TW201308419A - Apparatus and mothod for treating substrate - Google Patents
Apparatus and mothod for treating substrate Download PDFInfo
- Publication number
- TW201308419A TW201308419A TW101123466A TW101123466A TW201308419A TW 201308419 A TW201308419 A TW 201308419A TW 101123466 A TW101123466 A TW 101123466A TW 101123466 A TW101123466 A TW 101123466A TW 201308419 A TW201308419 A TW 201308419A
- Authority
- TW
- Taiwan
- Prior art keywords
- fluid
- substrate
- organic solvent
- module
- separation
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
- H01L21/67034—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02101—Cleaning only involving supercritical fluids
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
本文中之本發明係關於用於處理基板之設備及方法,且更特定言之,係關於用於使用超臨界流體處理基板之設備及方法。 The invention herein relates to apparatus and methods for processing substrates, and more particularly to apparatus and methods for processing substrates using supercritical fluids.
可經由各種步驟製造半導體裝置,該等步驟包括用於在諸如矽晶圓或其類似者之基板上形成電路圖案之光微影步驟。當製造半導體裝置時,可能會產生諸如粒子、有機污染物、金屬雜質及其類似物之各種異物。異物可能會引起基板缺陷直接對半導體裝置之良率施加不利影響。因此,在半導體製造過程中可實質上涉及用於移除異物的清潔步驟。 The semiconductor device can be fabricated via various steps including photolithography steps for forming a circuit pattern on a substrate such as a germanium wafer or the like. When manufacturing a semiconductor device, various foreign matters such as particles, organic contaminants, metal impurities, and the like may be generated. Foreign matter may cause substrate defects to directly adversely affect the yield of the semiconductor device. Therefore, a cleaning step for removing foreign matter can be substantially involved in the semiconductor manufacturing process.
一般而言,在典型清潔步驟中,使用清潔劑移除保持在基板上的異物,且接著使用去離子水(DI水)清潔基板,以使用異丙醇(IPA)乾燥經清潔之基板。然而,在半導體裝置具有精細電路圖案的情況下,乾燥步驟可能具有低的效率。此外,由於電路圖案的損壞(亦即,圖案破裂)在乾燥步驟期間頻繁發生,因此乾燥步驟不適合於線寬度為約30 nm或更小的半導體裝置。 In general, in a typical cleaning step, a foreign matter held on a substrate is removed using a cleaning agent, and then the substrate is cleaned using deionized water (DI water) to dry the cleaned substrate using isopropyl alcohol (IPA). However, in the case where the semiconductor device has a fine circuit pattern, the drying step may have low efficiency. Further, since the damage of the circuit pattern (i.e., pattern cracking) frequently occurs during the drying step, the drying step is not suitable for a semiconductor device having a line width of about 30 nm or less.
因此,為了解決上述限制,正積極地進行關於用於使用超臨界流體來乾燥基板之技術的研究。 Therefore, in order to solve the above limitations, research on a technique for drying a substrate using a supercritical fluid is being actively conducted.
本發明提供一種用於使用超臨界流體來處理基板之設備及使用該設備來處理基板之方法。 The present invention provides an apparatus for processing a substrate using a supercritical fluid and a method of processing the substrate using the apparatus.
本發明亦提供一種用於處理基板之設備(其中使用於乾燥基板之超臨界流體再循環)及使用該設備來處理基板之方法。 The present invention also provides an apparatus for processing a substrate, wherein supercritical fluid recycling is used for drying the substrate, and a method of processing the substrate using the apparatus.
本發明之特徵不限於上述特徵,而熟習此項技術者自本說明書及附圖將清楚地理解本文中未描述之其他特徵。 The features of the present invention are not limited to the features described above, and other features not described herein will be apparent from the description and drawings.
本發明提供用於處理基板之設備。 The present invention provides an apparatus for processing a substrate.
本發明之實施例提供用於處理基板之設備,該設備包括:處理腔室,其中使用提供為超臨界流體之流體來溶解殘留於基板上之有機溶劑;及再循環單元,其中使有機溶劑與自處理腔室排出之流體分離以使該流體再循環。 Embodiments of the present invention provide an apparatus for processing a substrate, the apparatus comprising: a processing chamber in which a fluid provided as a supercritical fluid is used to dissolve an organic solvent remaining on the substrate; and a recycling unit in which the organic solvent is The fluid exiting the processing chamber separates to recirculate the fluid.
在一些實施例中,該再循環單元可包括用於冷卻該流體之分離模組,其中該有機溶劑經溶解以使該有機溶劑與該流體分離。 In some embodiments, the recycling unit can include a separation module for cooling the fluid, wherein the organic solvent is dissolved to separate the organic solvent from the fluid.
在其他實施例中,可提供複數個分離模組,且該複數個分離模組可彼此串聯連接。 In other embodiments, a plurality of separation modules may be provided, and the plurality of separation modules may be connected to each other in series.
在其他實施例中,該分離模組可包括:分離槽,自該處理腔室排出之該流體引入至該分離槽中;冷卻腔室,其用於冷卻該分離槽;排水管,其安置於該分離槽之下部部分中,以排出經液化且與該流體分離之有機溶劑;及第一排氣管,其安置於該分離槽之上部部分中,以排出與該有機溶劑分離之流體。 In other embodiments, the separation module may include: a separation tank into which the fluid discharged from the processing chamber is introduced; a cooling chamber for cooling the separation tank; and a drain pipe disposed on the drain The lower portion of the separation tank is for discharging an organic solvent that is liquefied and separated from the fluid; and a first exhaust pipe disposed in an upper portion of the separation tank to discharge a fluid separated from the organic solvent.
在其他實施例中,該分離模組可進一步包括流入管,其用於將自該處理腔室排出之流體供應至該分離槽之下部部分中。 In other embodiments, the separation module can further include an inflow tube for supplying fluid discharged from the processing chamber into the lower portion of the separation tank.
在其他實施例中,該分離模組可進一步包括逆壓調節器,其安置於該第一排氣管中以恆定地維持該分離槽之內 部壓力。 In other embodiments, the separation module may further include a back pressure regulator disposed in the first exhaust pipe to constantly maintain the separation groove Department pressure.
在進一步之實施例中,該再循環單元可進一步包括管柱模組,該管柱模組提供吸收材料以用於將有機模組吸收至自分離模組排出之流體中,以將有機溶劑與該流體分離,可提供複數個管柱模組,且該複數個管柱模組可彼此串聯連接。 In a further embodiment, the recycling unit may further include a column module that provides an absorbing material for absorbing the organic module into the fluid discharged from the separation module to The fluid separation provides a plurality of column modules, and the plurality of column modules can be connected to each other in series.
在更進一步之實施例中,可提供複數個管柱模組,且該複數個管柱模組可彼此並聯連接。 In still further embodiments, a plurality of column modules can be provided, and the plurality of column modules can be connected in parallel with each other.
在更進一步之實施例中,該管柱模組可包括:吸收管柱,其用於將吸收材料提供至自分離模組排出之流體中;溫度維持部件,其用於恆定地維持該吸收管柱之內部溫度;及第二排氣管,其用於排出藉由該吸收材料而與有機溶劑分離之流體。 In still further embodiments, the column module can include: an absorption column for providing absorbing material to the fluid discharged from the separation module; and a temperature maintaining member for constantly maintaining the absorption tube An internal temperature of the column; and a second exhaust pipe for discharging the fluid separated from the organic solvent by the absorbing material.
在更進一步之實施例中,該管柱模組可進一步包括濃度感測器,該濃度感測器安置於該第二排氣管中以偵測含於自該第二排氣管排出之流體中的有機溶劑之濃度。 In still further embodiments, the column module may further include a concentration sensor disposed in the second exhaust pipe to detect a fluid contained in the second exhaust pipe The concentration of the organic solvent in the medium.
在更進一步之實施例中,該吸收材料可包括沸石。 In still further embodiments, the absorbent material can comprise a zeolite.
在更進一步之實施例中,該再循環單元可包括管柱模組,該管柱模組提供吸收材料以用於將有機模組吸收至自處理腔室排出之流體中以將有機溶劑與該流體分離。 In still further embodiments, the recycling unit can include a column module that provides an absorbing material for absorbing the organic module into the fluid discharged from the processing chamber to separate the organic solvent from the Fluid separation.
在本發明之其他實施例中,用於處理基板之方法包括:使用提供為超臨界流體之流體來溶解殘留於基板上之有機溶劑以乾燥該基板;及使該有機溶劑與該流體分離以使該流體再循環。 In other embodiments of the present invention, a method for processing a substrate includes: using a fluid provided as a supercritical fluid to dissolve an organic solvent remaining on the substrate to dry the substrate; and separating the organic solvent from the fluid to This fluid is recycled.
在一些實施例中,流體之再循環可包括冷卻該流體,其中該有機溶劑經溶解以使該有機溶劑與該流體分離。 In some embodiments, recycling of the fluid can include cooling the fluid, wherein the organic solvent is dissolved to separate the organic solvent from the fluid.
在其他實施例中,流體之再循環可進一步包括提供吸收材料以用於將有機溶劑吸收至流體中以使該有機溶劑與該流體分離。 In other embodiments, recycling of the fluid can further include providing an absorbing material for absorbing the organic solvent into the fluid to separate the organic solvent from the fluid.
在本發明之其他實施例中,用於處理基板之設備包括:處理腔室,其中使用提供為超臨界流體之流體來溶解殘留於基板上之有機溶劑以乾燥該基板;儲存槽,其中以液體狀態儲存該流體;供水槽,其接收來自儲存槽之流體以產生超臨界流體且將該超臨界流體提供至該處理腔室中;及再循環單元,其中使有機溶劑與自處理腔室排出之流體分離以使該流體再循環,且將再循環之流體供應至該儲存槽中。 In other embodiments of the present invention, an apparatus for processing a substrate includes: a processing chamber in which a fluid provided as a supercritical fluid is used to dissolve an organic solvent remaining on the substrate to dry the substrate; and a storage tank in which the liquid a state storing the fluid; a water supply tank receiving fluid from the storage tank to generate a supercritical fluid and providing the supercritical fluid into the processing chamber; and a recycling unit, wherein the organic solvent is discharged from the processing chamber The fluid is separated to recirculate the fluid and the recirculated fluid is supplied to the storage tank.
在一些實施例中,該再循環單元可包括用於冷卻該流體之分離模組,其中該有機溶劑經溶解以使該有機溶劑與該流體分離。 In some embodiments, the recycling unit can include a separation module for cooling the fluid, wherein the organic solvent is dissolved to separate the organic solvent from the fluid.
在其他實施例中,該再循環單元可進一步包括管柱模組,該管柱模組提供吸收材料以用於將有機模組吸收至自分離模組排出之流體中以使有機溶劑與該流體分離。 In other embodiments, the recycling unit may further include a column module that provides an absorbing material for absorbing the organic module into the fluid discharged from the separation module to cause the organic solvent and the fluid Separation.
在其他實施例中,該設備可進一步包括第一冷凝器,其用於將自該再循環單元排出之氣態流體改變為液態流體以將該液態流體供應至該儲存槽中。 In other embodiments, the apparatus can further include a first condenser for changing a gaseous fluid discharged from the recirculation unit to a liquid fluid to supply the liquid fluid to the storage tank.
在其他實施例中,該等設備可進一步包括:第二冷凝器,用於將自該儲存槽排出之氣態流體改變為液態流體;及泵,其接收來自該第二冷凝器之液態流體以將該液態流體供應至該供水槽中;且其中,在該供水槽中,在大於臨界溫度之溫度下加熱藉由該泵以大於臨界壓力之壓力壓縮之流體,以產生超臨界流體。 In other embodiments, the apparatus may further include: a second condenser for changing a gaseous fluid discharged from the storage tank to a liquid fluid; and a pump that receives the liquid fluid from the second condenser to The liquid fluid is supplied to the water supply tank; and wherein, in the water supply tank, a fluid compressed by the pump at a pressure greater than a critical pressure is heated at a temperature greater than a critical temperature to generate a supercritical fluid.
在本發明之其他實施例中,用於處理基板之方法包括:將液態流體儲存於儲存槽中;將所儲存之流體改變為超臨界流體;使用提供為超臨界流體之流體來溶解殘留於基板上之有機溶劑以乾燥該基板;使該有機溶劑與該流體分離,其中溶解該有機溶劑以使該流體再循環;及將再循環之流體改變為液態流體以將該液態流體供應至該儲存槽中。 In other embodiments of the invention, a method for processing a substrate includes: storing a liquid fluid in a storage tank; changing the stored fluid to a supercritical fluid; and dissolving the residue on the substrate using a fluid provided as a supercritical fluid An organic solvent to dry the substrate; separating the organic solvent from the fluid, wherein the organic solvent is dissolved to recycle the fluid; and changing the recycled fluid to a liquid fluid to supply the liquid fluid to the storage tank in.
在一些實施例中,流體之再循環可包括冷卻該流體之第一再循環步驟,其中該有機溶劑經溶解以使該有機溶劑與該流體分離。 In some embodiments, the recycling of the fluid can include a first recycling step of cooling the fluid, wherein the organic solvent is dissolved to separate the organic solvent from the fluid.
在其他實施例中,流體之再循環可進一步包括提供吸收材料以用於將有機溶劑吸收至流體中以使該有機溶劑與該流體分離之第二再循環步驟。 In other embodiments, the recycling of the fluid can further include a second recycling step of providing an absorbent material for absorbing the organic solvent into the fluid to separate the organic solvent from the fluid.
包括附圖以提供對本發明的進一步理解,且附圖併入於本說明書中且構成本說明書之部分。該等圖式說明本發明之例示性實施例,且與實施方式一起用以解釋本發明之原理。 The drawings are included to provide a further understanding of the invention, and the drawings are incorporated in this specification. The drawings illustrate the exemplary embodiments of the invention and, together with the embodiments
提供本發明之較佳實施例以使得本發明將徹底且完整,且將本發明之範疇完全傳達給熟習此項技術者。然而,本發明可以不同形式體現,且不應解釋為限於本文中所闡述之實施例。因此,熟習此項技術者將顯而易見,可在不脫離本發明之精神或範疇的情況下在本發明中進行各種修改及更改。 The preferred embodiments of the present invention are provided so that this invention will be thorough and complete, and the scope of the invention will be fully disclosed to those skilled in the art. However, the invention may be embodied in different forms and should not be construed as being limited to the embodiments set forth herein. It will be apparent, therefore, that various modifications and changes may be made in the invention without departing from the spirit and scope of the invention.
亦將理解,儘管使用了特定術語且本文中附有圖式以 容易地描述本發明之例示性實施例,但本發明不受此等術語及附圖之限制。 It will also be understood that although specific terms are used and the drawings are attached hereto The exemplary embodiments of the present invention are readily described, but the invention is not limited by the terms and the drawings.
此外,將排除關於熟知功能或組態之詳細描述,以便不會不必要地混淆本發明之標的物。 In addition, detailed descriptions of well-known functions or configurations are omitted so as not to unnecessarily obscure the subject matter of the present invention.
根據本發明之用於處理基板之設備100可為用於對基板S執行清潔步驟之設備。 The apparatus 100 for processing a substrate according to the present invention may be an apparatus for performing a cleaning step on the substrate S.
此處,應綜合地理解,基板S可包括各種晶圓(包括矽晶圓)、玻璃基板、有機基板及其類似物,以及用於製造半導體裝置、顯示器、包括上面形成有電路之薄膜的產品及其類似物之基板。 Here, it should be comprehensively understood that the substrate S may include various wafers (including germanium wafers), glass substrates, organic substrates, and the like, and products for manufacturing semiconductor devices, displays, and films including the circuits formed thereon. A substrate for its analogs.
下文中,將描述根據一實施例之用於處理基板之設備100。 Hereinafter, an apparatus 100 for processing a substrate according to an embodiment will be described.
圖1為根據本發明之一實施例之用於處理基板之設備100的平面圖。 1 is a plan view of an apparatus 100 for processing a substrate in accordance with an embodiment of the present invention.
