JP4546314B2 - Fine structure drying method and apparatus - Google Patents

Fine structure drying method and apparatus Download PDF

Info

Publication number
JP4546314B2
JP4546314B2 JP2005109363A JP2005109363A JP4546314B2 JP 4546314 B2 JP4546314 B2 JP 4546314B2 JP 2005109363 A JP2005109363 A JP 2005109363A JP 2005109363 A JP2005109363 A JP 2005109363A JP 4546314 B2 JP4546314 B2 JP 4546314B2
Authority
JP
Japan
Prior art keywords
drying
fluid
substrate
pressure vessel
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005109363A
Other languages
Japanese (ja)
Other versions
JP2006294662A (en
Inventor
久幸 高須
徹 岩谷
栄 高堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005109363A priority Critical patent/JP4546314B2/en
Publication of JP2006294662A publication Critical patent/JP2006294662A/en
Application granted granted Critical
Publication of JP4546314B2 publication Critical patent/JP4546314B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、新規な微細構造乾燥処理法及びその装置に関する。   The present invention relates to a novel microstructure drying method and apparatus.

従来、大規模で高密度、高性能デバイスを製造するには、シリコンウェハ上に成膜したレジストに対して露光、現像、リンス洗浄、乾燥を経てパターンを形成した後、コーティング、エッチング、リンス洗浄、乾燥等のプロセスを経て製造される。特に、レジストは、光、X線、電子線などに感光する高分子材料であり、各工程において、現像、リンス洗浄工程では現像液、リンス液等の薬液を使用しているため、リンス洗浄工程後は乾燥工程が必須である。   Conventionally, in order to manufacture a large-scale, high-density, high-performance device, a resist formed on a silicon wafer is exposed, developed, rinsed and dried to form a pattern, and then coated, etched, and rinsed. It is manufactured through a process such as drying. In particular, the resist is a polymer material that is sensitive to light, X-rays, electron beams, etc., and in each process, a chemical solution such as a developer or a rinse solution is used in the development and rinse cleaning process, so the rinse cleaning process After that, a drying process is essential.

この乾燥工程において、基板上に形成したレジストパターン間のスペース幅が100nm以下と微細になるとパターン間に残存する薬液の表面張力の作用により、パターン間にラプラス力(毛細管力)が作用してパターン倒れが発生する問題が生ずる。   In this drying process, when the space width between resist patterns formed on the substrate becomes as fine as 100 nm or less, the Laplace force (capillary force) acts between the patterns due to the surface tension of the chemical remaining between the patterns. The problem of falling occurs.

一方では、例えば加速センサーやアクチュエータ等の微細な可動部や構造を持つ三次元微細構造部品のMEMS(Micro Electromechanical System)部品の製造は、フッ酸等のエッチング液で可動部位を含む微細構造を形成する工程と、純水リンスでエッチング液を除去(洗浄)する工程と、乾燥する工程を含んでいる。この乾燥工程においてもレジストパターンと同様に微細構造間に残る薬液による表面張力が作用して、可動部が基板に固着する現象が発生している。   On the other hand, for example, the manufacture of MEMS (Micro Electromechanical System) parts, which are three-dimensional microstructure parts with fine movable parts and structures such as acceleration sensors and actuators, form a microstructure that includes movable parts with an etching solution such as hydrofluoric acid. A process of removing (cleaning) the etching solution with pure water rinsing, and a process of drying. Also in this drying process, the surface tension due to the chemical solution remaining between the fine structures acts like the resist pattern, and the phenomenon that the movable part is fixed to the substrate occurs.

レジストパターンやMEMS等の微細構造間に残存する薬液の表面張力の作用によるパターン倒れや素子の固着を防止するために、微細構造物間に作用する表面張力を軽減する乾燥プロセスとして、特許文献1に示す所定の圧力容器を用いると共に、二酸化炭素等の超臨界流体を用いた方法がある。この二酸化炭素等の超臨界流体を用いた乾燥法は、以下の基本工程を有する。
(1)液体又は超臨界状態の流体に可溶でない試料に含まれる例えば水等の残存液体は、予め流体に可溶な薬液、例えば乾燥流体として二酸化炭素を使用する場合には二酸化炭素に可溶なエタノールや2−プロパノール等の有機溶剤やその混合液等のリンス液と置換しておく工程。
(2)リンス液に浸漬、又は濡れた状態、具体的には基板上にリンス液が載った状態の試料を高圧容器となる高圧容器に設置し、高圧容器を密閉する工程。
(3)高圧容器に液体状態又は超臨界状態の乾燥流体を高圧容器に導入し、所定の圧力まで昇圧する工程。
(4)高圧容器内に導入した液体又は超臨界状態の乾燥流体を加熱しその比重を変化させて、リンス液と異なる比重とし、リンス液を高圧容器の上部又は下部に集め、液体又は超臨界状態の流体と置換させ、集められたリンス液を高圧容器外に排出させる工程。
(5)リンス液の置換後に高圧容器とその乾燥流体を臨界点以上に昇圧及び昇温させる工程。
(6)高圧容器から超臨界状態の流体を徐々に排出させ大気圧まで減圧する工程。
(7)高圧容器から基板を取り出す工程。
Patent Document 1 discloses a drying process for reducing the surface tension acting between fine structures in order to prevent pattern collapse and element sticking due to the action of the surface tension of a chemical solution remaining between fine structures such as resist patterns and MEMS. And a method using a supercritical fluid such as carbon dioxide. This drying method using a supercritical fluid such as carbon dioxide has the following basic steps.
(1) Residual liquid such as water contained in a sample that is not soluble in a liquid or a fluid in a supercritical state can be dissolved in carbon dioxide in the case where carbon dioxide is used in advance as a chemical solution that is soluble in fluid, for example, as a drying fluid. A step of replacing with a rinsing liquid such as a soluble organic solvent such as ethanol or 2-propanol or a mixture thereof.
(2) A step of placing a sample immersed in or wetted with a rinsing liquid, specifically, a state where the rinsing liquid is placed on a substrate in a high-pressure container serving as a high-pressure container, and sealing the high-pressure container.
(3) A step of introducing a liquid or supercritical dry fluid into the high-pressure vessel and increasing the pressure to a predetermined pressure.
(4) The liquid or supercritical dry fluid introduced into the high-pressure vessel is heated to change its specific gravity to a specific gravity different from that of the rinsing liquid, and the rinsing liquid is collected at the upper or lower part of the high-pressure vessel to obtain the liquid or supercritical A step of replacing the fluid in a state and discharging the collected rinse liquid out of the high-pressure vessel.
(5) A step of raising the pressure and raising the temperature of the high-pressure vessel and its dry fluid above the critical point after the rinsing liquid is replaced.
(6) A step of gradually discharging the fluid in a supercritical state from the high-pressure vessel to reduce the pressure to atmospheric pressure.
(7) A step of taking out the substrate from the high-pressure vessel.

特開2004−335675号公報JP 2004-335675 A

しかし、従来の超臨界流体を用いた乾燥法は、高圧容器全体を低温と臨界温度以上に温度制御して乾燥流体の状態と密度を制御することでリンス液を選択的に高圧容器外に排出できる「臨界点乾燥法」に比較すると乾燥時間がかなり短縮されたものの、熱容量の大きな高圧容器全体を5℃から50℃の設定温度に制御するための昇温・降温に時間を要していた。   However, in the conventional drying method using supercritical fluid, the rinsing liquid is selectively discharged out of the high-pressure vessel by controlling the temperature and temperature of the entire high-pressure vessel to a temperature lower than the critical temperature and controlling the state and density of the drying fluid. Although the drying time was considerably shortened compared to the "critical point drying method" that can be performed, it took time to raise and lower the temperature to control the entire high-pressure vessel with a large heat capacity from 5 ° C to 50 ° C. .

本発明の目的は、乾燥時に乾燥流体だけを局部的に加熱するだけで、リンス液の表面張力の影響によりパターン倒れや素子の固着が発生しうる微細なパターンを形成した100mm以上の大口径基板に対して効率良く短時間で均一に乾燥させることができる微細構造乾燥処理法及びその装置を提供することにある。   An object of the present invention is to provide a large-diameter substrate having a diameter of 100 mm or more on which a fine pattern in which pattern collapse or element sticking may occur due to the influence of the surface tension of the rinsing liquid only by locally heating the drying fluid during drying. It is an object of the present invention to provide a fine structure drying method and apparatus capable of drying uniformly and efficiently in a short time.

