TW201249861A - Diketopiperazine forming dipeptidyl linker - Google Patents

Diketopiperazine forming dipeptidyl linker Download PDF

Info

Publication number
TW201249861A
TW201249861A TW100138608A TW100138608A TW201249861A TW 201249861 A TW201249861 A TW 201249861A TW 100138608 A TW100138608 A TW 100138608A TW 100138608 A TW100138608 A TW 100138608A TW 201249861 A TW201249861 A TW 201249861A
Authority
TW
Taiwan
Prior art keywords
pep
resin
group
dkp
residue
Prior art date
Application number
TW100138608A
Other languages
English (en)
Inventor
Matthieu Giraud
Fernando Albericio
Judit Tulla-Puche
Michele Cristau
Benitez Miriam Gongora
Original Assignee
Lonza Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lonza Ag filed Critical Lonza Ag
Publication of TW201249861A publication Critical patent/TW201249861A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • C07K1/068General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups for heterocyclic side chains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/04General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • C07K1/062General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups for alpha- or omega-carboxy functions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • C07K14/08RNA viruses
    • C07K14/15Retroviridae, e.g. bovine leukaemia virus, feline leukaemia virus human T-cell leukaemia-lymphoma virus
    • C07K14/155Lentiviridae, e.g. human immunodeficiency virus [HIV], visna-maedi virus or equine infectious anaemia virus
    • C07K14/16HIV-1 ; HIV-2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K17/00Carrier-bound or immobilised peptides; Preparation thereof
    • C07K17/02Peptides being immobilised on, or in, an organic carrier
    • C07K17/08Peptides being immobilised on, or in, an organic carrier the carrier being a synthetic polymer
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06086Dipeptides with the first amino acid being basic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/06Hydrocarbons
    • C08F112/08Styrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Virology (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Communicable Diseases (AREA)
  • AIDS & HIV (AREA)
  • Peptides Or Proteins (AREA)

Description

201249861 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種用於^肽片段PEP-N及C端肽片 段c-册之均質溶液相肽合成(Hspps)之方法,其巾c pEp 帶有包含二酮娘啡(DKP)之特$ c端保護基,其含有柄 狀基團(hancHe group) HG,其中該Η(}係連接至狀片段之 C端;從而此包含DKP之特定C端保護基可自肽如同習知 所用之C端保護基-般選擇性裂解。藉由使用此包含⑽ 及HG之C端保護基,可避免基於Hspps及固相肽合成 (SPPS )之組合@彙集肽合成中之某些方法步驟。 本發明進一步關於一種藉由SPPS製備該經特定保護之 片筱C-PEP的方法,其係藉由使用包含特定二肽及HG之 連接子以使生長中之肽鏈連接至樹脂而達成,當肽片段 C-PEP自支撐樹脂裂解時,該連接子形成該DKp基團;且 進一步關於製備方法之中間物。 在本文中’除非另外說明,否則根據r Nomenclature and symbolism for amino acids and peptides j , Pure & Appl.
Chem.,第56卷,第5期,第595-624頁,1984使用胺基酸 及肽之命名。 除非另外說明 ’否則以下縮寫具有下列清單中所給出 之意義: CTC 氯, Ξ•苯曱基氣 Alloc 烯丙氧基羰基 Boc 第. 三丁氧羰基 201249861 B smoc 1,1-二側氧基苯并[b]噻吩-2-基曱氧羰基 Bzl 或 Bn 苯曱基 cHx 環己基 Ct C端 Dpr 2,3-二胺基丙酸 Dde N_l_(4,4_二曱基-2,6-二側氧基亞環己基)乙 基 ivDde 1-(4,4-二曱基-2,6-二側氧基亞環己基)3-曱 基丁基 Ddz α,α-二曱基-3,5-二曱氧基苯曱氧基羰基 DKP 2,5 -二鲷旅啡 Dmab 二甲胺基删烧 Fm 9-第基甲基 Fmoc N-(苐基-9-甲氧羰基) Hpr 哌啶-2-曱酸,高脯胺酸 HSHSPPS 混合固相及均質溶液相肽合成 HSPPS 均質溶液相肽合成 Hyp 反-4-羥脯胺酸 Mmt 4-曱氧基三苯曱基 Mpe 3-甲基戊-3-基 Mtt 4-曱基三苯曱基 Orn 鳥胺酸 Pbf 2,2,4,6,7-五曱基二氫苯并呋喃-5-磺醯基 PG 保護基 201249861 2-PhiPr 2-苯基異丙基
Pmc 2,2,5,7,8-五甲基D克烷-6-磺醯基 ΡΝ02Ζ 硝基苯曱氧基羰基
Py 吡啶 SPPS 固相肽合成 tBu 第三丁基 TES SiEt3,三乙基矽烷基 TFA 三氟乙酸
Tfac 三氟乙醯基
Trt或Tr 三苯基甲基或三苯曱基 Z 苯曱氧基羰基 除非另外說明,否則術語「片段(fragment )」與「肽 片段(peptide fragment )」以同義使用。 除非另外說明’否則術語「柄狀物(handle )」及「柄 狀基團(handle group)」(例如「Fmoc-Rink醯胺柄狀基團 (FmooRink amide handle group )」、「Rink 醯胺柄狀物(;Rink amide handle)」或「Rink 醯胺柄狀基團(Rink amide handle group)」)與術語「連接子(linke〇」(例如「Fm〇c Rink醯 胺連接子(Fmoc-Rink amide linker)」或 Fmoc-Rink-OH) 常常以同義使用。 【先前技術】 常常藉由混合固相及均質溶液相肽合成HSHSppS來製 備肽:首先藉由固相肽合成SPPS來製備兩個或兩個以上肽 片段,之後在溶液相中藉由均質溶液相肽合成Hspps使其 201249861 偶合,得到所需之目標肽。 此方法因其組合SPPS與HSPPS兩者之優勢而尤其適 用於工業規模製備大型肽。特定而言,可研發片段之SPPS 且快速地按比例擴大而避免在相對較長片段之HSPPS中常 常遇到的眾多溶解性問題。生產週期時間相較於溶液相方 法較短。另外,由於尤其在偶合反應期間使用過量試劑而 使得產率及純度常常較高,常常使得中間物無需純化。在 對由SPPS製備之片段序列的選擇最佳化之後,方法之最終 階段可藉由習知HSPPS方法按比例擴大。方法之此等最終 階段為片段偶合及最終脫除胺基酸殘基之保護基,亦即脫 除側鏈以及N端及C端之保護基,兩個階段皆在溶液中進 行。因此,當應用HSHSPPS合成時,可利用SPPS之優勢 (亦即快速合成具有高純度之片段)與溶液相合成之優勢 (亦即充分監測偶合反應以及分離及視情況存在之純化,包 括充分特性化所形成之中間片段)以尤其在工業規模上高 效地製備肽。 在HSHSPPS中,始終使由SPPS製備之至少兩個片段 PEP-N與C-PEP在溶液相中偶合以得到所需肽PEP,該PEP 為最終肽,或同樣為中間肽片段而之後再與第三肽片段偶 合,諸如此類。片段PEP-N在本文中提供肽PEP之N端, 片段C-PEP提供肽PEP之C端,且因此片段PEP-N之C端 與片段C-PEP之N端偶合得到肽PEP。在溶液相偶合期間 需要保護片段PEP-N之N端且需要保護片段C-PEP之C端 以免片段PEP-N與片段PEP-N、片段C-PEP與片段C-PEP, 201249861 或片段C-ΡΕΡ與片段peP-N以錯誤方向發生不合需要之偶 合。除非另外說明,否則此N端經保護之肽片段PEP-N在 下文中亦稱為PEP_N。由SPPS在支撐樹脂上製備之片段 C-ΡΕΡ在添加最後一個胺基酸殘基之後將帶有n端保護 基’且接著將在最終步驟中自支撐樹脂裂解。此裂解通常 產生C端未經保護之片段c-PEP,其須在片段C-ΡΕΡ與片 段PEP-N在HSPPS中偶合之前在另一步驟中加以保護。實 際上’此對片段C-ΡΕΡ之C端的必要保護並非僅包含1個_ 步驟’而是包含若干個步驟,諸如反應、純化及分離,可 能具有另一後續純化及分離。 在欲製備之目標肽PEP為肽醯胺PEP-NH2(亦即其中C 端為羧醢胺基)的情況下,在於HSPPS中片段偶合期間, 由於羰酿胺基自身可充當保護基,故各別片段c_peP-NH2 之C端通常不需要保護。雖然c端為羧酸之片段c-PEP-OH 可容易地在SPPS之後藉由使用在裂解後形成羧酸基之樹脂 來獲得’但使用在裂解後形成羧醯胺基之樹脂(例如齊貝 爾醢胺樹脂(Sieber amide resin))會因片段C-PEP-NH2之 側鏈在裂解期間部分脫除保護基而引發問題,此係因為自 醯胺樹脂裂解典型地需要酸性條件,諸如使用於溶劑中之3 重量%至5重量%之TFA,而側鏈保護基(諸如在Fm〇c/Trt SPPS之情況下為Trt (例如His(Trt))或諸如假脯胺酸衍生 物(亦即 Fm〇c-Ser(tBu)-Thr(pSiMe,Mepro)-OH)中之縮醛) 在5亥專裂解條件下不完全穩定,導致側鏈保護基部分喪 失。因此為製備片段C-PEP-NH2,通常以自所需片段 201249861 C-PEP-NH2之C端胺基酸殘基起第二位置上的胺基酸而非 以月段C-PEP-NH2之C端胺基酸本身,且以在裂解後提供 羧酸作為C端之樹脂開始SppS ^自樹脂裂解因此可得到無 所需片段C-PEP-NH2之C端胺基酸的片段c_〇H,且其中此 片段C-OH之C端為自最終所需片段c_pEp_NH2之c端起 第二位置上之胺基酸且帶有羧酸基q妾著使片段c_pEp_NH2 缺少之c端胺基酸在溶液相中以其醯胺H_Xaa NH2形式單 獨偶合至片段C-OH。 WO 90/09395揭示在肽與支撐樹脂之間使用可裂解連 接子,其在自樹脂裂解時形成二酮哌畊(DKp )連接子基團, 其中該DKP基團經由連接子基團中之Lys< £胺基與狀之 c鈿之間的醯胺鍵連接至肽。此DKp連接子基團在隨後階 段中不可自肽選擇性移除。目此,其不允許製備適用於 SPPS中之具有未經保護之N端且c端完全經保護之片 段。此外,wo 90/09395之連接子基團不允許製備天然或未 t飾之肽。其僅適用於合成C端永久經修飾之肽,此係 因為任何自樹脂裂解之肽在其c端上始終帶有DKp連接子 土團其在肽之其他肽鍵不裂解的情況下不可裂解。另一 缺點為其裂解僅限於在裂解步驟期間使用三氟乙酸 \TFA)’表示將會部分或全部移除狀之胺基酸殘基側鍵之任 :基於tBu、B0C、Trt或縮醛之保護基,從而其使用僅限於 製備具有未經保護之側鏈的肽或除伽、_、化及縮醛以 外的側鏈保護基。 【發明内容】 9 201249861 需要藉由減少反應順序中之步驟數目來簡化hshspps 之程序。 令人驚奇的是,此可藉由在用於製備片段C_PEP之 SPPS中使用特定的形成二酮哌啡基之二肽連接子來達成, °亥肽連接子帶有特定的包含二酮α底啡之C端保護基,以 及適當組合不同類型之保護基與連接子與片段C-PEP連接 之特定化學性質以使連接子有可能自片段特定裂解。 就本發明而言,保護基(PG )根據其係用於保護胺基 酸側鏈中之官能基或用於保護胺基酸或肽之Ν端胺基或C 端羧基而分為四個不同群組: 1. 驗可裂解型保遵基,在下文中稱為「驗型PG」, 2. 強酸可裂解型保護基,在下文中稱為「強型pG」, 3. 弱酸可裂解型保護基,在下文中稱為「弱型pG」,及 4. 還原可裂解型保護基,在下文中稱為「還原型pG」, 其中兩個群組「強型PG」及「弱型PG」亦統稱為「酸可裂 解型保護基」或「酸型PG」。 在本發明之意義範圍内,任何PG係根據下列四種分類 反應條件加以分類。使用加載容量為每公克樹脂15 mm〇i 至1.7 mmol之CTC樹脂進行分類,僅以帶有欲分類之各別 PG的一種胺基酸加載樹脂《除非另外說明,否則下列四種 分類程序中之術語「份(part)」意謂所加載之CTC樹脂起 始物質之重量份率。 i•用於鹼型PG之分類反應條件,在下文中稱為「鹼性 分類條件」: 10 201249861 在25±5°C下用7±1份之裂解溶液處理加載有帶有驗型 PG之胺基酸之樹脂25 士 5分鐘’該裂解溶液由22 5±2 5重 直'%0底咬之一曱基曱酿胺(DMF )溶液組成,重量%係以髮 解溶液之總重量計。 2.用於強型PG之分類反應條件,在下文中稱為「強分 類條件」: 在25±5C下用7±1伤之裂解溶液處理加載有帶有強型 PG之胺基酸之樹脂25±5分鐘,該裂解溶液由85±5重量% 二氟乙酸(TFA )之二氣曱烧(DCM )溶液組成,重量%係 以裂解溶液之總重量計。 3 .用於弱型P G之分類反應條件,在下文中稱為「弱分 類條件」: 在2 5土5°C下用7±1份之裂解溶液處理加載有帶有弱型 PG之知基酸之樹脂25±5分鐘’該裂解溶液由2±1重量% TFA之DCM溶液組成,重量%係以裂解溶液之總重量計。 4 ·用於還原型PG之分類反應條件,在下文中稱為「還 原分類條件」: 在2 5±5°C下用溶解於DMF中之7±1份DMF及0.1莫 耳當量之可溶性有機Pd(0)催化劑(較佳為Pd[PPh3]4 )處理 加載有帶有還原型PG之胺基酸之樹脂3〇±5分鐘,莫耳當 量係以加載至樹脂上之可裂解基團之莫耳數計。 肽化學中習知使用之PG以及用於裂解PG之典型反應 條件及參數以及試劑在此項技術中已知,例如T· w. Greene, P-G· M. Wuts,r Protective Groups in Organic Synthesis J} John 11 201249861
Wiley & Sons,Inc·,1999 ;或 Lloyd-Williams,P.,Albericio, F·,Giralt,E.,「Chemical Approaches to the Synthesis of
Peptides and Proteins」,CRC: Boca Raton, Florida, 1 997。 鹼型PG較佳在下列可能之反應條件(在下文中稱為「驗 性裂解條件」)下裂解: 驗性裂解條件涉及用驗性裂解溶液處理各別物質。驗 性裂解溶液包含鹼性試劑及溶劑。鹼性裂解溶液較佳由驗 性試劑及溶劑組成。若鹼性試劑在進行鹼性裂解之溫度下 為液體,則鹼性試劑亦可同時用作溶劑,亦即不使用不同 於驗性試劑之溶劑。 驗性試劑較佳為二級胺,驗性試劑更佳選自由以下組 成之群··哌啶、4-(胺基曱基)哌啶 '參(2_胺基乙基)胺、嗎 啉、二環己胺、1,3-環己烷雙(曱基胺)哌畊、以二氮雜雙 ί衣[5.4.0]十一 -7-烯’及其混合物。鹼性試劑甚至更佳為哌 。定0 驗性裂解溶液亦可包含添加劑,添加劑較佳選自由以 下組成之群:6-氯_1-羥基-苯并三唑、2,4_二硝基苯酚、苦 味酸、h經基I氮雜苯并三唾、1-經1苯并三。坐及2-氰基 -2-羥亞胺基-乙酸乙酯,及其混合物。 溶劑較佳選自由以下組成 (群·二曱亞砜(DMSO )、 二腭烷、四氫呋喃(THF )、1 _甲技0 甲暴-2-。比咯啶酮(NMP )、 N,N-二甲基甲醯胺(DMF)、n N -田甘 奴, 一甲基乙醯胺(dma)、 吡啶、二氯曱烷(DCM)、- « 7 ρ / —鼠乙烷(DCE)、氣仿、二 烧、四氫略喃、乙酸乙酯、甲 7本、乙腈及其混合物;溶 12 201249861 更佳為 (DMF) 1-曱基-2-吡咯啶画同 或其混合物。 (NMP )、N,N_二曱基甲醯胺 隹此對鹼性 「份(part)」意謂 ’更佳使用5份至 牧解條件之描述中術語 帶有鹼型PG之所處理物質的重量份率1 較佳使用5份至20份驗性裂解溶液 15份驗性裂解溶液。 驗性試劑之量較佳為1重 .Θ_〇/ 里/〇至30重量% ,更佳為10 重S /〇至2 5重量0/〇 ’甚至更佳. 田 文佳為1 5重$ %至2〇重量%,坌 中重量%係以鹼性裂解溶液之總重量計。 /、 較佳在10。(:至50〇C之溫庚ΤΓ δ ^ _ /凰度下,更佳在l〇°C至3〇t之溫 度下’甚至更佳在15至2 5。(2之、,®许、在/ 3 L之/皿度下進行鹼性裂解》 較佳在大氣壓下進行鹼性裂解。 鹼性裂解之反應時間較佳為5分鐘至2小時,更佳為 10分鐘S 1小時,甚至更佳為15分鐘至3〇分鐘。 強型PG較佳在下列可能之反應條件(在下文中稱為「強 裂解條件」)下裂解: 強裂解條件涉及用強裂解溶液處理各別物質。強裂解 /谷液包含酸解性試劑(acid〇iytic reagent )。酸解性試劑較 佳選自由以下組成之群:氫酸,諸如三氟乙酸(TFA )、鹽 酸(HC1 )、鹽酸(HC1 )水溶液、液體氫氟酸(hf )或三 氣甲院崎酸,路易斯酸(Lewis acid ),諸如三氟蝴酸乙_ 加合物或三甲基矽烷基溴,及其混合物。 強裂解溶液較佳包含一或多種清除劑,該等清除劑選 自由以下組成之群:二硫蘇糖醇(DTT )、乙烷二硫醇 13 201249861 (EDT )、二曱基硫化物(DMS )、三異丙基矽烷(TIS )、三 乙基矽烷(TES)、1,3-二甲氧基苯(DMB)、苯酚、苯甲醚、 對曱酚及其混合物。 強裂解溶液亦可包含水、溶劑或其混合物,該溶劑在 強裂解條件下穩定。 較佳,溶劑選自由以下組成之群:二氯曱烷、二氣乙 烧、乙腈、曱苯、四氫吱喃、TFA、二聘烧及其混合物。 更佳’酸解性試劑同時用作溶劑,因此不需要其他溶 劑。 在此對強裂解溶液之描述中術語「& ( 口如)」意謂帶 有強型PG之所處理物質的重量份率。 車义佳使用1〇份至3〇份強裂解溶液,更佳使用Η份至 25份強裂解溶液,甚至更佳使用19份至。份強裂解溶液。 ®夂解D式劑之罝較佳為3 〇重量。/〇至⑽重量%,更佳 為50重量%至1〇〇番|〇/ Θ 重里/〇,甚至更佳為70重量%至1〇〇重 量::尤其為80重量%至1〇〇重量%,#中重量%係以強裂 解溶液之總重量計。 車乂佳使用總量為i重量%至25重量%之清除劑,更佳 總量4 5重量%至15重量%之清除劑,其中重量%係以 強裂解溶液之總重量計。 較佳在-1〇c至3(rc之溫度下,更佳在-㈣至贼之溫 -甚至更佳在5°c至i 5。。之溫度下進行強裂解。 較佳在大氣壓下進行強裂解。 裂解之反應時間較佳為3〇分鐘至2〇小時,更佳為1 14 201249861 小時至10小時,甚至更佳為1小時至5小時。 弱型p G較佳在下列可能之反應條件(在下文中稱為「弱 裂解條件」)下裂解: 弱裂解條件涉及用弱裂解溶液處理各別物質。弱裂解 /今液包含酸解性試劑。酸解性試劑較佳選自由以下組成之 群:氫酸’諸如三氟乙酸(TFA)、三說乙醇(TFE)、鹽酸 (HC1 )、乙酸(Ac〇H),其混合物及/或與水之混合物。 弱裂解溶液亦包含水、溶劑或其混合物,該溶劑在弱 裂解條件下穩定。 /合劑杈佳選自由以下組成之群:二氣曱烷、二氯乙烷、 乙腈、甲苯、四氫呋喃、TFA、二聘烷及其混合物。 在此對弱裂解溶液之描述中術語「份(part)」意謂帶 有弱型PG之所處理物質的重量份率。 較佳使用4份至20份弱裂解溶液,更佳使用5份至ι〇 份弱裂解溶液。 酸解性試劑之量較佳為〇.〇1重量%至5重量%,更佳為 0.1重量%至5重量%,甚至更佳為〇 15重量%至3重量%, 其中重量%係以弱裂解溶液之總重量計。 較佳在HTC至5(TC之溫度下,更佳在2(^至4〇。〇之溫 度下,甚至更佳在25C至35 °C之溫度下進行弱裂解。 較佳在大氣壓下進行弱裂解。 弱裂解之反應時間較佳為5分鐘至2小時,更佳為i 〇 分鐘至1小時,甚至更佳為1〇分鐘至3〇分鐘。 弱型PG可再分為其他群組,此等群組彼此相區別且可 15 201249861 «裂解所需之酸之量連續排列。根據上述對弱分類條件 1疋義,所有弱型PG可使用2±1重量%似之dcm溶液 裂解’重量%係以裂解溶液之總重量計。僅可由至少1重量 TFA之DCM〉容液裂解,而不可由含較少i TFA之溶液裂 解的弱型PG稱為「弱i型pG」且該等裂解條件稱為「弱1 型裂解條件」; 已可由至少0.1重量% TFA之DCM溶液裂解,而不可 由含較少* TFA之溶液裂解的弱型PG稱為「弱2型PG」 且該等裂解條件稱為「弱2型條件」; ,已可由至少0.01重量% TFA之DCM溶液裂解之弱型 稱為弱3型PG」且該等裂解條件稱為「弱3型條件」. 重量%係以裂解溶液之總重量計。 還原型PG較佳在下列可能之反應#件(在下文中稱為 「還原裂解條件」)下裂解: 還原裂解條件涉及用還原性裂解溶液處理各別物質。 還原丨生裂解溶液包含催化劑、添加劑及溶劑。 催化剑較佳選自由pd(〇)之有機衍生物及之有機 衍生物組成之群, 更佳選自由以下組成之群:Pd[pph3]4、pdcl2[pph&、
Pd[OAc]2[P(2,4-二 f 苯醯基)3]2、pd[〇Ac]2[以鄰甲苯基 、 就地製備之Pd(0)催化劑,其係藉由混合穩定性較低之 配位Pd錯合物與配體來製備,諸如PdCl2(PPh3)2/PPh3、 Pdci2(PPh3)2/P(鄰 f 苯基)3、pd(DBA)2/p(鄰甲苯基或 Pd[P(鄰甲苯基)3]2、Pd(0Ac)/亞磷酸三乙酯、Pd(OAc)2/pph3 16 201249861 或Pd(OAc)2/P(鄰甲苯基)3, 及其混合物; 甚·至更佳選自由以下組成之群:Pd[PPh3]4、 PdCl2[PPh3]2 、Pd[OAc]2[P(2,4-二甲苯醯基)3]2 、 Pd[OAc]2[P(鄰甲苯基)3]2及其混合物。 添加劑較佳選自由以下組成之群:二曱基巴比妥酸、 硫代水楊酸、N-曱基苯胺、;bU4n+BH4-、NH3BH3、
Me2NHBH3、tBu-NH2BH3、Me3NBH3、PyBH3、HCOOH/DIEA、 二乙基二硫代胺基曱酸鈉、雙甲_ ( dinied〇ne )、嗎啉、 AcOH/NMM、苯基矽烷、亞磺酸(包含 phs〇2H、t〇ls〇2Na)、 2-乙基己酸鈉(SEH)、2-噻吩亞磺酸鈉(STS )、4_氯_3_硝 基苯亞績酸納(SCNBS)及i-BuS〇2Na,及其混合物;添加 劑更佳為tolS02Na。 溶劑較佳選自由以下組成之群:二甲亞砜(DMS〇 )、 二腭烷、四氫呋喃(THF)、甲基_2_吡咯啶酮(NMp)、 N,N-二曱基曱醢胺(DMF)、N,N_二曱基乙醯胺(DMA)、 "比咬、二氣曱烧(DCM )、二氣乙烷(dce )、氣仿、二聘 烷、四氫哌喃、乙酸乙自旨、甲笨、乙腈及其混合物;溶劑 更佳為1-曱基-2-吡咯啶酮(NMp )、N,N_二曱基曱醯胺 (DMF )或其混合物。 且已溶解於溶劑中。 術語「份(part )」意謂 較佳’催化劑可溶解於溶劑中 在此對還原裂解條件之描述中 帶有還原型 所處理物質的重量份率 較佳使用4份至2〇份還;g & f退原性裂解溶液,更佳使用5份 17 201249861 至ι〇份還原性裂解溶液。 較佳使用o.ooi莫耳當詈5 1莫耳^里之催化劑,更佳 使用〇·(Η莫耳當量至0.05莫耳當量之催化劑’該莫耳當量 係以加载至樹脂上之還原可裂解基團之莫耳數計。 較佳使用1莫耳當量至10箪 这 果耳當里之添加劑,更佳使 用1.5莫耳當量至5草耳杏'旦 冥耳田里之添加劑,該莫耳當量係以加 載至樹脂上之還原可裂解基團之莫耳數計。 較佳在10°C至60。(:之溫产τ * A > 凰没下,更佳在30°C至5(TC之溫 度下’甚至更佳在35。(:至45。(:之瓜许τ % 、替κ Λ1 U /皿度下進仃還原裂解。 較佳在大氣壓下進行還原裂解。 還原裂解之反應時間較佳為15分鐘至1〇小時,更佳 為30分鐘至4小時’甚至更佳為3〇分鐘至2小時。 還原性裂解溶液較佳應避光保存。較佳在由金屬製成 之容器中進行還原裂解。 鹼型PG不可由強裂解條件或弱裂解條件所裂解。 較佳,驗型PG不可由強裂解條件、弱裂解條件或還原 裂解條件所裂解。 強型PG不可由弱裂解條件或鹼性裂解條件所裂解。 車又仏,強型PG不可由弱裂解條件、驗性裂解條件或還 原裂解條件所裂解。 弱型PG不可由鹼性裂解條件所裂解,但其可由強裂解 條件所裂解。 較佳,弱型PG不可由鹼性裂解條件或還原裂解條件所 裂解’但其可由強裂解條件所裂解。 201249861 型裂解條件所 但不可由弱3 弱I型PG不可由弱2型裂解條件或弱 裂解; 弱2型PG可由弱1型裂解條件所裂解 型裂解條件所裂解; 2型裂解條件所裂 弱3型PG可由弱1型裂解條件及弱 解0 ^佳’弱1型PG、弱2型PG及弱3型pG亦不可由齡 性裂解條件或還原裂解條件所裂解。 較佳,還原型PG不可由強裂解條件、弱裂解條件及驗 性裂解條件所裂解,此等PG稱為「單獨還原型pG」。 還原型PG不可由弱裂解條件及鹼性裂解條件所裂解, 但可由強裂解條件所裂解;此等PG稱為「混合型%」。 連接子與&之連接亦可分類為可在&四種&解條件中 之一者下裂解。 胺基酸與樹脂之連接亦可分類為可在此四種裂解條件 中之一者下裂解。 較佳,鹼型PG選自由以下組成之群:Fm〇c、Bsm〇c、
Tfac、Dde、Dmab 及 cHx。 較佳’強型PG選自由以下組成之群:B〇c、tBu、Pmc、
Mpe、Pbf、Z、Bz卜 cHx、ρΝ02Ζ 及 Ddz。 較佳,弱型PG選自由以下組成之群:Trt、Mmt、Mu、 縮路及2-PhiPr。 弱型PG貫際上為弱1型pg抑或弱2型pG,視其保護 之側鏈基團而定。 201249861 .較佳,還原型PG選自由Alloc、烯丙基、ivDde及Z 組成之群。 更佳’驗型PG為Fmoc。 更佳’強型PG為Boc。 更佳,弱型PG為Trt。 更佳,還原型PG為Alloc。 在習知SPPS中’在完成SPPS之後自樹脂裂解肽,該 裂解產生視SPPS中所用之樹脂及可能選用之柄狀物而定c 端呈自由羧酸基形式或呈羧醯胺形式的肽。若在Hspps中 使用此在c端上具有自由羧基之肽作為c端肽片段 C PEP則首先須保濩此自由羧酸基,之後該肽可用於 HSPPS中。此對自由C端之保護需要若干方法步驟(反應、 分離,或許純化)。 本發明揭示一種減少此等為保護片段中由在spps後 樹脂裂解片段而產生之C端自由羧酸所需之步驟的方法 此係藉由在SPPS中使用該形成二酮哌畊之二肽連接子以 所需片段C-PEP之第一胺基酸XaaC⑴經由該連接子偶合 樹脂支撑物上來達成,該連接子在完成spps且自樹脂裂 所合成之片段C-PEP時形成包含二酮哌阱殘基之c端保 基。形成二酮哌畊之二肽連接子包含二肽部分,其第一 基酸Xaai經由其敌酸基連接至樹脂,且其第二胺基酸以 經由其側鏈連接柄狀基團HG.,該柄狀基團hg連接至 基’且Xaa2帶有N端保護基PG2。 該包含二酮哌畊殘基之c端保護基係藉由以下而 20 201249861 PG2,從而使得xaa2與Xaal之間 ’該閉環形成該二酮哌啩殘基且同 成:裂解Xaa2之保護基pG2 有可能進行分子内閉環,該 時使Xaal自樹脂裂解。 此藉由自树脂裂解而形成之包含二酮哌啡殘基之c端 保。k基在自樹脂裂解後仍連接至片段c_pEp之c端且從而
形成一酮哌啡之二肽連接子及所得之包含二酮哌啡殘 基之C端保護基包含柄狀基團HG,其使得肽PEP有可能自 包含二嗣旅啡殘基之C端保護基裂解。 為使此所需功能成為可能,以某種方式建構該形成二 酮哌畊之二肽連接子,以使以下四個主要裂解步驟 1 ·在SPPS之循環期間裂解胺基酸之各N端保護基, 2_藉由以下使片段c_PEp自樹脂裂解:使保護基⑽ :Xaa2裂解,且接著藉由形成包含二酮哌阱殘基之c端保 護基使Xaal自樹脂裂解,及 3.使包含二酮哌啡殘基之c端保護基自肽pEp裂解, 該裂解為使肽自包含二酮哌畊殘基之c端保護基中之 4.裂解任何側鏈pg ; 此各裂解可各別地且獨 可在不同反應條件下進行,因 21 201249861 立於其他裂解在反應順序中之適當時間點進行。 為達成此功能,涉及反應策略中之各種PG之化學性質 以及連接子之柄狀基團HG與肽之連接的化學性質係以如 下方式選擇,以使任何PG以某種方式屬於四種pG類型中 之一者,且柄狀基團H(3與肽之連接可在該等反應條件下裂 解,以使此對保護基之分組以及此對柄狀基團HG與肽之連 接性質的選擇允許所需且必要之各別及逐步裂解。 若所需肽C-PEP中存在一或多個側鏈ρ(3, 則一個較佳具體實例為 1.任何側鏈保護基為強型pG、還原型PG或混合型pG; 及 2.SPPS中用於合成c_PEp之胺基酸除最後一個胺基酸 以外(亦即除肽C-PEP之N端胺基酸之N端PG以外)的 任何N端PG為驗型pg,或 若任何侧鏈保護基不為還原型PG或混合型ρ〇,則 spps中用於合成C_PEP之胺基酸除最後一個胺基酸以外 (亦即除肤C-PEP之N端胺基酸之n端PG以外)的任何N 知PG為驗型pg、還原型pg或混合型PG ;及 3·若任何側鏈保護基及SPPS中用於合成C-PEP之胺基 酸除最後一個胺基酸以外(亦即除肽C-PEP之N端胺基酸 之N端PG以外)的任何n端pg不為還原型或混合型PG, 則PG2為弱型、還原型或混合型pG,或 PG2為弱型pg ;及 4.SPPS中用於合成c-PEP之最後一個胺基酸(亦即肽 ⑧ 22 201249861 C-ΡΕΡ之N端胺基酸)之N端PG為鹼型PG或弱型PG, 或 若任何側鏈保護基不為還原型或混合型PG,則SPPS 中用於合成C-ΡΕΡ之最後一個胺基酸(亦即肽C-ΡΕΡ之N 端胺基酸)之N端PG為鹼型PG、弱型PG、還原型PG或 混合型PG ;及 5.PEP或C-ΡΕΡ之包含二酮哌啡殘基之C端保護基可 在以下條件下自肽PEP或C-ΡΕΡ裂解: 在強裂解條件下裂解,或 若PG2及SPPS中用於合成C-ΡΕΡ之胺基酸之任何N 端PG不為還原型或混合型PG,則在強裂解條件或還原裂 解條件下裂解,或 若PG2及SPPS中用於合成C-ΡΕΡ之胺基酸之任何N 端PG不為弱型PG,則在弱裂解條件下裂解,或 若PG2及SPPS中用於合成C-ΡΕΡ之胺基酸之任何N 端PG不為弱1型PG,則在弱1型裂解條件下裂解。 若所需肽C-ΡΕΡ中存在一或多個側鏈PG, 則一個更佳具體實例為 1.任何側鏈保護基為強型PG ;及 2.SPPS中用於合成C-ΡΕΡ之胺基酸除最後一個胺基酸 以外(亦即除肽C-ΡΕΡ之N端胺基酸之N端PG以外)的 任何N端PG為鹼型PG ;及 3.若任何側鏈保護基及SPPS中用於合成C-ΡΕΡ之胺基 酸除最後一個胺基酸以外(亦即除肽C-ΡΕΡ之N端胺基酸 23 201249861 之N端PG以外)的任何N端PG不為還原型或混合型PG, 則PG2為弱型、還原型或混合型PG ;及 4. 若任何側鏈保護基不為還原型或混合型PG,則SPPS 中用於合成C-PEP之最後一個胺基酸(亦即肽C-PEP之N 端胺基酸)之N端PG為鹼型PG、弱型PG、還原型PG或 混合型PG ;及 5. PEP或C-PEP之包含二酮哌啡殘基之C端保護基可 在以下條件下自肽PEP或C-PEP裂解: 在強裂解條件下裂解,或 若PG2及SPPS中用於合成C-PEP之胺基酸之任何N 端PG不為還原型或混合型PG,則在強裂解條件或還原裂 解條件下裂解,或 若PG2及SPPS中用於合成C-PEP之胺基酸之任何N 端PG不為弱型PG,則在弱裂解條件下裂解,或 若PG2及SPPS中用於合成C-PEP之胺基酸之任何N 端PG不為弱1型PG,則在弱1型裂解條件下裂解。 若所需肽C-PEP中存在一或多個側鏈PG, 則另一個更佳具體實例為 1.任何側鏈保護基為強型PG、還原型PG或混合型PG; 及 2.SPPS中用於合成C-PEP之胺基酸除最後一個胺基酸 以外(亦即除肽C-PEP之N端胺基酸之N端PG以外)的 任何N端PG為鹼型PG ;及 3.PG2為弱型PG ;及 ⑧ 24 201249861 4.SPPS中用於合成C-ΡΕΡ之最後一個胺基酸(亦即肽 C-PEP之N端胺基酸)之N端PG為鹼型PG或弱型PG ; 及 5.PEP或C-ΡΕΡ之包含二酮哌畊殘基之C端保護基可 在以下條件下自肽PEP或C-ΡΕΡ裂解: 若PG2及SPPS中用於合成C-ΡΕΡ之胺基酸之任何N 端PG不為還原型或混合型PG,則在強裂解條件或還原裂 解條件下裂解,或 若PG2及SPPS中用於合成C-ΡΕΡ之胺基酸之任何N 端PG不為弱1型PG,則在弱1型裂解條件下裂解。 若所需肽C-ΡΕΡ中不存在側鏈PG, 則一個較佳具體實例為 1.SPPS中用於合成C-ΡΕΡ之胺基酸除最後一個胺基酸 以外(亦即除肽C-ΡΕΡ之N端胺基酸之N端PG以外)的 任何N端PG為鹼型、還原型或混合型PG ;及 2.若SPPS中用於合成C-ΡΕΡ之胺基酸除最後一個胺基 酸以外(亦即除肽C-ΡΕΡ之N端胺基酸之N端PG以外) 的任何N端PG不為還原型或混合型PG,則PG2為強型、 弱型、還原型或混合型PG,或 PG2為強型、弱型或混合型PG ;及 3 .SPPS中用於合成C-ΡΕΡ之最後一個胺基酸(亦即肽 C-ΡΕΡ之N端胺基酸)之N端PG為鹼型、強型、弱型、 還原型或混合型PG ;及 4.PEP或C-ΡΕΡ之包含二酮哌啡殘基之C端保護基可 25 201249861 在以下條件下自肽PEP或C-ΡΕΡ裂解: 若PG2及SPPS中用於合成C-PEP之胺基酸之任何N 端PG不為強型PG,則在強裂解條件下裂解,或 若PG2及SPPS中用於合成C-ΡΕΡ之胺基酸之任何N 端PG不為強型、還原型及混合型PG,則在強裂解條件或 還原裂解條件下裂解,或 若PG2及SPPS中用於合成C-ΡΕΡ之胺基酸之任何N 端PG不為強型或弱型PG,則在弱裂解條件下裂解,或 若PG2及SPPS中用於合成C-ΡΕΡ之胺基酸之任何N 端PG不為強型或弱1型PG,則在弱1型裂解條件下裂解。 若所需肽C-ΡΕΡ中不存在側鏈PG, 則一個更佳具體實例為 1 .SPPS中用於合成C-ΡΕΡ之胺基酸除最後一個胺基酸 以外(亦即除肽C-ΡΕΡ之N端胺基酸之N端PG以外)的 任何N端PG為鹼型PG ;及 2.PG2為強型、弱型、還原型或混合型PG,或 3.SPPS中用於合成C-ΡΕΡ之最後一個胺基酸(亦即肽 C-ΡΕΡ之N端胺基酸)之N端PG為鹼型、強型、弱型、 還原型或混合型PG ;及 4.PEP或C-ΡΕΡ之包含二酮哌畊殘基之C端保護基可 在以下條件下自肽PEP或C-ΡΕΡ裂解: 若PG2及SPPS中用於合成C-ΡΕΡ之胺基酸之任何N 端PG不為強型PG,則在強裂解條件下裂解,或
若PG2及SPPS中用於合成C-ΡΕΡ之胺基酸之任何N 26 201249861 端P G不為強型、還原型及混合型p g,則在強裂解條件或 還原裂解條件下裂解,或 若PG2及SPPS中用於合成C-PEP之胺基酸之任何n 端PG不為強型或弱型PG,則在弱裂解條件下裂解,或 若PG2及SPPS中用於合成C-PEP之胺基酸之任何n 端PG不為強型或弱1型pg,則在弱1型裂解條件下裂解。 本發明之主題為製備肽C-PEP之方法(C-PEP ), C-PEP包含肽基pEp_c,PEP_C之c端由保護基DKp_pG 保護,DKP-PG包含柄狀基團HG,視情況包含間隔基SG 且包含二酮哌啡殘基DKP ; SG為肽化學中習知使用之間隔基; DKP為衍生自二肽殘基DPR之二酮哌啡殘基; DPR包含α胺基酸殘基xaal及Xaa2 ;
Xaal為DPR之C端胺基酸殘基;
Xaa2為DPR之N端胺基酸殘基,且Xaa2具有側鏈, 該側鏈經官能基FG取代; PEP-C經由Xaac(1)連接至HG ;
XaaC為PEP-C之胺基酸殘基;
XaaC(〉中之索引⑴表示PEP-C之C端位置;
XaaC(1)為PEP-C之C端胺基酸殘基; HG為固相肽合成spps中習知用於使肽之^端連接至 固相的柄狀基團,其允許c端在不使肽中連接兩個胺基酸 殘基之醯胺鍵裂解的條件下自HG裂解;
HG直接連接至FG ’或若存在%,則hg連接至SG 27 201249861 且SG連接至FG ; 方法(C-PEP)包含步驟(iii); 步驟(iii)包含反應(INRIFO); 反應(INRIFO)為如下反應,其包含在肽PEP-C-DKP-L-樹脂A中的分子内成環反應及同時的裂解反應; PEP-C-DKP-L-樹脂A為C-PEP之前驅體且包含PEP-C 及樹脂DKP-L-樹脂A,其中PEP-C係連接至DKP-L-樹脂A; DKP-L-樹脂A包含樹脂A及形成DKP-PG之連接子 DKP-L ’其中樹脂A係連接至DKP-L, 樹脂A為在SPPS中習知用作固相之樹脂,
DKP-L包含HG ’視情況包含SG,及DPR,其中DPR 之C端羧酸基(其為Xaal之羧酸基)連接至樹脂a ; 反應(INRIFO)中之分子内成環為DpR之N端胺基(其 為Xaa2之α胺基)與DPRi c端羧酸基進行反應,從而 形成DKP,從而同時使Xaal自樹脂A裂解且形成DKp_pG; HG以某種方式選擇,以使HG與乂⑽。”之間的鍵不在 反應(INRIFO)期間裂解。 藉由使用HG,提供xaaC⑴與樹脂A之間的裂解位點, 該裂解位點可在肽中任何介於兩個胺基酸之間的醢胺鍵不 裂解的情況下選擇性裂解;該裂解位點為⑴與即之 間的鍵。藉由此裂解’以未經保護之自由羧酸基形式㈣ XaWk㈢’或㈣胺基形式’較佳以c(〇)nh2形式剩 放C端缓酸基,視hg之化學性質而定 藉由使用HG, 此包含DKP之特定 C端保護基如同肽 28 201249861
A 化學中習知使用之c端保護基一般起作用。 車父佳在反應(INRIF0)之前藉由固相狀合成spps (PEP-C)製備 PEP-C,SPPS Γρρρ rM © vt am CPEp_c)更佳使用dKP心樹 脂A作為固相。 因此’本發明之另—主題為方法(C-PEP ),其中該方 法(C-PEP )以及其所有較佳具體實例係如上文所定義,其 中在步驟(iii)之前藉由固相肽合成spps (pEp_c)製備 PEP-C,SPPS ( PEP-C )更佳使用DKP-L-樹脂A作為固相。 在SPPS(PEP-C)中,藉由使XaaC首先連續地偶合至固相, 接著偶合至生長中之肽鏈來構築pEp-C。各個⑽可個別 且依序地偶合,但其中兩者或兩者以上亦可例如以二肽、 二肽或寡肽形式偶合至固相或偶合至生長中之肽鏈。 樹脂A以某種方式選擇,以使樹脂A與xaai之間的鍵 不在SPPS ( PEP-C )期間裂解。 較佳,SPPS(PEP-C)進一步包含步驟(i)及步驟(ii); 在步驟(1)中,使XaaC(i)連接至DKP-L-樹脂A ; 在步驟(ii )中’藉由SPPS ( PEP_C )使其他胺基酸 XaaC根據PEP-C之序列連續地最初連接至乂⑽匸⑴且接著 連接至生長中之肽基鏈之N端,該生長中之肽基鏈經由 D K P - L結合至樹脂a ; HG以某種方式選擇,以使HG與XaaC(n之間的鍵不在 SPPS ( PEP-C)期間裂解;且 HG與XaaC(1)之間的鍵不在反應(INRIFO)期間裂解; 其中 C-PEP、樹脂 a、DKp_pG、hg、SG、DPR、DKP、 29 201249861
Xaal、Xaac(1)、xaaC、PEp_c、sc pG、反應(INRIF〇) 以及其所有較佳具體實例係如上文所定義; 且其中PEP-C、HG、SG及DPR以及樹脂A之間的連 接性以及其所有較佳具體實例係如上文所定義。 在反應(INRIFO )之前,藉由保護基pG2保護dpr之 N端’該N端為xaa2之α胺基。 因此’本發明之另一主題為方法(c_PEP),其中該方 法(C-PEP )以及其所有較佳具體實例係如上文所定義,其 中步驟(iii)包含裂解保護基PG2 ; PG2為肽化學中習知使用之n端保護基且選自由以下 組成之群.鹼可裂解型保護基、酸可裂解型保護基以及還 原可裂解型保護基。 在反應(INRIFO )之前在步驟(iH )中使pG2自Xaa2 裂解。 較佳’在SPPS (PEP-C)之後使PG2自Xaa2裂解。 較佳’在步驟(ii)中添加pEp_C之n端胺基酸殘基 之後使PG2自Xaa2裂解。 使PG2自Xaa2裂解可與反應(INRIF〇)連續或同時 進行。 PG2以某種方式選擇,以使pG2與Xaa2之間的鍵不在 SPPS ( PEP-C)期間裂解。 PG2及HG以某種方式選擇,以使hg與XaaC⑴之間 的鍵不在使PG2自Xaa2裂解期間裂解。 在C-PEP或PEP-C中存在1個以上SC-PG的情況下, 30 201249861 C-ΡΕΡ或ΡΕΡ-C之任何側鏈可獨立於C pEp或pEp c之任 何其他側鏈由保護基SC_PG保護,此等sc_pG彼此獨立地 相同或不同。任何SC_PG為肽化學中習知用於在spps期間 或在HSPPS期間保護肽之胺基酸殘基之側鏈或保護胺基酸 之側鏈的保護基。 較佳,任何SC-PG以某種方式選擇,以使sc_pG不在 SPPS ( PEP-C)期間裂解。 較佳,任何SC-PG以某種方式選擇,以使不在 反應(INRIFO )期間裂解。 較佳,PG2及任何保護基SC_PG以某種方式選擇,以 使SC-PG不在使PG2自Xaa2裂解期間裂解。 為避免几述’針對用於合成PEp_c及c-PEP之胺基酸 使用縮寫XaaC,或將其分別用於pEp_c及c_pEp或ρΕρ·Ν 之胺基酸殘基,且同樣,針對用於合成ρΕρ_Ν之胺基酸使 用XaaN,或將其用於pEP-N之胺基酸殘基。 因此’此等縮寫不區分胺基酸與胺基酸殘基。熟習此 項技術者可根據上下文明確區分表示胺基酸抑或胺基酸殘 基。 為概述連接性: PEP-C經由XaaC(1)連接至HG。 HG經由FG直接連接至xaa2,或若存在sg,則HG 連接至SG且SG經由FG連接至xaa2。
Xaa2經由肽鍵與xaal連接,在DpR中Xaa2為N端 胺基酸且Xaal為C端胺基酸。 31 201249861 在PEP-C-DKP-L-樹脂a中,Xaal之羧酸基連接至樹 脂A。 樹脂A以某種方式選擇,以使樹脂a與xaai之間的鍵 不在SPPS ( PEP-C )期間裂解。 HG以某種方式選擇,以使hg與XaaC(1)之間的鍵不在 反應(INRIFO)期間裂解。 HG以某種方式選擇,以使hg與XaaCn)之間的鍵不在 SPPS (PEP-C)期間裂解。 PG2以某種方式選擇,以使pG2與Xaa2之間的鍵不在 SPPS ( PEP-C)期間裂解。 PG2及HG以某種方式選擇’以使hg與Xaac(1)之間 的鍵不在使PG2自Xaa2裂解期間裂解。 較佳,任何SC-PG以某種方式選擇,以使sc-po不在 SPPS ( PEP-C)期間裂解。 較佳,任何SC-PG以某種方式選擇,以使sc_pG不在 反應(INRIFO)期間裂解。 較佳,PG2及任何保護基SC_PG以某種方式選擇,以 使SC-PG不在使PG2自Xaa2裂解期間裂解。 較佳’ C-PEP為PEP-C,其C端由dkp_pg保護。 較佳’ DPR由胺基酸殘基Xaal及Xaa2組成。
Xaal及Xaa2以某種方式選擇,以使其允許藉由反應 (INRIFO)形成 DKP。 較佳,C-PEP之任何側鏈由保護基Sc_pG保護。 若C-PEP中存在任何SC-PG’則較佳以某種方式選擇 32 201249861
解SC-PG、較佳所有Sc_pG HG’以使HG及從而DKP-PG在裂 之反應中同時自XaaC(1)裂解。 酸可裂解型 較佳,SC-PG選自由鹼可裂解型保護基、 保護基及還原可裂解型保護基組成之群。 更佳,任何SC-PG為強型pG。 SG時以連接基團cg 較佳’ FG在連接至HG或連接至 形式存在。 較佳’ FG選自由COOH、簡2、〇H及阳組成之群, 更佳選自由腿2及OH組成之群;因此CG車交佳選自由 <(〇)0-、-N(H)_、_〇_及_s_組成之群,更佳選自由_n(h)_ 及組成之群。 HG與FG之間的鍵,或若DKp_p(}中存在sg,則hg 與SG之間的鍵及8(}與FG之間的鍵,經選擇而具有如下 化學性質,其不在SPPS ( PEP_C )期間裂解; 且 其不在反應(INRIFO)、步驟(i)、步驟(π)或步驟 (⑴)期間裂解; 較佳’其亦不在任何保護基之任何裂解期間裂解。 較佳’ HG與FG之間的鍵,或若DKP-PG中存在SG, 則HG與SG之間的鍵及sg與FG之間的鍵,為醯胺鍵或 醋鍵’更佳為醯胺鍵。尤其,此等鍵與肽中介於兩個胺基 酸殘基之間的習知醯胺鍵具有相似之性質或穩定性。 C-PEP之N端可由保護基N-PG保護,n-PG為肽化學 中習知使用之N端保護基。 33 201249861 較佳,Ν-PG選自由驗可裂解型保護基、酸可裂解型保 護基及還原可裂解型保護基組成之群。 因此C-PEP包含N端未經保護之具體實例及pEp_c 之N端由Ν-PG保護之具體實例。 本發明之另一主題為製備c_pEp之方法(c_pEp ),其 特徵在於步驟(i )、步驟(u )及步驟(Hi ),該等步驟包含 固相肽合成SPPS ( PEP-C )及後續反應(INRIF〇 ); 在作為固體支樓物之樹脂DKP-L-樹脂A上進行SPPS (PEP-C), DKP-L-樹脂A為帶有形成DKP-PG之連接子DKP-L作 為官能基的樹脂A, DKP-L包含HG,視情況包含SG,及DPR,其中DPR 之Xaal經由其c端羧酸基連接至樹脂a, 反應(INRIFO )為DPR之N端胺基與DPR之C端羧 酸基進行分子内成環反應,從而形成DKP ; 且藉由反應(INRIFO )’使Xaal同時自樹脂A裂解且 形成 DKP-PG ; 在步驟(i )中,使XaaC(1)連接至DKP-L-樹脂A ; 在步驟(ii)中,藉由SPPS ( PEP-C )使其他胺基酸 XaaC根據ΡΕΡ-C之序列連續地最初連接至xaac(1)且接著 連接至生長中之肽鏈之N端,該生長中之肽鏈經由DKP-L 結合至樹脂A ; 在步驟(ii )中添加PEP-C之N端胺基酸殘基之後進 行步驟(iii ),在步驟(iii )中’藉由反應(INRIFO )形成 ⑧ 34 201249861 » C-PEP , 樹脂A以某種方式選擇,以使樹脂A與Xaal之間的鍵 不在SPPS ( PEP-C )期間裂解; HG以某種方式選擇,以使HG與XaaC(1)之間的鍵不在 SPPS (PEP-C)期間裂解;且 HG與XaaC(1)之間的鍵不在反應(INRIFO)期間裂解; 保護C-PEP之側鏈之任何SC-PG以某種方式選擇,以 使SC-PG不在SPPS ( PEP-C )期間裂解;且 SC-PG不在反應(INRIFO )期間裂解; 其中 C-PEP、樹月旨 A、DKP-PG、HG、SG、DPR、DKP、 Xaal、Xaac(1)、XaaC、PEP-C、SC-PG、反應(INRIFO) 以及其所有較佳具體實例係如上文所定義; 且其中PEP-C、HG、SG及DPR以及樹脂A之間的連 接性以及其所有較佳具體實例係如上文所定義。 本發明之另一主題為製備形成DKP-PG之連接子 DKP-L 之方法(DKP-L), 方法(DKP-L)包含步驟(DKp_L_i)、步驟(DKp_L iii) 且視情況包含步驟(DKP-L-ii ); 在步驟(DKP-L-i )中’使Xaa2偶合至Xaal ; 若DKP-L中存在SG ’則在視情況選用之步驟 (DKP-L-ϋ)中,使SG偶合至χ—; 在步驟(DKP-L-iii)中,若DKp_L中存在SG,則使 HG偶合至Sg,或使HG偶合至Xaa2 ;
其中 DKP-PG、DKP-L、DKP、Xaa2、Xaal、HG 及 SG 35 201249861 以及其所有較佳具體實例係如上文所定義。 步驟(DKP-L-i)、舟總 、 ;7驟(DKP-L-iii )及視情況選用之 步驟(DKP-L-ii)可以任何次序進行。 較佳,首先進行步驟(DKP^i),若DKp_L中存在%, 則接著進行視情況選用之步驟(DKp_L ii),且進行步驟 (DKP-L-iii)作為最後步驟。 本發明之另—主題為製備DKp_L_樹脂A之方法 (DKP-L -樹月旨 A), 方法(DKP-L-樹脂A)為方法(χι )或方法(χ2); 方法(XI)包含步驟步驟(χι_ϋ)、步驟(ΧΜν) 且視情況包含步驟(Xl-iii); 在步驟(XM)中,使胺基酸Xaal偶合至樹脂A ; 在步驟(Xl-ii)中,使胺基酸Xaa2偶合至Xaal ; 若DKP-L-樹脂A中存在SG,則在視情況選用之步驟 (X1 -iii )中’使SG偶合至Xaa2之側鏈; 在步驟(Xl-iv)中,若DKP_L_樹脂A中存在SG,則 使HG偶合至SG ’或使HG偶合至xaa2 ; 方法(X2)包含步驟(X2-i); 在步驟(X2-i )中,使DPK-L偶合至樹脂A ; 其中 DKP-L-樹脂 A、樹脂 a、DKP-PG、DKP-L、DKP、
Xaa2、Xaal、HG及SG以及其所有較佳具體實例係如上文 所定義。 在方法(XI)中,步驟(Xl-i)、步驟(Χ1_Η)、步驟 (X1 - i ν )及視情況選用之步.驟(X1 - i i i )可以任何次序進行。 ⑧ 36 201249861 較佳,首先進行步驟(叫),接著進行步驟(χΜί), 若DKP_L_樹脂A中存在SG,則接著進行視情況選用之步 驟⑺,),且進行步驟(X1_iv)作為最後步驟。 任何SG Xaa2及Xaal在方法(DKp L樹脂八) 或方法(DKP_L)中用作構築嵌段時可帶有保護基: 在方法(XI)或方法T、m ^ ( DKP-L)中用作構築嵌段的Xaal 係以習知C端經保護之胺基酸形式❹,保護基為保護基 c-PG4aalu胺基未經保護且在各別偶合反應中為偶合 位點。 在方法(XI )或方法(DKp_L)中用作構築嵌段的Xaa2 係以習知經保護之胺基酸形式使用叫呆護基為保護基 N-PG。Xaa2之1-羧酸基未經保護且在各別偶合反應中為偶 合位點。
Xaal或Xaa2之任何側鏈亦較佳由sc_pg保護。 C-PG為肽化學中f知用於保護胺基酸之㈣基或用於 保護肽之C端的保護基。 較佳,C-PG選自由鹼可裂解型保護基、酸可裂解型保 護基及還原可裂解型保護基組成之群。 呈用於各別偶合反應中之個別構築嵌段形式的各HG 及SG具有至少兩個活性官能基。第一活性官能基用作類似 於肽合成中之胺基酸構築嵌段之α胺基的官能基,且可由 適合保護基保護,較佳由保護基N_PG保護;較佳,此官能 基為OH或NH2且在經保護狀態下以_〇_或_N(H)_形式存在。 HG及SG之另一活性官能基用作類似於肽合成中之胺 37 201249861 基酸構築嵌段之羧酸基的官能基,且通常未經保護,且在 各別偶合反應中為偶合位點。較佳,此未經保護之位點為 羧酸基。在此偶合.反應之後,第—活性官能基之任何保護 基、較佳該Ν-PG可經裂解,以使此第一官能基可用於下一 偶合反應。 可由方法(DKP-L)獲得之形成DKp_pG之連接子 DKP-L通常仍帶有HG之任何保護基,以可用於在方法(χ2 ) 中偶合至樹脂Α。 在方法(X2)中進行偶合之前,須使Xaal之cpG裂 解掉。較佳,方法(DKP-L)包含此使c_pG自XaU裂解: 因此,DKP-L包含兩個具體實例,一個具體實例在xaai上 具有保護基C-PG,另一個具體實例在Xaal上不具保護基 C-PG。 & 在DKP-L-樹脂A中,HG可仍帶有用於製備DKp_L_ 樹脂A之構築嵌段HG中所存在的保護基βΗ(}上之任何保 護基須在方法(C-PEP)中之步驟(i)之前裂解。較佳, 方法(DKP-L-樹脂A )包含此使任何保護基自HG裂解。 因此,DKP-L-樹脂A包含兩個具體實例,一個具體實例在 HG上具有任何保護基,另一個具體實例在hg上不具任何 保護基。 本發明之另一主題為製備肽PEP之方法(PEP_HSPPS), 方法(PEP-HSPPS )包含步驟(j_pep )及步驟(ii pep ), 在步驟(i-pep)中,根據方法(C-PEP)製備肽C_PEP ; 接著 38 201249861 在步驟(Π-pep )中,藉由均質溶液相肽合成HSPPS使 在步驟(1-PEP )中獲得之C-ΡΕΡ與N端經保護之胺基酸或 N端經保護之肽PEp_N偶合; 其中方法(C-ΡΕΡ )、C-ΡΕΡ及PEP-N以及其所有較佳 具體實例係如上文所定義。 方法(PEP-HSPPS)為包含另一步驟之方法 (C-ΡΕΡ) 〇 在PEP-N中存在1個以上SC_PG的情況下,PEp_N之 任何側鏈可獨立於PEP_N之任何其他側鏈由保護基 保蠖,此等SC-PG彼此獨立地相同或不同;其中sc_p(J以 及其所有較佳具體實例係如上文所定義。 在方法(PEP-HSPPS)中使用n端未經保護之c_PEp。 因此,在方法(PEP-HSPPS)之偶合反應之前使保護C_pEp 之N端的任何保護*N_pG裂解。在方法(cpEp)中較佳 包含此裂解反應。由於藉由spps ( pEp_c )製備—匸, 故通常使用在α胺基上具有經保護之胺基N_pG的用於 SPPS ( C-ΡΕΡ)中之pEp_c之N端胺基酸。視pEp_c之n 端之此保護基N_PG之性質而定,此N_pG可在反應 (INRIFO )中之成環的條件下同時自n端裂解,或其可在反 應(inrIF0)之前與使PG2自Xaa2裂解同時自n端裂解。 本發明之其他主題為下列方法: 1.方法(PEP-HSPPS ),其中 已藉由方法(DKP-L-樹脂A)製備方法(c_pEp)之 DKP-L-樹脂 A ; 39 201249861 2. 方法(PEP-HSPPS) > 其中 已藉由方法(DKP-L-樹脂A )之方法(χι )製備方法 (C-PEP)之 DKP-L-樹脂 A ; 3. 方法(PEP-HSPPS ),其中 已藉由方法(DKP-L-樹脂A )之方法(χ2 )製備方法 (C-PEP )之DKP-L-樹脂A ;且其中 已藉由方法(DKP-L )製備方法(dkP-L-樹脂A )之 DKP-L ; 4. 方法(C-PEP),其中 已藉由方法(DKP-L-樹脂A )製備DKP-L-樹脂A ; 5·方法(C_PEP),其中 已藉由方法(DKP-L-樹脂A)之方法(χι )製備DKP-L-樹脂A ; 6.方法(C-PEP),其中 已藉由方法(DKP-L-樹脂A )之方法(X2 )製備DKP-L_ 樹脂A ;且其中 已藉由方法(DKP-L )製備方法(DKP-L-樹脂a )之 DKP-L。 本發明之另一主題為選自由以下組成之群的化合物: C-PEP、PEP-C-DKP-L-樹脂 A、DKP-L-樹脂 A 及 DKp_L, 其中C-PEP、PEP-C-DKP-L-樹脂A、DKP-L-樹脂A及DKP-L 以及其所有較佳具體實例係如上文所定義。 本發明之另一主題為C-PEP之用途,其中C-PEP以及 其所有較佳具體實例係如上文所定義,其在均質溶液相肽 40 201249861 * 合成HSPPS中用於藉由C-ΡΕΡ與N端經保護之胺基酸或N 端經保護之肽PEP-N進行偶合反應來製備肽PEP。 本發明之其他主題為選自由 C-ΡΕΡ、PEP-C-DKP-L-樹 脂A、DKP-L-樹脂A及DKP-L組成之群的化合物之用途; 或DKP-L之用途,其用作形成DKP-PG之連接子, 其用於肽化學中;或 用於製備肽;或 用於製備肽之方法中;或 用於製備肽之方法之步驟中;或 用於肽偶合反應中;或 用於製備肽之SPPS中;或 用於製備肽之HSPPS中; 其中 C-ΡΕΡ、PEP-C-DKP-L-;^ 月旨 A、DKP-L-樹月旨 A、 DKP-L及DKP-PG以及其所有較佳具體實例係如上文所定 義。 在至此所述之本發明具體實例中包含本發明之下列任 何具體實例。 本發明之另一主題為製備式(ΠΙ-PEP-PG )化合物之方 法(A ), 41 201249861
PGIII— PEP— HG
SG (III-PEP-PG) —Xaa2- Xaal — 其係藉由使以下物質進行均質溶液相偶合來達成: N端由保護基PGIII保護之胺基酸,或 N端經保護之肽片段PEP-N,該N端經保護之肽片段 PEP-N 為式(III-PEP-N-PG)之化合物, PGIII— (XaaN(iPn)) pn (III-PEP-N-PG) 與式(III-H)之化合物; (1)
Η—PEP-C— HG
SG (III-H) —Xaa2- Xaal - HG為固相肽合成SPPS中習知用於使肽之C端連接至 42 201249861 固相的柄狀基團,其允許c端在不使肽中連接兩個胺基酸 殘基之醯胺鍵裂解的條件下自HG裂解; η為0或1 ; SG為肽化學中習知使用之間隔基;
Xaal為α胺基酸殘基;
Xaa2為烧基)-α胺基酸殘基,其中c1-5烧基經 官能基FG取代,FG選自由NH2、OH、SH及COOH組成 之群’當η為1時’ FG與SG鍵結;當η為0時,FG鍵結 至HG,且因此,FG在式(III_PEP_PG)化合物中以選自由 以下組成之群的連接基團CG形式存在:_n(H)-、-〇-、_s_ 及-c(o)o-; PEP-C 為式(XaaC(ipc))pct 肽基; 在式(III-H)中以(1)指示之氫Η為PEP-C之未經保護 之N端的氫;
XaaC為肽基ΡΕΡ-C之胺基酸殘基; 在XaaC(ipc)中,(ipc)表示PEP-C在位置ipc上之XaaC 的索引’其中位置自PEP-C之C端開始計數, pmax 為 502 ; pc為2至(pmax-2 )之整數,且表示PEP-C中之胺基 酸殘基的總數; ipc為1至pc之整數; 式(III-PEP-PG)與式(III_PEP-N-PG)中之 PGIII 相 同且為肽化學中常用之N端保護基; PEP為式(Xaap(ip))p之肽基; 43 201249861
pn為2至(pmax-pc )之整數,且表示PEP-N中之胺基 酸殘基的總數; p 為 pc+pn I
XaaN為肽片段PEP-N之胺基酸殘基; 在XaaN(ipn)中,(ipn)表示PEP-N在位置ipn上之XaaN 的索引,其中位置自PEP-N之C端開始計數;
XaaP為胺基酸殘基; 在XaaP(ip)中,(ip)表示PEP在位置ip上之xaap的索 引’其中位置自PEP之C端開始計數; ipn為1至pn之整數; ip為1至p之整數; 限制條件為XaaP(ip)之ip與Xaac(iPc)之ip相同且具有! 至ipc之值;且XaapiW之ip與又⑽妒㈣之ip相同且具有 值(pc + ipn); 其中 pmax、pc、XaaC、XaaC(ipc)、ipc 及式(πΐ-Η) 之化合物以及其所有較佳具體實例係如上文所定義; 式(III-H)中之Xaac及XaaN彼此獨立地相同或不同。 因此,PEP-C為具有pc個胺基酸殘基Xaa(:之肽基。 較佳’ Xaal之α胺基藉由肽鍵偶合至Xaa2之丨_羧基。 式(III-H)化合物為上文所定義之c pEp之一具體實 例0 HG、SG、Xaa2& Xaal為上文所定義之肽c pEp2各 別HG、SG、Xaa2及xaal的具體實例。 例如式(III-H)中之環狀二肽為上述DKp (亦即衍生 44 201249861 * 自DPR之二酮哌畊殘基)之一個具體實例。 較佳,藉由SPPS製備PEP-C。 製備PEP-C之SPPS在上文中稱為SPPS ( PEP-C )。 較佳,PEP-C為式(XaaC(iPc))pc之肽基,其已藉由SPPS 使用式PGXaaC(ipc)-XaaC(ipc)-〇H之胺基酸所合成。 PGXaaC為SPPS中習知使用之n端保護基且選自由以 下組成之群:鹼可裂解型保護基、酸可裂解型保護基以及 還原可裂解型保護基。 在PGXaaC(iPC)中,索引(ipc)將PGXaaC(ipc)定義為胺基 酸 PGXaaCdPO-XaaCGPO-OH 之保護基,其中各 PGXaaC(ipc) 彼此獨立地與另一 PGXaaC(lpc)相同或不同。 較佳,PGXaaC及PGXaaC(ipc)分別為在SPPS中習知用 於保護分別在SPPS中用於合成PEP_C之任何胺基酸 PGXaaC-XaaC-OH 及 PGXaaC(ipc)-XaaC(ipc)-OH 之 α 胺基的 Ν端保護基。 為避免冗述’在本文中針對用於合成PEP_c及c-PEP 之胺基酸之胺基之保護基使用縮寫pGXaac,或將其用於在 SPPS期間各個階段時PEp_c及c_pEp之N端胺基酸殘基之 N端保護基。熟習此項技術者可根據上下文明確區分表示兩 種意義中之哪一者。 因此’ PEP-Ν為具有pn個胺基酸殘基XaaN之肽基。 因此’ PEP為具有P個胺基酸殘基XaaP之肽基。 出現於例如式(III-PEP-PG )及式(III-H )中之式 (Ill-res)殘基 45 201249861 (8)
HG
SG (Ill-res) —Xaa2- Xaal —i 為上述DKP-PG之一具體實例; 其中HG、SG、η、Xaa2及Xaal係如上文所定義; 其中Xaa2及Xaal形成上述DKP ; 且其中(8)表示肽基PEP-C與HG之間的鍵。 式(III-PEP-PG )化合物為上文所定義之肽PEP之一具 體實例且亦可為上文所定義之C-PEP之一具體實例。 可藉由習知肽合成,藉由SPPS、藉由HSPPS或藉由 SPPS與HSPPS之組合,較佳藉由SPPS製備PEP-N。 在應使用式(ΠΙ-PEP-PG )化合物作為下一片段C-PEP 與下一片段PEP-N根據方法(A)進行下一 HSPPS偶合的 情況下,僅需移除該式(III-PEP-PG )化合物之N端保護基 PGIII以提供該下一片段C-PEP,亦即提供下一式(III-H) 化合物,以用於根據方法(A )進行該下一 HSPPS偶合。 由於式(III-H )化合物與PEP-N兩者自身可能已在其 製備步驟中之一者中藉由方法(A)所製備,因此其可具有 實際上任何數目之胺基酸,只要溶液相偶合仍在合理時間 46 201249861 内進行即可。 pmax較佳為500,pmax更佳為4〇〇或4〇2,甚至更佳 為300或302,尤其為200或2〇2,更尤其為…或152, 甚至更尤其為100或102,特定為8〇或82,更特定為5〇 或52,甚至更特定為25或27。 肽基PEP-C較佳為線性肽基,且]?砂^較佳為線性肽, 從而產生線性肽基PEP。 較佳’若已使用SPPS製備式(ιπ-Η )化合物中之PEP-C 及/或PEP-N,則其彼此獨立地具有2個至1〇〇個胺基酸殘 基,更佳具有2個至50個胺基酸殘基,甚至更佳具有2個 至40個胺基酸殘基,尤其較佳具有2個至25個胺基酸殘 基。 較佳’若已使用HSPPS製備式(ΙΠ_Η )化合物中之 PEP-C及/或PEP-N,則其彼此獨立地具有2個至250個胺 基酸殘基,更佳具有2個至2〇〇個胺基酸殘基,甚至更佳 具有2個至1〇〇個胺基酸殘基,尤其較佳具有2個至5〇個 胺基酸殘基,特定言之具有2個至25個胺基酸殘基。 狀基PEP-C及PEP-N之個別胺基酸殘基之侧鏈上的任 何官能基各自獨立地由保護基SC-PG保護或未經保護; 較佳’肽基PEP-C及PEP-N之個別胺基酸殘基之側鏈 上之所有官能基由保護基SC-PG保護或未經保護; 更佳’在片段pEp_N與式(m_H)化合物根據方法(A) 進行溶液相·偶合期間,肽基pEp_c及pep-N之個別胺基酸 殘基之側鏈上的所有官能基經保護, 47 201249861 甚至更佳,肽基ΡΕΡ-C及PEP-N之個別胺基酸殘基之 側鏈上的所有官能基由強型PG保護。 較佳,肽基PEP或ΡΕΡ-C之C端,或在C端胺基酸殘 基具有側鏈之情況下,C端胺基酸殘基之側鏈分別鍵結至 HG ; 更佳’肽基PEP或ΡΕΡ-C之C端分別鍵結至HG。 較佳, / HG為在固相肽合成spps中習知用於使將變成欲由 SPPS合成之肽之c端胺基酸殘基的胺基酸經由該連接 至固相、較佳連接至樹脂A的柄狀基團。 HG允許C端胺基酸殘基在肽中連接兩個胺基酸殘基之 酿胺鍵不裂解的條件下自HG裂解。 更佳, HG為選自由以下組成之群的柄狀基團:式(hgF I ) 之柄狀基團、式(HGF-II)之柄狀基團、式(HGIMII)之 柄狀基81式(HGF-IV)之柄狀基團、式(HGF V)之柄 狀基團及式(HGF-VI)之柄狀基團, ⑧ 48 201249861 R1 .Tl-1 R2 (*)'
Tl-2 (*)\ ,cr (HGF-I) sl-2 sl-1
NH
49 201249861 其中 (*)表示各別肽基(例如式(ni_PEP_PG)之pep、式 (III-H)之ΡΕΡ-C或方法(C-ΡΕΡ)中之PEP-C)之C端之 c原子與HG之間的鍵, 或在各別肽基(例如式(UPEP-PG )之PEP、式(III-H ) 之PEP-C或方法(C_pEP )中之pEp_c )之c端胺基酸殘基 具有側鏈且經由此側鏈連接至HG的情況下,表示各別肽基 (例如式(III_PEP_PG )之 PEp、式(ΙΠ Η )之 pEp c 或方 法(C-ΡΕΡ )中之ΡΕΡ-C )之C端胺基酸殘基之側鏈與Η(3 之間的鍵, (**)在η為1時表示HG與SG之間的鍵,或在n為〇 時表示HG與FG之間的鍵’其中SG及FG以及其所有較 佳具體實例係如上文所定義; R1、R2、R3、R4、R10及R11相同或不同且彼此獨立 地選自由氫及〇_Cl 4烷基組成之群, s 1 -1、s2、s3、s4及s6相同或不同且彼此獨立地選自 由1、2、3及4組成之群, s5-l 為 〇、1、2、3 或 4, sl_2、S5-2及s5-3相同或不同且彼此獨立地為〇或i , T1-1 為 〇 或 nh, Τ1~2 及 T5-1 為 Ο, 其中η、SG、FG、ΡΕΡ-C及方法(C-ΡΕΡ )以及其所有 車交佳具體實例係如上文所定義。 較佳, 50 201249861 ()表不各別狀基(例如式(m_pEp pG)之pEp、式 (H)之ΡΕΡ-C或方法(C_PEP)中之pEp c)之c端之 c原子與HG之間的鍵。 較佳, SG為SPPS中習知使用之間隔基,較佳包含一或多個、 更佳包含1至500個氧化乙稀單元。 更佳, SG為選自由以下組成之群的間隔基:式(sg_;[)之間 隔基、式(SG-II)之間隔基、式(SG_m)之間隔基、式 (SG-IV)之間隔基及式(SG_V)之間隔基;
NH 氺 NH、
Tc 2 H S2- CH—CH—9
CH m 2 2 Η H 0—clc—
NH ο
NH 2 H -c lxm •cl CIO.
Ko G- (s CH—CH丨 o- CH, I 2 CH, I 2 o
H2 1 CIC 2 H
CH m w G- (s o
CH 6m -11 G- s 2 r\ .CH, m9 2 % 氺 * 氺 氺 ο
XT
(SG-IV) 51 I201249861
NH CH. NH I — I 〒h2o I _ .CH.
mlO 守h2 $o NH I CH^ h2?· 叫, -CH. mil ch2o (SG-VI) ,CH, ml2 h2c ;^λ/ν 〇'- 'CH2 h2c h2c^o (SG-V) 广氺氺氺 (SG-VII) ml、m5、m6、m7、m9、ml0、mlUml24 且彼此獨立地為1至5〇〇之整數; j虱不同 m2、m3及m4相同或不同且彼此獨立地為丄 4, 、2、3 或 (…)在…時為SWHG之間的鍵, (…*)在打為【時為SG與Xaa2之間的鍵。 之(**)表示 (_)在η為1時為由HG之各別具體實例中 之鍵。 實例係 如上文 (*_)在η為1時為犯與FG之間的鍵 其中HG、Xaa2及η以及其所有較佳具體 所定義。 較佳,XaaC及^^為α胺基酸殘基。 更佳,及XaaN為天然存在之《胺基酸殘基 ⑧ 52 201249861 若XaaC或XaaN帶有具有官能基之側鏈,則XaaC或 XaaN之侧鏈之此官能基經保護或未經保護,其較佳經保護。 更佳,XaaC與XaaN相同或不同且彼此獨立地選自由 以下&丄、^ ......
基經保護或未經保護,較佳經保護。 lie、
Asp、Cjiu、Phe、Gly、His、 Gin、Arg、Ser、Thr、Val、
Trp、Tyr、Asp、Asn、Glu及Gln ;其中側鏈中之任何官能 較佳,PGIII選自由以下組成之群:鹼型pG、強型pG、 弱型PG及還原型pg。 若肽基PEP-C及PEP_N之個別胺基酸殘基之側鏈上之 所有官能基由強酸可裂解型保護基㈣ (πμ^-pg)化合物作為下一片段c_pEp與下一吏^ PEP-N根據方法(A)進行下一 Hspps偶合的情況下,則 PGIII較佳選自由鹼型pG、弱型pG及還原型組成之群。 “式(HGF_I)之柄狀基團及式(HGF-IV)之柄狀基團可 藉由強裂解條件自pEp_c裂解, 式(HGF-II )之柄狀基團可藉由強裂解條件裂解, 式(HGF-III)之柄狀基團可藉由弱裂解條件或強裂解 條件裂解, 條件裂解, 式(HGF-V)之柄狀基團可藉由還原裂解條件裂解,且 式(HGF-VI)之柄狀基團可藉由弱裂解條件或強裂解 較佳,HG為選自 (HGF-i )之柄狀基團、 下組成之群的柄狀基團:式 (HGF-IV )之柄狀基團及式 53 201249861 (HGF-VI)之柄狀基團。 較佳,R1、R2、R3、R4、R1〇及RU相同或不同且彼 此獨立地選自由氫及o-ch3組成之群。 更佳,R1與R2相同且選自由氫及〇_CH3組成之群。 更佳,R3、R4、R10 及 R11 為 〇_CH3。 較佳,Sl-l及s6為i。 車父佳,sl-2、S5-l、s5-2及s5-3彼此獨立地為0或i。 較佳,s2及S3為4。 較佳,s 4為1或2。 較佳 ’ T1-1 為 NH,sl-Ι 為 1 且 sl_2 為!。 較佳,T1-1為〇,sl-i為1且sl_2為〇。 較佳,T1-1為〇,sl-Ι為1且si_2為1。 尤其’HG為選自由以下組成之群的柄狀基團:式 (HG-Ia)之柄狀基團、式(HG-Ib)之柄狀基團、式(HGIc) 之柄狀基團、式(HG-Id)之柄狀基團、式(HG_n)之柄 狀基團、式(HG-III)之柄狀基團、式(HG-IVa)之柄狀美 團、式(HG-IVb)之柄狀基團、式(HG-V〇之柄狀基團、 式(HG-Vb)之柄狀基團及式(HG-VI)之柄狀基團, ⑧ 54 201249861
(*)、 ίΗ3
NH
55 201249861 (<°
(*)\
(HG-Vb) χ (**) 0 (HG-Va)
其中 ()、及”所有較佳具體實例係如上文所定義, (**)以及其所有較佳具體實例係如上文所定義。 更尤其,HG為選白 、目由以下組成之群的柄狀基團:式 HG-Ia)之柄狀基團、々 巧C HG-Ib)之柄狀基團、式(hg-Ic ) ⑧ 56 201249861 之柄狀基團、式(HG-Id)之柄狀基團、式 狀基團、式(綱則之柄狀基團及;^νι^ = 基團。 甚至更尤其’HG為式(HG-Ia)之柄狀基團、式(HG_IVa) 之柄狀基團或式(HG-VI)之柄狀基團。 各種柄狀基團HG為已知柄狀基團或為已知柄狀基團 之結構上密切相關之衍生物。為使任何此等柄狀基團hg自 連接至各別柄狀基團HG之肽基裂解所需的反應條件在肽 化學中亦已知。 式(HG-Ia)之柄狀基團衍生自Rink醯胺柄狀物,式 (HG-Ib )、式(HG-Ic)及式(HG-Id)之柄狀基團衍生自二 苯曱基柄狀物,式(HG-Π )之柄狀基團衍生自pAL柄狀物, 式(HG-III)之柄狀基團衍生自齊貝爾柄狀物,式(HG_IVa ) 之柄狀基團衍生自HMPA(_王氏(Wang ))柄狀物,式 (HG-IVb)之柄狀基團衍生自HMpp(_王氏)柄狀物,且式 (HG-Va)及式(HG_Vb)之柄狀基團衍生自烯丙基柄狀物, 式(HG VI )之柄狀基團衍生自Ramage柄狀物。 較佳,ml、m5、、m7 ' m9、ml〇、mll 及 ml2 相同 或不同且彼此獨立地為1、2、3、4、5、6、7、8、9、i〇、 11、 12、 13、 14、 15、 16、 17、 18、 19、 20、 21、 22、 23、 24 、 25 、 26 、 27 、 28 、 29 、 30 ; 更佳 ml、m5、rn6、m7、m9、mlO、mil 及 ml2 相同 或不同且彼此獨立地為1、2、3、4、5、6、7、8、9、10、 11 、 12 、 23 或 27 ; 57 201249861 甚至更佳’ ml、m5 或不同且彼此獨立地為1 ml、m5、 m6、m7、mlO、mil 及 ml2 相同 、2、 3、 4、 5、 6、 7、 8、 9 或 10; m9 為 4、8、12 或 27 ; 尤其,ml為3 ; m5為1或2 ; 及m7為2 ; m9為4、 8、12 或 27 ; mlO 為 1 ; mll 為 3。
Xaal較佳選自由非天然存在之α胺基酸、天然存在之 α胺基酸殘基組成之群; 更佳選自由以下組成之群:天然存在之α胺基酸殘基、 α-Ν-甲基胺基酸殘基、L-Hpr殘基、D-Hpr殘基、DL-Pipr 殘基、2-((^-5烷基)-D-胺基酸殘基、2_(cN5烷基)_L-胺基酸 殘基' 2-(Ci.5烧基)-DL-胺基酸殘基及衍生自式(ρ^ρχ )化 合物之殘基;
其中 X 為 0、S 或 C(R13)R14 ;
立地選 自由氫、C,-4烷基及0-R8組成之群; R8為肽化學中習知用於保護側鏈之保護基 (Sub-R8)之取代基; 之保護基,或式 58 201249861 (Sub-R8) CHj——CHj-0--R9 • m8 其中 m8 為 1、2、3、4、5、6、7、8、9 或 i〇; R9為¢^.4烧基。 較佳, X 為 C(R13)R14 ; R5、R7、R12 及 R14 為氫; R13 為 0-R8 ; R8為肽化學中習知用於保護側鏈之保護基。 α-Ν-甲基胺基酸殘基較佳選自由以下組成之群:L a N_ 甲基胺基酸殘基、D-α-Ν-甲基胺基酸殘基及DL_a_N_甲基胺 基酸殘基; 更佳選自由以下組成之群:N-甲基甘胺酸殘基(肌胺 酸)、L-N-甲基苯丙胺酸殘基、D_N_甲基苯丙胺酸殘基、 DL-N-曱基苯丙胺酸殘基、L-N-曱基丙胺酸殘基、D_N-甲基 丙胺酸殘基、DL-N-甲基丙胺酸殘基、L-N-甲基纈胺酸殘 基、D-N-甲基顯胺酸殘基、DL-N-曱基類胺酸殘基、L-N-甲基色胺酸殘基、D-N-甲基色胺酸殘基、DL-N-甲基色胺酸 殘基。 天然存在之a胺基酸殘基較佳選自由Pro殘基及Gly 殘基組成之群;更佳選自由L-Pro殘基、D-Pro殘基、DL-Pro 59 201249861 殘基及Gly殘基組成之群。 較佳,式(HypX)化合物衍生自L_Hyp、D-Hyp或 DL-Hyp,更佳衍生自 L_4Hyp、D-4Hyp 或 DL-4Hyp。 尤其,Xaal選自由以下組成之群:L_N•曱基甘胺酸殘 基、D-N-甲基甘胺酸殘基、DL-N-曱基甘胺酸殘基、L-N-甲基苯丙胺酸殘基、D-N-曱基苯丙胺酸殘基、DL-N-曱基苯 丙胺酸殘基、L-Pro殘基、D-Pro殘基、DL-Pro殘基、側鏈 經保護之L-Hyp殘基、側鏈經保護之D-Hyp殘基、側鏈經 保護之DL-Hyp殘基' L-Hpr殘基、D-Hpr殘基及DL-Hpr 殘基;其中Hyp較佳為4Hyp。 更尤其’ Xaal為L-N-甲基苯丙胺酸殘基、D-N-甲基苯 丙胺酸殘基、DL-N-曱基苯丙胺酸殘基、L_Pro殘基、D_pro 殘基、DL-Pro殘基、側鏈經保護之L_Hyp殘基、側鏈經保 護之D-Hyp殘基、側鏈經保護之DL-Hyp殘基;其中Hyp 較佳為4Hyp。 甚至更尤其’ Xaal為D-Pro殘基、D-N-曱基苯丙胺酸 殘基或側鏈經保護之D-Hyp殘基;其中Hyp較佳為4Hyp。 當η為1時’ FG經由SG之各別具體實例中之鍵 與SG鍵結, 或FG經由HG之各別具體實例中之鍵(* *)鍵結至hg。 較佳,Xaa2選自由以下組成之群:L-Lys殘基、D-Lys 殘基、DL-Lys殘基、L-Orn殘基、D-〇rn殘基、DL-Orn殘 基' L-4-胺基脯胺酸殘基、D-4-胺基脯胺酸殘基、DL_4_胺 基脯胺酸殘基、L-α,γ-二胺基-丁酸殘基、D_a,Y_二胺基丁酸 60 201249861 殘基、DL-α,γ-二胺基-丁酸殘基、L-α,β-二胺基丙酸殘基、 D-α,β-二胺基-丙酸殘基、DL-α,β-二胺基丙酸殘基、L-Ser 殘基、D-Ser殘基、DL-Ser殘基、L-Thr殘基、D-Thr殘基、 DL-Thr 殘基、L-Cys 殘基、D-Cys 殘基、DL-Cys 殘基、L- 高半胱胺酸殘基、D-高半胱胺酸殘基、;DL-高半胱胺酸殘 基、L-Asp殘基、D-Asp殘基、DL-Asp殘基、L-Glu殘基、 D-Glu殘基及DL-Glu殘基。 較佳’ FG為NH2或OH,更佳為NH2 ;因此CG較佳為 -ΜΗ)-或-〇-,更佳為_N(H)_ ;因此,Xaa2較佳相應選擇。 更佳’ Xaa2選自由以下組成之群:L_Lys殘基、D-Lys 殘基、DL-Lys殘基、L_a,p_二胺基-丙酸殘基、D a,p_二胺 基-丙酸殘基及DL-α,β-二胺基-丙酸殘基。 甚至更佳’ Xaa2為L-Lys殘基或L-a,P-二胺基-丙酸殘 基。 一較佳具體貫例為如下組合,其中Xaa2為L_a胺基酸 殘基且Xaal為D-a胺基酸殘基,或者Xaa2為D_a_胺基酸 殘基且Xaal為L_a-胺基酸殘基,其中Xaal及Xaa2以及其 所有較佳具體實例係如上文所定義。 更佳,Xaal選自由以下組成之群:L-Pro殘基、D-Pro 殘基DL_Pro殘基、L-N-甲基苯丙胺酸殘基、D_N_甲基苯 丙胺k殘基及DL-N-甲基苯丙胺酸殘基;且Xaa2選自由以 下組成之群.L-Lys殘基、D_LyS殘基、DL-Lys、L-α,β-二 胺基-丙酸殘基、〇-α,β_二胺基_丙酸殘基及DL_a,p_二胺基_ 丙酸殘基。 61 201249861 甚至更佳,Xaal為D-Pro或D-N-曱基苯丙胺酸殘基, 且Xaa2為L-Lys或L-α,β-二胺基-丙酸殘基;或Xaal為L-Pro 或L_N-曱基苯丙胺酸殘基,且Xaa2為D-Lys或D-α,β-二胺 基-丙酸殘基。 尤其’ Xaa2具有L-組態且Xaal具有D-組態,其中Xaal 及Xaa2以及其所有較佳具體實例係如上文所定義。 更尤其,Xaal為D-Pro或D-N-曱基苯丙胺酸殘基,且 Xaa2為L-Lys或L-α,β-二胺基-丙酸殘基。 使用典型用於HSPPS之習知方法參數及試劑進行方法 (A )中之均質溶液相偶合,亦即Hspps。 S矣在★ 中且使用—或多種偶合試劑進行HSppS, 且較佳在-或多種偶合添加劑存在下,且MUM 三級驗存在下進行HSPPS。 HSPPS中使用之較佳偶人钟亦 σ °式劑為鱗鹽或條鹽及碳化二 亞胺偶合試劑。 鱗鹽及錄鹽較佳為苯并三唑 ^ ^ L 疋何生物;鱗鹽及级鹽更 佳選自由以下組成之群: 鱗) BOP (六氣鱗酸苯并三唾_1 基-氧基-參_(二甲胺基)-
PyBOP(六氟磷酸笨并三唑基-氧美 HBTU (六氟鱗酸〇_(ιη_笨并一, 基级)、 HCTU (六氟磷酸 四曱基级)、 參。比"各咬基鱗)、 -基)-1,1,3,3-四甲 ⑧ 62 201249861 TCTU (四氟硼酸〇-(1H-6-氣笨并三唑_卜基 四曱基级)、 HATU (六氟磷酸〇-(7·氮雜笨并三唑_丨_基分丨,^,3_四 曱基姝)、 TATU (四氟硼酸〇-(7-氮雜笨并三唑小基丨-^二^四 甲基姝)、 TBTU (四氟硼酸〇_(苯并三唑· ^基兴^^:^四甲基 级)、 TOTU(四敗硼酸〇-[氰基(乙氧幾基)亞曱胺基]·u,3,3_ 四曱基綠)、 HAPyU (六氟鱗酸〇_(苯并三唑-i_基)氧基雙_(。比咯咬 基)-綠)、
PyAOP (六氟磷酸苯并三唑基-氧基_參_吡咯啶基_ 鱗)、 C0MU (六氟磷酸1-[(1-(氰基_2_乙氧基_2•側氧基亞乙 基胺氧基)-二甲胺基-嗎°林基亞曱基)]甲錄)、
PyClock (六氟磷酸6-氯-苯并三唑-卜基·氧基_參_吼咯 °定基-鱗)、
PyOxP (六氟磷酸0-[(1_氰基_2·乙氧基·2_侧氧基亞乙 基)胺基]-氧基三(吡咯啶-1 -基)鱗),及
Py〇xB (四就硼酸〇-[(1_氰基_2_乙氧基_2_侧氧基亞乙 基)胺基]-氧基三(吼咯咬-1-基)鱗)。 碳化二亞胺偶合試劑較佳選自由以下組成之群:二異 丙基-碳化二亞胺(Die )、-择p I ^ v )—衩己基-奴化二亞胺(DCC)及 63 201249861 水溶性碳化二亞胺(WSCDI),諸如^乙基_3_(3-二甲胺基 丙基)-碳化二亞胺(EDC )。 其他偶合技術使用預先形成之活性酯,諸如羥基丁二 醯亞胺(HOSu )及對硝基苯紛(HONp )酯;預先形成之對 稱酸酐、不對稱酸酐’諸.如N-缓基酸酐(NC A );及酸鹵化 物,諸如醯基氟或醯基氯。 較佳之偶合試劑為鱗偶合試劑或级偶合試劑,尤其為 TCTU、TOTU 或 PyBop。 較佳’用於HSPPS中之該三級驗之共輕酸的pKa值為 7.5至15,更佳為7.5至10 ^該三級鹼較佳為三烷基胺,諸 如二異丙基乙胺(DIEA )或三乙胺(TEA );進一步為Ν,Ν,-二-Cm烧基苯胺,諸如ν,Ν-二乙基苯胺;2,4,6-三-Cu烷 基°比咬’諸如三曱基吡啶(2,4,6-三甲基吡啶);或 烷基-嗎啉,諸如N-甲基嗎啉,其中任何c!·4烷基相同或不 同且彼此獨立地為直鏈或分支鏈CN4烷基。 偶合添加劑較佳為能夠形成活化g旨、更佳具有酸性親 核N-經基官能基的親核經基化合物’其中N為醯亞胺或經 N-醯基或N-芳基取代之三氮烯基,三氮烯基型偶合添加劑 較佳為N-經基-苯并三唑衍生物(或丨_羥基-苯并三唾衍生 物)或N-羥基苯并三啡衍生物。該等偶合添加劑已描述於 WO 94/07910及EP 410 182中。由於其亦充當清除劑故 其亦稱為清除劑。 較佳之偶合添加劑選自由以下組成之群: N-羥基-丁二醯亞胺(H0Su)、6_氣小羥基-苯并三唑 64 201249861 (Cl-HOBt )、N-羥基-3,4-二氫-4-側氧基-1,2,3 -苯并三畊 (HOOBt)、1-羥基-7-氮雜苯并三唑(HOAt)、1-羥基-苯并 三唑(HOBt)及 2-氰基-2-羥基亞胺基-乙酸乙酯(CHA)。 CHA可以商標名OXYMAPURE®得到。CHA被證明為 有效清除劑,其相較於基於苯并三唑之清除劑可較大程度 抑制外消旋作用。另外,CHA相較於例如HOBt或Cl-HOBt 較不易爆炸,因此其操作為有利的,且作為另一優勢,可 藉由反應混合物之顏色變化在視覺上監測偶合進程。 較佳使用HOBt或CHA,更佳使用HOBt。 在一較佳具體實例中,HSPPS反應中之試劑的組合選 自 由以下組成之群 :TCTU/Cl-HOBt/DIPEA 、 TOTU/CHA/DIPEA 及 PyBop/HOBt/DIPEA。 作為溶劑,在HSPPS中可使用任何可溶解反應物之惰 性液體溶劑。 較佳溶劑選自由以下組成之群:二甲亞砜(DMSO )、 二腭烷、四氫呋喃(THF )、卜甲基-2-。比咯啶酮(NMP )、 N,N-二曱基曱醯胺(DMF)、Ν,Ν-二曱基乙醯胺(DMA)、 吡啶、二氣曱烷(DCM )、二氯乙烷(DCE )、氯仿、二聘 烷、四氫哌喃、乙酸乙酯、曱苯、乙腈及其混合物。 更佳之溶劑為NMP、DMF及其混合物。 較佳,在0°C至50°C之溫度下,更佳在5°C至30°C之溫 度下,甚至更佳在15°C至25°C之溫度下進行HSPPS。 較佳,在大氣壓下進行HSPPS。 65 201249861 HSPPS之反應時間較佳為丨5分鐘至2〇小時,更佳為 3 0分鐘至5小時,甚至更佳為3 〇分鐘至2小時。 除非另外說明,否則此對HSPPS之反應條件之描迷令 之術語「份(part)」意謂組合之肽物質的重量份率。 較佳使用1份至3 0份溶劑,更佳使用5份至丨〇份溶 劑。 杈佳使用0.9至5莫耳當量偶合試劑,更佳使用丨至 1 ·5莫耳當量偶合試劑,該莫耳當量係以活性c端羧基之莫 耳數計。 ' 較佳使用0· 1至5莫耳當量偶合添加劑,更佳使用〇 5 至1.5莫耳當量偶合添加劑,該莫耳當量係以偶合試劑之莫 耳數計。 ' 較佳使用1至1〇莫耳當量三級鹼,更佳使用2至3莫 耳當量三級鹼,該莫耳當量係以偶合試劑之莫耳數計。、 若根據方法(A)製備之Ν端及c端經保護之代 表目標肽,則較佳在根據方法(A)製備之後移除n端保護 基及C端保護基以及任何側鏈保護基,得到未經保護之狀 PEP。此通常稱為整體脫除保護基。 扃要應用之整體脫除保護基條件視所選之性質而 定。較佳’所涉及之PG經選擇以允許在如上文歧義之弱 裂解條件、強裂解條彳φ 、导„;; 1 A > ” 戈還原裂解條件下整體脫除保護 基’視PG之性質而定。 隋之C端保護基(亦即DKP_PG)可藉由適用於使各 別柄狀基團HG自肽基裂解之條件裂解,此等條件在肽化學 66 201249861 中已知。通常,該等條件為如上文所定義之還原裂、 弱裂解條件或強裂解條件。
較佳,柄狀基團HG經選擇以可在酸性條件 附裂解,且在此情況下,若片段挪端保護Μ 驗可裂解型保護基或還原可裂解型保護基,則在根據:法 (Α)製備之後較佳分兩個步驟移除Ν端保護基及。端保 基以及任何側鏈保護基;但若片&ρΕρ·Ν《Ν端保護灵為 酸可移除型保護基,則在根據方法(Α)製備之後較佳以 個步驟移除Ν端保護基及C端保護基以及任何側鏈保護I 典型地保留任何側鏈保護基直至Hspp^束為止。可 在適用於已使用之各種側鏈保護 ^ 件下進仃此脫除保 禮基反應,且此等條件在肽化學中已知。在選擇不 之側鏈保護基的情況下’其可依次裂解。有利的是,側鏈 保4基經選擇’以便其可同時裂解,且更有利地可盘PEP 之N端保護基相伴裂解。 ’、 側鏈PG通常藉由如上文所定義之強裂解條件、弱裂解 條件或還原裂解條件裂解。 本發明之另一主顔為+ fτ 王碡為式(ΙΙΙ_Η)化合物之用途(Α), 其中式(ΙΙΙ-Η )化合物Λ甘& & — y 勿及,、所有較佳具體實例係如上文所 疋義,其係用於製備肽PEp ; 八 δ物之用途(a),其中式(ΙΠ_Η) 化&物及其所有較佳呈體 Α 、體實例係如上文所定義,其係在均 黃浴液相肽合成中用於藉由 保護之·胺基酸或與伴1式(ΙΙΙ_Η)化合物與N端經 、,生保4之PEP-N進行偶合反應來製 67 201249861 備肽PEP, 其中ΡΕΡ·Ν及其所有較佳 定義。 具體實例係如上文所 用途(Α)為上文所定義 途之一具體實例。 之C-PEP用於HSPPS中之用 本發明之另一主題為匍 吨两^•備式(ΙΠ-Η )化合物之方法 (Β ),其中式(ΙΙΙ-Η )化合物芬甘& + 口物及其所有較佳具體實例係如上 文所疋義,该S法⑻特徵在於使保護基叫^㈣自式 (III-PGXaaC(pc))化合物裂解;
PGXaaOc) — PEP-C——HG
SG (III-PGXaaC(Pc)) 「Xaa2 — Xaal —, 其中 PGXaaC為SPPS中習知使用之n端保護基且選自由以 下組成之群:鹼可裂解型保護基、酸可裂解型保護基及還 原可裂解型保護基; pc、XaaC、PEP-C、HG、η、SG、Xaal 及 Xaa2 以及其 所有較佳具體實例具有與上述相同之定義, 在 PGXaaC(pc)中,索引(pc)將 PGXaaC(pc)定義為 PEP_C 之N端保護基; 68 201249861 限制條件為PGXaaC(pc)係選為如下可裂解型保護基,以 使4于PGXaaC )可在pEP_C不自HG裂解的情況下自 裂解。 較佳’若PEP-C帶有側鏈PG,則係選為如 下可裂解型保護基,以使得PGXaaC(pe)可在任何側鏈⑼不 自PEP-C裂解的情況下自pEp_c裂解。 PGXaaC(p)因此為PEP_C之N端胺基酸殘基之保護 基’其為N-PG之一具體實例。 在上文所定義之方法(C:_PEP)中包含方法(B)。 式(III-PGXaaC㈣)化合物為上文所定義之c pEp之 一具體實例。 若PGXaaC㈣為鹼型pG,則其較佳為—。 若PGXaaC(P〇為強型pG,則其較佳為B〇c。 右PGXaaC(pc)為弱型PG,則其較佳為Trt。 若PGXaaC(P〇為還原型pG,則其較佳為au〇c。 PGXaaC(P〇視其類型而定可藉由強裂解條件、弱裂解條 件、驗性裂解條件或還原裂解條件所裂解,此等條件、 上文所定義。 如 本發明之另—主題為製備式(Πΐ-PGXaaC(㈣)化合 之方法(c)’其中式(III_PGXaaC(pc))化合物及其所: 佳具體實例係如上文所定義,方法(c)包含連續步較 其中 在步D t ’使保護基PG2自式(111)(}2)化合物裂 69 201249861 解
PGXaaOc) — PEP-C ——HG PG2 — Xaa2 — Xaal — 4封脂 A 其中在式(II-PG2)中, PGXaaC(㈣、PGXaaC、pc、PEP-C、HG、η、SG、Xaal 及Xaa2以及其所有較佳具體實例具有與上述相同之定義; PG2為肽化學中習知使用之N端保護基且選自由以下 組成之群:鹼可裂解型保護基、酸可裂解型保護基以及還 原可裂解型保護基;
Xaa2之a胺基由PG2保護, 樹脂A為在SPPS中習知用作固相之樹脂;
Xaal之1-羧基偶合至樹脂A之官能基; 得到式(II-H)化合物;
PGXaaO。)——PEP-C——HG
SG (2) H— Xaa2 —- Xaal —相十脂八 ⑧ 70 201249861 其中在式(II-H)中, PGXaaC 、PGXaaC、pc、pEP-C、HG、η、SG、Xaal、
Xaa2及樹脂A以及其所有較佳具體實例具有與上述相同之 定義; 以(2)私示之氫η為胺基酸殘基Xaa2之未經保護之α 胺基的氫; 限制條件為PG2係選為如下可裂解型保護基,pG2可 在1 EP-C不自HG裂解的情況下自Xaa2裂解; 且 在步驟b) t,藉由使式(II_H)化合物中㈣之α 胺基與_之敌基進行分子内成環反應(即反應 (麵F〇))而使樹脂A自^裂解,反應(麵f〇)形 成具有Xaal及xaa2之環狀二肽,得到式(iii_pGXuC(pc)) 化合物; 限制條件為樹脂A與⑽之間的連接經選擇而可在如 :裂解條件下裂解,以使得樹脂A可藉由該反應(職IF〇) 在PEP-C不自HG裂解的情況下自_裂解。 此思谓PG2係選為如下可裂解也丨彳 摆而卜U解型保濩基且HG係經選 在如下不同於使PG2自Xaa2 裂解條件下裂解,以使得PG2可在PEp^^解條件的 情況下自Xaa2裂解; 在PEP'C不自HG裂解的 且此亦意謂 樹月曰A與xaa 1之間的連接經選 伴π即树脂A經選擇 71 201249861 以可在如下裂解條件下裂解,以使得樹脂A可藉由反應 (INRIFO )在ΡΕΡ-C不自HG裂解的情況下自Xaal裂解。 較佳,若PEP-C帶有側鏈pG,則PG2係選為如下可裂 解型保護基,以使得PG2可在任何側鏈pG不自pEp_c裂 解的情況下自Xaa2裂解。 較佳,若PEP-C帶有側鏈PG,則樹脂八與Xaal之間 的連接係選為如下可裂解型保護基,以使得樹脂A可藉由 反應(INRIFO )在任何側鏈PG不自pEp_c裂解的情況下 自Xaal裂解。 式(II-PG2)化合物為上文所定義之pEp_c_DKp L-樹 脂A之一具體實例。 例如式(II-H )中之二肽為上述形成DKp (亦即二酮哌 啡殘基)之DPR之一個具體實例。 PGXaaC(Pe)與PG2可為不同保護基,其在不同反應條件 下裂解,在此情況下,脫除PEp_c 端的保護基與脫除
Xaa2之保護基,亦即方法(B)與方法(c)連續進行。 但較佳’ PGXaaC(pc)與PG2相同或至少為可在相同反應 條件下裂解之不同保s蒦基;在此情況下,脫除PEp_c之n 4而的保護基與脫除Xaa2之保護基,亦即使ροχΜαρο自式 (ni-PGXaaC(pc))化合物裂解(方法(b ))與使pG2自式 (II-PG2)化合物裂解(方法(c)之步驟(a))可在一個步 驟中同時進行。 PG2視其類型而定可藉由強裂解條件、弱裂解條件、鹼 性裂解條件或還原裂解條件所裂解,此等條件係如上文所 ⑧ 72 201249861 定義。 較佳,PG2選自由以下組成之群:F·、Α11。。、—、
Trt、Mtt、Mmt 及 Ddz。 若PG2為強型PG’則其較佳為B〇c。 若PG2為弱型pg,則其較佳為Trt。 若PG2為還原型PG,則其較佳為A11〇c。 若PG2為鹼型PG,則其較佳為Fmoc。 樹脂A為SPPS中習知用作固相之樹脂且樹脂a與 Xaal之間的鍵可在不裂解肽之兩個胺基酸殘基之間的醯胺 鍵的條件下裂解。 較佳,樹脂A為SPPS中習知用作固體支撐物之具有官 能基之樹脂,該等官能基為NH2或〇H。 較佳,樹脂A藉由酯鍵或醯胺鍵偶合至Xaai之丨-羧酸 基。 更佳,樹脂A係選為如下樹脂,以使得樹脂A藉由酯 鍵或醯胺鍵偶合至Xaal之羧基之C1原子,該等鍵皆不可 在鹼性裂解條件、弱裂解條件或還原裂解條件下裂解。 較佳’樹脂A選自由以下組成之群:經甲基聚苯乙稀 (HMPS )樹脂、基於聚乙二醇(peg )之樹脂、pEG接枝至 不同於PEG樹脂之樹脂上的樹脂、聚苯乙烯樹脂、對苯甲 氧基苯甲醇樹脂、氯T基聚苯乙烯-二乙烯基苯樹脂、聚(乙 烯醇接枝-聚(乙二醇)(PVA-g-PEG)樹脂。 PEG接枝於不同於PEG樹脂之樹脂上的樹脂較佳為 PEG接枝於聚苯乙烯樹脂、對苯甲氧基苯甲醇樹脂或氯甲 73 201249861 基聚苯乙烯-二乙烯基苯樹脂上。 更佳’樹脂A為HMPS樹脂或氣甲基聚苯乙烯-二乙稀 基苯樹脂。
HydroxyChemMatrix®樹脂具有 ChemMatrix®支撐物, 該支撐物為聚乙二醇(PEG)支撐物,且該等樹脂為基於聚 乙二醇之樹脂的實例。
HydroxyTentagel®樹脂具有Tentagel®支撐物,該支擇 物為由上面接枝有聚乙二醇(PEG )之低度交聯聚苯乙烯基 質組成的接枝共聚物,且該等樹脂為基於聚苯乙烯之樹脂 的實例。 對苯甲氧基苯曱醇樹脂稱為王氏樹脂(Wang resin )。 氣甲基聚苯乙烯-二乙烯基苯樹脂稱為梅里菲爾德樹脂 (Merrifield resin)。 步驟(a )及步驟(b )可能需要不同反應條件,亦即步 驟(a)與步驟(b )可連續進行。 較佳,步驟(a )及步驟(b )需要相同反應條件,亦即 步驟(a )與步驟(b )在一個步驟中同時進行。 較佳,方法(B )(亦即使pGXaaC(pc)自式 (III-PGXaaC(pc))化合物裂解)、方法(c)之步驟(a)(亦 即使PG2自式(II-PG2 )化合物裂解)及方法(c )之步驟 (b)(亦即反應(INRIF0))需要相同反應條件且因此可在 一個步驟中同時進行。 較佳,使Xaa 1自樹脂a裂解之步驟(b )(即反應 (INRIFO ))在溶劑(b )中進行。 74 201249861 較佳在使Xaa2 胺基形式,亦即不 (b ) ° 之α胺基在去質子化狀態下呈未質子化 以銨離子形式存在的條件下進行步驟 更佳,藉由添加至少一種鹼(b)進行步驟(b)。 若在酸性條件下進行步驟⑺,則較佳藉由添加驗,較 佳添加三級驗來中# pH值’三級鹼更佳為如上所述用於 HSPPS中之三級驗中之一者。為誘導步冑(&)之反應 (INRIFO),添加驗⑴,驗(b)較佳為:級胺,該二級胺 之共軛酸更佳具有5.0至15、更佳7 5至1〇之—值。該 一級胺較佳為二烷基胺,其更佳選自由以下組成之群:二 甲胺、二正丙胺、二乙胺、α•(對甲苯基)〇比咯啉、吡咯啶、 α-乙基吡咯啶、α_苯甲基吡咯啶、α_環己基吡咯啶、嗎啉、 底定甲基0底°定、Ν,Ν-二甲基羥胺及N-Cw烷基苯胺, 其中N-C!·4烧基苯胺中之Cl4烷基為直鏈或分支鏈烷基且 選自由以下組成之群:曱基、乙基、正丙基、異丙基、正 丁基及異丁基’該C! ·4烧基更佳為乙基。 作為溶劑(b ),可使用任何可溶解反應物之惰性溶劑。 較佳’溶劑(b )選自由以下組成之群:二曱亞砜 (DMSO)、二聘烷、四氫0夫喃(thf)、1-曱基-2-吡咯啶酮 (NMP )、N,N-二曱基曱醯胺(DMF )、N,N-二曱基乙醯胺 (DMA )、吡啶、二氯曱烷(DCM )、二氯乙烷(DCE )、氯 仿、二聘烷、四氫哌喃、乙酸乙酯、甲苯、乙腈及其混合 物。 更佳,溶劑(b )選自由NMP、DMF、THF及其混合物 75 201249861 組成之群。 車父佳,在0C至50°C之溫度下,更佳在5。〇至3〇π之溫 度下4至更佳在15C至25°C之溫度下進行步驟(b)。 較佳,在大氣壓下進行步驟(b)。 步驟(b)之反應時間較佳為i分鐘至i小時,更佳為 1分鐘至30分鐘,甚至更佳為5分鐘至15分鐘。 除非另外說明’否則此對步驟(b)之描述中之術語「份 意謂所處理之物質(其為式(η初化合物)的重 量份率。 車乂佳使用5份至20份溶劑,更佳使用5份至i 5份溶 曰車乂佳’鹼(b )之量為3〇重量%至丄重量%,更佳為)5 重1%至2重量%,a & θ 甚至更佳為1 〇重量%至5重量%,其中 重量%係以式(ΙΙ_Η)化合物之總重量計。 本發月之另一主題為製備式(II-PG2 )化合物之方法 (D)’其中式(ιι·ρ )化合物及其所有較佳具體實例係如 上文所定義, ,X t(D)特徵在於藉由習知固相肽合成SPPS方法 式(11 PG2 )化合物之PEp-C中除PEP-C之C端胺基酿 :外㈣基酸依序添加至式WC⑴)化合物上,其包 t複SPPS循%之必要且習知之步驟,諸如脫除連接至接 而胺基馱之N端的保護基,偶合下一胺基酸,若須 :偶合胺基酸,則脫除由此所偶合之胺基酸之N端的保讀 基’諸如此類, 76 201249861 SPPS開始於脫除Xaa(1)之N端的保護基及偶合自 PEP-C之C端起第二位置上之胺基酸,該自pep_c之C端 起第二位置上之胺基酸具有式PGXaac(2)_XaaC(2)_〇H ;及 在pc為3或3以上的情況下,根據pEP-C之序列連續 地以式PGXaaC(iippcc)-XaaC(iippcc)-〇H之任何後續胺基酸繼 續SPPS,其申iippcc為3至(pc-Ι)之整數;及 藉由添加PEP-C之N端胺基酸結束SPPS,該N端胺基 酸具有式 PGXaaC(pc)-XaaC(pc)-OH ;
PGXaaC。) XaaC⑴ HG
SG (Il-XaaCX1)) J n
PG2 -Xaa2- Xaal -樹月旨A 其中 PGXaaC(pc)、PGXaaC、XaaC、pc、PEp_c、HG、n、sG、 PG2、Xaal、Xaa2及樹脂A以及其所有較佳具體實例具有 與上述相同之定義; 在 PGXaaC(1)、PGXaaC(2)及 PGXaaC⑴PPe〇中,索引⑴、 (2)及(iippcc)將各別PGXaaC定義為pEp_c之各別胺基酸殘 基XaaC之胺基的保護基; 在XaaC⑴、XaaC⑺及XaaC(iippcc)中,索引⑴、⑺及 (iippcc)將各別XaaC定義為pEp_c之各別胺基酸殘基 77 201249861
XaaC ; 制條件為 PGXaaC⑴、PGXaaC(2)及任何 PGXaaC(iippcc) 同於PG2之保護基且其可在不同於使PG2自Xaa2裂 解所需之反應冑件的反應條件下裂冑, 且進—步限制條件為用於裂解PGXaaC(1)之反應條件、 用於裂解㈣:胺基酸之N端保護基PGXaaC⑺之反應條件 用於裂解该等後續胺基酸之任何N端保護基 PGXaaC P )之反應條件不使PG2自Xaa2裂解; 且進一步限制條件為Xaal與樹脂A之間的鍵具有如下 類型’其不在SPPS期間裂解。 較佳,若任何XaaC帶有側鏈pG ,則任何pGXaaC係 選為如下可裂解型保護基,以使得任何PGXaaC可在任何側 鏈〇不自任何側鏈經保護之xaaC裂解的情況下自其胺基 酸XaaC裂解。 因此,PGXaaC⑴與PGXaaC⑺相同或不同且彼此獨立地 為SPPS中習知使用之N端保護基且分別為之胺基 酸XaaC⑴及XaaC(2)(藉由spps向其添加pEp_c之後續胺 基酸)之N端保護基,且選自由鹼可裂解型保護基、酸可 裂解型保護基及還原可裂解型保護基組成之群。 在pc為2之情況下’ PEP-C為二肽基,且該自pEp c 之C端起第二位置上之具有式PGXaaC(2)_XaaC(2)_〇H之胺 基酸與PGXaaC(pc)-XaaC(pc)-OH相同,且不使用該胺基酸 PGXaaC(iippcc)-XaaC(iippcc)-OH。 替代僅使用個別胺基酸作為構築嵌段,在SPPS中亦可 78 201249861 使用寡肽、較佳二肽或三肽、更佳二肽作為構築嵌段。此 係例如已知當使用假脯胺酸作為側鏈保護基時,在此情況 下,在SPPS中習知使用各別二肽作為構築嵌段。 較佳’ PG2為Fmoc或Alloc,且 PGXaaC0)、PGXaaC(2)及任何 PGXaaC(iippcc)為 Boc。 在另一較佳具體實例中,PG2選自由以下組成之群:
Boc、Trt、Mtt、Mmt、Ddz 及 Alloc,且 PGXaaC(1)、PGXaaC(2)及任何 PGXaaC(iippcc)為 Fmoc。 更佳,PG2 為 Trt、Boc 或 Alloc,且 PGXaaC0)、PGXaaC(2)及任何 PGXaaC(iippcc)為 Fmoc。 甚至更佳,PG2為Trt或Alloc,且 PGXaaC⑴、PGXaaC(2)及任何 PGXaaC(iippcc)為 Fmoc。 SPPS之典型反應條件及參數以及試劑及標準方案在此 項技術中已知,例如Lloyd-Williams等人,「Chemical
Approaches to the Synthesis of Peptides and Proteins」,CRC Press, 1997 ;或 Chan 等人,「Fmoc solid phase peptide synthesis」,Oxford University Press, 2000。 可藉由肽化學中已知之標準方法進行SPPS。通常,在 SPPS中’自C端向N端添加胺基酸。因此,首先將所需肽 片段之C端胺基酸或鄰近C端之肽基添加至固體支撐物(即 樹脂)中。此藉由使C端之羧基與樹脂支撐物上之互補官 能基反應而進行,N端胺基通常由保護基保護以防止不合需 要之副反應。在欲添加之任何胺基酸或肽基在側鏈上具有 活性基團的情況下,其同樣由保護基保護以避免不合需要 79 201249861 之副反應。在第一胺基酸或肽片段偶合至固體支撐物之 後,移除N端保護基,且使N端經保護之下一胺基酸或肽 片段偶合至第一者《接著在移除N端保護基與偶合之逐次 循環中,胺基酸或肽基連續地連接至先前延長之肽基直至 形成所需肽基為止。固相合成之產物因此為結合至固體支 撐物之肽基》 用於SPPS之多種固體支樓物為已知的。較佳,固體支 撐物包含由以下製成之樹脂:一或多種聚合物、共聚物, 或諸如聚醯胺、聚磺醯胺、經取代之聚乙烯、聚乙二醇、 酚系樹脂、多醣或聚苯乙烯之聚合物的組合。 固體支撐物應完全不可溶於肽合成中所用之溶劑且對 其呈惰性。 固體支撐物典型地包括第一胺基酸或第一肽最初偶合 之具有s旎基之連接部分。在適當反應條件下使肽基自固 體支撐物裂解以自支撐物釋放肽。適合之固體支撐物可具 有光可裂解、酸可裂解(較佳可由TFA或hf裂解)、氟離 子可裂解、還原可裂解(較佳可由pd(〇)催化裂解);親核 可裂解或可藉由自由基裂解的連接子。較佳,固體支撐物 之連接部分經選擇,以使肽基可在不移除肽之側鏈保護基 的條件下裂解,或肽基可在亦同時且完全移除肽之側鏈保 護基的條件下裂解。 車乂佳’用酸可裂解固體支撐物進行SPPS,固體支撐物 之連接部分更佳包含三苯甲基,諸如氣化三苯〒基樹脂, 佳為2-氣二笨甲基氣(2_CTC )樹脂或4_甲基三苯甲基氯 80 201249861 « 樹脂、4-曱氧基三苯甲基氣樹脂、4_胺基丁_丨醇2_氯三苯甲 基樹脂、4-胺基曱基苯甲醯基_2_氯三苯曱基樹脂、弘胺基丙 -1-醇2-氯三苯甲基樹脂、溴乙酸2_氯三苯甲基樹脂、氰基 乙酸2-氯三苯甲基樹脂、4·氰基苯甲酸2_氣三笨甲基樹脂、 甘胺醇-2-氣三苯〒基樹脂、丙酸2_氣三苯甲基樹脂、乙二 醇-2-氣二苯甲基樹脂、N_Fm〇c羥胺2_氯三苯甲基樹脂或肼 2 -氣三苯甲基樹脂。 其他較佳之固體支撐物為聚苯乙烯樹脂;或基於苯乙 烯與二乙烯基苯之共聚物且具有官能基以鍵結c端羧基的 树月曰,較佳為王氏樹脂,其包含苯乙烯與二乙烯基苯之共 聚物以及4-羥基甲基苯氧基甲基錨定基團;諸如4羥基曱 基-3-甲氧基苯氧基丁酸樹脂的其他樹脂。 較佳樹脂為王氏樹脂(Wang )、( 2-CTC )及4-羥基甲 基-3-甲氧基苯氧基丁酸樹脂。 為製備用於固相合成之樹脂,可用一或多種適合溶劑 預先洗滌樹脂。 作為較佳用於SPPS中之溶劑,在SPPS中亦可使用上 文在HSPPS下所提及之較佳溶劑,更佳溶劑為nmp、DMF、 DCM ’其混合物。 更佳混合物為體積比為9:1至1:9,更佳為4:1至1:4 的 DMF:DCM。 較佳在胺基酸之任何具有活性官能基之側鏈由側鏈保 護基保護的情況下進行SPPS以避免不合需要之副反應。側 鏈保護基之性質及使用在此項技術中為熟知的。 81 201249861 側鏈保護基之選擇可取決於多種因素,例如所進行之 合成的類型、將對肽進行之處理及所需中間產物或最終產 物。側鏈保護基之性質亦視胺基酸本身之性質而定。 選擇不會在固相合成期間⑽心胺基之保護基期間被移除又 的側鏈保護基。因此,α胺基之保護基與任何側鏈保護基血 型地互不相同,其較佳代表正交系統。術語「正交系統 (〇rth〇g〇nal SyStem)J 係定義於 Ba⑽ay,(5.及 Merrifield, R.B.,JACS,1977, 99, 22, 7363-7365 中。 側鏈保護基之實例包括乙醯基(Ac)、苯甲醯基(Bz)、 第二丁基(tBu)、三苯基甲基(Trt)、四氫哌喃基、苯甲醚 (Bzl)、2,6-二氯苯曱醚(DCB)、第三丁氧羰基(b〇c)、4_ 硝基苯磺醯基(Ns )、對曱苯磺醯基(T〇s )、五甲基二氫苯 并呋喃-5-磺醯基(Pbf)、1,2_二甲基-吲哚磺醯基(MIS )、 金剛烷氧羰基、黃嘌呤酸基(xanthyl)(Xan)、甲酯、乙酯、 第三丁酯(OtBu)、苯甲氧基羰基(z)、氯苯曱氧基羰基 (2-C1-Z )、第二戊氧羰基(a〇c )、芳族或脂族胺基曱酸酯型 保護基、光不穩定性基團’諸如硝基藜蘆氧基羰基 (NVOC );及氟離子不穩定性基團,諸如三曱基矽烷氧羰基 (TE0C)。 較佳之側鏈基團為tBu、Trt、Boc、Tos、Pbf、OtBu及 Z ° 較佳’通常與側鏈保護基一起使用之含有官能基之胺 基酸為 Arg(Pbf)、Asp(OtBu)、Gln(Trt)、Glu(OtBu)、 His(Trt)、Lys(Boc)、Ser(tBu)、Thr(tBu)、Trp(Boc)及 82 201249861
Tyr(tBu) ’其肀Arg有時亦在無側鏈保護基之情況下使用。 舉例而言,Fmoc-Arg(Pbf)-〇H 具有式(ARG-PBF )。
N端保護基在將欲添加之下一胺基酸添加至生長中之 肽鏈中之前於脫除保護基反應中移除,但在使肽自支撐物 裂解時可保留。N端保護基之選擇可取決於多種因素,例如 所進行之合成的類型及所需之中間產物或最終產物。 胺基端保護基之實例包括 ⑴醯基型保護基’諸如甲醯基、丙稀醯基(Μ)、 苯甲醯基(Bz)及乙醯基(Ac); ⑺芳族胺基甲酸醋型保護基,諸如苯甲氧基羰基z ^經取代諸如對氯苯曱氧基羰基、對硝基苯甲氧基幾 土、對溴笨甲氧基羰基、對甲氧基苯f氧基羰基; 美⑺(3氧)::二護基,諸如第三丁氧基絲(一 里:基(P〇C)、2-(4-聯苯基)_丙基⑺氧幾基(Bpoc)、 二異丙基甲㈣基、異丙“基、乙氧基)幾 83 201249861 基(Alloc ); (4 )環烷基胺基曱酸酯型保護基,諸如9_第基_曱氧碳 基(Fmoc )、環戊氧基羰基、金剛烷氧羰基及環己氧羰基; (5 )硫代胺基曱酸酯型保護基,諸如苯硫羰基。 車父佳之N端保護基為Fmoc、Bpoc、P〇c及Boc。
Fmoc或類Fmoc化學物極佳用於固相肽合成,因為可 使用適度酸性裂解劑相對簡單地使所得肽在經保護狀態下 自樹脂裂解。此種裂解反應就所得副產物、雜質等而言相 對清潔。 此外,N端之Fmoc保護基與上述側鏈保護基完全相配 以代表正交系統。 在SPPS中通常用偶合試劑,較佳在三級驗存在下,進 一步較佳在偶合添加劑存在下進行偶合,且偶合試劑及任 何其他化合物進一步較佳溶解於如上所述之SppS溶劑中。 用於SPPS與用於HSPPS之反應條件及反應試劑常相 似。 用於SPPS中之典型偶合試劑為鎸鹽及级鹽、混合酸 肝、叙化二亞胺、其他醯化劑,諸如活化酯或酸鹵化物, 及活化苯并三啡衍生物。 鎸鹽及錄鹽較佳為如上所述之用於HSPPS中之彼等鱗 鹽及级鹽。 混合酸肝為例如丙烧膦酸酐(T3p )。 碳化二亞胺偶合試劑較佳為如上所述之用於HSPPS中 之彼等碳化二亞胺偶合試劑。 ⑧ 84 201249861 '舌化酿為例如氯甲酸異丁酯(ICBF )。 活化苯并三阱衍生物為例如3-(二乙氧基磷酿氧 基)-1,2,3-苯并三啡-4(3H)-酮(DEPBT)。 二級驗較佳為如上所述之用於HSPPS中之彼等三級鹼 中之一者。 用於SPPS中之偶合添加劑為如上所述之用於HSPPS 中之彼等偶合添加劑。 所用之第二胺基酸及後繼胺基酸之量以由樹脂支撐物 上之第一偶合反應所達成之加載因數計通常為1至3莫耳 當量’較佳為1.3至3莫耳當量,更佳為1.5至3莫耳當量。 較佳在0°C至50°C之溫度下,更佳在5。〇至3〇°c之溫度 卞’甚至更佳在15。〇至25°C之溫度下進行SPPS。 較佳在大氣壓下進行SPPS。 SPPS之反應時間較佳為15分鐘至20小時,更佳為30 分鐘至5小時,甚至更佳為3 〇分鐘至2小時。 除非另外說明,否則此對SPPS之反應條件之描述中之 術語「份(part )」意謂固體支撐物質之重量份率。 較佳使用1份至30份溶劑,更佳使用5份至丨〇份溶 劑。 較佳使用0.9至5莫耳當量偶合試劑,更佳使用丨至 1.5莫耳當量偶合試劑,該莫耳當量係以活性羧基(在spps 情況下,為活性C端竣基)之莫耳數計。 較佳使用0.1至5莫耳當量偶合添加劑,更佳使用〇 5 觅1_5莫耳當量偶合添加劑,該莫耳當量係以偶合試劑之莫 85 201249861 耳數計。 較佳使用1至1〇莫耳當量三級鹼,更佳使用2至3莫 耳當量二級驗’該莫耳當量係以偶合試劑之莫耳數計。 此等SPPS條件為適用於使包含羧基之構築嵌段偶合至 包含胺基之反應搭配物的一般條件。在SPPS之情況下,包 含叛基之構築嵌段為N端經保護之欲偶合之胺基酸,且包 含胺基之反應搭配物為C端胺基酸或生長中之肽鏈,其連 接至支撐物質。 此意謂所用之包含羧基之構築嵌段之量以包含胺基之 反應搭配物之莫耳數計通常為丨莫耳當量至3莫耳當量, 較佳為1_3莫耳當量至3莫耳當量,更佳為i 5莫耳當量至 3莫耳當量。 本聲明之另-主題為製備式(n_XaaC⑴)4匕合物之方 法(E ) ’其中式(ΙΙ-XaaC⑴)之仆人此4 化合物及其所有較佳具體 實例係如上文所定義, 其特徵在於使胺基酸PGXaae(0 γ m ^ ;-XaaC(1L〇H偶合至式 I-HG)化合物; (3)
Η— HG
SG (Ϊ-HG)
PG2 —- Xaa2 ——Xaal —樹脂 A 86 201249861 其中 以(3)指示之氫為HG之未經保護之官能基的氫; PGXaa⑴、XaaC(丨)、PGXaaC、XaaC、HG、n、SG、pG2、
Xaal、Xaa2及樹脂A以及其所有較佳具體實例具有與上述 相同之定義。 在式(I-HG )之情況下,HG之上述任何定義中之⑺ 現在式(Ι-HG)中表示以(3)指示之氫與HG之間的鍵。 方法(E)類似於上文定義之步驟(丨)。 在HG為選自由以下組成之群的柄狀基團之情況下:式 (HGF-D之柄狀基團(在T1-1為NHi情況下)、式(HGF_n) 之柄狀基團、式(hgf-iii)之柄狀基團及式(HGF_VI)之 柄狀基團, 以(3)指示之氫連接至HG<末端氮,且用於方法(E) 之反應條件及參數以及試劑及標準方案較佳為上文已對於 SPPS所述者; ’、中包含緩基之構築嵌段為胺基酸 P G X a 汪 C (1) _ X a a C (1) D μ, θ 4 人 ΠΛ·分 -OH 且包含胺基之反應搭配物為式 (Ι-HG)之化合物,其連接至支撐物質。 在HG為選自由以下組成之群的柄狀基團之情況下:式 (HG1M )之柄狀基團(在T1 _ i $ 〇之情況下)、式(HGF-iv ) 之柄狀基團及式(HGF_V)之柄狀基團, 以(3)指示之氫連接至hG之末端氧,且 較佳根據方法(E )之偶合係根據方法()使用 87 201249861 溶劑(E-OH )、使用一或多種偶合試劑(E 〇H )進行,且 較佳在一或多種偶合添加劑(E-0H )存在下進行。 較佳之偶合試劑(E-0H )為碳化二亞胺偶合試劑 (E-OH)。 碳化二亞胺偶合試劑(E-0H)較佳選自由以下組成之 群:二異丙基-碳化二亞胺(DIC )、二環己基_碳化二亞胺 (DCC)及水溶性碳化二亞胺(WSCDI),諸如丨乙基小(3_ 二甲胺基丙基)-碳化二亞胺(EDC )。 較佳之偶合試劑(E-OH )為DIC。 偶合添加劑(E-0H)較佳為DMAP或能夠形成活化酯 之親核羥基化合物,更佳為具有酸性親核N_羥基官能基的 親核羥基化合物,其中N為醯亞胺或經N_醯基或N_芳基取 代之三氮烯基,三氮烯基型偶合添加劑較佳為N_羥基苯并 三唑衍生物(或1_羥基-苯并三唑衍生物)或N羥基苯并三 啡衍生物。該等偶合添加劑(E_0H)已描述於w〇94/〇79i〇 及EP 410 182中。由於其亦充當清除劑,故其亦稱為清除 劑。 較佳之偶合添加劑(E-OH )選自由以下組成之群: DMAP、N-羥基-丁二醯亞胺(H0Su)、6_氣·丨羥基_苯并三 唑(Cl-HOBt)、N_羥基_3,4_二氫_4側氧基],^3·苯并三畊 (HOOBt)、1-羥基_7_氮雜苯并三唑(H0At)'丨_羥基-笨并 三唑(HOBt)及 2-氰基-2-羥基亞胺基-乙酸乙酯(CHA)。 CHA可以商標名0XYmAPURE®得到。cha被證明為 88 201249861 有效清除劑’其相較於基於苯并三唾之清除劑
抑制外消旋作用。另外,CHA相較 X + J ^ w〇Bt 或 Cl-HOBt 較不易爆炸,因此其操作為有利的,且 — F两为—優勢,可 藉由反應混合物之顏色變化在視覺上監測偶合進程。 較佳,使用DMAP作為偶合添加劑(e_〇h)。 作為溶劑,可使用任何惰性液體溶劑(E_〇h) ^ 較佳之溶劑(Ε·_選自由以下組成之群:二°甲亞石風 (则0)、:聘烧、四氫吱喃(THF)、ι甲基^比洛咬酮 (NMP)、N,N_二曱基甲醯胺(_)、n算二曱基乙酿胺 (DMA)、吡咬、二氯甲烷(DCM)、二氣乙烷⑺⑻、氣 仿、二聘烧、㈤氫,底喃、乙酸乙g旨、甲苯、乙腈及其混合 物。 更佳之溶劑(E-OH)為NMP、DMF、DCM及其混合物。 較佳在〇C至50C之溫度下,更佳在5°C至30°C之溫度 下甚至更佳在15C至25°C之溫度下根據方法(e_〇h)進 行偶合。 較佳’在大氣壓下根據方法(E-OH)進行偶合。 根據方法(E-0H )偶合之反應時間較佳為15分鐘至 2〇小時’更佳為30分鐘至5小時,甚至更佳為3〇分鐘至 2小時。 除非另外說明,否則此對根據方法(E-OH )偶合之反 應條件之描述中的術語「份(part )」意謂組合之固體支撐 物質之重量份率。 在根據方法(E-OH )進行偶合中較佳使用1份至30份 89 201249861 溶劑(E-OH),更佳使用5份至1〇份溶劑(Ε〇Η)β "在根據方法(Ε-0Η)進行偶合中,較佳使用〇 ι莫耳 當量至5莫耳當量偶合試劑(Ε_〇Η),更佳使用i莫耳當量 至1.5莫耳當量偶合試劑(E_〇H),該莫耳當量係以恥之 活性基團之莫耳數計。 在根據方法(E-0H)進行偶合中,較佳使用〇 ι莫耳 當量至5莫耳當量偶合添加劑(E_〇H),更佳使用ο」莫耳 當量至1.5莫耳當量偶合添加劑(E_〇H),該莫耳當量係以 偶合試劑(E-OH )之莫耳數計。 分別在方法(E)及方法(E_〇H)中’較佳使用〇」莫 耳當量至5莫耳當量,更佳使用}莫耳當量至15莫卑當量 之PGXaaC(1)-XaaC(1)-OH,該莫耳當量係以HG之活性基團 之莫耳數計。 HG之在偶合PGXaaC⑴-XaacOLQH之後保持未反應之 活性基團較佳經封端’較佳用乙酸酐進行封端。 方法(E-OH)之此等條件為適用於使包含羧基之構築 嵌段偶合至包含OH或SH基團之反應搭配物的一般條件。 在方法(E-OH)之情況下,包含羧基之構築嵌段為胺基酸 PGXaaC(1)-XaaC⑴-OH,且包含〇H或SH基團之反應搭配 物為式(I-HG)化合物。 本發明之另一主題為製備式()化合物之方法 (F)’其中式(I-HG)化合物及其所有較佳具體實例係如上 文所定義,方法(F)對於η為〇之情況包含 步驟(FI A );或方法(F )對於^為1之情況包含 ⑧ 90 201249861 參 步驟(F3A)及步驟(F3B),其中在步驟(F3A)之後 進行步驟(F3B);或方法(F)包含 步驟(F4); 其中η及其所有較佳具體實例係如上文所定義; 其中 步驟(F3A)包含使式(I-PG2)化合物 (4) Η
I PG2 一 Xaa2— Xaal 樹脂 A (I-PG2) 其中 PG2、Xaal、Xaa2及樹脂A以及其所有較佳具體實例 具有與上述相同之定義; 以(4)指示之Η為FG之氫,FG係如上文所定義,且其 所有較佳具體實例亦如上文所定義; 與化合物SGroup進行偶合反應(F3A-Coup); 化合物SGroup為用於肽化學中之習知構築嵌段,其具 有兩個活性官能基 SGroup-FunSiteN 及 SGroup-FunSiteC, 活性官能基SGroup-FunSiteN為OH、SH或NH2且用作類 似於肽合成中之胺基酸構築嵌段之α胺基的官能基且可由 適合保護基PGSG·保護’活性官能基SGroup_FunSiteC用作 類似於肽合成中之胺基酸構築嵌段之羧酸基的官能基; PGSG為肽化學中習知用於保護胺基酸之α胺基或肽之 Ν端的保護基,且選自由以下組成之群:鹼可裂解型保護 91 201249861 基、酸可裂解型保護基及還原可裂解型保護基; 化合物SGroup為SG之前驅體,其中SG及其所有較 佳具體實例係如上文所定義; 在化合物SGroup之活性官能基sGroup-FunSiteN由保 護基PGSG保護的情況下,在步驟(F3 A )之後於連續步驟 (F-ConC )中使PGSG自SG裂解; 限制條件為PGSG不同於PG2且PGSG可在不同於使 PG2自Xaa2裂解所需之反應條件的反應條件下裂解, 且進一步限制條件為用於裂解PGSG之反應條件不使 PG2自Xaa2裂解; 且進一步限制條件為步驟(F-ConC )中用於裂解PGSG 之反應條件不使Xaa 1自樹脂A裂解; 得到式(Ι-SG)化合物; (5) Η
PG2 -Xaa2- Xaal -樹脂 A 其中 SG、PG2、Xaal ' Xaa2及樹脂a以及其所有較佳具體 實例具有與上述相同之定義; 以(5)指示之Η為活性官能基SGroup_FunSiteN之氫; 步驟(F3B)為使式(I-SG)化合物與化合物⑺叩 92 ⑧ 201249861 泰 進行偶合反應(F3B-Coup); 化合物HGroup為用於肽化學中之習知構築嵌段,其具 有兩個活性官能基 HGroup-FunSiteN 及 HGroup-FunSiteC, 活性官能基HGroup-FunSiteN為OH、SH或NH2且用作類 似於肽合成中之胺基酸構築傲段之α胺基的官能基且可由 適合保s蒦基PGHG保§蒦’活性官能基HGroup-FunSiteC用 作類似於肽合成中之胺基酸構築嵌段之羧酸基的官能基; PGHG為肽化學中習知用於保護胺基酸之α胺基或肽之 Ν端的保護基,且選自由以下組成之群:鹼可裂解型保護 基、酸可裂解型保護基及還原可裂解型保護基; 化合物HGroup為HG之前驅體,其中HG及其所有較 佳具體實例係如上文所定義; 步驟(F1A)包含使式(lpgz)化合物與化合物HGroup 進行偶合反應(FIA-Coup),其中化合物HGroup及其所有 較佳具體貫例係如上文所定義; 在化合物HGroup之活性官能基HGroup-FunSiteN由保 護基PGHG保護的情況下,在步驟(F3B)之後或在步驟 (F1A)之後於連續步驟(F C〇nA)中,使pghg自hg裂 解; 限制條件為PGHG為不同於PG2之保護基且PGHG可 在不同於使PG2自xaa2裂解所需之反應條件的反應條件下 裂解, 且進一步限制條件為用於裂解PGHG之反應條件不使 PG2自Xaa2裂解; 93 201249861 且進一步限制條件為步驟(F-ConA)中用於裂解PGHG 之反應條件不使Xaal自樹脂A裂解; 步驟(F4 )包含使式(pDKP )化合物與樹脂A進行偶 合反應,
H-PGHG— HG
SG (pDKP) PG2 ——Xaa2 — Xaal 其中 HG、η、SG、PG2、Xaal及Xaa2以及其所有較佳具體 實例具有與上述相同之定義; 其中樹脂A及其所有較佳具體實例具有與上述相同之 定義; H-PGHG 在活性官能基 HGroup-FunSiteN 為 OH 或 SH 的情況下為氫; H-PGHG在活性官能基HGroup-FunSiteN為NH2的情況 下為保護基PGHG ; 其中PGHG及其所有較佳具體實例係如上文所定義; 在H-PGHG為PGHG的情況下,在反應F4之後於連續 步驟(F-ConB )中,使PGHG自HG裂解; 限制條件為PGHG不同於PG2且PGHG可在不同於使 94 ⑧ 201249861 PG2自Xaa2裂解所需之反應條件的反應條件下裂解, 且進一步限制條件為用於裂解PGHG之反應條件不使 PG2自Xaa2裂解; 且進一步限制條件為步驟(F_c〇nB )中用於裂解PGHG 之反應條件不使Xaal自樹脂A裂解。 式(pDKP )化合物之c端為xaai之自由鲮酸基。 化合物HGroup為上述在方法(DKP-L-樹脂A)或方法 (DKP-L· )中用作構築嵌段之hg之一具體實例。 化合物SGroup為上述在方法(DKP-L-樹脂A)或方法 (DKP-L )中用作構築嵌段之sg之一具體實例。 式(DKP-L-樹脂A-F)化合物及式(I-HG)化合物為 上文所定義之DKP-L-樹脂A之具體實例,
H-PGHG- HG SG ] (DKP-L·樹脂 A_F) η
PG2 ——Xaa2 —- Xaai 樹脂A 其中 H-PGHG、HG、SG、η、PG2、Xaa2、Xaal 及樹 脂A以及其所有較佳具體實例係如上文所定義。 式(DKP-L-樹脂A-F)化合物為反應F1或F3視情況 連同連續步驟(F-ConA)或步驟(F_C0nC)之產物,或為 反應F4視情況連同連續步驟(jj-ConB )之產物。 式(pDKP )化合物為上文所定義之DKp_L之一具體實 95 201249861 例。 式(I-PG2)化合物及式(ϊ-sg)化合物為上文所定義 之方法(DKP-L-樹脂A )之中間物的具體實例。 在步驟(F3A)之情況下或在步驟(F1A)之情況下(且 FG為NH2 ),較佳在如上文對於spps以及所有所述之較佳 具體實例所述之反應條件及參數以及試劑及方案下進行偶 合反應(F3A-Coup)或偶合反應(FIA-Coup),其中所提及 之包含羧基之構築嵌段分別為化合物SGroup或化合物 HGroup ’且包含胺基之反應搭配物為式()化合物。 在步驟(F3A)之情況下或在步驟(F1A)之情況下(且 FG為OH或SH),較佳在如上文對於方法(E-〇H)所述之 反應條件及參數以及試劑及方案下進行偶合反應 (F3A-Coup)或偶合反應(FiA-Coup),其中包含羧基之構 築嵌段分別為化合物SGroup或化合物HGroup,且包含〇H 或SH基團之反應搭配物為式(i_pg2 )化合物。 在步驟(F3B )且活性官能基SGroup-FunSiteN為NH2 的情況下,較佳在如上文對於SPPS及所有所述之較佳具體 實例所述之反應條件及參數以及試劑及方案下進行偶合反 應(F3B-C〇up),其中所提及之包含羧基之構築嵌段為化合 物HGroup ’且包含胺基之反應搭配物為式(i_SG)化合物。 在步驟(F3B)且活性官能基SGroup-FunSiteN為OH 或SH的情況下,較佳在如上文對於方法(E-OH )所述之 反應條件及參數以及試劑及方案下進行偶合反應 (F3B-C〇Up ),其中包含羧基之構築嵌段為化合物HGroup, 96 ⑧ 201249861 且包含OH或SH基團之反應搭配物為式(I SG)化合物。 在式(pDKP )化合物中,Xaal之羧酸基未經保護。Xaal 之此未經保護之羧酸基在步驟(F4 )中與樹脂A之未經保 濩之g旎基反應。因此’步驟(F4 )申之偶合反應類似於 使胺基酸偶合至樹脂(亦即固體支撐物)之習知偶合反應。 胺基酸偶合至固體支撐物為已知反應,因此步驟(F4 )中 之偶合反應的反應條件及參數為已知的。 較佳,若樹脂A之將偶合至式(pDKp )化合物之XaU 之敌基的g此基為NH2基團,則較佳在如上文對於spps 以及所有所述之較佳具體實例所述的反應條件及參數以及 試劑及方案下進行步驟(F4)中之偶合反應,其中所提及 之包含羧基之構築嵌段為式(pDKP)化合物,且包含胺基 之反應搭配物為樹脂A。 較佳,若樹脂A之將偶合至式(pDKP )化合物之父⑷ 之羧酸基的官能基為OH或SH,則較佳在如上文對於方法 (E-OH)所述之反應條件及參數以及試劑及方案下進行步驟 (F4)中之偶合反應,其中所提及之包含羧基之構築嵌段為 式(pDKP)化合物,且包含0H或SH基團之反應搭配物為 樹脂A。 較佳,PG2為Fmoc或Alloc,且 可能的PGHG或PGSG為Boc。 在另一較佳具體實例中,PG2選自由以下組成之群: Boc、Trt、Mtt、Mmt、Ddz 及 Alloc,且 可能的PGHG或PGSG為Fmoc。 97 201249861 更佳,PG2 為 Trt、Boc 或 aii〇c,且 可能的PGHG或PGSG為Fmoc。 甚至更佳,PG2為Trt或aii〇c,且 可能的PGHG或PGSG為Fmoc。 化合物SGroup為SG之前驅體,其中SG及其所有較 佳具體實例係如上文所定義,且化合物SGr〇up具有兩個活 性官能基 SGroup-FunSiteN 及 SGroup-FunSiteC ,如上文在 方法(DKP-L-樹脂A )之情況下所闡明。活性官能基 SGroup-FunSiteN較佳為OH或NH2,更佳為NH2 »活性官 能基SGroup-FunSiteN在經保護或偶合狀態下以連接基團 CG-SG 形式存在,CG-SG 為-〇-、-S-或-N(H)-。 活性官能基SGroup-FunSiteC可未經保護或可預活化 且在各別偶合反應中為偶合位點。較佳,若活性官能基 SGroup-FunSiteC未經保護,則其為羧酸基,或其為預活化 之羧酸基。在此偶合反應之後,活性官能基SGroup-FunSiteN 之任何保護基經裂解以使活性官能基SGroup-FunSiteN可 用於下一偶合反應。 當活性官能基SGroup-FunSiteC為預活化之綾酸基 時,較佳以如肽化學中所常見之方式進行預活化。舉例而 言,再活化之羧酸基以其與N-羥基丁二醯亞胺或與五氟苯 酚之酯形式使用。 化合物SGroup及SG分別可包含確定及個別數目之氧 化乙烯單元,或其在藉由使氧化乙烯聚合合成PEG鏈而未 後續分離具有相同鏈長度之個別分子的情況下可包含氧化 98 201249861 乙烯單元分佈。在分佈之情況下,化合物SGr〇up且從而S(} 亦間接地由其平均分子量而非由個別氧化乙烯單元數來說 明。較佳,化合物SGroup之分子量為15〇〇至5〇〇〇,較佳 為1500至4000,更佳為1500至35〇〇。 較佳 ’ PGSG 為 Alloc、Fmoc、Mmt 或 Z。 較佳’化合物SGroup為化合物SGroupl、SGroup2、 SGroup3、SGroup4、SGroup5、SGroup 6、SGroup7 或 SGroup8 ; 化合物SGroupl為式(SG-I)化合物,其中Fmoc經由 式(SG-I)中以(***)表示之鍵連接且〇H經由式(sg-D 中以(****)表示之鍵連接,較佳ml為3 ; 化合物SGroup2為式(SG-II )化合物,其中z、Fmoc 或Alloc經由式(SG-II)中以(***)表示之鍵連接且oh經 由式(SG-II)中以(*"*)表示之鍵連接,較佳m5為2 ; 化合物SGroup3為式(SG-II )化合物,其中b〇c或Fmoc 經由式(SG-II )中以(***)表示之鍵連接且oh經由式 (SG-II)中以(****)表示之鍵連接,較佳m5為1 ; 化合物SGroup4為式(SG-III )化合物,其中B〇c經由 式(SG-ΙΠ)中以("*)表示之鍵連接且OH經由式(SG_m) 中以(*"*)表示之鍵連接,較佳m6及m7為2 ; 化合物SGroup5為式(SG-IV)之化合物,其中Mmt 或Boc經由式(SG-IV)中以(***)表示之鍵連接且oh經由 式(SG-IV)中以(*“*)表示之鍵連接,較佳m9為4、8、 12或27 ;尤其,組合Boc與m9為4、8、12或27 ;或組 99 201249861 合Mmt與m9為4 ; 化合物SGr〇Up6為式(SG_V)之化合物其中B〇c或 Fm〇C經由式(SG·V )中以(…)表示之鍵連接且OH經由式 (SG-V)中以("**)表示之鍵連接,較佳…。為卜戈分子量 為1 500至3500,更佳為3〇〇〇 ;尤其,組合Fm〇c與爪1〇 為丨’或組合Boc與分子量為15〇〇至35〇〇,更佳為3〇〇〇; 化合物sGr〇up7為式(SG_VI)化合物,其中B〇e經由 式(SG-VI)中以(***)表示之鍵連接且Br經由式(sg vi) 中以(*"*)表示之鍵連接,較佳mll為3 ; 化合物SGroup8為式(SG_VII)之化合物,其中B〇c 或Fmoc經由式(SG-VII)中以(***)表示之鍵連接且〇H或 N -經基丁二酸亞胺經由式(SG-VII)中以(****)表示之鍵連 接,分子量較佳為1500至3500,更佳為3000 ;且較佳為 Boc與OH或N-羥基丁二醯亞胺,或Fmoc與N-經基丁二 醯亞胺。 經由以(****)表示之鍵連接之OH使得SGroup、敌酸基 或OH亦可以其預活化形式使用’如上文所進一步概述。 作為說明,當化合物SGroup為具有Alloc之化合物 SGroupl或化合物sGroup2時’式(I-SG )化合物分別為式 (I-SGroupl-Fmoc)化合物或式(I-SGroup2-Alloc )化合物; 201249861
ο I ch2
0 NH (I-SGroupl-Fmoc) ch2 ml /CH2
PG2-Xaa2-Xaal —樹脂 A ch2 ch2 〇 (I-SGroup2-Alloc) m5
OyCH2
PG2—Xaa2—Xaal —樹脂 A 其中 m 1、m5、PG2、Xaa 1、Xaa2及樹脂A以及其所有較佳 具體實例具有與上述相同之定義。 化合物HGroup為HG之前驅體,其中HG及其所有較 佳具體實例係如上文所定義,且化合物HGroup具有兩個活 性官能基 HGroup-FunSiteN 及 HGroup-FunSiteC,如上文在 方法(DKP-L-樹脂A )之情況下所闡明。活性官能基 HGroup-FunSiteN較佳為OH或NH2,更佳為NH2。活性官 能基HGroup-FunSiteN在經保護或偶合狀態下以連接基團 CG-HG 形式存在,CG-HG 為-0-、-S-或-N(H)-。 101 201249861 活性官能基HGroup-FunSiteC通常未經保護且在各別 偶合反應中為偶合位點。較佳,活性官能基 HGroup-FunSiteC為缓酸基。在此偶合反應之後,活性官能 基HGroup-FunSiteN之任何保護基經裂解以使活性官能基 HGroup-FunSiteN可用於下一偶合反應。 較佳,化合物 HGroup選自由以下組成之群:式 (HGroupF-I )化合物、式(HGroupF-II )化合物、式 (HGroupF-III )化合物、式(HGroupF-IV )化合物、式 (HGroupF-V)化合物及式(HGroupF-VI )化合物, R1
(HGroupF-II) HO^〇 102 ⑧ 201249861
H-PGHG、
'C¥L -T5-1 s5-l
HO^^O s5-3 s5-2 (HGroupF-V)
其中 R1、R2、R3、R4、RIO及Rll以及其所有較佳具體實 例係如上文所定義, s 1 -1、s2、s3、s4及s6以及其所有較佳具體實例係如 上文所定義, s5-1以及其所有較佳具體實例係如上文所定義, si-2、s5-2及s5-3以及其所有較佳具體實例係如上文 所定義, T1-1以及其所有較佳具體實例係如上文所定義, 103 201249861 T1-2及T5-1以及其所有較佳具體實例係如上文所定 義; 在化合物HGroup選自由式(Η(}Γ〇ιιρΙΜ )之化合物(在 Τ11為Ο之清況下)、式(HGr〇UpF_iv )化合物及式 (HGroupF-V)化合物組成之群的情況下’ H_pGHG為氫; 在化合物HGroup選自由式化合物(在 T1-1為NH之情況下)、式(HGr〇upF_n )化合物、式 (HGroupF-IIl )化合物及式(HGr〇upF_vi )化合物組成之群 的情況下,H-PGHG為保護基pGHG。 由於化合物HGroup衍生自HG,其中HG及其所有較 佳具體實例係如上文所定義,所以 在HG為選自由式(HGF-I)之柄狀基團(在T1_i為〇 之情況下)、4 (HGF_IV)之柄狀基團及式(HGF_V)之柄 狀基團組成之群的柄狀基團之情況下,HGi上述任何定義 中之(*)在化合物HGroup情況下表示耶與氫之間的鍵; 在HG為選自由式(hg^j)之柄狀基團(在η]為 NH之情況下)、式(HGF_n)之柄狀基團、式 之柄狀基團及式(HGF_VI)之柄狀基團組成之群的柄狀基 團之情況下,HG之上述任何定義中之(*)在化合物HG_p 情況下表示HG與保護基PGHG之間的鍵;及 HG之上述任何定義中之(")在化合物膽辦情況下 表示HG與OH之間的鍵》 此意謂在HG之上述任何定義中之(*)在化合物HG_p 情況下表示HG與保護基PGHG之間的鍵之情況下,在偶合 ⑧ 104 201249861 化合物HGroup之後使保護基PGHG自HG裂解。 因此,尤其較佳之化合物HGroup衍生自由以下組成之 群:式(HG-Ia)化合物、式(HG-Ib)化合物、式(HG-Ic) 化合物、式(HG-Id )化合物、式(HG-II )化合物、式(HG-III ) 化合物、式(HG-IVa)化合物、式(HG-IVb)化合物、式 (HG-Va)化合物、式(HG-Vb)化合物及式(HG-VI)化合 物; 其中PGHG及其所有較佳具體實例係如上文所定義。 h3c
105 201249861
HO
/〇
HO
V。 HO (HGroup-Vb) HO O (HGroup-Va)
106 ⑧ 201249861
Xaa2殘基之側鏈之保護基不同於PG2且可在不同於使 PG2自Xaa2裂解所需之條件且不同於使Xaal自樹脂A裂 解所需之條件的條件下裂解。 本發明之另一主題為製備式(pDKP )化合物之方法 (G ),其中式(pDKP )化合物及其所有較佳具體實例係如 上文所定義,該方法(G )特徵在於使保護基CPG自式 (pDKP-CPG)化合物進行裂解反應(pDKP-Cleav);
H-PGHG——HG
SG (pDKP-CPG) PG2
Xaa2 ——Xaal ——CPG 其中 H-PGHG、HG、η、SG、PG2、Xaal 及 Xaa2 以及其所 有較佳具體實例具有與上述相同之定義; CPG為肽化學中習知用於保護胺基酸之羧酸基或肽之 C端的保護基,且選自由以下組成之群:鹼可裂解型保護 基、酸可裂解型保護基及還原可裂解型保護基; 限制條件為保護基CPG為不同於PG2之保護基且CPG 可在不同於使PG2自Xaa2裂解所需之反應條件的反應條件 下裂解, 107 201249861 且限制條件為用於裂解徂嗜 技解保濩基CPG之反應條件不使 PG2自Xaa2裂解; 且在H-PGHG為保護基扣恥的情況下, 限制條件為保護基CPG &同於pGHG之保護基且 ⑽可在不同於使PGHG自恥裂解所需之反應條件的反 應條件下裂解, 且限制條件為用於裂魅_仅%甘^ 驭解保護基CPG之反應條件不使 PGHG自HG裂解。 CPG為C-PG之一具體實例。 式(PDKP-CPG )化合物為上文所定義之DKp_L之一具 體實例。 較佳,CPG選自由以下組成之群:烯丙酿、Bzi (苯甲 基,亦縮寫為Bn)S旨、〜(91〇基)自旨、Me (甲基) -曰1 (乙基)西曰、Trt (二苯基甲基或三苯曱基或& )酯、 tBu S旨及SiEh (三乙基矽烷酯或TES)。 較佳,在保護基CPG為驗可裂解型保護基的情況下, 保護基CPG選自由Fm、Me及Et組成之群; 在保護基CPG為酸可裂解型保護基的情況下,保護基 CPG選自由Trt、tBu及SiEt3組成之群; ^且在保護基CPG為還原可裂解型保護基之情況下,保 護基CPG選自由烯丙基及Bzl組成之群。 更佳’ CPG為Trt或Bzl。 較佳’ PG2為Fmoc,且 cpG為烯丙基; ⑧ 108 201249861 較佳,可能的PGHG為Boc。 在另一較佳具體實例中,PG2為Alloc,且 CPG 為 Fmoc ; 較佳,可能的PGHG選自由tBu、Trt、Mtt、Mmt及 D d z組成之群。 在另一較佳具體實例中,PG2選自由以下組成之群: tBu、Trt、Cl-Trt、Mtt、Mmt 及 Ddz ;且 CPG為烯丙基; 較佳,可能的PGHG為Fmoc。 更佳,PG2為Trt,且 CPG為烯丙基; 較佳,可能的PGHG為Fmoc。 本發明之另一主題為製備式(pDKP-CPG)化合物之方 法(H),其中式(pDKP-CPG)化合物及其所有較佳具體實 例係如上文所定義,方法(Η )對於η為0之情況包含 步驟(HI A );或方法(Η )對於η為1之情況包含 步驟(Η3Α)及步驟(Η3Β ),其中在步驟(Η3Α)之 後進行步驟(Η3Β ); 其中η及其所有較佳具體實例係如上文所定義; 其中 步驟(Η3Α)為使式(pDKP-PG2)化合物 ⑹ Η (pDKP-PG2) PG2
Xaa2
Xaal
CPG 109 201249861 其中 PG2、Xaal、Xaa2及CPG以及其所有較佳具體實例具 有與上述相同之定義; 以(6)指示之Η為FG之氫,FG係如上文所定義,且其 所有較佳具體實例亦如上文所定義; 與化合物SGroup進行偶合反應(H3A_Coup),化合物 SGroup及其所有較佳具體實例係如上文所定義; 在化合物SGroup之活性官能基SGr〇up_FunSiteN由保 護基PGSG保護的情況下,在步驟(H3 a )之後於連續步驟 (H-ConC)中使保護基PGSG自SG裂解; 限制條件為保護基PGSG為不同於PG2之保護基且 PGSG可在不同於使PG2自Xaa2裂解所需之反應條件的反 應條件下裂解, 且進一步限制條件為用於裂解保護基pGSCJ之反應條 件不使PG2自Xaa2裂解; 且進一步限制條件為步驟(H_c〇nC )中用於裂解保護 基PGSG之反應條件不使xaai自樹脂A裂解; 得到式(pDKP-SG)化合物; ⑺ Η
SG (pDKP-SG)
PG2 Xaa2 ——Xaal — CPG
110 201249861 其中 SG、PG2、Xaal、Xaa2及CPG以及其所有較佳具體實 例具有與上述相同之定義; 以(7)指示之Η為活性官能基SGroup-FunSiteN之氣; 步驟(H3B)為使式(pDKP-SG)化合物與化合物HGroup 進行偶合反應(H3B-Coup ),其中化合物HGroup及其所有 較佳具體實例係如上文所定義; 步驟(H1A)為使式(pDKP-PG2 )化合物與化合物 HGroup進行偶合反應(HIA-Coup),其中化合物HGroup 及其所有較佳具體實例係如上文所定義; 在化合物HGroup之活性官能基HGroup-FunSiteN由保 護基PGHG保護的情況下,在步驟(H3B )之後或在步驟 (H1A)之後於連續步驟(H_ConA)中,使保護基Pghg自 HG裂解; 限制條件為保護基PGHG為不同於PG2之保護基且 PGHG可在不同於使PG2自Xaa2裂解所需之反應條件的反 應條件下裂解; 且進一步限制條件為用於裂解保護基PGHg之反應條 件不使PG2自Xaa2裂解; 且進一步限制條件為步驟(H-ConA )中用於裂解保護 基PGHG之反應條件不使Xaal自樹脂A裂解。 在上文所定義之方法(DKP-L)中包含方法(H)。 式(pDKP~PG2)化合物及式(pDKP-SG)化合物為上 111 201249861 文所定義之方法(DKP-L )之中間物的具體實例。
Xaa2殘基之側鏈之保護基不同於pG2且可在不同於使 PG2自Xaa2裂解所需之條件且不同於使cpG自X…裂解 所需之條件的條件下裂解。 較佳連、·’只進行上文所定義之方法,在方法(。)之後 進行方法⑻,在方法(D)之後進行方法(c),在方法⑻ 之後進仃方法(D )且在方法(F )之後進行方法(e );視 情況在方法⑺之前進行方法(G)且在方法(G)之前進 行方法(Η);且上文戶斤它墓^ h , 疋義之各別化合物在此情況下為此 用於製備式㈤-H)化合物之方法順序中之中間物。 本發明之其他主題為下列方法: 1 ·方法(A ),其中 已由方法(B)製備式(ΠΙ-Η)化合物; 2 ·方法(A ),其中 已由方法(B)製備式(III-H)化合物;且其中 已由方法(C)製備方法(b)之式(HLpGXaatpq) 化合物; 3. 方法(A ),其中 已由方法(B)製備式(ΙΙΙ·Η)化合物;且其中 已由方法(C)製備方法(Β)之式(in_pGxaaC(pc)) 化合物;且其中 已由方法(D)製備方法(c)之式(npG2 )化合物; 4. 方法(A ),其中 已由方法(B)製備式(ΙΠ_Η)化合物;且其中 ⑧ 112 201249861 已由方法(C)製備方法(B)之式(III-PGXaaC(pc)) 化合物;且其中 已由方法(D)製備方法(C)之式(II-PG2 )化合物; 且其中 已由方法(E)製備方法(D)之式(II-XaaC(1))化合 物; 5·方法(A),其中 已由方法(B )製備式(III-H)化合物;且其中 已由方法(C)製備方法(B)之式(III-PGXaaC(pc)) 化合物;且其中 已由方法(D )製備方法(C )之式(II-PG2 )化合物; 且其中 已由方法(E)製備方法(D)之式(Il-XaaC0))化合 物;且其中 已由方法(F)製備方法(E)之式(I-HG)化合物; 6 _方法(A ),其中 已由方法(B )製備式(III-H )化合物;且其中 已由方法(C)製備方法(B)之式(III-PGXaaC(pc)) 化合物;且其中 已由方法(D )製備方法(C )之式(II-PG2 )化合物; 且其中 已由方法(E)製備方法(D)之式(II-XaaC(1))化合 物;且其中 已由方法(F)製備方法(E)之式(I-HG)化合物; 113 201249861 且其中 已由方法(G)製備方法(F)之式(pDKP)化合物; 7.方法(A),其中 已由方法(B )製備式(III-H )化合物;且其中 已由方法(C)製備方法(B)之式(III-PGXaaC(pc)) 化合物;且其中 已由方法(D)製備方法(C)之式(II-PG2 )化合物; 且其中 已由方法(E)製備方法(D)之式(II-XaaC(1))化合 物;且其中 已由方法(F)製備方法(E)之式(I-HG)化合物; 且其中 已由方法(G)製備方法(F)之式(pDKP)化合物; 且其中 已由方法(Η )製備方法(G )之式(pDKP-CPG )化合 物。 方法(A)為方法(PEP-HSPPS)之步驟(ii-pep)之 > 一具體實例。 在方法(C-PEP)中較佳包含方法(B)。 方法(C)之步驟(b)為方法(C-PEP)之步驟(iii) 之一具體實例。 在方法(C-PEP )之步驟(iii )之一較佳具體實例中包 含方法(C)之步驟(a)。 方法(D)為方法(C-PEP)之步驟(ii)之一具體實 ⑧ 114 201249861 例。 方法(E)為方法(C-PEP)之步驟〇)之—具體實例。 方法(F)之步驟(Η)為方法(χ2)之—具體實例。 方法(F)之步驟(F3A)為方法(χι)之步驟(幻-之一具體實例。 方法(F)之步驟(F3B)為方法(χι)之步驟 之一具體實例。 方法(F)之步驟(F1A)為方法(χι)之步驟(xi_iv) 之一具體實例。 方法(G )為方法(DKP-L )之一具體實例。 若連續進行方法(DKP-L)之步驟(dkpu)、視情況 選用之步驟(DKP-L-ii)及步驟(DKP-L-iii),則方法(H) 之步驟(HI)為步驟(DKP-L-i)之一具體實例,且方法(H) 之步驟(H3A)及步驟(H3B)為步驟(DKP_L_H)及步驟 (DKP-L-iii)之具體實例。 因此,本發明之其他主題為下列方法: (a) 方法(PEP-HSPPS)’其中步驟(H_pep)為方法(A); (b) 方法(C-PEP),其包含方法(b); (c) 方法(C-PEP),其中步驟包含方法(c)之 步驟(b ); (d) 方法(C-PEP) ’其中步驟(iH)包含方法(〇之 步驟(a ); (e )方法(C-PEP ),其中步驟(Η )包含方法(D ); (f)方法(C-PEP ),其中步驟(i )包含方法(Ε ); 115 201249861 (g )方法(DKP-L-樹脂A ) ’其中方法(X2 )包含方法 (F )之步驟(F4 ); (h) 方法(DKP-L-樹脂A)’其中方法(XI)之步驟 (Xl-iii)包含方法之步麟(F3A); (i) 方法(DKP-L-樹脂A),其中方法(XI )之步驟(Xi_iv) 包含方法(F )之步驟(F3B ); (j )方法(DKP-L-樹脂A ),其中方法(XI )之步驟(X1 -iv ) 包含方法(F)之步驟(F1A); (k )方法(DKP-L ),其包含方法(G ); (1 )方法(DKP-L ),其中速續進行步驟(DKP-L-i )、 視情況選用之步驟(DKP-L-ii)及步驟(DKP-L-iii),且其 中步驟(DKP-L-i)包含方法(H)之步驟(H1),且步驟 (DKP-L-ii )及步驟(DKP-L-iii )包含方法(H)之步驟(H3A) 及步驟(H3B)。 本發明之另一主題為式(ΠΙ-H)化合物、式 (III-PGXaac(pc))化合物、式(II-PG2)化合物、式(II-H) 化合物、式(II-XaaC(1))化合物、式(I-HG)化合物、式 (I-SG)化合物、式(pDKP)化合物、式(pDKP-CPG)化 合物及式(pDKP-SG)化合物; 其中式(ΠΙ-H)化合物、式(ni-PGXaaC(pe))化合物、 式(II-PG2)化合物、式(Π-H)化合物、式(II-XaaC(1)) 化合物、式(I-HG)化合物、式(I-SG)化合物、式(pDKP) 化合物、式(pDKP-CPG)化合物及式(pDKP-SG)化合物 以及其所有較佳具體實例係如上文所定義。 ⑧ 116 201249861 式(Ι-HG)化合物為DKp_L_樹脂A^ —個具體實例。 式(I-PG2 )化合物為已知化合物且可藉由習知spps 及後續脫除Xaa2殘基之側鏈的保護基來製備。 式(pDKP-PG2 )化合物為已知化合物且可藉由使N端 及側鏈經保護之胺基酸PG2_Xaa2與c端經保護之胺基酸 Xaal-CPG進行習知偶合,且後續脫除Xaa2殘基之側鏈的 保護基來製備。 本發明之其他主題為 (ul)選自由以下組成之群之化合物的用途:式(πι_η) 化合物、式(IIi_PGXaac(Pc))化合物、式(n_pG2 )化合物、 式(Π-Η)化合物、式(n_XaaC⑴)化合物、式(i_HG) 化合物、式(I-SG )化合物、式(pdkp )化合物、式(PDKP-CPG ) 化合物及式(pDKP-SG)化合物;或式(pDKP)化合物或 式(pDKP-CPG )化合物之用途,其係用作形成DKP-PG之 連接子; 其用於肽化學中; 用於製備肽;或 用於製備肽之方法中;或 用於製備肽之方法之步驟中;或 用於肽偶合反應中;或 用於製備肽之SPPS中;或 用於製備肽之HSPPS中; (u2)式(III-PGXaaC(pc))化合物之用途,其用於製備 式(ΠΙ-Η)化合物; 117 201249861 (u3)式(II-PG2)化合物之用途,其用於製備式(ΠΗ) 化合物或式(in-PGXaaC(pe))化合物; (u4 )式(Π-Η )化合物之用途,其用於製備式 (III-PGXaaC(pc))化合物; (u5 )式(II-XaaC(化合物之用途,其用於製備式 (III-PGXaaC(pe))化合物; (u6 )式(I-HG )化合物之用途,其用於製備式 (II-XaaC(1))化合物; (u7)式(I-SG)化合物之用途,其用於製備式(IH(}) 化合物; (u8 )式(pDKP )化合物之用途,其用於製備式㈠_HG ) 化合物; (u9)式(pDKP-CPG)化合物之用途,其用於製備式 (pDKP)化合物; (u9) A (PDKP-SG)化合物之用途,其用於製備式 (pDKP-CPG)化合物; (ulO)式(pDKP-PG2)化合物之用途,其用於製備式 (pDKP SG)化σ物或用於製備式(化合物; (ull )式(ΐ·ρ〇2 )化合物之用途,其用於製備式(I_SC}) 化合物或用於製備式(I-HG)化合物; (ul2 )選自由以下組成之群之化合物的用途:式 (III_PGXaaC(Pe))化合物、式(II-PG2)化合物、式(II-H) 化合物、式(II_XaaC(i))化合物、式(Z — Hg)化合物、式 (I_SG)化合物、式(pDKP)化合物、式(PDKP-CPG)化 ⑧ 118 201249861 合物及式(pDKP-SG)化合物 合物; (ul3 )殘基DKP-PG或式 係用作保護基,較佳用作肽化 端保護基。 其用於製備式(ΠΙ-Η)化
(Ill-res)之殘基的用途,其 學中之保護基,較佳用作C 其中此等化合物及殘基 上文所定義。 以及其所有較佳具體實例係如 本發明允許在單個步驟中在請ps製備所需肽之⑶ 片段之後使其自支撐樹脂裂解且對其進行c端保護,且此 相較於習知兩步驟程序(亦即首⑽其自支撐樹脂裂解及 其次保護C端)而言因反應較完全及,或不合需要之副反應 較少而使產率較高,不需要額外方法步驟、反應時間、試 劑及設備(亦即總體程序較快且成本較低),溶解性問題較 少(因為經保護之肽常常不可極完全溶解於有機溶劑中), 及肽之差向異構化風險較低。 亦關於混合式合成肽醯胺,本發明提供製備C端片段 之方法,其省去多步驟方法,諸如在各別步驟中首先以自C 端起位置2上之胺基酸為起始物製備c端片段及添加自c 端起位置1上之胺基酸。該方法避免側鏈保護基部分喪失, 避免肽因偶合胺基叛醢胺而差向異構化之風險,其需要較 少方法步驟、時間、試劑及設備,且該方法從而因反應較 元全、方法步驟較少及不合需要之副反應較少而使產率較 高。 本發明之另一優勢在於在HSHSPPS中使用Rink醯胺 119 201249861 柄狀物。通常,當在SPPS後使肽自經Rink醯胺柄狀物修 飾之樹脂裂解時,會同時完全脫除肽之側鏈的保護基,從 而在HSHSPPS中通常不使用Rink醯胺柄狀物。歸因於本 發明’在C端DKP連接子基團中保留Rink醯胺柄狀物, 從而使肽片段在HSPPS中適用作C端片段,且在最終步驟 中使包含Rink醯胺柄狀物之C端連接子基團最終連同側鏈 保έ蒦基·一起裂解 > 得到目標狀。 本發明方法之另一優勢在於有可能製備將用於HSPPS 中的側鏈經保護之具有醯胺作為c端之片段C-PEP。該等 肽通常使用包含齊貝爾柄狀物之齊貝爾醯胺樹脂來製備。 在使用齊貝爾醯胺樹脂之情況下’需要特定裂解條件使肽 自樹脂裂解而不脫除側鏈保護基,然而常見裂解條件在齊 貝爾醯胺樹脂之情況下亦導致至少部分脫除一些側鏈之保 5隻基。當使用本發明方法製備在c端具有醯胺之片段C-PEP 時’齊貝爾柄狀物之適用性因以下得以擴展,因為使用齊 貝爾柄狀物作為連接子中之柄狀基團HG且將使肽自連接 子之柄狀基團裂解延遲至HSHSPPS中之極後步驟且可在整 體脫除保護基條件下進行’然而在不同於將裂解側鏈保護 基之條件的條件下使其自樹脂進行必要裂解,得到在HSppS 中用作C端片段之包含DKp連接子基團之肽片段,且此等 用於藉由同時產生DKP連接子基圑而使連接子自樹脂裂解 的條件不會使肽自齊貝爾柄狀部分裂解且不會使側鏈脫除 保護基。此擴展齊貝爾柄狀物對於在不需要特定裂解條件 下進行側鏈經保護之肽片段合成之使用的範疇。 ⑧ 120 201249861 在Xaal為式(HypX)化合物之情況下,包含dkp連 接子基團之肽基片段的溶解性可因關於R8使用式(Sub_R8 ) 之/谷解性增強取代基而得以極大增強,且因此,以具有長 胺基酸鏈之C端片段進行HSPPS變得有可能,此在欲由許 夕片#又合成具有許多胺基酸殘基之目標肽且藉由重複 HSPPS使包含DKP連接子基團之第一〇端片段連續偶合至 相繼PEP-N片段的情況下為必要的。 此外,有可能使用間隔基SG會使得Hspps中之片段 C-PEP之溶解性較高,且因此,以具有長胺基酸鏈之匚端 片段進行HSPPS變得有可能,此在欲由許多片段合成具有 _多胺基酸殘基之目標肽且藉由重複HSPPS使包含DKP連 接子基團之第一 c端片段連續偶合至相繼PEP_N片段的情 況下為必要的。 此外,在SPPS期間間隔基SG在空間上移動反應中心 而使其遠離固體支撐物,該反應令心為胺基酸構築嵌段依 序偶合之N端,從而使所溶解之試劑、添加劑、胺基酸構 築奴段等對反應中心之可及性得到極大改善。 【實施方式】 實施例 縮寫與原料 除非另外說明,否則在下文已使用且使用下列縮寫及 原料。
Ac 乙醯基
AcN 乙腈 121 201249861 樹月曰 2 -氯二本甲基氯樹脂(珠粒,loo,至200 篩目(根據美國測試與材料協會國際標 準組織(American Society f〇r Testing and Materials international , ASTM international )量測篩目),i 57 mm〇1/g, 「mmol/g」意謂「活性位點毫莫耳數/公克 樹脂」) DBF-加合物 1-(9H-苐-9-基甲基)哌啶 DCM 二氯甲烷 DIEA 二異丙基乙胺 DIPE 二異丙醚 DIPCDI N,N'-二異丙基碳化二亞胺 DMAP 4-二甲胺基吡啶 DMB 1,3-二曱氧基苯 DMF Ν,Ν-二甲基甲醯胺 eq 當量 除非另外提及,否則當量係指以樹脂之活性位點莫耳 數計之莫耳當量
Fmoc-Rink-OH 4’-{(R,S)-ct-[ 1-(9-苐基)曱氧幾基胺 基]-2,4-二甲氧基苯甲基卜苯氧基乙 酸,亦稱為對{(11,8)-&-[1-(911-第-9-基)-曱氧基曱醯胺基]-2,4-二曱氧基 笨曱基}-苯氧基乙酸,亦稱為 Fmoc-Rink醯胺柄狀物 ⑧ 122 201249861
Fmoc-Rink-OH Fmoc-Rink-OH Fmoc-Ramage-OH Fmoc-Ramage-OH Fmoc-Ramage-OH Fmoc-TTDS-OH TTDS Fmoc-TTDS-OH
HMPA 為式(HG-Ia)之柄狀基團,其中以 (*)指示之鍵連接至Fm〇c之9_苐基 曱氧基徵基且以(**)指示之鍵連接 至OH。 為式(HGroup-Ia )化合物,其中 PGHG 為 Fmoc。 [R,S]-2-{[5-(9-第基曱氧羰基胺基)_ 二苯并[a,d]環庚烷-2-基]氧基}-乙 酸’亦稱為 Fm〇c-Suberol,CAS 212783-75-0,亦稱為 Fm〇c_Ramage 柄狀物 為式(HG-VI )之柄狀基團,其中以 (*)指示之鍵連接至Fmoc之9-薙基 甲氧基羰基且以(**)指示之鍵連接 至OH。 為式(HGroup-VI )化合物,其中 PGHG 為 Fmoc 〇 [1^_1_[9~第基曱氧羰基]-1,13-二胺基 -4,7,10-三氧雜十三烷-丁二醯胺 酸 ’ CAS 172089-14-4 為式(SG-I)之間隔基,其中mi為 3 »
為化合物SGroupl,其中ml為3。 4-經基甲基苯氧基乙酸,CAS 201249861 HMPA HMPA HCTU HMPS樹脂 HOBt min MW Oxyma PVDF RP-HPLC rp-hplc-esms 樹脂加載量 RT s 序列縮寫: 68858-21-9 為式(HG-IVa)之柄狀基團,其中 以(*)及(**)指示之鍵連接至OH。 為式(HGroup-IVa)之化合物。 六氟磷酸2-(6-氣-1H-苯并三唑-卜 基)-1,1,3,3-四甲基敍 經甲基聚苯乙稀樹脂(珠粒,1 〇 〇至 2 0 0師目(根據美國測試與材料協會 國際標準組織(ASTM international ) 量測篩目),0.98 mmol/g,「mm〇i/g 意謂「活性位點毫莫耳數/公克樹 脂」) 1 -經基苯并三唑。水含量約為丨2% (w/w )。 分鐘 分子量 2-氰基-2-(羥亞胺基)乙酸乙酉旨 聚偏二氟乙烯 逆相高效液相層析 逆相高效液相層析電喷霧質言普 每公克樹脂之肽毫莫耳數 室溫 秒 ⑧ 124 201249861
T20 Ac[T20-l-36]NH2 。此序列以 CAS 159519-65-0 登記。 T20C H[T20-27-36]NH2
BocT20N Boc[T20-1 7-26]OH
HT20N H[T20-17-26]〇H HT20F H[T20-17-36]NH2 tis 三異丙基石夕烧 uv 紫外線 序列表使用相應序列之序列縮寫β 舉例而言,[Τ20-1-36]為由胺基酸殘基i至36組成之 T20肽之序列,其中左邊數字表示N端胺基酸殘基且右邊 數字表示C端胺基酸殘基。 方法描述 A )測定樹脂加載量
Fmoc基團以 式分光光度計 藉由在290 nm下量測uv吸光度來測定 定量樹脂加載量。利用Shimadzu uv_Vis記錄 (UV-2501 PC)進行uv吸光度量測。 步驟1收集脫除保護基Fm〇c基團之溶液: 如實施例中所述移除Fm〇c基
中,收隼脫咚仅崎甘 在VAml玻璃量瓶A 埴奋v &Fm〇C基團之所得溶液。用DMF完入 填充VA ml玻璃量瓶A。 70王 分試樣轉移至另 完全填充。製備 步驟2稀釋溶液以用於UV量測: 將來自VA ml破璃量瓶a之% μ等 〜如玻璃量瓶b中且接著將其用dmf 125 201249861 三種不同之經稀釋之VB ml溶液且在290 nm下藉由uv光 譜法量測以獲得代表性吸光度值。 步驟3藉由UV分光光度法定量: 用DMF (參照;·谷液)填充路線長度為1 cm之卩乂石英 比色槽,且將其在290 nm (二苯并芙(dibenzofulvene )之 最大吸光度波長)下置放於分光光度計中以達到零。用稀 釋溶液B洗滌UV比色槽兩次且接著用此溶液填充且在29〇 nm下量測其吸光度。 最終,遵循以下方程式計算樹脂加載量: [Α290χ比色槽長度xVA xV„1 """ε290χ樹脂公克數xvc~~ A29CM所量測之吸光度值 比色槽長度:1 (cm)
Va:玻璃量瓶A之體積(mi) VB :玻璃量瓶b之體積(ml )
Vc :自A轉移至B之等分試樣體積(ml ) ε290:二苯并芙在29〇 nm下之莫耳消光係數; B)藉由RP-HPLC及RP-HPLC-ESMS分析特性化 Bl) RP-HPLC 分析 利用包含分離模組(Waters 2695 )、自動注射器(WakB 717自動取樣器)及uv光電二極體陣列侦測器(w_ )之Wat⑽儀器進行分析型Rp孤c,且使用移動相 126 201249861 B至移動相A之線性梯度且在各情況下加以說明。 步驟1樣品製備: 移動相A : 0.045% ( Wv) TFA水溶液 移動相 B : 0.036% ( v/v) TFA 之 ACN 溶液 將0.5 mg至1 mg範圍内之特定量之樣品溶解於約〇·5 至1 ml之j^O/aCN混合物(1:1,v/v)中,經ο]〗微 米孔後、4 mm直徑之PVDF疏水性過濾器過濾溶液。 步驟2層析條件: 管柱:SunFire C18,3.5 微来,4.6χ 100 mm 烘箱··室溫 流速:1.0毫升/分鐘 债測器波長:220 nm 梯度操作時間:8分鐘 梯度組成:x〇/。至y〇/。( v/v )之移動相B,如實施例中 所說明 在/主射之前,在初始條件下使管柱適應3分鐘,且在 各次操作後用ACN洗滌管柱3分鐘。 步驟3層析特徵分析: 所有層析峰面積之量測值與合成之產物有關。面積比 例係視作預期產物之純度百分比。 B2) RP-HPLC-ESMS 分析 利用包含分離模組(Waters 2695 )、自動注射器(Waters 717自動取樣器)及UV光電二極體陣列偵測器( 2998 )之Waters Micromass ZQ光譜儀進行分析型 127 201249861 RP-HPLC-ESMS ’且使用移動相B至移動相A之線性梯声 步驟1樣品製備: & 移動相A : 〇. 1 〇/〇 ( v/v )甲酸水溶液 移動相B : 〇·〇7〇/0 ( v/v)曱酸之ACN溶液 將0.5 mg至1 mg範圍内之特定量之樣品溶解於約〇 $ nd至i ml之H2〇/ACN混合物(1:1,v/v)令,經〇 μ微 米孔徑、4 mm直徑之PVDF疏水性過濾器過濾溶液。 步驟2層析-質譜條件: 管柱:SunFire C18,3.5 微米,2.1x100 烘箱:室溫 流速:0.3毫升/分鐘 偵測器波長:220 nm 梯度操作時間:8分鐘 梯度組成_ X%至y% ( v/v )之移動相B,如實施例中 所說明 質量範圍m/z (正離子模式):500 Da至2500 Da 在注射之前,在初始條件下使管柱適應3分鐘,且在 各次操作後用ACN洗滌管柱3分鐘。 步驟3層析-質譜分析 分析各峰之UV及MS譜以確定各峰之分子離子質量。 B3) RP-HPLC 分析 利用包含分離模組、自動注射器及uv光電二極體陣列 偵測器之Agilent 1100系列儀器進行分析型Rp HpLC,且 使用移動相C及移動相D之梯度。 ⑧ 128 201249861 » 步驟1樣品製備: 移動相D : 0.1% v/v TFA水溶液 移動相 C : 0.085% ( v/v) TFA 之 ACN 溶液 將0.5 mg至1 mg範圍内之特定量之樣品溶解於約〇.5 ml 至 1 ml 之 H20/ACN 混合物(1:2,v/v)中。 步驟2層析條件: 管柱:Waters X-Terra MS C 1 8,3.5 微米,4.6>< 1 50 mm
烘箱:3 5 °C 流速.1 · 〇毫升/分鐘 偵測器波長:2 2 0 nm 梯度操作時間:2 5分鐘
梯度組成:10%至97% ( v/v)之移動相C 在注射之前’在初始條件下使管柱適應2分鐘,且在 各次操作後洗滌管柱2分鐘。 步驟3層析特徵分析: 所有層析峰面積之量測值與合成之產物有關。面積比 例係視作預期產物之純度百分比。 B4) RP-HPLC-ESMS 分析 利用Waters 2690進行分析型rp_hplc-ESMS ,且使用 移動相B至移動相a之梯度。 步驟1樣品製備: 移動相A : 0.1% ( v/v)三氟乙酸水溶液 移動相Β: 0·085%(ν/ν)三氧乙酸之ACN溶液 將〇.5 mg至! mg範圍内之特定量之樣品溶解於 129 201249861 ml 至 1 ml 之 H2O/ACN 混合物(1:1,v/v)中,經 〇·45 微 米孔徑、4 mm直徑之PVDF疏水性過濾器過濾溶液。 步驟2層析-質譜條件: 管柱:Waters XTerra MS C18,150x4.6 mm
烘箱:3 5 °C 流速:1毫升/分鐘 4貞測器波長:220 nm 操作時間:3 0分鐘 梯度組成:10%至97% ( v/v)之移動相B,20分鐘; 970/。( Wv)之移動相b,2分鐘;97%至10% ( v/v)之移動 相B ’ 1分鐘;1 〇% ( v/v)之移動相b,7分鐘。 在注射之前,在初始條件下使管柱適應3分鐘,且在 各次操作後用ACN洗滌管柱3分鐘。 步驟3層析-質譜分析 分析各峰之UV及MS譜以確定各峰之分子離子質量。 質量範圍m/z (正離子模式):5〇〇Da至2500 Da C)節滿三酿](ninhydrin)測試 製備試劑溶液 试劑溶液A :將苯酚(40 g )溶解於EtOH ( 1 0 ml )中。 將KCN (65 mg)於水(1〇〇m]〇中之溶液添加至吡啶(在 ^滿二酮上新鮮蒸餾,1 00 ml )中。將兩種溶液與混合床離 子交換樹脂一起攪拌45分鐘,過濾且混合。 忒劑浴液B :製備茚滿三酮(2·5 g )於絕對Et〇H ( 5〇 ml )中之溶液且較佳在惰性氛圍下保持於不透光容器中。 ⑧ 130 201249861 » 實驗程序 用DCM '先將樹脂且將1 mg至5 mg轉移至小玻璃管 :向此S中添加六滴試劑溶液A及兩滴試劑溶液b。接 著在100C下加熱該管3分鐘。 陰性測4 (不存在自由_級胺):黃色溶液及天然著色 之樹脂珠粒。 陽陡測°式(存在自由-級胺):深藍色或紫色溶液及樹 脂珠粒。 D )四氣醌測試 製備試劑溶液 試劑溶液:製備四氣醌(4] g)於曱苯(1〇〇ml)中之 溶液。 實驗程序 向小玻璃管中之丙酮(丨ml)中添加丨滴試劑溶液及1 滴測試溶液。接著混合該管約1 〇秒。 陰性測S式(不存在旅β定)··無色至淡黃色 陽性測試(存在派咬):藍色或紫色。 實施例1 :使用經由形成二酮哌啡基之二肽連接子連接 至樹脂的T20C之SPPS ( 0.1 mm〇丨規模) 手動進行SPPS。 方法Fmoc-gr-rem (移除Fm〇c基團) 在以下實施例中’藉由此等程序移除Fnioc基團: 用20%( v/v)哌啶之DMF溶液(lxl分鐘,2χ1〇分鐘; 對於實施例1至3及實施例7,各次3 ml,對於實施例4至 131 201249861 6,各次150 ml )處理樹脂,繼而: DMF洗滌(5x 1分鐘;各次3 ml )(對於實施例1至3 及實施例7 ), DMF繼續洗滌(600 ml)及四氯醌測試法〇 (對於實 施例4至6 )。 實施例1.1使形成二酮哌啡基之二肽連接子連接至樹脂 a) 預處理HMPS樹脂 在室溫下用DCM ( 5x1分鐘;各次3 ml)及dMf ( 5xl 分鐘;各次3 ml)使HMPS樹脂(1〇6_2 mg)膨脹且接著 過遽。 b) 將形成二酮哌啡基之二肽連接子之第一胺基酸 (D-Pro)引入至樹脂上
將於 DCM/DMF( 15:1,ν/ν,2·5 ml)中之 Fmoc-D-Pro-〇H (135mg,4當量)及DIPCDI(31微升,2當量)添加至根 據實施例1.1a)所製備之樹脂中。接著,添加於DCM (〇 $ ml )中之DMAP ( 4.9 mg,〇_4當量)且在室溫下靜置2小 時。在此程序之後再次併入Fm〇c_D_Pr〇〇H。在先前2小 時偶合時間之後1 DCM( 5xl分鐘;各次3ml)且用dmf (5x 1分鐘;各次3 ml )洗滌樹脂。接著,在室溫下使用於 DMF(2.5 ml)中之乙酸酐(47微升,5當量)及mEA(85 微升,5當量)將樹脂封端3〇分鐘。在封端之後,用 (5Xl分鐘;各次3 ml)且用DCM (5x1分鐘;各次3… 洗;k树月曰。接著藉由方法Fm〇c gr rem移除基團。 藉由UV定量(方法描述A ; VA : 1〇〇 ml,Vb : 1〇 ml ⑧ 132 201249861 及Vc . 1.6 ml )測定樹脂加載量為ο.% 。因此,1 〇6 2 mg HMPS樹脂相當於〇.〖mm〇〖活性位點。 c) 引入形成二輞哌啡基之二肽連接子之第二胺基酸 (L-Lys) 在室溫下震盪 Trt-L-Lys(Fmoc)-OH( 198 mg,3 當量)、 HOBt ( 50 mg,3當量)與DIPCDI ( 5〇微升,3當量)於 DMF ( 2 ml )中之混合物5分鐘,接著將其添加至根據實施 例1 · 1 b )所製備之樹脂中。將混合物在室溫下靜置1 6小時。 根據茚滿三酮測試(方法c),不需要再偶合。接著用dmf (5x1分鐘;各次3 mi)且用DCM ( 5χ1分鐘;各次3 ml) 洗滌樹脂。接著藉由方法Fm〇c gr_rem移除Fm〇e基團。 d) 併入Rink醯胺柄狀物 在室溫下震盪於DMF( 2 ml)中之Fm〇C-Rink-OH( 175 mg ’ 3 當量)、HOBt ( 50 mg,3 當量)及 DIPCDI ( 50 微升, 3 §里)5分鐘’接著將其添加至根據實施例丨.丨c )所製備 之Μ月曰中。在至溫下靜置混合物丨小時。根據茚滿三酮測 s式(方法C )’不需要再偶合。在先前1小時偶合時間之後, 用DMF ( 5x1分鐘;各次3 ml)且用DCM ( 5χ1分鐘;各 人3 ml) ’先/條樹脂。接著藉由方法pm〇c_gr_reni移除Fmoc 基團。
實施例1.2藉由SPPS合成T20C 在反應循環中使各胺基酸反應。遵循反應循環描述(i ) 或(u )進行一個反應循環中之反應步驟以併入一個胺基酸。 a)反應痛環描述(| ) 133 201249861 在室溫下震盪Fm〇C-Xaa_OH( 3當量)、HCTu( i4〇叫, 3當量)及DIEA ( 110微升,6當量)於dmf ( 2如)中之 混合物30秒,接著將其添加至根據延長順序中之先前步驟 所製備之樹脂中。在室溫下靜置混合^小時。根據節滿 三酮測試(方& c),不需要再偶合。接著用聊(5χΐ分 鐘;各次3 mi)且用DCM(5xl分鐘;各次3mi)洗務樹 脂。接著藉由方法Fmoc-gr-rem移除Fmoc基團。 b)反應循環描述(ϋ) 在室溫下震盪 Fm〇C-Xaa-〇H( 3 當量)、HCTU( 14〇 mg, 3當量)、DIEA ( 11〇微升,6當量)於DMF (2 mi)中之 混合物30秒,接著將其添加至根據延長順序中之先前步驟 所製備之樹脂中。在室溫下靜置混合物丨小時。使用
Fm〇C-Xaa-〇H ( 3 當量)、HCTU ( 140 mg ’ 3 當量)、DIEA (110微升,6當量)於DMF (2 ml)中之混合物進行再偶 合。在室溫下震盪此混合物30秒,且接著將其添加至樹脂 中且在室溫下靜置1小時。接著用DMF ( 5 X 1分鐘;各次3 ml )洗務樹脂’且在室溫下使用於dmf ( 2.5 ml )十之乙酸 酐(47微升,5當量)及DIEA ( 85微升,5當量)將樹脂 封端15分鐘。接著用DMF ( 5x1分鐘;各次3 ml)且用 DCM ( 5 X 1分鐘;各次3 ml )洗滌樹脂。接著藉由方法 Fmoc-gr-rem 移除 Frnoc 基團。 c )延長順序 使第一胺基酸Fmoc-36Phe-OH偶合至根據實施例1. id ) 所製備之包含形成二酮哌畊基之二肽連接子及Rink醯胺柄 134 ⑧ 201249861 狀基團之樹脂,接著使以下胺基酸偶合至在延長順序中之 先前步驟中所製備的包含胺基酸/肽Rink醯胺柄狀基團之 樹脂。併入胺基酸之順序為:
1. Fmoc-36Phe-OH ( 128mg) 2. Fmoc-35Trp(Boc)-OH ( 175 mg) 3. Fmoc-34Asn(Trt)-OH ( 198 mg) 4. Fmoc-33Trp(Boc)-OH ( 175 mg) 5. Fmoc-32Leu-OH ( 117 mg) 6. Fmoc-3,Ser(tBu)-OH ( 127 mg) 7. Fmoc-30Ala-OH.H2O (llOmg) (j) 8. Fmoc-29Trp(Boc)-OH (175 mg) (i) 9. Fmoc-28Lys(Boc)-OH (2 次,156 mg) (ϋ) 10. Fmoc-27Asp(tBu)-OH ( 137 mg) (i) 實施例1.3分析-使T2〇C自Rink醯胺柄狀基團裂解 藉由在室溫下用1 ml由95% ( v/v ) TFA、2.5% ( v/v ) TIS及2.5% ( v/v ) HA組成之混合物處理樹脂1小時使根 據實施例1.2製備之一小部分肽基-樹脂(5 mg )自Rink醯 胺柄狀基團裂解。獲得83%純度之肽(rp_hpLC,方法描 述B1,25至50之移動相B)。 實施例l.4a移除形成二酮哌啡基之二肽連接子之 L-Lys之Trt保護基,形成包含二酮哌明:殘基之C端保護基 135 201249861 及自樹脂裂解 在第一步驟中,藉由在室溫下用0 2% (v/v) TFA之 DCM溶液(2 ml )處理根據實施例丨2所製備之肽基_樹脂 (15 mg) 2x5分鐘來移除形成二酮哌畊基之二肽連接子之 L-Lys之Trt保護基。接著,在第二步驟中,藉由在室溫下 用5%(v/v) DIEA之DCM溶液(2ml)洗滌2x5分鐘來f 和由此所獲得之脫除保護基Trt之肽基·樹脂。 在第一步驟之後進行RP_HPLC:分析未展示任何自樹脂 或自Rink醢胺柄狀基團裂解之肽,且在第二步驟之後,未 觀測到包含DKP連接子基團之肽基_樹脂(方法描述B丨,5 至100之移動相B)。 在第二步驟之後,藉由在室溫下用5% ( Wv )哌啶之 THF溶液(5x5分鐘,各次2ml)處理來自第二步驟之肽基 樹脂獲得包含含二酮哌啡殘基之c端保護基的肽。 藉由在真空下蒸發移除THF且藉由RP-HPLC-ESMS (分別為方法描述B2, 8〇至1〇〇之移動相B,[(M + 2H)/2]2 + : 13 08.0,其中M為包含dkP連接子基團之T20C的MW) 刀析包含含二酮哌啡殘基之C端保護基的所得肽。獲得因 Rmk酿胺柄狀基團而呈外消旋混合物形式之預期產物,且 所觀測到之分子質量符合理論上預期之質量。 為疋2:在樹脂上殘留形成二酮哌啡基之二肽連接子的 里’在室溫下用2〇11由95%(乂/7)丁?八、2_5%(丫/\〇1'13 及2·5 /(>( V/v)H2〇組成之混合物處理樹脂1小時。RP-HLPC 刀析展不在樹脂中留有1 %以下之形成二酮哌畊基之二肽連 ⑧ 136 201249861 參 接子(方法描述B1,5至100移動相b)。 實施例1.4b 重複霄施例1.4a’其中唯一差里力於产够 . 走呉在於在第二步驟之後, 並非如實施例1.4a中藉由在室溫下用5%(v/v)哌啶之thf 溶液(Μ分鐘,各次2 ml)處理樹脂,而是藉由在室溫下 用5% ( v/v)哌啶之DMF溶液(5χ5分鐘,各次2⑹)處 理樹脂來獲得包含含二酮哌畊殘基之c端保護基的肽。藉 由在真空下與曱苯(5x3 ml)共蒸發移除dmf。 曰 實施例1.4e 重複實施例1.4a’其中唯一差異在於在第二步驟之後, 並非如實施例1.4a中藉由在室溫下用5%( v/v )哌啶之THF 溶液(5x5分鐘’各次2 ml )處理樹脂,而是藉由在室溫下 用5% ( Wv)吡咯啶之THF溶液(5x5分鐘,各次2 ml) 處理樹脂來獲得包含含二酮哌阱殘基之C端保護基的肽。 實施例1.4d 重複實施例1.4 a ’其中唯一差異在於在第二步驟之後, 並非如貫施例1.4a中藉由在室溫下用5%( v/v ) d底唆之THF 溶液(5 X 5分鐘,各次2 ml)處理樹脂,而是藉由在室溫下 用5% ( v/v )吡咯啶之DMF溶液(5 X 5分鐘,各次2 ml) 處理樹脂來獲得包含含二酮哌啡殘基之C端保護基的肽。 藉由在真空下與甲苯(5x3 ml)共蒸發移除DMF。 在所有三個實施例1.4b、1.4c及1.4d中,獲得與實施 例1.4a相同的RP-HPLC-ESMS分析之分析結果以及測定樹 脂上殘留之形成二酮哌畊基之二肽連接子的分析結果。 137 201249861 實施例2使用包含二酮哌畊殘基之c端保護基作為與 樹脂之連接的T20C之SPPS ( 5 mmo丨規模) 手動進行SPPS。 實施例2.1使形成二酮哌啡基之二肽連接子連接至 HMPS樹脂 a) 預處理HMPS樹脂 在室溫下用DCM( 5x1分鐘;各次50 ml)及DMF( 5x1 分鐘;各次50 ml)使HMPS樹脂(5.0977 g)膨脹且接著 過遽。 b) 將形成二酮哌啡基之二肽連接子之第一胺基酸 (D-Pro)引入至樹脂上 將於 DCM/DMF ( 15:1 ( v/v ),100 ml )中之 Fmoc-D_Pro-〇H ( 6.6 g,4 當量)及 DIPCDI ( 1·5 m卜 2 當 量)添加至根據實施例2.1a)所製備之樹脂中。接著,添 加於 DCM ( 5 ml)中之 DMAP ( 245 mg,0.4當量)且在室 溫下靜置16小時。在室溫下使用於DCM/DMF( 15:1( v/v),
100 ml)中之 Fmoc-D-Pro-OH ( 6.6 g,4 當量)及 DIPCDI (1 ·5 ml ’ 2當量)再偶合第一胺基酸5小時。在偶合之後, 用DCM ( 5x1分鐘;各次50 ml)且用DMF ( 5x1分鐘;各 次50 ml)洗滌樹脂。接著,在室溫下使用於DMF ( 50 ml) 中之乙酸酐(2.4 ml,5當量)及DIEA ( 4.4 nU,5當量) 將樹脂封端1小時。在封端之後,用DCM ( 5 X 1分鐘;各 次50 ml)且用dmF ( 5x1分鐘;各次50 ml)洗滌樹脂。 接著藉由用哌啶/DMF ( 2 0% ( v/v),1x1分鐘,2x10分鐘;
138 201249861 各次5〇 ml)處理來移除Frnoc基團。 藉由UV定量(方法描述A; Va: 25〇如,%: 5〇mi, 及Vc: 〇_44 ml )測定樹脂加載量為〇 98職叫。因此,5州7 gHMPS樹脂相當於5.〇mm〇1活性位點。 c)引入形成二酮哌啡基之二肽連接子之第二胺基酸 (L-Lys) 在室溫下震 i Trt-Lys(Fmoc)_〇H(9.2g,3 當量)、腦 (2·3 g ’ 3當量)及DIPCm ( 2 3⑷,3當量)於卿…( ml).中之混合⑯5分鐘,接著將其添加至根據實施例2^ 所製備之樹脂中,且接著在室溫下靜置混合物Μ小時。根 據節滿三嗣測試(方法c)’不需要再偶合。接著用dmf(5x] 分鐘;各次50 ml)且用DCM(5xl分鐘;各次5〇⑹)洗 滌樹脂。接著藉由用哌啶/DMF( 2〇%( ν/ν),ΐχΐ分鐘, 分鐘;各次50 處理來移除Fm〇c基團。 d)引入Rink醯胺柄狀基團 在室溫下震盪 Fmoc-Rink-OH ( 7.9 g,3 當量)、HOBt (3 g ’ 3 虽里)及 DIPCDI ( 2.3 m卜 3 當量)於 DMf ( loo ml)中之混合物5分鐘,接著將其添加至根據實施例2.lc) 所製備之樹脂中,且接著在室溫下靜置16小時。根據茚滿 —_測試(方法c),不需要再偶合。接著用dmf (5xi分 鐘;各次50 ml)且用DCM (5xl分鐘;各次5〇以)洗滌 樹脂。接著藉由用哌啶/DMF ( 20% ( ν/ν),1χ1分鐘,2χ1〇 今鐘;各次100 ml)處理來移除Fmoc基團。
實施例2.2藉由SPPS合成T20C 139 201249861 在反應循環中使各胺基酸反應。遵循反應循環描述(iu) 或(IV )進行一個反應循環中之反應步驟以併入一個胺基酸。 a) 反應循環描述(iii) 在室溫下震盪 Fmoc-Xaa-OH ( 3 當量)、HCTU ( 6.2 g, 3 當量)、DIEA ( 5.2 nU,6 當量)於 DMF ( 100 ml)中之 混合物30秒’接著將其添加至根據延長順序中之先前步驟 所製備之樹脂中。接著在室溫下靜置混合物2小時。根據 節滿三酮測試(方法C ),不需要再偶合。接著用DMF ( 5 X 1 分鐘;各次100 ml)且用DCM ( 5x1分鐘;各次1〇〇 ml) 洗滌樹脂。接著藉由用哌啶/DMF ( 20% ( v/v ),1 X 1分鐘, 2x10分鐘;各次1〇〇 m】)處理來移除jpmoc基團。 b) 反應循環描述(iv) 在室溫下震盪 Fmoc-Xaa-OH ( 3 當量)、HOBt ( 2.3 g, 3 當量)、DIPCDI ( 2.3 ml,3 當量)於 DMF ( 100 ml)中 之混合物5分鐘,接著將其添加至根據延長順序中之先前 步驟所製備之樹脂中,且接著在室溫下靜置16小時。使用
Fmoc-Xaa-OH( 3 當量)、HCTU( 6.2 g,3 當量)' DIEA( 5.2 ml,6當量)於DMF ( 100 ml )中之混合物進行再.偶合。在 室溫下震盪此混合物30秒,且接著將其添加至樹脂中且在 室溫下靜置2小時。接著,用DMF( 5x1分鐘;各次100 ml) 洗滌樹脂且在室溫下使用於DMF( 1〇〇 ml)中之乙酸酐(2.4 m卜5當量)、DIEA ( 4.4 ml,5當量)將樹脂封端}小時。 接著用DMF ( 5x1分鐘;各次1〇〇 ml)且用DCM ( 5χ1分 鐘;各次100 ml)洗滌樹脂。接著藉由用哌啶/DMF ( 2〇% ⑧ 140 201249861 (V/V),1X1分鐘,2χ10分鐘;各次1〇〇mi)處理來移除Fm〇c 基團。 C)延長順序 使第一胺基酸Fmoc-36Phe-OH偶合至根據實施例2 ld) 所製備之包含Rink醯胺柄狀基團及形成二酮派啡基之二肽 連接子的樹脂,接著使以下胺基酸偶合至在延長順序中之 各別先前步驟中製備之包含胺基酸/肽Rink醯胺柄狀基團 及形成二酮哌畊基之二肽連接子的所得樹脂。併入胺基酸 之順序提供於表c 1 )中: 表cl )
Fmoc-Xaa-OH_ 反應循璁描诫 1. Fmoc-36Phe-OH (5.8g) (iii) 2. Fmoc-35Trp(Boc)-OH (7.9g) (iii) 3. Fmoc-34Asn(Trt)-OH (8.8g) (iii) 4. Fmoc-33Trp(Boc)-OH (7.9 g) (iii) 5. Fmoc-32Leu-OH (5.3 g) (iii) 6. Fmoc-31Ser(tBu)-OH (5.6 g) (iii) 7. Fmoc-30Ala-OH.H2O (4.7g) (iii) 8. Fmoc-29Trp(Boc)-OH (7.9 g) (iii) 9. Fmoc-28Lys(Boc)-OH (2 次,6_8 g) (iv) 10. Fmoc-27Asp(tBu)-OH (6.0 g) (iii) 實施例2.3分析-使T20C自Rink醯胺柄狀基團裂解 141 201249861 藉由在室溫下用lml由95% ( Wv) TFA、2.5% ( v/v) TIS及2·5°/〇 ( v/v ) HzO組成之混合物處理樹脂1小時以使 根據實施例2_2所製備之一小部分肽基_樹脂(5 mg )自Rink 醢胺柄狀基團裂解。獲得如由分析型rp_hplc (方法描述 B1 ’ 25至50之移動相b )所測定72%純度之肽。 實施例2.4移除形成二酮哌啡基之二肽連接子之L_LyS 的Trt保護基,形成包含二酮哌哄殘基之c端保護基及自 樹脂裂解 以與實施例1.4a中所述類似之方式形成包含二酮哌啡 殘基之C知保s蔓基且使根據實施例2 · 2所製備之版片段自樹 脂(1 · 5 7 g )裂解,其中試劑及溶劑之量適於較高量之肽基 -樹脂: a) 脫除保護基Trt基團 〇.5%( V/V)TFA 之 DCM 溶液(2x5 分鐘;各次 20 ml)。 b) 中和 5¾ ( v/v ) DIEA 之 DMF 溶液(2x5 分鐘;各次 20 ml )。 c) 形成DKP連接子基團 5¼ ( Wv)哌啶之THF溶液(5x5分鐘;各次20 ml)。 在真空下移除THF且用預先冷卻(4〇c )之Et20 ( 50 ml><3 )洗條所得粗物質。獲得642.5 mg包含含二酮σ底啡殘 基之C端保護基的T20C。 實施例3製備HT20F : a ) BocT20N之SPPS , b )與包 含含二酮哌啡殘基之C端保護基的T20C進行HSPPS偶 合’及c)完全脫除保護基 142 201249861 根據實施例2.4獲得包含含二酮哌啡殘基之c端保護基 的 T20C 。
實施例3.1藉由SPPS合成B〇cT2〇N 藉由線性Fmoc SPPS手動進行b〇cT20N之SPPS。僅最 後一個Glu胺基酸為經Boc保護之B〇c-Glu(tBu)-〇H。 a) 預處理CTC樹脂 在室溫下用DCM( 5x1分鐘;各次5〇 ml)及DMF( 5M 分鐘;各次50 ml )使CTC樹脂·( 5.0054 g)膨脹且接著過 遽。 b) 將第一胺基酸(L-Leu )引入於CTC樹脂上: 將於 DCM ( 50 ml)中之 Fmoc-26Leu-OH ( 1.8 g,1 春 〇 田 里)、DIEA (8.7ml’ 10當量)添加至根據實施例3.1a)戶斤 製備之樹脂中,且在室溫下靜置混合物1小時。接著藉由 在室溫下用MeOH ( 0.8微升/毫克樹脂;4 ml )處理樹脂i 5 分鐘將樹脂封端。在封端之後,用DCM ( 5 X 1分鐘;各次 50 ml)且用DMF ( 5 X1分鐘;各次50 ml)洗滌樹脂。接 著藉由用哌啶/DMF ( 20% ( v/v),1x1分鐘,2x10分鐘; 各次50 ml )處理樹脂來移除Fmoc基團。 在併入Fm〇c-26Leu-OH之後,藉由UV定量(方法描述 A ; VA : 250 ml,Vb : 50 ml,及 Vc : 0.34 ml)測定樹脂加 載量為 0.89 mmol/g。
c) 藉由 SPPS 合成 BocT20N 在反應循環中使各胺基酸反應。遵循反應循環描述(v ) 進行一個反應循環中之反應步驟以併入一個胺基酸。 143 201249861 cl)反應循環描述(v) 在室溫下震盧 Fm〇c-Xaa_OH(3 當量)、〇xyma(i 9g, 3當量)、DIPCDI ( 2.3 nU’ 3當量)於dmf (如表c2令所 給出之Vi ml)中之混合物5分鐘,接著將其添加至根據延 長順序十之先前步驟所製備之樹脂中。接著在室溫下靜置 混合物1 6小時。根據茚滿三酮測試(方法c 不需要再偶 合。接著用DMF ( 5x1分鐘;如表c2中所給出之v2如) 且用DCM ( 5x 1分鐘;如表C2中所給出之V2 ml )洗滌樹 脂。 接著藉由用哌啶/DMF ( 20% ( v/v),lxi分鐘,2xi〇 分鐘;如表c2中所給出之V3 ml)處理樹脂來移除Fmoc 基團。 c2)延長順序 根據反應循環描述 (v ) 使第二胺基酸 Fmoc-25Glu(tBu)-OH偶合至根據實施例3.1b)所製備之樹 脂,接著根據反應循環描述(v )使以下胺基酸偶合至在延 長循環之先前步驟中製備之所得胺基酸/肽基CTC-樹脂。併 入胺基酸之順序提供於表C2)中。
144 201249861 * 表c2)
Fmoc-Xaa-OH ml VI ml V2 ml V3 1. Fmoc-25Glu(tBu)-OH ( 5.7 g) 50 50 50 2. Fmoc-24Leu-OH (4.7g) 50 50 50 3. Fmoc-23Leu-OH (4.7g) 50 50 50 4. Fmoc-22Glu(tBu)-OH (5.7g) 70 70 70 5. Fmoc-21Gln(Trt)-OH (8.1 g) 70 70 70 6. Fmoc-20Glu(tBu)-OH (5.7 g) 100 70 70 7. Fmoc-19Asn(Trt)-OH (8.0 g ) 100 70 70 8. Fmoc-18Lys(Boc)-OH (6.3g) 100 70 70 9. Boc-17Glu(tBu)-OH (6.3g) 100 70 70 實施例3.2分析-使HT20N自CTC樹脂裂解 在室溫下用 1 ml 之由 95% ( v/v) TFA、2.5% ( v/v) TIS 及2.5% ( v/v) H20組成之混合物處理根據實施例3.1c2 ) 製備之肽基-樹脂(5 mg ) 1小時以使肽自CTC樹脂裂解且 完全脫除胺基酸殘基之保護基。獲得如由RP-HPLC (方法 描述81,5至100之移動相6)所測定85.7°/。純度之11丁2(^。 藉由RP-HPLC-ESMS (方法描述B2,5至100之移動相B, [M+H] + : 1244.7,其中Μ對應於完全脫除保護基之HT20N) 分析肽。
實施例3.3侧鏈經保護之BocT20N 在室溫下用1% ( v/v) TFA之DCM溶液(5x1分鐘; 各次50 ml)處理根據實施例3. Ic2)所製備之肽基樹脂 145 201249861 O.〇94g)’將所有5份混合物傾注於H2〇(2〇mi”。接 著,蒸發此水性混合物且康乾粗物質。獲得側鍵經完全保 »蒦之 BocT2 0N ( 510 mg)且藉由 Rp HpLC ESMs (方法描 述B2, 95至100之移動相B,[m+h]+ 2i53 s)分析。 藉由RP-HPLC-ESMS (方法描述B1,5〇至1〇〇之移動 相B)觀測到側鏈經完全保護之B〇cT2〇N*存在部分脫除 保護基。RP-HPLC展示-個峰值’純度為85 7% (方法描 述B2 ’ 95至1〇〇之移動相b)。
實施例3.4藉由HSPPS合成HT20F a) 使包含含二酮哌啡殘基之c端保護基的τ2〇〔與 BocT20N之間進行HSPPS偶合 將根據實施例3.3製備之側鏈經保護之b〇cT2〇n(10 mg ’ 4.6微莫耳)及H〇Bt (2 2 mg,3當量)溶解於 (350微升)中,且將Dlpcm ( 2 2微升,3當量)添加至 此合物中。在室溫下震盪混合物5分鐘。將混合物添加至 根據霄施例2·4所製備之包含含二酮哌啡殘基之c端保護基 之T20C ( 12 mg,4.6微莫耳)於DCM ( 350微升)中之溶 液中。在至/皿下祝拌所得混合物16小時。藉由rp_hplc 分析(方法描述B 1,95至100之移動相B )監測偶合,在 16小時之後觀測到完全轉化。 在真空下蒸發溶劑’得到C端連接至包含二酮哌啡殘 基之C端保護基的片段b〇c[T2〇-17-36]。
b) 藉由完全脫除保護基得到JJT20F
在室溫下用1 ml 由 92.5% ( v/v) TFA ' 2.5% ( v/v) TIS
146 201249861 及5% ( v/v ) DMB組成之混合物處理根據實施例3 4a )製 備之C端連接至包含二酮哌畊殘基之c端保護基的片段
Boc[T20-17-3 6] ( 1 mg) 1小時。為移除Trp殘基之側鏈上 之所仔N-叛基’添加〇·5% (v/v) NH3水溶液(1 ml)且在 室溫下靜置混合物1 6小時’得到如由rp_hplC (方法描述 B 1,30至40之移動相B )所測定60.2%純度之完全脫除保 護基之HT20FaRP-HPLC-ESMS展示目標肽(方法描述B2, 30 至 40 之移動相 B ),其中[(M+2H)/2]2 + : 1290.0,其中 Μ 為 HT20F 之 MW。 實施例4藉由SPPS製備式(ex-4)化合物
Ac-Tyr(OtBu)-His(Trt)-Ala-OH (ex-4) a) 預處理CTC樹脂 在室溫下用DCM ( 1小時;200 ml )使CTC樹脂(20.4 g)膨脹且搔著過濾。 b) 將第一胺基酸(Fmoc-Ala-OH)引入於CTC樹脂 上 將於 DCM ( 160 ml)中之 Fmoc-Ala-OH ( 12.65 g,1.2 當量)、DIEA ( 14.90 g,3.6當量)添加至根據實施例4a) 所製備之樹脂中,在室溫下靜置混合物2小時,且接著過 渡。在室溫下用 DIEA/]VIe〇H ( 10% ( v/v),200 ml)及 DMF (40 ml )處理樹脂1小時且接著過濾。接著根據方法 Fmoc-gr-rem 移除 Fmoc 基團。在併入 Fmoc-Ala-OH 之後, 計算樹脂加載量為0.97 mmol/g。 el)藉由SPPS併入胺基酸 147 201249861 以根據實施例4 b )製備之樹脂為起始物’遵循實施例 4 c2 )中之反應循環描述分別併入各胺基酸 (l.Fmoc-His(Trt)-〇H 及 2.Fmoc-Tyr(tBu)-OH)。 c2 )循環描述 在室溫下攪拌各別Fmoc-Xaa-OH( 1_5當量)、HOBt( 9.2 g,2.25 當量)、DIPCDI ( 9.31 ml,2_25 當量)於 DMF ( 103 g )中之混合物5分鐘,接著將其添加至根據實施例4b )製 備之樹脂中’且接著在室溫下靜置45分鐘。接著添加 DIPCDI ( 4·66 m卜1.25當量)且在室溫下靜置混合物45 分鐘。根據茚滿三酮測試(方法C ),不需要再偶合。用DMF (3x5分鐘;各次11〇 mi )洗滌樹脂。接著根據方法 Fmoc-gr-rem移除Fmoc基團。根據四氣醌測試(方法D) 移除所有哌啶。 d )自樹脂裂解 在約10°C下用2% ( w/w) TFA之DCM溶液(4x 15分 鐘;各次15 0 g )洗蘇根據實施例4 c 1 )所製備之樹脂。接 者在室溫10C下用EtOH/DCM(20%(vv/w),3x3分鐘;各 次120 g)洗滌樹脂。藉由在減壓下與EtOH ( 1x40 g)共蒸 發濃縮合併之溶液。 e)分離 向根據貫施例4d )所獲得之溶液(1 〇7.6〇 g )中添加水 (800 g)。過濾所得混合物且用水(3x3分鐘;各次80 g) 及DIPE ( 3x2分鐘;各次120 ml)洗滌固體。 在30°C下於減壓下乾燥固體,得到20_80g呈白色粉末 148 201249861 * 狀之式(ex-4 )化合物’其中純度如由Rp_HPLC (方法B3 ) 所測定為94.7%。 實施例5使形成二酮派啡基之二肽連接子連接至 HMPS樹脂,使用Ramage柄狀基團,及製備式(ex_5i) 化合物 a) 預處理HMPS樹脂 用DCM(5xl分在里,各次150ml)及DMF(5xl分鐘; 各次150 ml)使HMPS樹脂(5.0 g)膨脹。 b) 將第一胺基酸引入至樹脂上 將於 DCM/DMF ( 15:1 (v/v),.125 ml)中之各別胺基 酸(N(Me)Phe-OH 或 Fmoc-D-Pro-OH)及 DIPCDI ( 2 43 g, 3.5當量)添加至根據實施例5 a )所製備之樹脂中。接著, 添加於DCM ( 25 ml)中之DMAP ( 0.27 g,〇.4當量)且在 室溫下靜置3小時或4小時。 用DCM ( 5 X 1分鐘;各次15〇 ml)且用DMF ( 5 X 1分 知,各次150 ml)洗蘇樹脂。接著,在室溫下使用於dmf (125ml)中之乙酸酐(2.81g,5 當量)&DIEA〇 56g’ 5赢里)將樹脂封端3 0分鐘。在封端之後,用dmF ( 5 X 1 分鐘;各次150 mi)洗滌樹脂。接著根據方法Fm〇c_gr_rem 移除Fmoc基團。 3十算樹脂加載量為1.1 〇 mmoΙ/g ’因此5 ·〇 g HMPS樹脂 相當於5.5 mmol活性位點。 bl)根據實施例5 b)之程序’其中Xaa為N(Me)phe_〇H (4.86 g,2.2當量)且在室溫下靜置4小時。 149 201249861 b2 )根據實施例5 b )之程序,其中 xaa為 Fmoc-D-Pro-〇H( 7_45 g,4.0當量)且在室溫下靜置3小時。 c) 引入第二胺基酸
在室溫下擾拌 Trt-Lys(Fmoc)-OH (11.26 g,2 當量)、 HOBt( 4.24 g,3 當量)及 DIPCDI( 3.49 g,3 當量)於 DMF (1 00 mi )中之混合物5分鐘,接著將其添加至根據實施例 5 b 1 )所製備之樹脂中》在室溫下攪拌混合物1 7小時。 接著,用DMF ( 5x1分鐘;各次150 ml)洗滌樹脂, 且根據方法Fmoc-gr-rem移除Fmoc基團。 d) 藉由SPPS併入胺基酸 以根據實施例5 c )製備之樹脂為起始物,遵循反應循 環描述(vi )併入柄狀基團及各別胺基酸(亦即 l.Fmoc-Ramage-OH、2.Fmoc-Leu-OH、3.Fmoc-Ala-O.H 及 4.Fmoc-Phe-OH)。 e) 反應循環描述(vi) 在室溫下攪拌柄狀基團或各別胺基酸Fmoc-Xaa-OH ( 2 當量)、HOBt ( 4.24 g , 3 當量)、DIPCDI ( 3.49 g,3 當量) 於DMF ( 100 ml)中之混合物5分鐘,接著將其分別添加 至根據實施例5 c)所製備之樹脂中(在柄狀基團之情況下) 及接著添加至根據實施例5 d )所製備之樹脂中(在胺基酸 之情況下)’且接著在室溫下靜置1小時。用DMF ( 5 X 1分 鐘;各次150 ml)洗滌樹脂,且當Xaa為Fm〇c_phe-〇H時, 另外用DCM ( 5x1分鐘;各次15〇如)洗滌。當Xaa為 Fmoc-Ala-OH時’在室溫下再用dmf ( 1x1分鐘;150 ml) ⑧ 150 201249861 4 洗務樹脂。除最後一個Xaa (即Fmoc-Phe-OH )外,根據方 法 Fmoc-gr-rem 移除 Fmoc 基團。 f) 分析·使肽自柄狀基團且從而亦自樹脂裂解 在室溫下用 1 ml 由 95% ( v/v ) TFA、2.5% ( v/v ) TIS 及2.5 % ( v/v )水組成之混合物處理根據實施例5 d )獲得 之一小部分樹脂(5 mg ) 1小時。獲得如由分析型RP — HPLC (11卩1^方法83)所測定86.4%純度之式(以-5〇化合物。
Fmoc-Phe-Ala-Leu-NH2 ( ex-5f) g) 移除連接子之L-Lys之Trt保護基,形成包含二酮 哌畊殘基之C端保.護基及自樹脂裂解 以與實施例1.4a中所述類似之方式形成包含二酮哌啡 殘基之C i而保g蔓基且使DKP-狀自根據實施例5 d )所製備 之樹脂裂解,其中試劑及溶劑之量適於肽基_樹脂之量: gl)脫除保護基Trt基團 用0.2% ( v/v) TFA之DCM溶液(2x5分鐘,各次100 ml )處理根據實施例5 d )所製備之化合物。 g2 )中和 接著用5% ( v/v) DIEA之DCM溶液(2x5分鐘;各次 100 ml)及DCM ( 2χ 1分鐘;各次50 ml)處理。使用HPLC 確保無產物殘留於液相中(HPLC方法B3 )。 g3)形成包含二酮哌啡殘基之C端保護基及自樹脂裂 解 接著用5% ( v/v)哌啶之THF溶液(5 X 5分鐘;各次 1〇〇 ml)處理。接著用THF ( 3x1分鐘;各次100 ml)洗滌 151 201249861 樹脂。使用HPLC確你姦仏各 , '、產物處於合併之液相中(hplc方法 B3 )。 藉由在真空下盥帀贫/。, .、 ,# 本(3x150ml)共蒸發移除thf。獲 得1.96 g含DBF加合妝彻斗、γ . D物與式(ex-5g4 )化合物之混合物的 白色固體。 方法B4提供預期質量。
(ex-5g4) g4 )移除DBF加合物 用DIPE ( 1x2分鐘,50 ml ; 3x2分鐘,各次10 ml)洗 滌根據實施例5 g3 )所製備之白色固體。獲得223.7 mg呈 白色固體狀之式(ex-5 g4 )化合物。 h)分析-使肽自包含二酮哌啡殘基之C端保護基裂解 藉由在室溫下用lml由95% ( v/v) TFA、2_5% ( v/v) TIS及2·5% ( v/v )水組成之混合物處理1小時以使根據實 施例5 g4 )所製備之一小部分式(ex-5g4 )化合物(5 mg ) 脫除保護基》獲得式(ex-5h)化合物,藉由RP-HLPC分析 ③ 152 201249861 方法B 3確定結構。
Phe-Ala-Leu-NH2 (ex-5h) i)藉由HSPPS使式(ex_4)化合物與式(ex_5g4)化 合物偶合 在室溫下攪拌根據實施例4所製備之式(ex_4 )化合物 (84 mg,1 當量)、HOBt ( 53 mg,3.2 當量)及 DIPCDI ( 53 微升’ 3.1當量)於DCM ( 2 ml)中之混合物15分鐘,接 著將其添加至根據實施例5 g4 )所製備之式(ex_5g4 )化合 物(100 mg,1 · 1當量)於DCM ( 1 ml)中之溶液中,且接 著在室溫下撥拌混合物4小時。藉由HPLC方法B3監測偶 用飽和NaHC〇3水溶液(2M0 ml)、1 M KHS04水溶液 (2x40 ml)及NaCl飽和水溶液(2x40 ml )洗滌反應混合物。 經MgS〇4使有機相脫水且在減壓下濃縮,得到3 2 §, 5 mg呈油狀之式(ex>5i)化合物,其如由分析型Rp_HpLc (方法描述B4)所測定純度為55%,由各自因由Ramage柄 狀基團之手性所產生的2種非對映異構體所致之各佔2 6.8 % 及28.2%之2個峰組成。 153 201249861
Ac-Tyr(tBu)-His(Trt)-Ala-Phe-Ala-Leu
(ex-5i) 實施例6使形成二酮哌啡基之二肽連接子連接至 HMPS 樹脂。製備式(ex_6e3-dl )、式(ex_6e3-d2 )、式(ex-6fl ) 及式(ex-6fl )之化合物 a)引入第二胺基酸L-Lys
在至溫下攪拌 Trt-Lys(Fmoc)-〇H ( 10.08 g,2 當量)、 HOBt( 3.79 g,3 當量)及 DIPCDI( 3.12 g,3 當量)於 DMF (100 ml )中之混合物5分鐘,接著將其添加至根據實施例 5 b2 )所製備之樹脂中。在室溫下攪拌混合物丨7小時。 接著,用DMF (5xi分鐘;各次15〇 ml)洗滌樹脂, 且根據方法Fmoc-gr-rem移除Fmoc基團。 b )藉由SPPS引入柄狀基團、間隔基及胺基酸 在反應循環中使柄狀基團、間隔基及各胺基酸反應。 遵循反應循環描述(vii )進行一個反應循環中之反應步驟 以併入一個胺基酸。 )對於延長順序dl)及d2)之反應循環描述(νϋ) 母人在至溫下攪拌提供間隔基之Fmoc_TTDs_〇H (在 154 201249861 4 d 1 )之情況下)、提供紅业且固 捉仏柄狀基團之Fmoc-Rink-OH或各別
Fmoc-Xaa_OH(根據延具挪甴、、土 低像延長順序)連同HOBt( 3.79 g,3當量〕 及 DIPCDI (3.12 g,3 當量)於 DMF ( 1〇〇 ml )中之混入 物5分鐘,且接著將其首先添加至根據實施例⑷所製: 之樹脂中,且接著添加至在延長順序中之先前步驟中所製 備之樹脂中。在室溫下授掉混合物j至4小時。接著1 DMF ( 5x1分鐘;各次15〇如,當為
Fmoc-Ala-OH日寺,用6x替代5x)洗蘇樹脂,且根據方法 Fmoc-gr-rem 移除 Fmoc 基團。 僅在移除各別延長順序d 1 )或d2 )之最後一個 Fmoc-Xaa-OH之Fmoc基團之前,藉由在室溫下用i…由 95% (Wv) TFA、2·5% (v/v) TIS 及 2 5% (ν/ν) Η"組成 之混合物處理樹脂l小時使一小部分所得肽基-樹脂(5 ) 自Rink醯胺柄狀基團裂解。藉由延長順序dl )獲得46 7% 純度之式(ex-6c-dl)化合物,且藉由延長順序们)獲得 65.4。/。純度之式(以-6(:-(12)化合物(1^_抑[€,方法描述 B3 )。
Fmoc-Phe-Ala-Leu-NH2 (ex-6c-dl) Fmoc-Tyr(tBu)-His(Trt)-Leu-NH2 ( ex-6c-d2) d)藉由SPPS併入胺基酸 併入胺基酸之順序為: 延長順序d 1 丫
Fmoc-TTDS-OH/Fmoc-Rink-OH/Fmoc-Xaa-OH 搜摔混人物 1. Fmoc-TTDS-OH ( 5 g) 4 , 155 201249861 2. Fmoc-Rink-OH ( 9.11 g) 1小時 3. Fmoc-Leu-OH ( 5.83 g) 1小時 4. Fmoc-Ala-OH ( 5.43 g) 1小時 5. Fmoc-Phe-OH ( 3.69 g) 2小時 延長順序d2) Fmoc-Xaa-OH/Fmoc-Rink-OH 攪拌混合物 1. Fmoc-Rink-OH ( 9.10 g) 1小時 2. Fmoc-Leu-OH ( 5.83 g) 2小時 3. Fmoc-His(Trt)-OH ( 10.23 g) 1小時 4. Fmoc-Tyr(tBu)-OH ( 7.59 g) 1小時 e ) 移除形成二酮哌畊基之二肽連接子之 L-Lys 的 Trt 保護基,形成包含二酮哌啡殘基之c端保護基及自樹脂裂 以與實施例1.4a中所述類似之方式形成包含二酮哌啡 殘基之C端保護基且使DKP-肽自根據實施例6 c )分別連 同實施例6 d 1 )及實施例6 d2 )所製備之樹脂中裂解,其 中試劑及溶劑之量適於肽基-樹脂之量: el)脫除保護基Trt基團 用0.2% ( v/v) TFA之DCM溶液(2x5分鐘,各次1〇〇 ml )處理根據實施例6 c )分別連同實施例6 d 1 )及實施例 6 d2 )所製備之化合物。 e2 )中和 接著用5% ( v/v) DIEA之DCM溶液(2x5分鐘;各次 100 ml)、DCM ( 2x1 分鐘;各次 100 ml)及 THF ( 2x1 分
156 201249861 鐘;各次1 0 0 m 1 )處理。 e3)形成包含二明哌啡殘基之c端保護基及自樹脂裂 解 根據實施例5 g3 )之程序處理。獲得油狀物,在起始 物質來自實施例6 dl )之情況下,獲得0.83 g式(ex_6e3-dl ) 化合物,且在起始物質來自實施例6 d2)之情況下,獲得 2.03 g 式(ex-6e3-d2 )化合物。 H3〒
、CH, NH (ex_6e3-dl) 、俨2SC、 CH, ,〇—ClL· -CH, 0
Lys- D-Pro 157 201249861
fl)藉由hspps使式(ex_4)化合物與式(ex 6e3_di) 化合物偶合 在室溫下攪拌根據實施例4所製備之式(ex_4 )化合物 (255 1^’1當量)、11(^(160„^,3當量)及1;)11}(:1)1(161 Μ升’ 3當里)於DCM ( 5 ml )中之混合物6〇分鐘,接著 將其添加至根據實施例6e3)所製備之式(ex_6e3_dl)化合 物(401 mg ’ 1.0當量)於DCM ( 1 ml)中之溶液中,且接 著在室溫下攪拌2小時。藉由HPLC方法B3監測偶合。用 飽和 NaHC03 水溶液(2x40 ml)、1 μ KHS04 水溶液(2x4〇 ml)及NaCl飽和水溶液(2x40 mi)洗滌反應混合物。經 MgSCU使有機相脫水且在減壓下濃縮,得到368.5 mg呈油 狀之式(ex-6fl )化合物。 201249861 h3?
CH, (ex-6fl)
f2 )藉由HSPPS使式(ex-4 )化人私也/ 、 » 物與式(ex-6e3-d2) 化合物加成 在室溫下攪拌根據實施例4所製借少斗· / 、 人 ’衣侑之式(ex-4 )化合物 ( 295 mg,i 當量)、ΗΟΒΚ190„^,3 當量)及 DipcDi(i88 微升’ 3當量)於DCM (5 ml)中之混合物2〇分鐘接著 將其添加至根據實施例66)所製備之式(ex 6e3_d2)化合 物(502 mg,1.0當量)於DCM ( 1 ml)中之溶液中,且接 著在室溫下攪拌3.5小時。藉由HPLC方法B3監測偶合。 用飽和NaHC03水溶液(2x40 ml)、1 μ KHS04水溶液 (2x40 ml)及NaCl飽和水溶液(2x40 ml)洗滌反應混合物。 經MgS〇4使有機相脫水且在減壓下濃縮,得到372 8 呈 油狀之式(e X - 6 f 2 )化合物。 159 201249861 h3c
、CH, (ex-6f2) 厂 Lys- D-Pro — 實施例7使用柄狀基團HMPA。製備式(ex-7h3 )化合 物 a) 預處理HMPS樹脂 在室溫下用DCM ( 5χ 1分鐘;各次3 ml )及DMF ( 5χ 1 分鐘;各次3 ml )使HMPS樹脂(103.6 mg)膨脹且接著 過濾。 b) 將形成二鲷派啡基之二肽連接子之第一胺基酸 (D-Pro)引入至樹脂上 將於 DCM/DMF ( 15:1 ( v/v ),2.5 ml )中之 Fmoc-D-Pro-〇H ( 132 mg ’ 4 當量)及 DIPCDI ( 30 微升,2 當量)添加至根據實施例7 a )所製備之樹脂中。接著,添 加於 DCM ( 0.5 ml)中之 DMAP ( 4.8 mg,0·4 當量)且在 室溫下靜置2小時。在室溫下使用於DCM/DMF ( 15:1 (v/v) ’ 2.5 ml)中之 Fmoc-D-Pro-ΟΗ ( 132 mg,4 當量)及 DIPCDI ( 30微升,2當量)再偶合第一胺基酸1 6小時。在 偶合之後,用DCM ( 5x 1分鐘;各次3 ml )且用DMF ( 5χ 1 ⑧ 160 201249861 分鐘;各次3 mI )洗滌樹脂。接著,在室溫下使用於DMF (2_5nU)中之乙酸酐(46微升,5當量)及DIEA( 86微升, 5當1 將樹脂封端30分鐘。在封端之後,用DCM ( 5x1 分鐘;各次3以)且用DMF ( 5x1分鐘;各次3 ml)洗滌 树月曰。接著藉由方法Fm〇c_gr_rem移除基團。 藉由UV定量(方法描述A; VA: 100m卜VB: 10ml, 及Vc : 1.4 m〇測定樹脂加載量為〇98 mm〇丨/g。 c) 引入第二胺基酸(L-Dpr) 在室溫下震盪 Trt-L-Dpr(Fmoc)-〇H( 173 mg,3 當量)、 H〇Bt(47 mg,3當量)及DIPCm(47微升,3當量)於 MF ( 2 mi )中之混合物5分鐘,接著將其添加至根據實施 例7b)所製備之樹脂中。在室溫下靜置混合物}小時。根 據節滿三酮測試(方法C),不需要再偶合。接著用 分鐘;各次3 ml)且用DCM(5xl分鐘;各次3⑷洗滌 樹月日。接著藉由方法Fmoc-gr-rem移除Fm〇c基團。 d) 引入HMPA柄狀基團 “ΛJ 虽里 乂、( 47 mg , 3 當量) 及DIPCDI(47微升,3當量)於DMF(2ml)中之i合來 添加至根據實施例7c )所製備之樹脂中,且田 條者在至溫f 靜置1小時。根據茚滿三酮測試(方法C ),不需要再偶合 接著用DMF ( 5x1分鐘;各次3 ml)且用DCM( 5χ1分鐘 各次3 ml)洗滌樹脂。
e)藉由 SPPS 引入 Fmoc-Xaa-OH 遵循反應循 以根據實施例7d )製備之樹脂為起始物 161 201249861 環描述(viii)併入l.Fmoc-Leu-OH,且接著遵循反應描述 (ix)分別併入 2.Fmoc-Ala-OH 及 3.Fmoc-Phe-OH。 fl)反應循環描述(viii) 將於 DCM/DMF( 15:1( v/v),2.5 ml)中之 Fmoc-Leu-OH (144 mg,4當量)及DIPCDI ( 30微升,2當量)添加至根 據實施例7d)所製備之樹脂中。接著,添加於DCM( 0.5 ml) 中之DMAP ( 4_8 mg,0.4當量)且在室溫下靜置2小時。 在室溫下使用於DCM/DMF ( 15:1 ( v/v ),2_5 ml )中之 Fmoc-Leu-OH ( 144 mg,4 當量)及 DIPCDI ( 30 微升,2 當量)再偶合胺基酸16小時。在偶合之後,用DCM ( 5 X 1 分鐘;各次3 ml)且用DMF ( 5 X1分鐘;各次3 ml)洗將 樹脂。接著,在室溫下使用於DMF( 2_5 ml)中之乙酸酐(46 微升,5當量)及DIEA ( 86微升,5當量)將樹脂封端3〇 分鐘。在封端之後,用DCM ( 5χ 1分鐘;各次3 ml)且用 DMF ( 5x1 .分鐘;各次3 ml)洗滌樹脂。接著藉由方法 Fmoc-gr-rem移除Fmoc基團。藉由Uv定量(方法描述A; VA : 100 ml ’ VB : 1〇 mi ’及Vc :丨4 mi)測定樹脂加載量 為 0·94 mmol/g 〇 f2)反應循環描述(ix) 將各別 Fmoc-Xaa-〇H( 3 當量)、HOBt( 47 mg,3 當量) 及DIPCDI ( 47微升,3當量)於DMF ( 2 ml )中之混合物 添加至樹脂中,且接著在室溫下靜置丨小時。根據節滿三 酮測試(方法C ),不需要再偶合。接著用dmf ( 5 X 1分鐘; 各次3 ml)且用DCM (5x1分鐘;各次3 mi)洗滌樹脂。
162 201249861 根據方法Fmoc-gr-rem移除Fmoc基團。 g) 分析-使肽自柄狀基團且從而自樹脂裂解 藉由在室溫下用1 ml由95% ( v/v) TFA、2.5% ( v/v) TIS及2.5% ( v/v )水組成之混合物處理樹脂1小時以使根 據實施例7e )所獲得之一小部分樹脂(5 mg )自樹脂裂解。 進行RP-HLPC分析確定Phe-Ala-Leu-NH2之身分(方法描 述B 1,5至1 00之移動相B )。 h) 移除形成二酮哌阱基之二肽連接子之L-Dpr的Trt 保護基’形成包含二酮哌啡殘基之C端保護基及自樹脂裂 解 以與實施例1.4a中所述類似之方式形成包含二酮娘啡 殘基之C知保δ蔓基且使DKP-狀自根據實施例7e )所製備之 樹脂裂解,其中試劑及溶劑之量適於肽基-樹脂之量: hi)脫除保護基Trt基團 用 0.2〇/〇 ( v/v) TFA、2% ( Wv) TIS 之 DCM 溶液(2x5 分鐘’各次2 ml )處理根據實施例7 e )所製備之化合物。 h2 )中和 用5%( v/v) DIEA之DCM溶液(2x5分鐘;各次2 ml) 處理β h3)形成包含二酮哌畊殘基之c端保護基及自樹脂裂 解 接著用5% ( v/v )哌啶之THF溶液(2x5分鐘;各次2 ml )處理。
藉由在真空下蒸發移除THF且藉由Rp_HPLC-ESMS 163 201249861 (方法描述B2,5至100之移動相B ’ [(M+H)/2] + : 679,其 中Μ為式(ex_7h3 )化合物之MW )分析所得式(ex_7h3 ) 化合物〇
Phe-Ala-Leu—〇.
(ex-7h3) Ο— 厂 Dpr- D-Pro — 序列表之非關鍵詞文字(Free Text :) <210> 1 <223> SEQ ID 1 以[T20-1-36]縮寫 <210> 2 <223〉SEQ ID 2 以[T20-27-36]縮寫 <210> 3 <223> SEQ ID 3 以[T20-17-26]縮寫 <210> 4 <223> SEQ ID 4 以[T20-17-36]縮寫 <210> 5 <223>SEQID5 包含於式(ex_5i)及式(ex 6fi)中 <210> 6 <223>SEQID6包含於式(ex_6f2)中 164 201249861 【圖式簡單說明】 無 【主要元件符號說明】 無 165 201249861 序列表 <110> 隆沙有限公司(Lonza Ltd) < 12 0 >形成二酮峨啡之二肽連接子 <130> NA1177 <160> 6 <170> Patentln 3.5^ <210> 1 <211> 36 <212> PRT <213 > 人工序列 <220> <223> SEQ ID 1 以[T20-1-36]縮寫 <400> 1
Tyr Thr Ser Leu lie His Ser Leu lie Glu Glu Ser Gin Asn Gin Gin 1 5 10 15
Glu Lys Asn Glu Gin Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu 20 25 30
Trp Asn Trp Phe 35
<210> 2 <211> 10 <212> PRT <213> 人工序列 <220> <223> SEQ ID 2以[T2Q-27-36]縮寫 <400> 2 Asp Lys ;Trp Ala Ser Leu Trp Asn Trp Phe 1 5 10 <210> 3 <211> 10 <212> PRT <213> 人工序列 <220> <223> SEQ ID 3以[T20-17-26]縮寫 <400> 3 Glu Lys Asn Glu Gin Glu Leu Leu Glu Leu 1 5 10 <210> 4 <211> 20 <212> PRT 201249861 <213> 人工序列 <220> <223> SEQ ID 4以[T20-17-36]縮寫 <400> 4
Glu Lys Asn Glu Gin Glu Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu 15 10 15
Trp Asn Trp Phe 20 <210> <211> <212> <213> 5 6 PRT 人工序列 <220> <223> SEQ ID 5包含於式(ex-5i)及式(ex-6fl)中 <400> 5
Tyr His Ala Phe Ala Leu 1 5 <210> <211> <212> <213> 6 . 6 PRT 人工序列 <220> <223> SEQ ID 6包含方令式(ex-6f2)中 <400> 6
Tyr His Ala Tyr His Leu 1 5 ③ 2

Claims (1)

  1. 201249861 ) 七、申請專利範圍: 1. 一種製備肽C-ΡΕΡ之方法(C-PEP ), C-PEP包含肽基PEP-C,PEP-C之C端由保護基DKP-PG 保護,DKP-PG包含柄狀基團HG,視情況包含間隔基SG, 及二酮哌啡殘基DKP; SG為肽化學中習知使用之間隔基; DKP為衍生自二肽殘基DPR之二酮哌啡殘基; DPR包含α胺基酸殘基xaai及xaa2 ; Xaal為DPR之C端胺基酸殘基; Xaa2為DPR之N端胺基酸殘基,且Xaa2具有側鏈, 該側鏈經官能基FG取代; PEP-C經由XaaC(1)連接至HG ; XaaC為PEP-C之胺基酸殘基; XaaC⑴中之索引(1)表示PEP-C之C端位置; XaaC(1)為PEP-C之C端胺基酸殘基; HG為固相肽合成SPPS中習知用於使肽之C端連接至 固相的柄狀基團,其允許該C端在不使肽中連接兩個胺基 酸殘基之醯胺鍵裂解的條件下自HG裂解; HG直接連接至fg,或若存在SG,則HG連接至SG 且SG連接至FG ; 方法(C-ΡΕΡ)包含步驟(iii); 步驟(iii)包含反應(INRIFO); 反應(INRIFO)為包含以下之反應:在肽PEp_c_DKp_L_ 樹脂A中的分子内成環反應及同時的裂解反應; 201249861 PEP-C_DKP-L-樹脂A為C-ΡΕΡ之前驅體且包含pep_c 及樹脂DKP-L-樹脂A,其中PEP-C係連接至DKP-L-樹脂A; DKP-L-樹脂A包含樹脂A及形成DKP-PG之連接子 DKP-L,其中樹脂A係連接至DKP-L, 樹脂A為在SPPS中習知用作固相之樹脂, DKP-L包含HG,視情況包含SG,及DPR ,其中DPR 之C端叛酸基為Xaal之缓酸基且連接至樹脂a; 反應(INRIFO )中之分子内成環為DPR之N端胺基與 DPR之C端羧酸基反應,從而形成DKp,從而同時使Xaal 自樹脂A裂解且形成DKP-PG,其中該DPR之N端胺基為 Xaa2之ct胺基; HG以某種方式選擇,以使HG與XaaC⑴之間的鍵不在 反應(INRIFO )期間裂解。 2.如申請專利範圍第1項之方法(C-PEP),其中在步 驟(ill)之前藉由固相肽合成SPPS(PEPC)製備PEP_C ; 且 樹脂A以某種方式選擇,以使樹脂A與Xaal之間的鍵 不在SPPS ( PEP-C )期間裂解。 3 . —種製備形成 取UKP-PG之連接子DKP-L的方法 (DKP-L), 方法(DKP_L)包含步驟(DKP-L-i)、步驟(DKp_L_iu) 且視情況包含步驟(DKp_L_H ); 在步驟(dkp-im)中,使Xaa2偶合至Xaai; 在視情況選用之步驟(DKP-L-ii)中,使SG偶合至 201249861 a Xaa2 (若在DKP-L中存在SG); 在步驟(DKP-L-iii)中,使HG偶合至SG(若在DKP-L 中存在SG)或Xaa2 ; 、 其中 DKP-PG、DKP-L、DKP、Xaa2、Xaal、HG 及 SG 係如申請專利範圍第1項中所定義。 4·一種製備DKP-L-樹脂A之方法(DKP-L-樹脂A), 方法(DKP-L-樹脂A)為方法(XI )或方法(X2); 方法(XI )包含步驟(Xl_i)、步驟(χΐ_ϋ)、步驟(χΜν) 且視情況包含步驟(XI-iii); 在步驟(Xl-i )中,使胺基酸Xaal偶合至樹脂A ; 在步驟(Xl-ii)中,使胺基酸Xaa2偶合至Xaal ; 在視情況選用之步驟(X1 _iii )中,使SG偶合至xaa2 之側鏈(若在DKP-L-樹脂A中存在SG); 在步驟(Xl-iv)中,使HG偶合至SG (若在DKP-L-樹脂A中存在SG)或Xaa2 ; 方法(X2)包含步驟(χ2-ί); 在步驟(X2-i )中’使DPK-L偶合至樹脂A ; 其中 DKP-L-樹脂 A、樹脂 A、DKP-PG、DKP-L、DKP、 Xaa2、Xaai、HG及SG係如申請專利範圍第i項中所定義。 5.如申請專利範圍第丨項至第4項中任一項之方法,其 中 HG為選自由以下組成之群的柄狀基團:式() 柄狀基團、式(HGF-Π)柄狀基團、式(HGF_In)柄狀基 團、式(HGF-IV)柄狀基團、式(HGF_V)柄狀基團及式 201249861 (HGF-VI)柄狀基團, R1
    (*)\ NH
    CH,
    s5-3 -Τ5-1 Η,σ s5-2 s5-l
    (HGF-V)
    其中 4 .201249861 (*)表示方法(C-PEP)中之PEP-C之C端之C原子與 HG之間的鍵, 或在方法(C-PEP)中之PEP-C之C端胺基酸殘基具 有側鏈且經由此側鏈連接至HG的情況下,表示方法 (C-PEP )中之pep-C之C端胺基酸殘基之側鏈與HG之間 的鍵, (**)在η為1時表示HG與SG之間的鍵,或在η為〇 時表示HG與FG之間的鍵; Rl、R2、R3、R4、R10及R11為相同或不同的且彼此 獨立地選自由氫及〇_Cl_4烷基組成之群, s 1-1、s2、s3、s4及s6為相同或不同的且彼此獨立地 選自由1、2、3及4組成之群, s5-l 為 〇、1、2、3 或 4, sl-2、s5-2及s5-3為相同或不同的且彼此獨立地為〇 或1, ' T1-1 為 〇 或 NH, T1-2 及 T5-1 為 〇 ; 其中n、SG、FG、PEP-C及方法(c_PEp)係如申請專 利範圍第1項中所定義。 6.如申請專利範圍第丨項至第5項令任一項之方法,其 中 '' (SG-I)間隔 、式(SG-IV) S G為選自由以下組成之群的間隔基:式 基、式(SG-II)間隔基、式(SG_m )間隔基 間隔基及式(SG-V)間隔基; 5 I 201249861 ΝΗ ΝΗ 'CH, CH, I 2 CH, I 2 Ο CH. 料JI ΝΗ ml CH, I 2 CH, ml CH, I 2 CH, CH.九 ΝΗ Ο I ΝΗ ,CH, CH, I 2 CH, CH, I 2 CH, NH人(SG-D 0 h2c 丫。 WCH2 m5 (SG-II) WCH2 m6 (SG-III) .CH, HX
    m9 I NH I CH, (SG-IV) NH I NH I CH, CH, I 2 CH, I 2 o CH, I 2 CH, h2〒 氺氺* CH, 1 2 1 mil ch2 /CH, 1 2 0 h2c h2c (SG-VI) .T mlO ch2 1 2 (SG-V) 1 ) 、m5、 m6、 m7、m9 h2c h2c^o ,CH m!2 2 (SG-VII) mlO、mil及ml2為相同或不 6 201249861 同的且彼此獨立地為丨至500之整數; m2、m3及m4為相同或不同的且彼此獨立地為1、2、 3或4, (***)在η為1時為從Sg到Hg的鍵, (****)在η為1時為SG與Xaa2之間的鍵, 其中HG、Xaa2及n係如申請專利範圍第i項_所定義。 7·如申請專利範圍第丨項至第6項中任一項之方法,其 Xaal選自由以下組成之群:天然存在之α胺基酸殘 基、α-Ν-甲基胺基酸殘基、L_Hpr殘基、D Hpr殘基、DL_Hpr 殘基、2-(CN5烷基)-D-胺基酸殘基、2-((^-5烷基)-L-胺基酸 殘基、2-(CN5烧基)-DL-胺基酸殘基及衍生自式(HypX)化 合物之殘基;
    其t X 為 0、S 或 C(R13)R14 ; R5、R7、R12、R13及R14為相同或不同的且彼此獨立 地選自由氫、C!_4烧基及0-R8組成之群; R8為肽化學中習知用於保護側鏈之保護基,或式 (Sub-R8)之取代基; (Sub-R8) --CH2—CH2—Ο--R9 201249861 其中 m8 為 1、2'3、4、5'6、7、8、9或10; R9為CN4烷基。 8·如申請專利範圍第1項至第7項中任一項之方法,其 中 Xaa2選自由以下組成之群:L_Lys殘基、DLys殘基、 DL-Lys 殘基、L-〇rn 殘基、D-〇rn 殘基、DL-Orn 殘基、L-4- 胺基膽胺酸殘基、D-4-胺基脯胺酸殘基、DL-4-胺基脯胺酸 殘基、L-α,γ-一胺基-丁酸殘基、£)_α,γ_二胺基丁酸殘基、 DL-α,γ-二胺基-丁酸殘基、L_a,p_二胺基丙酸殘基' D a,卜 二胺基-丙酸殘基、DL-α,β-二胺基丙酸殘基、L-Ser殘基、 D-Ser 殘基、DL-Ser 殘基、L-Thr 殘基、D-Thr 殘基、DL-Thr 殘基、L-Cys殘基、D-Cys殘基、DL-Cys殘基、L-高半胱胺 酸殘基、D-高半胱胺酸殘基、DL-高半胱胺酸殘基、L-Asp 殘基、D-Asp殘基、DL-Asp殘基、L-Glu殘基、D-Glu殘基 及DL-Glu殘基。 9. 如申請專利範圍第1項至第8項中任一項之方法,其 中 樹脂A選自由以下組成之群:羥曱基聚苯乙烯(HMPS ) 樹脂、基於聚乙二醇(PEG )之樹脂、PEG接枝至不同於 PEG樹脂之樹脂上的樹脂、聚苯乙烯樹脂、對苯曱氧基苯 曱醇樹脂、氣甲基聚苯乙烯-二乙烯基苯樹脂、聚(乙稀醇)_ 接枝-聚(乙二醇)(P VA-g-PEG )樹脂。 10. —種製備肽PEP之方法(PEP-HSPPS), 201249861 方法(PEP-HSPPS )包含步驟(i_pep )及步驟(H pep ), 在步驟(i-pep)中,根據如申請專利範圍第i項中所 定義之方法(C-PEP )製備肽C-PEP ; 接著 在步驟(ii-pep )中’藉由均質溶液相肽合成HSPpS使 在步驟(i-PEP)中所獲得之C_PEP與N端經保護之胺基酸 或與N端經保護之肽PEP-N偶合; 其中方法(C-PEP )及C-PEP係如申請專利範圍第j項 中所定義。 11. 一種化合物,其選自由以下組成之群:c_PEP、 PEP-C-DKP-L-樹脂 A、DKP_L_樹脂 a 及 DKP-L ;其中 C-PEP、PEP-C-DKP-L-樹脂 A、DKP-L-樹脂 A 及 DKP_L 係 如申請專利範圍第1項中所定義。 12. — 種選自由 c_PEP、PEP-C-DKP-L-樹脂 A、DKP-L- 樹脂A及DKP-L組成之群之化合物用於肽化學中的用途, 或一種DKP-L作為形成DKp_pG之連接子的用途;其中 C-PEP、PEP-C-DKP-L-樹脂 A、DKP-L-樹脂 A、DKP-L 及 DKP-PG係如申請專利範圍第1項中所定義。 八、圖式 無
TW100138608A 2010-10-29 2011-10-25 Diketopiperazine forming dipeptidyl linker TW201249861A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP10014114 2010-10-29
EP10015434 2010-12-08
EP10015436 2010-12-08
EP11001442 2011-02-22
EP11004819 2011-06-14

Publications (1)

Publication Number Publication Date
TW201249861A true TW201249861A (en) 2012-12-16

Family

ID=44925474

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100138608A TW201249861A (en) 2010-10-29 2011-10-25 Diketopiperazine forming dipeptidyl linker

Country Status (10)

Country Link
US (2) US8802819B2 (zh)
EP (1) EP2632936A1 (zh)
JP (1) JP5579939B2 (zh)
KR (1) KR20130127446A (zh)
CN (1) CN103189384A (zh)
CA (1) CA2816175A1 (zh)
IL (1) IL226022A0 (zh)
SG (1) SG190066A1 (zh)
TW (1) TW201249861A (zh)
WO (1) WO2012055509A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201506885UA (en) 2013-03-21 2015-09-29 Sanofi Aventis Deutschland Synthesis of cyclic imide containing peptide products
AU2014234400B2 (en) 2013-03-21 2017-11-16 Sanofi-Aventis Deutschland Gmbh Synthesis of hydantoin containing peptide products
CN105218405B (zh) * 2015-11-04 2017-07-28 上海泰坦科技股份有限公司 (r,s)‑2‑[[5‑(9‑芴甲氧羰基氨基)二苯并[a,d]环庚烷‑2‑基]氧]乙酸的合成工艺
CN116724022A (zh) * 2020-12-22 2023-09-08 富士胶片株式会社 肽的制造方法、保护基形成用试药及缩合多环化合物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0458841T3 (da) * 1989-02-17 1995-11-20 Chiron Mimotopes Pty Ltd Fremgangsmåde til anvendelse og fremstilling af peptider
DD290658A5 (de) 1989-07-07 1991-06-06 ��������@�K@�����������������@���@���k�� Mittel und verfahren zur schnellen peptidkupplung
EP0662078B1 (en) 1992-09-28 2003-05-02 Research Corporation Technologies, Inc. Reagents for peptide couplings
US6115673A (en) 1997-08-14 2000-09-05 Instrumentation Metrics, Inc. Method and apparatus for generating basis sets for use in spectroscopic analysis
DE19937721A1 (de) * 1999-08-10 2001-02-15 Max Planck Gesellschaft Neue Diketopiperazine
GB0130677D0 (en) * 2001-12-21 2002-02-06 Glaxo Group Ltd Medicaments and novel compounds
FR2841260B1 (fr) * 2002-06-21 2004-10-22 Commissariat Energie Atomique Polynucleotides et polypeptides codes par lesdits polynucleotides impliques dans la synthese de derives des dicetopiperazines
WO2010009196A1 (en) * 2008-07-15 2010-01-21 Temple University Of The Commonwealth System Of Higher Education Synthesis of bis-peptides oligomers comprising at least one n-substituted diketopiperazine as structural moiety
US8518927B2 (en) * 2009-02-10 2013-08-27 The Scripps Research Institute Chemically programmed vaccination

Also Published As

Publication number Publication date
US20140094567A1 (en) 2014-04-03
US8802819B2 (en) 2014-08-12
JP2013540784A (ja) 2013-11-07
US20140343227A1 (en) 2014-11-20
EP2632936A1 (en) 2013-09-04
IL226022A0 (en) 2013-06-27
SG190066A1 (en) 2013-06-28
CA2816175A1 (en) 2012-05-03
WO2012055509A1 (en) 2012-05-03
KR20130127446A (ko) 2013-11-22
JP5579939B2 (ja) 2014-08-27
CN103189384A (zh) 2013-07-03

Similar Documents

Publication Publication Date Title
CN107406480B (zh) 肽合成方法
ES2352204T3 (es) Método de síntesis peptídica en fase sólida.
JP5199126B2 (ja) グルカゴン様ペプチドの合成
CN115925790A (zh) 用于合成α4β7肽拮抗剂的方法
Sarma et al. Acyl hydrazides as peptoid sub-monomers
AU4199397A (en) Improved solid-phase peptide synthesis and agent for use in such synthesis
HU230584B1 (hu) Eljárás peptidek előállítására
AU2014282839B9 (en) Peptide-resin conjugate and use thereof
TW201249861A (en) Diketopiperazine forming dipeptidyl linker
WO2016047794A1 (ja) 疎水性ペプチドの製造法
NO310465B1 (no) Peptider med anticancer aktivitet og farmasöytisk blanding derav
NO338367B1 (no) Fremstilling av somatostatinpeptider
CN111770930B (zh) 制备肽的方法
US8895739B2 (en) Acylation of hindered amines and functionalized bis-peptides obtained thereby
CN115368437A (zh) 一种固相合成环状多肽的方法
Erdmann et al. (4R)-and (4S)-Azidoprolines: conformation directing amino acids and sites for functionalization
JP2001505578A (ja) スルホニル保護基を用いるペプチド合成
Nishino et al. Cyclo (-arginyl-sarcosyl-aspartyl-phenylglycyl-) 2. Simple synthesis of an RGD-related peptide with inhibitory activity for platelet aggregation
WO2021148594A1 (en) Chemical synthesis of the peptidic part of bioactive natural products
CN113227115A (zh) 肽的合成方法
CN110330552A (zh) 醋酸地加瑞克的合成方法
KR20240046872A (ko) Peg화 아드레노메둘린의 제조 방법, 그의 중간체 및 그의 용도
TW202432571A (zh) 二苯并富烯或二苯并富烯衍生物的去除方法
WO2019227612A1 (zh) 一种含脯氨酸的首尾环肽合成方法
Jung et al. Novel macrocyclic receptors for peptides