JP2006332215A - Method of processing microstructure and apparatus thereof - Google Patents

Method of processing microstructure and apparatus thereof Download PDF

Info

Publication number
JP2006332215A
JP2006332215A JP2005151740A JP2005151740A JP2006332215A JP 2006332215 A JP2006332215 A JP 2006332215A JP 2005151740 A JP2005151740 A JP 2005151740A JP 2005151740 A JP2005151740 A JP 2005151740A JP 2006332215 A JP2006332215 A JP 2006332215A
Authority
JP
Japan
Prior art keywords
pure water
organic solvent
sample holder
liquid
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005151740A
Other languages
Japanese (ja)
Inventor
Sakae Takabori
栄 高堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Systems Corp
Original Assignee
Hitachi High Tech Science Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Science Systems Corp filed Critical Hitachi High Tech Science Systems Corp
Priority to JP2005151740A priority Critical patent/JP2006332215A/en
Publication of JP2006332215A publication Critical patent/JP2006332215A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To evenly perform with good reproduction in a short time all processes from etching where an article to be processed is placed on the same sample holder and a fine structure is formed on the surface with an etchant to drying by supercritical fluid. <P>SOLUTION: The method of processing the microstructure is configured such that, after etching of forming a microstructure by performing etching to the article placed on a sample holder by an etchant, the etchant is substituted for pure water, and then, after the pure water is substituted for an organic solvent, the article is taken out from a substitution processor and the organic solvent is removed from the article by the supercritical fluid and is subjected to supercritical drying. In the method, the article undergoes all processings from the etching to the supercritical drying while being placed on the sample holder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被処理物表面にエッチング処理によって微細構造を形成し、次いでリンス洗浄及び超臨界流体による乾燥処理を行う新規な微細構造処理方法及びその装置に関する。   The present invention relates to a novel fine structure processing method and apparatus for forming a fine structure on the surface of an object to be processed by performing an etching process and then performing a rinsing cleaning and a drying process using a supercritical fluid.

従来、大規模で高密度、高性能デバイスを製造するには、シリコンウェハ上に成膜したレジストに対して露光、現像、リンス洗浄及び乾燥を経てパターンを形成した後、コーティング、エッチング、リンス洗浄、乾燥等のプロセスを経て製造される。特に、レジストは、光、X線、電子線などに感光する高分子材料であり、各工程において、現像、リンス洗浄工程では現像液、リンス液等の薬液を使用しているため、リンス洗浄工程後は乾燥工程が必須である。特許文献1には、エッチング、現像、リンス処理及び超臨界流体による乾燥を同一の槽内で行うことが示されている。   Conventionally, in order to manufacture a large-scale, high-density, high-performance device, a resist formed on a silicon wafer is exposed, developed, rinsed and dried to form a pattern, and then coated, etched, and rinsed. It is manufactured through a process such as drying. In particular, the resist is a polymer material that is sensitive to light, X-rays, electron beams, etc., and in each process, a chemical solution such as a developer or a rinse solution is used in the development and rinse cleaning process, so the rinse cleaning process After that, a drying process is essential. Patent Document 1 discloses that etching, development, rinsing, and drying with a supercritical fluid are performed in the same tank.

この乾燥工程において、基板上に形成したレジストパターン間のスペース幅が100nm程度以下になるとパターン間に残存する薬液の表面張力の作用により、パターン間にラプラス力(毛細管力)が作用してパターン倒れが発生する問題が生ずる。   In this drying process, when the space width between the resist patterns formed on the substrate is about 100 nm or less, the surface tension of the chemical solution remaining between the patterns causes Laplace force (capillary force) to act between the patterns and the pattern collapses. The problem that occurs occurs.

他方では、例えば加速センサーやアクチュエータ等の可動部を持つ三次元微細構造部品のMEMS(Micro Electromechanical System)部品の製造は、フッ酸等のエッチング液で可動部位を含む微細構造を形成する工程と、純水でエッチング液を洗浄除去する工程と乾燥工程を含んでいる。この乾燥工程においてもレジストパターンと同様に微細構造間に残る薬液による表面張力が作用して、可動部が基板に張り付く現象が発生している。この微細構造間に残存する薬液の表面張力の作用によるパターン倒れや張付きを防止するために、微細構造物間に作用する表面張力を軽減する乾燥プロセスとして、特許文献2〜4に示されている。   On the other hand, for example, manufacturing a MEMS (Micro Electromechanical System) part of a three-dimensional microstructure part having a movable part such as an acceleration sensor or an actuator includes a step of forming a microstructure including a movable part with an etching solution such as hydrofluoric acid, It includes a step of cleaning and removing the etching solution with pure water and a drying step. Also in this drying process, the surface tension due to the chemical solution remaining between the fine structures acts like the resist pattern, and the phenomenon that the movable part sticks to the substrate occurs. Patent Documents 2 to 4 show a drying process for reducing the surface tension acting between fine structures in order to prevent pattern collapse and sticking due to the action of the surface tension of the chemical solution remaining between the fine structures. Yes.

この従来の二酸化炭素等の超臨界流体を用いた乾燥法は、以下の基本工程を有する。
(1)液体又は超臨界状態の流体に可溶でないサンプル中の例えば水等の残存液体は、予め流体に可溶な有機溶剤、例えばエタノールや2−プロパノール等と置換しておく工程。
(2)リンス液に浸漬、又は濡れた状態、具体的には基板上にリンス液が載った状態で乾燥室となる高圧容器に水平に搬送して設置する工程。
(3)高圧容器を密閉する工程。
(4)液体状態又は超臨界状態の流体を高圧容器に導入し、所定の圧力まで昇圧する工程。
(5)高圧容器内に導入した液体又は超臨界状態の流体とリンス液を置換させる工程。
(6)高圧容器に液体の流体を導入した場合は、液体の流体とリンス液の置換後に高圧容器を臨界点以上に昇圧及び昇温させる工程。
(7)高圧容器から超臨界状態の流体を排出させる工程。
(8)高圧容器から基板を取り出す工程。
This conventional drying method using a supercritical fluid such as carbon dioxide has the following basic steps.
(1) A step in which a remaining liquid such as water in a sample that is not soluble in a liquid or a fluid in a supercritical state is previously replaced with an organic solvent that is soluble in the fluid, such as ethanol or 2-propanol.
(2) A step of horizontally transporting and setting in a high-pressure container serving as a drying chamber in a state dipped or wetted in the rinse liquid, specifically, a condition in which the rinse liquid is placed on the substrate.
(3) A step of sealing the high-pressure vessel.
(4) A step of introducing a fluid in a liquid state or a supercritical state into a high-pressure vessel and increasing the pressure to a predetermined pressure.
(5) A step of replacing the liquid or supercritical fluid introduced into the high-pressure vessel with the rinse liquid.
(6) A step of increasing the pressure and raising the temperature of the high-pressure vessel to a critical point or more after replacing the liquid fluid and the rinsing liquid when a liquid fluid is introduced into the high-pressure vessel.
(7) A step of discharging the supercritical fluid from the high-pressure vessel.
(8) A step of taking out the substrate from the high-pressure vessel.

特開平11−87306号公報JP-A-11-87306 特開2003−109933号公報JP 2003-109933 A 特開平9−139374号公報JP-A-9-139374 特開平5−315241号公報JP-A-5-315241

特許文献1におけるエッチング処理から乾燥処理を同一槽内によって行うことは、各処理における処理液の洗浄に時間を要するため全工程において処理時間が長くなってしまう。   Performing the drying process from the etching process in Patent Document 1 in the same tank requires a long time for cleaning the processing liquid in each process, so that the processing time becomes long in all processes.

図13及び図14は、エッチング処理及びエッチング処理後の純水置換処理する状態を示す断面図である。図13に示す様に、純水1でリンスされた被処理物2をイソプロピルアルコール(IPA)でリンス置換する状態を示すもので、IPA4を入れたトレイ3へ純水1が載った被処理物2を入れてIPAリンス置換処理を一定時間行う。その後、図14に示す様に、IPA4で置換された純水高濃度液5が載った被処理物2をトレイ3から取り出して新規なIPA4を入れたトレイ3へ入れて純水濃度を下げるための再びIPAリンス置換処理を一定時間行う。このような置換処理を複数回繰り返す。   13 and 14 are cross-sectional views showing a state in which the pure water replacement process after the etching process and the etching process is performed. As shown in FIG. 13, the object to be treated 2 rinsed with pure water 1 is rinsed with isopropyl alcohol (IPA), and the object to be treated is placed on the tray 3 containing IPA 4. 2 and IPA rinse replacement processing is performed for a certain period of time. Thereafter, as shown in FIG. 14, the object 2 on which the pure water high-concentration liquid 5 replaced with IPA 4 is taken out from the tray 3 and placed in the tray 3 containing the new IPA 4 to reduce the pure water concentration. The IPA rinse replacement process is performed again for a predetermined time. Such replacement processing is repeated a plurality of times.

最後に図15に示す様に、IPA4で置換された純水中濃度液6が載った被処理物2を取り出し、IPA4を入れた本願実施例に示す別のサンプルホルダ7に搭載する。この時、サンプルホルダ7内の押しバネ10に押されたサンプル押さえ9と押さえ板8により被処理物2が保持され、更に純水濃度を下げる。以上の様な置換処理を実施した後、超臨界乾燥工程の高圧処理容器へ被処理物2を設置し、乾燥工程が実施される。   Finally, as shown in FIG. 15, the workpiece 2 on which the pure water concentration solution 6 replaced with IPA 4 is placed is taken out and mounted on another sample holder 7 shown in this embodiment in which IPA 4 is placed. At this time, the workpiece 2 is held by the sample presser 9 and the presser plate 8 pressed by the pressing spring 10 in the sample holder 7, and the pure water concentration is further lowered. After performing the above-described replacement process, the workpiece 2 is placed in the high-pressure processing container in the supercritical drying process, and the drying process is performed.

しかし、ウェットエッチング処理液から被処理物2を取り出す工程や液体又は超臨界状態の流体に可溶でない被処理物2中の例えば純水等の残存液体は、予め流体に可溶な有機溶剤、例えばエタノールや2−プロパノール等と置換しておく工程において、各々別の処理容器やサンプルホルダを使用していたことにより、順次被処理物を大気中を経由してウェットエッチング処理槽からの取り出しや有機溶剤との置換処理を実施しており、微細構造が大気と接触し制御外のところで表面張力の作用によりパターン倒れや張付きが発生し、再現性の良い乾燥処理が出来なかった。   However, the step of removing the workpiece 2 from the wet etching treatment liquid or the remaining liquid such as pure water in the workpiece 2 that is not soluble in the liquid or the fluid in a supercritical state is an organic solvent that is soluble in advance, For example, in the process of substituting with ethanol, 2-propanol, etc., because different processing containers and sample holders were used, the objects to be processed were sequentially removed from the wet etching processing tank via the atmosphere. A substitution treatment with an organic solvent was carried out, and the fine structure contacted the atmosphere, and pattern collapse and sticking occurred due to the effect of surface tension outside the control, and a drying treatment with good reproducibility could not be performed.

本発明の目的は、同一のサンプルホルダに載置して、エッチング液によってその表面に微細構造を形成するエッチング処理から超臨界流体による乾燥までの全処理を短時間で均一に再現性が良く行うことができる微細構造処理方法及びその装置を提供することにある。   The object of the present invention is to place all the processes from the etching process, which is placed on the same sample holder and forming a fine structure on the surface with the etching liquid, to the drying with the supercritical fluid, in a short time and with good reproducibility. It is an object of the present invention to provide a fine structure processing method and an apparatus thereof.

本発明は、サンプルホルダに載置された被処理物をエッチング液によるエッチング処理によって微細構造を形成するエッチング処理後、前記エッチング液を純水によって置換し、次いで前記純水を有機溶剤によって置換後、前記被処理物を前記置換処理部より取り出し超臨界流体によって前記有機溶剤を前記被処理物より除去する超臨界乾燥する微細構造処理方法において、前記エッチング処理から前記超臨界乾燥までの全処理に対して前記被処理物を前記サンプルホルダに載置して行うことを特徴とする微細構造処理方法にある。   In the present invention, after an etching process for forming a fine structure by performing an etching process using an etching solution on an object placed on a sample holder, the etching solution is replaced with pure water, and then the pure water is replaced with an organic solvent. In the fine structure processing method for supercritical drying, in which the object to be processed is taken out from the replacement processing unit and the organic solvent is removed from the object to be processed by a supercritical fluid, the entire process from the etching process to the supercritical drying is performed. On the other hand, the present invention resides in a fine structure processing method characterized in that the object to be processed is placed on the sample holder.

本発明によれば、同一のサンプルホルダに載置して、エッチング液によってその表面に微細構造を形成するエッチング処理から超臨界流体による乾燥までの全処理を短時間で均一に再現性が良く行うことができる微細構造処理方法及びその装置を提供することにある。   According to the present invention, the entire process from the etching process, which is placed on the same sample holder and forms a fine structure on the surface with an etching solution, and is dried with a supercritical fluid is performed uniformly in a short time with good reproducibility. It is an object of the present invention to provide a fine structure processing method and an apparatus thereof.

本発明は、ガラス、シリコン及び金属などの被処理物へ微細構造を形成するエッチング液によるエッチング工程からそのエッチング液を純水によって置換すると共に、その純水を有機溶剤によって置換しその有機溶剤を超臨界流体によって乾燥する超臨界乾燥工程までの全工程を同一のサンプルホルダで処理する微細構造処理方法及びその装置にある。具体的には、全工程は以下の手順を有する。   The present invention replaces the etching solution with pure water from the etching step with an etching solution that forms a fine structure on an object to be processed such as glass, silicon and metal, and replaces the pure water with an organic solvent. The present invention resides in a fine structure processing method and apparatus for processing all processes up to a supercritical drying process for drying with a supercritical fluid using the same sample holder. Specifically, the whole process has the following procedures.

微細構造を形成する際の被処理物をサンプルホルダへ設置し、液体処理容器の内部処理容器内へ設置して、内部処理容器へフッ酸など目的のエッチング液を供給し、目的の時間だけ浸漬させ被処理物の表面に微細構造を形成する。その後、エッチング液を排出し、純水を導入しサンプルホルダ部に残存したエッチング液を純水置換しながら純水リンスを施し、一定時間後に純水を排出する。次に、サンプルホルダ部に残存した純水を乾燥工程で用いる流体に可溶な有機溶剤、例えばエタノールや2−プロパノール等を導入しサンプルホルダ部に残存した純水を有機溶剤置換する。   Place the object to be processed when forming the fine structure in the sample holder, place it in the internal processing container of the liquid processing container, supply the target etching solution such as hydrofluoric acid to the internal processing container, and immerse it for the target time A fine structure is formed on the surface of the workpiece. Thereafter, the etching solution is discharged, pure water is introduced, pure water rinsing is performed while replacing the etching solution remaining in the sample holder portion with pure water, and pure water is discharged after a certain time. Next, an organic solvent soluble in a fluid used in the drying process, such as ethanol or 2-propanol, is introduced into the pure water remaining in the sample holder portion, and the pure water remaining in the sample holder portion is replaced with an organic solvent.

また、ウェットエッチング処理液や純水・有機溶剤の置換処理時間を安定させる為、それらの液温を一定に保つために、液体処理容器と外部容器の間へ温度制御された溶媒を循環させ温度管理を施し、更に純水や有機溶剤の供給口の方向を複数斜めに設け、液体処理容器内のサンプルホルダ及びサンプルに対し、回転しながら純水や有機溶剤が接触することで、サンプルホルダ及び被処理物近傍の液体との置換効率を向上させる。   In addition, in order to stabilize the replacement time of the wet etching treatment liquid and pure water / organic solvent, in order to keep the temperature of those liquids constant, a temperature-controlled solvent is circulated between the liquid treatment container and the external container. In addition, a plurality of supply ports of pure water and organic solvent are provided obliquely, and the sample holder and the organic solvent come into contact with the sample holder and the sample in the liquid processing container while rotating, so that the sample holder and Improves replacement efficiency with liquid in the vicinity of the object to be processed.

更には、サンプルホルダと排出口との間に設けた突起により、純水や有機溶剤が液体処理容器の中央下部に対し下降流となり、被処理物上部へ進入することで更にサンプルホルダ及び被処理物近傍の液体との置換効率を向上させることができる。更に、液体処理容器自体にX方向、Y方向及びZ方向の振動を与えることも有効である。   Furthermore, the projection provided between the sample holder and the discharge port causes pure water or an organic solvent to flow downward with respect to the center lower part of the liquid processing container, and further enters the upper part of the object to be processed. The replacement efficiency with the liquid in the vicinity of the object can be improved. Furthermore, it is also effective to give vibrations in the X direction, Y direction, and Z direction to the liquid processing container itself.

より具体的には、サンプルホルダの被処理物外周部などの隙間は、特にエッチング液や純水が残存・停滞し、効率良く置換させるために、サンプルホルダへ溝を設け効率良く置換する。供給される純水や有機溶剤の圧力や流量を制御することで、回転流や下降流の速さ及び方向を変化させ置換処理を行う。   More specifically, in the gap such as the outer peripheral portion of the sample holder to be processed, in particular, an etching solution or pure water remains or stagnate, and a groove is provided in the sample holder so that the sample holder is efficiently replaced. By controlling the pressure and flow rate of the supplied pure water and organic solvent, the replacement process is performed by changing the speed and direction of the rotating flow and the downward flow.

有機溶剤への置換を終了させたサンプルホルダは、搬送機構により高圧容器内の保持手段に設置し、高圧容器内に常温及び常圧では気体で、高圧下では液体となる流体を液体又は超臨界状態で設定圧力まで導入して、リンス液を排出させる前に流体の温度及び圧力の少なくとも一方を変化させ流体の比重を変化させ、比重の変化により高圧容器内のリンス液と流体との比重差を形成し、高圧容器を傾斜させ被処理物としての基板上のリンス液を傾斜した高圧容器内の上側又は下側に集める。   The sample holder that has been replaced with the organic solvent is placed on the holding means in the high-pressure vessel by the transport mechanism, and the fluid that becomes a gas at normal temperature and normal pressure and a liquid at high pressure in the high-pressure vessel is liquid or supercritical. Introduce up to the set pressure in the state and change the specific gravity of the fluid by changing at least one of the temperature and pressure of the fluid before discharging the rinse liquid, and the specific gravity difference between the rinse liquid and the fluid in the high pressure vessel due to the change in specific gravity And the rinsing liquid on the substrate as the object to be processed is collected on the upper side or the lower side in the inclined high pressure vessel.

集められたリンス液は傾斜した高圧容器内の上側又は下側に設けられた少なくとも一方の排出口より排出させ、更に、基板外周やサンプルホルダと基板との円周方向の接触部近傍に残存するリンス液とサンプルホルダと基板との間に残存するリンス液を効率よく分離させるために、サンプルホルダに設けられた溝を通して、残存したリンス液を効率良く切り離す。その後、流体の臨界圧力以上に保ったまま流体の温度を臨界温度以上に昇温させ、流体の温度を臨界温度以上に保ったまま流体を排出させることにより被処理物を乾燥させることができる。   The collected rinse liquid is discharged from at least one discharge port provided on the upper side or the lower side in the inclined high-pressure vessel, and further remains in the vicinity of the substrate outer periphery or the circumferential contact portion between the sample holder and the substrate. In order to efficiently separate the rinsing liquid remaining between the rinsing liquid, the sample holder, and the substrate, the remaining rinsing liquid is efficiently separated through a groove provided in the sample holder. Thereafter, the temperature of the fluid is raised to a critical temperature or higher while maintaining the fluid at a critical pressure or higher, and the workpiece is dried by discharging the fluid while maintaining the fluid temperature at or higher than the critical temperature.

以上の手順を要約すると次の通りである。微細構造を形成する際のサンプルをサンプルホルダへ設置し、液体処理容器の内部処理容器内へ設置して、前記内部処理容器へフッ酸など目的のエッチング液を供給し、目的の時間だけ浸漬させ微細構造を形成する。その後、エッチング液を排出し、純水を導入し前記サンプルホルダ部に残存したエッチング液を純水置換しながら純水リンスを施し、一定時間後に純水を排出する。次に、有機溶剤を導入し前記サンプルホルダ部に残存した純水を有機溶剤置換する。内部処理容器は、外部処理容器との間へ供給される温度制御された溶媒により温度が一定に保たれ、供給されるエッチング液や純水・有機溶剤がある角度を持った流れによりサンプルホルダやサンプル近傍の置換工程と、液体処理容器下部に設けたX、Y、Z振動機構による置換工程と、サンプルホルダに設けた溝により置換が効率良く実施可能で、更に超臨界乾燥工程を行う高圧処理容器へのサンプルホルダの搬送機構及び超臨界乾燥工程までを同一のサンプルホルダで処理をするものである。   The above procedure is summarized as follows. Place the sample for forming the fine structure in the sample holder, place it in the internal processing container of the liquid processing container, supply the target etching solution such as hydrofluoric acid to the internal processing container, and immerse it for the target time A fine structure is formed. Thereafter, the etching solution is discharged, pure water is introduced, pure water rinsing is performed while replacing the etching solution remaining in the sample holder portion with pure water, and pure water is discharged after a certain time. Next, an organic solvent is introduced, and the pure water remaining in the sample holder portion is replaced with the organic solvent. The temperature of the internal processing container is kept constant by the temperature-controlled solvent supplied to and from the external processing container, and the sample holder and the pure water / organic solvent are supplied at a certain angle with the supplied etching solution and pure water / organic solvent. Replacement process near the sample, replacement process using the X, Y, and Z vibration mechanisms provided at the bottom of the liquid processing vessel, and high-pressure processing that can be performed efficiently by the groove provided in the sample holder, and further performs a supercritical drying process The same sample holder is used to process the transport mechanism of the sample holder to the container and the supercritical drying process.

本発明に係る乾燥処理として、リンス液に浸漬又は濡れた状態の微細構造を有する基板を搭載したサンプルホルダを高圧容器内に設置する工程と、前記高圧容器内に常温及び常圧では気体で高圧下では液体となる流体を液体又は超臨界状態で設定圧力まで導入する工程と、前記高圧容器を傾斜させると共に該傾斜によって形成される前記サンプルホルダの特定の通路を通して前記リンス液を前記高圧容器内の上側又は下側に集める工程と、前記集められた前記リンス液を前記傾斜した高圧容器内の上側又は下側に設けられた少なくとも一方の排出口より排出させる工程と、前記流体の圧力を臨界圧力以上に保ったまま前記流体の温度を臨界温度以上に昇温させる工程と、前記流体の温度を臨界温度以上に保ったまま前記流体を排出する工程とを順次有することが好ましい。   As a drying treatment according to the present invention, a step of installing a sample holder mounted with a substrate having a microstructure immersed or wet in a rinsing liquid in a high-pressure vessel, and a high pressure gas at normal temperature and normal pressure in the high-pressure vessel Below, a step of introducing a fluid to be a liquid to a set pressure in a liquid or supercritical state, and the high-pressure vessel is inclined and the rinsing liquid is introduced into the high-pressure vessel through a specific passage of the sample holder formed by the inclination. Collecting the rinse liquid collected above or below the at least one outlet provided on the upper or lower side of the inclined high-pressure vessel, and critical pressure of the fluid Increasing the temperature of the fluid above the critical temperature while maintaining the pressure or higher, and discharging the fluid while maintaining the temperature of the fluid above the critical temperature; It is preferred to have sequentially.