本発明は、高圧容器内にリンス液に浸漬又は濡れた状態の微細構造を有する基板を設置し、高圧容器内にリンス液の比重と異なる比重の乾燥流体を導入して満たした後、前記乾燥流体によって満たした前記高圧容器を前記基板と共に設定角度に傾斜させてリンス液と乾燥流体の比重差を利用して選択的に高圧容器内よりリンス液を前記傾斜した前記高圧容器の最上部又は最下部となる少なくとも一方に設けられたリンス液排出口より前記高圧容器内より排出後、乾燥流体を局部的に臨界温度以上に加熱しながら大気圧まで減圧し前記乾燥流体を前記リンス液排出口とは別個に設けられた乾燥流体排出口より前記高圧容器外に排出させるもので、好ましくは、基板近傍の前記流体を局部的に加熱することにより、基板近傍の前記流体に対流を生じさせ乾燥流体でリンス液を溶解することを促進させる工程を有する微細構造乾燥処理法にある。 In the present invention, a substrate having a fine structure immersed or wet in a rinsing liquid is placed in a high-pressure vessel, and a drying fluid having a specific gravity different from the specific gravity of the rinsing liquid is introduced into the high-pressure vessel and filled, and then the drying is performed. top or of the high-pressure vessel the rinsing liquid from the selectively high-pressure vessel of the high-pressure container filled with a fluid by utilizing the difference in specific gravity between the drying fluid and the rinsing liquid is inclined to the predetermined angle with the substrate and the inclined After discharging from the inside of the high-pressure vessel through a rinse liquid discharge port provided in at least one of the lower parts , the drying fluid is decompressed to atmospheric pressure while locally heating to a critical temperature or higher, and the dry fluid is supplied to the rinse liquid discharge port. in shall then discharged to the high pressure vessel outer than provided separately dry fluid outlet, preferably, by locally heating the fluid near the substrate, the raw convection in the fluid near the substrate In the microstructure drying treatment method comprising the step of promoting the dissolving rinsing liquid at the allowed dry fluid.

2種の流体の界面には、主に表面エネルギーの差に起因する表面張力が作用すること、又、2種の流体の間に溶解性を示す場合は溶解度及び溶解速度が高いほど表面張力が小さくなることが知られている。   The surface tension mainly due to the difference in surface energy acts on the interface between the two fluids. When the solubility between the two fluids is high, the higher the solubility and the dissolution rate, the higher the surface tension. It is known to become smaller.

超臨界乾燥法においては、リンス液と液体又は超臨界状態の乾燥流体の間に2層の界面が存在し、これらの界面にも表面張力が作用することになるが、通常、リンス液と乾燥流体は相溶性を示す物質の組合せを用いるため、リンス液と流体の2層の界面に作用する表面張力は小さくなる。
例えば乾燥流体用いる二酸化炭素はヘキサンと同等と言われる有機溶媒的な性質を有している。
この二酸化炭素を乾燥流体として用いる場合は、二酸化炭素に溶けることが分かっているアルコールやアセトン、酢酸イソアミル等の有機溶剤を用いるが、液化二酸化炭素への溶解性は高くなく、界面には表面エネルギーの差に起因する表面張力が作用することになる。
In the supercritical drying method, there is a two-layer interface between the rinsing liquid and the liquid or the supercritical drying fluid, and surface tension acts on these interfaces. Since the fluid uses a combination of compatible materials, the surface tension acting on the interface between the rinse liquid and the fluid is reduced.
For example, carbon dioxide used as a drying fluid has an organic solvent property equivalent to hexane.
When using carbon dioxide as a drying fluid, organic solvents such as alcohol, acetone, and isoamyl acetate, which are known to dissolve in carbon dioxide, are used, but the solubility in liquefied carbon dioxide is not high, and surface energy is present at the interface. Surface tension due to the difference between the two acts.

しかし、超臨界状態または液化二酸化炭素とアルコールやアセトン、酢酸イソアミル等のリンス液との界面の表面張力の大きさは測定されていないのが現状で、発明者らの実験結果においてはスペース幅20nm、ライン幅40nm、厚さ160nmのレジストパターンが超臨界状態または液化二酸化炭素とアルコールやアセトン、酢酸イソアミル等のリンス液との界面の表面張力の影響で倒れることが無いことが分かっている。   However, the size of the surface tension at the interface between the supercritical state or the liquefied carbon dioxide and the rinsing liquid such as alcohol, acetone, and isoamyl acetate is not measured at present, and according to the experimental results of the inventors, the space width is 20 nm. It has been found that the resist pattern having a line width of 40 nm and a thickness of 160 nm does not collapse due to the influence of the surface tension at the interface between the supercritical state or the liquefied carbon dioxide and the rinsing liquid such as alcohol, acetone or isoamyl acetate.

一方、液体から超臨界状態を経た気体への相変化には表面張力が作用しないことが知られており、従来の臨界点乾燥法はこの現象を利用したものであるが前述したように流体とリンス液の界面には表面張力が作用するため、超臨界乾燥法を適用しても完全に表面張力の影響を皆無にすることはできないが、必要とされる表面張力の低減効果を満たすことはできる。   On the other hand, it is known that surface tension does not act on the phase change from a liquid to a supercritical state gas, and the conventional critical point drying method uses this phenomenon. Since the surface tension acts on the interface of the rinsing liquid, even if the supercritical drying method is applied, the influence of the surface tension cannot be completely eliminated, but it does not satisfy the required surface tension reduction effect. it can.

従って、従来の臨界点乾燥法である液体から超臨界状態を経て気体へと状態変化させる工程は必ずしも必要ではなく、気液曲線を横切る状態変化を有する工程があっても必要とする表面張力を低減する効果を満たすことができることになる。   Therefore, the conventional critical point drying method is not necessarily required to change the state of the liquid from the liquid to the gas via the supercritical state, and the required surface tension can be obtained even if there is a step having a state change across the gas-liquid curve. The effect of reducing can be satisfied.

液体から気体に状態変化させる場合に作用する表面張力の大きさは、気液曲線における臨界点に近いほど小さくなる点に着目すると、
(流体を液体から気体に状態変化させる場合の表面張力)を(リンス液と流体の界面に作用する表面張力)より小さくする条件を満たすように状態変化させることである。
Focusing on the fact that the magnitude of the surface tension that acts when changing the state from liquid to gas becomes smaller as it approaches the critical point in the gas-liquid curve,
The state change is performed so as to satisfy the condition of making the (surface tension when changing the state of the fluid from liquid to gas) smaller than (the surface tension acting on the interface between the rinse liquid and the fluid).

例えば、液化二酸化炭素を乾燥流体とし、リンス液を2−プロパノールとして前述のレジストパターンに対して適用した場合、圧力7.5MPa、温度25℃の条件で徐々に大気圧まで減圧して液体から気体へと状態変化をさせた場合と、圧力7.5MPa、温度35℃の超臨界状態を経て気体へと相を変化させた場合に同様の表面張力の低減効果即ち乾燥結果を得ることが実験より分かった。   For example, when liquefied carbon dioxide is used as the dry fluid and the rinse liquid is applied as 2-propanol to the resist pattern described above, the pressure is gradually reduced to atmospheric pressure under the conditions of pressure 7.5 MPa and temperature 25 ° C. From the experiment, it is possible to obtain the same effect of reducing the surface tension, that is, the drying result when the phase is changed to gas through the supercritical state of pressure 7.5 MPa and temperature 35 ° C. I understood.

高圧容器内を乾燥流体によって満たした後、リンス液を高圧容器内より排出させるリンス液排出工程と、基板近傍に設置した温度調節機能により乾燥流体を臨界温度以上に加熱対流を生じさせてリンス液と乾燥流体の溶解を促進させることが好ましい。   After filling the inside of the high-pressure vessel with the drying fluid, the rinsing solution is discharged from the inside of the high-pressure vessel, and the temperature control function installed near the substrate causes the drying fluid to generate convection over the critical temperature to generate the rinsing solution. It is preferable to promote dissolution of the drying fluid.

基盤近傍に配置した温度調節機能の温度を臨界温度以上に加熱することにより高圧容器内の基盤近傍に超臨界状態と液体状態とが混在した状態を形成し、乾燥流体でリンス液を溶解を促進させるのに適当な対流を生じさせ且つ、基板の温度は臨界温度を超えないように加熱を制御することが好ましい。   By heating the temperature control function located near the base to a temperature above the critical temperature, a supercritical state and a liquid state are formed near the base in the high-pressure vessel, and the rinsing liquid is promoted to dissolve with the dry fluid. It is preferable to control the heating so that the convection is appropriate and the temperature of the substrate does not exceed the critical temperature.

特に、本発明は、リンス液に浸漬又は濡れた状態の微細構造を有する基板を設置した内容積1リットル以内の高圧容器内に乾燥流体を満たした後、高圧容器内の下部に集められたリンス液を高圧容器外に排出し、次いで、基板近傍の乾燥流体を局部的に臨界温度以上に加熱しながらリンス液を流体に溶解させると共に同様に加熱しながら大気圧まで減圧することにより、高圧容器内に乾燥流体を導入してから大気圧まで減圧するまでの乾燥に要する所要時間を10分以内で行うことができる。   In particular, the present invention relates to a rinsing collected in a lower part of a high-pressure vessel after filling a dry fluid in a high-pressure vessel having an internal volume of 1 liter or less in which a substrate having a fine structure immersed or wet in a rinsing liquid is installed. The liquid is discharged out of the high-pressure container, and then the rinsing liquid is dissolved in the fluid while locally heating the dry fluid in the vicinity of the substrate to a temperature above the critical temperature, and the pressure is reduced to atmospheric pressure while heating in the same manner. The time required for drying from the introduction of the drying fluid into the inside until the pressure is reduced to atmospheric pressure can be performed within 10 minutes.

又、本発明は、
リンス液に浸漬又は濡れた状態の微細構造を有する基板を保持する基板設置台と、
基板設置台に保持された基板を乾燥する高圧容器と、
高圧容器前記リンス液の比重と異なる比重の乾燥流体を導入する導入手段と、
前記高圧容器を前記基板と共に傾斜させる傾斜手段と、
乾燥流体によって満たされた高圧容器内よりリンス液を前記傾斜した前記高圧容器の最上部又は最下部となる少なくとも一方に設けられたリンス液排出口より排出させるリンス液排出手段と、
基板の上下の少なくとも一方の基板近傍に配置した耐圧管構造内に設けた電熱線による加熱又は配管内への熱流体の流入によって前記乾燥流体を局部的に加熱を行う温度調節機能と、
温度調節機能によって局部的に乾燥流体を加熱しながら前記リンス液排出口とは別個に設けられた乾燥流体排出口より高圧容器外に排出させる乾燥流体排出手段とを有する微細構造乾燥装置にある。
The present invention also provides
A substrate mounting table for holding a substrate having a fine structure immersed or wet in a rinse solution;
A high-pressure container for drying the substrate held on the substrate mounting table;
And introducing means for introducing a specific gravity different from the specific gravity of the dry fluid of the rinsing liquid into the high pressure vessel,
Tilting means for tilting the high-pressure vessel together with the substrate;
Rinsing liquid discharging means for discharging the rinsing liquid from the inside of the high-pressure vessel filled with the drying fluid from a rinsing liquid discharge port provided on at least one of the top and bottom of the inclined high-pressure vessel ;
A temperature adjustment function for locally heating the dry fluid by heating with a heating wire provided in a pressure-resistant tube structure disposed in the vicinity of at least one of the substrates above and below the substrate, or by inflow of thermal fluid into the piping;
The fine-structure drying apparatus has a drying fluid discharge means that discharges the drying fluid from the high-pressure container through a drying fluid discharge port provided separately from the rinse liquid discharge port while locally heating the drying fluid by a temperature control function.

更に、本発明は、
リンス液に浸漬又は濡れた状態の微細構造を有する基板を保持する基板設置台と、
基板設置台に保持された基板を乾燥する高圧容器と、
高圧容器前記リンス液の比重と異なる比重の乾燥流体を導入する導入手段と、
前記高圧容器を前記基板と共に傾斜させる傾斜手段と、
前記乾燥流体によって満たされた高圧容器内よりリンス液を前記傾斜した前記高圧容器の最上部又は最下部となる少なくとも一方に設けられたリンス液排出口より排出させるリンス液排出手段と、
基板の上下の少なくとも一方の近傍に設けられ前記乾燥流体を局部的に加熱する温度調節機能と、
温度調節機能により前記乾燥流体を超臨界状態と液体状態とが混在した状態に加熱保持する高圧容器内の圧力を制御する圧力制御手段と、
温度調節機能により前記乾燥流体を加熱しながら前記リンス液排出口とは別個に設けられた乾燥流体排出口より高圧容器外に排出する乾燥流体排出手段とを有する微細構造乾燥装置にある。
Furthermore, the present invention provides
A substrate mounting table for holding a substrate having a fine structure immersed or wet in a rinse solution;
A high-pressure container for drying the substrate held on the substrate mounting table;
And introducing means for introducing a specific gravity different from the specific gravity of the dry fluid of the rinsing liquid into the high pressure vessel,
Tilting means for tilting the high-pressure vessel together with the substrate;
Rinsing liquid discharge means for discharging the rinsing liquid from the rinsing liquid discharge port provided in at least one of the uppermost part and the lowermost part of the inclined high pressure container from the inside of the high pressure container filled with the dry fluid;
A temperature adjusting function for locally heating the drying fluid provided in the vicinity of at least one of the top and bottom of the substrate;
Pressure control means for controlling the pressure in the high-pressure vessel that holds the dried fluid in a mixed state of a supercritical state and a liquid state by a temperature adjustment function;
The temperature control the drying fluid the rinsing liquid discharge port with heating and is in the microstructure drying apparatus for chromatic and drying fluid discharge means for discharging the high pressure vessel outside than separately provided dry fluid outlet.

温度調節機能は、所定の温度に設定する設定手段と、一定の温度に保持する制御手段とを有すること、又、リンス液排出口は、リンス液の排出時に高圧容器の最も上部及び下部に位置するように少なくとも一方に配置されることが好ましい。   The temperature adjustment function has a setting means for setting to a predetermined temperature and a control means for keeping the temperature constant, and the rinse liquid discharge ports are located at the uppermost and lower parts of the high-pressure vessel when the rinse liquid is discharged. It is preferable to arrange at least one side.

本発明によれば、乾燥時に乾燥流体だけを局部的に加熱するだけで、乾燥時のリンス液の表面張力の影響によりパターン倒れや素子の固着が発生しうる微細なパターンを形成した100mm以上の大口径基板に対して効率良く短時間で均一に乾燥させることができる微細構造乾燥処理法及びその装置を提供することができる。   According to the present invention, only by locally heating only the drying fluid at the time of drying, a fine pattern having a fine pattern that can cause pattern collapse or element sticking due to the influence of the surface tension of the rinse liquid at the time of drying is formed. It is possible to provide a fine structure drying method and apparatus capable of efficiently and uniformly drying a large-diameter substrate in a short time.

以下、本発明を実施するための最良の形態を具体的な実施例によって説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to specific examples.

図1は本発明の微細構造乾燥装置の一例を示す模式断面図である。高圧容器である高圧容器103は上部の蓋105及び下部容器部124から構成され、蓋105を開放して基板101を設置する。   FIG. 1 is a schematic cross-sectional view showing an example of the microstructure drying apparatus of the present invention. The high-pressure vessel 103 which is a high-pressure vessel is composed of an upper lid 105 and a lower vessel portion 124, and the lid 101 is opened to install the substrate 101.

高圧容器103は、後述する図2に示すように水平から垂直まで傾斜できる傾斜手段を持つ。高圧容器103には下部容器124の両側に紙面に対して垂直に傾斜用のギアを有する回転軸が設けられ、モータによって紙面に対して水平から90度まで左右両側に傾斜できるものである。   The high-pressure vessel 103 has tilting means that can tilt from horizontal to vertical as shown in FIG. The high-pressure vessel 103 is provided with rotating shafts having tilting gears perpendicular to the paper surface on both sides of the lower container 124, and can be tilted to the left and right sides from the horizontal to 90 degrees with respect to the paper surface by a motor.

フィルタ112、バルブ113は下部容器124に固定され、圧力制御装置123との間が高圧フレキシブル配管によって接続され、更に、背圧制御バルブ109、バルブ110が蓋105に、バルブ117、圧力制御バルブ118が下部容器124に固定され、それらの先が高圧フレキシブル配管によって接続され、図2に示すように傾斜可能である。   The filter 112 and the valve 113 are fixed to the lower container 124, and are connected to the pressure control device 123 by a high-pressure flexible pipe. Further, the back pressure control valve 109 and the valve 110 are connected to the lid 105, the valve 117 and the pressure control valve 118 are connected. Are fixed to the lower container 124, their tips are connected by high-pressure flexible piping, and can be tilted as shown in FIG.

基板101は現像やウェットエッチングの工程を経て表面に微細構造が形成された後に、洗浄及びアルコール等の有機溶剤のリンス処理が施されており、その表面にはリンス液102が全面に載った状態であり、高圧容器103に設けられた基板設置台104に設置される。   The substrate 101 is subjected to a development and wet etching process and a fine structure is formed on the surface, and then washed and rinsed with an organic solvent such as alcohol, and the rinse liquid 102 is placed on the entire surface. And installed on the substrate installation table 104 provided in the high-pressure vessel 103.

高圧容器103は、バルブ113を介して高圧ポンプ114及び液体二酸化炭素容器115が配管され、バルブ117を介して圧力制御バルブ118が配管され、その内容積を1リットル以内にするものである。   In the high-pressure vessel 103, a high-pressure pump 114 and a liquid carbon dioxide vessel 115 are connected through a valve 113, and a pressure control valve 118 is connected through a valve 117 so that the internal volume thereof is within 1 liter.

高圧容器103は蓋105にバルブ110及び下部容器部124にバルブ107を介して背圧制御バルブ109、108がそれぞれ接続され、設定圧力を超えると排出口119又は排出口120より高圧容器内の流体又はリンス液102が排出される。   The high-pressure vessel 103 is connected to the lid 105 via the valve 110 and the lower vessel portion 124 via the valve 107, respectively. When the set pressure is exceeded, the fluid in the high-pressure vessel is discharged from the discharge port 119 or the discharge port 120. Alternatively, the rinsing liquid 102 is discharged.

高圧容器103内には、基板101上のその近傍に設けた温度調整機能111と、基板設置台104下のその近傍に設けた温度調整機能106とを備え、いずれも非磁性ステンレス鋼の耐圧配管内に熱媒体を循環させるか又は耐圧配管内に電熱線を設けたもので、棒状又は渦巻き状であり、所定の温度で、一定の温度に保持に可能に制御する制御手段を有する。温度調整機能111は基板103の数mm上に設定され、基板101の温度を臨界温度以上にすることなくその近傍の乾燥流体を局部的に臨界温度以上に加熱することができる。   The high-pressure vessel 103 is provided with a temperature adjustment function 111 provided in the vicinity thereof on the substrate 101 and a temperature adjustment function 106 provided in the vicinity thereof under the substrate installation table 104, both of which are pressure-resistant piping made of nonmagnetic stainless steel. A heating medium is circulated in the inside, or a heating wire is provided in the pressure-resistant piping, which is rod-shaped or spiral-shaped, and has a control means for controlling at a predetermined temperature so as to be held at a constant temperature. The temperature adjustment function 111 is set several millimeters above the substrate 103, and can dry the dry fluid in the vicinity thereof locally above the critical temperature without setting the temperature of the substrate 101 above the critical temperature.

本実施例は、高圧容器内にリンス液に浸漬又は濡れた状態の微細構造を有する基板を設置する工程と、高圧容器内にリンス液より軽い状態の乾燥流体を導入して満たす導入工程と、乾燥流体によって満たされた高圧容器を傾斜させて高圧容器内の大半のリンス液を高圧容器内より排出させるリンス液排出工程と、基板近傍の乾燥流体を部分的に加熱して対流を生じさせ、リンス液を乾燥流体によって溶解・置換を促進させる溶解・置換工程と、乾燥流体を局部的に加熱しながら大気圧まで減圧する減圧工程と、を有する微細構造乾燥処理法である。以下、本実施例の乾燥工程を具体的に説明する。   In this example, a step of installing a substrate having a microstructure immersed or wetted in a rinsing liquid in a high-pressure vessel, an introduction step of introducing and filling a dry fluid lighter than the rinsing liquid in the high-pressure vessel, Inclination of the high-pressure container filled with the drying fluid to discharge most of the rinsing liquid in the high-pressure container from the inside of the high-pressure container, and partially heating the drying fluid in the vicinity of the substrate to cause convection, It is a fine structure drying method having a dissolution / replacement step for promoting dissolution / replacement of a rinsing liquid with a dry fluid, and a pressure reduction step for reducing the pressure of the dry fluid to atmospheric pressure while locally heating it. Hereinafter, the drying process of a present Example is demonstrated concretely.

(1)直径200mmのシリコン基板上にEBレジスト(ZEP−7000:日本ゼオン製)を220nmの膜厚で製膜、乾燥した後、電子線でパターンを描画してから酢酸ノルマルヘキシルで90秒現像、2−プロパノールで100秒間リンスし、表面に微細構造が形成された基板101を、高圧容器103の基板設置台104に設置する。このとき、基板101の上には液体二酸化炭素又は超臨界二酸化炭素に可溶な2−プロパノールからなるリンス液102が基板面に載った状態であるか、基板101がリンス液102に浸漬した状態である。 (1) EB resist (ZEP-7000: manufactured by ZEON Corporation) with a film thickness of 220 nm is formed on a silicon substrate having a diameter of 200 mm, dried, drawn with an electron beam, and then developed with normal hexyl acetate for 90 seconds. Then, the substrate 101 which is rinsed with 2-propanol for 100 seconds and has a fine structure formed on the surface is set on the substrate mounting table 104 of the high-pressure vessel 103. At this time, either on top of the substrate 101 is a state where the rinsing liquid 102 consisting of soluble 2-propanol in the liquid carbon dioxide or supercritical carbon dioxide placed on the substrate whole surface, the substrate 101 is immersed in the rinsing liquid 102 State.

(2)高圧容器103を水平にしてから蓋105を開け、基板101を基板設置台104に設置してから、高圧容器103を気密した後、バルブ117、107、110を閉じる。 (2) After the high-pressure vessel 103 is leveled, the lid 105 is opened, the substrate 101 is placed on the substrate mounting base 104, and the high-pressure vessel 103 is hermetically sealed, and then the valves 117, 107, 110 are closed.

(3)バルブ113を開放すると室温の25℃の液体二酸化炭素116が高圧容器103に導入される。このとき圧力制御装置123により基板101上に形成された微細構造が破損しないように、3MPa/分程度で7.5MPaまで昇圧するように制御する。また、高圧容器103に導入される液体二酸化炭素116はフィルタ112を通過し不純物が除去される。リンス液102は25℃の液体二酸化炭素116より比重が大きいためリンス液102は基板101上に載ったまま25℃の液体二酸化炭素116に囲まれている状態である。 (3) When the valve 113 is opened, liquid carbon dioxide 116 at 25 ° C. at room temperature is introduced into the high-pressure vessel 103. At this time, the pressure control device 123 performs control so that the pressure is increased to 7.5 MPa at about 3 MPa / min so that the fine structure formed on the substrate 101 is not damaged. Further, the liquid carbon dioxide 116 introduced into the high-pressure vessel 103 passes through the filter 112 to remove impurities. Since the rinsing liquid 102 has a higher specific gravity than the liquid carbon dioxide 116 at 25 ° C., the rinsing liquid 102 is in a state surrounded by the liquid carbon dioxide 116 at 25 ° C. while being placed on the substrate 101.

(4)図2は、高圧容器を傾斜させた状態を示す微細構造乾燥装置の断面図である。室温の25℃である高圧容器103を傾斜手段によって傾斜させると、基板101に載った2−プロパノールからなるリンス液121の大半が25℃の液体二酸化炭素116より比重が大きいため基板101表面から離れ、高圧容器103内に充填した液体状態の二酸化炭素122と殆ど溶けずに、リンス液121は傾斜した高圧容器103内の下部に集まる。 (4) FIG. 2 is a cross-sectional view of the microstructure drying apparatus showing a state in which the high-pressure vessel is inclined. When the high-pressure vessel 103 having a room temperature of 25 ° C. is tilted by the tilting means, most of the rinsing liquid 121 made of 2-propanol on the substrate 101 has a higher specific gravity than the liquid carbon dioxide 116 at 25 ° C. The rinsing liquid 121 collects in the lower part of the inclined high-pressure vessel 103 while hardly dissolving with the liquid carbon dioxide 122 filled in the high-pressure vessel 103.

(5)高圧ポンプ114で液体二酸化炭素116の圧送は継続する。バルブ107を開放すると、傾斜した高圧容器103内の下部に集めた2−プロパノールのリンス液121はリンス液排出口120を経て背圧制御バルブ108より選択的に排出することができる。 (5) The liquid carbon dioxide 116 is continuously pumped by the high-pressure pump 114. When the valve 107 is opened, the 2-propanol rinse liquid 121 collected in the lower portion of the inclined high-pressure vessel 103 can be selectively discharged from the back pressure control valve 108 through the rinse liquid discharge port 120.

図3は、リンス液の大半が排出された後の高圧容器103内に液体二酸化炭素が満たされた状態を示す模式断面図である。リンス液121はリンス液排出口108より排出され、高圧容器103内はほぼ液体二酸化炭素122のみで満たされる。 FIG. 3 is a schematic cross-sectional view showing a state in which liquid carbon dioxide is filled in the high-pressure vessel 103 after most of the rinsing liquid is discharged. The rinsing liquid 121 is discharged from the rinsing liquid discharge port 108, and the inside of the high-pressure vessel 103 is almost filled with only liquid carbon dioxide 122.

(6)高圧容器103を傾斜させたまま、高圧ポンプ114で液体二酸化炭素116の圧送を継続しながら温度調整機能111、106を60℃に制御する。温度調整機能111、106に接している液体二酸化炭素122が局部的に超臨界状態の60℃に加熱され、温度調整機能111、106近傍の二酸化炭素122はほぼ制御温度となるが、基板101は加熱された二酸化炭素122によって約28℃まで加熱される。又、高圧容器103内には液体と超臨界状態の二酸化炭素が混在し、その比重差による二酸化炭素の対流が生じ、基板101上の微細構造間に残存するリンス液を液体又は超臨界状態の二酸化炭素によって置換できる。 (6) The temperature adjusting functions 111 and 106 are controlled to 60 ° C. while the high pressure pump 114 continues to pump the liquid carbon dioxide 116 while the high pressure vessel 103 is inclined. The liquid carbon dioxide 122 in contact with the temperature adjustment functions 111 and 106 is locally heated to 60 ° C. in the supercritical state, and the carbon dioxide 122 in the vicinity of the temperature adjustment functions 111 and 106 becomes almost the control temperature, but the substrate 101 is Heated to about 28 ° C. by heated carbon dioxide 122. In addition, liquid and supercritical carbon dioxide are mixed in the high-pressure vessel 103, and convection of carbon dioxide occurs due to the difference in specific gravity, so that the rinsing liquid remaining between the microstructures on the substrate 101 is liquid or supercritical. Can be replaced by carbon dioxide.

又、温度調整機能111、106は液体二酸化炭素122が基板103面上で適当な対流が生じるように、空間を確保するため数本の棒状又は螺旋状である。   Further, the temperature adjustment functions 111 and 106 are in the form of several rods or spirals in order to secure a space so that the liquid carbon dioxide 122 generates appropriate convection on the surface of the substrate 103.

そして、加熱によって高圧容器103内の圧力は昇圧するが、設定圧力7.5MPaを超えると背圧制御バルブ109から二酸化炭素が排出され、高圧容器103内は7.5MPaに保ち、この状態を数分間保つ。これによって微細構造間に残存するリンス液を完全に置換することができる。   The pressure in the high-pressure vessel 103 is increased by heating, but when the set pressure exceeds 7.5 MPa, carbon dioxide is discharged from the back pressure control valve 109, and the inside of the high-pressure vessel 103 is maintained at 7.5 MPa. Keep for a minute. Thereby, the rinsing liquid remaining between the fine structures can be completely replaced.

又、高圧容器103を元に戻して加熱した後、加熱しながら傾斜させて二酸化炭素を排出させること、それを繰り返し行うこともでき、更に、振動子151を用いることにより微細構造間に残存するリンス液の置換が容易に行われ、乾燥時間が短縮できる。   In addition, after the high pressure vessel 103 is returned and heated, it can be tilted while being heated to discharge carbon dioxide, and this can be repeated. Further, by using the vibrator 151, it remains between the microstructures. The rinse liquid can be easily replaced and the drying time can be shortened.

(7)高圧ポンプ114での液体二酸化炭素116の圧送を停止させ、バルブ113、110を閉じ、バルブ117を大気圧に開放し、温度調整機能111、106を60℃に保ったまま乾燥流体排出口を経て圧力制御バルブ118より二酸化炭素を排出する。高圧容器103内の圧力が大気圧になった時点で乾燥が終了し、高圧容器103内より基板101が取り出される。 (7) The pumping of the liquid carbon dioxide 116 by the high-pressure pump 114 is stopped, the valves 113 and 110 are closed, the valve 117 is opened to the atmospheric pressure, and the dry fluid is discharged while the temperature adjustment functions 111 and 106 are maintained at 60 ° C. Carbon dioxide is discharged from the pressure control valve 118 through the outlet . When the pressure in the high-pressure vessel 103 reaches atmospheric pressure, the drying is finished, and the substrate 101 is taken out from the high-pressure vessel 103.

この二酸化炭素の状態変化では、液体二酸化炭素の表面張力が微細構造に素子の固着や倒れを作用させることが無い。   In this change in the state of carbon dioxide, the surface tension of liquid carbon dioxide does not cause the element to adhere to or fall over the fine structure.

本実施例では、微細構造乾燥のために利用する流体として比較的低い温度、低い圧力で超臨界状態となる二酸化炭素を用いた場合を例として示したが、二酸化炭素の臨界圧力は7.38MPa、臨界温度は31℃である。   In the present embodiment, the case where carbon dioxide that is in a supercritical state at a relatively low temperature and low pressure is used as the fluid used for drying the microstructure is shown as an example, but the critical pressure of carbon dioxide is 7.38 MPa. The critical temperature is 31 ° C.

そして、圧力を7.5MPa、温度を25℃から60℃に可変させることで液体二酸化炭素の密度を0.7g/mlから0.15g/mlに変化させることができ、本実施例に示す2−プロパノールをリンス液として用いた場合、ほぼ10分以内の短時間かつ均一な乾燥結果を得ることができる乾燥プロセスを達成できるものである。   The density of liquid carbon dioxide can be changed from 0.7 g / ml to 0.15 g / ml by changing the pressure from 7.5 MPa and the temperature from 25 ° C. to 60 ° C. When propanol is used as the rinsing liquid, a drying process capable of obtaining a uniform drying result in a short time within approximately 10 minutes can be achieved.

本実施例は、高圧容器内にリンス液に浸漬又は濡れた状態の微細構造を有する基板を設置する工程と、高圧容器内に前記リンス液より重い状態の乾燥流体を導入して満たす導入工程と、高圧容器内を前燥流体によって満たした後、高圧容器を傾斜させてリンス液を高圧容器内より排出させると共に、基板近傍の乾燥流体を部分的に加熱し、リンス液を乾燥流体によって置換させながらリンス液を高圧容器内より排出させるリンス液排出工程と、リンス液を排出後、乾燥流体を局部的に加熱しながら大気圧まで減圧する減圧工程と、を有する微細構造乾燥処理法にある。   The present embodiment includes a step of installing a substrate having a fine structure immersed or wet in a rinsing liquid in a high-pressure vessel, and an introduction step of introducing and filling a dry fluid heavier than the rinsing liquid in the high-pressure vessel. After filling the high-pressure vessel with the pre-drying fluid, tilt the high-pressure vessel to discharge the rinsing liquid from the high-pressure vessel, partially heat the drying fluid near the substrate, and replace the rinsing liquid with the drying fluid. In the fine structure drying method, the rinsing liquid is discharged from the high-pressure vessel while the rinsing liquid is discharged and the pressure reducing step is performed to reduce the pressure to the atmospheric pressure while locally heating the drying fluid after discharging the rinsing liquid.

以下、本実施例の乾燥工程を具体的に説明する。本実施例における装置は実施例1と同じであるが、温度調整機能111、106は、非磁性ステンレス鋼の耐圧配管内に熱媒体を循環させるもので、又、実施例1の(1)及び(2)までの工程は本実施例でも同じである。   Hereinafter, the drying process of a present Example is demonstrated concretely. The apparatus in the present embodiment is the same as that in the first embodiment, but the temperature adjusting functions 111 and 106 circulate a heat medium in the pressure-resistant piping made of nonmagnetic stainless steel. The steps up to (2) are the same in this embodiment.

(3)バルブ113を開放すると5℃の液体状態の二酸化炭素116が高圧容器103に導入される。このとき圧力制御装置123により基板101上に形成された微細構造が破損しないように、且つリンス液102と液体二酸化炭素の混濁を最小限に抑えるため3MPa/分程度で10MPaまで昇圧するように制御する。高圧容器103に導入される液体二酸化炭素はフィルタ112を通過し不純物が除去される。リンス液102は5℃の液体二酸化炭素116より比重が小さいためリンス液102は基板101基板の表面から離れ、高圧容器103内に充填した液体状態の二酸化炭素122と殆ど溶けずに、リンス液121は高圧容器103内の上部に集まる。 (3) When the valve 113 is opened, the carbon dioxide 116 in a liquid state at 5 ° C. is introduced into the high-pressure vessel 103. At this time, the pressure control device 123 is controlled so that the fine structure formed on the substrate 101 is not damaged and the pressure is increased to about 10 MPa at about 3 MPa / min in order to minimize the turbidity between the rinsing liquid 102 and the liquid carbon dioxide. To do. Liquid carbon dioxide introduced into the high-pressure vessel 103 passes through the filter 112 to remove impurities. Since the rinsing liquid 102 has a specific gravity smaller than that of the liquid carbon dioxide 116 at 5 ° C., the rinsing liquid 102 is separated from the surface of the substrate 101, hardly dissolves with the liquid carbon dioxide 122 filled in the high-pressure vessel 103, and the rinsing liquid 121. Collect at the top of the high-pressure vessel 103.

(4)図4は、高圧容器を傾斜させた状態を示す微細構造乾燥装置の断面図である。高圧容器103を傾斜手段によって傾斜させると、基板101に載った2−プロパノールからなるリンス液121の大半が5℃の液体二酸化炭素116より比重が小さいため基板101表面から離れ、リンス液121は傾斜した高圧容器103内の上部に集まる。 (4) FIG. 4 is a cross-sectional view of the microstructure drying apparatus showing a state in which the high-pressure vessel is inclined. When the high-pressure vessel 103 is tilted by the tilting means, most of the rinsing liquid 121 made of 2-propanol on the substrate 101 has a specific gravity smaller than that of the liquid carbon dioxide 116 at 5 ° C., so that the rinsing liquid 121 is tilted. Gathered in the upper portion of the high-pressure vessel 103.

5℃の液体二酸化炭素の比重が0.95g/mlになり、リンス液である2−プロパノールの比重0.80g/mlとの比重差が約0.15g/ml程度になるため、図4に示すように、2−プロパノールは傾斜した高圧容器103内の上部に集まる。10MPaまでの昇圧及び5℃までの降温は同時に移行させても良い。   The specific gravity of liquid carbon dioxide at 5 ° C. is 0.95 g / ml, and the specific gravity difference from the specific gravity of propanol, 2-propanol, 0.80 g / ml is about 0.15 g / ml. As shown, 2-propanol collects at the top of the inclined high pressure vessel 103. The pressure increase up to 10 MPa and the temperature decrease up to 5 ° C. may be shifted simultaneously.

(5)高圧ポンプ114で液体二酸化炭素116の圧送は継続する。バルブ110を開放すると、傾斜した高圧容器103内の上部に集めた2−プロパノールのリンス液121はリンス液排出口119を経て背圧制御バルブ109より選択的に排出することができる。 (5) The liquid carbon dioxide 116 is continuously pumped by the high-pressure pump 114. When the valve 110 is opened, the 2-propanol rinse liquid 121 collected in the upper part of the inclined high-pressure vessel 103 can be selectively discharged from the back pressure control valve 109 through the rinse liquid discharge port 119.

図3と同様に、リンス液の大半が排出された後の高圧容器103内に液体二酸化炭素が満たされた状態となり、リンス液121は排出口109より排出され、高圧容器103内はほぼ液体二酸化炭素122のみで満たされる。   As in FIG. 3, the high pressure vessel 103 after most of the rinsing liquid is discharged is filled with liquid carbon dioxide, the rinsing liquid 121 is discharged from the discharge port 109, and the high pressure vessel 103 is almost liquid dioxide. Filled with carbon 122 only.

(6)高圧容器103を傾斜させたまま、高圧ポンプ114で液体二酸化炭素116の圧送を継続しながら温度調整機能111、106を40℃に制御する。温度調整機能111、106に接している液体二酸化炭素122は局部的に超臨界状態の40℃に加熱され、温度調整機能111、106近傍の二酸化炭素122はほぼ制御温度となるが、基板101近傍は加熱された二酸化炭素122によって約25℃となる。又、高圧容器103内には液体と超臨界状態の二酸化炭素が混在し、その比重差による対流によって基板101上の微細構造間に残存するリンス液を液体と超臨界状態とが混在した二酸化炭素によって置換できる。又、温度調整機能111、106はその加熱によって液体二酸化炭素122の対流が基板103面上で全体に容易に生じるように空間を有する棒状又は螺旋状である。 (6) The temperature adjusting functions 111 and 106 are controlled to 40 ° C. while the high pressure pump 114 continues to pump the liquid carbon dioxide 116 while the high pressure vessel 103 is inclined. The liquid carbon dioxide 122 in contact with the temperature adjustment functions 111 and 106 is locally heated to 40 ° C. in a supercritical state, and the carbon dioxide 122 in the vicinity of the temperature adjustment functions 111 and 106 becomes almost the control temperature, but in the vicinity of the substrate 101. Becomes about 25 ° C. by the heated carbon dioxide 122. Further, liquid and supercritical carbon dioxide are mixed in the high-pressure vessel 103, and the rinsing liquid remaining between the fine structures on the substrate 101 is mixed with the liquid and supercritical state by convection due to the specific gravity difference. Can be replaced by The temperature adjusting functions 111 and 106 are rod-like or spiral having a space so that convection of the liquid carbon dioxide 122 is easily generated on the entire surface of the substrate 103 by heating.

そして、加熱によって高圧容器103内の圧力は昇圧するが、設定圧力10MPaを超えると背圧制御バルブ109から排出され、高圧容器103内は10MPaに保ち、この状態を数分間保つ。これによって微細構造間に残存するリンス液をほぼ完全に置換することができる。   Then, the pressure in the high-pressure vessel 103 is increased by heating, but when the set pressure exceeds 10 MPa, the pressure is discharged from the back pressure control valve 109, the inside of the high-pressure vessel 103 is kept at 10 MPa, and this state is kept for several minutes. As a result, the rinsing liquid remaining between the microstructures can be almost completely replaced.

(7)高圧ポンプ114での液体二酸化炭素116の圧送を停止させ、バルブ113、110を閉じ、バルブ117を大気圧に開放し、温度調整機能111、106を40℃に保ったまま乾燥流体排出口を経て圧力制御バルブ118より二酸化炭素を排出する。高圧容器103内の圧力が大気圧になった時点で乾燥が終了し、高圧容器103内より基板101が取り出される。 (7) The pumping of the liquid carbon dioxide 116 by the high-pressure pump 114 is stopped, the valves 113 and 110 are closed, the valve 117 is opened to the atmospheric pressure, and the dry fluid is discharged while the temperature adjustment functions 111 and 106 are kept at 40 ° C. Carbon dioxide is discharged from the pressure control valve 118 through the outlet . When the pressure in the high-pressure vessel 103 reaches atmospheric pressure, the drying is finished, and the substrate 101 is taken out from the high-pressure vessel 103.

この状態の変化では、液体二酸化炭素の表面張力が微細構造に素子の固着や倒れを作用させることが無い。   In this state change, the surface tension of the liquid carbon dioxide does not cause the element to adhere to or fall over the fine structure.

本実施例では、微細構造乾燥のために利用する流体として比較的低い温度、低い圧力で超臨界状態となる二酸化炭素を用いた場合を例として示したが、二酸化炭素の臨界圧力は7.38MPa、臨界温度は31℃である。そして、圧力を10MPa、温度を0から30℃に可変させることで液体二酸化炭素の密度を0.65から0.90g/mlに変化させることができ、本実施例に示す2−プロパノールをリンス液として用いた場合、短時間かつ均一な乾燥結果を得ることができる乾燥プロセスを達成できるものである。   In the present embodiment, the case where carbon dioxide that is in a supercritical state at a relatively low temperature and low pressure is used as a fluid used for drying the microstructure is shown as an example, but the critical pressure of carbon dioxide is 7.38 MPa. The critical temperature is 31 ° C. The density of liquid carbon dioxide can be changed from 0.65 to 0.90 g / ml by changing the pressure from 10 MPa and the temperature from 0 to 30 ° C. The 2-propanol shown in this example is rinsed. When used as, it is possible to achieve a drying process capable of obtaining a uniform drying result in a short time.

本実施例は、MEMSサンプルのようなフッ酸のエッチングで微細構造が形成され、純水でリンス処理した後の乾燥工程を行うものである。本実施例においても、レジストパターンと同様に表面張力の作用によりシリコンやレジスト等の三次元構造体の可動部を含む微細構造が基板(ベース部)と貼りつく現象が生じ、デバイス不良の要因となる。この現象を防止するために本発明を適用したものである。   In this embodiment, a fine structure is formed by etching hydrofluoric acid such as a MEMS sample, and a drying process is performed after rinsing with pure water. Also in this embodiment, the phenomenon that the fine structure including the movable part of the three-dimensional structure such as silicon or resist sticks to the substrate (base part) due to the action of the surface tension in the same manner as the resist pattern causes the device failure. Become. The present invention is applied to prevent this phenomenon.

リンス液の純水は液体又は超臨界状態の二酸化炭素に殆ど溶けないため、予め二酸化炭素に可溶なリンスと置換しておく。本実施例のMEMSサンプルのリンス液として比重1.55g/mlである炭化水素系洗浄剤(HCFC)とエタノールを5:1に混合したリンス液を用いた。二酸化炭素の比重を制御しても基板上に載ったHCFCを高圧容器の上側に集めることができないが、本実施例では高圧容器を図2に示すように右に90度から左に90度のいずれかに回転させて傾斜させることにより基板上に載ったリンス液を傾斜した高圧容器下部に集めて効果的に排出することができ、実施例1と同様に短時間で且つ均一な乾燥結果を得ることができる。   Since the pure water of the rinsing liquid is hardly soluble in carbon dioxide in a liquid or supercritical state, it is replaced in advance with rinsing soluble in carbon dioxide. As a rinsing liquid for the MEMS sample of this example, a rinsing liquid in which a hydrocarbon detergent (HCFC) having a specific gravity of 1.55 g / ml and ethanol were mixed at a ratio of 5: 1 was used. Even if the specific gravity of carbon dioxide is controlled, the HCFC placed on the substrate cannot be collected on the upper side of the high-pressure vessel. However, in this embodiment, the high-pressure vessel is changed from 90 degrees on the right to 90 degrees on the left as shown in FIG. By rotating and tilting to any one, the rinsing liquid placed on the substrate can be collected and effectively discharged at the bottom of the tilted high-pressure vessel, and in the same manner as in Example 1, a uniform drying result can be obtained in a short time. Obtainable.

