 2014-12-12 | 2014-12-12 | Semiconductor device manufacturing method and semiconductor device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013525062A Division JP5667699B2 (en) | 2011-12-02 | 2011-12-02 | Semiconductor device manufacturing method and semiconductor device |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016140405A Division JP6246276B2 (en) | 2016-07-15 | 2016-07-15 | Semiconductor device manufacturing method and semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015053529A JP2015053529A (en) | 2015-03-19 |
JP5974066B2 true JP5974066B2 (en) | 2016-08-23 |
Family
ID=52702267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014252199A Active JP5974066B2 (en) | 2014-12-12 | 2014-12-12 | Semiconductor device manufacturing method and semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5974066B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016195274A (en) * | 2016-07-15 | 2016-11-17 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. | Semiconductor device manufacturing method and semiconductor device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5874760A (en) * | 1997-01-22 | 1999-02-23 | International Business Machines Corporation | 4F-square memory cell having vertical floating-gate transistors with self-aligned shallow trench isolation |
KR100545863B1 (en) * | 2004-07-30 | 2006-01-24 | 삼성전자주식회사 | Semiconductor device having a fin structure and method of manufacturing the same |
KR100739532B1 (en) * | 2006-06-09 | 2007-07-13 | 삼성전자주식회사 | Method of forming a buried bit line |
WO2009110050A1 (en) * | 2008-02-15 | 2009-09-11 | 日本ユニサンティスエレクトロニクス株式会社 | Method for manufacturing semiconductor device |
US8546876B2 (en) * | 2008-03-20 | 2013-10-01 | Micron Technology, Inc. | Systems and devices including multi-transistor cells and methods of using, making, and operating the same |
KR101534679B1 (en) * | 2009-02-20 | 2015-07-07 | 삼성전자주식회사 | Method of fabricating a semiconductor device having a metal-semiconductor compound region |
JP2011071235A (en) * | 2009-09-24 | 2011-04-07 | Toshiba Corp | Semiconductor device and method of manufacturing the same |
KR20110101876A (en) * | 2010-03-10 | 2011-09-16 | 삼성전자주식회사 | Semiconductor device with a buried bit line and method of manufacturing the semiconductor device |
-
2014
- 2014-12-12 JP JP2014252199A patent/JP5974066B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016195274A (en) * | 2016-07-15 | 2016-11-17 | ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. | Semiconductor device manufacturing method and semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
JP2015053529A (en) | 2015-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5695745B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP5596237B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP5667699B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP5662590B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP5731073B1 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP5596245B1 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP5974066B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP5670603B1 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP6246276B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP6329301B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP6284585B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JPWO2015008387A1 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP6026610B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP6156883B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP5814437B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP6235662B2 (en) | Semiconductor device | |
JP5986618B2 (en) | Semiconductor device | |
JP6326437B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP6080989B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP5869166B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP5890053B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP5861197B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP6121386B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP5917673B2 (en) | Semiconductor device manufacturing method and semiconductor device | |
JP5936653B2 (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160108 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160620 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160715 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5974066 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |