TW201245360A - Anisotropic conductive paste and connection method of electronic parts by using the same - Google Patents

Anisotropic conductive paste and connection method of electronic parts by using the same Download PDF

Info

Publication number
TW201245360A
TW201245360A TW101109570A TW101109570A TW201245360A TW 201245360 A TW201245360 A TW 201245360A TW 101109570 A TW101109570 A TW 101109570A TW 101109570 A TW101109570 A TW 101109570A TW 201245360 A TW201245360 A TW 201245360A
Authority
TW
Taiwan
Prior art keywords
anisotropic conductive
conductive paste
electronic component
mass
thermosetting resin
Prior art date
Application number
TW101109570A
Other languages
Chinese (zh)
Other versions
TWI521027B (en
Inventor
toshihiko Kakita
Naoki Kubota
Takashi Nakabayashi
Toshiaki Shimada
Original Assignee
Tamura Seisakusho Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamura Seisakusho Kk filed Critical Tamura Seisakusho Kk
Publication of TW201245360A publication Critical patent/TW201245360A/en
Application granted granted Critical
Publication of TWI521027B publication Critical patent/TWI521027B/en

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Conductive Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Wire Bonding (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Chemical & Material Sciences (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Physics & Mathematics (AREA)

Abstract

The anisotropic conductive paste of this invention is characterized by being used to connect electronic parts and a wiring board. In addition, the anisotropic conductive paste contains 10 -50 mass% lead-free solder powder having a melting point below 240℃ and 50-90 mass% thermosetting resin composition containing a thermosetting resin and an organic acid, wherein the acid value of the thermosetting resin composition ranges from 15mgKOH/g to 55mgKOH/g.

Description

201245360 六、發明說明: -【發明所屬之技術領域】 本發明係關於一種將電子零件與配線基板連接之異向性 導電性糊及使用其之電子零件之連接方法。 【先前技術】 近年來’於電子零件與配線基板連接時,利用使用異向 性導電材(異向性導電性膜、異向性導電性糊)之連接方式。 例如,於將電子零件與配線基板連接之情形時,於形成有 電極之電子零件與形成有電極之圖案之配線基板之間配置 異向性導電材,將電子零件與配線基板熱壓接且確保電性 連接。 作為異向性導電材,例如,揭示有於成為基材之黏合樹 月曰中,使金屬微粒或於表面上形成有導電膜之樹脂球等導 電性填料分散之材料(例如,文獻1 :日本專利特開 2003-165 825號公報)。若使電子零件與配線基板熱壓接,則 於作為連接對象之電子零件及配線基板之電極彼此之間, 以某種概率存在導電性填料,因此成為面狀配置有導電性 填料之狀態。如此’作為連接對象之電子零件及配線基板 之電極彼此經由導電性填料而接觸,藉此確保於該等之電 極彼此之間之導電性。另一方面,於電子零件之電極彼此 之間隙或配線基板之電極彼此之間隙,成為於黏合樹脂内 埋設有導電性填料之狀態’確保對交叉方向之絕緣性。 然而,於如上所述之安裝法中,於熱壓接後之電子零件 之安裝狀態’於產生由例如導通不良或加壓引起之位置偏 1622I0.doc 201245360 移等異常之情形時’機械性地剝離電子零件或異向性導電 膜’將殘留於配線基板上之殘渣利用溶劑等擦拭且淨化之 後,再利用配線基板。此處’熱壓接後之異向性導電材因 熱硬化樹脂硬化而不僅要求充分之機械強度,亦要求充分 之修復性(可自配線基板以無殘渣或較少殘渣剝離異向性 導電材,再次使用異向性導電材而可實現配線基板與電子 零件之連接之性質)。 然而’關於上述文獻1中記載之異向性導電材,於充分地 去除配線基板上之樹脂或導電性填料等殘渣之作業時較為 費事,另一方面,於以於配線基板上殘留有某種程度之殘 渣之狀態下,再次使用異向性導電材實現與電子零件之連 接之情形時,有無法確保導電性之問題。如此,關於上述 文獻1中記載之異向性導電材,雖然具有某種程度之修復 性’但並非為充分之水平。又,於使S上述文獻^記載之 異向性導電材之情形時,為了確保連接部分之連接可靠 性,而必需於作為連接對象之電子零件及配線基板之電極 上預先實施鍍金處理等於連接可靠性之方面有問題。 【發明内容】 此處,本發明之目的在於提供—種具有充分之修復性並 且具有較高之連接可靠性之異向性導電性糊、及使用其之 電子零件之連接方法。 ' 本發明之異向性導電性糊之特徵在力:其 及配線基板連接者’且上述異向性導電性糊含有具有24吖 以下之炫點之無料料粉㈣ft%以上5G質量%以下及 162210.doc 201245360 3有熱固性樹脂及有機酸之熱@性樹脂組合㈣質量%以 質里/〇以下,上述熱固性樹脂組合物之酸值為1 5 mgKOH/g 以上 55mgK〇H/g 以下。 2發明之異向性導電性糊中,較佳為上述熱固性樹脂 為環氧樹脂’上述有機酸係具有伸烷基之二元酸。 :本發明之異向性導電性糊中’較佳為上述熱固性樹脂 ^物進而含有觸變劑,上述觸變劑之中無機系觸變劑之 3量較佳為〇.5質量%以上22質量❶/。以下。 於本發明之異向性導電性糊中,較佳為上述無錯焊料粉 末之平均粒徑為! μιη以上34μηι以下。 ;本發明之異向性導電性糊中,較佳為上述無錯焊料粉 選自由錫、銅、銀、叙、銻、銦及鋅所組成之群中 之至少一種之金屬。 於本發明之異向性導電性糊令較佳為於上述電子零件 配線基板之電極之中之至少一者不實施鍵金 本發明之電子零件之連接方法之特徵在於:其係使用上 :異向f生導電性糊者,1包括:塗佈步驟,其係於上述配 線基板上塗佈上述異向性導電性糊;以及熱麼接步驟,其 係於上述異向性導電性糊上配置上述電子零件,以較上述 無錯焊料粉末之㈣高出5t以上之溫度,將上述電子零件 與上述配線基板熱塵接。 於本發明之電子零件之連接方法中,較佳為進而包括: 剝離步驟,其係以較上述無錯焊料粉末之溶點高出代以上 I62210.doc 201245360 之溫度’將上述電子零件自上述配線基板剝離;再塗佈步 驟,其係將上述異向性導電性糊塗佈於剝離步驟後之 基板上;及再減接㈣,其係於再㈣㈣後之異向性 導電性糊上配置上述電子零件,以較上述無料料粉末之 炫點高出π以上之溫度’將上述電子零件與上述配線基板 熱壓接。 再者於本發日月中,所言胃異向性導電性糊係指可形成如 下異向性導電材之糊:該異向性導電材於施加特定值以上 之熱及特定值以上之Μ力之部位上,於熱壓接方向(厚度方 向)具有導電性,但於除此以外之部位上,於交又方向具有 絕緣性。 ' 又,本發明之異向性導電性糊為具有充分之修復性及機 械強度,並且具有較高之連接可靠性之理由未必明確,但 本發明者等人推測如下。 即,本發明之異向性導電性糊與先前之異向性導電材不 同,含有無鉛焊料粉末。並且,於將該異向性導電性糊以 無鉛焊料粉末之熔點以上之溫度熱壓接之情形時,無鉛焊 料粉末彼此熔融並且分別接近,其周圍之無鉛焊料彼此接 «而增大。另一方面,藉由進行熱壓接,電子零件及配線 基板之電極彼此之間隔亦縮短,因此藉由以上述之方式增 大之無鉛焊料,可將電極彼此焊料接合。如此,於本發明 中將電子零件及配線基板之電極彼此進行谭料接合,因 此本發明者等人推測與如先前之異向性導電材之藉由電極 及導電性填料互相接觸而連接之情形時比較,具有極高之 162210.doc • 6 · 201245360 連接可靠性》 另一方面,對未以特 a — 疋值以上之熱及特定值以上之壓力 進行熱堡接之部位(雷,Λ 子零件之電極彼此之間隙或配線基 板之電極彼此之間隙等),無需進行如上所述之焊料接合, 成為於熱ID性樹㈣合物内埋設有無料料粉末之狀態。 因此’對未以特定值以上 上之熱及特疋值以上之壓力進行熱 壓接之部位,可確保絕緣性。 ” 於以本發明之異向性導電性糊將電子零件及配線基板連 接之情形時’推測如上所述,電子零件及配線基板之電極 彼此進灯焊料接合,該焊料接合之部分覆蓋於熱固性樹脂 組合物上。並且, 點以上之溫度之熱 於熱壓接後,若施加無錯焊料粉末之溶 ,則可使焊料熔融,又,亦可使熱固性 樹脂組合物軟化,因 離。又,於本發明中 此可自配線基板將電子零件容易地剝 ’於剝離後再次使用異向性導電性糊 而實現配線基板與電子零件之連接之情形時,即便於電極 等上殘留有某種程度之殘渣(焊料等),亦可將該等殘渣一併 進行焊料接合,可確保導電性。對此,關於先前之異向性 導電材,於在配線基板上殘留有某種程度之殘渣(導電性填 料等)之狀態下,再次使用異向性導電材實現與電子零件之 連接之情形時,無法確保導電性。因此,有必需充分地去 除配線基板上之樹脂或導電性填料等殘渣,而於進行該作 業時較為費事之問題。如上所述,本發明之異向性導電性 糊與先前之異向性導電材相比,修復性優異。 再者,於本發明中’焊料接合之部分覆蓋於熱固性樹脂 162210.doc 201245360 組合物上,該熱固性樹脂組合物藉由熱而硬化,故而可加 強桿料接合之部分。因此,於以本發明之異向性導電性糊 將電子零件及配線基板連接之情形時,可確保充分之機械 強度。 根據本發明,可提供一種具有充分之修復性並且具有較 高之連接可靠性之異向性導電性糊、及使用其之電子零件 之連接方法。 【實施方式】 首先,對本發明之異向性導電性糊進行說明。 本發明之異向料電性糊係將電子料及配線基板連接 之異向性導電性糊。並且,該異向性導電性糊係含有以下 所說明之無鉛焊料粉末10質量%以上5〇質量。乂以下及以下 所說明之熱固性樹脂組合物5〇質量。以上9〇質量%以下者。 =該無錯嬋料粉末之含量未達1〇質#%之情形時(熱固性 樹脂組合物之含量超過9〇質量%之情形時)’於對所獲得之 異向性導電性糊進行熱壓接之情形時’於電子零件及配線 基板之間無法形成充分之焊料接合’而電子零件及配線基 板之間之導電性變得不充分’另一方面,於無錯焊料粉末 之含量超過50質量%之情形時(熱固性樹脂組合物之含量未 達5〇質量%之情形時)’所獲得之異向性導電性糊中之絕緣 性’尤其是放置於加濕狀態下之情形時之濕氣絕緣性變得 不充分’其結果’藉由焊料橋接,不再顯示出異向性。又, 關於所獲得之異向性導電性糊,就取得絕緣性與進行熱壓 接之情形時之導電性之平衡的觀點而言’該無錯焊料粉末 1622IO.doc 201245360 之含量較佳為20質量% w μ μ游且n/ 良里/〇以上45質量%以下,更佳為3〇 以上40質量%以下。 〇 本發明所使用之無料料粉末係具有24代以下之溶點 者。於使用4無料料粉末之_超過24代者之情形時, :異向I1生導電ϋ糊中之通常之熱壓接溫度無法使無船焊料 粉末溶融。又,就使異向性導電性糊中之熱壓接溫度降低 之觀點而言,無鉛焊料粉末之熔點較佳為220°C以下,更佳 為150°C以下。 此處,所謂無鉛焊料粉末係指不添加鉛之焊料金屬或合 金之粉末。其中,於無鉛焊料粉末中,容許存在作為不可 避免之雜質之鉛,但於此情形時,鉛之量較佳為i 〇 〇質量p p爪 以下。 上述無錯焊料粉末較佳為包含選自由錫(Sn)、銅(Cu)、銀 (Ag)、祕(Bi)、錄(Sb)、銦(In)及辞(Zn)所組成之群中之至 少一種之金屬。 又’作為上述無鉛焊料粉末中之具體之焊料組成(質量比 率),可例示如以下者。 作為二元系合金,例如,可列舉:95.3Ag/4.7Bi等Ag-Bi 系 ’ 66Ag/34Li 等 Ag-Li 系,3Ag/97In等 Ag-In系、67Ag/33Te 等 Ag-Te 系,97.2Ag/2.8Tl 等 Ag-Tl 系,45.6Ag/54.4Zn 等 Ag-Zn系,80Au/20Sn等 Au-Sn系,52.7Bi/47.3In等 Bi-In 系, 35In/65Sn、51In/49Sn、52In/48Sn等 In-Sn 系,8.1Bi/91.9Zn 等 Bi-Zn系,43Sn/57Bi、42Sn/58Bi等 Sn-Bi系,98Sn/2Ag、 96.5Sn/3.5Ag、96Sn/4Ag、95Sn/5Ag等 Sn-Ag系,91Sn/9Zn、 162210.doc •9· 201245360 30Sn/70Zn4Sn-Zn 系 ’ 99.3Sn/0.7Cu 等 Sn-Cu 系,95Sn/5Sb 等Sn-Sb系》 作為三元系合金,例如,可列舉:95 5Sn/3 5Ag/1In等201245360 VI. [Technical Field] The present invention relates to an anisotropic conductive paste for connecting an electronic component and a wiring board, and a method of connecting electronic components using the same. [Prior Art] In recent years, when an electronic component is connected to a wiring board, a connection method using an anisotropic conductive material (an anisotropic conductive film or an anisotropic conductive paste) is used. For example, when an electronic component is connected to a wiring board, an anisotropic conductive material is disposed between the electronic component in which the electrode is formed and the wiring substrate on which the electrode is formed, and the electronic component and the wiring substrate are thermocompression bonded and secured. Electrical connection. As an anisotropic conductive material, for example, a material in which a conductive filler such as a resin particle or a resin ball having a conductive film formed on a surface thereof is dispersed in a bonded tree of a base material is disclosed (for example, Document 1: Japan) Patent Publication No. 2003-165 825). When the electronic component and the wiring board are thermocompression-bonded, the conductive filler is present in a certain probability between the electronic component to be connected and the electrode of the wiring substrate. Therefore, the conductive filler is placed in a planar shape. Thus, the electronic components to be connected and the electrodes of the wiring substrate are in contact with each other via the conductive filler, thereby ensuring electrical conductivity between the electrodes. On the other hand, in the gap between the electrodes of the electronic component or the gap between the electrodes of the wiring board, the state in which the conductive filler is embedded in the adhesive resin is ensured to be insulative in the intersecting direction. However, in the mounting method as described above, the mounting state of the electronic component after the thermocompression is mechanically generated in the case where an abnormality such as a positional deviation of 1622I0.doc 201245360 caused by poor conduction or pressurization occurs. After peeling off the electronic component or the anisotropic conductive film, the residue remaining on the wiring board is wiped and purified by a solvent or the like, and then the wiring board is used. Here, 'the anisotropic conductive material after thermocompression bonding requires not only sufficient mechanical strength but also sufficient repairability due to hardening of the thermosetting resin (it is possible to peel off the anisotropic conductive material from the wiring substrate without residue or less residue) The nature of the connection between the wiring substrate and the electronic component can be achieved by using the anisotropic conductive material again. However, the anisotropic conductive material described in the above-mentioned document 1 is troublesome in the operation of sufficiently removing the residue such as the resin or the conductive filler on the wiring board, and remains on the wiring board. In the case of the degree of residue, when the connection to the electronic component is again performed using the anisotropic conductive material, there is a problem that the conductivity cannot be ensured. As described above, the anisotropic conductive material described in the above Document 1 has a certain degree of repairability but is not a sufficient level. In the case of the anisotropic conductive material described in the above-mentioned document, in order to ensure the connection reliability of the connection portion, it is necessary to perform gold plating treatment on the electrode of the electronic component and the wiring substrate to be connected, which is equivalent to reliable connection. There is a problem with sex. SUMMARY OF THE INVENTION An object of the present invention is to provide an anisotropic conductive paste having sufficient repairability and high connection reliability, and a method of connecting electronic parts using the same. The feature of the anisotropic conductive paste of the present invention is that the force and the