JP2005286105A - Fine structure drying method and apparatus thereof - Google Patents

Fine structure drying method and apparatus thereof Download PDF

Info

Publication number
JP2005286105A
JP2005286105A JP2004097834A JP2004097834A JP2005286105A JP 2005286105 A JP2005286105 A JP 2005286105A JP 2004097834 A JP2004097834 A JP 2004097834A JP 2004097834 A JP2004097834 A JP 2004097834A JP 2005286105 A JP2005286105 A JP 2005286105A
Authority
JP
Japan
Prior art keywords
pressure
fluid
liquid
temperature
fine structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004097834A
Other languages
Japanese (ja)
Inventor
Toru Iwatani
徹 岩谷
Hisayuki Takasu
久幸 高須
Sakae Takabori
栄 高堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Science Systems Ltd
Original Assignee
Hitachi Science Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Science Systems Ltd filed Critical Hitachi Science Systems Ltd
Priority to JP2004097834A priority Critical patent/JP2005286105A/en
Publication of JP2005286105A publication Critical patent/JP2005286105A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine structure drying method for protecting drying during transportation, preventing pattern errors on a large substrate with fine patterns formed on the surface, and drying the substrate at short time; and to provide an apparatus for implementing the method. <P>SOLUTION: An object having a fine structure soaked in or damped with rinsing liquid is placed in a high-pressure treatment vessel, and the above rinsing liquid on the above dried object is exhausted from the above high-pressure treatment vessel through the use of liquid that turns gas under normal temperature and normal pressure and turns liquid under high pressure. The drying method has a process for introducing the above liquid to the above high-pressure treatment vessel, a process for exhausting the above introduced liquid from the above high-pressure treatment vessel, and a process for repeating the above two processes. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体集積回路(LSI)のレジストパターンやMEMS(Micro Electromechanical System)素子等の微細構造物を液化ガスによって乾燥する新規な微細構造物乾燥処理方法及びその装置に関する。   The present invention relates to a novel fine structure drying method and apparatus for drying fine structures such as semiconductor integrated circuit (LSI) resist patterns and MEMS (Micro Electromechanical System) elements with a liquefied gas.

従来、大規模で高密度、高性能デバイスを製造するには、シリコンウェハ上に成膜したレジストに対して露光、現像、リンス洗浄及び乾燥を経てパターンを形成した後、コーティング、エッチング、リンス洗浄、乾燥等のプロセスを経て製造される。特に、レジストは、光、X線、電子線などに感光する高分子材料であり、各工程において、現像、リンス洗浄工程では現像液、リンス液等の薬液を使用しているため、リンス洗浄工程後はリンス液の乾燥工程が必須である。   Conventionally, in order to manufacture a large-scale, high-density, high-performance device, a resist formed on a silicon wafer is exposed, developed, rinsed and dried to form a pattern, and then coated, etched, and rinsed. It is manufactured through a process such as drying. In particular, the resist is a polymer material that is sensitive to light, X-rays, electron beams, etc., and in each process, a chemical solution such as a developer or a rinse solution is used in the development and rinse cleaning process, so the rinse cleaning process After that, a rinsing liquid drying step is essential.

この乾燥工程において、基板上に形成したレジストパターン間のスペース幅が100nm程度以下になるとパターン間に残存する薬液の表面張力の作用により、パターン間にラプラス力(毛細管力)が作用してパターン倒れが発生する問題が生ずる。一方では、例えば加速センサーやアクチュエータ等の可動部を持つ三次元微細構造部品のMEMS部品の製造は、フッ酸等のエッチング液で可動部位を含む微細構造を形成する工程と、純水リンスによるエッチング液の洗浄除去工程と、その後の乾燥工程とを含んでいる。この乾燥工程においてもレジストパターンと同様に微細構造間に残る薬液による表面張力が作用して、
可動部が基板に張り付く現象が発生している。この微細構造間に残存する薬液の表面張力の作用によるパターン倒れや張付きを防止するために、微細構造物間に作用する表面張力を軽減する乾燥プロセスとして、特許文献1ないし3に示す所定の圧力容器を用い、二酸化炭素等の超臨界流体を用いた方法がある。
In this drying process, when the space width between the resist patterns formed on the substrate is about 100 nm or less, the surface tension of the chemical solution remaining between the patterns causes Laplace force (capillary force) to act between the patterns, resulting in pattern collapse. The problem that occurs occurs. On the other hand, for example, the manufacture of a MEMS part of a three-dimensional microstructure part having a movable part such as an acceleration sensor or an actuator includes a process of forming a microstructure including a movable part with an etchant such as hydrofluoric acid, and etching by pure water rinsing. It includes a liquid washing and removing step and a subsequent drying step. In this drying process as well as the resist pattern, the surface tension due to the chemical remaining between the microstructures acts,
There is a phenomenon in which the movable part sticks to the substrate. In order to prevent pattern collapse and sticking due to the action of the surface tension of the chemical solution remaining between the fine structures, a drying process for reducing the surface tension acting between the fine structures is performed according to a predetermined process shown in Patent Documents 1 to 3. There is a method using a supercritical fluid such as carbon dioxide using a pressure vessel.