用於處理基板之設備100包括索引模組1000、處理模組2000、超臨界流體供應單元3000及再循環單元4000。索引模組1000接收來自外部之基板S以將基板S提供至處理模組。處理模組2000對基板S執行清潔步驟。超臨界流體供應單元3000供應待用於清潔步驟之超臨界流體,且再循環單元4000使用於清潔步驟之超臨界流體再循環。 The apparatus 100 for processing a substrate includes an indexing module 1000, a processing module 2000, a supercritical fluid supply unit 3000, and a recycling unit 4000. The indexing module 1000 receives the substrate S from the outside to provide the substrate S to the processing module. The processing module 2000 performs a cleaning step on the substrate S. The supercritical fluid supply unit 3000 supplies the supercritical fluid to be used in the cleaning step, and the recycling unit 4000 uses the supercritical fluid recycle in the cleaning step.
索引模組1000可為設備前端模組(EFEM)。而且,索引模組1000包括裝載口1100及傳送框1200。裝載口1100、傳送框1200及處理模組2000可連續地配置成一行。 The index module 1000 can be an equipment front end module (EFEM). Moreover, the index module 1000 includes a load port 1100 and a transfer frame 1200. The load port 1100, the transfer frame 1200, and the processing module 2000 can be continuously arranged in a row.
此處,裝載口1100、傳送框1200及處理模組2000之配置方向稱為第一方向X。而且,當自上側檢視時,垂直於第一方向X之方向稱為第二方向Y,且垂直於第一方向 X及第二方向Y之方向稱為第三方向Z。 Here, the arrangement direction of the load port 1100, the transfer frame 1200, and the processing module 2000 is referred to as a first direction X. Moreover, when viewed from the upper side, the direction perpendicular to the first direction X is referred to as the second direction Y and perpendicular to the first direction The direction of X and the second direction Y is referred to as the third direction Z.
至少一裝載口1100可設置於索引模組1000中。 At least one load port 1100 can be disposed in the index module 1000.
裝載口1100安置於傳送框1200之一側上。當裝載口1100提供為複數個時,裝載口1100可沿著第二方向Y配置成一行。 The load port 1100 is disposed on one side of the transfer frame 1200. When the load port 1100 is provided in plural, the load ports 1100 may be arranged in a row along the second direction Y.
裝載口1100之數目及配置並不限於上述實例。舉例而言,可考慮到用於處理基板之設備100之佔據面積、處理效率及相對於其他用於處理基板之設備100之相對配置而恰當地選擇裝載口1100之數目及配置。 The number and configuration of the load ports 1100 are not limited to the above examples. For example, the number and configuration of load ports 1100 can be appropriately selected in view of the footprint of device 100 for processing substrates, processing efficiency, and relative configuration of other devices 100 for processing substrates.
其中接收基板C之載體C安置於裝載口1100上。載體C自外部傳送,且接著裝載於裝載口1100上,或自裝載口1100卸載,且接著傳送至外部。舉例而言,載體C可藉由諸如懸吊式升降傳送器(OHT)之傳送單元而在用於處理基板之設備100之間傳送。此處,可藉由諸如無人搬運車、軌道導引車或其類似物之其他傳送單元來替代OHT或工人來傳送基板S。 The carrier C in which the substrate C is received is disposed on the load port 1100. The carrier C is transported from the outside and then loaded onto the load port 1100 or unloaded from the load port 1100 and then transferred to the outside. For example, carrier C can be transferred between devices 100 for processing substrates by a transfer unit such as a suspended lift conveyor (OHT). Here, the substrate S may be transferred by replacing the OHT or the worker by another transfer unit such as an automated guided vehicle, a track guided vehicle or the like.
基板S經接收至載體C中。正面開口標準箱(FOUP)可用作載體C。 The substrate S is received into the carrier C. A front opening standard box (FOUP) can be used as the carrier C.
用於支撐基板S之邊緣的至少一狹槽可設置於載體C內。 At least one slot for supporting the edge of the substrate S may be disposed within the carrier C.
當狹槽提供為複數個時,該等狹槽可沿著第三方向Z彼此隔開。 When the slots are provided in plural, the slots may be spaced apart from each other along the third direction Z.
因此,基板S可置放於載體C內。舉例而言,載體C可接收25個基板S。 Therefore, the substrate S can be placed in the carrier C. For example, carrier C can receive 25 substrates S.
載體C之內部可藉由可打開的門與外部隔離,且因此得以密封。因此,可防止接收於載體C中之基板S受到污 染。 The interior of the carrier C can be isolated from the outside by an openable door and thus sealed. Therefore, the substrate S received in the carrier C can be prevented from being contaminated dye.
傳送框架1200在位於裝載口1100上之載體C與處理模組2000之間傳送基板S。傳送模組1200包括索引機器人1210及索引軌1220。 The transfer frame 1200 transfers the substrate S between the carrier C located on the load port 1100 and the processing module 2000. The transfer module 1200 includes an indexing robot 1210 and an index track 1220.
索引軌1220提供索引機器人1210之移動路徑。索引軌1220可安置在平行於第二方向Y之其長度方向上。 Index track 1220 provides a path of movement for indexing robot 1210. The index track 1220 can be disposed in a direction parallel to the length direction of the second direction Y.
索引機器人1210傳送基板S。索引機器人1210可包括基座1211、本體1212及臂1213。 The indexing robot 1210 transmits the substrate S. The indexing robot 1210 can include a base 1211, a body 1212, and an arm 1213.
基座1211安置於索引軌1220上。而且,基座1211可沿著索引軌1220而移動。本體1212耦接至基座1211。而且,本體1212可沿著第三方向Z在基座1211上移動,或圍繞在第三方向Z上界定之軸線而旋轉。臂1213安置於本體1212上。而且,臂1213可前後移動。手部可放在臂1213之末端上以拾取或置放基板S。索引機器人1210可包括至少一臂1213。當臂1213提供為複數個時,臂1213可堆疊於本體1212上且配置於第三方向Z上。此處,各臂1213可獨立地操作。 The base 1211 is disposed on the index rail 1220. Moreover, the base 1211 can be moved along the index rail 1220. The body 1212 is coupled to the base 1211. Moreover, the body 1212 can move over the base 1211 along a third direction Z or about an axis defined in the third direction Z. The arm 1213 is disposed on the body 1212. Moreover, the arm 1213 can be moved back and forth. A hand can be placed on the end of the arm 1213 to pick up or place the substrate S. The indexing robot 1210 can include at least one arm 1213. When the arms 1213 are provided in plurality, the arms 1213 may be stacked on the body 1212 and disposed in the third direction Z. Here, each arm 1213 can operate independently.
因此,在索引機器人1210中,基座1211可在第二方向Y上在索引軌1220上移動。而且,索引機器人1210可根據本體1212及臂1213之操作而自載體C取出基板S以將基板S傳送至處理模組2000中或自處理模組2000取出基板S以將基板S接收於載體C中。 Thus, in the indexing robot 1210, the pedestal 1211 can move over the index track 1220 in the second direction Y. Moreover, the indexing robot 1210 can take out the substrate S from the carrier C according to the operation of the body 1212 and the arm 1213 to transfer the substrate S into the processing module 2000 or take out the substrate S from the processing module 2000 to receive the substrate S in the carrier C. .
在傳送框1200中可略去索引軌1220,且索引機器人1210可固定至傳送框1200。在此情況下,索引機器人1210可安置於傳送框1200之中央部分上。 The index track 1220 may be omitted in the transfer block 1200 and the indexing robot 1210 may be fixed to the transfer frame 1200. In this case, the indexing robot 1210 can be disposed on a central portion of the transfer frame 1200.
處理模組2000自索引模組1000接收基板S以對基板S 執行清潔步驟。處理模組2000包括緩衝腔室2100、傳送腔室2200、第一處理腔室2300及第二處理腔室2500。緩衝腔室2100及傳送腔室2200係沿第一方向X而安置,且傳送腔室2200經安置在平行於第一方向X之其長度方向上。處理腔室2300及2500可在第二方向Y上安置於傳送腔室2200之側表面上。 The processing module 2000 receives the substrate S from the index module 1000 to the substrate S Perform the cleaning steps. The processing module 2000 includes a buffer chamber 2100, a transfer chamber 2200, a first processing chamber 2300, and a second processing chamber 2500. The buffer chamber 2100 and the transfer chamber 2200 are disposed along the first direction X, and the transfer chamber 2200 is disposed in a length direction parallel to the first direction X. The processing chambers 2300 and 2500 may be disposed on a side surface of the transfer chamber 2200 in the second direction Y.
此處,第一處理腔室2300可在第二方向Y上安置於傳送腔室2200之一側上,且第二處理腔室2500可安置於與安置有第一處理腔室之該側相對的另一側上。第一處理腔室2300可提供為一個或複數個。當提供複數個第一處理腔室2300時,第一處理腔室2300可沿第一方向X安置於傳送腔室2200之一側上、沿第三方向Z堆疊,或按其組合而安置。類似地,第二處理腔室2500可提供為一個或複數個。當提供複數個第二處理腔室時,第二處理腔室可沿第一方向X安置於傳送腔室2500之一側上、沿第三方向Z堆疊,或按其組合而安置。 Here, the first processing chamber 2300 may be disposed on one side of the transfer chamber 2200 in the second direction Y, and the second processing chamber 2500 may be disposed opposite the side on which the first processing chamber is disposed On the other side. The first processing chamber 2300 can be provided in one or more. When a plurality of first processing chambers 2300 are provided, the first processing chambers 2300 can be disposed on one side of the transfer chamber 2200 in the first direction X, stacked in the third direction Z, or disposed in a combination thereof. Similarly, the second processing chamber 2500 can be provided in one or more. When a plurality of second processing chambers are provided, the second processing chambers may be disposed on one side of the transfer chamber 2500 in the first direction X, stacked in the third direction Z, or disposed in a combination thereof.
然而,處理模組200中之腔室中之每一者的配置並不限於上述實例。亦即,可考慮到處理效率而恰當地安置該等腔室。舉例而言,在必要時,第一處理腔室2300及第二處理腔室2500可沿第一方向X安置於與傳送模組2200相同側之平面上,或堆疊於彼此之上。 However, the configuration of each of the chambers in the processing module 200 is not limited to the above examples. That is, the chambers can be properly placed in consideration of processing efficiency. For example, the first processing chamber 2300 and the second processing chamber 2500 may be disposed in a first direction X on a plane on the same side as the transfer module 2200, or stacked on each other, as necessary.
緩衝腔室2100安置於傳送框1200與傳送腔室2200之間以提供緩衝空間,在索引模組1000與處理模組2000之間傳送之基板S可暫時停放於該緩衝空間中。其上置放基板S之至少一緩衝狹槽可提供於緩衝腔室2100內。當緩衝狹槽提供為複數個時,該等緩衝狹槽可沿著第三方向Z彼 此隔開。 The buffer chamber 2100 is disposed between the transfer frame 1200 and the transfer chamber 2200 to provide a buffer space. The substrate S transferred between the index module 1000 and the processing module 2000 can be temporarily parked in the buffer space. At least one buffer slot on which the substrate S is placed may be provided in the buffer chamber 2100. When the buffer slot is provided in plural, the buffer slots may be along the third direction Z This is separated.
藉由索引機器人1210自載體C取出之基板可位於緩衝狹槽中,或藉由傳送腔室2200之傳送機器人2210自處理腔室2300及2500傳送之基板C可位於緩衝狹槽中。另一方面,索引機器人1210或傳送機器人2210可自緩衝狹槽取出基板S以將基板S接收於載體C中,或將基板S傳送至處理腔室2300及2500中。 The substrate taken from the carrier C by the indexing robot 1210 may be located in the buffer slot, or the substrate C transported from the processing chambers 2300 and 2500 by the transfer robot 2210 of the transfer chamber 2200 may be located in the buffer slot. On the other hand, the indexing robot 1210 or the transfer robot 2210 can take out the substrate S from the buffer slot to receive the substrate S in the carrier C or transfer the substrate S into the processing chambers 2300 and 2500.
傳送腔室2200在圍繞其安置之腔室2100、2300與2500之間傳送基板S。緩衝腔室2100可在第一方向X上安置於傳送腔室2200之一側上。處理腔室2300及2500可在第二方向Y上安置於傳送腔室2200之一側或兩側上。因此,傳送腔室2200可在緩衝腔室2100、第一處理腔室2300與第二處理腔室2500之間傳送基板S。 The transfer chamber 2200 transfers the substrate S between the chambers 2100, 2300 and 2500 disposed therearound. The buffer chamber 2100 may be disposed on one side of the transfer chamber 2200 in the first direction X. The processing chambers 2300 and 2500 can be disposed on one or both sides of the transfer chamber 2200 in the second direction Y. Accordingly, the transfer chamber 2200 can transfer the substrate S between the buffer chamber 2100, the first process chamber 2300, and the second process chamber 2500.
傳送腔室2200包括傳送軌2220及傳送機器人2210。 The transfer chamber 2200 includes a transfer rail 2220 and a transfer robot 2210.
傳送軌2220提供傳送機器人2210之移動路徑。傳送軌2220可平行於第一方向X而安置。傳送機器人2210傳送基板S。傳送機器人2210可包括基座2211、本體2212及臂2213。由於傳送機器人2210之組件中之每一者類似於索引機器人1210之彼等組件中之每一者,故將省略其詳細描述。傳送機器人2210藉由本體2212及臂2213之操作而在緩衝腔室2100、第一處理腔室2300與第二處理腔室2500之間傳送基板S,同時基座2211沿傳送軌2220移動。 The transport track 2220 provides a path of movement for the transfer robot 2210. The transfer rail 2220 can be disposed parallel to the first direction X. The transfer robot 2210 transfers the substrate S. The transfer robot 2210 can include a base 2211, a body 2212, and an arm 2213. Since each of the components of the transfer robot 2210 is similar to each of the components of the indexing robot 1210, a detailed description thereof will be omitted. The transfer robot 2210 transfers the substrate S between the buffer chamber 2100, the first processing chamber 2300, and the second processing chamber 2500 by the operation of the body 2212 and the arm 2213 while the susceptor 2211 moves along the transfer rail 2220.
第一處理腔室2300及第二處理腔室2500可對基板S執行彼此不同之處理。此處,在第一處理腔室2300中執行之第一處理與在第二處理腔室2500中執行之第二處理可連續地執行。 The first processing chamber 2300 and the second processing chamber 2500 may perform different processes from each other on the substrate S. Here, the first process performed in the first process chamber 2300 and the second process performed in the second process chamber 2500 may be continuously performed.
舉例而言,可在第一處理腔室2300中執行化學步驟、清潔步驟及第一乾燥步驟。而且,可在第二處理腔室2500中執行為第一步驟之後續步驟的第二乾燥步驟。此處,第一乾燥步驟可為使用有機溶劑執行之濕式乾燥步驟,且第二乾燥步驟可為使用超臨界流體執行之超臨界乾燥步驟。在必要時,可選擇性地執行第一乾燥步驟及第二乾燥步驟中之僅一者。 For example, a chemical step, a cleaning step, and a first drying step can be performed in the first processing chamber 2300. Moreover, a second drying step that is a subsequent step of the first step can be performed in the second processing chamber 2500. Here, the first drying step may be a wet drying step performed using an organic solvent, and the second drying step may be a supercritical drying step performed using a supercritical fluid. Only one of the first drying step and the second drying step may be selectively performed as necessary.
下文中,將描述第一處理腔室2300。圖2為圖1之第一處理腔室2300的截面圖。 Hereinafter, the first processing chamber 2300 will be described. 2 is a cross-sectional view of the first processing chamber 2300 of FIG.
第一步驟係在第一處理腔室2300中執行。此處,第一步驟可包括化學步驟、清潔步驟及第一乾燥步驟中之至少一者。如前所述,可省略第一乾燥步驟。 The first step is performed in the first processing chamber 2300. Here, the first step may include at least one of a chemical step, a cleaning step, and a first drying step. As mentioned previously, the first drying step can be omitted.
第一處理腔室2300包括外殼2310及處理單元2400。外殼2310界定第一處理腔室230之外壁,且處理單元2400安置於外殼2310內以執行第一步驟。 The first processing chamber 2300 includes a housing 2310 and a processing unit 2400. The outer casing 2310 defines an outer wall of the first processing chamber 230, and the processing unit 2400 is disposed within the outer casing 2310 to perform the first step.
處理單元2400包括自旋頭2410、流體供應部件2420、回收容器2430及升降部件2440。 The processing unit 2400 includes a spin head 2410, a fluid supply member 2420, a recovery container 2430, and a lifting member 2440.
基板S位於自旋頭上2410。而且,自旋頭2410在步驟進展期間旋轉基板S。自旋頭2410可包括支撐板2411、支撐銷2412、夾持銷2413、旋轉軸2414及馬達2415。 The substrate S is located on the spin head 2410. Moreover, the spin head 2410 rotates the substrate S during the progress of the step. The spin head 2410 may include a support plate 2411, a support pin 2412, a clamp pin 2413, a rotating shaft 2414, and a motor 2415.
支撐板2411具有形狀與基板S之形狀類似的上部部分。亦即,支撐板2411之上部部分可具有圓形形狀。其上置放有基板S之複數個支撐銷2412及用於固定基板S之複數個夾持銷2413安置於支撐板2411上。藉由馬達2415而旋轉之旋轉軸2414固定且耦接至支撐板2411之底表面。馬達2415使用外部電源產生旋轉力,以經由旋轉軸2414 旋轉支撐板2411。因此,基板S可位於自旋頭2410上,且支撐板2411可經旋轉以在第一步驟進展期間使基板旋轉。 The support plate 2411 has an upper portion having a shape similar to that of the substrate S. That is, the upper portion of the support plate 2411 may have a circular shape. A plurality of support pins 2412 on which the substrate S is placed and a plurality of clamping pins 2413 for fixing the substrate S are disposed on the support plate 2411. The rotating shaft 2414 rotated by the motor 2415 is fixed and coupled to the bottom surface of the support plate 2411. The motor 2415 generates a rotational force using an external power source to pass the rotating shaft 2414. The support plate 2411 is rotated. Thus, the substrate S can be located on the spin head 2410, and the support plate 2411 can be rotated to rotate the substrate during the first step of progression.
支撐銷2412中之每一者在第三方向Z上自支撐板2411之頂表面突出。複數個支撐銷2412經安置為彼此隔開預設距離。當自上側檢視時,支撐銷2412可配置成圓環形狀。基板S之後表面可置放於支撐銷2412上。因此,基板S位於支撐銷2412上,以使得基板S藉由支撐銷2412而與支撐板2411之頂表面隔開支撐銷2412中之每一者的突出距離。 Each of the support pins 2412 protrudes from the top surface of the support plate 2411 in the third direction Z. A plurality of support pins 2412 are disposed to be spaced apart from each other by a predetermined distance. The support pin 2412 may be configured in a ring shape when viewed from the upper side. The surface behind the substrate S can be placed on the support pin 2412. Accordingly, the substrate S is positioned on the support pins 2412 such that the substrate S is separated from the top surface of the support plate 2411 by the support pins 2412 by the protruding distance of each of the support pins 2412.
夾持銷2413中之每一者較之於支撐銷2412中之每一者可在第三方向Z上進一步自支撐板2411之頂表面突出。因此,夾持銷2413較之於支撐銷2412可安置地距支撐板2411之中心更遠。夾持銷2413可沿著支撐板2411之半徑方向在固定位置與拾取位置之間移動。此處,固定位置表示與支撐板2411之中心隔開對應於基板S之半徑的距離之位置,且拾取位置表示較之於固定位置遠離支撐板2411之中心的位置。當藉由傳送機器人2210將基板S裝載於自旋頭2410上時,夾持銷2413安置於拾取位置處。當裝載基板S且接著執行步驟時,夾持銷2413可移動至固定位置以接觸基板S之側表面,藉此將基板S固定在常規位置。而且,當完成步驟,且接著傳送機器人2210拾取基板S以卸載基板S時,夾持銷2413可再次移動至拾取位置。因此,夾持銷2413可防止基板S藉由旋轉自旋頭2410時的旋轉力而自常規位置分離。 Each of the clamping pins 2413 can protrude further from the top surface of the support plate 2411 in the third direction Z than each of the support pins 2412. Thus, the clamping pin 2413 can be disposed further from the center of the support plate 2411 than the support pin 2412. The clamping pin 2413 is movable between a fixed position and a picking position along the radial direction of the support plate 2411. Here, the fixed position indicates a position spaced apart from the center of the support plate 2411 by a distance corresponding to the radius of the substrate S, and the pickup position indicates a position away from the center of the support plate 2411 from the fixed position. When the substrate S is loaded on the spin head 2410 by the transfer robot 2210, the clamp pin 2413 is placed at the pickup position. When the substrate S is loaded and then the steps are performed, the clamping pin 2413 can be moved to a fixed position to contact the side surface of the substrate S, thereby fixing the substrate S in a normal position. Moreover, when the step is completed, and then the transfer robot 2210 picks up the substrate S to unload the substrate S, the grip pin 2413 can be moved to the pickup position again. Therefore, the pin 2413 prevents the substrate S from being separated from the normal position by the rotational force when the spin head 2410 is rotated.
流體供應部件2420將流體供應至基板S。流體供應部件2420可包括噴嘴2421、支撐件2422、支撐軸2423及驅 動器2424。支撐軸2423經安置使得其長度方向平行於第三方向Z。驅動器2424耦接至支撐軸2423之下端。驅動器2424使支撐軸2423旋轉或使支撐軸2423沿著第三方向Z垂直移動。支撐件2422垂直地耦接至支撐軸2423之上部部分。噴嘴2421安置於支撐件2422之一末端的底表面上。 The fluid supply part 2420 supplies fluid to the substrate S. The fluid supply component 2420 can include a nozzle 2421, a support member 2422, a support shaft 2423, and a drive Actuator 2424. The support shaft 2423 is disposed such that its length direction is parallel to the third direction Z. The driver 2424 is coupled to the lower end of the support shaft 2423. The driver 2424 rotates the support shaft 2423 or vertically moves the support shaft 2423 along the third direction Z. The support member 2422 is vertically coupled to the upper portion of the support shaft 2423. A nozzle 2421 is disposed on a bottom surface of one end of the support member 2422.
噴嘴2421可藉由支撐軸2423藉由驅動器2424之旋轉及升降而在處理位置與待用位置之間移動。此處,處理位置表示噴嘴2421安置於支撐板2411正上方之位置,且待用位置表示噴嘴2421安置為自支撐板2411之正上側偏離之位置。 The nozzle 2421 is movable between the processing position and the standby position by the rotation and lifting of the driver 2424 by the support shaft 2423. Here, the processing position indicates that the nozzle 2421 is disposed at a position directly above the support plate 2411, and the standby position indicates that the nozzle 2421 is disposed to be displaced from the upper side of the support plate 2411.
至少一流體供應部件2420可提供於處理單元2400中。當流體供應部件2420提供為複數個時,各流體供應部件2420可分別彼此不同地供應流體。舉例而言,複數個流體供應部件2420中之每一者可供應清潔劑、沖洗劑,或有機溶劑。此處,清潔劑可包括過氧化氫(H2O2)溶液、氨水(NH4OH)、氫氯酸(HCl)及硫酸(H2SO4)與過氧化氫(H2O2)溶液混合之溶液,或氫氟酸(HF)溶液。去離子水可主要用作沖洗劑。有機溶劑可包括異丙醇、乙二醇、1-丙醇、四液壓法郎(tetra hydraulic franc)、4-羥基、4-甲基、2-戊酮、1-丁醇、2-丁醇、甲醇、乙醇、正丙醇或二甲醚。舉例而言,第一流體供應部件2420a可噴灑氨水過氧化氫溶液,第二流體供應部件可噴灑去離子水,且第三流體供應部件2420c可噴灑異丙醇溶液。然而,有機溶劑可不為液體狀態,而可為氣態。若以氣態來提供有機溶劑,可將有機溶劑與惰性氣體混合。 At least one fluid supply component 2420 can be provided in the processing unit 2400. When the fluid supply member 2420 is provided in plural, each of the fluid supply members 2420 may supply fluids differently from each other, respectively. For example, each of the plurality of fluid supply components 2420 can supply a cleaning agent, a rinsing agent, or an organic solvent. Here, the cleaning agent may include hydrogen peroxide (H 2 O 2 ) solution, ammonia water (NH 4 OH), hydrochloric acid (HCl), and sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ) solution. A mixed solution, or a hydrofluoric acid (HF) solution. Deionized water can be used primarily as a rinsing agent. The organic solvent may include isopropanol, ethylene glycol, 1-propanol, tetra hydraulic franc, 4-hydroxy, 4-methyl, 2-pentanone, 1-butanol, 2-butanol, Methanol, ethanol, n-propanol or dimethyl ether. For example, the first fluid supply component 2420a can spray an aqueous ammonia hydrogen peroxide solution, the second fluid supply component can spray deionized water, and the third fluid supply component 2420c can spray an isopropanol solution. However, the organic solvent may not be in a liquid state but may be in a gaseous state. If the organic solvent is supplied in a gaseous state, the organic solvent may be mixed with an inert gas.
當基板S位於自旋頭2410上時,可將流體供應部件 2420自待用位置移動至處理位置以將上述流體供應於基板S上。舉例而言,流體供應部件2420可供應清潔劑、沖洗劑及有機溶劑以分別執行化學步驟、清潔步驟及第一乾燥步驟。如上所述,自旋頭2410可藉由馬達2415而旋轉以在步驟進展期間將流體均一地供應至基板S之頂表面上。 When the substrate S is located on the spin head 2410, the fluid supply member can be The 2420 moves from the standby position to the processing position to supply the fluid to the substrate S. For example, the fluid supply component 2420 can supply a cleaning agent, a rinsing agent, and an organic solvent to perform a chemical step, a cleaning step, and a first drying step, respectively. As described above, the spin head 2410 can be rotated by the motor 2415 to uniformly supply the fluid onto the top surface of the substrate S during the progress of the step.
回收容器2430提供在其中執行第一步驟之空間。而且,回收容器2430回收用於第一步驟之流體。當自上側檢視時,回收容器2430環繞自旋頭2410而安置以圍繞自旋頭2410,且具有打開之上側。至少一回收容器2430可提供於處理單元2400中。下文中,將描述包括三個回收容器2430,亦即第一回收容器2430a、第二回收容器2430b及第三回收容器2430c之處理單元2400。然而,可根據流體之數目及第一步驟之條件而不同地選擇回收容器2430之數目。 The recovery container 2430 provides a space in which the first step is performed. Moreover, the recovery vessel 2430 recovers the fluid used in the first step. When viewed from the upper side, the recovery container 2430 is placed around the spin head 2410 to surround the spin head 2410 and has an open upper side. At least one recovery container 2430 can be provided in the processing unit 2400. Hereinafter, a processing unit 2400 including three recovery containers 2430, that is, a first recovery container 2430a, a second recovery container 2430b, and a third recovery container 2430c will be described. However, the number of recovery containers 2430 can be selected differently depending on the number of fluids and the conditions of the first step.
第一回收容器2430a、第二回收容器2430b及第三回收容器2430c中之每一者可具有圓環形狀以圍繞自旋頭2410。而且,第一回收容器2430a、第二回收容器2430b及第三回收容器2430c可按第一回收容器2430a、第二回收容器2430b及第三回收容器2430c之次序而經安置遠離自旋頭2410之中心。亦即,第一回收容器2430a圍繞自旋頭2410,第二回收容器2430b圍繞第一回收容器2430a,且第三回收容器2430c圍繞第二回收容器2430b。因此,流入孔2431可配置於第三方向Z中。 Each of the first recovery container 2430a, the second recovery container 2430b, and the third recovery container 2430c may have a circular ring shape to surround the spin head 2410. Moreover, the first recovery container 2430a, the second recovery container 2430b, and the third recovery container 2430c may be disposed away from the center of the spin head 2410 in the order of the first recovery container 2430a, the second recovery container 2430b, and the third recovery container 2430c. . That is, the first recovery container 2430a surrounds the spin head 2410, the second recovery container 2430b surrounds the first recovery container 2430a, and the third recovery container 2430c surrounds the second recovery container 2430b. Therefore, the inflow hole 2431 can be disposed in the third direction Z.
第一回收容器2430a具有由其內部空間界定之第一流入孔2431a。第二回收容器2430b具有由第一回收容器2430a與第二回收容器2430b之間的空間界定之第二流入孔 2431b。第三回收容器2430c具有由第二回收容器2430b與第三回收容器2430c之間的空間界定之第三回收容器2430c。沿第三方向Z向下延伸之回收管線2432連接至第一回收容器2430a、第二回收容器2430b及第三回收容器2430c中之每一者的底表面。第一回收管線2432a、第二回收管線2432b及第三回收管線2432c中之每一者將所回收之流體排出至第一回收容器2430a、第二回收容器2430b及第三回收容器2430c中,以將流體供應至外部流體再循環系統(圖中未示)。該流體再循環系統(圖中未示)可使所回收之流體再循環以再用該等流體。 The first recovery container 2430a has a first inflow hole 2431a defined by its internal space. The second recovery container 2430b has a second inflow hole defined by a space between the first recovery container 2430a and the second recovery container 2430b 2431b. The third recovery container 2430c has a third recovery container 2430c defined by a space between the second recovery container 2430b and the third recovery container 2430c. A recovery line 2432 extending downward in the third direction Z is connected to the bottom surface of each of the first recovery container 2430a, the second recovery container 2430b, and the third recovery container 2430c. Each of the first recovery line 2432a, the second recovery line 2432b, and the third recovery line 2432c discharges the recovered fluid into the first recovery container 2430a, the second recovery container 2430b, and the third recovery container 2430c to The fluid is supplied to an external fluid recirculation system (not shown). The fluid recirculation system (not shown) can recycle the recovered fluid to reuse the fluids.
升降部件2440在第三方向Z上移動回收容器2430。因此,回收容器2430可改變相對於自旋頭2410之相對高度。當回收容器2430提供為複數個時,一個回收容器2430之流入孔2431可在高度上選擇性地加以調整,以使得流入孔2431安置於位於自旋頭2410上的基板S的水平平面上。 The lifting member 2440 moves the recovery container 2430 in the third direction Z. Therefore, the recovery container 2430 can change the relative height relative to the spin head 2410. When the recovery container 2430 is provided in plural, the inflow hole 2431 of one recovery container 2430 can be selectively adjusted in height such that the inflow hole 2431 is disposed on the horizontal plane of the substrate S on the spin head 2410.
升降部件2440包括托架2441、升降軸2442及升降機2443。托架2441固定至回收容器2430。托架2441之一個末端固定且耦接至藉由升降機2443而在第三方向Z上移動之升降軸2442。當回收容器2430提供為複數個時,托架2441可耦接至最外的回收容器2430。 The lifting member 2440 includes a bracket 2441, a lifting shaft 2442, and an elevator 2443. The bracket 2441 is fixed to the recovery container 2430. One end of the bracket 2441 is fixed and coupled to the lifting shaft 2442 that is moved in the third direction Z by the elevator 2443. When the recovery container 2430 is provided in plural, the bracket 2441 can be coupled to the outermost recovery container 2430.
當將基板S裝載於自旋頭2410上或自自旋頭2410卸載時,升降部件2440可將回收容器2430向下移動,以防止回收容器2430干擾用於傳送基板S之傳送機器人2210的路徑。 When the substrate S is loaded on or unloaded from the spin head 2410, the lifting member 2440 can move the recovery container 2430 downward to prevent the recovery container 2430 from interfering with the path of the transfer robot 2210 for transporting the substrate S.
而且,當藉由流體供應部件2420供應流體且旋轉自旋頭2410以執行第一步驟時,升降部件2440可在第三方向Z 上移動回收容器2430以將回收容器2430之流入孔2431定位於與基板S相同之水平平面上,使得由於由基板S之旋轉引起的離心力而自基板S跳脫的流體得以回收。舉例而言,在按藉由清潔劑進行之化學步驟、藉由沖洗劑進行之清潔步驟及藉由有機溶劑進行之第一乾燥步驟的次序來執行第一步驟的情況下,在供應清潔劑、沖洗劑及有機溶劑時,可將第一流入孔2431a、第二流入孔2431b及第三流入孔2431c移動至與基板S相同之水平平面以將流體分別回收至第一回收容器2430a、第二回收容器2430b及第三回收容器2430c中。如上所述,當回收用過的流體時,可防止環境污染,且亦可使昂貴的流體再循環以降低半導體製造成本。 Moreover, when the fluid is supplied by the fluid supply member 2420 and the spin head 2410 is rotated to perform the first step, the lifting member 2440 can be in the third direction Z The recovery container 2430 is moved up to position the inflow hole 2431 of the recovery container 2430 on the same horizontal plane as the substrate S, so that the fluid that has escaped from the substrate S due to the centrifugal force caused by the rotation of the substrate S is recovered. For example, in the case where the first step is performed in the order of the chemical step by the cleaning agent, the cleaning step by the rinsing agent, and the first drying step by the organic solvent, the cleaning agent is supplied, In the rinsing agent and the organic solvent, the first inflow hole 2431a, the second inflow hole 2431b, and the third inflow hole 2431c can be moved to the same horizontal plane as the substrate S to separately recover the fluid to the first recovery container 2430a, and the second recovery The container 2430b and the third recovery container 2430c are in the container. As described above, when the used fluid is recovered, environmental pollution can be prevented, and expensive fluid can be recycled to reduce the semiconductor manufacturing cost.
升降部件2440可使自旋頭2410在第三方向Z上移動,而非移動回收容器2430。 The lifting member 2440 can move the spin head 2410 in the third direction Z instead of moving the recovery container 2430.
下文中,將描述第二處理腔室。 Hereinafter, the second processing chamber will be described.
第二步驟係在第二處理腔室2500中執行。此處,第二步驟理可為用於使用超臨界流體來乾燥基板S之第二乾燥步驟。 The second step is performed in the second processing chamber 2500. Here, the second step may be a second drying step for drying the substrate S using a supercritical fluid.
超臨界流體表示處於以下狀態中的流體:材料超過臨界溫度及臨界壓力,亦即,材料由於達到臨界狀態而不可歸類於液體及氣態。超臨界流體之分子密度類似於液體之分子密度,且其黏度類似於氣體之黏度。由於超臨界流體具有極高擴散性、滲透性及溶解性,因此超臨界流體具有化學反應之優勢。而且,由於超臨界流體歸因於其極低的表面張力而不會對精細結構施加界面張力,因此,當乾燥半導體裝置時,乾燥效率可為極佳的,且可防止圖案破裂。 A supercritical fluid means a fluid in a state in which the material exceeds a critical temperature and a critical pressure, that is, the material cannot be classified into a liquid state and a gaseous state because it reaches a critical state. The molecular density of a supercritical fluid is similar to the molecular density of a liquid, and its viscosity is similar to the viscosity of a gas. Supercritical fluids have the advantage of chemical reactions due to their extremely high diffusivity, permeability and solubility. Moreover, since the supercritical fluid does not apply an interfacial tension to the fine structure due to its extremely low surface tension, the drying efficiency can be excellent when the semiconductor device is dried, and pattern cracking can be prevented.
下文中,將描述主要用於乾燥基板S之二氧化碳(CO2)超臨界流體。然而,本發明不限於超臨界流體之成分及種類。 Hereinafter, a carbon dioxide (CO 2 ) supercritical fluid mainly used for drying the substrate S will be described. However, the invention is not limited to the composition and type of supercritical fluid.
圖3為說明二氧化碳之相位轉變的視圖。當二氧化碳溫度為約31.1℃或更高,且其壓力為約7.38 Mpa或更高時,二氧化碳可變為超臨界狀態。二氧化碳可具有無毒、不易燃且惰性的性質。而且,超臨界二氧化碳具有的臨界溫度及壓力小於其他流體之臨界溫度及壓力。因此,超臨界二氧化碳可在溫度及壓力方面進行調整以容易地控制其溶解性。而且,當與水或其他溶劑相比時,超臨界二氧化碳可具有比水或其他溶劑之擴散係數小約10倍至約100倍的擴散係數以及極低的表面張力。因此,超臨界二氧化碳可具有適於執行乾燥步驟之物理性質。而且,二氧化碳可自由各種化學反應產生之副產物再循環。此外,用於乾燥步驟中的超臨界二氧化碳可循環且再用以減少環境污染。 Fig. 3 is a view illustrating a phase transition of carbon dioxide. When the carbon dioxide temperature is about 31.1 ° C or higher and the pressure is about 7.38 Mpa or more, the carbon dioxide can be changed to a supercritical state. Carbon dioxide can be non-toxic, non-flammable and inert. Moreover, supercritical carbon dioxide has a critical temperature and pressure that is less than the critical temperature and pressure of other fluids. Therefore, supercritical carbon dioxide can be adjusted in temperature and pressure to easily control its solubility. Moreover, supercritical carbon dioxide can have a diffusion coefficient that is about 10 to about 100 times less than the diffusion coefficient of water or other solvents and an extremely low surface tension when compared to water or other solvents. Thus, supercritical carbon dioxide can have physical properties suitable for performing the drying step. Moreover, carbon dioxide can be recycled by by-products from various chemical reactions. In addition, the supercritical carbon dioxide used in the drying step can be recycled and reused to reduce environmental pollution.
圖4為圖1之第二處理腔室2500的截面圖。第二處理腔室2500包括外殼2510、加熱部件2520、支撐部件2530、超臨界流體供應管2540及排氣管2550。 4 is a cross-sectional view of the second processing chamber 2500 of FIG. 1. The second processing chamber 2500 includes a housing 2510, a heating component 2520, a support member 2530, a supercritical fluid supply tube 2540, and an exhaust tube 2550.
外殼2510的內部可提供與外部密封以乾燥基板S之空間。外殼2510可由足以耐受高壓力之材料形成。用於加熱外殼2510之內部的加熱部件2520可安置於外殼2510之內壁與外壁之間。當然,本發明並不限於加熱部件2520之位置。舉例而言,加熱部件2520可安置於與上述位置不同之位置處。 The inside of the outer casing 2510 can provide a space sealed from the outside to dry the substrate S. The outer casing 2510 can be formed of a material that is sufficiently resistant to high pressures. A heating member 2520 for heating the inside of the outer casing 2510 may be disposed between the inner and outer walls of the outer casing 2510. Of course, the invention is not limited to the location of the heating component 2520. For example, the heating component 2520 can be disposed at a different location than the location described above.
支撐部件2530支撐基板S。支撐部件2530可為固定的且安裝於外殼2510內。或者,支撐部件2530可不為固定 的,但可旋轉以使位於支撐部件2530上之基板S旋轉。 The support member 2530 supports the substrate S. The support member 2530 can be fixed and mounted within the outer casing 2510. Alternatively, the support member 2530 may not be fixed However, it is rotatable to rotate the substrate S on the support member 2530.
超臨界流體供應管2540將超臨界流體供應至外殼2510中。超臨界流體供應管2540包括上部供應管2540a及下部供應管2540b中之至少一者。上部供應管2540a連接至外殼2510之上部部分及超臨界流體供應單元3000。下部供應管2540b連接至外殼2510之下部部分及超臨界流體供應單元3000。上部供應管2540a及下部供應管2540b中之每一者可包括用於調整超臨界流體之流動速率的閥V。閥V可為切換閥或流量控制閥。因此,可根據第二乾燥步驟之進展而經由上部供應管2540a及下部供應管2540b中之至少一者將超臨界流體供應至外殼2510中。此處,下部供應管2540b可自上部供應管2540b分枝。因此,上部供應管2540a及下部供應管2540b可連接至同一超臨界流體供應單元3000。或者,上部供應管2540a及下部供應管2540b可分別彼此不同地連接至超臨界流體供應單元3000。 The supercritical fluid supply pipe 2540 supplies the supercritical fluid into the outer casing 2510. The supercritical fluid supply pipe 2540 includes at least one of an upper supply pipe 2540a and a lower supply pipe 2540b. The upper supply pipe 2540a is connected to the upper portion of the outer casing 2510 and the supercritical fluid supply unit 3000. The lower supply pipe 2540b is connected to the lower portion of the outer casing 2510 and the supercritical fluid supply unit 3000. Each of the upper supply tube 2540a and the lower supply tube 2540b may include a valve V for adjusting the flow rate of the supercritical fluid. Valve V can be a switching valve or a flow control valve. Therefore, the supercritical fluid can be supplied into the outer casing 2510 via at least one of the upper supply pipe 2540a and the lower supply pipe 2540b according to the progress of the second drying step. Here, the lower supply tube 2540b can be branched from the upper supply tube 2540b. Therefore, the upper supply pipe 2540a and the lower supply pipe 2540b can be connected to the same supercritical fluid supply unit 3000. Alternatively, the upper supply pipe 2540a and the lower supply pipe 2540b may be connected to the supercritical fluid supply unit 3000 differently from each other, respectively.
外殼2510內之超臨界流體可經由排出管2550排出。閥V可安置於排出管2550中。排出管2550可安置於外殼2510下方。或者,排出管2550可安置於外殼2510上方。 The supercritical fluid within the outer casing 2510 can be discharged via the exhaust pipe 2550. The valve V can be disposed in the discharge pipe 2550. A drain tube 2550 can be disposed below the outer casing 2510. Alternatively, the vent tube 2550 can be disposed over the outer casing 2510.
圖5為根據另一實施例之圖1之第二處理腔室2500的截面圖。根據另一實施例之第二處理腔室2500可進一步包括氣體供應管2560。 FIG. 5 is a cross-sectional view of the second processing chamber 2500 of FIG. 1 in accordance with another embodiment. The second processing chamber 2500 according to another embodiment may further include a gas supply tube 2560.
氣體供應管2560將惰性氣體供應至外殼2510中。此處,惰性氣體可包括N2、He、Ne及Ar。氣體供應管2560連接至外殼2510及氣體供應源G。 The gas supply pipe 2560 supplies an inert gas into the outer casing 2510. Here, the inert gas may include N 2 , He, Ne, and Ar. The gas supply pipe 2560 is connected to the outer casing 2510 and the gas supply source G.
氣體供應管2560可連接至外殼2510之上部部分。用於調節流動速率之閥V可安置於氣體供應管2560中。 The gas supply pipe 2560 can be coupled to an upper portion of the outer casing 2510. A valve V for adjusting the flow rate may be disposed in the gas supply pipe 2560.
當將氣體供應管2560提供至第二處理腔室2500時,可經由排出管2550排出惰性氣體。為此,可將兩個排出管2550a及2550b提供至第二處理腔室2500。此處,可經由第一排出管2550a排出超臨界流體,且可經由第二排出管2550b排出惰性氣體。 When the gas supply pipe 2560 is supplied to the second process chamber 2500, the inert gas may be exhausted through the discharge pipe 2550. To this end, two discharge tubes 2550a and 2550b can be provided to the second processing chamber 2500. Here, the supercritical fluid may be discharged through the first exhaust pipe 2550a, and the inert gas may be exhausted through the second exhaust pipe 2550b.
在第二處理腔室2500中,可考慮到處理效率、佔據面積及其類似者而改變超臨界流體供應管2540、氣體供應管2560及排出管2550之數目及配置。舉例而言,超臨界流體供應管2540或排出管2550可安置於外殼2510之側表面上。對於另一實例,第一排出管2550a可連接至外殼2510之下部部分,且第二排出管2550b可連接至外殼2510之上部部分。 In the second processing chamber 2500, the number and configuration of the supercritical fluid supply tube 2540, the gas supply tube 2560, and the discharge tube 2550 can be changed in consideration of processing efficiency, occupation area, and the like. For example, the supercritical fluid supply tube 2540 or the discharge tube 2550 can be disposed on a side surface of the outer casing 2510. For another example, the first exhaust pipe 2550a can be coupled to the lower portion of the outer casing 2510 and the second exhaust pipe 2550b can be coupled to the upper portion of the outer casing 2510.
因此,可在第二處理腔室2500中執行使用超臨界流體之第二乾燥步驟。舉例而言,在第二處理腔室2500中,可對基板S執行使用超臨界流體之第二乾燥步驟,對基板S連續地執行化學步驟、清潔步驟及使用有機溶劑之第一乾燥步驟。當藉由傳送機器人2210使基板S位於支撐部件2530上時,加熱部件2520加熱外殼2510之內部,且經由超臨界流體供應管2540供應超臨界流體。 Thus, a second drying step using a supercritical fluid can be performed in the second processing chamber 2500. For example, in the second processing chamber 2500, a second drying step using a supercritical fluid may be performed on the substrate S, and a chemical step, a cleaning step, and a first drying step using an organic solvent are continuously performed on the substrate S. When the substrate S is placed on the support member 2530 by the transfer robot 2210, the heating member 2520 heats the inside of the outer casing 2510, and supplies the supercritical fluid via the supercritical fluid supply pipe 2540.
因此,超臨界流體氛圍可形成於外殼2510內。當形成超臨界氛圍時,超臨界流體可溶解殘留於基板S上之有機溶劑,此係因為有機溶劑在有機溶劑使用於在第一處理腔室2300中最後執行之第一乾燥步驟中之後並未得以完全乾燥。當充分溶解有機溶劑且乾燥基板S時,經由排放孔排出超臨界流體。接著,藉由傳送機器人2210自支撐部件2530卸載基板S以將其取出。 Therefore, a supercritical fluid atmosphere can be formed within the outer casing 2510. When a supercritical atmosphere is formed, the supercritical fluid can dissolve the organic solvent remaining on the substrate S because the organic solvent is not used after the organic solvent is used in the first drying step that is finally performed in the first processing chamber 2300. It is completely dry. When the organic solvent is sufficiently dissolved and the substrate S is dried, the supercritical fluid is discharged through the discharge holes. Next, the substrate S is unloaded from the support member 2530 by the transfer robot 2210 to take it out.
超臨界流體供應單元3000將超臨界流體供應至第二處理腔室2500中,且再循環單元4000使第二處理腔室2500中使用之超臨界流體再循環,以將再循環之超臨界流體供應至超臨界流體供應單元3000。超臨界流體供應單元3000及再循環單元4000可實現為獨立的單獨裝置,或超臨界流體供應單元3000及再循環單元4000之全部或部分可包括於設備100中以作為一個組件來處理基板。 The supercritical fluid supply unit 3000 supplies the supercritical fluid into the second processing chamber 2500, and the recycling unit 4000 recirculates the supercritical fluid used in the second processing chamber 2500 to supply the recirculated supercritical fluid To the supercritical fluid supply unit 3000. The supercritical fluid supply unit 3000 and the recirculation unit 4000 may be implemented as separate individual devices, or all or part of the supercritical fluid supply unit 3000 and the recirculation unit 4000 may be included in the device 100 to process the substrate as one component.
下文中,將描述二氧化碳之超臨界流體。然而,為了便於描述,此僅為實例。超臨界流體可具有不同成分。 Hereinafter, a supercritical fluid of carbon dioxide will be described. However, for the convenience of description, this is merely an example. Supercritical fluids can have different compositions.
圖6為說明超臨界流體之循環路徑的視圖。參看圖6,可使超臨界流體再循環,且同時使其在超臨界流體供應單元3000、第二處理腔室2500及再循環單元4000中循環。 Figure 6 is a view illustrating a circulation path of a supercritical fluid. Referring to Figure 6, the supercritical fluid can be recirculated while simultaneously circulating in the supercritical fluid supply unit 3000, the second processing chamber 2500, and the recirculation unit 4000.
超臨界流體供應單元3000可包括儲存槽3100、供水槽3200、第一冷凝器3300、第二冷凝器3400及泵3500。 The supercritical fluid supply unit 3000 may include a storage tank 3100, a water supply tank 3200, a first condenser 3300, a second condenser 3400, and a pump 3500.
二氧化碳以液體狀態儲存於儲存槽3100中。可自外部或再循環單元400供應二氧化碳,且接著將其儲存於儲存槽3100中。此處,自外部或再循環單元4000供應之二氧化碳可處於氣體狀態。第一冷凝器3300將氣態二氧化碳改變為液態二氧化碳以將液態二氧化碳儲存於儲存槽3100中。由於液態二氧化碳之體積小於氣態二氧化碳之體積,因此可將大量二氧化碳儲存於儲存槽3100中。 The carbon dioxide is stored in the storage tank 3100 in a liquid state. Carbon dioxide may be supplied from the external or recirculating unit 400 and then stored in the storage tank 3100. Here, the carbon dioxide supplied from the external or recirculation unit 4000 may be in a gaseous state. The first condenser 3300 changes the gaseous carbon dioxide to liquid carbon dioxide to store the liquid carbon dioxide in the storage tank 3100. Since the volume of the liquid carbon dioxide is smaller than the volume of the gaseous carbon dioxide, a large amount of carbon dioxide can be stored in the storage tank 3100.
供水槽3200自儲存槽3100接收二氧化碳以將二氧化碳改變為超臨界流體狀態。接著,超臨界流體供應至處理模組2000之第二處理腔室2500中。當打開將儲存槽3100連接至供水槽3200之閥V時,儲存於儲存槽3100中之二氧化碳移動至供水槽3200,同時改變為氣態。此處,第二 冷凝器3400及泵3500可安置於將儲存槽3100連接至供水槽3200之管線中。第二冷凝器3400將具有氣體狀態之二氧化碳改變為具有液體狀態之二氧化碳。泵3500將液態二氧化碳改變為經由臨界壓力壓縮之氣體二氧化碳,以將氣體二氧化碳供應至供水槽3200中。供水槽3200可在高於臨界溫度之溫度下加熱所供應之二氧化碳,以產生超臨界流體,且接著將超臨界流體傳送至第二處理腔室2500。此處,自供水槽3200排出之二氧化碳可處於在約100巴至約150巴之壓力下壓縮二氧化碳之狀態。當根據步驟之進展而在第二處理腔室2500中需要液態或氣態二氧化碳時,供水槽3200可將液態或氣態二氧化碳供應至第二處理腔室2500中。 The water supply tank 3200 receives carbon dioxide from the storage tank 3100 to change the carbon dioxide to a supercritical fluid state. The supercritical fluid is then supplied to the second processing chamber 2500 of the processing module 2000. When the valve V connecting the storage tank 3100 to the water supply tank 3200 is opened, the carbon dioxide stored in the storage tank 3100 is moved to the water supply tank 3200 while being changed to a gaseous state. Here, second The condenser 3400 and the pump 3500 can be disposed in a line connecting the storage tank 3100 to the water supply tank 3200. The second condenser 3400 changes the carbon dioxide having a gaseous state to carbon dioxide having a liquid state. The pump 3500 changes the liquid carbon dioxide to gaseous carbon dioxide compressed via a critical pressure to supply the gaseous carbon dioxide into the water supply tank 3200. The water supply tank 3200 can heat the supplied carbon dioxide at a temperature above a critical temperature to generate a supercritical fluid, and then transfer the supercritical fluid to the second processing chamber 2500. Here, the carbon dioxide discharged from the water supply tank 3200 may be in a state of compressing carbon dioxide at a pressure of about 100 bar to about 150 bar. The water supply tank 3200 can supply liquid or gaseous carbon dioxide into the second processing chamber 2500 when liquid or gaseous carbon dioxide is required in the second processing chamber 2500 as the steps progress.
圖7為根據本發明之一實施例之圖6的再循環單元之視圖,且圖8為根據本發明之另一實施例之圖6的再循環單元4000之視圖。 Figure 7 is a view of the recycling unit of Figure 6 in accordance with an embodiment of the present invention, and Figure 8 is a view of the recycling unit 4000 of Figure 6 in accordance with another embodiment of the present invention.
再循環單元4000使含有用於第二處理腔室2500中之第二乾燥步驟的有機溶劑之超臨界流體再循環,以將再循環之超臨界流體供應至超臨界流體供應單元3000。再循環單元4000可包括分離模組4100及管柱模組4200中之至少一者。 The recycling unit 4000 recirculates the supercritical fluid containing the organic solvent for the second drying step in the second processing chamber 2500 to supply the recycled supercritical fluid to the supercritical fluid supply unit 3000. The recycling unit 4000 can include at least one of the separation module 4100 and the column module 4200.
分離模組4100冷卻二氧化碳以液化含於二氧化碳中之有機溶劑,藉此使有機溶劑與二氧化碳分離。管柱模組4200允許二氧化碳通過安置有用於吸收有機溶劑之吸收材料A的空間,以使有機溶劑與二氧化碳分離。 The separation module 4100 cools the carbon dioxide to liquefy the organic solvent contained in the carbon dioxide, thereby separating the organic solvent from the carbon dioxide. The column module 4200 allows carbon dioxide to pass through a space in which the absorbing material A for absorbing the organic solvent is disposed to separate the organic solvent from the carbon dioxide.
複數個分離模組4100可提供於再循環單元4000中。此處,分離模組4100可彼此串聯連接。舉例而言,第一分 離模組4100a連接至第二處理腔室2500,以使二氧化碳與有機溶劑第一次彼此分離。接著,第二分離模組4100b連接至第一分離模組4100a,以使二氧化碳與有機溶劑第二次彼此分離。因此,二氧化碳與有機溶劑藉由分離模組4100之分離可執行若干次,以獲得較純之二氧化碳。 A plurality of separation modules 4100 can be provided in the recycling unit 4000. Here, the separation modules 4100 can be connected to each other in series. For example, the first point The module 4100a is coupled to the second processing chamber 2500 to separate the carbon dioxide from the organic solvent for the first time. Next, the second separation module 4100b is connected to the first separation module 4100a to separate the carbon dioxide and the organic solvent from each other for the second time. Therefore, the separation of carbon dioxide and organic solvent by the separation module 4100 can be performed several times to obtain relatively pure carbon dioxide.
而且,複數個管柱模組4200可提供於再循環單元4000中。此處,管柱模組4200可彼此串聯連接。而且,二氧化碳與有機溶劑藉由管柱模組4200之分離可執行若干次。舉例而言,第一管柱模組4200a連接至分離模組4100以首先自二氧化碳過濾有機溶劑。接著,第二管柱模組4200b連接至第一管柱模組4200a,以第二次自二氧化碳過濾有機溶劑。 Moreover, a plurality of column modules 4200 can be provided in the recycling unit 4000. Here, the column modules 4200 can be connected to each other in series. Moreover, the separation of carbon dioxide from the organic solvent by the column module 4200 can be performed several times. For example, the first column module 4200a is coupled to the separation module 4100 to first filter the organic solvent from the carbon dioxide. Next, the second column module 4200b is connected to the first column module 4200a to filter the organic solvent from carbon dioxide for the second time.
或者,管柱模組4200可彼此並聯連接。此處,使用管柱模組4200分離有機溶劑可能花費長的時間。而且,使用管柱模組4200可能難以過濾大量二氧化碳。然而,當複數個管柱模組彼此並聯安置時,可過濾大量二氧化碳。舉例而言,第一管柱模組4200a、第二管柱模組4200b及第三管柱模組4200c中之每一者連接至分離模組4100以自二氧化碳過濾有機溶劑,藉此將二氧化碳提供至超臨界流體供應單元3000中。 Alternatively, the column modules 4200 can be connected in parallel with each other. Here, it may take a long time to separate the organic solvent using the column module 4200. Moreover, it may be difficult to filter a large amount of carbon dioxide using the column module 4200. However, when a plurality of column modules are placed in parallel with each other, a large amount of carbon dioxide can be filtered. For example, each of the first column module 4200a, the second column module 4200b, and the third column module 4200c is connected to the separation module 4100 to filter organic solvent from carbon dioxide, thereby providing carbon dioxide. To the supercritical fluid supply unit 3000.
圖9為圖8之分離模組4100的截面圖。分離模組4100可包括分離槽4110、冷卻部件4120、流入管4130、排氣管4140、排水管4150及壓力調節器4160。 9 is a cross-sectional view of the separation module 4100 of FIG. The separation module 4100 can include a separation tank 4110, a cooling member 4120, an inflow tube 4130, an exhaust pipe 4140, a drain pipe 4150, and a pressure regulator 4160.
分離槽4110提供在其中使二氧化碳與有機溶劑彼此分離之空間。冷卻部件4120安置於分離槽4110之內壁與外壁之間,以冷卻分離槽4110。冷卻部件4120可實現為供冷 卻水流動之管線。 The separation tank 4110 provides a space in which carbon dioxide and an organic solvent are separated from each other. The cooling member 4120 is disposed between the inner wall and the outer wall of the separation groove 4110 to cool the separation groove 4110. Cooling component 4120 can be implemented for cooling But the pipeline of water flow.
自第二處理模組2500排出之二氧化碳引入至流入管4130中。當分離模組4100提供為複數個時,自前一分離模組4100排出之二氧化碳可引入至流入管4130中。流入管4130具有一個末端,經由該末端,二氧化碳供應至分離槽4110之下部部分。供應至分離槽4110之下部部分中的二氧化碳藉由冷卻部件4120冷卻。因此,含於二氧化碳中之有機溶劑經液化以使有機溶劑與二氧化碳分離。 The carbon dioxide discharged from the second processing module 2500 is introduced into the inflow pipe 4130. When the separation module 4100 is provided in plural, the carbon dioxide discharged from the previous separation module 4100 can be introduced into the inflow pipe 4130. The inflow pipe 4130 has an end through which carbon dioxide is supplied to a lower portion of the separation groove 4110. The carbon dioxide supplied to the lower portion of the separation tank 4110 is cooled by the cooling member 4120. Therefore, the organic solvent contained in the carbon dioxide is liquefied to separate the organic solvent from the carbon dioxide.
分離之二氧化碳經由連接至分離槽4110之上部部分的排氣管4140而排出,且液態有機溶劑經由連接至分離槽4110之下部部分之排水管4150而排出。閥V可安置於流入管4130、排氣管4140及排水管4150中之每一者中以控制流入及排出。 The separated carbon dioxide is discharged through the exhaust pipe 4140 connected to the upper portion of the separation tank 4110, and the liquid organic solvent is discharged through the drain pipe 4150 connected to the lower portion of the separation tank 4110. A valve V may be disposed in each of the inflow pipe 4130, the exhaust pipe 4140, and the drain pipe 4150 to control inflow and discharge.
壓力調節器4160調節分離槽4110中之內部壓力。舉例而言,壓力調節器4160可為安置於排氣管4140中之逆壓調節器。 The pressure regulator 4160 adjusts the internal pressure in the separation tank 4110. For example, the pressure regulator 4160 can be a reverse pressure regulator disposed in the exhaust pipe 4140.
圖10為圖6之管柱模組4200的視圖。管柱模組4200可包括吸收管柱4210、溫度維持部件4220、流入管4230、排氣管4240及濃度感測器4250。 10 is a view of the column module 4200 of FIG. The column module 4200 can include an absorption column 4210, a temperature maintaining member 4220, an inflow tube 4230, an exhaust tube 4240, and a concentration sensor 4250.
吸收管柱4210提供在其中使有機溶劑與二氧化碳分離之空間。吸收材料A安置於吸收管柱4210內。此處,吸收材料A可為用於吸收有機溶劑之材料。舉例而言,吸收材料A可為沸石。二氧化碳經由流入管4230引入至吸收管柱內。流入管4230可連接至分離模組4100。當管柱模組4200串聯地提供為複數個時,流入管4230可連接至之前的管柱模組4200。二氧化碳通過吸收管柱4210,且排出至排氣管 4240中。 The absorption column 4210 provides a space in which the organic solvent is separated from the carbon dioxide. The absorbent material A is disposed within the absorbent column 4210. Here, the absorbing material A may be a material for absorbing an organic solvent. For example, the absorbent material A can be a zeolite. Carbon dioxide is introduced into the absorption column via an inflow tube 4230. The inflow tube 4230 can be coupled to the separation module 4100. When the column modules 4200 are provided in series, the inflow tubes 4230 can be connected to the previous column modules 4200. Carbon dioxide passes through the absorption column 4210 and is discharged to the exhaust pipe 4240.
吸收材料A在二氧化碳通過吸收管柱4210的同時提供至二氧化碳,以自二氧化碳吸收有機溶劑。因此,移除含於二氧化碳中之有機溶劑以使二氧化碳再循環。當二氧化碳與有機溶劑彼此分離時,可能出現熱。因此,溫度維持部件4220可將吸收管柱4210之內部維持在預定溫度,以使得有機溶劑可容易地與二氧化碳分離。 The absorbing material A is supplied to carbon dioxide while carbon dioxide passes through the absorption column 4210 to absorb the organic solvent from the carbon dioxide. Therefore, the organic solvent contained in the carbon dioxide is removed to recycle the carbon dioxide. When carbon dioxide and organic solvents are separated from each other, heat may occur. Therefore, the temperature maintaining member 4220 can maintain the inside of the absorption column 4210 at a predetermined temperature so that the organic solvent can be easily separated from the carbon dioxide.
濃度感測器4250可偵測含於自吸收管柱4210排出之二氧化碳中的有機溶劑之濃度。濃度感測器4250安置於排氣管4240中。當複數個吸收管柱4210串聯地提供時,濃度感測器4250可僅安置於最末吸收管柱4210中。當然,濃度感測器4250可安置於吸收管柱4210中之每一者中。由於能夠由吸收材料A吸收之有機溶劑的量有限,因此當含於經由濃度感測器4250排出之二氧化碳中的有機溶劑的濃度高於預設濃度時,可更換吸收材料A。自管柱模組4200排出之二氧化碳供應至超臨界流體供應單元3000。 The concentration sensor 4250 can detect the concentration of the organic solvent contained in the carbon dioxide discharged from the absorption column 4210. The concentration sensor 4250 is disposed in the exhaust pipe 4240. When a plurality of absorber strings 4210 are provided in series, the concentration sensor 4250 can be disposed only in the last absorber string 4210. Of course, the concentration sensor 4250 can be disposed in each of the absorption strings 4210. Since the amount of the organic solvent that can be absorbed by the absorbing material A is limited, the absorbing material A can be exchanged when the concentration of the organic solvent contained in the carbon dioxide discharged through the concentration sensor 4250 is higher than the preset concentration. The carbon dioxide discharged from the column module 4200 is supplied to the supercritical fluid supply unit 3000.
儘管在當前實施例中,管柱模組4200連接至再循環單元4000中之分離模組4100,但本發明不限於此。舉例而言,當在再循環單元4000中省略分離模組4100時,管柱模組4200可直接連接至第二處理腔室2500。 Although in the present embodiment, the column module 4200 is connected to the separation module 4100 in the recycling unit 4000, the invention is not limited thereto. For example, when the separation module 4100 is omitted in the recycling unit 4000, the column module 4200 can be directly connected to the second processing chamber 2500.
下文中,將描述根據本發明之使用基板處理設備100之基板處理方法。 Hereinafter, a substrate processing method using the substrate processing apparatus 100 according to the present invention will be described.
此僅為實例以便於描述,且因此,根據本發明之基板處理方法、超臨界流體再循環方法及超臨界流體排出方法可使用能夠執行與基板處理設備100相同或類似之功能的其他基板處理設備來執行,惟根據本發明之用於處理基板 之設備100除外。 This is merely an example for convenience of description, and therefore, the substrate processing method, the supercritical fluid recycling method, and the supercritical fluid discharge method according to the present invention may use other substrate processing apparatuses capable of performing the same or similar functions as the substrate processing apparatus 100. Executing, but for processing substrates according to the present invention Except for device 100.
圖11為說明根據本發明之一實施例之基板處理方法的流程圖。根據本發明之實施例之基板處理方法可為使用超臨界流體之清潔步驟。 11 is a flow chart illustrating a substrate processing method in accordance with an embodiment of the present invention. The substrate processing method according to an embodiment of the present invention may be a cleaning step using a supercritical fluid.
根據本發明之實施例之基板處理方法包括:將基板S自位於裝載口1100上的載體C傳送至緩衝腔室2100中(S110);將基板S自緩衝腔室2100傳送至第一處理腔室2300中(S120);執行第一步驟(S130);將第一處理腔室2300傳送至第二處理腔室2500中(S140);執行第二步驟(S150);將基板S自第二處理腔室2500傳送至緩衝腔室2100中(S160);及將基板S自緩衝腔室2100傳送至載體C中(170)。下文中,將描述該等步驟中之每一者。 The substrate processing method according to an embodiment of the present invention includes: transferring the substrate S from the carrier C located on the load port 1100 to the buffer chamber 2100 (S110); transferring the substrate S from the buffer chamber 2100 to the first processing chamber 2300 (S120); performing the first step (S130); transferring the first processing chamber 2300 to the second processing chamber 2500 (S140); performing the second step (S150); and the substrate S from the second processing chamber The chamber 2500 is transferred into the buffer chamber 2100 (S160); and the substrate S is transferred from the buffer chamber 2100 to the carrier C (170). Hereinafter, each of these steps will be described.
在操作S110中,索引機器人1210將基板S自載體C傳送至緩衝腔室2100中。 In operation S110, the indexing robot 1210 transfers the substrate S from the carrier C into the buffer chamber 2100.
接收自外部傳送之基板S的載體C置放於裝載口1100上。載體打開器(圖中未示)或索引機器人1210打開載體C之門,以使得索引機器人1210自載體C取出基板S。接著,索引機器人1210將自載體C取出之基板傳送至緩衝腔室2100中。 The carrier C received from the externally transferred substrate S is placed on the load port 1100. A carrier opener (not shown) or an indexing robot 1210 opens the gate of the carrier C to cause the indexing robot 1210 to take the substrate S out of the carrier C. Next, the indexing robot 1210 transfers the substrate taken out from the carrier C into the buffer chamber 2100.
在操作S120中,傳送機器人2210將基板S自緩衝腔室2100傳送至第一處理腔室2300中。 In operation S120, the transfer robot 2210 transfers the substrate S from the buffer chamber 2100 into the first processing chamber 2300.
當藉由索引機器人1210將基板S置放於緩衝腔室2100之緩衝狹槽上時,傳送機器人2210將基板S自緩衝狹槽取出。傳送機器人2210將基板S傳送至第一處理腔室2300中。 When the substrate S is placed on the buffer slot of the buffer chamber 2100 by the index robot 1210, the transfer robot 2210 takes out the substrate S from the buffer slot. The transfer robot 2210 transfers the substrate S into the first processing chamber 2300.
在操作S130中,第一處理腔室執行第一步驟。圖12 為說明根據本發明之一實施例之第一步驟的流程圖。 In operation S130, the first processing chamber performs the first step. Figure 12 To illustrate a flow chart of a first step in accordance with an embodiment of the present invention.
在操作S131中,藉由傳送機器人2210將基板S置放於支撐銷2412上,且裝載於自旋頭2410上。當基板S置放於支撐銷2412上時,夾持銷2413自拾取位置移動至固定位置以固定基板S。當基板S就座時,在操作S132中,流體供應部件2420將流體供應至基板S上。此處,自旋頭2410旋轉以使基板S旋轉,同時流體供應至基板S上。因此,流體可均一地供應至基板S之整個表面上。而且,回收容器2430可垂直移動以回收在將流體供應至基板S上之後由於基板S之旋轉而自基板S跳脫之流體。 In operation S131, the substrate S is placed on the support pin 2412 by the transfer robot 2210, and loaded on the spin head 2410. When the substrate S is placed on the support pin 2412, the clamp pin 2413 is moved from the pickup position to the fixed position to fix the substrate S. When the substrate S is seated, the fluid supply member 2420 supplies the fluid onto the substrate S in operation S132. Here, the spin head 2410 is rotated to rotate the substrate S while the fluid is supplied onto the substrate S. Therefore, the fluid can be uniformly supplied onto the entire surface of the substrate S. Moreover, the recovery container 2430 can be vertically moved to recover the fluid that has escaped from the substrate S due to the rotation of the substrate S after supplying the fluid onto the substrate S.
具體而言,在操作S132a(第一化學步驟)中,當基板S就座時,第一流體供應部件2420a自待用位置移動至處理位置,以將第一清潔劑噴灑至基板S上。因此,可移除殘留在基板S上之粒子、有機污染物、金屬雜質及其類似者。此處,第一回收容器2430a之第一流入孔2431a可移動至與基板S相同之水平平面以回收第一清潔劑。 Specifically, in operation S132a (first chemical step), when the substrate S is seated, the first fluid supply member 2420a is moved from the standby position to the processing position to spray the first cleaning agent onto the substrate S. Therefore, particles, organic contaminants, metal impurities, and the like remaining on the substrate S can be removed. Here, the first inflow hole 2431a of the first recovery container 2430a can be moved to the same horizontal plane as the substrate S to recover the first cleaning agent.
接下來,在操作S132b(第一清潔步驟)中,第一流體供應部件2420a移動至待用位置,且第二流體供應部件2420b自待用位置移動至處理位置以噴灑沖洗劑。因此,可清潔殘留在基板S上之第一清潔劑之殘餘物。此處,第二回收容器2430b之第二流入孔2431b可移動至與基板S相同之水平平面以回收沖洗劑。 Next, in operation S132b (first cleaning step), the first fluid supply member 2420a is moved to the standby position, and the second fluid supply member 2420b is moved from the standby position to the processing position to spray the rinsing agent. Therefore, the residue of the first cleaning agent remaining on the substrate S can be cleaned. Here, the second inflow hole 2431b of the second recovery container 2430b can be moved to the same horizontal plane as the substrate S to recover the rinsing agent.
接下來,在操作S132c(第一乾燥步驟)中,第二流體供應部件2420b返回至待用位置,且第三流體供應部件2420c自待用位置移動至處理位置以噴灑有機溶劑。因此,可以有機溶劑替代殘留於基板S上之沖洗劑。此處,第三 回收容器2430c之第三流入孔2431c可移動至與基板S相同之水平平面以回收有機溶劑。而且,可以在大於室溫之溫度下加熱有機溶劑的狀態或經加熱之蒸汽狀態來供應二氧化碳。而且,在操作S132c中,自旋頭2410可旋轉基板S,以使得在完成有機溶劑之噴灑之後可容易地乾燥有機溶劑。 Next, in operation S132c (first drying step), the second fluid supply part 2420b is returned to the standby position, and the third fluid supply part 2420c is moved from the standby position to the processing position to spray the organic solvent. Therefore, the rinsing agent remaining on the substrate S can be replaced with an organic solvent. Here, the third The third inflow hole 2431c of the recovery container 2430c can be moved to the same horizontal plane as the substrate S to recover the organic solvent. Moreover, carbon dioxide may be supplied in a state in which the organic solvent is heated at a temperature greater than room temperature or in a heated vapor state. Moreover, in operation S132c, the spin head 2410 can rotate the substrate S so that the organic solvent can be easily dried after completion of the spraying of the organic solvent.
可在操作S132b與操作S132c之間額外地執行第四流體供應部件2420d噴灑第二清潔劑之步驟(第二化學步驟)及第二流體供應部件2420b再次噴灑沖洗劑之步驟(第二清潔步驟)。此處,第一清潔劑及第二清潔劑可提供為彼此不同之成分,以分別有效地移除彼此不同之異物。 The step of spraying the second cleaning agent by the fourth fluid supply part 2420d (second chemical step) and the step of spraying the rinsing agent by the second fluid supply part 2420b may be additionally performed between operation S132b and operation S132c (second cleaning step) . Here, the first cleaning agent and the second cleaning agent may be provided as components different from each other to effectively remove foreign substances different from each other, respectively.
而且,在必要時,可省略操作S132c。 Moreover, operation S132c may be omitted as necessary.
當完成流體至基板S上之噴灑時,可完成自旋頭2410之旋轉,且夾持銷2413可自固定位置移動至拾取位置。在操作S133中,可藉由傳送機器人2210拾取基板S,並將基板S自自旋頭2410卸載。 When the spraying of the fluid onto the substrate S is completed, the rotation of the spin head 2410 can be completed, and the clamping pin 2413 can be moved from the fixed position to the pickup position. In operation S133, the substrate S can be picked up by the transfer robot 2210, and the substrate S is unloaded from the spin head 2410.
在操作S140中,傳送機器人2210將基板S自第一處理腔室2300傳送至第二處理腔室2500中。 In operation S140, the transfer robot 2210 transfers the substrate S from the first processing chamber 2300 to the second processing chamber 2500.
傳送機器人2210拾取位於自旋頭2140上之基板S,以自第一處理腔室2300取出基板。傳送機器人2210將基板S傳送至第二處理腔室2500中。傳送至第二處理腔室2500中之基板S位於支撐部件2530上。 The transfer robot 2210 picks up the substrate S located on the spin head 2140 to take out the substrate from the first processing chamber 2300. The transfer robot 2210 transfers the substrate S into the second processing chamber 2500. The substrate S transferred into the second processing chamber 2500 is located on the support member 2530.
在操作S150中,第二處理腔室2500執行第二步驟。圖13為說明根據本發明之一實施例之第二步驟的流程圖。 In operation S150, the second processing chamber 2500 performs the second step. Figure 13 is a flow chart illustrating a second step in accordance with an embodiment of the present invention.
在操作S151中,將基板S裝載於第二處理腔室2500之支撐部件2530上。在操作S152中,在裝載基板S之前 及之後,於外殼2510內形成臨界狀態。此處,臨界狀態可表示溫度及壓力分別超過臨界溫度及臨界壓力之狀態。 In operation S151, the substrate S is loaded on the support member 2530 of the second processing chamber 2500. In operation S152, before loading the substrate S And thereafter, a critical state is formed within the outer casing 2510. Here, the critical state may indicate a state in which the temperature and the pressure exceed the critical temperature and the critical pressure, respectively.
在操作S152a中,加熱部件2520加熱外殼2510之內部以形成臨界狀態。因此,外殼2510之內部可增加至大於臨界溫度之溫度。接下來,在操作S152b中,經由氣體供應管2560將惰性氣體引入至外殼2510中。因此,外殼2510之內部可填充有惰性氣體,且增加至高於臨界壓力之壓力。 In operation S152a, the heating member 2520 heats the inside of the outer casing 2510 to form a critical state. Therefore, the inside of the outer casing 2510 can be increased to a temperature greater than the critical temperature. Next, in operation S152b, an inert gas is introduced into the outer casing 2510 via the gas supply pipe 2560. Thus, the interior of the outer casing 2510 can be filled with an inert gas and increased to a pressure above the critical pressure.
在操作S153中,當形成臨界狀態時,經由超臨界流體供應管2540將超臨界流體供應至外殼2510中。舉例而言,可如下執行操作S153。 In operation S153, when a critical state is formed, the supercritical fluid is supplied into the outer casing 2510 via the supercritical fluid supply pipe 2540. For example, operation S153 can be performed as follows.
首先,在操作S153a中,可經由下部供應管2540b自外殼2510之下部部分供應超臨界流體。此處,在操作S153b中,可經由排出管2550將惰性氣體排出至外部。 First, in operation S153a, the supercritical fluid may be supplied from the lower portion of the outer casing 2510 via the lower supply pipe 2540b. Here, in operation S153b, the inert gas may be discharged to the outside via the discharge pipe 2550.
由於連續地供應超臨界流體且充入惰性氣體,所以外殼2510之內部可僅填充超臨界流體以形成超臨界流體現象。 Since the supercritical fluid is continuously supplied and filled with the inert gas, the inside of the outer casing 2510 can be filled only with the supercritical fluid to form a supercritical fluid phenomenon.
當形成超臨界現象時,在操作S153c中停止經由下部供應管2540b供應超臨界流體,以在操作S153d中經由上部供應管2540a供應超臨界流體。因此,可快速地執行使用超臨界流體對基板S之乾燥。在此步驟中,由於外殼2510之內部處於臨界狀態,因此基板S可較少受損或不會受損,即使將超臨界流體直接高速地噴灑至基板S上亦如此。 When the supercritical phenomenon is formed, the supply of the supercritical fluid via the lower supply pipe 2540b is stopped in operation S153c to supply the supercritical fluid via the upper supply pipe 2540a in operation S153d. Therefore, the drying of the substrate S using the supercritical fluid can be performed quickly. In this step, since the inside of the outer casing 2510 is in a critical state, the substrate S can be less damaged or damaged, even if the supercritical fluid is directly sprayed onto the substrate S at a high speed.
當乾燥基板S時,在操作S154中排出超臨界流體。此處,可將惰性氣體供應至外殼2510中以排出超臨界流體。 When the substrate S is dried, the supercritical fluid is discharged in operation S154. Here, an inert gas may be supplied to the outer casing 2510 to discharge the supercritical fluid.
在相同情形下,由於基板S未在操作S153中得以充分乾燥,因此可在必要時重複地執行操作S153及S154。圖 14為說明超臨界流體之供應及排出的視圖。舉例而言,可在操作S153中供應超臨界流體,直至外殼2510之內部具有為約150巴之壓力為止,且接著可排出超臨界流體,直至外殼2510之內部具有為約100巴之壓力為止。 In the same case, since the substrate S is not sufficiently dried in operation S153, operations S153 and S154 can be repeatedly performed as necessary. Figure 14 is a view illustrating the supply and discharge of supercritical fluid. For example, the supercritical fluid may be supplied in operation S153 until the interior of the outer casing 2510 has a pressure of about 150 bar, and then the supercritical fluid may be discharged until the interior of the outer casing 2510 has a pressure of about 100 bar.
而且,根據實驗,由於觀測到在基板S在超臨界氛圍及惰性氛圍下重複乾燥的情況下,殘留在基板S之電路圖案上的異丙醇之移除速率顯著增加,相比之下,在超臨界氛圍下,基板S乾燥歷時長的時間,因此可重複地執行兩個操作S153及154以增加乾燥效率。或者,可執行操作S153歷時長的時間以乾燥基板S。 Moreover, according to the experiment, since the drying of the substrate S under the supercritical atmosphere and the inert atmosphere was observed, the removal rate of the isopropyl alcohol remaining on the circuit pattern of the substrate S was remarkably increased, in contrast, In the supercritical atmosphere, the substrate S is dried for a long time, so that two operations S153 and 154 can be repeatedly performed to increase the drying efficiency. Alternatively, operation S153 may be performed for a long time to dry the substrate S.
在操作S155中,當完成超臨界流體之排出時,排出惰性氣體以減小外殼2510之內部壓力。 In operation S155, when the discharge of the supercritical fluid is completed, the inert gas is exhausted to reduce the internal pressure of the outer casing 2510.
儘管在當前實施例中使用惰性氣體來執行第二乾燥步驟,但本發明不限於此。舉例而言,可僅使用超臨界流體而不使用惰性氣體來執行第二乾燥步驟。特定言之,可首先供應液態二氧化碳,且接著,可連續地加熱熱態二氧化碳以將液態二氧化碳改變為氣態二氧化碳。接著,可壓縮氣態二氧化碳以形成超臨界氛圍。 Although the inert gas is used in the current embodiment to perform the second drying step, the invention is not limited thereto. For example, the second drying step can be performed using only the supercritical fluid without using an inert gas. Specifically, liquid carbon dioxide may be supplied first, and then, the hot carbon dioxide may be continuously heated to change the liquid carbon dioxide to gaseous carbon dioxide. The gaseous carbon dioxide can then be compressed to form a supercritical atmosphere.
當使用超臨界流體來乾燥基板S時,可防止在使用異丙醇之第一乾燥步驟中或在旋轉基板S之自旋乾燥步驟中出現的粒子、靜電及圖案破裂之產生,且亦可防止水痕在基板S之表面上的產生,以改良半導體裝置之效能及良率。 When the supercritical fluid is used to dry the substrate S, generation of particles, static electricity, and pattern cracking occurring in the first drying step using isopropyl alcohol or in the spin drying step of the rotating substrate S can be prevented, and can also be prevented The generation of water marks on the surface of the substrate S improves the performance and yield of the semiconductor device.
在操作S160中,傳送機器人2210將基板S自第二處理腔室2500傳送至緩衝腔室2100中。當完成第二步驟時,傳送機器人2210自支撐部件2530卸載基板S以自第二處理腔室2500取出基板S,藉此將基板S安裝於緩衝腔室2100 之緩衝狹槽上。 In operation S160, the transfer robot 2210 transfers the substrate S from the second processing chamber 2500 into the buffer chamber 2100. When the second step is completed, the transfer robot 2210 unloads the substrate S from the support member 2530 to take out the substrate S from the second processing chamber 2500, thereby mounting the substrate S to the buffer chamber 2100. On the buffer slot.
在操作S120、S140及S160中,可藉由彼此不同之傳送機器人2210之臂2213來傳送基板之一部分或整個基板。舉例而言,在操作S120、S140及S160中之每一者中,可藉由彼此不同之傳送機器人2210之臂2213來傳送基板S。或者,可在操作S120及S140中藉由同一臂2213來傳送基板S,且可在操作S160中藉由不同臂2213來傳送基板S。進行此操作以防止臂2213之手部被污染,此係因為基板S在操作S120、S140與S160中具有不同狀態,從而二次污染藉由受污染臂2213傳送至下一操作之基板S。特定言之,在操作S120中,所傳送之基板S可為在執行清潔步驟之前的基板S。而且,在操作S140中,基板S可為未經乾燥之基板。亦即,異物、清潔劑、沖洗劑或有機溶劑可能會殘留於基板S上,且因此,臂2213之手部可能被上述材料污染。因此,當藉由在第二步驟中被上述材料弄髒之臂2213來拾取基板S時,基板S可能再次受到污染。 In operations S120, S140, and S160, one or a whole of the substrate may be transferred by the arm 2213 of the transfer robot 2210 that is different from each other. For example, in each of operations S120, S140, and S160, the substrate S can be transferred by the arm 2213 of the transfer robot 2210 that is different from each other. Alternatively, the substrate S may be transferred by the same arm 2213 in operations S120 and S140, and the substrate S may be transferred by the different arms 2213 in operation S160. This operation is performed to prevent the hand of the arm 2213 from being contaminated because the substrate S has different states in operations S120, S140, and S160, so that secondary pollution is transferred to the substrate S of the next operation by the contaminated arm 2213. Specifically, in operation S120, the transferred substrate S may be the substrate S before the cleaning step is performed. Moreover, in operation S140, the substrate S may be an undried substrate. That is, foreign matter, detergent, rinsing agent or organic solvent may remain on the substrate S, and therefore, the hand of the arm 2213 may be contaminated by the above materials. Therefore, when the substrate S is picked up by the arm 2213 which is soiled by the above material in the second step, the substrate S may be contaminated again.
在操作S170中,索引機器人1210將基板S自緩衝腔室2100傳送至載體C中。索引機器人1210固持安裝在緩衝狹槽上之基板S以將基板安裝在載體C之狹槽上。此處,可使用與用於操作S110中之臂1213不同的臂1213來執行操作S190。因此,如上所述,可防止基板S受到污染。當完全接收到所有基板S時,可藉由懸吊式升降傳送器(OHT)來將載體C傳送至外部。 In operation S170, the indexing robot 1210 transfers the substrate S from the buffer chamber 2100 to the carrier C. The indexing robot 1210 holds the substrate S mounted on the buffer slot to mount the substrate on the slot of the carrier C. Here, operation S190 may be performed using an arm 1213 different from the arm 1213 for operating in S110. Therefore, as described above, the substrate S can be prevented from being contaminated. When all the substrates S are completely received, the carrier C can be transported to the outside by a suspended lift conveyor (OHT).
圖15為說明根據本發明之另一實施例之用於處理基板之步驟的流程圖。根據本發明之另一實施例之基板處理方法可為使用超臨界流體之清潔步驟。 Figure 15 is a flow chart illustrating the steps for processing a substrate in accordance with another embodiment of the present invention. The substrate processing method according to another embodiment of the present invention may be a cleaning step using a supercritical fluid.
根據另一實施例之超臨界流體再循環方法包括:儲存二氧化碳(S210);將二氧化碳改變為超臨界流體(S220);使用該超臨界流體執行乾燥步驟(S230);使二氧化碳再循環(S240);及儲存再循環之二氧化碳(S250)。下文中,將描述該等步驟中之每一者。 A supercritical fluid recycling method according to another embodiment includes: storing carbon dioxide (S210); changing carbon dioxide to a supercritical fluid (S220); performing a drying step (S230) using the supercritical fluid; recycling carbon dioxide (S240) And storing recycled carbon dioxide (S250). Hereinafter, each of these steps will be described.
在操作S210中,將二氧化碳儲存於儲存槽3100中。自外部二氧化碳供應源F或再循環單元4000接收二氧化碳,且以液體狀態儲存。此處,可以氣態接收二氧化碳。因此,第一冷凝器3300可將氣態二氧化碳改變為液態二氧化碳以將液態二氧化碳供應至儲存槽3100中。 In operation S210, carbon dioxide is stored in the storage tank 3100. Carbon dioxide is received from an external carbon dioxide supply source F or a recycle unit 4000 and stored in a liquid state. Here, carbon dioxide can be received in a gaseous state. Therefore, the first condenser 3300 can change the gaseous carbon dioxide to liquid carbon dioxide to supply the liquid carbon dioxide into the storage tank 3100.
在操作S220中,供水槽3200將二氧化碳改變為超臨界流體。供水槽3200可自儲存槽3100接收二氧化碳以將二氧化碳改變為超臨界流體。特定言之,自儲存槽3100排出二氧化碳,且將其移動至供水槽3200中。此處,可藉由改變壓力來將二氧化碳改變為氣態二氧化碳。第二冷凝器3400及泵3500安置於連接儲存槽3100與供水槽3200之管線中。第二冷凝器3400將氣態二氧化碳改變為液態二氧化碳,且泵3500將液態二氧化碳改變為高壓氣態二氧化碳,以將高壓氣態二氧化碳供應至供水槽3200中。供水槽3200加熱該高壓氣態二氧化碳以產生超臨界流體。供水槽3200將該超臨界流體提供至第二處理腔室2500中。 In operation S220, the water supply tank 3200 changes carbon dioxide to a supercritical fluid. The water supply tank 3200 can receive carbon dioxide from the storage tank 3100 to change the carbon dioxide into a supercritical fluid. Specifically, carbon dioxide is discharged from the storage tank 3100 and moved into the water supply tank 3200. Here, carbon dioxide can be changed to gaseous carbon dioxide by changing the pressure. The second condenser 3400 and the pump 3500 are disposed in a line connecting the storage tank 3100 and the water supply tank 3200. The second condenser 3400 changes the gaseous carbon dioxide to liquid carbon dioxide, and the pump 3500 changes the liquid carbon dioxide to high pressure gaseous carbon dioxide to supply the high pressure gaseous carbon dioxide to the water supply tank 3200. The water supply tank 3200 heats the high pressure gaseous carbon dioxide to produce a supercritical fluid. A water supply tank 3200 provides the supercritical fluid to the second processing chamber 2500.
在操作S230中,第二處理腔室2500使用超臨界流體來執行乾燥步驟。第二處理腔室2500自供水槽3200接收超臨界流體以使用該超臨界流體來乾燥基板S。此處,該乾燥步驟可為上述第二乾燥步驟。第二處理腔室2500在乾燥步驟期間或乾燥步驟之後排出超臨界流體。 In operation S230, the second processing chamber 2500 performs a drying step using a supercritical fluid. The second processing chamber 2500 receives supercritical fluid from the water supply tank 3200 to dry the substrate S using the supercritical fluid. Here, the drying step may be the second drying step described above. The second processing chamber 2500 discharges the supercritical fluid during or after the drying step.
在操作S240中,再循環單元4000使二氧化碳再循環。 In operation S240, the recycling unit 4000 recirculates carbon dioxide.
在操作S241中,分離模組4100冷卻排出之超臨界流體以使有機溶劑與超臨界流體分離。當將超臨界流體引入至分離槽4110中時,冷卻部件4120冷卻超臨界流體以液化溶解於超臨界流體中之有機溶劑,藉此分離出有機溶劑。有機溶劑係經由安置於分離槽4110之下部部分處的排水管4150而排出,且與有機溶劑分離之二氧化碳係經由安置於分離槽4110之上部部分處的上部排氣管4140而分離。在經由冷卻超臨界流體之分離中,分離槽4110之內部溫度為重要的。 In operation S241, the separation module 4100 cools the discharged supercritical fluid to separate the organic solvent from the supercritical fluid. When the supercritical fluid is introduced into the separation tank 4110, the cooling member 4120 cools the supercritical fluid to liquefy the organic solvent dissolved in the supercritical fluid, thereby separating the organic solvent. The organic solvent is discharged through a drain pipe 4150 disposed at a lower portion of the separation tank 4110, and the carbon dioxide separated from the organic solvent is separated via an upper exhaust pipe 4140 disposed at an upper portion of the separation tank 4110. In the separation by cooling the supercritical fluid, the internal temperature of the separation tank 4110 is important.
圖16為說明分離單元4100之效率的曲線圖,且圖17為說明分離單元4100之效率的表格。圖16及圖17說明在分離單元4110具有為約10℃、約20℃及約30℃之內部溫度時所排泄之有機溶劑的量及效率。如上所述,當在為約10℃之溫度下執行操作S241時,可見操作效率與在約30℃之溫度下執行操作S241時相比改良了約10%。 FIG. 16 is a graph illustrating the efficiency of the separation unit 4100, and FIG. 17 is a table illustrating the efficiency of the separation unit 4100. 16 and 17 illustrate the amount and efficiency of the organic solvent excreted when the separation unit 4110 has an internal temperature of about 10 ° C, about 20 ° C, and about 30 ° C. As described above, when the operation S241 is performed at a temperature of about 10 ° C, it is seen that the operation efficiency is improved by about 10% as compared with when the operation S241 is performed at a temperature of about 30 °C.
在操作S242中,管柱模組4200再次使有機溶劑與二氧化碳分離,其中有機溶劑主要藉由分離模組4100而分離。超臨界流體或氣態二氧化碳係經由流入管4230而引入以通過吸收管柱4210,且接著排出至排氣管4240中。此處,二氧化碳通過吸收材料A。在此步驟中,溶解於二氧化碳中之有機溶劑得以吸收於吸收材料A中。因此,分離出有機溶劑,且經由排氣管4240排出純二氧化碳。因此,可經由上述步驟來使二氧化碳再循環。 In operation S242, the column module 4200 again separates the organic solvent from the carbon dioxide, wherein the organic solvent is mainly separated by the separation module 4100. Supercritical fluid or gaseous carbon dioxide is introduced via the inflow tube 4230 to pass through the absorption column 4210 and then discharged into the exhaust pipe 4240. Here, carbon dioxide passes through the absorbent material A. In this step, the organic solvent dissolved in the carbon dioxide is absorbed in the absorbent material A. Therefore, the organic solvent is separated, and pure carbon dioxide is discharged through the exhaust pipe 4240. Therefore, carbon dioxide can be recycled through the above steps.
在操作S250中,再循環單元4000將再循環之二氧化碳提供至儲存槽3100中。當完成再循環步驟時,將二氧化 碳移動且儲存於儲存槽3100中。此處,自再循環單元4000排出之二氧化碳處於氣態。因此,氣態二氧化碳藉由第一冷凝器3300而改變為液態二氧化碳,且儲存於儲存槽3100中。 In operation S250, the recycling unit 4000 supplies the recycled carbon dioxide to the storage tank 3100. When the recycling step is completed, the dioxide will be oxidized. The carbon moves and is stored in the storage tank 3100. Here, the carbon dioxide discharged from the recirculation unit 4000 is in a gaseous state. Therefore, the gaseous carbon dioxide is changed to liquid carbon dioxide by the first condenser 3300 and stored in the storage tank 3100.
在根據本發明之上述基板處理方法中,在每一實施例中執行之步驟皆並非必需的。因此,每一實施例可選擇性地包括上述步驟。另外,該等實施例可藉由彼此分離或組合而實現。而且,在每一實施例中執行之步驟可藉由與在另一實施例中執行之步驟彼此分離或組合而實現。 In the above substrate processing method according to the present invention, the steps performed in each embodiment are not essential. Thus, each embodiment can optionally include the steps described above. Additionally, the embodiments can be implemented by being separated or combined with one another. Moreover, the steps performed in each embodiment can be implemented by separate or combined with the steps performed in another embodiment.
而且,不必根據所述次序連續地執行在每一實施例中執行之步驟。舉例而言,稍後描述之步驟可先於先前描述之步驟而執行。 Moreover, the steps performed in each embodiment are not necessarily performed continuously in accordance with the described order. For example, the steps described later may be performed prior to the steps previously described.
而且,根據本發明之基板處理方法可儲存於電腦可讀記錄媒體中,其具有用於執行該基板處理方法之程式碼或程式。 Moreover, the substrate processing method according to the present invention can be stored in a computer readable recording medium having a code or program for executing the substrate processing method.
根據本發明,可使用超臨界流體來乾燥基板。 According to the present invention, a supercritical fluid can be used to dry the substrate.
根據本發明,可使用超臨界流體來乾燥基板以有效地執行乾燥步驟,且防止基板受損。 According to the present invention, a supercritical fluid can be used to dry the substrate to effectively perform the drying step and prevent damage to the substrate.
根據本發明,可使用於乾燥步驟中之超臨界流體再循環。 According to the present invention, the supercritical fluid used in the drying step can be recycled.
根據本發明,超臨界流體經冷卻以分離有機溶劑。 According to the invention, the supercritical fluid is cooled to separate the organic solvent.
根據本發明,用於吸收有機溶劑之吸收材料可用以將有機溶劑與提供為超臨界流體之流體分離。 According to the present invention, an absorbing material for absorbing an organic solvent can be used to separate the organic solvent from the fluid supplied as a supercritical fluid.
根據本發明,超臨界流體可再次再用於乾燥步驟中以降低製造成本,且防止環境污染發生。 According to the present invention, the supercritical fluid can be reused in the drying step again to reduce the manufacturing cost and prevent environmental pollution from occurring.
本發明之特徵不限於上述特徵,而熟習此項技術者自 本說明書及附圖將清楚地理解本文中未描述之其他特徵。 The features of the present invention are not limited to the above features, and those skilled in the art Other features not described herein will be clearly understood from the description and the drawings.
儘管已展示及描述本發明之特定實施例,但應理解,其他修改、更改及替代對於一般熟習此項技術者係顯而易見的。可在不脫離本發明之精神及範疇的情況下進行此種修改、更改及替代,且此種修改、更改及替代不受前述實施例及附圖之限制。而且,上述實施例之部分或全部可選擇性地組合及建構,以使得各種修改係可能的,而不會受限地應用上述實施例之構造及方案。 Although specific embodiments of the invention have been shown and described, it will be understood that Such modifications, changes and substitutions may be made without departing from the spirit and scope of the invention, and such modifications, changes and substitutions are not limited by the foregoing embodiments and the accompanying drawings. Moreover, some or all of the above-described embodiments may be selectively combined and constructed so that various modifications are possible without limitation to the configuration and arrangement of the above embodiments.
100‧‧‧用於處理基板之設備 100‧‧‧Devices for processing substrates
1000‧‧‧索引模組 1000‧‧‧ index module
1100‧‧‧裝載口 1100‧‧‧Load port
1200‧‧‧傳送框/傳送模組 1200‧‧‧Transfer frame/transfer module
1210‧‧‧索引機器人 1210‧‧‧ indexing robot
1211‧‧‧基座 1211‧‧‧Base
1212‧‧‧本體 1212‧‧‧ Ontology
1213‧‧‧臂 1213‧‧‧ Arm
1220‧‧‧索引軌 1220‧‧‧ index track
2000‧‧‧處理模組 2000‧‧‧Processing module
2100‧‧‧緩衝腔室 2100‧‧‧ buffer chamber
2200‧‧‧傳送腔室 2200‧‧‧Transfer chamber
2210‧‧‧傳送機器人 2210‧‧‧Transfer robot
2211‧‧‧基座 2211‧‧‧Base
2212‧‧‧本體 2212‧‧‧ Ontology
2213‧‧‧臂 2213‧‧‧ Arm
2220‧‧‧傳送軌 2220‧‧‧Transport
2300‧‧‧第一處理腔室 2300‧‧‧First processing chamber
2310‧‧‧外殼 2310‧‧‧Shell
2400‧‧‧處理單元 2400‧‧‧Processing unit
2410‧‧‧自旋頭 2410‧‧‧Rotating head
2411‧‧‧支撐板 2411‧‧‧Support board
2412‧‧‧支撐銷 2412‧‧‧Support pin
2413‧‧‧夾持銷 2413‧‧‧Clamp pin
2414‧‧‧旋轉軸 2414‧‧‧Rotary axis
2415‧‧‧馬達 2415‧‧‧Motor
2420‧‧‧流體供應部件 2420‧‧‧ Fluid supply parts
2421‧‧‧噴嘴 2421‧‧‧Nozzles
2422‧‧‧支撐件 2422‧‧‧Support
2423‧‧‧支撐軸 2423‧‧‧Support shaft
2424‧‧‧驅動器 2424‧‧‧ drive
2430‧‧‧回收容器 2430‧‧‧Recycling container
2430a‧‧‧第一回收容器 2430a‧‧‧First recycling container
2430b‧‧‧第二回收容器 2430b‧‧‧Second recycling container
2430c‧‧‧第三回收容器 2430c‧‧‧ third recycling container
2431‧‧‧流入孔 2431‧‧‧Inflow hole
2431a‧‧‧第一流入孔 2431a‧‧‧First inflow hole
2431b‧‧‧第二流入孔 2431b‧‧‧Second inflow hole
2431c‧‧‧第三流入孔 2431c‧‧‧ third inflow hole
2432‧‧‧回收管線 2432‧‧‧Recycling pipeline
2432a‧‧‧第一回收管線 2432a‧‧‧First recovery pipeline
2432b‧‧‧第二回收管線 2432b‧‧‧Second recovery pipeline
2432c‧‧‧第三回收管線 2432c‧‧‧ Third recovery pipeline
2440‧‧‧升降部件 2440‧‧‧ lifting parts
2441‧‧‧托架 2441‧‧‧ bracket
2442‧‧‧升降軸 2442‧‧‧ Lifting shaft
2443‧‧‧升降機 2443‧‧‧ Lifts
2500‧‧‧第二處理腔室 2500‧‧‧Second processing chamber
2510‧‧‧外殼 2510‧‧‧Shell
2520‧‧‧加熱部件 2520‧‧‧heating parts
2530‧‧‧支撐部件 2530‧‧‧Support parts
2540‧‧‧超臨界流體供應管 2540‧‧‧Supercritical fluid supply tube
2540a‧‧‧上部供應管 2540a‧‧‧Upper supply tube
2540b‧‧‧下部供應管 2540b‧‧‧Lower supply tube
2550‧‧‧排氣管/排出管 2550‧‧‧Exhaust pipe/exhaust pipe
2550a‧‧‧排出管 2550a‧‧‧Draining tube
2550b‧‧‧排出管 2550b‧‧‧Draining tube
2560‧‧‧氣體供應管 2560‧‧‧ gas supply pipe
3000‧‧‧超臨界流體供應單元 3000‧‧‧Supercritical Fluid Supply Unit
3100‧‧‧儲存槽 3100‧‧‧ storage tank
3200‧‧‧供水槽 3200‧‧‧Water supply tank
3300‧‧‧第一冷凝器 3300‧‧‧First condenser
3400‧‧‧第二冷凝器 3400‧‧‧second condenser
3500‧‧‧泵 3500‧‧‧ pump
4000‧‧‧再循環單元 4000‧‧‧Recycling unit
4100‧‧‧分離模組 4100‧‧‧Separation module
4100a‧‧‧第一分離模組 4100a‧‧‧First separation module
4100b‧‧‧第二分離模組 4100b‧‧‧Second separation module
4110‧‧‧分離槽 4110‧‧‧Separation tank
4120‧‧‧冷卻部件 4120‧‧‧ Cooling parts
4130‧‧‧流入管 4130‧‧‧Inflow pipe
4140‧‧‧排氣管 4140‧‧‧Exhaust pipe
4150‧‧‧排水管 4150‧‧‧Drainage pipe
4160‧‧‧壓力調節器 4160‧‧‧pressure regulator
4200‧‧‧管柱模組 4200‧‧‧Pipe module
4200a‧‧‧第一管柱模組 4200a‧‧‧First column module
4200b‧‧‧第二管柱模組 4200b‧‧‧Second column module
4200c‧‧‧第三管柱模組 4200c‧‧‧Three column module
4210‧‧‧吸收管柱 4210‧‧‧absorbing column
4220‧‧‧溫度維持部件 4220‧‧‧ Temperature maintenance unit
4230‧‧‧流入管 4230‧‧‧Inflow pipe
4240‧‧‧排氣管 4240‧‧‧Exhaust pipe
4250‧‧‧濃度感測器 4250‧‧‧ concentration sensor
A‧‧‧吸收材料 A‧‧‧Absorbent materials
C‧‧‧載體 C‧‧‧ Carrier
F‧‧‧外部二氧化碳供應源 F‧‧‧External carbon dioxide supply
G‧‧‧氣體供應源 G‧‧‧ gas supply source
S‧‧‧基板 S‧‧‧Substrate
X‧‧‧第一方向 X‧‧‧ first direction
Y‧‧‧第二方向 Y‧‧‧second direction
Z‧‧‧第三方向 Z‧‧‧ third direction
圖1為根據本發明之一實施例之用於處理基板之設備的平面圖。 1 is a plan view of an apparatus for processing a substrate in accordance with an embodiment of the present invention.
圖2為圖1之第一處理腔室的截面圖。 2 is a cross-sectional view of the first processing chamber of FIG. 1.
圖3為說明二氧化碳之相位轉變的視圖。 Fig. 3 is a view illustrating a phase transition of carbon dioxide.
圖4為圖1之第二處理腔室的截面圖。 4 is a cross-sectional view of the second processing chamber of FIG. 1.
圖5為根據本發明之另一實施例之圖1的第二處理腔室之截面圖。 Figure 5 is a cross-sectional view of the second processing chamber of Figure 1 in accordance with another embodiment of the present invention.
圖6為說明超臨界流體之循環路徑的視圖。 Figure 6 is a view illustrating a circulation path of a supercritical fluid.
圖7為根據本發明之一實施例之圖6的再循環單元之視圖。 Figure 7 is a view of the recycling unit of Figure 6 in accordance with an embodiment of the present invention.
圖8為根據本發明之另一實施例之圖6的再循環單元之視圖。 Figure 8 is a view of the recycling unit of Figure 6 in accordance with another embodiment of the present invention.
圖9為圖7之分離模組的截面圖。 Figure 9 is a cross-sectional view of the separation module of Figure 7.
圖10為圖6之管柱模組的截面圖。 Figure 10 is a cross-sectional view of the column module of Figure 6.
圖11為說明根據本發明之一實施例之用於處理基板之步驟的流程圖。 Figure 11 is a flow chart illustrating the steps for processing a substrate in accordance with an embodiment of the present invention.
圖12為說明根據本發明之一實施例之第一步驟的流程圖。 Figure 12 is a flow chart illustrating the first step in accordance with an embodiment of the present invention.
圖13為說明根據本發明之一實施例之第二步驟的流程圖。 Figure 13 is a flow chart illustrating a second step in accordance with an embodiment of the present invention.
圖14為說明超臨界流體之供應及排出的視圖。 Figure 14 is a view illustrating the supply and discharge of a supercritical fluid.
圖15為說明根據本發明之另一實施例之用於處理基板之步驟的流程圖。 Figure 15 is a flow chart illustrating the steps for processing a substrate in accordance with another embodiment of the present invention.
圖16為說明分離單元之效率的曲線圖。 Figure 16 is a graph illustrating the efficiency of the separation unit.
圖17為說明分離單元之效率的表格。 Figure 17 is a table illustrating the efficiency of the separation unit.
100‧‧‧用於處理基板之設備 100‧‧‧Devices for processing substrates
1000‧‧‧索引模組 1000‧‧‧ index module
1100‧‧‧裝載口 1100‧‧‧Load port
1200‧‧‧傳送框/傳送模組 1200‧‧‧Transfer frame/transfer module
1210‧‧‧索引機器人 1210‧‧‧ indexing robot
1211‧‧‧基座 1211‧‧‧Base
1212‧‧‧本體 1212‧‧‧ Ontology
1213‧‧‧臂 1213‧‧‧ Arm
1220‧‧‧索引軌 1220‧‧‧ index track
2000‧‧‧處理模組 2000‧‧‧Processing module
2100‧‧‧緩衝腔室 2100‧‧‧ buffer chamber
2200‧‧‧傳送腔室 2200‧‧‧Transfer chamber
2210‧‧‧傳送機器人 2210‧‧‧Transfer robot
2211‧‧‧基座 2211‧‧‧Base
2212‧‧‧本體 2212‧‧‧ Ontology
2213‧‧‧臂 2213‧‧‧ Arm
2220‧‧‧傳送軌 2220‧‧‧Transport
2300‧‧‧第一處理腔室 2300‧‧‧First processing chamber
2310‧‧‧外殼 2310‧‧‧Shell
2500‧‧‧第二處理腔室 2500‧‧‧Second processing chamber
2510‧‧‧外殼 2510‧‧‧Shell
Claims (24)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20110064987 | 2011-06-30 | ||
KR1020110104768A KR101236808B1 (en) | 2011-06-30 | 2011-10-13 | Apparatus and mothod for treating substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201308419A true TW201308419A (en) | 2013-02-16 |
TWI529796B TWI529796B (en) | 2016-04-11 |
Family
ID=47837961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101123466A TWI529796B (en) | 2011-06-30 | 2012-06-29 | Apparatus and mothod for treating substrate |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101236808B1 (en) |
TW (1) | TWI529796B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI619182B (en) * | 2013-08-01 | 2018-03-21 | Psk有限公司 | Apparatus and method for treating substrate |
TWI732525B (en) * | 2019-04-24 | 2021-07-01 | 韓商無盡電子有限公司 | Substrate drying chamber |
TWI751404B (en) * | 2018-03-06 | 2022-01-01 | 日商斯庫林集團股份有限公司 | Substrate treating apparatus |
US11227780B2 (en) | 2018-09-20 | 2022-01-18 | Taiwan Semiconductor Manufacturing Co., Ltd. | System and method for operating the same |
TWI759630B (en) * | 2018-09-20 | 2022-04-01 | 台灣積體電路製造股份有限公司 | Cooling system and cooling method |
TWI828281B (en) * | 2021-09-03 | 2024-01-01 | 南韓商細美事有限公司 | Substrate treating apparatus and substrate treating method |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101530677B1 (en) * | 2013-03-29 | 2015-06-24 | 세메스 주식회사 | Recyclimg unit, substrate treating apparatus |
CN104078388B (en) | 2013-03-29 | 2017-04-12 | 细美事有限公司 | Recycling unit, substrate treating apparatus |
US10046371B2 (en) | 2013-03-29 | 2018-08-14 | Semes Co., Ltd. | Recycling unit, substrate treating apparatus and recycling method using the recycling unit |
KR102101343B1 (en) | 2013-12-05 | 2020-04-17 | 삼성전자주식회사 | method for purifying supercritical fluid and purification apparatus of the same |
KR102310463B1 (en) * | 2013-12-23 | 2021-10-12 | 세메스 주식회사 | Unit for supplying chemical and Apparatus for treating substrate with the unit |
KR102219880B1 (en) * | 2013-12-27 | 2021-02-25 | 세메스 주식회사 | Substrate treating apparatus and substrate treating method |
KR102188348B1 (en) * | 2013-12-27 | 2020-12-09 | 세메스 주식회사 | Substrate treating apparatus and method |
KR102157837B1 (en) * | 2013-12-31 | 2020-09-18 | 세메스 주식회사 | Substrate treating apparatus and substrate treating method |
KR102155217B1 (en) * | 2013-12-31 | 2020-09-11 | 세메스 주식회사 | Recyclimg unit, substrate treating apparatus |
KR102155216B1 (en) * | 2013-12-31 | 2020-09-11 | 세메스 주식회사 | Tank and substrate treating apparatus and method |
KR102411946B1 (en) * | 2015-07-08 | 2022-06-22 | 삼성전자주식회사 | Apparatus for treating substrates using supercritical fluid, substrate treatment system including the same and method of treating substrates using the same |
US9824941B2 (en) * | 2015-11-17 | 2017-11-21 | Lam Research Corporation | Systems and methods for detection of plasma instability by electrical measurement |
KR102287457B1 (en) * | 2019-07-10 | 2021-08-10 | 엘지전자 주식회사 | Drying apparatus of organic solution |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006269816A (en) | 2005-03-24 | 2006-10-05 | Daikin Ind Ltd | Treatment method and treatment apparatus |
JP4546314B2 (en) | 2005-04-06 | 2010-09-15 | 株式会社日立ハイテクノロジーズ | Fine structure drying method and apparatus |
JP2008130685A (en) | 2006-11-17 | 2008-06-05 | Sony Corp | Microstructure processing method and apparatus, and the microstructure |
-
2011
- 2011-10-13 KR KR1020110104768A patent/KR101236808B1/en active IP Right Review Request
-
2012
- 2012-06-29 TW TW101123466A patent/TWI529796B/en active
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI619182B (en) * | 2013-08-01 | 2018-03-21 | Psk有限公司 | Apparatus and method for treating substrate |
TWI751404B (en) * | 2018-03-06 | 2022-01-01 | 日商斯庫林集團股份有限公司 | Substrate treating apparatus |
US11495476B2 (en) | 2018-03-06 | 2022-11-08 | SCREEN Holdings Co., Ltd. | Substrate treating apparatus |
US11227780B2 (en) | 2018-09-20 | 2022-01-18 | Taiwan Semiconductor Manufacturing Co., Ltd. | System and method for operating the same |
TWI759630B (en) * | 2018-09-20 | 2022-04-01 | 台灣積體電路製造股份有限公司 | Cooling system and cooling method |
US11721567B2 (en) | 2018-09-20 | 2023-08-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | System and method for operating the same |
TWI732525B (en) * | 2019-04-24 | 2021-07-01 | 韓商無盡電子有限公司 | Substrate drying chamber |
TWI828281B (en) * | 2021-09-03 | 2024-01-01 | 南韓商細美事有限公司 | Substrate treating apparatus and substrate treating method |
US12094706B2 (en) | 2021-09-03 | 2024-09-17 | Semes Co., Ltd. | Substrate treating apparatus and substrate treating method |
Also Published As
Publication number | Publication date |
---|---|
KR20130007397A (en) | 2013-01-18 |
KR101236808B1 (en) | 2013-02-25 |
TWI529796B (en) | 2016-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI529796B (en) | Apparatus and mothod for treating substrate | |
US9679788B2 (en) | Apparatus and method for treating substrate | |
US9691638B2 (en) | Apparatus for treating substrate and method for discharging supercritical fluid | |
TWI503911B (en) | Apparatus for treating substrate and method for discharging supercritical fluid | |
US10046371B2 (en) | Recycling unit, substrate treating apparatus and recycling method using the recycling unit | |
US9587880B2 (en) | Apparatus and method for drying substrate | |
US9275847B2 (en) | Recycling unit and substrate treating apparatus | |
KR101536724B1 (en) | Substrate treating apparatus and substrate treating method | |
JP2013251547A (en) | Substrate treating apparatus and substrate treating method | |
KR102188348B1 (en) | Substrate treating apparatus and method | |
KR20140144806A (en) | Substrate treating apparatus | |
KR101590906B1 (en) | Substrate treating apparatus and method | |
KR101621485B1 (en) | Substrate treating apparatus and recycling method | |
KR101512097B1 (en) | Substrate treating apparatus and substrate treating method | |
KR20150138975A (en) | Substrate treating apparatus and method | |
KR101530677B1 (en) | Recyclimg unit, substrate treating apparatus | |
KR102155217B1 (en) | Recyclimg unit, substrate treating apparatus | |
KR20130052991A (en) | Substrate treating apparatus performing and ventilation method using the same | |
KR102640149B1 (en) | Apparatus for treating substrate and method for processing a substrate | |
KR102155216B1 (en) | Tank and substrate treating apparatus and method | |
KR101853374B1 (en) | Apparatus and method for treating substrate | |
KR20140118661A (en) | Recyclimg unit, substrate treating apparatus and substrate treating method |