wiring substrate are connected to each other, and the anisotropic conductive paste contains a non-material powder having a bright spot of 24 Å or less (four) ft% or more and 5 G% by mass or less. 162210.doc 201245360 3There is a combination of a thermosetting resin and an organic acid. (IV) The mass% of the thermosetting resin composition is 15 mgKOH/g or more and 55 mgK〇H/g or less. In the anisotropic conductive paste of the invention, it is preferred that the thermosetting resin is an epoxy resin. The organic acid is a dibasic acid having an alkyl group. In the anisotropic conductive paste of the present invention, it is preferable that the thermosetting resin further contains a thixotropic agent, and the amount of the inorganic thixotropic agent among the thixotropic agents is preferably 5% by mass or more. Quality ❶ /. the following. In the anisotropic conductive paste of the present invention, it is preferred that the average particle diameter of the above-mentioned error-free solder powder is! Ιιη is above 34μηι. In the anisotropic conductive paste of the present invention, it is preferable that the above-mentioned error-free solder powder is selected from at least one of a group consisting of tin, copper, silver, ruthenium, iridium, indium and zinc. In the anisotropic conductive paste of the present invention, it is preferable that at least one of the electrodes of the electronic component wiring board does not implement a key gold. The method of connecting the electronic component of the present invention is characterized in that: The conductive paste for f includes a coating step of applying the anisotropic conductive paste on the wiring substrate, and a thermal bonding step of disposing the conductive paste on the anisotropic conductive paste. The electronic component is thermally and dust-contacted to the wiring board at a temperature higher than 5 t or more than the (4) of the error-free solder powder. In the method of connecting an electronic component according to the present invention, it is preferable to further include: a peeling step of heating the electronic component from the wiring by using a temperature higher than a melting point of the error-free solder powder; I62210.doc 201245360 a substrate peeling; a recoating step of applying the anisotropic conductive paste on a substrate after the peeling step; and further reducing (4), wherein the electrons are disposed on the anisotropic conductive paste after (4) and (4) The component is thermocompression bonded to the wiring substrate with a temperature higher than π of the above-mentioned non-material powder. Further, in the present day and the month, the gastric anisotropic conductive paste refers to a paste which can form an anisotropic conductive material which is applied with heat of a specific value or more and a specific value or more. The force portion has electrical conductivity in the thermocompression bonding direction (thickness direction), but is electrically insulating in the other direction. Further, the reason why the anisotropic conductive paste of the present invention has sufficient repairability and mechanical strength and has high connection reliability is not necessarily clear, but the inventors of the present invention presume the following. That is, the anisotropic conductive paste of the present invention contains a lead-free solder powder unlike the prior anisotropic conductive material. Further, when the anisotropic conductive paste is thermocompression bonded at a temperature equal to or higher than the melting point of the lead-free solder powder, the lead-free solder powders are melted and brought close to each other, and the lead-free solder around them is increased by X. On the other hand, by thermocompression bonding, the distance between the electrodes of the electronic component and the wiring substrate is also shortened. Therefore, the electrodes can be solder-bonded to each other by the lead-free solder which is increased in the above manner. As described above, in the present invention, the electrodes of the electronic component and the wiring board are joined to each other. Therefore, the inventors of the present invention have inferred that the electrodes and the conductive filler are connected to each other as in the prior art. When compared, it has a very high 162210.doc • 6 · 201245360 connection reliability. On the other hand, the part of the hot fort that is not subjected to the heat above the specific value of a 疋 value and above the specific value (Ray, Λ子The gap between the electrodes of the components or the gap between the electrodes of the wiring board, etc., does not require the solder bonding as described above, and the state in which the material powder is embedded in the thermal ID tree (tetra) is embedded. Therefore, the insulation can be ensured in a portion where the pressure is not thermally bonded to a pressure higher than a specific value or more. When the electronic component and the wiring board are connected by the anisotropic conductive paste of the present invention, it is presumed that the electrodes of the electronic component and the wiring substrate are soldered to each other, and the solder joint is partially covered with the thermosetting resin. Further, if the temperature above the temperature is hot-pressed, if the solution of the error-free solder powder is applied, the solder may be melted, and the thermosetting resin composition may be softened and separated. In the present invention, when the electronic component is easily peeled off from the wiring substrate and the anisotropic conductive paste is used again to connect the wiring substrate and the electronic component, even if some electrode remains on the electrode or the like. In the residue (solder, etc.), the residue can be soldered together to ensure electrical conductivity. In this regard, the prior anisotropic conductive material has a certain amount of residue remaining on the wiring board (conductivity). In the case where the anisotropic conductive material is used again to connect to the electronic component in the state of the filler or the like, conductivity cannot be ensured. Therefore, it is necessary to sufficiently Removing the residue such as the resin or the conductive filler on the wiring board is a problem that is troublesome in performing this work. As described above, the anisotropic conductive paste of the present invention is repaired compared with the prior anisotropic conductive material. Further, in the present invention, the portion of the solder joint is covered on the composition of the thermosetting resin 162210.doc 201245360, and the thermosetting resin composition is hardened by heat, so that the portion where the rod is joined can be reinforced. When the electronic component and the wiring board are connected by the anisotropic conductive paste of the present invention, sufficient mechanical strength can be secured. According to the present invention, it is possible to provide a sufficient repairability and a high connection reliability. The conductive paste of the present invention and the method of connecting the electronic components using the same. First Embodiment The anisotropic conductive paste of the present invention will be described. The electrical paste of the present invention connects the electronic material and the wiring board. The anisotropic conductive paste contains 10% by mass or more of the lead-free solder powder described below.热 热 热 热 热 热 热 热 热 热 热 热 热 热 热 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = When the mass of the anisotropic conductive paste is thermocompression bonded, it is not possible to form a sufficient solder joint between the electronic component and the wiring substrate, and the electronic component and the wiring substrate are In the case where the content of the error-free solder powder exceeds 50% by mass (when the content of the thermosetting resin composition is less than 5% by mass), the obtained anisotropy is obtained. The insulating property in the conductive paste is in particular insufficient in moisture insulation when placed in a humidified state. As a result, it is no longer exhibiting anisotropy by solder bridging. The obtained anisotropic conductive paste is preferably 20% by mass of the content of the error-free solder powder 1622IO.doc 201245360 from the viewpoint of obtaining the balance between the insulating property and the conductivity in the case of thermocompression bonding.Tour and n / in good / square or less than 45% by mass, more preferably 40 mass% or more 3〇.无 The non-material powder used in the present invention has a melting point of 24 generations or less. In the case of using 4 no-material powders for more than 24 generations, the usual thermocompression bonding temperature in the anisotropic I1 conductive paste cannot melt the non-ship solder powder. Further, from the viewpoint of lowering the thermocompression bonding temperature in the anisotropic conductive paste, the melting point of the lead-free solder powder is preferably 220 ° C or lower, more preferably 150 ° C or lower. Here, the lead-free solder powder means a powder of a solder metal or alloy to which no lead is added. Among them, in the lead-free solder powder, lead as an unavoidable impurity is allowed to exist, but in this case, the amount of lead is preferably i 〇 〇 mass p p below. The above-mentioned error-free solder powder preferably comprises a group selected from the group consisting of tin (Sn), copper (Cu), silver (Ag), secret (Bi), recorded (Sb), indium (In), and Zn (Zn). At least one of the metals. Further, as a specific solder composition (mass ratio) in the lead-free solder powder, the following may be exemplified. Examples of the binary alloy include Ag-Li based on Ag-Bi system such as 95.3Ag/4.7Bi, Ag-Li system such as 3Ag/97In, and Ag-Te system such as 67Ag/33Te, 97.2. Ag-Tl system such as Ag/2.8Tl, Ag-Zn system such as 45.6Ag/54.4Zn, Au-Sn system such as 80Au/20Sn, Bi-In system such as 52.7Bi/47.3In, 35In/65Sn, 51In/49Sn, 52In In-Sn system such as /48Sn, Bi-Zn system such as 8.1Bi/91.9Zn, Sn-Bi system such as 43Sn/57Bi, 42Sn/58Bi, 98Sn/2Ag, 96.5Sn/3.5Ag, 96Sn/4Ag, 95Sn/5Ag, etc. Sn-Ag system, 91Sn/9Zn, 162210.doc •9· 201245360 30Sn/70Zn4Sn-Zn system 'Sn-Cu system such as 99.3Sn/0.7Cu, Sn-Sb system such as 95Sn/5Sb>> As a ternary alloy, for example , can be listed: 95 5Sn / 3 5Ag / 1In, etc.