従来の二酸化炭素等の超臨界流体を用いた乾燥法は、以下の基本工程を有する。
(1)液体又は超臨界状態の流体に可溶でない試料中の例えば水等の残存液体は、予め流体に可溶なエタノールや2−プロパノール等の有機溶剤やその混合液等のリンス液と置換しておく工程。
(2)リンス液に浸漬、又は濡れた状態、具体的には基板上にリンス液が載った状態で乾燥室となる高圧容器に水平に搬送して設置する工程。
(3)高圧容器を密閉する工程。
(4)液体状態又は超臨界状態の流体を高圧容器に導入し、所定の圧力まで昇圧する工程。
(5)高圧容器内に導入した液体又は超臨界状態の流体とリンス液を置換させる工程。
(6)高圧容器に液体の流体を導入した場合は、液体の流体とリンス液の置換後に高圧容器を臨界点以上に昇圧及び昇温させる工程。
(7)高圧容器から超臨界状態の流体を徐々に排出させる工程。
(8)高圧容器から基板を取り出す工程。
A conventional drying method using a supercritical fluid such as carbon dioxide has the following basic steps.
(1) Residual liquid such as water in a sample that is not soluble in a liquid or a fluid in a supercritical state is replaced with a rinsing liquid such as an organic solvent or a mixed liquid thereof such as ethanol or 2-propanol that is soluble in a fluid in advance. The process to keep.
(2) A step of horizontally transporting and setting in a high-pressure container serving as a drying chamber in a state dipped or wetted in the rinse liquid, specifically, a condition in which the rinse liquid is placed on the substrate.
(3) A step of sealing the high-pressure vessel.
(4) A step of introducing a fluid in a liquid state or a supercritical state into a high-pressure vessel and increasing the pressure to a predetermined pressure.
(5) A step of replacing the liquid or supercritical fluid introduced into the high-pressure vessel with the rinse liquid.
(6) A step of increasing the pressure and raising the temperature of the high-pressure vessel to a critical point or more after replacing the liquid fluid and the rinsing liquid when a liquid fluid is introduced into the high-pressure vessel.
(7) A step of gradually discharging the supercritical fluid from the high-pressure vessel.
(8) A step of taking out the substrate from the high-pressure vessel.

特開2003−109933号公報JP 2003-109933 A 特開平9−139374号公報JP-A-9-139374 特開平5−315241号公報JP-A-5-315241

前述のように、レジストのパターン形成は、露光、現像、リンス及び乾燥の工程を経る。高アスペクト比を有する微細構造物のパターン乾燥では、リンス液の表面張力によりパターン倒れが生じる。これを改善する超臨界乾燥法は、液化ガスを超臨界状態にして表面張力をゼロにすることにより、微細構造物の倒壊を防ぐことができる。しかし、リンス処理後、圧力容器への搬送は大気中を通るため、その表面の乾燥によってパターンの倒壊が発生する。しかも、従来の超臨界流体を用いた乾燥法は、数十分程度から1時間以上の乾燥時間を要し、特に、直径100mm以上の大口径基板上に一様に形成した微細構造に対してパターン倒れが無く、均一に乾燥することができなかった。そこで、搬送中の乾燥を改善する方法として、微細構造物をリンス液に浸した状態で搬送する方法があるが、リンス液と液化ガスの置換時間が長くなってしまう。また超臨界乾燥処理装置は、高圧である超臨界二酸化炭素を用いるため、排出に時間を要し、スループットが問題となっている。   As described above, the resist pattern formation is performed through the steps of exposure, development, rinsing and drying. In pattern drying of a fine structure having a high aspect ratio, pattern collapse occurs due to the surface tension of the rinsing liquid. The supercritical drying method for improving this can prevent collapse of the fine structure by bringing the liquefied gas into a supercritical state and reducing the surface tension to zero. However, since the conveyance to the pressure vessel passes through the atmosphere after the rinsing process, the pattern collapses due to the drying of the surface. Moreover, the conventional drying method using a supercritical fluid requires a drying time of about several tens of minutes to 1 hour or more, especially for a fine structure uniformly formed on a large-diameter substrate having a diameter of 100 mm or more. There was no pattern collapse and uniform drying was not possible. Thus, as a method for improving the drying during the conveyance, there is a method of conveying the fine structure in a state of being immersed in the rinsing liquid, but the replacement time of the rinsing liquid and the liquefied gas becomes long. In addition, since the supercritical drying treatment apparatus uses supercritical carbon dioxide at a high pressure, it takes time to discharge, and throughput is a problem.

本発明の目的は、十分なリンス液によって覆うことにより搬送中の乾燥を防止し、更に、表面に微細なパターンを形成した大口径基板に対してパターン倒れがなく、短時間で均一に乾燥させることができる微細構造乾燥処理方法及びその装置を提供することにある。   The object of the present invention is to prevent drying during transportation by covering with a sufficient rinsing liquid, and to dry uniformly in a short time without pattern collapse on a large-diameter substrate having a fine pattern formed on the surface. It is an object of the present invention to provide a fine structure drying method and an apparatus thereof.

本発明は、リンス処理後、高圧容器に搬送するとき、搬送時から微細構造物である被乾燥物の微細構造表面を必要最小限のリンス液によって覆い、更に、リンス液と液化炭酸ガスの置換時に高圧容器前後の開閉バルブを利用して振動を発生させ、効率の良い置換を行い、次いで臨界温度状態で微細構造物を乾燥することを特徴とする。   The present invention covers the fine structure surface of the material to be dried, which is a fine structure, from the time of conveyance with the minimum required rinse liquid when transported to a high-pressure container after the rinse treatment, and further replaces the rinse liquid with liquefied carbon dioxide gas. Occasionally, vibration is generated using open / close valves before and after the high-pressure vessel to perform efficient replacement, and then the microstructure is dried at a critical temperature state.