前記高圧容器を傾斜した高圧容器をその傾斜回転方向での回転振動により前記リンス液を前記傾斜した高圧容器内の上側又は下側に集める工程を有することが好ましい。   It is preferable to have a step of collecting the rinsing liquid on the upper side or the lower side in the inclined high-pressure vessel by rotational vibration in the inclined rotation direction of the high-pressure vessel inclined on the high-pressure vessel.

又、本発明は、前記高圧容器を傾斜させると共にその傾斜回転方向での回転振動により前記基板上の前記リンス液を前記傾斜した高圧容器内の上側又は下側に集める工程を有することが好ましい。   In addition, the present invention preferably includes a step of tilting the high-pressure vessel and collecting the rinse liquid on the substrate on the upper side or the lower side in the tilted high-pressure vessel by rotational vibration in the tilt rotation direction.

前記リンス液を前記高圧容器内の上側又は下側に集める工程に際して前記流体の温度及び圧力の少なくとも一方を変化させ前記流体の比重を変化させる工程を有すること、前記高圧容器を水平に保ち前記サンプルホルダの下部より前記流体を導入すること、前記リンス液を排出させる工程と前記流体を臨界状態にする工程との間に前記流体の温度を制御し前記リンス液及び前記流体の比重変化による渦流又は対流を発生させ前記流体とリンス液の置換を促進させることが好ましい。   A step of changing at least one of the temperature and pressure of the fluid to change the specific gravity of the fluid in the step of collecting the rinse liquid on the upper side or the lower side in the high-pressure vessel; Introducing the fluid from the lower part of the holder, controlling the temperature of the fluid between the step of discharging the rinse liquid and the step of bringing the fluid into a critical state, or a vortex flow due to a change in the specific gravity of the rinse liquid and the fluid It is preferable to generate convection to promote replacement of the fluid and the rinse liquid.

前記リンス液を前記高圧容器内の上側又は下側に集める工程において前記高圧容器の傾斜角を15〜75度に設定すること、前記振動における振動角を±5〜±15度の範囲で行うこと、前記振動の回数を1〜10回の範囲で行うこと、前記流体が液化二酸化炭素であることが好ましい。   In the step of collecting the rinse liquid on the upper side or the lower side in the high-pressure vessel, the inclination angle of the high-pressure vessel is set to 15 to 75 degrees, and the vibration angle in the vibration is within a range of ± 5 to ± 15 degrees. It is preferable that the number of vibrations is 1 to 10 times, and the fluid is liquefied carbon dioxide.

本発明に係る乾燥処理装置として、リンス液に浸漬又は濡れた状態の微細構造を有する基板をサンプルホルダに搭載し設置する高圧容器と、常温及び常圧では気体で高圧下では液体となる流体を液体又は超臨界状態で貯蔵する流体貯蔵容器と、前記高圧容器を傾斜させる手段と、前記傾斜した高圧容器内の上側又は下側に集めた前記リンス液を排出させる前記高圧容器の上側又は下側の少なくとも一方に設けられた排出口とを有し、前記サンプルホルダは前記基板の搭載面より外側に向かって設けられた傾斜溝を有し、該傾斜溝を通して前記リンス液を前記高圧容器の上側又は下側に集めることが好ましい。   As a drying processing apparatus according to the present invention, a high-pressure container in which a substrate having a fine structure immersed or wet in a rinsing liquid is mounted and installed on a sample holder, and a fluid that is a gas at normal temperature and normal pressure and a liquid at high pressure Fluid storage container for storing in a liquid or supercritical state, means for inclining the high-pressure container, and upper or lower side of the high-pressure container for discharging the rinse liquid collected on the upper or lower side in the inclined high-pressure container The sample holder has an inclined groove provided outward from the mounting surface of the substrate, and the rinse liquid is passed through the inclined groove on the upper side of the high-pressure vessel. Or it is preferable to collect on the lower side.

前記高圧容器内の流体の温度及び圧力の少なくとも一方を変化させ流体の比重を変化させる温度又は圧力調整手段を有すること、前記流体を前記高圧容器に流体を圧送するポンプと、前記サンプルホルダの上側及び下側の少なくとも一方に前記基板の温度を制御する温度調整器と、前記高圧容器内に導入される流体の圧力を制御する圧力制御装置と、高圧容器への流体導入時に高圧容器内の昇圧速度を制御する昇圧速度制御手段とを有することが好ましい。   A temperature or pressure adjusting means for changing at least one of the temperature and pressure of the fluid in the high-pressure vessel to change the specific gravity of the fluid; a pump for pumping the fluid to the high-pressure vessel; and an upper side of the sample holder And a temperature controller that controls the temperature of the substrate on at least one of the lower side, a pressure control device that controls the pressure of the fluid introduced into the high-pressure vessel, and a pressure increase in the high-pressure vessel when the fluid is introduced into the high-pressure vessel It is preferable to have a step-up speed control means for controlling the speed.

本発明に係るサンプルホルダは、前記液体処理容器に対する設定位置が常に一定の向きに設定されるように所定の形状を有すると共に、前記被処理物の搭載面側に設けられた傾斜溝を通して前記リンス液を乾燥処理の際に前記高圧容器の上側又は下側に集める構造を有し、前記傾斜溝は前記被処理物の搭載部の接触部の所定の位置から外側に亘って前記高圧容器を傾斜させる方向に沿って形成されているものであり、前述のエッチング液及び有機溶媒に対して耐性を持つ樹脂製であることが好ましい。   The sample holder according to the present invention has a predetermined shape so that a set position with respect to the liquid processing container is always set in a fixed direction, and the rinse is performed through an inclined groove provided on the mounting surface side of the object to be processed. In the drying process, the liquid is collected on the upper side or the lower side of the high-pressure vessel, and the inclined groove inclines the high-pressure vessel from a predetermined position of a contact portion of the mounting portion of the workpiece to the outside. It is preferably formed of a resin that is resistant to the above-described etching solution and organic solvent.

以上のように、本発明では、超臨界乾燥工程前のエッチング液によるウエットエッチング工程、純水によるエッチング液の純水置換工程及び純水リンス工程、有機溶剤による純水リンス液の有機溶剤置換工程が同一の処理容器及びサンプルホルダにて処理するものであり、従来の順次被処理物を大気中を経由してエッチング処理や有機溶剤との置換処理を実施した場合に発生していた制御外のパターン倒れや張付きが回避され、再現性の良い乾燥結果が得られないという欠点を解決できるものである。   As described above, in the present invention, the wet etching step with the etching solution before the supercritical drying step, the pure water replacement step and the pure water rinsing step of the etching solution with pure water, the organic solvent replacement step of the pure water rinsing solution with an organic solvent. Are processed in the same processing container and sample holder, and are out of control that occurred when conventional sequential processing objects were subjected to etching processing or replacement processing with organic solvents via the atmosphere. Pattern collapse and sticking are avoided, and the disadvantage that drying results with good reproducibility cannot be obtained can be solved.

更に、本発明では、LSI等を大規模に製作するための露光、現像、リンス後のレジスト等のパターン幅が100nm以下、更にパターン幅70nm以下、特にパターン幅(スペース幅)30nm以下の表面微細構造を持ち、親水性も低い直径100mm以上の大口径基板やシリコンなどによるMEMS素子構造の乾燥処理をパターン倒れや張り付き無く、更に短時間で均一に乾燥できるものである。そのためデバイス製造ラインへの適用が可能な処理速度を有するものである。以下、本発明を実施するための最良の形態について具体的な実施例によって説明する。   Further, in the present invention, the surface width of the resist, etc. after exposure, development and rinsing for manufacturing LSI etc. on a large scale is 100 nm or less, and further, the pattern width is 70 nm or less, especially the pattern width (space width) is 30 nm or less. The MEMS element structure with a large-diameter substrate of 100 mm or more in diameter and silicon having a structure and low hydrophilicity can be uniformly dried in a shorter time without pattern collapse or sticking. Therefore, it has a processing speed that can be applied to a device manufacturing line. Hereinafter, the best mode for carrying out the present invention will be described with reference to specific examples.

図1は本発明に係る微細構造処理装置によりエッチング処理を行う状況を示す断面図である。被処理物102を後述するサンプルホルダ103へ載せ、サンプルホルダ103に載せられた被処理物102は、サンプルホルダ103内の押しバネ107に押されたサンプル押さえ105と押さえ板106により被処理物102が保持される。サンプルホルダ103は、内部容器101に設けられた支柱108に設置される。内部容器101と外部容器137との間へ所定の温度を有する温度制御溶媒132を循環させる溶媒循環装置を有する。溶媒循環装置では、温度制御溶媒132を温度制御溶媒供給配管120より温度制御溶媒導入弁121を開けて温度制御溶媒導入配管119より導入される。導入された温度制御溶媒132は、外部容器137に設けられた温度制御溶媒排出配管122まで到達すると、温度制御溶媒排出配管122より温度制御溶媒排出弁123を開け、温度制御溶媒戻り配管124を通って戻る。即ち、使用時は温度制御溶媒導入弁121と温度制御溶媒排出弁123は開け、使用後は閉じる。この状態で目的のエッチング液104を被処理物102へ直接当たらない様に内部容器101へ規定量注入し、目的の時間エッチング処理を行う。   FIG. 1 is a cross-sectional view showing a state in which an etching process is performed by a microstructure processing apparatus according to the present invention. An object to be processed 102 is placed on a sample holder 103 to be described later, and the object to be processed 102 placed on the sample holder 103 is processed by a sample presser 105 and a pressing plate 106 pressed by a pressing spring 107 in the sample holder 103. Is retained. The sample holder 103 is installed on a support column 108 provided in the inner container 101. A solvent circulation device that circulates a temperature control solvent 132 having a predetermined temperature between the inner container 101 and the outer container 137 is provided. In the solvent circulation apparatus, the temperature control solvent 132 is introduced from the temperature control solvent introduction pipe 119 by opening the temperature control solvent introduction valve 121 from the temperature control solvent supply pipe 120. When the introduced temperature control solvent 132 reaches the temperature control solvent discharge pipe 122 provided in the external container 137, the temperature control solvent discharge valve 123 is opened from the temperature control solvent discharge pipe 122 and passes through the temperature control solvent return pipe 124. To return. That is, the temperature control solvent introduction valve 121 and the temperature control solvent discharge valve 123 are opened during use and closed after use. In this state, the target etching solution 104 is injected into the inner container 101 so that the target etching liquid 104 does not directly hit the workpiece 102, and etching is performed for a target time.

図2は本発明に係る微細構造処理装置内よりエッチング液を排出した状況を示す断面図である。目的の時間エッチング処理後、エッチング液104はエッチング液/純水/IPA排出配管129より開いたエッチング液排出弁134を通り、エッチング液排出配管133から排出される。この時、サンプルホルダ103部以外のエッチング液104のほぼ全量が排出される。排出終了後エッチング液排出弁134は閉ておく。   FIG. 2 is a cross-sectional view showing a state in which the etchant is discharged from the microstructure processing apparatus according to the present invention. After the target time etching process, the etching solution 104 passes through the etching solution discharge valve 134 opened from the etching solution / pure water / IPA discharge pipe 129 and is discharged from the etching solution discharge pipe 133. At this time, almost the entire amount of the etching solution 104 other than the sample holder 103 is discharged. After completion of the discharge, the etchant discharge valve 134 is closed.

図3は本発明に係る微細構造処理装置内に純水を導入した状況を示す断面図である。エッチング液104を排出した後、直ちに純水導入配管118より純水導入弁(110)を開いて純水/IPA導入配管109より内部容器101へ純水105を導入する。導入された純水105は純水/IPA排出配管116の高さまで供給されると、開いている純水排出弁112より純水排出配管114を通って排出される。サンプルホルダ103内に残っていたエッチング液104は、初期の純水135導入により置換・希釈され、時間経過(供給量)とともに純水135へ完全に置換される。   FIG. 3 is a cross-sectional view showing a state in which pure water is introduced into the microstructure processing apparatus according to the present invention. After the etching solution 104 is discharged, the pure water introduction valve (110) is immediately opened from the pure water introduction pipe 118, and the pure water 105 is introduced into the internal container 101 from the pure water / IPA introduction pipe 109. When the introduced pure water 105 is supplied up to the height of the pure water / IPA discharge pipe 116, it is discharged from the open pure water discharge valve 112 through the pure water discharge pipe 114. The etching solution 104 remaining in the sample holder 103 is replaced and diluted by the introduction of the initial pure water 135, and is completely replaced with the pure water 135 as time passes (supply amount).

図4は、微細構造処理装置を上部から見た場合の状況示す断面図である。図4に示すように、複数配置された純水/IPA導入配管109の取り付け角度により、導入された純水135は内部容器101内部で矢印方向138の流れを持つことになる。また、図3に示す様に内部容器101上部に設置された上部遮蔽板131により、内部容器101内部で矢印方向139の流れを持つことになり、被処理物102やサンプルホルダ103の上側近傍で、純水135が斜め方向より進入・接触することにより、効率良く純水135によるエッチング液104の置換処理が可能となるものである。   FIG. 4 is a cross-sectional view showing the situation when the fine structure processing apparatus is viewed from above. As shown in FIG. 4, the introduced pure water 135 has a flow in the direction of the arrow 138 inside the inner container 101 depending on the mounting angle of the plurality of disposed pure water / IPA introduction pipes 109. Further, as shown in FIG. 3, the upper shielding plate 131 installed on the upper part of the inner container 101 has a flow in the arrow direction 139 inside the inner container 101, and near the upper side of the workpiece 102 and the sample holder 103. The pure water 135 enters and contacts from an oblique direction, so that the etching solution 104 can be efficiently replaced with the pure water 135.

図5は本発明に係る微細構造処理装置内より純水を排出した状況を示す断面図である。目的の時間、純水135によるリンス処理後、純水135はエッチング液/純水/IPA排出配管129より開いた純水排出弁2(125)を通り、純水排出配管2(126)から排出される。この時、サンプルホルダ103部以外の純水135はほぼ全量が排出される。排出終了後、純水排出弁2(125)は閉めておく。   FIG. 5 is a cross-sectional view showing a state in which pure water is discharged from the inside of the microstructure processing apparatus according to the present invention. After rinsing with pure water 135 for the target time, pure water 135 passes through pure water discharge valve 2 (125) opened from etchant / pure water / IPA discharge pipe 129 and is discharged from pure water discharge pipe 2 (126). Is done. At this time, almost all of the pure water 135 other than the sample holder 103 is discharged. After the completion of the discharge, the pure water discharge valve 2 (125) is closed.

図6及び図7は、本発明に係る微細構造処理装置内にIPAを導入した状況を示す断面図である。純水135を排出した後、直ちにIPA導入配管117よりIPA導入弁111を開いて純水/IPA導入配管109より内部容器101へIPA136を導入する。導入されたIPA136は純水/IPA排出配管116の高さまで供給されると、開いているIPA排出弁113よりIPA排出配管115を通って排出される。サンプルホルダ103内に残っていた純水135は、初期のIPA136導入により置換・希釈され、時間経過(供給量)とともにIPA136へ完全に置換される。   6 and 7 are cross-sectional views showing a situation where IPA is introduced into the microstructure processing apparatus according to the present invention. After the pure water 135 is discharged, the IPA introduction valve 111 is immediately opened from the IPA introduction pipe 117 and the IPA 136 is introduced from the pure water / IPA introduction pipe 109 to the internal container 101. When the introduced IPA 136 is supplied up to the height of the pure water / IPA discharge pipe 116, it is discharged from the open IPA discharge valve 113 through the IPA discharge pipe 115. The pure water 135 remaining in the sample holder 103 is replaced and diluted by the introduction of the initial IPA 136, and is completely replaced with the IPA 136 with the passage of time (supply amount).

前述の図4に示すように、複数配置された純水/IPA導入配管109の取り付け角度により、導入されたIPA136は、内部容器101内部で矢印方向138の流れを持つことになる。また、図6に示す様に内部容器101上部に設置された上部遮蔽板131により、内部容器101内部で矢印方向139の流れを持つことになり、被処理物102やサンプルホルダ103の上側近傍で、IPA136が斜め方向より進入・接触することにより、効率良くIPA136置換処理が可能となるものである。   As shown in FIG. 4 described above, the introduced IPA 136 has a flow in the arrow direction 138 inside the inner container 101 depending on the mounting angle of the plurality of pure water / IPA introduction pipes 109 arranged. Further, as shown in FIG. 6, the upper shielding plate 131 installed on the upper part of the inner container 101 has a flow in the arrow direction 139 inside the inner container 101, and near the upper side of the workpiece 102 and the sample holder 103. The IPA 136 replacement process can be efficiently performed by the IPA 136 entering and contacting from an oblique direction.

更に、X−Y−Z振動装置(130)を駆動することによりIPA136が撹拌されるので、置換効率を高めることが出来る。   Furthermore, since the IPA 136 is agitated by driving the XYZ vibration device (130), the replacement efficiency can be increased.

図8は、本発明に係る微細構造処理装置によるIPA置換処理を終了した状況を示す断面図である。目的の時間によるIPA置換処理後、IPA136はエッチング液/純水/IPA排出配管129より開いたIPA排出弁2(128)を通り、IPA排出配管2(127)から排出される。この時、サンプルホルダ103部以外のIPA136のほぼ全量が排出される。IPA136の排出終了後、IPA排出弁2(127)は閉めておく。   FIG. 8 is a cross-sectional view showing a state where the IPA replacement process by the microstructure processing apparatus according to the present invention is finished. After the IPA replacement process for the target time, the IPA 136 passes through the IPA discharge valve 2 (128) opened from the etching solution / pure water / IPA discharge pipe 129 and is discharged from the IPA discharge pipe 2 (127). At this time, almost the entire amount of the IPA 136 other than the sample holder 103 is discharged. After the IPA 136 is discharged, the IPA discharge valve 2 (127) is closed.

以上の工程が終了した後、サンプルホルダ103を搬送機構により取り出し、乾燥処理工程を行うための高圧処理容器へ設置する。設置後、高圧容器により乾燥工程を行う。   After the above steps are completed, the sample holder 103 is taken out by the transport mechanism and installed in a high-pressure processing container for performing a drying process. After installation, the drying process is performed with a high-pressure vessel.

図9は本発明に係る微細構造乾燥処理装置の一例を示す断面図である。図10に示すように、リンス液202に浸漬又は濡れた状態の微細構造を有する基板201をサンプルホルダ204に搭載し設置する高圧容器203と、常温及び常圧では気体で高圧下では液体となる流体を液体又は超臨界状態で貯蔵する流体貯蔵容器215と、高圧容器203を傾斜させる手段と、高圧容器203を傾斜方向に振動させる手段と、傾斜した高圧容器203内の上側又は下側に集めたリンス液221を排出させる高圧容器203の上側又は下側の少なくとも一方に設けられた排出口219とを有する。又、サンプルホルダ204は後述のように基板201の搭載面より外側に向かって設けられた傾斜溝11を有する。   FIG. 9 is a cross-sectional view showing an example of the fine structure drying apparatus according to the present invention. As shown in FIG. 10, a high-pressure vessel 203 in which a substrate 201 having a fine structure immersed or wet in a rinsing liquid 202 is mounted on a sample holder 204 and installed, is a gas at normal temperature and normal pressure, and is a liquid at high pressure A fluid storage container 215 for storing fluid in a liquid or supercritical state, a means for inclining the high-pressure container 203, a means for vibrating the high-pressure container 203 in an inclination direction, and an upper side or a lower side in the inclined high-pressure container 203 And a discharge port 219 provided on at least one of the upper side and the lower side of the high-pressure vessel 203 for discharging the rinse liquid 221. Further, the sample holder 204 has the inclined groove 11 provided outward from the mounting surface of the substrate 201 as will be described later.

乾燥処理室である高圧容器203は上部の蓋205及び下部容器224から構成され、蓋205を開放して基板201を設置する。高圧容器203は、水平から垂直まで傾斜できる傾斜手段を持つ。高圧容器203には下部容器224の両側に紙面に対して垂直に傾斜用のギアを有する回転軸が設けられ、モータによって紙面に対して左右のいずれにも水平から90度まで左右両側に傾斜できるものである。フィルタ212、バルブ213は下部容器224に固定され、圧力制御装置223との間が高圧フレキシブル配管によって接続される。更に、背圧制御バルブ209、バルブ210が蓋205に、バルブ217、圧力制御バルブ218が下部容器224に固定され、それらの先が高圧フレキシブル配管によって接続され、回転可能である。   The high-pressure vessel 203 serving as a drying processing chamber is composed of an upper lid 205 and a lower vessel 224, and the substrate 205 is installed by opening the lid 205. The high-pressure vessel 203 has tilting means that can tilt from horizontal to vertical. The high-pressure vessel 203 is provided with rotating shafts having gears for tilting perpendicular to the paper surface on both sides of the lower container 224, and can be tilted left and right from the horizontal to 90 degrees from the horizontal to the paper surface by a motor. Is. The filter 212 and the valve 213 are fixed to the lower container 224, and are connected to the pressure control device 223 by a high-pressure flexible pipe. Further, the back pressure control valve 209 and the valve 210 are fixed to the lid 205, and the valve 217 and the pressure control valve 218 are fixed to the lower container 224, and their tips are connected by a high-pressure flexible pipe and can rotate.

基板201は露光後の現像及びリンスの工程を経て表面に微細構造が形成されており、その表面にはリンス液202が全面に載った状態であり、高圧容器203に設けられたサンプルホルダ204に設置される。サンプルホルダ204の上下部には、サンプルホルダ204及び二酸化炭素215を局部的に又は全体を均一に温度制御可能なヒータ206がある。高圧容器203には、バルブ213を介してポンプ214及び液体二酸化炭素容器215が配管によって接続される。高圧容器203は、その上部にバルブ210及び下部にバルブ207を介して背圧制御バルブ209、208がそれぞれ接続され、設定圧力を超えると排出口219又は排出口220より高圧容器203内の流体又はリンス液が排出される。   Substrate 201 has a fine structure formed on the surface through development and rinsing processes after exposure, and rinse liquid 202 is placed on the entire surface, and a sample holder 204 provided in high pressure vessel 203 is attached to sample holder 204. Installed. Above and below the sample holder 204 is a heater 206 that can control the temperature of the sample holder 204 and the carbon dioxide 215 locally or uniformly. A pump 214 and a liquid carbon dioxide container 215 are connected to the high pressure container 203 via a valve 213 by piping. The high pressure vessel 203 is connected to back pressure control valves 209 and 208 via a valve 210 and a lower portion via a valve 207, respectively. When the set pressure is exceeded, the fluid in the high pressure vessel 203 is discharged from the discharge port 219 or the discharge port 220. The rinse liquid is discharged.

高圧容器203はその容器構成材内部に形成された熱媒体の循環による温度調整機能を持ち、0〜60℃の範囲で流体の温度を制御でき、また、基板201の近傍、特に微細構造を有する面側の温度差による対流を最小限抑えるため、サンプルホルダ204の上下部には、サンプルホルダ204及び二酸化炭素215を局部的に又は全体を均一に温度制御可能な温度調整器206を備える。   The high-pressure vessel 203 has a temperature adjustment function by circulation of a heat medium formed inside the vessel component, can control the temperature of the fluid in the range of 0 to 60 ° C., and has a fine structure in the vicinity of the substrate 201. In order to minimize the convection due to the temperature difference on the surface side, a temperature regulator 206 capable of controlling the temperature of the sample holder 204 and the carbon dioxide 215 locally or uniformly is provided above and below the sample holder 204.

図10は、本発明に係るエッチング処理から乾燥処理までの全工程で用いるサンプルホルダの平面図(a)、B−B断面図(b)、C−C断面図(c)である。平面図(a)には被処理物として基板201は搭載されていないが、(b)及び(d)には基板201が搭載された状態を示す断面図である。図10に示すように、サンプルホルダは、カップ状の円筒形状で、高圧容器203内にリンス液202に浸漬又は濡れた状態の微細構造を有する基板201を搭載して設置され、常温及び常圧では気体で高圧下では液体となる流体によってリンス液202を乾燥除去することができ、基板201の搭載部の接触部の所定の位置から外側に亘って高圧容器203を傾斜させる方向に沿って形成された所定の幅の傾斜溝11を有するものである。   FIG. 10 is a plan view (a), a BB cross-sectional view (b), and a CC cross-sectional view (c) of the sample holder used in all steps from the etching process to the drying process according to the present invention. Although the substrate 201 is not mounted as an object to be processed in the plan view (a), (b) and (d) are cross-sectional views showing a state in which the substrate 201 is mounted. As shown in FIG. 10, the sample holder has a cup-shaped cylindrical shape, and is installed by mounting a substrate 201 having a fine structure immersed or wet in a rinsing liquid 202 in a high-pressure vessel 203, at normal temperature and normal pressure. Then, the rinsing liquid 202 can be dried and removed by a fluid that is gas and liquid under high pressure, and is formed along the direction in which the high-pressure vessel 203 is inclined outward from a predetermined position of the contact portion of the mounting portion of the substrate 201. The inclined groove 11 having a predetermined width is provided.

基板201には、リンス液が載っていない状態である。本実施例のサンプルホルダ204は、所定の幅を有する傾斜溝11が平坦部19に対して設けられ、4個の保持用ガイド穴12を通して高圧容器203に設けられた保持手段の4本のピンが挿入されて設定される。基板201は、基板挿入部10に挿入され、2個のコイルバネ15によってスライド用溝16内をガイドピン14を通して右側に押し付けられている基板押さえ11によって固定される。基板押さえ21は押さえ保持具17によって保持される。ヒータ逃げ溝13は、高圧容器203内に設けられた棒状のヒータ206が基板201により近づけることができるようにヒータ逃げ溝13に接しないように挿入される。   The substrate 201 is in a state where no rinse liquid is placed thereon. In the sample holder 204 of this embodiment, the inclined groove 11 having a predetermined width is provided in the flat portion 19, and the four pins of the holding means provided in the high-pressure vessel 203 through the four holding guide holes 12. Is inserted and set. The substrate 201 is inserted into the substrate insertion portion 10 and fixed by the substrate holder 11 that is pressed by the two coil springs 15 through the guide pins 14 to the right through the slide groove 16. The substrate holder 21 is held by the holding holder 17. The heater escape groove 13 is inserted so as not to contact the heater escape groove 13 so that the rod-like heater 206 provided in the high-pressure vessel 203 can be brought closer to the substrate 201.

又、サンプルホルダ204は、前述の内部容器101及び高圧容器203に対する設定位置が常に一定の向きに設定されるように円筒形状に一部平坦部を有する所定の形状を有し、基板201の搭載面側に設けられた傾斜溝11を通してリンス液を乾燥処理の際に高圧容器203の上側又は下側に集める構造を有し、傾斜溝11は基板201の搭載部の接触部の所定の位置から外側に亘って高圧容器203を傾斜させる方向に沿って形成されているものであり、エッチング液及び有機溶媒に対して耐性を持つ樹脂製である。   The sample holder 204 has a predetermined shape having a part of a flat part in a cylindrical shape so that the set position with respect to the inner container 101 and the high-pressure container 203 is always set in a fixed direction. The rinsing liquid is collected on the upper side or the lower side of the high-pressure vessel 203 during the drying process through the inclined groove 11 provided on the surface side, and the inclined groove 11 is formed from a predetermined position of the contact portion of the mounting portion of the substrate 201. It is formed along the direction in which the high-pressure vessel 203 is inclined over the outside, and is made of a resin resistant to the etching solution and the organic solvent.

以下、本実施例の乾燥工程を説明する。
(1)直径200mmのLSIシリコン基板上にEBレジスト(ZEP−7000:日本ゼオン製)を220nmの膜厚で製膜、乾燥した後、電子線でパターンを60nm以下のパターン幅で描画してから酢酸ノルマルヘキシルで数十秒現像、2−プロパノールのリンス液202で数十秒リンスし、表面に微細構造が形成された基板201を搭載した前述に記載のサンプルホルダ204と共に、蓋205と下部容器224とからなる高圧容器203に設けられた4本のピンを保持用ガイド穴12に通して設置する。このとき、基板201の上には液体二酸化炭素216又は超臨界二酸化炭素に可溶な2−プロパノールからなるリンス液202が厚さ2〜3mmで基板201の全面に載った状態であるか、基板201がリンス液202に浸漬した状態である。
(2)基板201を高圧処理容器203内のサンプルホルダ204に設置する際は、高圧処理容器203が水平の状態で蓋105を開け、設置後蓋105を閉じて高圧処理容器203を気密状態とする。この時、バルブ217、220207は閉じている。
(3)バルブ213を開放すると液体二酸化炭素216が高圧容器203に導入される。このとき圧力制御装置223により基板201上に形成された微細構造が破損しないように、且つリンス液202と液体二酸化炭素の混濁を最小限に抑えるため、液体二酸化炭素容器215の定常圧力の5MPa程度までを1MPa/数秒程度の速度で導入する。高圧処理容器203に導入される液体二酸化炭素はフィルタ212を通過し不純物が除去される。液体二酸化炭素容器215を定常圧力まで導入した後、ポンプ214を作動させ設定圧力(7.5〜13MPa程度)まで液体二酸化炭素216を圧縮して送出する。
(4)図11は、高圧処理容器203を傾斜させた状態を示す微細構造乾燥装置の断面図である。図11に示すように、高圧処理容器203を傾斜手段によって傾斜回転方向225に傾斜させることにより、基板201に載った2−プロパノールのリンス液202の大半が基板201表面から離れ高圧容器203内に充填した液体状態の二酸化炭素216と殆ど溶けずに混ざり合い混濁状態となる。リンス液202との比重差が大きい時は混濁状態が比較的早く安定するので早く傾斜させることができる。又、傾斜状態から更に傾斜回転方向225と同じ方向にゆっくりした振動230を数回加えることにより効果的に置換、排出を行うことができる。
(5)高圧容器203の温度を熱媒体の循環によって下げ、5℃程度に制御すると、液体二酸化炭素の比重が0.95g/mlになり、2−プロパノールからなるリンス液202の比重0.80g/mlとの比重差が約0.15g/ml程度になるため、図2に示すように、リンス液202は傾斜した高圧処理容器203内の上部に集まる。設定圧力(7.5〜13MPa程度)までの昇圧及び5℃までの降温は同時に移行させても良い。この時、リンス液202がサンプルホルダ204と基板201から前述した傾斜溝11を通して速やかに分離させるために、サンプルホルダ204はその全面が撥水処理皮膜又は鏡面加工処理が施され、更に流れを良くするためにサンプルホルダ204には前述のように高圧容器の傾斜する方向に沿って傾斜溝11が設けられている。
(6)圧力が設定圧力(7.5〜13MPa程度)に達したら、液体二酸化炭素と2−プロパノールからなるリンス液202の混濁状態を収束させるため、数十秒間、ポンプ214で液体二酸化炭素216を圧送することを停止して、高圧処理容器203内に液体二酸化炭素216の流れを生じないようにする。同時に、液体二酸化炭素222の対流を最小に抑えるため高圧処理容器203内のサンプルホルダ204にある局部的に設けられた温度調整器206を5℃に制御する。
(7)傾斜した高圧処理容器203の上部に集められた2−プロパノールのリンス液221と液体二酸化炭素222の混濁が収束したら、再度、ポンプ214で液体二酸化炭素216の圧送を開始する。バルブ210を開放すると、傾斜した高圧処理容器203内の上部に集めた2−プロパノールのリンス液221は排出口219を経て背圧制御バルブ209より選択的に排出される。
(8)この時、図11から見て判るように2−プロパノールのリンス液221は傾斜した高圧容器203内の上部に集まり、バルブ210と背圧制御バルブ209から排出できるが、基板201の外周及びサンプルホルダ204と基板201の間に残っている2−プロパノールのリンス液202を効率良く分離することは難い。この残存する2−プロパノールのリンス液202を基板201とサンプルホルダ204の間から分離、切り離すために図11に示す高圧容器203の傾斜したまま、高圧容器203を傾斜回転方向225と同じ振動方向230に2〜3回振動させることにより、サンプルホルダ204に設けられた傾斜溝11より効果的に分離させることができる。分離されたリンス液202の2−プロパノールは、前述したように高圧容器203の上部に集められ排出される。
(9)サンプルホルダ204の上下部に設置される温度調整器206を順次5〜60℃の範囲で温度制御を行うことで、微細構造物近傍に残存するリンス液202、221と液体二酸化炭素222を温度制御し、リンス液202,221及び液体二酸化炭素222の密度変化により渦流又は対流の状態変化を発生させ、液体二酸化炭素222とリンス液202,221の置換を促進させることも置換時間短縮に有用である。
(10)ポンプ214での液体二酸化炭素216の圧送を停止させ、高圧容器203の温度を35℃に昇温させる。高圧容器203内の圧力は昇圧するが、設定圧力(7.5〜13MPa程度)を超えると背圧制御バルブ209から排出され、高圧容器203内は設定圧力(7.5〜13MPa程度)に保たれる。この温度変化で、高圧容器203内の液体二酸化炭素は超臨界状態へと状態が変化する。この状態の変化では、液体二酸化炭素の表面張力を微細構造に作用させることが無い。
(11)バルブ213210を閉じ、バルブ217を開放し、温度を35℃に保ったまま圧力制御バルブ218より超臨界二酸化炭素を排出する。高圧容器203内の圧力が7.38MPa以下になると高圧容器203内を満たしている超臨界に酸化炭素は気体へと状態が変化する。更に、圧力制御バルブ218で排出を続け、高圧容器203内の圧力が大気圧力になった時点で乾燥が終了する。
Hereinafter, the drying process of a present Example is demonstrated.
(1) After forming an EB resist (ZEP-7000: manufactured by ZEON Corporation) with a film thickness of 220 nm on an LSI silicon substrate having a diameter of 200 mm and drying, the pattern was drawn with an electron beam with a pattern width of 60 nm or less. A lid 205 and a lower container together with the sample holder 204 described above on which the substrate 201 having a fine structure formed thereon is mounted, which is developed for several tens of seconds with normal hexyl acetate, rinsed for several tens of seconds with a 2-propanol rinse solution 202 Four pins provided in the high-pressure vessel 203 composed of 224 are installed through the holding guide hole 12. At this time, a rinse liquid 202 made of 2-propanol soluble in liquid carbon dioxide 216 or supercritical carbon dioxide is on the entire surface of the substrate 201 with a thickness of 2 to 3 mm, 201 is immersed in the rinse liquid 202.
(2) When the substrate 201 is installed in the sample holder 204 in the high-pressure processing vessel 203, the lid 105 is opened with the high-pressure processing vessel 203 in a horizontal state, and after installation, the lid 105 is closed to bring the high-pressure processing vessel 203 into an airtight state. To do. At this time, the valves 217 and 220207 are closed.
(3) When the valve 213 is opened, liquid carbon dioxide 216 is introduced into the high-pressure vessel 203. At this time, in order not to damage the fine structure formed on the substrate 201 by the pressure control device 223 and to minimize the turbidity between the rinsing liquid 202 and the liquid carbon dioxide, the steady pressure of the liquid carbon dioxide container 215 is about 5 MPa. Are introduced at a rate of about 1 MPa / several seconds. Liquid carbon dioxide introduced into the high-pressure processing container 203 passes through the filter 212 to remove impurities. After introducing the liquid carbon dioxide container 215 to a steady pressure, the pump 214 is operated to compress and send the liquid carbon dioxide 216 to a set pressure (about 7.5 to 13 MPa).
(4) FIG. 11 is a cross-sectional view of the microstructure drying apparatus showing a state in which the high-pressure processing vessel 203 is inclined. As shown in FIG. 11, by tilting the high-pressure processing container 203 in the tilting rotation direction 225 by the tilting means, most of the 2-propanol rinse liquid 202 placed on the substrate 201 is separated from the surface of the substrate 201 and enters the high-pressure container 203. The carbon dioxide 216 in the liquid state is mixed with almost no dissolution and becomes turbid. When the specific gravity difference with the rinsing liquid 202 is large, the turbid state is stabilized relatively quickly, so that it can be tilted quickly. Further, replacement and discharge can be effectively performed by applying a slow vibration 230 several times in the same direction as the tilt rotation direction 225 from the tilted state.
(5) When the temperature of the high-pressure vessel 203 is lowered by circulation of the heat medium and controlled to about 5 ° C., the specific gravity of liquid carbon dioxide becomes 0.95 g / ml, and the specific gravity of the rinse liquid 202 made of 2-propanol 0.80 g. Since the specific gravity difference with respect to / ml is about 0.15 g / ml, the rinsing liquid 202 collects at the upper part in the inclined high-pressure processing vessel 203 as shown in FIG. The pressure increase to the set pressure (about 7.5 to 13 MPa) and the temperature decrease to 5 ° C. may be shifted simultaneously. At this time, in order to quickly separate the rinsing liquid 202 from the sample holder 204 and the substrate 201 through the inclined groove 11 described above, the entire surface of the sample holder 204 is subjected to a water-repellent treatment film or a mirror finishing process, and the flow is further improved. For this purpose, the sample holder 204 is provided with the inclined groove 11 along the direction in which the high-pressure vessel is inclined as described above.
(6) When the pressure reaches the set pressure (about 7.5 to 13 MPa), the liquid carbon dioxide 216 is pumped by the pump 214 for several tens of seconds in order to converge the turbid state of the rinse liquid 202 composed of liquid carbon dioxide and 2-propanol. Is stopped so that the flow of liquid carbon dioxide 216 does not occur in the high-pressure processing vessel 203. At the same time, in order to minimize the convection of the liquid carbon dioxide 222, the locally provided temperature controller 206 in the sample holder 204 in the high-pressure processing vessel 203 is controlled to 5 ° C.
(7) When the turbidity of the 2-propanol rinse liquid 221 and the liquid carbon dioxide 222 collected at the upper part of the inclined high-pressure processing vessel 203 is converged, the pump 214 starts pumping the liquid carbon dioxide 216 again. When the valve 210 is opened, the 2-propanol rinse liquid 221 collected in the upper part of the inclined high-pressure processing vessel 203 is selectively discharged from the back pressure control valve 209 through the discharge port 219.
(8) At this time, as can be seen from FIG. 11, the 2-propanol rinse liquid 221 gathers in the upper portion of the inclined high-pressure vessel 203 and can be discharged from the valve 210 and the back pressure control valve 209, but the outer periphery of the substrate 201. In addition, it is difficult to efficiently separate the 2-propanol rinse liquid 202 remaining between the sample holder 204 and the substrate 201. In order to separate and separate the remaining 2-propanol rinse liquid 202 from between the substrate 201 and the sample holder 204, the high-pressure vessel 203 is kept in the inclined state 230 as shown in FIG. 2 to 3 times, the inclined groove 11 provided in the sample holder 204 can be separated more effectively. The separated 2-propanol of the rinsing liquid 202 is collected at the upper portion of the high-pressure vessel 203 and discharged as described above.
(9) The temperature controllers 206 installed at the upper and lower portions of the sample holder 204 are sequentially controlled in the range of 5 to 60 ° C., so that the rinsing liquids 202 and 221 remaining in the vicinity of the fine structure and the liquid carbon dioxide 222 It is possible to reduce the replacement time by controlling the temperature and generating a vortex or convection state change by changing the density of the rinsing liquids 202 and 221 and the liquid carbon dioxide 222 to promote the replacement of the liquid carbon dioxide 222 and the rinsing liquids 202 and 221. Useful.
(10) The pumping of the liquid carbon dioxide 216 by the pump 214 is stopped, and the temperature of the high-pressure vessel 203 is raised to 35 ° C. Although the pressure in the high-pressure vessel 203 is increased, when the set pressure (about 7.5 to 13 MPa) is exceeded, the pressure is discharged from the back pressure control valve 209 and the inside of the high-pressure vessel 203 is maintained at the set pressure (about 7.5 to 13 MPa). Be drunk. With this temperature change, the state of the liquid carbon dioxide in the high-pressure vessel 203 changes to a supercritical state. This change in state does not cause the surface tension of liquid carbon dioxide to act on the microstructure.
(11) The valve 213210 is closed, the valve 217 is opened, and supercritical carbon dioxide is discharged from the pressure control valve 218 while maintaining the temperature at 35 ° C. When the pressure in the high-pressure vessel 203 becomes 7.38 MPa or less, the state of carbon oxide changes to a gas supercritically filling the high-pressure vessel 203. Further, the discharge is continued by the pressure control valve 218, and the drying is finished when the pressure in the high-pressure vessel 203 becomes the atmospheric pressure.

本実施例は、微細構造乾燥のために利用する流体として比較的低い温度、低い圧力で超臨界状態となる二酸化炭素を用いた場合を例として示したが、二酸化炭素の臨界圧力は7.38MPa、臨界温度は31℃である。そして、温度を5℃から60℃、圧力を3MPaから10MPaに可変させることで液体二酸化炭素の密度を0.65から0.95g/mlに変化させることができ、本実施例に示す2−プロパノールをリンス液として用いた場合、短時間かつ均一な乾燥結果を得ることができる乾燥プロセスを達成できるものである。   In this example, carbon dioxide that is in a supercritical state at a relatively low temperature and low pressure is used as an example of the fluid used for drying the microstructure, but the critical pressure of carbon dioxide is 7.38 MPa. The critical temperature is 31 ° C. The density of liquid carbon dioxide can be changed from 0.65 to 0.95 g / ml by changing the temperature from 5 ° C. to 60 ° C. and the pressure from 3 MPa to 10 MPa. Is used as a rinsing liquid, a drying process capable of obtaining a uniform drying result in a short time can be achieved.

本実施例の乾燥処理によれば、表面に微細な構造を形成した大口径基板に対してパターン倒れや張り付きがなく、短時間で均一に行うことができる。更に本実施例においては、従来の臨界点乾燥法が乾燥処理時間が長いこと、又、大口径基板に対しては均一な乾燥結果を得ることができないという欠点を解決できるものである。又、LSI等を大規模に製作するための露光、現像、リンス後のレジスト等のパターン幅が100nm以下、更にパターン幅70nm以下、特にパターン幅(スペース幅)30nm以下の表面微細構造を持ち、直径100mm以上の大口径基板の乾燥処理をパターン倒れ無く、更に短時間で均一に乾燥できるため、デバイス製造ラインへの適用が可能な処理速度を有するものである。   According to the drying treatment of this embodiment, there is no pattern collapse or sticking to a large-diameter substrate having a fine structure formed on the surface, and it can be performed uniformly in a short time. Further, in this embodiment, the conventional critical point drying method can solve the disadvantage that the drying processing time is long and that a uniform drying result cannot be obtained for a large-diameter substrate. In addition, the resist pattern after exposure, development, rinsing, etc. for manufacturing LSI etc. on a large scale has a surface fine structure with a pattern width of 100 nm or less, a pattern width of 70 nm or less, particularly a pattern width (space width) of 30 nm or less, Since the drying process of a large-diameter substrate having a diameter of 100 mm or more can be uniformly dried in a short time without pattern collapse, it has a processing speed that can be applied to a device manufacturing line.

図12はエッチング処理、純水置換処理及び純水リンス処理、有機溶剤置換処理及び乾燥処理の全工程を示すフロー図である。図12に示すように、本実施例においては、被処理物としてのサンプルは前述のエッチング処理、純水置換処理及び純水リンス処理、有機溶剤置換処理及び液体二酸化炭素による乾燥処理までの全工程を同一のサンプルホルダを用いて行われるものである。   FIG. 12 is a flowchart showing all steps of the etching process, the pure water replacement process, the pure water rinse process, the organic solvent replacement process, and the drying process. As shown in FIG. 12, in this example, the sample as the object to be processed is the entire process from the above-described etching process, pure water replacement process and pure water rinse process, organic solvent replacement process, and drying process with liquid carbon dioxide. Is performed using the same sample holder.

以上の本実施例によれば、同一のサンプルホルダ及び液体処理容器内でエッチング処理、純水置換処理及び純水リンス処理、有機溶剤置換処理が可能となり、サンプルを大気中へ取り出し各工程へ移設していた際と比べ、サンプル表面が大気へ接触することが無くなり、後述する二酸化炭素等の超臨界流体を用いた乾燥工程において再現性良く微細な構造も均一にパターン倒れや張り付きが無く短時間で乾燥できる。   According to the present embodiment, etching, pure water replacement and pure water rinsing, and organic solvent replacement can be performed in the same sample holder and liquid processing container, and the sample is taken out into the atmosphere and transferred to each step. Compared to the case where the sample surface is in contact with the atmosphere, the sample surface is no longer in contact with the atmosphere, and in the drying process using a supercritical fluid such as carbon dioxide, which will be described later, the fine structure is reproducibly uniform and there is no pattern collapse or sticking in a short time. Can be dried.

又、同一のサンプルホルダを使用することにより、被処理物は各々の工程で用いる液体に浸漬している状態で処理が出来るため、表面に微細な構造を形成した大口径基板などに対してパターン倒れや張り付きがなく、短時間で均一に再現性の良い乾燥をさせることができる。   In addition, by using the same sample holder, the object to be processed can be processed while immersed in the liquid used in each process, so the pattern can be applied to a large-diameter substrate with a fine structure formed on the surface. It can be dried with good reproducibility in a short time without falling over or sticking.

本発明に係る微細構造処理装置によるエッチング処理の状況を示す断面図である。It is sectional drawing which shows the condition of the etching process by the fine structure processing apparatus which concerns on this invention. 本発明に係る微細構造処理装置内よりエッチング液を排出した状況を示す断面図である。It is sectional drawing which shows the condition which discharged | emitted etching liquid from the inside of the fine structure processing apparatus which concerns on this invention. 本発明に係る微細構造処理装置内に純水を導入した状況を示す断面図である。It is sectional drawing which shows the condition which introduced the pure water in the fine structure processing apparatus which concerns on this invention. 本発明に係る微細構造処理装置を上部から見た状況を示す断面図である。It is sectional drawing which shows the condition which looked at the fine structure processing apparatus which concerns on this invention from the upper part. 本発明に係る微細構造処理装置内より純水を排出した状況を示す断面図である。It is sectional drawing which shows the condition which discharged | emitted the pure water from the inside of the fine structure processing apparatus which concerns on this invention. 本発明に係る微細構造処理装置内にIPAを導入した状況を示す断面図である。It is sectional drawing which shows the condition which introduced IPA in the fine structure processing apparatus which concerns on this invention. 本発明に係る微細構造処理装置によるIPA置換処理の状況を示す断面図である。It is sectional drawing which shows the condition of the IPA replacement process by the fine structure processing apparatus which concerns on this invention. 本発明に係る微細構造処理装置によるIPA置換処理を終了した状況を示す断面図である。It is sectional drawing which shows the condition which complete | finished the IPA replacement process by the fine structure processing apparatus which concerns on this invention. 本発明の一例を示す微細構造乾燥処理装置の断面図である。It is sectional drawing of the fine structure drying processing apparatus which shows an example of this invention. 本発明の微細構造乾燥処理装置用サンプルホルダの平面図とその断面図であるIt is the top view of the sample holder for the microstructure dry processing apparatus of this invention, and its sectional drawing. 本発明の高圧容器を傾斜させた後の微細構造乾燥処理装置の断面図である。It is sectional drawing of the fine structure drying processing apparatus after inclining the high-pressure container of this invention. 本発明に係る微細構造処理装置による処理工程を示すフロー図である。It is a flowchart which shows the process process by the fine structure processing apparatus which concerns on this invention. エッチング処理及びエッチング処理後の純水置換処理され純水リンスの施された被処理物をIPAリンス置換する状態を示す断面図である。It is sectional drawing which shows the state which carries out the IPA rinse substitution of the to-be-processed object which carried out the pure water substitution process and the pure water rinse after an etching process. 純水リンスの施された被処理物をIPAリンス置換する状態を示す断面図である。It is sectional drawing which shows the state which carries out IPA rinse substitution of the to-be-processed object to which the pure water rinse was given. 純水リンスの施された被処理物をIPAリンス置換する状態を示す断面図である。It is sectional drawing which shows the state which carries out IPA rinse substitution of the to-be-processed object to which the pure water rinse was given.

符号の説明Explanation of symbols

1…純水、2、102…被処理物、3…トレイ、4…IPA、5…純水高濃度液、6…純水中濃度液、7、103…サンプルホルダ、8、106…押さえ板、9、105…サンプル押さえ、10、107…押しバネ、11…傾斜溝、12…保持用ガイド穴、13…ヒータ逃げ溝、14…ガイドピン、15…コイルバネ、16…スライド用溝、17…押さえ保持具、19…平坦部、20…基板搭載部、21…基板押さえ、22、23…ボルト、101…内部容器、104…エッチング液、108…支柱、109…純水/IPA導入配管、110…純水導入弁、111…IPA導入弁、112…純水排出弁、113…IPA排出弁、114…純水排出配管、115…IPA排出配管、116…純水/IPA排出配管、117…IPA導入配管、118…純水導入配管、119…温度制御溶媒導入配管、120…温度制御溶媒供給配管、121…温度制御溶媒導入弁、122…温度制御溶媒排出配管、123…温度制御溶媒排出弁、124…温度制御溶媒戻り配管、125…純水排出弁2、126…純水排出配管2、127…IPA排出配管2、128…IPA排出弁2、129…エッチング液/純水/IPA排出配管、130…Z-Y-Z振動装置、131…上部遮蔽板、132…温度制御溶媒、133…エッチング液排出配管、134…エッチング液排出弁、135…純水、136…IPA、137…外部容器、138、139…矢印方向、201…基板、202、221300…リンス液、203…高圧容器、204…サンプルホルダ、205…蓋、206…ヒータ、207、210213217…バルブ、208、209…背圧制御バルブ、212…フィルタ、214…ポンプ、215…液体二酸化炭素容器、216、222…液体二酸化炭素、218…背圧制御バルブ、219、220…排出口、223…圧力制御装置、224…下部容器、225…傾斜回転方向、230…振動方向。
DESCRIPTION OF SYMBOLS 1 ... Pure water 2, 102 ... To-be-processed object, 3 ... Tray, 4 ... IPA, 5 ... Pure water high concentration liquid, 6 ... Pure water concentration liquid, 7, 103 ... Sample holder, 8, 106 ... Holding plate , 9, 105 ... Sample holder, 10, 107 ... Push spring, 11 ... Inclined groove, 12 ... Holding guide hole, 13 ... Heater escape groove, 14 ... Guide pin, 15 ... Coil spring, 16 ... Slide groove, 17 ... Press holder 19, flat part, 20, substrate mounting part, 21, substrate holder, 22, 23, bolt, 101, inner container, 104, etching solution, 108, column, 109, pure water / IPA introduction pipe, 110 ... Pure water introduction valve, 111 ... IPA introduction valve, 112 ... Pure water discharge valve, 113 ... IPA discharge valve, 114 ... Pure water discharge pipe, 115 ... IPA discharge pipe, 116 ... Pure water / IPA discharge pipe, 117 ... IPA Introductory piping, 1 DESCRIPTION OF SYMBOLS 8 ... Pure water introduction piping, 119 ... Temperature control solvent introduction piping, 120 ... Temperature control solvent supply piping, 121 ... Temperature control solvent introduction valve, 122 ... Temperature control solvent discharge piping, 123 ... Temperature control solvent discharge valve, 124 ... Temperature Control solvent return pipe, 125 ... pure water discharge valve 2, 126 ... pure water discharge pipe 2, 127 ... IPA discharge pipe 2, 128 ... IPA discharge valve 2, 129 ... etchant / pure water / IPA discharge pipe, 130 ... Z -YZ vibrator, 131 ... upper shielding plate, 132 ... temperature control solvent, 133 ... etchant discharge pipe, 134 ... etchant discharge valve, 135 ... pure water, 136 ... IPA, 137 ... external container, 138, 139 ... arrow direction, 201 ... substrate, 202, 221300 ... rinse solution, 203 ... high pressure vessel, 204 ... sample holder, 205 ... lid, 206 ... heater, 207, 2102 3217 ... Valve, 208, 209 ... Back pressure control valve, 212 ... Filter, 214 ... Pump, 215 ... Liquid carbon dioxide container, 216, 222 ... Liquid carbon dioxide, 218 ... Back pressure control valve, 219, 220 ... Discharge port, 223 ... Pressure control device, 224 ... Lower container, 225 ... Inclination rotation direction, 230 ... Vibration direction.

Claims (19)

サンプルホルダに載置された被処理物をエッチング液によるエッチング処理によって微細構造を形成するエッチング処理後、前記エッチング液を純水によって置換し、次いで前記純水を有機溶剤によって置換後、前記被処理物を前記置換処理部より取り出し超臨界流体によって前記有機溶剤を前記被処理物より除去する超臨界乾燥する微細構造処理方法において、前記エッチング処理から前記超臨界乾燥までの全処理に対して前記被処理物を前記サンプルホルダに載置して行うことを特徴とする微細構造処理方法。   After the etching process for forming the fine structure by the etching process using the etching liquid on the workpiece placed on the sample holder, the etching liquid is replaced with pure water, and then the pure water is replaced with an organic solvent, and then the processing target is processed. In a fine structure processing method for supercritical drying in which an object is taken out from the replacement processing section and the organic solvent is removed from the object to be processed by a supercritical fluid, the object to be processed is applied to all processes from the etching process to the supercritical drying. A fine structure processing method characterized in that a processing object is placed on the sample holder. 請求項1において、サンプルホルダに載置された被処理物を液体処理容器内に導入し、該液体処理容器内にエッチング液を導入し前記被処理物の表面をエッチング処理によって微細構造を形成するエッチング処理工程と、該エッチング処理後前記液体処理容器内より前記エッチング液を排出するエッチング液排出工程と、該エッチング液排出後前記液体処理容器内に純水を導入し該純水によって前記エッチング液を置換する純水置換工程と、該純水による置換後前記液体処理容器内に有機溶剤を導入し前記純水を前記有機溶剤によって置換する有機溶剤置換工程と、該有機溶剤による置換後前記液体処理容器内の前記有機溶剤を排出する有機溶剤排出工程と、該有機溶剤排出後前記有機溶剤が浸漬又は濡れた状態の前記被処理物を前記置換処理部より取り出し超臨界流体によって前記有機溶剤を前記被処理物より除去する超臨界乾燥工程とを有することを特徴とする微細構造処理方法。   2. The processing object placed on the sample holder is introduced into a liquid processing container, an etching solution is introduced into the liquid processing container, and a microstructure is formed on the surface of the processing object by etching. An etching process, an etching liquid discharging process for discharging the etching liquid from the liquid processing container after the etching process, and pure water is introduced into the liquid processing container after the etching liquid is discharged, and the etching liquid is used by the pure water. A pure water replacement step of replacing the pure water, an organic solvent replacement step of introducing an organic solvent into the liquid treatment container after replacement with the pure water and replacing the pure water with the organic solvent, and the liquid after replacement with the organic solvent An organic solvent discharging step of discharging the organic solvent in a processing container, and the replacement treatment of the object to be processed in which the organic solvent is immersed or wet after the organic solvent is discharged. Microstructure processing method characterized in that it comprises a supercritical drying step of removing from the object to be treated with the organic solvent by from extraction supercritical fluid section. 請求項1において、前記純水及び有機溶剤を前記サンプルホルダの設置位置より低い位置より供給し、前記サンプルホルダの設置位置より低い位置と高い位置とから排出することを特徴とする微細構造処理方法。   2. The fine structure processing method according to claim 1, wherein the pure water and the organic solvent are supplied from a position lower than an installation position of the sample holder and discharged from a position lower and a position higher than the installation position of the sample holder. . 請求項2において、前記純水及び有機溶剤を複数の供給口から供給し、前記液体処理容器の水平方向に対する回転流と垂直方向に対する回転流とを発生させることを特徴とする微細構造処理方法。   3. The microstructure processing method according to claim 2, wherein the pure water and the organic solvent are supplied from a plurality of supply ports to generate a rotating flow in the horizontal direction and a rotating flow in the vertical direction of the liquid processing container. 請求項4において、前記純水及び有機溶剤の供給圧力及び流量を変えることにより前記回転流の速さ及び大きさを制御することを特徴とする微細構造処理方法。   5. The microstructure processing method according to claim 4, wherein the speed and size of the rotating flow are controlled by changing supply pressure and flow rate of the pure water and the organic solvent. 請求項1において、前記純水による置換及び有機溶剤による置換に際して前記純水及び有機溶剤に振動を与えることを特徴とする微細構造処理方法。   2. The microstructure processing method according to claim 1, wherein vibration is applied to the pure water and the organic solvent when the pure water and the organic solvent are replaced. 請求項1において、前記有機溶剤による置換とその排出とを複数回繰り返し行うことを特徴とする微細構造処理方法。   2. The microstructure processing method according to claim 1, wherein the replacement with the organic solvent and the discharge thereof are repeated a plurality of times. サンプルホルダに載置された被処理物をエッチング液によるエッチング処理によって微細構造を形成するエッチング処理後、前記エッチング液を純水によって置換し、次いで前記純水を有機溶剤によって置換する液体処理容器を備えた微細構造処理装置において、前記液体処理容器は前記サンプルホルダの設置が可能な構造を有する内部処理容器と、その外側を保持する外部容器と、前記内部処理容器と外部容器の間には温度制御が可能な溶媒を循環させる溶媒循環装置とを有することを特徴とする微細構造処理装置。   A liquid processing container that replaces the etching solution with pure water and then replaces the pure water with an organic solvent after the etching processing for forming the fine structure by the etching processing with the etching solution on the workpiece placed on the sample holder. In the fine structure processing apparatus provided, the liquid processing container includes an internal processing container having a structure in which the sample holder can be installed, an external container holding the outside thereof, and a temperature between the internal processing container and the external container. A fine structure processing apparatus comprising a solvent circulation device for circulating a controllable solvent. 請求項8において、前記内部処理容器は、前記エッチング液及び有機溶媒に対して耐性を持つ樹脂製であると共に、前記サンプルホルダの設置が可能な構造を有することを特徴とする微細構造処理装置。   9. The microstructure processing apparatus according to claim 8, wherein the internal processing container is made of a resin resistant to the etching solution and the organic solvent, and has a structure in which the sample holder can be installed. 請求項8において、前記内部処理容器への前記純水及び有機溶剤を供給する供給口が前記サンプルホルダの設置位置より低い位置であり、前記純水及び有機溶剤を排出する排出口は前記サンプルホルダの設置位置より低い位置と高い位置とに配置していることを特徴とする微細構造処理装置。   The supply port for supplying the pure water and the organic solvent to the internal processing container is a position lower than the installation position of the sample holder, and the discharge port for discharging the pure water and the organic solvent is the sample holder. A fine structure processing apparatus, wherein the fine structure processing apparatus is arranged at a position lower and a position higher than the installation position. 請求項10において、前記供給口は、複数個所に設けられ、前記純水及び有機溶剤に水平方向への回転流と、垂直方向に対し上方斜め方向への流れが生じるように設置されていることを特徴とする微細構造処理装置。   11. The supply port according to claim 10, wherein the supply port is provided at a plurality of locations so that a rotational flow in a horizontal direction and a flow in an upward oblique direction with respect to the vertical direction are generated in the pure water and the organic solvent. A fine structure processing apparatus. 請求項10において、前記サンプルホルダの設置位置と前記排出口との間に前記純水及び有機溶剤の流れを垂直方向に対して回転流を発生させるように上部遮蔽板を前記内部処理容器の内周部に設けたことを特徴とする微細構造処理装置。   The upper shielding plate according to claim 10, wherein an upper shielding plate is disposed in the inner processing container so as to generate a rotational flow of the pure water and the organic solvent between the installation position of the sample holder and the discharge port in a vertical direction. A fine structure processing apparatus provided on a peripheral portion. 請求項11において、前記回転流の速さ及びその大きさを制御する前記純水及び有機溶剤の供給圧力及び流量を変える回転流制御手段を有することを特徴とする微細構造処理装置。   12. The microstructure processing apparatus according to claim 11, further comprising a rotary flow control means for changing a supply pressure and a flow rate of the pure water and the organic solvent for controlling a speed and a size of the rotary flow. 請求項8において、前記外部容器の下部にX方向、Y方向及びZ方向への振動が可能な振動装置を備え、前記純水及び有機溶剤に振動を与えることを特徴とする微細構造処理装置。   9. The microstructure processing apparatus according to claim 8, wherein a vibration device capable of vibration in the X direction, the Y direction, and the Z direction is provided at a lower portion of the outer container, and the pure water and the organic solvent are vibrated. サンプルホルダに載置された被処理物をエッチング液によるエッチング処理によって微細構造を形成するエッチング処理後、前記エッチング液を純水によって置換し、次いで前記純水を有機溶剤によって置換する液体処理容器を備えた微細構造処理装置において、前記サンプルホルダは、前記エッチング液、純水及び有機溶剤を保持できるカップ状に形成されていることを特徴とする微細構造処理装置。   A liquid processing container that replaces the etching solution with pure water and then replaces the pure water with an organic solvent after the etching processing for forming the fine structure by the etching processing with the etching solution on the workpiece placed on the sample holder. In the microstructure processing apparatus provided, the sample holder is formed in a cup shape capable of holding the etching solution, pure water, and an organic solvent. 請求項15において、前記液体処理容器は前記サンプルホルダの設置が可能な構造を有する内部処理容器と、その外側を保持する外部容器と、前記内部処理容器と外部容器の間には温度制御が可能な溶媒を循環させる溶媒循環手段とを有することを特徴とする微細構造処理装置。   16. The liquid processing container according to claim 15, wherein the liquid processing container can be controlled in temperature between an internal processing container having a structure capable of installing the sample holder, an external container holding the outside thereof, and the internal processing container and the external container. And a solvent circulating means for circulating a suitable solvent. 請求項15において、前記サンプルホルダは、前記被処理物の搭載面から前記カップ状の筒部を貫通する所定幅の傾斜溝が形成されていることを特徴とする微細構造処理装置。   16. The microstructure processing apparatus according to claim 15, wherein the sample holder is formed with an inclined groove having a predetermined width that penetrates the cup-shaped cylindrical portion from the mounting surface of the workpiece. 請求項15において、前記サンプルホルダは、前記液体処理容器に対する設定位置が常に一定の向きに設定されるように所定の形状を有することを特徴とする微細構造処理装置。   16. The microstructure processing apparatus according to claim 15, wherein the sample holder has a predetermined shape so that a set position with respect to the liquid processing container is always set in a fixed direction. 請求項15において、前記サンプルホルダは、前記エッチング液及び有機溶媒に対して耐性を持つ樹脂製であることを特徴とする微細構造処理装置。
16. The microstructure processing apparatus according to claim 15, wherein the sample holder is made of a resin that is resistant to the etching solution and the organic solvent.
JP2005151740A 2005-05-25 2005-05-25 Method of processing microstructure and apparatus thereof Pending JP2006332215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005151740A JP2006332215A (en) 2005-05-25 2005-05-25 Method of processing microstructure and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005151740A JP2006332215A (en) 2005-05-25 2005-05-25 Method of processing microstructure and apparatus thereof

Publications (1)

Publication Number Publication Date
JP2006332215A true JP2006332215A (en) 2006-12-07

Family

ID=37553612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005151740A Pending JP2006332215A (en) 2005-05-25 2005-05-25 Method of processing microstructure and apparatus thereof

Country Status (1)

Country Link
JP (1) JP2006332215A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4870837B2 (en) * 2007-05-23 2012-02-08 セメス カンパニー リミテッド Substrate drying apparatus and method
US8372212B2 (en) 2011-04-04 2013-02-12 Kabushiki Kaisha Toshiba Supercritical drying method and apparatus for semiconductor substrates
US8608864B2 (en) 2007-03-27 2013-12-17 Dainippon Screen Mfg. Co., Ltd. Substrate treating method
KR101800763B1 (en) 2016-07-12 2017-11-24 한국광기술원 method of separarting substrate from 3D printing mold by deposition process and etching equipment applying thereof
KR101802446B1 (en) 2017-09-12 2017-11-28 한국광기술원 method of separarting substrate from 3D printing mold by deposition process and etching equipment applying thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304636A (en) * 1991-04-01 1992-10-28 Hitachi Ltd Plate-like body processing apparatus
JPH0521583A (en) * 1991-07-16 1993-01-29 Canon Inc Method and jig for cleaning
JPH08213354A (en) * 1995-02-06 1996-08-20 Tadahiro Omi Cleaning method and cleaning equipment of silicon single crystal wafer
JPH08250464A (en) * 1995-02-23 1996-09-27 Siemens Ag Micromechanism constituent part drying method
JPH0969510A (en) * 1995-08-30 1997-03-11 Shin Etsu Handotai Co Ltd Etching system
JP2000308859A (en) * 1999-04-27 2000-11-07 Tokyo Electron Ltd Treating device and treating method
JP2002222794A (en) * 2001-01-26 2002-08-09 Shimada Phys & Chem Ind Co Ltd Etching/cleaning treatment method and device thereof
JP2003051475A (en) * 2001-08-07 2003-02-21 Kobe Steel Ltd Processing method and processing facilities for wafer or the like
JP2003109933A (en) * 2001-10-01 2003-04-11 Hitachi Koki Co Ltd Supercritical drying device
JP2003151896A (en) * 2001-07-25 2003-05-23 Dainippon Screen Mfg Co Ltd High pressure treatment apparatus and high pressure treatment method
JP2005116758A (en) * 2003-10-07 2005-04-28 Hitachi Sci Syst Ltd Method and device for dry processing fine structure

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04304636A (en) * 1991-04-01 1992-10-28 Hitachi Ltd Plate-like body processing apparatus
JPH0521583A (en) * 1991-07-16 1993-01-29 Canon Inc Method and jig for cleaning
JPH08213354A (en) * 1995-02-06 1996-08-20 Tadahiro Omi Cleaning method and cleaning equipment of silicon single crystal wafer
JPH08250464A (en) * 1995-02-23 1996-09-27 Siemens Ag Micromechanism constituent part drying method
JPH0969510A (en) * 1995-08-30 1997-03-11 Shin Etsu Handotai Co Ltd Etching system
JP2000308859A (en) * 1999-04-27 2000-11-07 Tokyo Electron Ltd Treating device and treating method
JP2002222794A (en) * 2001-01-26 2002-08-09 Shimada Phys & Chem Ind Co Ltd Etching/cleaning treatment method and device thereof
JP2003151896A (en) * 2001-07-25 2003-05-23 Dainippon Screen Mfg Co Ltd High pressure treatment apparatus and high pressure treatment method
JP2003051475A (en) * 2001-08-07 2003-02-21 Kobe Steel Ltd Processing method and processing facilities for wafer or the like
JP2003109933A (en) * 2001-10-01 2003-04-11 Hitachi Koki Co Ltd Supercritical drying device
JP2005116758A (en) * 2003-10-07 2005-04-28 Hitachi Sci Syst Ltd Method and device for dry processing fine structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8608864B2 (en) 2007-03-27 2013-12-17 Dainippon Screen Mfg. Co., Ltd. Substrate treating method
JP4870837B2 (en) * 2007-05-23 2012-02-08 セメス カンパニー リミテッド Substrate drying apparatus and method
US8793898B2 (en) 2007-05-23 2014-08-05 Semes Co., Ltd. Apparatus and method for drying substrates
US8372212B2 (en) 2011-04-04 2013-02-12 Kabushiki Kaisha Toshiba Supercritical drying method and apparatus for semiconductor substrates
KR101800763B1 (en) 2016-07-12 2017-11-24 한국광기술원 method of separarting substrate from 3D printing mold by deposition process and etching equipment applying thereof
KR101802446B1 (en) 2017-09-12 2017-11-28 한국광기술원 method of separarting substrate from 3D printing mold by deposition process and etching equipment applying thereof

Similar Documents

Publication Publication Date Title
JP4546314B2 (en) Fine structure drying method and apparatus
TWI408737B (en) A substrate processing method, a substrate processing apparatus, a program, a recording medium, and a displacer
KR101546631B1 (en) Substrate processing apparatus and substrate processing method
JP3965693B2 (en) Fine structure drying method and apparatus and high-pressure vessel thereof
CN110299283B (en) Substrate processing method and substrate processing apparatus
JP2006332215A (en) Method of processing microstructure and apparatus thereof
JP2018107426A (en) Substrate processing device and substrate processing method
JP3782366B2 (en) Supercritical processing method and supercritical processing apparatus
JP4372590B2 (en) Fine structure drying method and apparatus
JP4247087B2 (en) Fine structure drying method and apparatus
JP2004311507A (en) Method, device, and system for drying microstructure
JP3861798B2 (en) Resist development processing apparatus and method
JP4409399B2 (en) Fine structure drying method and apparatus and sample holder
JP2010530130A (en) How to prevent premature drying
JP4342896B2 (en) Fine structure drying method and apparatus
JP4008900B2 (en) Supercritical processing method
JP2004327894A (en) Supercritical drying method and supercritical dryer
JP3553904B2 (en) Supercritical drying method
JP2005286105A (en) Fine structure drying method and apparatus thereof
JP4307973B2 (en) Supercritical fluid processing apparatus and method
JP4230830B2 (en) Supercritical processing equipment
JPS6310528A (en) Drying method
JP2007067072A (en) Processing device and processing method of substrate
JPH02177327A (en) Cleaning of semiconductor wafer, etching thereof and semiconductor wafer treatment device
JPH07193037A (en) Method and apparatus for vacuum drying

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110