Sn-Ag-In系,86Sn/9Zn/5In、81Sn/9Zn/10In等 Sn-Zn-In 系, 95.5Sn/0.5Ag/4Cu、96.5Sn/3.0Ag/0.5Cu 等 Sn-Ag-Cu 系, 90.5Sn/7.5Bi/2Ag、41.0Sn/58Bi/l、〇Ag 等 Sn_Bi_Ag 系, 89.0Sn/8.0Zn/3.0Bi 等 Sn-Zn-Bi 系。 作為其他之合金,可列舉811/八§/(:11/]81系等。 又,上述無鉛焊料粉末之平均粒徑較佳為i μιη以上34 以下,更佳為3 μηι以上20 μπι以下。於無鉛焊料粉末之平均 粒徑未達上述下限時,有電子零件及配線基板間之導電性 降低之傾向’另一方面’若超過上述上限,則有異向性導 電性糊中之絕緣性降低之傾^再者,平均粒徑可利用動 態光散射式之粒徑測定裝置而測定。 本發明所使用之熱固性樹脂組合物係含有熱固性樹脂及 有機齩者ϋ且’該熱固性樹脂組合物之酸值必需為1 5 mgKOH/g以上 55 mgKOH/g以下 之情形時,於對所獲得之異向性 形時’無法使焊料充分地活化, 之間之導電性變得不充分, 。於酸值未達15 mgKOH/g 導電性糊進行熱壓接之情 而使電子零件及配線基板 另一方面,若超過55 麟獲得之異向性導電性糊巾之絕緣性、幻 疋放置於加濕狀態之情形時之濕氣絕緣性變得不充分。 又’關於所獲得之異向性導電性糊,就取得絕緣性與進f 熱屋接之情形時之導電性之平衡的觀點而言,該熱固性接 1622 ] 0.doc 201245360 脂組合物之酸值較佳為20 mgKOH/g以上50 mgKOH/g以 下,更佳為30mgKOH/g以上45mgKOH/g以下。 作為本發明所使用之熱固性樹脂,可適當使用公知之熱 固性樹脂’但就具有焊劑作用之觀點而言,特佳為使用環 氧樹脂。 再者’於本發明中,所謂具有焊劑作用係指如通常之松 香系焊劑般,其塗佈膜覆蓋被焊接體之金屬面而阻斷大 氣,於焊接時還原該金屬面之金屬氧化物,該塗佈膜被熔 融焊料推開可使該熔融焊料與金屬面接觸,其殘渣具有使 電路間絕緣之功能。 作為此種環氧樹脂,可適當使用公知之環氧樹脂。作為 此種環氧樹脂,例如,可列舉:雙酚八型、雙酚?型、聯苯 型、萘型、甲紛㈣型、苯紛紛搭型、二環戊二稀型等環 氧樹脂。該等環氧樹月旨可單獨使们種,亦可混合2種以上 而使用。又’該等環氧樹職佳為含有於常溫下為液狀者, 於使用於常溫下為固體者之情形時,較佳為與常溫下為液 狀者併用。又,於該等環氧樹脂型之中,就可調整金屬粒 子之分散性及糊黏度進而可提高對硬化物之跌落衝擊之耐 性之觀點、或焊料之濃潤擴散性料良好之觀點而言,較 佳為液狀雙紛_、液狀雙紛F型 '液狀氣化型之雙紛A型、 萘型、二環戊二烯型。又,就 β 伴在籍4㊈ 搞“之異向性導電性糊之 保存穩疋性之觀點而言,較佳Α 狀雙射型。 (、且。使用液狀雙盼Α型與液 作為上述環氧樹脂之含量, 相對於熱固性樹脂組合物100 I62210.doc 201245360 質量%,較佳為70質量%以上92質量%以下,更佳為乃質量 %以上85質量%以下。於環氧樹脂之含量未達上述下限時, 則有由於無法獲得充分之強度以使電子零件固著,因此對 跌落衝擊之耐性降低之傾向,另一方面,若超過上述上限’, 則有熱固性樹脂組合物中之有機酸或硬化劑之含量減少, 而使環氧樹脂硬化之速度易於延遲之傾向。 作為本發明所使用之有機酸,可適當使用公知之有機 酸。於此種有機酸之中,就與環氧樹脂之溶解性優異之觀 點、及於保管過程中不易引起結晶之析出之觀點而言,較 佳為使用具有伸烷基之二元酸。作為此種具有伸烷基之二 元酸,例如,可列舉:己二酸、2,5_二乙基己二酸、戊二酸、 2,4-二乙基戊二酸、2,2_二乙基戊二酸、3_甲基戊二酸、2_ 乙基-3·丙基戊二酸、癸二酸、丁二酸、丙二酸、二甘醇酸。 於該等之中,較佳為己二酸、戊二酸、丁二酸,特佳為己 二酸。 作為上述有機酸之含量,相對於熱固性樹脂組合物1〇〇 質量%,較佳為!質量%以上8質量%以下,更佳為2質量%以 上7質量%以下。於有機酸之含量未達上述下限時,有由於 使環氧樹脂等熱固性樹脂硬化之速度延遲而成為硬化不良 之傾向’另一方面’若超過上述上限,則有所獲得之異向 性導電性糊中之絕緣性降低之傾向。 又’本發明所使用之熱固性樹脂組合物較佳為除使用上 述熱固性樹脂及上述有機酸以外,亦使用觸變劑及硬化劑。 作為本發明所使用之觸變劑,可適當使用公知之觸變 162210.doc -12- 201245360 劑。作為此種觸變劑,例如,可列舉:有機系觸變劑(脂肪 醯胺、氫化萬麻油、烯烴系蠛等)、無機系觸變劑(膠體二氧 化石夕、氯化聚料)。於該等之_,較料脂㈣胺、膠體 二氧化石夕、氯化聚醚。X,就所獲得之異向性導電性糊之 不易滲出之觀點而t,較佳為組合使用有機系觸變劑與無 機系觸變劑β S ^ 、 ° 可列舉:使脂肪酿胺與膠體二氧 化矽組合,使脂肪醯胺與氯化聚醚組合。 作為上述觸變劑之含量,相對於熱固性樹脂組合物100 質量。/。,車交佳為〇.5質量%以上25質量%以下更佳為以質 里/〇以上10質量〇/〇以下,特佳為1質量%以上5質量%以下。 於觸變劑之含量未達上述下限時,有無法獲得觸變性,而 於配線基板之電極上易產生流墜,從而將電子零件搭載於 配線基板之電極上時之附著力降低之傾向,另一方面,若 超過上述上限,則有由於觸變性過高且注射針堵塞從而易 於成為塗佈不良之傾向。 作為本發明所使用之觸變劑,於組合使用上述有機系觸 變劑與上述無機系觸變劑之情形時,作為上述無機系觸變 劑之含量,相對於熱固性樹脂組合物100質量%,較佳為〇·5 質量%以上22質量%以下,更佳質量%以上2〇質量%以 下。 作為本發明所使用之硬化劑,可適當使用公知之硬化 劑。例如,作為熱固性樹脂,於使用環氧樹脂之情形時, 可使用如以下者。 作為潛伏〖生硬化劑’例如’可列舉:N〇vacure Ηχ-3722、 162210.doc 13- 201245360 HX-3721、HX-3748、HX-3088、HX-3613、HX-3921HP、 HX-3941 HP(旭化成環氧公司製造’商品名)。 作為脂肪族聚胺系硬化劑,例如,可列舉:Fujicure FXR-1020、FXR-1030、FXR-1050、FXR-1080(富士化成工 業公司製造,商品名)。 作為環氧樹脂胺加合物系硬化劑,例如,可列舉:Amicure PN-23、PN-F、MY-24、VDH、UDH、PN-3 卜 PN-40(Ajinomoto Fine-Techno公司製造,商品名)、EH-3615S、EH-3293S、 EH-3366S、EH-3842、EH-3670S、EH-3636AS、EH-4346S(旭 電化工業公司製造,商品名)。 作為咪唑系硬化加速劑,例如,可列舉:2P4MHZ、2MZA、 2PZ、Cl 1Z、C17Z、2E4MZ、2P4MZ、C11Z-CNS、2PZ-CNZ(以 上為商品名)。 就所獲得之異向性導電性糊之絕緣性之觀點而言,該等 硬化劑較佳為組合使用潛伏性硬化劑、環氧樹脂胺加合物 系硬化劑及咪唑系硬化加速劑。 作為上述硬化劑之含量,相對於熱固性樹脂組合物100 質量%,較佳為5質量%以上20質量%以下,更佳為10質量。/〇 以上18質量%以下。於硬化劑之含量未達上述下限時,有 使熱固性樹脂硬化之速度易於延遲之傾向,另一方面,若 超過上述上限,則有反應性加速,而使糊使用時間縮短之 傾向。 本發明所使用之熱固性樹脂組合物,視需要,除含有上 述環氧樹脂、上述有機酸、上述觸變劑及上述硬化劑以外, 162210.doc •14- 201245360 亦可含有界面活性劑、偶合劑、消泡 反應抑制劑、沈,# , ^ & 〃末表面處理劑、 量,相針U 等添加劑。作為該等添加劑之含 0/乂 h 、 樹脂組合物1GG質量%’較佳為〇.〇1質量 /。以上1G質量%以下,更 ^ n如 貝里/0以上5質量%以下。 於添加劑之含量未達上 時有易發揮各添加劑之 效果之傾向,另一方面, .. 超過上述上限,則有利用熱固 故樹如組合物之接合強度降低之傾向。 繼而,對本發明之電子零件之連接方法進行說明。 本發明之電子零件之連接方法之特徵在於·其係使用上 述本發明之異向性導電性跡 e^枯.塗佈步驟,其係 於上述配線基板上塗佈上述異向性導電性糊;以及敎壓接 步驟’其係於上述異向性導電性糊上配置上述電子零件, 以較上述無料料粉末之㈣高出代以上(較佳為贼以 上)之溫度,將上述電子零件與上述配線基板熱壓接。 此處,作為電子零件,除可使用晶片、封裝零件等以外, 亦可使用配線基板。作為配線基板,可使用具有可挽性之 可撓性基板、不具有可撓性之硬質基板中之任一者。進而, 於使用可撓性基板作為電子零件之情料,藉由實現與2 個配線基板(硬質基板)分別連接,亦可將硬f基板彼此經由 可撓性基板電性地連接。又’亦可將可撓性基板彼此經由 可撓性基板電性地連接。 於塗佈步驟中,於上述配線基板上塗佈上述異向性導電 性糊。 作為此處縮使用之塗佈裝置,例如,可列舉:分配器、 162210.doc 201245360 綱版印刷機、喷射點膠金屬掩模印刷機。 又,塗佈膜之厚度並未特別限定,較佳為5〇 pm以上 μηι以下,更佳為1〇〇 μηι以上3〇〇 以下。於厚度未達上述 下限時,有將電子零件搭載於配線基板之電極上時之附著 力降低之傾向,另一方面,若超過上述上限,則有糊亦易 於溢出至連接部分以外之傾向。 於熱壓接步驟中,於上述異向性導電性糊上配置上述電 子零件,以較上述無鉛焊料粉末之熔點高出5<>c以上之溫 度’將上述電子零件與上述配線基板熱壓接。 於熱壓接時之溫度未滿足較上述無錯焊料粉末之溶點高 出5 C以上之條件之情形時,無法使無船焊料充分地炫融, 而於電子零件及配線基板之間無法形成充分之焊料接合, 從而電子零件及配線基板之間之導電性變得不充分。 熱壓接時之壓力並未特別限定,較佳為設為〇 2 MPa以上 2 MPa以下,更佳為設為〇 5 MPa以上丨5 Mpa以下。於壓力 未達上述下限時,有於電子零件及配線基板之間無法形成 充分之焊料接合,電子零件及配線基板之間之導電性降低 之傾向,另一方面,若超過上述上限,則有對配線基板施 加壓力’而必需擴大無效空間之傾向。 再者,於本發明中,如上所述,與利用先前之方法之情 形時比較’可將熱壓接時之壓力設定在較低之壓力範圍 内。因此’亦可達成熱壓接步驟中所使用之裝置之低成本 化。 熱壓接時之時間並未特別限定,通常較佳為5秒以上6〇 162210.doc -16 - 201245360 秒以下、7秒以上2〇秒以下。 又,於本發明之電子零件之連接方法中,較佳為進而包 括以下所說明之剝離步驟、再塗佈步驟及再熱壓接步驟。 於剝離步驟中,以較上述無鉛焊料粉末之熔點高出以 上之μ度,將上述電子零件自上述配線基板剝離。 —此處’將電子零件自配線基板剝離之方法並未特別限 定。作為此種方法,例如,可採用一面使用焊搶等加熱連 接部分,一面將電子零件自配線基板剝離之方法。再者, 於此種情形時’亦可使用修理時所使用之公知之I彳離裝置。 又’將電子零件自配線基板㈣之後,視需要,亦可利 用溶劑等清洗上述配線基板。 於再塗佈步驟中’將上述異向性導電性糊塗佈於剝離步 驟後之配線基板上。此處’塗佈裝置或塗佈膜之厚度可採 用與上述塗佈步驟相同者或條件。 於再熱壓接步驟中,於再塗佈步驟後之異向性導電性糊 上配置上述電子零件,以較上述無料料粉末之溶 5°C以上之溫度’將上述電子零件與上述配線基板熱壓接。 此處’熱壓接時之溫度、壓力及時間可採用與 驟相同之條件。 $ > 根據以上所說明之本發明之電子零件之連接方法,由於 將電子零件及配線基板之電極彼此進行焊料接合,因此可 達成與如先前之異向性導電材之藉由電極及導電性填料互 相接觸而連接之情_相比較,極高之連接可靠性。又, 於熱壓接後,若施加無鉛焊料粉末之熔點以上之溫度之 I62210.doc 201245360 熱’則可使谭料㈣,又,亦可使熱固性樹脂組合物軟化, 因此可容易地將電子零件自配線基板剝離。又,於本發明 中,於剝離後再次使❹向性導電性糊實㈣配線基板與 電子零件連接之情料,即便於電極等上殘留有某種程度 之殘潰(焊料等),亦可將該等㈣—併進行㈣接合,可確 保導電性。sub,本發明之電子零件之連接方法與使用先 前之異向性導電材之方法相比較,修復性優異。 [實施例] 繼而,藉由實施例及比較例對纟發明進行進而詳細之說 明’但本發明並不受該等之例之任何限定。 [實施例1] 將熱固性樹脂A(雙酚A型環氧樹脂,DIC(大日本油墨化 學公司)公司製造,商品名「EPICLON 860」)82.9質量%、 觸變劑A(脂肪醯胺,曰本化成公司製造,商品名「讣…印化卜 1^」)2質量%、有機酸八(己二酸,關東電化工業公司製造)26 質量%、硬化劑A(四國化成公司製造,商品名「Curezol 2P4MHZ」)11.5質量%、界面活性劑(BYK-Chemie Japan 公 司製造’商品名「BYK361N」)〇.5質量%及消泡劑(共榮社 化學公司製造,商品名「Floren AC-326F」)0.5質量%投入 容器中’使用石磨機進行混合而獲得熱固性樹脂組合物。 其後,將所獲得之熱固性樹脂組合物62.5質量%、及無鉛 焊料粉末A(平均粒徑:5 μιη,焊料之熔點:139。(:,焊料之 組成:42Sn/58Bi)3 7.5質量%投入容器中,以混練機混合2 時間,藉此製備異向性導電性糊。 162210.doc •18· 201245360 繼而,於配線基板(電極:對銅電極進行鍍金 (Cu/Ni/Au))上,塗佈所獲得之異向性導電性糊(厚度:〇2 mm)。並且,於塗佈後之異向性導電性糊上,酉己置電子零 件(電極:對銅電極進行鑛金處理(Cu/Ni/Au)),使用熱屋接 裝置(ADVANSEL公司製造),以溫度2〇〇t:、|力i Mpa、 塵接時間8〜1G秒之條件,將電子零件與配線基板進行熱壓 接。 [實施例2] 使用於銅電極中對f極進行水溶性前㈣處理(T_ra 製作所公司製造’商品名「wpF_8」)者作為配線基板,除 此以外以與實施例1相同之方式,將電子零件與配線基板進 行熱壓接。 [實施例3] 使用電極包含錫(Sn)者作為f子零件除此以外以與實 施例2相同之方式’將電子零件與配線基板進行熱壓接。 [貫施例4] -據表1所示之組成調配各材料,除此以外以與實施例1 5方式獲知熱固性樹脂組合物及異向性導電性糊。 使用如以上述之方式所獲得之異向性導電性糊來代替實 ^ 2中所使用之異向性導電性糊,除此以外以與實施例2 同之方式,將電子零件與配線基板進行熱壓接。 [實施例5] 相=據表1所不之組成調配各材料,除此以外以與實施例1 5方式獲付熱固性樹脂組合物及異向性導電性糊。 ^22ΐ〇^0( •19- 201245360 再者,於實施例5中,使用無鉛焊料粉末B(平均粒徑:5 μιη,焊料之熔點:217〇C,焊料之組成:% 5Sn/3Ag/〇 5(:幻。 並且,使用如上述之方式所獲得之異向性導電性糊來代 替實施例2中所使用之異向性導電性糊,將熱壓接時之溫度 設為240eC,除此以外以與實施例2相同之方式,將電子零 件與配線基板進行熱壓接。 [比較例1〜4] 根據表1所示之組成調配各材料,除此以外以與實施例】 相同之方式,獲得熱固性樹脂組合物及異向性導電性糊。 使用如上述之方式所獲得之異向性導電性糊來代替實施 例2中所使用之異向性導電性糊,除此以外以與實施例二相 同之方式,將電子零件與配線基板進行熱壓接。 [比較例5] 根據表1所示之組成調配各材料,除此以外以與實施例1 相同之方式,獲得熱固性樹脂組合物及異向性導電性糊。 再者於比較例5中,使用實施鍍金處理之樹脂粉末 (Au/Ni電錢樹脂粉末,積水化學公司製造商品名「⑽⑽Sn-Ag-In system, Sn-Zn-In system such as 86Sn/9Zn/5In, 81Sn/9Zn/10In, etc., Sn-Ag-Cu system such as 95.5Sn/0.5Ag/4Cu, 96.5Sn/3.0Ag/0.5Cu, Sn_Bi-Ag system such as 90.5Sn/7.5Bi/2Ag, 41.0Sn/58Bi/l, 〇Ag, or Sn-Zn-Bi system such as 89.0Sn/8.0Zn/3.0Bi. The other alloys include 811/eight §/(:11/]81, etc. Further, the average particle diameter of the lead-free solder powder is preferably i μm or more and 34 or less, more preferably 3 μηη or more and 20 μπι or less. When the average particle diameter of the lead-free solder powder is less than the above lower limit, the electrical conductivity between the electronic component and the wiring substrate tends to decrease. On the other hand, if the upper limit is exceeded, the insulation property in the anisotropic conductive paste is lowered. Further, the average particle diameter can be measured by a dynamic light scattering type particle size measuring device. The thermosetting resin composition used in the present invention contains a thermosetting resin and an organic hydrazine and the acid of the thermosetting resin composition When the value is required to be 15 mgKOH/g or more and 55 mgKOH/g or less, the solder cannot be sufficiently activated in the case of the anisotropic shape obtained, and the electrical conductivity between them is insufficient. The electronic component and the wiring board are not subjected to the thermocompression bonding of the conductive paste of 15 mg KOH/g. On the other hand, if the insulating property or the illusion of the anisotropic conductive paste obtained by 55 lin is placed in the humidified state, Situation The moisture insulating property is insufficient. Further, regarding the obtained anisotropic conductive paste, the thermosetting connection 1622 is obtained from the viewpoint of the balance between the insulating property and the conductive property in the case of heat conduction. 0.doc 201245360 The acid value of the fat composition is preferably 20 mgKOH/g or more and 50 mgKOH/g or less, more preferably 30 mgKOH/g or more and 45 mgKOH/g or less. As the thermosetting resin used in the present invention, a known one can be suitably used. Thermosetting resin 'But it is particularly preferable to use an epoxy resin from the viewpoint of having a flux action. Further, in the present invention, the term "having a flux action" means that the coating film is covered like a usual rosin-based flux. The metal surface of the body blocks the atmosphere, and the metal oxide of the metal surface is reduced during soldering. The coating film is pushed away by the molten solder to bring the molten solder into contact with the metal surface, and the residue has a function of insulating the circuit. As such an epoxy resin, a known epoxy resin can be suitably used. Examples of such an epoxy resin include bisphenol eight type, bisphenol type, biphenyl type, naphthalene type, and type A (four) type. Benzene has taken Epoxy resin such as dicyclopentadiene or the like. These epoxy resin can be used alone or in combination of two or more. The epoxy resin is contained in a liquid at room temperature. When it is used in a case where it is solid at normal temperature, it is preferably used in combination with a liquid at normal temperature. Further, among these epoxy resin types, the dispersibility and paste viscosity of the metal particles can be adjusted. Further, from the viewpoint of improving the resistance to the drop impact of the cured product or the fact that the thick diffusion material of the solder is good, it is preferably a liquid type, and a liquid type F-type liquid gasification type. There are two types of type A, naphthalene type and dicyclopentadiene type. Moreover, in terms of the preservation stability of the anisotropic conductive paste, it is preferable to have a double-shot type. (In addition, the content of the liquid epoxy resin is 100% by mass of the thermosetting resin composition, preferably 70% by mass or more and 92% by mass or less, more preferably 70% by mass or more, more preferably The content of the epoxy resin is not more than 85% by mass. When the content of the epoxy resin is less than the lower limit, the sufficient strength is not obtained to fix the electronic component, and the resistance to drop impact tends to be lowered. When the above-mentioned upper limit is exceeded, the content of the organic acid or the curing agent in the thermosetting resin composition is reduced, and the rate of curing the epoxy resin tends to be delayed. As the organic acid used in the present invention, a known one can be suitably used. Organic acid. Among such organic acids, it is preferred to use a dibasic acid having an alkyl group from the viewpoint of excellent solubility in an epoxy resin and from the viewpoint that precipitation of crystals is less likely to occur during storage. As such a dibasic acid having an alkylene group, for example, adipic acid, 2,5-diethyladipate, glutaric acid, 2,4-diethylglutaric acid, 2, 2_diethyl Diacid, 3-methylglutaric acid, 2-ethyl-3-propyl glutaric acid, sebacic acid, succinic acid, malonic acid, diglycolic acid. Among these, preferably The diacid, glutaric acid, and succinic acid are particularly preferably adipic acid. The content of the organic acid is preferably from 3% by mass to 8% by mass based on the mass% of the thermosetting resin composition. When the content of the organic acid is less than the above lower limit, the rate of curing of the thermosetting resin such as an epoxy resin may be delayed, and the curing failure may occur. Further, the insulating property in the obtained anisotropic conductive paste tends to be lowered. Further, the thermosetting resin composition used in the present invention preferably uses a thixotropic agent in addition to the above thermosetting resin and the above organic acid. And a hardener. As the thixotropic agent used in the present invention, a known thixotropy 162210.doc -12-201245360 can be suitably used. As such a thixotropic agent, for example, an organic thixotropic agent (fat 醯) Amine, hydrogenated cannabis oil, olefins, etc.) Inorganic thixotropic agent (colloidal silica dioxide, chlorinated polymer). In these, compared to the fat (tetra) amine, colloidal silica, chlorinated polyether. X, the obtained anisotropic From the viewpoint of the fact that the conductive paste is less likely to bleed out, t is preferably a combination of an organic thixotropic agent and an inorganic thixotropic agent β S ^ , °, and a combination of a fatty amine and a colloidal cerium oxide to cause fat 醯The amine is combined with the chlorinated polyether. The content of the thixotropic agent is 100% by mass or less based on the mass of the thermosetting resin composition, and preferably 5 parts by mass or more and 25% by mass or less. The above-mentioned 10 mass 〇 / 〇 or less is particularly preferably 1% by mass or more and 5% by mass or less. When the content of the thixotropic agent does not reach the above lower limit, thixotropy may not be obtained, and the electrode may easily fall on the electrode of the wiring substrate. Therefore, when the electronic component is mounted on the electrode of the wiring board, the adhesion is lowered. On the other hand, when the electronic component exceeds the above upper limit, the thixotropy is too high and the injection needle is clogged, which tends to cause coating failure. In the case where the organic thixotropic agent and the inorganic thixotropic agent are used in combination as the thixotropic agent to be used in the present invention, the content of the inorganic thixotropic agent is 100% by mass based on the thermosetting resin composition. It is preferably 5% by mass or more and 22% by mass or less, more preferably 2% by mass or more and 2% by mass or less. As the curing agent used in the present invention, a known curing agent can be suitably used. For example, as the thermosetting resin, when an epoxy resin is used, the following may be used. As a latent hardening agent, for example, N 〇 vacure Ηχ-3722, 162210.doc 13- 201245360 HX-3721, HX-3748, HX-3088, HX-3613, HX-3921HP, HX-3941 HP ( Asahi Kasei Epoxy Co., Ltd. manufactures 'commodity name'. Examples of the aliphatic polyamine-based curing agent include Fujicure FXR-1020, FXR-1030, FXR-1050, and FXR-1080 (manufactured by Fuji Chemical Industry Co., Ltd., trade name). Examples of the epoxy resin amine adduct-based curing agent include Amicure PN-23, PN-F, MY-24, VDH, UDH, and PN-3 PN-40 (manufactured by Ajinomoto Fine-Techno Co., Ltd., Name), EH-3615S, EH-3293S, EH-3366S, EH-3842, EH-3670S, EH-3636AS, EH-4346S (manufactured by Asahi Kasei Kogyo Co., Ltd., trade name). Examples of the imidazole-based hardening accelerator include 2P4MHZ, 2MZA, 2PZ, Cl 1Z, C17Z, 2E4MZ, 2P4MZ, C11Z-CNS, and 2PZ-CNZ (trade names above). From the viewpoint of the insulating properties of the obtained anisotropic conductive paste, it is preferred to use a latent curing agent, an epoxy resin amine adduct-based curing agent, and an imidazole-based hardening accelerator in combination. The content of the curing agent is preferably 5% by mass or more and 20% by mass or less, and more preferably 10% by mass based on 100% by mass of the thermosetting resin composition. /〇 Above 18% by mass or less. When the content of the curing agent is less than the above lower limit, the rate at which the thermosetting resin is cured tends to be delayed. On the other hand, when the content exceeds the above upper limit, the reactivity is accelerated and the use time of the paste tends to be shortened. The thermosetting resin composition used in the present invention may contain a surfactant, a coupling agent, or the like, in addition to the epoxy resin, the organic acid, the thixotropic agent, and the curing agent, as needed, 162210.doc •14-201245360 , antifoaming reaction inhibitor, Shen, #, ^ & end-surface treatment agent, amount, phase needle U and other additives. The content of the additive is 0/乂 h , and the resin composition 1 GG mass% is preferably 〇.〇1 mass /. The above 1 G mass% or less, more ^ n such as Berry / 0 or more and 5 mass % or less. When the content of the additive is not up to the above, the effect of each additive tends to be exhibited. On the other hand, when the content exceeds the above upper limit, the bonding strength of the composition such as the composition is lowered by the use of a thermosetting tree. Next, a method of connecting the electronic component of the present invention will be described. The method of connecting an electronic component according to the present invention is characterized in that the above-described anisotropic conductive trace of the present invention is applied, and the anisotropic conductive paste is applied onto the wiring substrate; And the pressure bonding step of disposing the electronic component on the anisotropic conductive paste, and the electronic component and the above are higher than the temperature of (4) higher than the above-mentioned non-material powder (preferably, a thief or more) The wiring substrate is thermocompression bonded. Here, as the electronic component, a wiring board can be used in addition to a wafer, a package component, or the like. As the wiring board, any of a flexible substrate having a handleability and a rigid substrate having no flexibility can be used. Further, in the case where the flexible substrate is used as the electronic component, the hard f substrates can be electrically connected to each other via the flexible substrate by being connected to the two wiring substrates (hard substrates). Further, the flexible substrates may be electrically connected to each other via the flexible substrate. In the coating step, the anisotropic conductive paste is applied onto the wiring board. As a coating apparatus used here, for example, a dispenser, a 162210.doc 201245360 stencil printing machine, and a jet dispensing metal mask printing machine are mentioned. Further, the thickness of the coating film is not particularly limited, but is preferably 5 〇 pm or more and μηι or less, more preferably 1 〇〇 μηι or more and 3 Å or less. When the thickness is less than the above lower limit, the adhesive force tends to decrease when the electronic component is mounted on the electrode of the wiring board. On the other hand, if the thickness exceeds the upper limit, the paste tends to overflow beyond the connection portion. In the thermocompression bonding step, the electronic component is placed on the anisotropic conductive paste, and the electronic component and the wiring substrate are hot-pressed by a temperature higher than a melting point of the lead-free solder powder by 5 <> Pick up. When the temperature at the time of thermocompression bonding does not satisfy the condition that the melting point of the above-mentioned error-free solder powder is 5 C or more, the non-ship solder cannot be sufficiently smeared, and the electronic component and the wiring substrate cannot be formed. With sufficient solder bonding, the electrical conductivity between the electronic component and the wiring substrate becomes insufficient. The pressure at the time of thermocompression bonding is not particularly limited, but is preferably 〇 2 MPa or more and 2 MPa or less, and more preferably 〇 5 MPa or more and 丨 5 Mpa or less. When the pressure is less than the lower limit, sufficient solder bonding cannot be formed between the electronic component and the wiring substrate, and the electrical conductivity between the electronic component and the wiring substrate tends to decrease. On the other hand, if the upper limit is exceeded, the pair may be The pressure applied to the wiring substrate 'has to increase the tendency of the dead space. Further, in the present invention, as described above, the pressure at the time of thermocompression bonding can be set to a lower pressure range as compared with the case of using the previous method. Therefore, the cost of the apparatus used in the thermocompression bonding step can also be achieved. The time during thermocompression bonding is not particularly limited, and is usually preferably 5 seconds or more and 6 〇 162210.doc -16 - 201245360 seconds or less, 7 seconds or more and 2 seconds or less. Further, in the method of connecting electronic components of the present invention, it is preferable to further include a peeling step, a recoating step, and a reheat pressing step described below. In the stripping step, the electronic component is peeled off from the wiring board at a level higher than the melting point of the lead-free solder powder. - Here, the method of peeling the electronic component from the wiring substrate is not particularly limited. As such a method, for example, a method in which an electronic component is peeled off from a wiring substrate while heating a connecting portion such as a solder bump can be used. Further, in such a case, a known I-off device used in repairing can also be used. Further, after the electronic component is mounted on the wiring board (4), the wiring board can be cleaned by a solvent or the like as needed. In the recoating step, the anisotropic conductive paste is applied onto the wiring substrate after the peeling step. Here, the thickness of the coating device or the coating film may be the same as or the same as the above coating step. In the reheating bonding step, the electronic component is placed on the anisotropic conductive paste after the recoating step, and the electronic component and the wiring substrate are disposed at a temperature of 5 ° C or more than the non-material powder. Hot crimping. Here, the temperature, pressure and time at the time of thermocompression bonding can be the same as those of the step. $ > According to the connection method of the electronic component of the present invention described above, since the electrodes of the electronic component and the wiring substrate are solder-bonded to each other, the electrode and conductivity of the anisotropic conductive material as before can be achieved. When the fillers are in contact with each other and connected, the connection reliability is extremely high. Further, after thermocompression bonding, if the temperature above the melting point of the lead-free solder powder is applied, I62210.doc 201245360 heat can be used to make the tanner (4), and the thermosetting resin composition can be softened, so that the electronic component can be easily removed. Stripped from the wiring substrate. Further, in the present invention, after the peeling, the interconnecting conductive paste (four) wiring board is connected to the electronic component again, and even if a certain degree of residue (solder or the like) remains on the electrode or the like, These (4) - and (4) bonding, to ensure conductivity. Sub, the method of connecting the electronic component of the present invention is superior in repairability as compared with the method of using the prior anisotropic conductive material. [Examples] Hereinafter, the invention will be described in detail by way of examples and comparative examples, but the invention is not limited to the examples. [Example 1] Thermosetting resin A (bisphenol A type epoxy resin, DIC (Daily Ink Chemical Co., Ltd.), trade name "EPICLON 860") 82.9 mass%, thixotropic agent A (fatty amide, hydrazine) Manufactured by the company, the product name is "讣 印 印 印 印 ^ 」 ) ) ) ) ) ) ) ) ) ) ) ) 2 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 有机 、 、 、 、 、 、 、 "Curezol 2P4MHZ") 11.5% by mass, surfactant (BYK-Chemie Japan company's product name "BYK361N") 〇.5 mass% and defoamer (manufactured by Kyoeisha Chemical Co., Ltd., trade name "Floren AC- 326F") 0.5% by mass of the input container" was mixed using a stone mill to obtain a thermosetting resin composition. Then, 62.5% by mass of the obtained thermosetting resin composition and lead-free solder powder A (average particle diameter: 5 μm, melting point of solder: 139. (: composition of solder: 42Sn/58Bi) 3 7.5 mass% were put. In the container, the mixture was mixed for 2 hours in a kneader to prepare an anisotropic conductive paste. 162210.doc •18· 201245360 Then, on the wiring substrate (electrode: gold plating of copper electrode (Cu/Ni/Au)), The obtained anisotropic conductive paste (thickness: 〇 2 mm) was applied, and on the anisotropic conductive paste after coating, an electronic component was placed on the electrode (electrode: gold treatment was performed on the copper electrode ( Cu/Ni/Au)), using a hot-shell device (manufactured by ADVANSEL), heats the electronic parts and the wiring substrate under the conditions of a temperature of 2 〇〇t:, | force i Mpa, and a dust-collecting time of 8 to 1 G seconds. [Example 2] In the same manner as in Example 1, except that the f-electrode was subjected to a water-soluble pre- (four) treatment (trade name "wpF_8" manufactured by T-Ra, Ltd.) in the copper electrode as a wiring substrate. The electronic component is thermocompression bonded to the wiring substrate. [Embodiment 3] The electronic component and the wiring board were thermocompression-bonded in the same manner as in Example 2 except that the electrode included tin (Sn) as the f sub-part. [Example 4] - Composition according to Table 1 In addition to the above, the thermosetting resin composition and the anisotropic conductive paste were obtained in the same manner as in Example 15. The anisotropic conductive paste obtained as described above was used instead of the one used in the actual method. The electronic component and the wiring board were thermocompression bonded in the same manner as in Example 2 except for the anisotropic conductive paste. [Example 5] Phase = Each material was prepared according to the composition of Table 1. The thermosetting resin composition and the anisotropic conductive paste were obtained in the same manner as in Example 15. ^22ΐ〇^0 (•19-201245360 Further, in Example 5, lead-free solder powder B (average particle diameter) was used. : 5 μιη, melting point of solder: 217 〇 C, composition of solder: % 5Sn / 3Ag / 〇 5 (: illusion. Also, using the anisotropic conductive paste obtained as described above in place of the example 2 The anisotropic conductive paste used is set to 240 eC when thermocompression bonding, except The electronic component and the wiring board were thermocompression bonded in the same manner as in Example 2. [Comparative Examples 1 to 4] The materials were prepared according to the compositions shown in Table 1, except for the same manner as in the Example. The thermosetting resin composition and the anisotropic conductive paste were obtained. The anisotropic conductive paste obtained as described above was used instead of the anisotropic conductive paste used in Example 2, and In the same manner as in the second embodiment, the electronic component and the wiring board were thermocompression bonded. [Comparative Example 5] A thermosetting resin composition was obtained in the same manner as in Example 1 except that the materials were blended according to the compositions shown in Table 1. And an anisotropic conductive paste. Further, in Comparative Example 5, a resin powder subjected to gold plating treatment (Au/Ni electric resin powder, manufactured by Sekisui Chemical Co., Ltd.) (10) (10) was used.

Au-205 j ) ° 使用如上述之方式所獲得之異向性導電性糊來代替實施 . 〇中所使用之異向性導電性糊’除此以外以與實施例!相‘ 同之方式,將電子零件與配線基板進行熱壓接。 [比較例6] 使用於銅電極十對電極進行水溶性前详劑處理(丁議ra 製作所公司製造’商品名「wpF_8」)者作為配線基板,除 1622I0.doc •20· 201245360 此以外以與比較例5相同之方式,將電子零件與配線基板進 行熱Μ接。 [比較例7] 使用電極包含錫(Sn)者作為電子零件,除此以外以與比 較例5相同之方式,將電子零件與配線基板進行熱壓接。 <異向性導電性糊及電子零件之連接方法之評價> 將異向性導電性糊之性能(樹脂組合物之酸值,壓接後之1 絕緣電阻值)、及電子零件之連接方法之評價(壓接後之初始 電阻值,修復性(修復時有無基板破壞、修復後之電阻值)) 以如下之方法進行評價或測定。將所獲得之結果示於表1 及表2。再者,關於比較例6〜7,由於壓接後之初始電阻值 無法導通故而無法測定,因此對修復性未進行評價。 (1) 樹脂組合物之酸值 量取樹脂組合物,使其溶解於溶劑中。並且將酚酞溶液 作為指示劑以0.5 mol/L · KOH進行滴定。 (2) 壓接後之初始電阻值 準備具有0.2 mm間距焊盤(線/空間= ι〇〇 μιη/100 μΓη)作 為電路圖案之配線基板。並且,於該配線基板之焊盤上, 分別以上述之實施例及比較例中記載之方法,對具有0 2 mm間距焊盤(線/空間=1〇〇 μιη/1〇〇 μπι)之電子零件進行熱 壓接°並且,使用數位萬用表(Agilent公司製造,商品名 Γ34401Α」),測定連接之焊盤之端子彼此之間的電阻值。 再者’於電阻值過高(100ΜΩ以上),而無法導通之情形時, 判定為「無法導通」。 162210.doc • 21· 201245360 (3) 修復時有無基板破壞 使用於上述(2)中測定初始電阻值之基板進行評價。一面 使該基板之與電子零件之連接部分於與熱壓接溫度相同之 溫度下進行加熱,一面自基板將電子零件剝離,其後,以 乙酸乙酯清洗表面之污垢。並且,以目視觀察剝離後之基 板之狀態,檢查有無基板破壞。 (4) 修復後之電阻值 使用於上述(3)中評價有無基板破壞之基板進行測定。於 該基板之焊盤上’分別以上述之實施例及比較例中記載之 方法’再次對電子零件進行熱壓接。並且,使用數位萬用 表(Agilent公司製造’商品名r 34401Aj ),測定連接之焊 盤之端子彼此之間的電阻值。再者,於電阻值過高(1〇〇 ΜΩ 以上)’而無法導通之情形時,判定為「無法導通」。 (5) 壓接後之絕緣電阻值 於0.2 mm間距(線/空間=1〇〇 pm/1〇〇 pm)之梳形電極基 板(玻璃環氧樹脂基板)之銅箔焊盤上,將分別於實施例及比 較例所獲得之異向性導電性糊以〇· 1 mm之厚度進行印刷之 後,利用回焊爐(Tamura製作所公司製造,商品名「TNP」) 以溫度240°C進行加熱而獲得試片。將該試片於85。(:、 85%RH(相對濕度)中,施加15 V電壓,測定168小時後之絕 緣電阻值。 162210.doc •22· 201245360 【ΐ】 實施例5 82.9 (N (N 〇 ο ο 62.5 奪 37.5 〇 選擇 1 1 選擇 〇 <N 〇〇 寸 〇〇 -M X 實施例4 (N <r> ο ο ο 62.5 37.5 1 〇 選擇 1 1 選擇 200 〇 00 磯 (N 〇〇 1 Χίο8以上 實施例3 82.9 (N CN Η ο Ο ο 62.5 37.5 1 〇 1 選擇 1 選擇 200 to 00 00 -Μ 0^ Γ-Η X 實施例2 82.9 (N CN ο ο ο 62.5 37.5 1 〇 選擇 1 1 選擇 〇 (N <N οό 寸 〇〇 lxio8以上 實施例1 82.9 (N CN Ο ο ο 62.5 37.5 1 〇 r-H 選擇 1 選擇 1 200 ο οό (N 〇〇 lxio8以上 熱固性樹脂A 觸變劑A 有機酸A 硬化劑A 界面活性劑 消泡劑 樹脂組合物共計 樹脂組合物 無鉛焊料粉末A 無鉛焊料粉末B 1 糊共計 Cu/Ni/Au Cu/Ni/Au Cu/水溶性前焊劑 溫度(°C) (1)焊劑酸值(mgKOH/g) (2)初始電阻值(Ω) (3)修復時有無基板破壞 (4)修復後之電阻值(Ω) (5)絕緣電阻值(Ω) 樹脂組合物之調配(質量%) 異向性導電性糊之調配(質量%) 電子零件電極 配線基板電極 球 評價 162210.doc -23- 201245360 比較例7 82.9 (N v〇 (N 11.5 <n 〇 o o 62.5 1 1 1 1__37,5__I 〇 1 選擇 選擇 1 200 |無法導通| 1 1 1 比較例6 82.9 (N VO (N 11.5 o c> o 62.5 1 1 1 1_37^__I 〇 選擇 1 1 選擇 200 I無法導通| 1 1 1 比較例5 82.9 (N (N o o o 62.5 1 1 37.5 〇 選擇 1 選擇 1 200 <N 00 無法導通 ΙχΙΟ8以上 比較例4 76.5 (N Os 11.5 o ci o 62.5 37.5 1 1 〇 選擇 1 1 選擇 200 〇 〇 〇6 〇〇 卜 X 比較例3 00 (N yn 〇 in yn o d o 62.5 1 3X5_I 1 1 〇 選擇 1 1 選擇 200 200.0 無法導通 •Μ 0^ X 比較例2 82.9 CN <N 11.5 O c> o Ο 1 1 〇 選擇 1 1 選擇 200 〇 — 寸 X 比較例1 82.9 CM VO <N O o o 〇\ 1 1 〇 選擇 1 1 選擇 200 12.5 20.5 -M 0^ X 熱固性樹脂A 觸變劑A 有機酸A 硬化劑A 界面活性劑 消泡劑 樹脂組合物共計 樹脂組合物 無鉛焊料粉末A 無鉛焊料粉末B Au/Ni電鍍樹脂粉末 糊共計 Cu/Ni/Au Cu/Ni/Au Cu/水溶性前焊劑 溫度(°C) (1)焊劑酸值(mgKOH/g) (2)初始電阻值(Ω) (3)修復時有無基板破壞 (4)修復後之電阻值(Ω) (5)絕緣電阻值(Ω) 樹脂組合物之調 配(質量%) Μ Co s § 畹W 電子零件電極 配線基板電極 熱壓接條件 評價 162210.doc -24· 201245360 根據表1及表2所示之結果可明確,於使用本發明之異向 性導電性糊,將配線基板與電子零件連接之情形時(實施例 1〜5),確認可確保充分之修復性及較高之連接可靠性。 對此,於異向性導電性糊中之無鉛焊料粉末之調配量為5 . 質量%之情形時(比較例1)、及異向性導電性糊中之樹脂組 . 合物之酸值為5 mgKOH/g之情形時(比較例3),確認壓接後 之初始電阻值提高,而無法確保配線基板與電子零件之導 電性。 又,於異向性導電性糊中之無鉛焊料粉末之調配量為6〇 質量%之情形時(比較例2)、及異向性導電性糊中之樹脂組 合物之酸值為70 mgKOH/g之情形時(比較例4),確認壓接後 之絕緣電阻值降低,而無法確保對未進行熱壓接之部位之 絕緣性。 進而’於使用不含焊料粉末之異向性導電性糊之情形時 (比較例5〜7),只要於配線基板之電極及電子零件之電極之 雙方不實施鍍金處理,則無法實現配線基板與電子零件之 導通。又’即便於在配線基板之電極及電子零件之電極之 雙方不實施鑛金處理之情形時(比較例5 ),亦可確認於修復 後無法實現導通,而使修復性較差。 [實施例6〜17] 根據表3及表4所示之組成調配各材料,除此以外以與實 施例1相同之方式,獲得熱固性樹脂組合物及異向性導電性 糊。 使用如上述之方式所獲得之異向性導電性糊來代替實施 162210.doc •25· 201245360 例1中所使用之異向性導電性糊,除此以外以與實施例1相 同之方式’將電子零件與配線基板進行熱壓接。 再者’於以下表示實施例6〜丨7中所使用之材料。 熱固性樹脂A:雙酚A型環氧樹脂,商品名「EPICLON 860」, DIC公司製造 熱固性樹脂B :雙酚f型環氧樹脂,商品名「EPIcl〇N 830CRP」’ DIC公司製造 熱固性樹脂C :雙酚A型與雙酚F型之混合環氧樹脂,商品 名「EPICLON EXA-830LVP」 ,DIC 公司製造 熱固性樹脂D :二環戊二烯型環氧樹脂,商品名「EPICLON HP-7200H」,DIC公司製造 熱固性樹脂E :萘型環氧樹脂,商品名「EPICLON HP-4032D」,DIC公司製造 觸變劑A :脂肪醯胺,日本化成公司製造,商品名 「thylenebis Η」 觸變劑Β :膠體二氧化矽,商品名「AEROSIL R974」,曰 本Aerosil公司製造 觸變劑C :氣化聚醚,WILBUR-ELLIS公司製造 有機酸A :己二酸,關東電化工業公司製造 有機酸B:戊二酸,東京化成工業公司製造 有機酸C: 丁二酸,三菱化學公司製造 硬化劑A :咪唑系硬化加速劑,商品名「Curezol 2P4MHZ」, 四國化成公司製造 硬化劑B :咪唑系硬化加速劑,商品名「Curezol 2MZA-PW」, 162210.doc •26· 201245360 四國化成公司製造 硬化劑c:環氧樹脂胺加合物系硬化劑,「AmicurepN_F」, Ajinomoto Fine-Techno公司製造 硬化劑D:潛伏性硬化劑,商品名「N〇vacureHx_372i」, 旭化成環氧公司製造 界面活性劑:商品名「BYK361N」,BYK Chemie ^抓公 司製造 消泡劑:商品名「FlowlenAC-326F」,共榮社化學公司製造 無鉛焊料粉末a:平均粒徑為5 μηι,焊料之熔點a139«»c, 焊料之組成為42Sn/58Bi 無鉛焊料粉末B :平均粒徑為5 μιη,焊料之熔點為217°C, 焊料之組成為96.5Sn/3Ag/0.5Cu <異向性導電性糊及電子零件之連接方法之評價> 對實施例1及實施例6〜17,將異向性導電性糊之性能(樹 脂組合物之酸值、壓接後之絕緣電阻值、保存穩定性)、及 電子零件之連接方法之評價(壓接後之初始電阻值、修復性 (修復時有無基板破壞、修復後之電阻值),利用X射線之橋 接觀察)以上述之方法及下述之方法進行評價或測定。所獲 得之結果示於表3及表4。 (6)利用X射線之橋接觀察 使用微聚焦X射線透視裝置(SHIMADZU公司製造: SMX-160E) ’對壓接後之基板進行X射線觀察,根據下述之 標準判定有無橋接或異向性導電性糊之滲出❶再者,所謂 橋接係鄰接之端子彼此之未預期之短路。 162210.doc •27· 201245360 A ·’無橋接 B :無橋接, C :有橋接。 ’亦無異向性導電性糊之滲出。 但稍微有異向性導電性构之滲出。 (7)保存穩定性 測定異向性導電性糊之10。〇.保管後之黏度,測定相對於 初始值之變化率不超過±20%之時間。黏度之測定係於恆溫 槽中將調整為25°C之聚乙烯容器中之樹脂使用黏度計 (Malcom公司製造:PCU-205)進行測定。 162210.doc 28· 201245360 【e<】 〇 m 27.4 1 1 1 1 VO <N 1 1 1 VO VO VO in 〇 ο ο ο r·^ 62.5 37.5 1 〇 200 10.0 10.2 X c JQ ο 〇 36.4 1 1 1 1 VO (N 1 1 1 v〇 v〇 o ο Ο ο 62.5 37.5 1 〇 〇 200 CS 〇〇 碡 寸 00 -Μ T—^ X < 卜 〇\ 27.4 1 1 1 I V〇 (N 1 1 1 \〇 v〇 ΙΓΪ in ο ο 62.5 37.5 1 〇 1—4 200 10.0 10.2 -Μ X < vn 卜 〇〇 〇 36.4 1 1 1 1 <N 1 1 1 VO VO o in ο Ο 62.5 37.5 1 〇 ^Η 200 (N 00 寸 00 X yn < 卜 卜 76.4 1 1 1 1 »—Η 1 VO CN 1 1 1 VO VO o ο ο ?·Η 62.5 37.5 1 〇 200 CN 00 寸 00 -Μ )0_^ X < pj 82.9 1 1 1 1 ψ·^ 1 (N 1 1 11.5 1 1 1 o ο ο ο 62.5 37.5 1 ο ο 200 (N 00 寸 00 Μ X < (N 82.9 1 1 1 1 CN 1 1 v〇 (N 1 1 \Ti 1 1 1 o vn ο ο 62.5 37.5 1 ο Ο 宕 〇 00 CN 00 •Μ X PQ (N 熱固性樹脂A 熱固性樹脂B 熱固性樹脂C 熱固性樹脂D 熱固性樹脂E 觸變劑A 觸變劑Β 觸變劑c 有機酸A 有機酸B 有機酸c 硬化劑A 硬化劑B 硬化劑c 硬化劑D w ±1 v0 消泡劑 -\1Φ 韻 iJtn ncr 逛 樹脂組合物 無鉛焊料粉末A PQ 实 ^ItO 苯 BS 〇 bfi W 玫 /—V 1-H α >ζνΒΓ 婆 g α ύ tWlI *pllr α ύ φΒ5 雄 奪 璲 茶 X BE ΤΓ-» 德 4Φ 雎 i 樹脂組合物之調 配(質量%) ^ C〇 挪、 m 仓羅 i§i 雄 戚 評價 162210.doc ·29· 201245360 卜 ||πζ 〇 36.4 1 1 1 1 v〇 (Ν 1 1 1 v〇 o v〇 d m o o o 62.5 1 37.5 〇 〇 240 (N 00 寸 00 •Μ X m < JQ VO 1·^ 〇 36.4 1 1 1 Η 1 1 1 V〇 (N 1 v〇 o in 〇 〇 o o 62.5 37.5 1 〇 〇 200 <N 〇 Os (N as •Μ ίΟ_^ X < yn 卜 1 N 〇 寸 36.4 1 1 1 1 1 VO <N 1 1 VO yr) 〇 o o 62.5 37.5 1 〇 200 〇 ON (N 〇\ •Μ 3^ X < 卜 寸 1 1 46.4 1 〇 m 1 (Ν t 1 1 VO v〇 in o 〇 o o 62.5 37.5 1 〇 200 (N 00 寸 00 •Μ ίΟ_^ X yn < yn m 1 1 46.4 〇 CO 1 «•Η 1 ν〇 CN 1 1 1 v〇 o o o <n o o o 62.5 37.5 1 〇 〇 200 CN 00 碡 寸 00 -Μ Η X Ό < u-> <N 1 1 | 76.4 1 1 1 ν〇 ri 1 1 1 VO VO V£> c> o o 62.5 37.5 1 〇 200 (N 00 2 •Μ X < JTj 熱固性樹脂A 熱固性樹脂B 熱固性樹脂C 熱固性樹脂D 熱固性樹脂E 觸變劑A 觸變劑Β 觸變劑C 有機酸A 有機酸B 有機酸C 硬化劑A 硬化劑B 硬化劑c 硬化劑D 界面活性劑 消泡劑 JlD 荽 Jim =? 率 樹脂組合物 C 实 無鉛焊料粉末B ^>0 苯 /—> S—^ 〇 tsi B g pBr ^w< § $ 里 I^WlT ipUr V § ή s 餘 雄 奪 婼 茶 X SE 眾 ii 举 'w 樹脂組合物之調 配(質量%) ±1VH ί〇> 雄 险1 評價 162210.doc ·30· 201245360 根據表3及表4所示之結果,可確認以下方面。 根據實施例1及實施例6之結果,於組合使用有機系觸變 劑與無機系觸變劑作為觸變劑之情形時,確認異向性導電 性糊不易滲出。 . 根據實施例6及實施例7之結果,於組合使用潛伏性硬化 • 劑、環氧樹脂胺加合物系硬化劑及咪唑系硬化加速劑作為 硬化劑之情形時,確認壓接後之絕緣電阻值提高。 根據實施例7、8及12〜14之結果,於將環氡樹脂與液狀雙 酚A型及液狀雙酚f型組合使用之情形時,確認異向性導電 性糊之保存穩定性提高。 根據實施例8、15及16之結果,確認較佳為使用具有伸院 基之二元酸作為有機酸。又’尤其是,於使用己二酸作為 有機酸之情形時(實施例8),確認有壓接後之初始電阻值或 修復後之電阻值降低之傾向。 162210.doc •31-Au-205 j ) ° Instead of using the anisotropic conductive paste obtained as described above, the anisotropic conductive paste used in the above is used in addition to the examples! In the same way, the electronic components are thermocompression bonded to the wiring substrate. [Comparative Example 6] As a wiring board, a water-soluble pre-treatment agent (a product name "wpF_8" manufactured by Dingley Ra Co., Ltd.) was used as a wiring substrate for the ten-electrode of the copper electrode, except for 1622I0.doc •20·201245360. In the same manner as in Comparative Example 5, the electronic component and the wiring substrate were thermally bonded. [Comparative Example 7] An electronic component and a wiring board were thermocompression bonded in the same manner as in Comparative Example 5 except that the electrode was made of tin (Sn) as an electronic component. <Evaluation of connection method of anisotropic conductive paste and electronic component> Performance of an anisotropic conductive paste (acid value of resin composition, 1 insulation resistance value after pressure bonding), and connection of electronic parts Evaluation of the method (initial resistance value after crimping, repairability (whether or not the substrate was damaged during repair, and the resistance value after repair)) was evaluated or measured in the following manner. The results obtained are shown in Tables 1 and 2. Further, in Comparative Examples 6 to 7, since the initial resistance value after the pressure bonding could not be conducted, the measurement could not be performed, and therefore the repairability was not evaluated. (1) Acid value of resin composition The resin composition was weighed and dissolved in a solvent. And the phenolphthalein solution was titrated as an indicator at 0.5 mol/L · KOH. (2) Initial resistance value after crimping Prepare a wiring board with a 0.2 mm pitch pad (line/space = ι〇〇 μηη/100 μΓη) as a circuit pattern. Further, on the pads of the wiring board, the electrons having the 0 2 mm pitch pads (line/space = 1 〇〇 μιη / 1 〇〇 μπι) were respectively formed by the methods described in the above-described examples and comparative examples. The parts were thermocompression-bonded, and a resistance value between the terminals of the connected pads was measured using a digital multimeter (manufactured by Agilent, trade name: 34401). In addition, when the resistance value is too high (100 ΩΩ or more) and cannot be turned on, it is judged as "unable to turn on". 162210.doc • 21· 201245360 (3) Whether or not the substrate is damaged during the repair Use the substrate with the initial resistance value measured in (2) above for evaluation. While the connection portion of the substrate to the electronic component is heated at the same temperature as the thermocompression bonding temperature, the electronic component is peeled off from the substrate, and then the surface is cleaned with ethyl acetate. Further, the state of the substrate after peeling was visually observed to check whether or not the substrate was broken. (4) Resistance value after repair The substrate was evaluated for the presence or absence of substrate damage in the above (3). The electronic components were again thermocompression bonded to the pads of the substrate by the methods described in the above embodiments and comparative examples. Further, a resistance value between the terminals of the connected pads was measured using a digital multimeter (manufactured by Agilent & Co., trade name r 34401Aj). In addition, when the resistance value is too high (1 〇〇 Ω or more) and cannot be turned on, it is judged as "unable to conduct". (5) The insulation resistance value after crimping is on the copper foil pad of the comb-shaped electrode substrate (glass epoxy substrate) with a pitch of 0.2 mm (line/space = 1 〇〇 pm / 1 〇〇 pm) The anisotropic conductive paste obtained in the examples and the comparative examples was printed at a thickness of 〇·1 mm, and then heated at a temperature of 240° C. by a reflow furnace (manufactured by Tamura Seisakusho Co., Ltd., trade name "TNP"). Get the test piece. The test piece was at 85. (:, 85% RH (relative humidity), apply 15 V voltage, measure the insulation resistance value after 168 hours. 162210.doc •22· 201245360 [ΐ] Example 5 82.9 (N (N 〇ο ο 62.5 wins 37.5 〇Select 1 1 Select 〇<N 〇〇 inch〇〇-MX Example 4 (N <r> ο ο ο 62.5 37.5 1 〇Select 1 1 Select 200 〇00 矶 (N 〇〇1 Χίο8 above Example 3 82.9 (N CN Η ο Ο ο 62.5 37.5 1 〇1 Select 1 Select 200 to 00 00 -Μ 0^ Γ-Η X Example 2 82.9 (N CN ο ο ο 62.5 37.5 1 〇Select 1 1 Select 〇 (N &lt ;N οό inch 〇〇lxio8 above Example 1 82.9 (N CN Ο ο ο 62.5 37.5 1 〇rH Select 1 Select 1 200 ο οό (N 〇〇lxio8 or more thermosetting resin A thixotropic agent A organic acid A hardener A interface Active agent antifoaming resin composition Total resin composition Lead-free solder powder A Lead-free solder powder B 1 Paste total Cu/Ni/Au Cu/Ni/Au Cu/Water-soluble flux temperature (°C) (1) Flux acid value (mgKOH/g) (2) Initial resistance value (Ω) (3) Whether there is substrate damage during repair (4) Resistance value after repair (Ω) (5) Edge resistance value (Ω) Formulation of resin composition (% by mass) Preparation of anisotropic conductive paste (% by mass) Evaluation of electrode ball of electronic component electrode wiring board 162210.doc -23- 201245360 Comparative example 7 82.9 (N v〇 (N 11.5 <n 〇oo 62.5 1 1 1 1__37,5__I 〇1 Select 1 200 | Unable to conduct | 1 1 1 Comparative Example 8 82.9 (N VO (N 11.5 o c> o 62.5 1 1 1 1_37^__I 〇 Select 1 1 Select 200 I to turn on | 1 1 1 Comparative Example 5 82.9 (N (N ooo 62.5 1 1 37.5 〇Select 1 Select 1 200 < N 00 Unable to turn ΙχΙΟ8 or more Comparative Example 4 76.5 (N Os 11.5 o ci o 62.5 37.5 1 1 〇Select 1 1 Select 200 〇〇〇6 〇〇X X Comparative Example 3 00 (N yn 〇in yn odo 62.5 1 3X5_I 1 1 〇Select 1 1 Select 200 200.0 Unable to turn on •Μ 0^ X Comparative example 2 82.9 CN <N 11.5 O c> o Ο 1 1 〇Select 1 1 Select 200 〇-inch X Comparative Example 1 82.9 CM VO <NO oo 〇\ 1 1 〇Select 1 1 Select 200 12.5 20.5 -M 0^ X Thermosetting Resin A Thixotropic Agent A Organic Acid A Hardener A Surfactant Defoamer Resin Composition Resin composition lead-free solder powder A lead-free solder powder B Au/Ni plating resin powder paste total Cu/Ni/Au Cu/Ni/Au Cu/water-soluble pre-flux temperature (°C) (1) Flux acid value (mgKOH/ g) (2) Initial resistance value (Ω) (3) Whether or not the substrate is damaged during repair (4) Resistance value after repair (Ω) (5) Insulation resistance value (Ω) Preparation of resin composition (% by mass) Μ Co s § 畹W Electronic component electrode wiring substrate electrode thermocompression bonding condition evaluation 162210.doc -24· 201245360 According to the results shown in Tables 1 and 2, it is clear that the wiring substrate is used in the use of the anisotropic conductive paste of the present invention. When it was connected to an electronic component (Examples 1 to 5), it was confirmed that sufficient repairability and high connection reliability were ensured. In this case, when the amount of the lead-free solder powder in the anisotropic conductive paste is 5% by mass (Comparative Example 1), and the resin group in the anisotropic conductive paste, the acid value of the compound is In the case of 5 mgKOH/g (Comparative Example 3), it was confirmed that the initial resistance value after the pressure bonding was increased, and the conductivity of the wiring board and the electronic component could not be ensured. In addition, when the amount of the lead-free solder powder in the anisotropic conductive paste is 6 〇 mass% (Comparative Example 2), and the acid value of the resin composition in the anisotropic conductive paste is 70 mgKOH/ In the case of g (Comparative Example 4), it was confirmed that the insulation resistance value after the crimping was lowered, and the insulation of the portion which was not thermocompression bonded could not be ensured. Further, when the anisotropic conductive paste containing no solder powder is used (Comparative Examples 5 to 7), the wiring substrate and the wiring substrate cannot be realized unless both the electrode of the wiring substrate and the electrode of the electronic component are not subjected to gold plating treatment. Conduction of electronic components. Further, even when both the electrode of the wiring board and the electrode of the electronic component were not subjected to the gold deposit treatment (Comparative Example 5), it was confirmed that the conduction could not be achieved after the repair, and the repairability was inferior. [Examples 6 to 17] A thermosetting resin composition and an anisotropic conductive paste were obtained in the same manner as in Example 1 except that the materials were blended according to the compositions shown in Tables 3 and 4. The anisotropic conductive paste obtained as described above was used in the same manner as in Example 1 except that the anisotropic conductive paste used in Example 1 of 162210.doc •25·201245360 was used. The electronic component is thermocompression bonded to the wiring substrate. Further, the materials used in Examples 6 to 7 are shown below. Thermosetting resin A: bisphenol A type epoxy resin, trade name "EPICLON 860", DIC company thermosetting resin B: bisphenol f type epoxy resin, trade name "EPIcl〇N 830CRP"' DIC company manufactures thermosetting resin C: A mixed epoxy resin of bisphenol A type and bisphenol F type, trade name "EPICLON EXA-830LVP", DIC company manufactures thermosetting resin D: dicyclopentadiene type epoxy resin, trade name "EPICLON HP-7200H", DIC manufactures thermosetting resin E: naphthalene type epoxy resin, trade name "EPICLON HP-4032D", thieves manufactures thixotropic agent A: fat amide, manufactured by Nippon Kasei Co., Ltd., trade name "thylenebis Η" thixotropic agent Β : Colloidal cerium oxide, trade name "AEROSIL R974", sputum Aerosil company manufactures thixotropic agent C: gasified polyether, WILBUR-ELLIS company manufactures organic acid A: adipic acid, and Kanto Electrochemical Industry Co., Ltd. manufactures organic acid B: pentane Diacid, Tokyo Chemical Industry Co., Ltd. manufactures organic acid C: succinic acid, Mitsubishi Chemical Corporation manufactures hardener A: imidazole-based hardening accelerator, trade name "Curezol 2P4MHZ", manufacture of hardener B by Shikoku Chemical Co., Ltd.: imidazole-based hard Accelerator, trade name "Curezol 2MZA-PW", 162210.doc •26· 201245360 Siguo Chemical Co., Ltd. manufactures hardener c: epoxy resin amine adduct hardener, "AmicurepN_F", hardened by Ajinomoto Fine-Techno Agent D: latent hardener, trade name "N〇vacureHx_372i", surfactant produced by Asahi Kasei Epoxy Co., Ltd.: trade name "BYK361N", BYK Chemie ^Crafting company defoamer: trade name "FlowlenAC-326F" Rongshe Chemical Company manufactures lead-free solder powder a: average particle size is 5 μηι, solder melting point a139«»c, solder composition is 42Sn/58Bi lead-free solder powder B: average particle size is 5 μηη, solder melting point is 217° C, the composition of the solder is 96.5Sn/3Ag/0.5Cu <Evaluation of the connection method of the anisotropic conductive paste and the electronic component> For the embodiment 1 and the examples 6 to 17, the anisotropic conductive paste is used. Performance (acid value of resin composition, insulation resistance value after crimping, storage stability), and evaluation of connection method of electronic parts (initial resistance value and repairability after crimping (with or without substrate damage, after repair) Resistance value), measured or evaluated in the above method and the following method of using a bridge connection of the observed X-ray). The results obtained are shown in Tables 3 and 4. (6) X-ray bridge observation using a microfocus X-ray fluoroscopy apparatus (manufactured by SHIMADZU Co., Ltd.: SMX-160E) 'X-ray observation of the substrate after crimping, and determining whether or not there is bridging or anisotropic conduction according to the following criteria The exudation of the scented paste, the so-called bridging system adjacent terminals are unexpectedly short-circuited with each other. 162210.doc •27· 201245360 A ·'No bridge B: No bridge, C: Bridged. There is also no exudation of the anisotropic conductive paste. However, there is a slight anisotropic conductivity that oozes out. (7) Storage stability The anisotropic conductive paste was measured. 〇. The viscosity after storage is measured for a time which does not exceed ±20% with respect to the initial value. The viscosity was measured in a thermostat tank and the resin in a polyethylene container adjusted to 25 ° C was measured using a viscometer (manufactured by Malcom: PCU-205). 162210.doc 28· 201245360 [e<] 〇m 27.4 1 1 1 1 VO <N 1 1 1 VO VO VO in 〇ο ο ο r·^ 62.5 37.5 1 〇200 10.0 10.2 X c JQ ο 〇36.4 1 1 1 1 VO (N 1 1 1 v〇v〇o ο Ο ο 62.5 37.5 1 〇〇200 CS 〇〇碡 inch 00 -Μ T—^ X < 〇 〇 27.4 1 1 1 IV〇 (N 1 1 1 \〇v〇ΙΓΪ in ο ο 62.5 37.5 1 〇1—4 200 10.0 10.2 -Μ X < vn 〇〇〇 36.4 1 1 1 1 <N 1 1 1 VO VO o in ο Ο 62.5 37.5 1 〇^ Η 200 (N 00 inch 00 X yn < 卜卜 76.4 1 1 1 1 » - Η 1 VO CN 1 1 1 VO VO o ο ο ?·Η 62.5 37.5 1 〇200 CN 00 inch 00 -Μ )0_^ X < pj 82.9 1 1 1 1 ψ·^ 1 (N 1 1 11.5 1 1 1 o ο ο ο 62.5 37.5 1 ο ο 200 (N 00 inch 00 Μ X < (N 82.9 1 1 1 1 CN 1 1 v 〇(N 1 1 \Ti 1 1 1 o vn ο ο 62.5 37.5 1 ο Ο 宕〇00 CN 00 •Μ X PQ (N thermosetting resin A thermosetting resin B thermosetting resin C thermosetting resin D thermosetting resin E thixotropic agent A touch Agent Β thixotropic agent c organic acid A organic acid B organic acid c hardener A hardener B hard Chemical agent c Hardener D w ±1 v0 Defoamer-\1Φ Rhyme iJtn ncr Visiting resin composition Lead-free solder powder A PQ Real ^ItO Benzene BS 〇bfi W Rose /—V 1-H α >ζνΒΓ Po g α ύ tWlI *pllr α ύ φΒ5 Male 璲 tea X BE ΤΓ-» De 4Φ 雎i Resin composition (% by mass) ^ C〇诺, m 仓罗 i§i 雄戚 evaluation 162210.doc ·29· 201245360卜||πζ 〇36.4 1 1 1 1 v〇(Ν 1 1 1 v〇ov〇dmooo 62.5 1 37.5 〇〇240 (N 00 inch 00 •Μ X m < JQ VO 1·^ 〇36.4 1 1 1 Η 1 1 1 V〇(N 1 v〇o in 〇〇oo 62.5 37.5 1 〇〇200 <N 〇Os (N as •Μ Ο Ο^^ X < yn 卜 1 N 〇 inch 36.4 1 1 1 1 1 VO &lt ;N 1 1 VO yr) 〇oo 62.5 37.5 1 〇200 〇ON (N 〇\ •Μ 3^ X < Bu inch 1 1 46.4 1 〇m 1 (Ν t 1 1 VO v〇in o 〇oo 62.5 37.5 1 〇200 (N 00 00 00 •Μ Ο Ο ^ X yn < yn m 1 1 46.4 〇CO 1 «•Η 1 ν〇CN 1 1 1 v〇ooo <nooo 62.5 37.5 1 〇〇200 CN 00 碡 inch 00 -Μ Η X Ό <u-><N 1 1 | 76.4 1 1 1 ν〇ri 1 1 1 VO VO V£>c> oo 62.5 37.5 1 〇200 (N 00 2 •Μ X < JTj Thermosetting Resin A Thermosetting Resin B Thermosetting Resin C Thermosetting Resin D Thermosetting Resin E Thixotropic Agent A thixotropic agent 触 thixotropic agent C organic acid A organic acid B organic acid C hardener A hardener B hardener c hardener D surfactant defoamer JlD 荽Jim =? rate resin composition C lead-free solder powder B ^>0 Benzene/-> S-^ 〇tsi B g pBr ^w< § $ I^WlT ipUr V § ή s Yuxiong 婼茶 X SE 众 ii 举 'w Resin composition ( Mass%) ±1VH ί〇> Hazard 1 Evaluation 162210.doc ·30· 201245360 Based on the results shown in Tables 3 and 4, the following aspects can be confirmed. According to the results of Example 1 and Example 6, when an organic thixotropic agent and an inorganic thixotropic agent were used in combination as a thixotropic agent, it was confirmed that the anisotropic conductive paste was less likely to bleed out. According to the results of Example 6 and Example 7, when a latent hardening agent, an epoxy resin amine adduct hardener, and an imidazole hardening accelerator are used as a hardener, the insulation after crimping is confirmed. The resistance value is increased. According to the results of Examples 7, 8, and 12 to 14, when the cyclic oxime resin is used in combination with the liquid bisphenol A type and the liquid bisphenol f type, it is confirmed that the storage stability of the anisotropic conductive paste is improved. . From the results of Examples 8, 15, and 16, it was confirmed that it is preferred to use a dibasic acid having a stretching base as an organic acid. Further, in particular, when adipic acid was used as the organic acid (Example 8), it was confirmed that the initial resistance value after crimping or the resistance value after repair was lowered. 162210.doc •31-

Claims (1)

201245360 七、申請專利範圍: 1. 一種異向性導電性糊,其特徵在於·· 其係將電子零件及配線基板連接者,且 上述異向性導電性糊含有具有24(rc以下之熔點之無 , 釓焊料粉末1〇質量%以上5〇質量%以下及含有熱固性樹 , 月曰及有機酸之熱固性樹脂組合物50質量%以上90質量% 以下, 上述熱固性樹脂組合物之酸值為15 mgKOH/g以上55 mgKOH/g以下。 2. 如請求項1之異向性導電性糊,其中 上述熱固性樹脂為環氧樹脂, 上述有機酸係具有伸烷基之二元酸。 3. 如請求項1之異向性導電性糊,其中 上述熱固性樹脂组合物進而含有觸冑齊!,上述觸變劑 之中無機系觸變劑之含量為〇 5質量%以上22質量。以下。 4. 如請求項1之異向性導電性糊,其中 上述無鉛焊料粉末之平均粒徑為 1 μιη以上3 4 μιη以下。 5. 如請求項1之異向性導電性糊,其中 ▲ 述無鉛焊料粉末包含選自由錫、銅、銀、鉍、銻、 , 銦及鋅所組成之群中之至少一種之金屬。 6. 如請求項1之異向性導電性糊,其中 於上述電子零件之電極或上述配線基板之電極之中之 至少一者不實施鍍金處理❶ 、 7· -種電子零件之連接方法,其特徵在於: 162210.doc 201245360 一項之異向性導電性糊 其係使用如請求項1至6中 者,且包括: =佈步驟,其係於上述配線基板上塗佈 性 電性糊丨以及 4升门/·生導 電=步驟,其係於上述異向性導電性糊上配置上述 以較上述無料料粉末之炫點高出51以上之 溫度’將上述電子零件熱屋接於上述配線基板。 &如請求項7之電子零件之連接方法,其中進而包括: 剝離步驟’其係以較上述無船谭料粉末之溶點高出代 以上之溫度’將上述電子零件自上述配線基板剝離; 再塗佈步驟,其係將上述異向性導電性糊塗佈於上述 剝離步驟後之配線基板上;及 再熱廢接步驟,其係於上述再塗佈步驟後之異向性導 電性糊上配置上述電子零件,以較上述無錯焊料粉末之 溶點高出5t以上之溫度,將上述電子零件熱塵接於上述 配線基板。 162210.doc •2· 201245360 四、指定代表圖: (一) 本案指定代表圖為:(無) (二) 本代表圖之元件符號簡單說明: 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無) 162210.doc201245360 VII. Patent application scope: 1. An anisotropic conductive paste characterized in that it is connected to an electronic component and a wiring board, and the anisotropic conductive paste contains a melting point of 24 (rc or less) , 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓 釓The above-mentioned thermosetting resin is an epoxy resin, and the above organic acid has a dibasic acid of an alkyl group. An anisotropic conductive paste according to the above aspect, wherein the thermosetting resin composition further contains a touch barrier, and the content of the inorganic thixotropic agent in the thixotropic agent is 〇5 mass% or more and 22 mass% or less. The anisotropic conductive paste according to Item 1, wherein the average particle diameter of the lead-free solder powder is 1 μm or more and 3 4 μm or less. 5. The anisotropic conductive paste of claim 1, wherein ▲ is lead-free The powder of the material comprises at least one metal selected from the group consisting of tin, copper, silver, lanthanum, cerium, indium, and zinc. 6. The anisotropic conductive paste of claim 1, wherein the electronic component is At least one of the electrode or the electrode of the wiring substrate is not subjected to a gold plating process, or a method of connecting an electronic component, and is characterized in that: 162210.doc 201245360 an anisotropic conductive paste is used as Item 1 to 6, and comprising: a cloth laying step of applying a coating electrical paste on the wiring substrate and a step of a 4 liter gate/conductivity = step of the anisotropic conductive paste The electronic component is thermally connected to the wiring substrate at a temperature higher than 51 of the above-mentioned non-material powder. The electronic component connection method of claim 7 further includes: a peeling step 'These electronic parts are peeled off from the wiring substrate by a temperature higher than the melting point of the above-mentioned Nippon Tan powder, and the coating step is applied to apply the anisotropic conductive paste to a wiring substrate after the stripping step; and a reheating step of disposing the electronic component on the anisotropic conductive paste after the recoating step to be higher than a melting point of the error-free solder powder The temperature of the above electronic parts is connected to the wiring board at a temperature of 5t or more. 162210.doc •2· 201245360 IV. Designated representative drawings: (1) The representative representative of the case is: (none) (2) The components of the representative figure Brief description of the symbol: 5. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: (none) 162210.doc
TW101109570A 2011-03-30 2012-03-20 Anisotropic conductive paste and the connection method using the electronic parts thereof TWI521027B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011074433 2011-03-30
JP2012008330A JP5964597B2 (en) 2011-03-30 2012-01-18 Anisotropic conductive paste and method of connecting electronic parts using the same

Publications (2)

Publication Number Publication Date
TW201245360A true TW201245360A (en) 2012-11-16
TWI521027B TWI521027B (en) 2016-02-11

Family

ID=47269238

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101109570A TWI521027B (en) 2011-03-30 2012-03-20 Anisotropic conductive paste and the connection method using the electronic parts thereof

Country Status (3)

Country Link
JP (1) JP5964597B2 (en)
KR (1) KR101982034B1 (en)
TW (1) TWI521027B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI660370B (en) * 2014-02-24 2019-05-21 日商積水化學工業股份有限公司 Conductive paste, connection structure and manufacturing method of connection structure

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104822773B (en) * 2013-05-23 2017-09-22 积水化学工业株式会社 Conductive material and connection structural bodies
CN105493207B (en) * 2014-02-24 2018-05-25 积水化学工业株式会社 The manufacturing method of connection structural bodies
JP2016088978A (en) * 2014-10-31 2016-05-23 京セラケミカル株式会社 Conductive resin composition and electronic component device using the same
JP6710120B2 (en) 2015-09-30 2020-06-17 太陽インキ製造株式会社 Conductive adhesive, electronic component, and method for manufacturing electronic component
JP2017069543A (en) 2015-09-30 2017-04-06 太陽インキ製造株式会社 Connection structure and electronic component
KR20170038691A (en) 2015-09-30 2017-04-07 다이요 잉키 세이조 가부시키가이샤 Conductive adhesive and method for production thereof, cured product, and electronic component
JP2017203109A (en) * 2016-05-11 2017-11-16 パナソニックIpマネジメント株式会社 Resin composition containing conductive particle and electronic device including the resin composition
JP6899275B2 (en) * 2016-08-10 2021-07-07 Dowaエレクトロニクス株式会社 Silver alloy powder and its manufacturing method
JP2018131569A (en) * 2017-02-16 2018-08-23 パナソニックIpマネジメント株式会社 Resin composition comprising conductive particles
TWI761477B (en) 2017-03-30 2022-04-21 日商太陽油墨製造股份有限公司 Conductive adhesive, cured product, electronic component, and manufacturing method of electronic component
JP2020075995A (en) * 2018-11-07 2020-05-21 パナソニックIpマネジメント株式会社 Curable resin composition and mounting structure
CN113994438A (en) * 2019-06-20 2022-01-28 积水化学工业株式会社 Conductive material, connection structure, and method for manufacturing connection structure
JP7425561B2 (en) * 2019-08-09 2024-01-31 積水化学工業株式会社 Conductive material, connected structure, and method for manufacturing connected structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136365A (en) * 1990-09-27 1992-08-04 Motorola, Inc. Anisotropic conductive adhesive and encapsulant material
JP4053744B2 (en) * 2001-08-06 2008-02-27 株式会社巴川製紙所 Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
JP2003165825A (en) * 2001-11-30 2003-06-10 Mitsui Chemicals Inc Anisotropic electroconductive paste and method for using the same
JP2006199937A (en) * 2004-12-15 2006-08-03 Tamura Kaken Co Ltd Conductive adhesive and conductive part and electronic part module using the same
JP5802081B2 (en) * 2011-08-24 2015-10-28 株式会社タムラ製作所 Anisotropic conductive paste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI660370B (en) * 2014-02-24 2019-05-21 日商積水化學工業股份有限公司 Conductive paste, connection structure and manufacturing method of connection structure

Also Published As

Publication number Publication date
KR20120112047A (en) 2012-10-11
JP2012216770A (en) 2012-11-08
TWI521027B (en) 2016-02-11
JP5964597B2 (en) 2016-08-03
KR101982034B1 (en) 2019-05-24

Similar Documents

Publication Publication Date Title
TW201245360A (en) Anisotropic conductive paste and connection method of electronic parts by using the same
JP5802081B2 (en) Anisotropic conductive paste
WO2008016140A1 (en) Bonding material, bonded portion and circuit board
CN102737752B (en) Anisotropic conductive is stuck with paste and uses the method for attachment of electronic unit of this electroconductive paste
JPWO2009069273A1 (en) Conductive paste and electrical and electronic equipment using the same
TWI670729B (en) Conductive paste, connection structure, and manufacturing method of connection structure
JP5916376B2 (en) Adhesive composition and method for connecting solar cell and wiring board using the same
JP5242521B2 (en) Solder bonding composition
TWI671382B (en) Conductive paste, connection structure, and manufacturing method of connection structure
JP6325923B2 (en) Conductive material and connection structure
JP2019091693A (en) Conductive material, connection structure, and production method for connection structure
JP6490781B2 (en) Anisotropic conductive paste and method for manufacturing electronic substrate
JPWO2018066368A1 (en) Conductive material, connection structure and method of manufacturing connection structure
JP2022050636A (en) Solder joining material, connection structure, and method for producing connection structure
JP2015010214A (en) Solder composition and thermosetting resin composition
WO2019124513A1 (en) Solder particles, electroconductive material, solder particle storage method, electroconductive material storage method, electroconductive material production method, connection structure, and connection structure production method
JP6660921B2 (en) Electronic substrate manufacturing method
JP7466348B2 (en) Anisotropic conductive paste and method for manufacturing electronic substrate
JP6600019B2 (en) Method for manufacturing electronic substrate and anisotropic conductive paste
JP5827522B2 (en) Wiring board connection method
JP5579996B2 (en) Solder joining method
JP7497136B2 (en) Conductive material, connection structure, and method for manufacturing the connection structure
JP2013051353A (en) Wiring board connection method
JP2020045463A (en) Anisotropic conductive adhesive and method of manufacturing electronic substrate using the same
JP2016162778A (en) Method for bonding electronic component, and conductive composition and pretreatment agent used for the method