本実施例においては、実施例1の(1)〜(7)と同様の乾燥工程によって行うことができる。   In the present embodiment, the drying can be performed by the same drying steps as (1) to (7) of the first embodiment.

本実施例において、HCFCとエタノールの混合液をリンスとしたのは、エタノールは水を置換するためであり、HCFCは二酸化炭素と置換するためである。   In the present example, the reason why the mixed liquid of HCFC and ethanol was rinsed is that ethanol replaces water and HCFC replaces carbon dioxide.

以上のように、本実施例によってMEMS部品のようなデバイスに対しても100mm以上の大口径基板に形成した微細構造の可動部が張り付くことなく均一に短時間で乾燥することができる。   As described above, according to the present embodiment, even a device such as a MEMS component can be uniformly dried in a short time without sticking a movable portion having a fine structure formed on a large-diameter substrate of 100 mm or more.

本発明に係る微細構造乾燥装置の断面図である。It is sectional drawing of the microstructure drying apparatus which concerns on this invention. 本発明における高圧容器の傾斜及び温度変化後の微細構造乾燥装置の断面図である。It is sectional drawing of the fine structure drying apparatus after the inclination of a high-pressure vessel and temperature change in this invention. 本発明におけるリンス液排出後の微細構造乾燥装置の断面図である。It is sectional drawing of the fine structure drying apparatus after the rinse liquid discharge | emission in this invention. 本発明における高圧容器の傾斜及び温度変化後の微細構造乾燥装置の断面図である。It is sectional drawing of the fine structure drying apparatus after the inclination of a high-pressure vessel and temperature change in this invention.

符号の説明Explanation of symbols

101…基板、102、121…リンス液、103…高圧容器、104…基板設置台、105…蓋、106、111…温度調整機能、107、110、113、117…バルブ、108、109…背圧制御バルブ、112…フィルタ、114…高圧ポンプ、115…液体二酸化炭素容器、116、122…液体二酸化炭素、118…圧力制御バルブ、119、120…リンス液排出口、123…圧力制御装置、124…下部容器、125…回転方向、151…振動子。
DESCRIPTION OF SYMBOLS 101 ... Board | substrate, 102, 121 ... Rinse solution, 103 ... High pressure vessel, 104 ... Board | substrate installation stand, 105 ... Cover, 106, 111 ... Temperature control function, 107, 110, 113, 117 ... Valve, 108, 109 ... Back pressure Control valve, 112 ... filter, 114 ... high pressure pump, 115 ... liquid carbon dioxide container, 116, 122 ... liquid carbon dioxide, 118 ... pressure control valve, 119, 120 ... rinse liquid discharge port, 123 ... pressure control device, 124 ... Lower container, 125 ... rotating direction, 151 ... vibrator.

Claims (10)

高圧容器内にリンス液に浸漬又は濡れた状態の微細構造を有する基板を設置する工程と、
前記高圧容器内に前記リンス液の比重と異なる比重の乾燥流体を導入して満たす導入工程と、
前記乾燥流体によって満たした前記高圧容器を前記基板と共に設定角度に傾斜させて前記乾燥流体と前記リンス液の比重差を利用して前記リンス液を前記傾斜した前記高圧容器の最上部又は最下部となる少なくとも一方に設けられたリンス液排出口より選択的に前記高圧容器内より排出させるリンス液排出工程と、
前記乾燥流体を局部的に臨界温度以上に加熱する工程と、
前記乾燥流体を局部的に加熱しながら大気圧まで減圧し前記乾燥流体を前記リンス液排出口とは別個に設けられた乾燥流体排出口より前記高圧容器外に排出させる排出工程と、
を有することを特徴とする微細構造乾燥処理法。
Installing a substrate having a fine structure immersed or wet in a rinsing liquid in a high-pressure vessel; and
An introduction step of introducing and filling a dry fluid having a specific gravity different from the specific gravity of the rinse liquid into the high-pressure vessel;
Inclining the high-pressure vessel filled with the drying fluid with the substrate at a set angle, and utilizing the specific gravity difference between the drying fluid and the rinsing liquid , the top or bottom of the inclined high-pressure vessel A rinse liquid discharge step of selectively discharging from the inside of the high-pressure vessel from a rinse liquid discharge port provided in at least one of the following:
Heating the dry fluid locally above a critical temperature;
A discharging step of discharging from said drying fluid locally with heating under reduced pressure to atmospheric pressure the drying fluid the rinsing liquid discharge port and dry fluid outlet which is provided separately outside the high pressure vessel,
A fine structure drying method characterized by comprising:
請求項1において、前記基板の温度が前記臨界温度を超えないように前記加熱を行うことを特徴とする微細構造乾燥処理法。 In claim 1, the microstructure drying treatment the temperature of the substrate and performing the heating so as not to exceed the critical temperature. 請求項1又は2において、前記基板近傍の前記乾燥流体を前記局部的に加熱することにより、前記基板近傍の前記乾燥流体に適当な対流を生じさせ、前記リンス液と前記乾燥流体の溶解を促進させる工程を有することを特徴とする微細構造乾燥処理法。 3. The method according to claim 1, wherein the drying fluid in the vicinity of the substrate is locally heated to cause an appropriate convection in the drying fluid in the vicinity of the substrate, thereby promoting dissolution of the rinse liquid and the drying fluid. A method of drying a microstructure, characterized by comprising a step of: 請求項1〜3のいずれかにおいて、前記加熱を前記基板近傍に設置した温度調節機能により行うことを特徴とする微細構造乾燥処理法。   4. The microstructure drying method according to claim 1, wherein the heating is performed by a temperature adjustment function installed in the vicinity of the substrate. 請求項1〜4のいずれかにおいて、前記加熱を前乾燥流体が超臨界状態と液体の状態とが混在した状態で行うことを特徴とする微細構造乾燥処理法。 In any one of claims 1 to 4, the microstructure drying treatment method, which comprises carrying out in a state where the heating before Symbol dry fluid and the state of the supercritical state and the liquid are mixed. 請求項1〜5において、前記乾燥流体としてその比重が前記リンス液の比重より大きいものを前記導入し、前記リンス液を前記傾斜した前記高圧容器の前記最上部に設けられた前記リンス液排出口より排出させ、又は、前記乾燥流体としてその比重が前記リンス液の比重より小さいものを前記導入し、前記リンス液を前記傾斜した前記高圧容器の前記最下部に設けられた前記リンス液排出口より排出させることを特徴とする微細構造乾燥処理法。 6. The rinse liquid discharge port provided in the uppermost part of the inclined high pressure vessel, wherein the dry fluid having a specific gravity larger than the specific gravity of the rinse liquid is introduced as the dry fluid. From the rinse liquid discharge port provided at the lowermost portion of the inclined high-pressure vessel, and the dry fluid having a specific gravity smaller than that of the rinse liquid is introduced. microstructure drying treatment method, characterized in Rukoto drained. 請求項1〜6のいずれかにおいて、前記乾燥流体が二酸化炭素であることを特徴とする微細構造乾燥処理法。   7. The microstructure drying method according to claim 1, wherein the drying fluid is carbon dioxide. リンス液に浸漬又は濡れた状態の微細構造を有する基板を保持する基板設置台と、
該基板設置台に保持された前記基板を乾燥する高圧容器と、
前記高圧容器内に前記リンス液の比重と異なる比重の乾燥流体を導入する導入手段と、
前記高圧容器を前記基板と共に傾斜させる傾斜手段と、
前記乾燥流体によって満たされた前記高圧容器内より前記リンス液を前記傾斜した前記高圧容器の最上部又は最下部となる少なくとも一方に設けられたリンス液排出口より排出させるリンス液排出手段と、
前記基板の上下の少なくとも一方の近傍に配置した耐圧管内に設けられた電熱線による加熱又は耐圧管内への熱流体の流入によって前記乾燥流体を局部的に加熱する温度調節機能と、
前記乾燥流体を前記温度調節機能によって加熱しながら前記リンス液排出口とは別個に設けられた乾燥流体排出口より前記高圧容器外に排出させる乾燥流体排出手段と、
を有することを特徴とする微細構造乾燥装置。
A substrate mounting table for holding a substrate having a fine structure immersed or wet in a rinse solution;
A high-pressure container for drying the substrate held on the substrate mounting table;
Introducing means for introducing a dry fluid having a specific gravity different from that of the rinse liquid into the high-pressure vessel;
Tilting means for tilting the high-pressure vessel together with the substrate;
Rinsing liquid discharging means for discharging the rinsing liquid from the inside of the high pressure container filled with the dry fluid from a rinsing liquid discharge port provided on at least one of the top and bottom of the inclined high pressure container ;
A temperature adjusting function for locally heating the dry fluid by heating with a heating wire provided in a pressure tube disposed in the vicinity of at least one of the upper and lower sides of the substrate, or by inflow of a thermal fluid into the pressure tube;
A drying fluid discharge means for discharging the drying fluid to the high pressure vessel outer than the rinsing liquid discharge port and dry fluid outlet which is provided separately with heating by the temperature control,
A fine structure drying apparatus comprising:
リンス液に浸漬又は濡れた状態の微細構造を有する基板を保持する基板設置台と、
該基板設置台に保持された前記基板を乾燥する高圧容器と、
前記高圧容器前記リンス液の比重と異なる比重の乾燥流体を導入する導入手段と、
前記高圧容器を前記基板と共に傾斜させる傾斜手段と、
前記乾燥流体によって満たされた前記高圧容器内より前記リンス液を前記傾斜した前記高圧容器の最上部又は最下部となる少なくとも一方に設けられたリンス液排出口より排出させるリンス液排出手段と、
前記基板の上下の少なくとも一方の近傍に設けられ前乾燥流体を局部的に加熱する温度調節機能と、
前記温度調節機能により前記乾燥流体を超臨界状態と液体状態とが混在した状態に加熱保持する前記高圧容器内の圧力を制御する圧力制御手段と、
前記乾燥流体を前記温度調節機能によって加熱しながら前記リンス液排出口とは別個に設けられた乾燥流体排出口より前記高圧容器外に排出させる乾燥流体排出手段と、
を有することを特徴とする微細構造乾燥装置。
A substrate mounting table for holding a substrate having a fine structure immersed or wet in a rinse solution;
A high-pressure container for drying the substrate held on the substrate mounting table;
And introducing means for introducing a specific gravity different from the specific gravity of the dry fluid of the rinsing liquid to the high-pressure vessel,
Tilting means for tilting the high-pressure vessel together with the substrate;
Rinsing liquid discharging means for discharging the rinsing liquid from the inside of the high pressure container filled with the dry fluid from a rinsing liquid discharge port provided on at least one of the top and bottom of the inclined high pressure container ;
A temperature adjusting function of locally heating the top and bottom of at least one of the found located in the vicinity are prior Symbol drying fluid in the substrate,
Pressure control means for controlling the pressure in the high-pressure vessel that heats and holds the dry fluid in a mixed state of a supercritical state and a liquid state by the temperature adjustment function;
A drying fluid discharge means for discharging the drying fluid to the high pressure vessel outer than the rinsing liquid discharge port and dry fluid outlet which is provided separately with heating by the temperature control,
A fine structure drying apparatus comprising:
請求項8又は9において、前記温度調節機能は、所定の温度に設定する設定手段と、一定の温度に保持する制御手段とを有することを特徴とする微細構造乾燥装置。 According to claim 8 or 9, wherein the temperature control is microstructures drying apparatus characterized by comprising setting means for setting a predetermined temperature, and control means for holding at a constant temperature.
JP2005109363A 2005-04-06 2005-04-06 Fine structure drying method and apparatus Expired - Fee Related JP4546314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005109363A JP4546314B2 (en) 2005-04-06 2005-04-06 Fine structure drying method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005109363A JP4546314B2 (en) 2005-04-06 2005-04-06 Fine structure drying method and apparatus