即ち、本発明は、微細構造表面がリンス液によって覆われた被乾燥物を高圧容器内に搬送する搬送工程と、前記高圧容器内に常温及び常圧では気体で高圧下では液体となる流体を液体又は超臨界状態で設定圧力まで導入する工程と、前記流体の設定圧力を保ったまま前記流体の温度を臨界温度以上に昇温させる工程と、前記臨界温度状態を保ったまま前記流体を排出する工程とを順次有し、前記高圧容器内に前記流体の導入及び排出を繰り返し行うことにより前記流体に振動を加えることを特徴とする微細構造乾燥処理方法にある。   That is, the present invention includes a transporting process for transporting an object to be dried, the surface of which is covered with a rinsing liquid, into a high-pressure container, and a fluid that is a gas at normal temperature and normal pressure and a liquid that is liquid at high pressure in the high-pressure container. A step of introducing a liquid or a supercritical state up to a set pressure; a step of raising the temperature of the fluid above a critical temperature while maintaining the set pressure of the fluid; and a discharge of the fluid while maintaining the critical temperature state And a step of sequentially performing introduction and discharge of the fluid into the high-pressure vessel, and applying vibration to the fluid.

本発明は、必要最小限のリンス液によって覆われリング状の設置台に設置された前記被乾燥物を圧力容器内に搬送する前記搬送工程を有することにより搬送中の被乾燥物の乾燥を防止することができる。   The present invention prevents the to-be-dried material from being dried during transportation by having the above-mentioned transporting step for transporting the to-be-dried material, which is covered with the minimum required rinse liquid and installed on the ring-shaped installation table, into the pressure vessel. can do.

前記高圧容器内に前記設置台が設置された後、液体状態の前記流体を導入し、前記リンス液を置換する。ここで、微細構造間に残存するリンス液を効率良く置換するために、まず前記流体の圧力と温度を調整し、更に前記流体の液面高さを試料ホルダに設置された前記被乾燥物より若干高くする。前記状態から、前記高圧容器内の前後に配置しているバルブを利用し、導入及び排出を繰り返すことにより、前記高圧容器内の流体を振動させる。この振動により、前記微細構造間に残存するリンス液を効率良く置換することが出来る。   After the installation base is installed in the high-pressure vessel, the fluid in a liquid state is introduced to replace the rinse liquid. Here, in order to efficiently replace the rinsing liquid remaining between the fine structures, first, the pressure and temperature of the fluid are adjusted, and the liquid level of the fluid is further set to be higher than that of the object to be dried installed in the sample holder. Slightly increase. From the above state, the fluid in the high-pressure vessel is vibrated by repeatedly introducing and discharging using the valves arranged before and after in the high-pressure vessel. By this vibration, the rinse liquid remaining between the fine structures can be efficiently replaced.

リンス液の置換後、前記温度調整器により、液体状態の前記流体の温度を上昇させ、超臨界状態とする。前記超臨界流体にした後、前記超臨界流体を臨界温度以上に保ちながら大気圧になるまで排出する。その後、前記高圧容器内の温度を室温にし乾燥終了となる。   After the rinsing liquid is replaced, the temperature controller raises the temperature of the fluid in the liquid state to make it a supercritical state. After making the supercritical fluid, the supercritical fluid is discharged to atmospheric pressure while maintaining the temperature above the critical temperature. Thereafter, the temperature in the high-pressure vessel is set to room temperature and drying is completed.

又、本発明は、リンス液に浸漬又は濡れた状態の微細構造を有する被乾燥物を高圧処理容器内の設置台に設置して前記被乾燥物上の前記リンス液を常温及び常圧では気体で高圧下では液体となる流体を用いて前記高圧処理容器内より排出する微細構造乾燥処理装置において、前記設置台は前記被乾燥物上に前記リンス液が保持される構造を有し、前記液体の流体の供給口と排出口の底部高さが前記設置台の高さと同等の位置を有することを特徴とする微細構造乾燥処理装置にある。   In addition, the present invention provides an object to be dried having a fine structure immersed or wet in a rinsing liquid on an installation table in a high-pressure processing container, and the rinsing liquid on the object to be dried is a gas at normal temperature and normal pressure. In the fine structure drying apparatus for discharging from the high-pressure processing container using a fluid that becomes liquid under high pressure, the installation table has a structure in which the rinse liquid is held on the object to be dried, and the liquid The bottom of the fluid supply port and the discharge port has a position equivalent to the height of the installation table.

本発明によれば、十分なリンス液によって覆うことにより搬送中の乾燥を防止し、更に、表面に微細なパターンを形成した大口径基板に対してパターン倒れがなく、短時間で均一に乾燥させることができる微細構造乾燥処理方法及びその装置を提供することができる。   According to the present invention, it is possible to prevent drying during conveyance by covering with a sufficient rinsing liquid, and to dry uniformly in a short time without pattern collapse on a large-diameter substrate having a fine pattern formed on the surface. It is possible to provide a fine structure drying method and apparatus capable of performing the same.

図1は本発明の微細構造乾燥処理装置の一例を示す断面図である。乾燥処理室である高圧容器4は上部の蓋12及び下部容器6から構成され、蓋12を開放して被乾燥物であるウェハ9を設置台であるウェハホルダ5に設置する。ウェハ9は露光後の現像及びリンスの工程を経て表面に微細構造が形成されており、その表面にはリンス液8が載った状態であり、円筒の底部に形成されたリング状の平板を有するウェハホルダ5に設置される。ウェハ9を搭載したウェハホルダ5は高圧容器4内に搬送される。   FIG. 1 is a cross-sectional view showing an example of the fine structure drying apparatus of the present invention. The high-pressure vessel 4 that is a drying processing chamber is composed of an upper lid 12 and a lower vessel 6, and the lid 12 is opened to place a wafer 9 that is an object to be dried on a wafer holder 5 that is an installation table. A fine structure is formed on the surface of the wafer 9 through development and rinsing steps after exposure, and a rinse liquid 8 is placed on the surface of the wafer 9 and has a ring-shaped flat plate formed at the bottom of the cylinder. It is installed in the wafer holder 5. The wafer holder 5 on which the wafer 9 is mounted is transferred into the high-pressure vessel 4.

高圧容器4には、開閉バルブ1を介して高圧ポンプ14及び液化炭酸ガス容器15が配管によって接続され、開閉バルブ1を介して圧力制御バルブ13が配管によって接続される。高圧容器4の下部容器6には、その底部に設けられた排出口16とウェハ9と同等の高さの位置に設けられた排出口17とが開閉バルブ16,17を介して圧力制御バルブ2と背圧制御バルブ3に接続され、高圧容器4内の圧力が設定圧力を超えると高圧容器4内の流体又はリンス液が排出される。特に、リンス液8は、排出口16ではリンス液8が液化炭酸ガス11より重いときバルブ18が開放され、又、排出口17ではリンス液8が液化炭酸ガス11より軽いときにバルブ19が開放されそれぞれの排出口より排出される。液体炭酸ガス11の導入口及び排出口17の底部高さは、高圧容器4に設置したウェハ9の表面の高さより僅かに高い同等の位置に設けられている。   A high-pressure pump 14 and a liquefied carbon dioxide container 15 are connected to the high-pressure vessel 4 via an opening / closing valve 1, and a pressure control valve 13 is connected to the high-pressure vessel 4 via an opening / closing valve 1. In the lower container 6 of the high-pressure vessel 4, a discharge port 16 provided at the bottom and a discharge port 17 provided at a position equivalent to the height of the wafer 9 are connected to the pressure control valve 2 via the open / close valves 16, 17. When the pressure in the high pressure vessel 4 exceeds the set pressure, the fluid or rinse liquid in the high pressure vessel 4 is discharged. In particular, the rinsing liquid 8 opens at the discharge port 16 when the rinsing liquid 8 is heavier than the liquefied carbon dioxide gas 11, and opens the valve 19 at the discharge port 17 when the rinsing liquid 8 is lighter than the liquefied carbon dioxide gas 11. And discharged from each outlet. The bottom height of the introduction port and the discharge port 17 for the liquid carbon dioxide gas 11 is provided at an equivalent position slightly higher than the height of the surface of the wafer 9 installed in the high-pressure vessel 4.

本実施例では、高圧容器4はその高圧容器4自身に形成された加熱又は冷却できるように加熱媒体又は冷却媒体が循環できる構造を有し、温度調整機能を持ち、0ないし60℃の範囲で流体の温度を制御することができる。開閉バルブ1と高圧容器4との間に液化炭酸ガス11中の固形物を除去するフィルタ7、それを高圧容器4に圧送する高圧ポンプ14、ウェハ9を局部的又は全体を温度制御できる温度調整器10を有する。温度調整器10はウェハ9を局部的又は全体に温度制御できるように全体が円盤型で、加熱体が円を中心に放射状に独立に制御可能に形成されている。以下、本実施例の乾燥工程を説明する。   In the present embodiment, the high-pressure vessel 4 has a structure in which a heating medium or a cooling medium can be circulated so as to be heated or cooled formed in the high-pressure vessel 4 itself, has a temperature adjustment function, and in the range of 0 to 60 ° C. The temperature of the fluid can be controlled. Filter 7 for removing solid matter in the liquefied carbon dioxide gas 11 between the on-off valve 1 and the high-pressure vessel 4, a high-pressure pump 14 for pumping it to the high-pressure vessel 4, and temperature adjustment capable of controlling the temperature of the wafer 9 locally or entirely. A container 10. The temperature regulator 10 is entirely disc-shaped so that the temperature of the wafer 9 can be locally or entirely controlled, and the heating body is formed so as to be independently controllable radially around the circle. Hereinafter, the drying process of a present Example is demonstrated.

(1)直径200mmのLSIシリコン基板(ウェハ9)上にEBレジスト(ZEP−7000:日本ゼオン製)を220nmの膜厚で製膜、乾燥した後、電子線でパターンを描画してから酢酸ノルマルヘキシルで90秒現像及び2−プロパノールで100秒リンスし、表面に微細構造が形成されたウェハ9を、高圧容器4のウェハホルダ5に設置する。図1に示すように、ウェハ9の上には液体二酸化炭素又は超臨界二酸化炭素に可溶な2−プロパノールのリンス液8がウェハ9の全面をウェハホルダ5に保持されて覆った状態である。 (1) An EB resist (ZEP-7000: manufactured by Nippon Zeon Co., Ltd.) with a film thickness of 220 nm is formed on an LSI silicon substrate (wafer 9) having a diameter of 200 mm, dried, and after drawing a pattern with an electron beam, an acetate acetate The wafer 9 having a fine structure formed on the surface after being developed with ruhexyl for 90 seconds and rinsed with 2-propanol for 100 seconds is placed in the wafer holder 5 of the high-pressure vessel 4. As shown in FIG. 1, a rinse solution 8 of 2-propanol soluble in liquid carbon dioxide or supercritical carbon dioxide covers the entire surface of the wafer 9 while being held by the wafer holder 5 on the wafer 9.

(2)図1に示すように、ウェハ9はその上にリンス液8がリング状のウェハホルダ5に支えられて覆っており、高圧容器4の上部の蓋12を開け、高圧容器4内に搬送される。ウェハホルダ5は筒状で、底部が平板によるリング状になっており、その筒状部の高さはウェハ9上にリンス液が十分に保持されるようにウェハ9表面よりもやや高い位置になるように構成されている。レジストパターン等の微細構造物を有するウェハ9は、ウェハホルダ5のリング状底部に密着して接しており、そのためウェハ9の上にはリンス液8が保たれている。ウェハホルダ5の底部は平板によるリング状であるが、ウェハ9の平面形状に合わせてリンス液8が漏れない平面形状を有する。ウェハ9の平面形状は円盤で、その円周部の一部に直線部のオリフラ又はVノッチが形成されているので、それらの形状に合わせてリンス液8が漏れない平面形状を有するものである。 (2) As shown in FIG. 1, the wafer 9 is covered with a rinsing liquid 8 supported by a ring-shaped wafer holder 5. The upper lid 12 of the high-pressure vessel 4 is opened, and the wafer 9 is transferred into the high-pressure vessel 4. Is done. The wafer holder 5 has a cylindrical shape, and the bottom portion has a ring shape with a flat plate. The height of the cylindrical portion is slightly higher than the surface of the wafer 9 so that the rinse liquid is sufficiently held on the wafer 9. It is configured as follows. The wafer 9 having a fine structure such as a resist pattern is in close contact with and in contact with the ring-shaped bottom portion of the wafer holder 5, so that the rinse liquid 8 is kept on the wafer 9. The bottom of the wafer holder 5 is a ring shape with a flat plate, but has a planar shape that does not leak the rinse liquid 8 in accordance with the planar shape of the wafer 9. The planar shape of the wafer 9 is a disk, and a straight portion orientation flat or V-notch is formed in a part of the circumferential portion thereof, so that the rinsing liquid 8 does not leak in accordance with these shapes. .

(3)ウェハホルダ5を高圧容器4に設置後、高圧容器4の蓋12が閉じて密閉状態となる。高圧容器4を密閉状態にした後、バルブ1を開放し液体二酸化炭素11を液体二酸化炭素容器15より導入する。高圧容器内の圧力及び温度を管理し、図1のように液体二酸化炭素をウェハ9の上面より、わずかに高くなるように液体二酸化炭素11を導入する。本実施例ではリンス液8は液体二酸化炭素11より重いのでバルブ18を開放し、この状態から図2のように高圧容器4の前後のバルブ1とバルブ2の開閉を繰り返し、液体二酸化炭素11の導入とその停止、次いでその排出を複数回繰り返すことにより、リンス液8と液体二酸化炭素11の攪拌効果が向上し、リンス液8は液体二酸化炭素11により効率良く置換され、排出することができる。 (3) After the wafer holder 5 is installed in the high-pressure vessel 4, the lid 12 of the high-pressure vessel 4 is closed and sealed. After the high-pressure vessel 4 is sealed, the valve 1 is opened and liquid carbon dioxide 11 is introduced from the liquid carbon dioxide vessel 15. The pressure and temperature in the high-pressure vessel are controlled, and the liquid carbon dioxide 11 is introduced so that the liquid carbon dioxide is slightly higher than the upper surface of the wafer 9 as shown in FIG. In this embodiment, since the rinsing liquid 8 is heavier than the liquid carbon dioxide 11, the valve 18 is opened, and the valve 1 and the valve 2 before and after the high-pressure vessel 4 are opened and closed repeatedly from this state, as shown in FIG. By repeating the introduction, its stop, and its discharge a plurality of times, the stirring effect of the rinse liquid 8 and the liquid carbon dioxide 11 is improved, and the rinse liquid 8 can be efficiently replaced by the liquid carbon dioxide 11 and discharged.

又、他の実施例として、リンス液8が液体二酸化炭素11より軽い場合にも前述と同様に、バルブ18を閉じて、バルブ19を開放し、この状態から図2のように高圧容器4の前後のバルブ1とバルブ2の開閉を繰り返し、液体二酸化炭素11の導入と停止を繰り返すことにより、リンス液8と液体二酸化炭素11の攪拌効果が向上し、リンス液8は液体二酸化炭素11により効率良く置換され、排出することができる。   As another embodiment, when the rinsing liquid 8 is lighter than the liquid carbon dioxide 11, the valve 18 is closed and the valve 19 is opened as described above. From this state, the high-pressure vessel 4 is opened as shown in FIG. By repeating the opening and closing of the front and rear valves 1 and 2 and repeatedly introducing and stopping the liquid carbon dioxide 11, the stirring effect of the rinsing liquid 8 and the liquid carbon dioxide 11 is improved. Can be well replaced and discharged.

(4)リンス液8の置換完了後、高圧容器4内の圧力を臨界圧力以上にし、その後高圧容器内の温度を臨界温度以上にする。この温度変化で、高圧容器4内の液体二酸化炭素11は超臨界状態へと状態が変化する。この状態の変化では、液体二酸化炭素11の表面張力を微細構造に作用させることが無い。 (4) After the replacement of the rinse liquid 8 is completed, the pressure in the high-pressure vessel 4 is set to a critical pressure or higher, and then the temperature in the high-pressure vessel is set to a critical temperature or higher. With this temperature change, the state of the liquid carbon dioxide 11 in the high-pressure vessel 4 changes to a supercritical state. In this change of state, the surface tension of the liquid carbon dioxide 11 does not act on the fine structure.

(5)次いで、バルブ1を閉じ、高圧容器4内の温度を35℃に保ったまま圧力制御バルブ2より超臨界二酸化炭素を排出する。高圧容器4内の圧力が7.38MPa以下になると高圧容器4内を満たしていた液体二酸化炭素は気体へと状態が変化する。更に圧力制御バルブ2で排出を続け、高圧容器4内の圧力が大気圧になった時点で乾燥が終了する。 (5) Next, the valve 1 is closed, and supercritical carbon dioxide is discharged from the pressure control valve 2 while keeping the temperature in the high-pressure vessel 4 at 35 ° C. When the pressure in the high-pressure vessel 4 becomes 7.38 MPa or less, the state of the liquid carbon dioxide that has filled the high-pressure vessel 4 changes to a gas. Further, the pressure control valve 2 continues to discharge, and the drying ends when the pressure in the high-pressure vessel 4 becomes atmospheric pressure.

本実施例によれば、リンス液8がウェハ9の表面を十分に覆って搬送されるので、搬送中の乾燥が防止され、且つリンス液8の置換時間が短縮されるので、高スループット化に向けた急速な排出に対応できる。そして、本実施例によれば、LSI等を大規模に製作するための露光、現像、リンス後のレジスト等のパターン幅が100nm以下、更にパターン幅70nm以下、特にパターン幅30nm以下の表面微細構造を持ち、直径100mm以上の大口径基板の乾燥処理をパターン倒れが無く、更に短時間で均一に乾燥できるものである。そのためデバイス製造ラインへの適用が可能な処理速度を有するものである。   According to this embodiment, since the rinsing liquid 8 is transported while sufficiently covering the surface of the wafer 9, drying during the transportation is prevented and the replacement time of the rinsing liquid 8 is shortened. It can respond to the rapid discharge aimed at. Then, according to the present embodiment, the surface fine structure having a pattern width of 100 nm or less, further a pattern width of 70 nm or less, particularly a pattern width of 30 nm or less, such as resist after exposure, development, and rinsing for manufacturing LSI etc. on a large scale The large-diameter substrate having a diameter of 100 mm or more can be uniformly dried in a shorter time without pattern collapse. Therefore, it has a processing speed that can be applied to a device manufacturing line.

本実施例によれば、搬送中の乾燥を防止し、更に、表面に微細なパターンを形成した大口径基板に対してパターン倒れがなく、短時間で均一に乾燥し、またパーティクルを低減化させることができる。   According to the present embodiment, drying during transportation is prevented, and furthermore, there is no pattern collapse on a large-diameter substrate having a fine pattern formed on the surface, and drying is performed uniformly in a short time, and particles are reduced. be able to.

本発明の超臨界乾燥処理装置の断面図である。It is sectional drawing of the supercritical drying processing apparatus of this invention. 本発明の超臨界乾燥処理装置におけるバルブの開閉の繰り返しを行った時の高圧容器内の状況を示す断面図である。It is sectional drawing which shows the condition in a high pressure container when repeating opening and closing of the valve | bulb in the supercritical drying processing apparatus of this invention.

符号の説明Explanation of symbols

1、18、19…バルブ、2…圧力制御バルブ、3…背圧制御バルブ、4…高圧容器、5…ウェハホルダ、6…下部容器、7…フィルタ、8…リンス液、9…ウェハ、10…温度調整器、11…液体二酸化炭素、12…蓋、13…圧力制御装置、14…高圧ポンプ、15…液体二酸化炭素貯蔵容器、16、17…排出口。   DESCRIPTION OF SYMBOLS 1, 18, 19 ... Valve, 2 ... Pressure control valve, 3 ... Back pressure control valve, 4 ... High pressure container, 5 ... Wafer holder, 6 ... Lower container, 7 ... Filter, 8 ... Rinse solution, 9 ... Wafer, 10 ... Temperature regulator, 11 ... liquid carbon dioxide, 12 ... lid, 13 ... pressure control device, 14 ... high pressure pump, 15 ... liquid carbon dioxide storage container, 16, 17 ... outlet.

Claims (10)

リンス液に浸漬又は濡れた状態の微細構造を有する被乾燥物を高圧処理容器内に設置して前記被乾燥物上の前記リンス液を常温及び常圧では気体で高圧下で液体となる流体を用いて前記高圧処理容器内より排出する微細構造乾燥処理方法において、前記高圧処理容器内に前記流体を液体状態で導入する導入工程と、該導入された前記流体を前記高圧処理容器内より排出させる排出工程とを有し、前記導入工程と排出工程とを繰り返す繰り返し工程を有することを特徴とする微細構造乾燥処理方法。   A to-be-dried object having a fine structure immersed or wet in a rinsing liquid is placed in a high-pressure treatment container, and the rinsing liquid on the to-be-dried object is a gas at normal temperature and normal pressure, and a fluid that becomes liquid at high pressure. In the fine structure drying processing method using and discharging from the high-pressure processing container, an introducing step of introducing the fluid into the high-pressure processing container in a liquid state, and discharging the introduced fluid from the high-pressure processing container A fine structure drying method, comprising: a discharging step, and a repeating step of repeating the introduction step and the discharging step. 請求項1において、前記繰り返し工程は、前記流体の液面の高さを前記基板表面よりやや高い状態で行うことを特徴とする微細構造乾燥処理法。   2. The microstructure drying method according to claim 1, wherein the repeating step is performed in a state where the liquid level of the fluid is slightly higher than the surface of the substrate. 請求項1又は2において、リンス液に浸漬又は濡れた状態の微細構造を有する被乾燥物を高圧処理容器内に搬送する搬送工程と、前記繰り返し工程と、前記流体をその臨界圧力以上及び臨界温度以上に昇圧昇温させる工程と、前記流体の温度を臨界温度以上に保ったまま前記流体を前記高圧処理容器内より排出する工程とを順次有することを特徴とする微細構造乾燥処理方法。   In Claim 1 or 2, the conveyance process which conveys the to-be-dried object which has the microstructure immersed or rinsed in the rinse liquid in a high-pressure processing container, the above-mentioned repetition process, and the fluid above the critical pressure and critical temperature A microstructure drying treatment method characterized by sequentially comprising the step of raising the temperature and raising the temperature and the step of discharging the fluid from the high-pressure treatment vessel while keeping the temperature of the fluid at a critical temperature or higher. リンス液に浸漬又は濡れた状態の微細構造を有する被乾燥物を高圧処理容器内に設置して前記基板上の前記リンス液を常温及び常圧では気体で高圧下では液体となる流体を用いて前記高圧処理容器内より排出させる微細構造乾燥処理装置において、前記流体の排出口は前記高圧処理容器に前記被乾燥物の高さと同等の位置に有することを特徴とする微細構造乾燥処理装置。   An object to be dried having a fine structure immersed or wet in a rinsing liquid is placed in a high-pressure processing vessel, and the rinsing liquid on the substrate is a gas that is a gas at normal temperature and normal pressure and a liquid that is liquid at high pressure. In the fine structure drying apparatus for discharging from the inside of the high pressure processing container, the fluid discharge port is provided at a position equivalent to the height of the object to be dried in the high pressure processing container. 請求項4において、前記流体の排出口は前記高圧処理容器の底部に有することを特徴とする微細構造乾燥処理装置。   5. The fine structure drying apparatus according to claim 4, wherein the fluid outlet has a bottom portion of the high-pressure processing vessel. 請求項4又は5において、前記流体の導入を行う開閉バルブと前記高圧容器との間にフィルタを有することを特徴とする微細構造乾燥処理装置。   6. The fine structure drying apparatus according to claim 4, further comprising a filter between the open / close valve for introducing the fluid and the high-pressure vessel. 請求項4ないし6のいずれかにおいて、前記流体を前記高圧容器に圧送する高圧ポンプを有することを特徴とする微細構造乾燥処理装置。   7. The fine structure drying apparatus according to claim 4, further comprising a high-pressure pump that pumps the fluid to the high-pressure vessel. 請求項4ないし7のいずれかにおいて、前記高圧処理容器内に前記被乾燥物を設置する設置台に前記基板を局部的又は全体を温度制御できる温度調整器を有することを特徴とする微細構造乾燥処理装置。   The microstructure drying according to any one of claims 4 to 7, further comprising a temperature controller capable of locally or entirely controlling the temperature of the substrate on an installation base for installing the object to be dried in the high-pressure processing vessel. Processing equipment. 請求項4ないし8のいずれかにおいて、前記流体を振動又は攪拌させる手段を有することを特徴とする微細構造乾燥装置。   9. The microstructure drying apparatus according to claim 4, further comprising means for vibrating or stirring the fluid. 請求項4ないし9のいずれかにおいて、常温及び常圧では気体で高圧下では液体となる流体を液体又は超臨界状態で貯蔵する流体貯蔵容器と、前記流体を前記高圧処理容器内に圧送するポンプと、前記被乾燥物の下側に設けられ前記被乾燥物の温度を制御する温度調整器と、前記高圧処理容器内の前記流体の圧力を制御する圧力制御装置と、前記高圧処理容器内への前記流体導入時の昇圧速度を制御する昇圧速度制御手段とを有することを特徴とする微細構造乾燥装置。   10. The fluid storage container for storing a fluid that is gas at normal temperature and normal pressure and liquid at high pressure in a liquid or supercritical state, and a pump that pumps the fluid into the high-pressure processing container according to claim 4. A temperature controller provided on the lower side of the material to be dried and controlling the temperature of the material to be dried, a pressure control device for controlling the pressure of the fluid in the high pressure processing vessel, and into the high pressure processing vessel And a pressure increase speed control means for controlling the pressure increase speed when the fluid is introduced.
JP2004097834A 2004-03-30 2004-03-30 Fine structure drying method and apparatus thereof Pending JP2005286105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097834A JP2005286105A (en) 2004-03-30 2004-03-30 Fine structure drying method and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097834A JP2005286105A (en) 2004-03-30 2004-03-30 Fine structure drying method and apparatus thereof

Publications (1)

Publication Number Publication Date
JP2005286105A true JP2005286105A (en) 2005-10-13

Family

ID=35184142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097834A Pending JP2005286105A (en) 2004-03-30 2004-03-30 Fine structure drying method and apparatus thereof

Country Status (1)

Country Link
JP (1) JP2005286105A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014706A (en) * 2009-07-01 2011-01-20 Tokyo Electron Ltd Substrate treatment device and substrate treatment method
JP2012023102A (en) * 2010-07-12 2012-02-02 Tokyo Electron Ltd Substrate processing apparatus, substrate processing method and storage medium
KR20180101230A (en) * 2017-03-02 2018-09-12 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714643U (en) * 1993-07-29 1995-03-10 ミツミ電機株式会社 Silicon wafer cleaning equipment
JPH09232271A (en) * 1996-02-20 1997-09-05 Sharp Corp Cleaner of semiconductor wafer
JP2001129494A (en) * 1999-11-08 2001-05-15 Dainippon Screen Mfg Co Ltd Apparatus for supplying treating liquid
JP2002050608A (en) * 2000-08-03 2002-02-15 Semiconductor Leading Edge Technologies Inc Semiconductor substrate cleaning/drying apparatus
JP2003109933A (en) * 2001-10-01 2003-04-11 Hitachi Koki Co Ltd Supercritical drying device
JP2003531478A (en) * 2000-04-18 2003-10-21 エス.シー.フルーイズ,インコーポレイテッド Supercritical fluid transfer and recovery system for semiconductor wafer processing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714643U (en) * 1993-07-29 1995-03-10 ミツミ電機株式会社 Silicon wafer cleaning equipment
JPH09232271A (en) * 1996-02-20 1997-09-05 Sharp Corp Cleaner of semiconductor wafer
JP2001129494A (en) * 1999-11-08 2001-05-15 Dainippon Screen Mfg Co Ltd Apparatus for supplying treating liquid
JP2003531478A (en) * 2000-04-18 2003-10-21 エス.シー.フルーイズ,インコーポレイテッド Supercritical fluid transfer and recovery system for semiconductor wafer processing
JP2002050608A (en) * 2000-08-03 2002-02-15 Semiconductor Leading Edge Technologies Inc Semiconductor substrate cleaning/drying apparatus
JP2003109933A (en) * 2001-10-01 2003-04-11 Hitachi Koki Co Ltd Supercritical drying device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011014706A (en) * 2009-07-01 2011-01-20 Tokyo Electron Ltd Substrate treatment device and substrate treatment method
JP2012023102A (en) * 2010-07-12 2012-02-02 Tokyo Electron Ltd Substrate processing apparatus, substrate processing method and storage medium
KR20180101230A (en) * 2017-03-02 2018-09-12 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus
CN108538751A (en) * 2017-03-02 2018-09-14 东京毅力科创株式会社 Substrate board treatment
JP2018147945A (en) * 2017-03-02 2018-09-20 東京エレクトロン株式会社 Substrate processing apparatus
KR102468102B1 (en) * 2017-03-02 2022-11-16 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus
CN108538751B (en) * 2017-03-02 2023-05-16 东京毅力科创株式会社 Substrate processing apparatus

Similar Documents

Publication Publication Date Title
KR101546631B1 (en) Substrate processing apparatus and substrate processing method
TWI386979B (en) Developing apparatus, developing method and storage medium
KR102037906B1 (en) Substrate treating apparatus and substrate treating method
JP4546314B2 (en) Fine structure drying method and apparatus
JP3965693B2 (en) Fine structure drying method and apparatus and high-pressure vessel thereof
TWI393173B (en) Developing apparatus, developing method and storage medium
TW201635376A (en) Substrate processing method, storage medium and heating apparatus
JP2013207041A (en) Substrate treatment apparatus and substrate treatment method
US8842257B2 (en) Substrate treatment method, substrate treatment apparatus, and non-transitory computer storage medium
JP2004311507A (en) Method, device, and system for drying microstructure
KR20200009841A (en) Method for treating substrate
JP2018113372A (en) Substrate processing method and substrate processing apparatus
JP2006310391A (en) Substrate processing method
JP7129482B2 (en) Substrate processing method and substrate processing apparatus
JP6560704B2 (en) Semiconductor device manufacturing method and substrate processing apparatus
JP2006332215A (en) Method of processing microstructure and apparatus thereof
JP3861798B2 (en) Resist development processing apparatus and method
KR102387423B1 (en) Substrate treating apparatus and substrate treating method
JP2005286105A (en) Fine structure drying method and apparatus thereof
JP4372590B2 (en) Fine structure drying method and apparatus
JP4247087B2 (en) Fine structure drying method and apparatus
JP4342896B2 (en) Fine structure drying method and apparatus
JPWO2020022103A1 (en) Substrate processing method and substrate processing equipment
JP3553904B2 (en) Supercritical drying method
JP6204881B2 (en) Method for processing an object

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310