Publications (2)

Publication Number Publication Date
JP2006294662A JP2006294662A (en) 2006-10-26
JP4546314B2 true JP4546314B2 (en) 2010-09-15

Family

ID=37414943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005109363A Expired - Fee Related JP4546314B2 (en) 2005-04-06 2005-04-06 Fine structure drying method and apparatus

Country Status (1)

Country Link
JP (1) JP4546314B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10818519B2 (en) 2017-07-25 2020-10-27 Semes Co., Ltd. Apparatus and method for treating substrate

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101074460B1 (en) * 2009-07-31 2011-10-18 세메스 주식회사 Apparatus and method for treating substrate
JP5471740B2 (en) * 2010-04-08 2014-04-16 東京エレクトロン株式会社 Substrate processing equipment
JP5459185B2 (en) * 2010-11-29 2014-04-02 東京エレクトロン株式会社 Liquid processing apparatus, liquid processing method, and storage medium
KR101363265B1 (en) * 2011-06-30 2014-02-13 세메스 주식회사 Apparatus for treating substrate and method for supercritical fluid ventilation
JP5544666B2 (en) 2011-06-30 2014-07-09 セメス株式会社 Substrate processing equipment
JP5458314B2 (en) 2011-06-30 2014-04-02 セメス株式会社 Substrate processing apparatus and supercritical fluid discharge method
KR101236808B1 (en) 2011-06-30 2013-02-25 세메스 주식회사 Apparatus and mothod for treating substrate
KR101920941B1 (en) 2012-06-08 2018-11-21 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus, substrate processing method, fluid supplying method and storage medium
KR102037844B1 (en) 2013-03-12 2019-11-27 삼성전자주식회사 Apparatus for treating substrate using supercritical fluid, substrate treatment system comprising the same, and method for treating substrate
CN110998802B (en) 2017-08-10 2023-08-29 株式会社富士金 Fluid supply device and fluid supply method
US11569101B2 (en) 2017-08-10 2023-01-31 Fujikin Incorporated Fluid supply device and fluid supply method
KR102227726B1 (en) 2017-08-13 2021-03-15 가부시키가이샤 후지킨 Fluid supply device and liquid discharge method in the device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343760A (en) * 2001-05-21 2002-11-29 Sharp Corp Apparatus and method for removing organic polymer substance
JP2003282510A (en) * 2002-03-20 2003-10-03 Nippon Telegr & Teleph Corp <Ntt> Supercritical treatment method and supercritical treatment equipment
JP2003347261A (en) * 2002-05-30 2003-12-05 Tokyo Electron Ltd Cleaning device and cleaning method
JP2004327894A (en) * 2003-04-28 2004-11-18 Nippon Telegr & Teleph Corp <Ntt> Supercritical drying method and supercritical dryer
JP2004335675A (en) * 2003-05-07 2004-11-25 Hitachi Sci Syst Ltd Fine structure drying treatment method, its equipment, and its high pressure vessel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343760A (en) * 2001-05-21 2002-11-29 Sharp Corp Apparatus and method for removing organic polymer substance
JP2003282510A (en) * 2002-03-20 2003-10-03 Nippon Telegr & Teleph Corp <Ntt> Supercritical treatment method and supercritical treatment equipment
JP2003347261A (en) * 2002-05-30 2003-12-05 Tokyo Electron Ltd Cleaning device and cleaning method
JP2004327894A (en) * 2003-04-28 2004-11-18 Nippon Telegr & Teleph Corp <Ntt> Supercritical drying method and supercritical dryer
JP2004335675A (en) * 2003-05-07 2004-11-25 Hitachi Sci Syst Ltd Fine structure drying treatment method, its equipment, and its high pressure vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10818519B2 (en) 2017-07-25 2020-10-27 Semes Co., Ltd. Apparatus and method for treating substrate

Also Published As

Publication number Publication date
JP2006294662A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4546314B2 (en) Fine structure drying method and apparatus
TWI408737B (en) A substrate processing method, a substrate processing apparatus, a program, a recording medium, and a displacer
TWI467646B (en) Supercritical processing device and supercritical treatment method
JP2003510801A (en) Supercritical fluid drying system
TW538472B (en) Method and system for processing substrate
JP3965693B2 (en) Fine structure drying method and apparatus and high-pressure vessel thereof
JP2012074564A (en) Substrate processing apparatus and substrate processing method
JP2005064269A (en) High pressure processing method
JP6320868B2 (en) Substrate processing apparatus and substrate processing method
JP6005702B2 (en) Supercritical drying method and substrate processing apparatus for semiconductor substrate
TW200525013A (en) Process for producing structural body and etchant for silicon oxide film
JP2007049065A (en) Super-critical processor
JP2019169555A (en) Substrate processing method and substrate processing device
JP2007525848A (en) Apparatus and method for drying a substrate
JP4372590B2 (en) Fine structure drying method and apparatus
JP4247087B2 (en) Fine structure drying method and apparatus
JP2004311507A (en) Method, device, and system for drying microstructure
JP3782366B2 (en) Supercritical processing method and supercritical processing apparatus
JP2006332215A (en) Method of processing microstructure and apparatus thereof
JP4008900B2 (en) Supercritical processing method
JP3861798B2 (en) Resist development processing apparatus and method
JP2004327894A (en) Supercritical drying method and supercritical dryer
JP4409399B2 (en) Fine structure drying method and apparatus and sample holder
JP4342896B2 (en) Fine structure drying method and apparatus
JP4307973B2 (en) Supercritical fluid processing apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees