TW201244045A - Semiconductor substrate, semiconductor device and method for making a semiconductor substrate - Google Patents

Semiconductor substrate, semiconductor device and method for making a semiconductor substrate Download PDF

Info

Publication number
TW201244045A
TW201244045A TW101107622A TW101107622A TW201244045A TW 201244045 A TW201244045 A TW 201244045A TW 101107622 A TW101107622 A TW 101107622A TW 101107622 A TW101107622 A TW 101107622A TW 201244045 A TW201244045 A TW 201244045A
Authority
TW
Taiwan
Prior art keywords
crystal layer
layer
crystal
pair
opening
Prior art date
Application number
TW101107622A
Other languages
Chinese (zh)
Inventor
Yuichi Hiroyama
Sadanori Yamanaka
Masahiko Hata
Taro Itatani
Tatsuro Maeda
Original Assignee
Sumitomo Chemical Co
Nat Inst Of Advanced Ind Scien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co, Nat Inst Of Advanced Ind Scien filed Critical Sumitomo Chemical Co
Publication of TW201244045A publication Critical patent/TW201244045A/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • G01R33/072Constructional adaptation of the sensor to specific applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/101Semiconductor Hall-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

This invention provides a semiconductor substrate having: a base substrate of which the entire surface or a part of the surface is a silicon crystal surface, a hindrance member positioned on the base substrate, the hindrance member having an opening reaching the silicon crystal surface and adapted to hinder the growth of the crystal, a first crystal layer positioned on the silicon crystal surface exposed through the opening of the hindrance member, a pair of first metal layers positioned on the first crystal layer and arranged to separate from each other and a pair of second metal layers positioned on the first crystal layer and arranged to separate from each other, a first shortest line connecting respective pair of first metal layers, and a second shortest line connecting respective pair of second metal layers. The first shortest line and the second shortest line are in a crossing relation or in the relation of a twisted position.

Description

201244045 六、發明說明: 【發明所屬之技術領域】 本發明係關於半導體基板、半導體裝置以及半導體基 板之製造方法。 【先前技術】 專利文獻1中記載有一體化混合磁力感應器。構成該 磁力感應器之感應部的材料係記载有InSb、InAs、GaSb、201244045 VI. Description of the Invention: TECHNICAL FIELD The present invention relates to a semiconductor substrate, a semiconductor device, and a method of manufacturing a semiconductor substrate. [Prior Art] Patent Document 1 describes an integrated hybrid magnetic sensor. The materials constituting the sensing portion of the magnetic sensor are described as InSb, InAs, GaSb,

GaAs、GaAsSb、InAsSb、InGaAs、InGaSb、InGaAsSb、InP、 InGaP、InAsP、InGaAsP、InN、GaN 及 InGaN o [先前技術文獻] (專利文獻) 專利文獻1 :日本特開2004-158668號公報 【發明内容】 (發明欲解決的課題) 目前正尋求適合於製造具有充分靈敏度之霍爾(Hell) 元件之半導體基板。與η型載體之霍爾元件相比,使用p 型載體之霍爾元件的機會較少。此認為是因ρ型載體之移 動率並非十分高所致。若具有ρ型載體之霍爾元件,則可 與η型載體之霍爾元件一起構成相輔型電路,可構成變化 性豐富之電路。本發明之目的在提供適合於製造具有充分 靈敏度之ρ型載體之霍爾元件的半導體基板。 (解決課題之手段) 為解決上述課題,本發明之第1態樣中提供一種半導 體基板,其具有:表面全部或一部份為矽結晶面之基底基 324031 ,GaAs, GaAsSb, InAsSb, InGaAs, InGaSb, InGaAsSb, InP, InGaP, InAsP, InGaAsP, InN, GaN, and InGaN o [Prior Art Document] (Patent Document) Patent Document 1: Japanese Patent Laid-Open Publication No. 2004-158668 】 (Problem to be Solved by the Invention) A semiconductor substrate suitable for manufacturing a Hall element having sufficient sensitivity is being sought. There is less chance of using a Hall element of a p-type carrier than a Hall element of an n-type carrier. This is considered to be due to the fact that the mobility of the p-type carrier is not very high. If the Hall element of the p-type carrier is provided, a complementary circuit can be formed together with the Hall element of the n-type carrier, and a circuit with rich variability can be constructed. SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor substrate suitable for manufacturing a Hall element having a p-type carrier having sufficient sensitivity. Means for Solving the Problems In order to solve the above problems, a first aspect of the present invention provides a semiconductor substrate having: a base substrate 324031 in which all or a part of the surface is a ruthenium crystal surface;

S 201244045 板;位於基底基板上,具有到達石夕結晶面之開口,並阻礙 結S曰成長之阻礙體;位於藉由開口而暴露之石夕結晶面之上 的第結晶層;位於第1結晶層上,並互相分離而配置之 對第1金屬層,位於第丨結晶層上,並互相分離而配置 之一對第2金屬層;其中,一對第1金屬層各自連結之第 1最短線、-對第2金屬層各自連結之第2最短線為相交 、關係或扭斜之位置關係^由上面側來看第」結晶層之形 為四邊形’此時,係以第1最短線之方向與由上面側 之第1結晶層之第1對角線之方向相等;且第2最短 線之方向與第2對角線之方向相等者為佳,而該第2對角 線係與由上面側來看之第i結晶層中之前述第i對角線相 異。第1結晶層係p型半導體。第晶層較佳為 ^<1)。在第1結晶層與第i金屬層或第2金屬層間可復 具有mi族化合物半導體所構成之第2結晶層。另外 口底部之碎結晶面是指藉由開σ露出之發結晶面。 、,本發明之第2態樣中提供一種半導體裝置,其 述半導體基板’且具有第!結晶層作為載體移動層、一對 第1金屬層作為一對主電流用電極、-對第2金屬層作為 -對檢測電極之霍爾元件。阻礙體可在與位於霍爾元件之 開口相異的位置具有其他開口,此時,半導體裝置可復且 有位於其他開口之第1結晶層、以及將位於其他開口之第 1結晶層作為活性層之主動元件,而霍爾it件與主動元件 犯以位於阻礙體上之配線相互連接。或者,阻礙體可在與 位於霍爾70件之開口相異的位置具有其他開口,此時半導 324031 201244045 體裝置可復具有位於其他開口之第i結晶層、在位於其他. 開口之第1結晶層上所形成之其他結晶層、將其他結晶層 作為活性層之主動元件,而霍爾元件與主動元件能以位於β 阻礙體上之配線相互連接。 本發明之第3態樣中提供一種半導體基板之製造方·. 法’其具有下述步驟:在表面全部或一部份為石夕結晶面之 基底基板上形成阻礙體之步驟;在阻礙體上形成到達矽結 晶面之開口之步驟;在藉由開口所露出之石夕結晶面上,藉 由磊晶成長法(epitaxial growth)形成第“吉晶層之步驟; 在阻礙體及第1結晶層之上面成膜為金屬層之步驟;以及 將金屬層圖形化,形成一對主電流用電極與一對檢測電極 之步驟。形成-對主電流用電極與一對檢測電極之步驟中, 可使-對主電流用電極其各自之電極相連結之直線方向與 -對檢測電極其各自之電極相連結之直線方向成為相交的 關係或扭斜之位置關係之方式,形成一對主電流用電極與 一對檢測電極。 【實施方式】 第1A圖係表示半導體基板1〇〇之平面。帛ib圖係表 示半導體基板100之截面。第1B圖所示之截聽第以圖 所示平面中之A-A線截面。半導體基板1〇〇具有基底基板 102、阻礙體1〇4、第!結晶層1〇6、一對第i金屬層11〇、 一對第2金屬層112。 基底基板102級面全部或一部份為石夕結晶面i〇2a。 表面全部或-部份為縣晶面之基板可舉出♦基板或s〇i 324031S 201244045 plate; a substrate on the base substrate having an opening reaching the crystal surface of the stone and blocking the growth of the junction; a first crystal layer located above the crystal surface exposed by the opening; a first metal layer disposed on the layer and separated from each other, located on the second crystal layer, and separated from each other to be disposed adjacent to the second metal layer; wherein the first shortest line connecting the pair of first metal layers - The second shortest line connecting the second metal layers is a positional relationship of intersection, relationship, or skew. ^ The shape of the crystal layer is quadrilateral when viewed from the upper side. At this time, the direction of the first shortest line is used. It is preferable that the direction of the first diagonal line of the first crystal layer on the upper side is equal to the direction of the second diagonal line, and the direction of the second diagonal line is equal to the direction of the second diagonal line, and the second diagonal line is The aforementioned i-th diagonal in the i-th crystal layer is different from the side. The first crystal layer is a p-type semiconductor. The crystal layer is preferably ^<1). A second crystal layer composed of a mi-group compound semiconductor may be formed between the first crystal layer and the i-th metal layer or the second metal layer. In addition, the broken crystal surface at the bottom of the mouth refers to the crystal surface exposed by the opening σ. According to a second aspect of the present invention, there is provided a semiconductor device comprising the semiconductor substrate ’ The crystal layer serves as a carrier moving layer, a pair of first metal layers serves as a pair of main current electrodes, and a pair of second metal layers serves as a Hall element for the counter electrode. The obstructing body may have another opening at a position different from the opening of the Hall element. In this case, the semiconductor device may have the first crystal layer located at the other opening and the first crystal layer located at the other opening as the active layer. The active component, and the Hall component and the active component are interconnected by wires located on the obstructing body. Alternatively, the obstructing body may have other openings at a position different from the opening of the Hall 70 member. In this case, the semi-conductive 324031 201244045 body device may have the i-th crystal layer located at the other opening, and is located at the other. The other crystal layer formed on the crystal layer, the other crystal layer as the active element of the active layer, and the Hall element and the active element can be connected to each other by the wiring on the β-barrier. According to a third aspect of the present invention, there is provided a method of manufacturing a semiconductor substrate, which has the steps of: forming a barrier on a base substrate having all or part of a surface of a crystal surface; a step of forming an opening reaching the crystal plane of the crucible; a step of forming the first "grain layer" by epitaxial growth on the surface of the crystal surface exposed by the opening; and the obstructing body and the first crystal a step of forming a metal layer on the upper surface of the layer; and a step of patterning the metal layer to form a pair of main current electrodes and a pair of detecting electrodes. In the step of forming a pair of main current electrodes and a pair of detecting electrodes, A pair of main current electrodes are formed such that a linear direction connecting the respective electrodes of the main current electrode and a linear direction connecting the respective electrodes of the detecting electrode are in an intersecting relationship or a skewed positional relationship [Embodiment] Fig. 1A shows a plane of a semiconductor substrate 1A. The 帛ib diagram shows a cross section of the semiconductor substrate 100. The interception shown in Fig. 1B is shown in the figure. The semiconductor substrate 1A has a base substrate 102, an inhibitor 1〇4, a first crystal layer 1〇6, a pair of i-th metal layers 11〇, and a pair of second metal layers 112. All or part of the surface of the substrate 102 is a stone crystal surface i〇2a. The substrate of all or part of the surface of the crystal surface may be ♦ substrate or s〇i 324031

S 6 201244045 (Silicon on Insulator :絕緣層上之矽)基板。基底基板 102較佳為矽基版。基底基板1〇2在使用表面全部或一部 份為石夕結晶之基板時,即不需要使用高價之化合物半導體 結晶基板。此外,因基底基板1 〇 2使用石夕基板,故可利用 矽晶圓(wafer)製程中所使用之既有的製造裝置及既有之 製程,復與化合物半導體基板相比,可使用大口徑之基板, 故可降低半導體基板100之製造成本。 阻礙體104位於基底基板102上,並具有到達矽結晶 面l〇2a之開σ 104a。阻礙體1〇4係阻礙結晶成長。阻礙 體1〇4可舉出氧化石夕、氮化石夕、氮氧化石夕、氧化紹等。開 口购的尺寸較佳為_幻叫m,更佳為5至50/zra, 特佳為3〇㈣。在此,藉由開口购所露出之基底基板102 方形時,「開口 _的尺寸」為-邊的長度、 2為,方形時為短邊的長度、區域為橢圓形時為短軸的 長度、區域為為圓形時為直徑。 102a^ 層1〇6係位於藉由開〇 1〇4&而露出之結晶面 佳為由^結晶層1〇6較佳為由⑽咖所構成,更 兴出Sir X ei:X(〇^X<1)所構成。第1結晶層106例如可 :構成二、:lC、SiCGn 1結晶層106更佳為“e 之内部i結曰曰層1〇6形成在3〇_以下小開口 104a 第i L 4缺陷少,大多可無缺陷地形成。結果提高 成第:曰爲〇6之品質’同時’在第1結晶層106之上形 提古第S時’使第2結晶層的缺陷少或沒有缺陷,可 σ晶層之品質m曰曰層106可直接於石夕結晶 324031 201244045 面1〇2a上成長,也可透過Si緩衝層或SiGe緩衝層而成長。 第1結晶層106係對於與阻礙體104之基底基板102 相接的面之反面呈突出。也就是說,第1結晶層1〇6的厚 度大於阻礙體104的厚度。第1結晶層1〇6係在與阻礙體 104相接的面以及與基底基板102相接的面之反面之間, 具有與一對第1金屬層110或一對第2金屬層112相接之 金屬接觸面。該金屬接觸面可對第1結晶面1〇6之積層方 向傾斜。該金屬接觸面可具有:與第1結晶層1〇6和阻礙 體104相接之面呈平行的面、以及與第1結晶層ι〇6和基 底積板102相接之面呈平行的面。 第1結晶層106可對於與阻礙體1〇4之基底基板102 相接的面之反面呈凹陷。也就是說,第丨結晶層1〇6的厚 度可小於阻礙體104的厚度。此情形中,第1結晶層1〇6 係在與阻礙體104相接的面以及與基底基板1〇2相接的面 之反面之間,具有與一對第1金屬層110或一對第2金屬 層112相接之金屬接觸面。 第1結晶層106可作成p型半導體。因作成p型半導 體,故可構成P型載體之霍爾元件。 一對第1金屬層110係位於第1結晶層1〇6上,且第 1金屬層110各自互相分離而配置。一對第2金屬層112 係位於第1結晶層106上,且第2金屬層112各自互相分 離而配置。一對第1金屬層110各自連結之第1最短線 110a’與一對第2金屬層112各自連結之第2最短線112a 為相交的關係或扭斜之位置關係。也就是說,第1最短線S 6 201244045 (Silicon on Insulator: substrate on the insulating layer). The base substrate 102 is preferably a ruthenium-based plate. When the base substrate 1 〇 2 is used as a substrate in which all or a part of the surface is a crystallization crystal, it is not necessary to use a high-priced compound semiconductor crystal substrate. In addition, since the base substrate 1 〇 2 uses the shi shi substrate, it is possible to use a conventional manufacturing apparatus and an existing process used in the wafer process, and a large diameter can be used as compared with the compound semiconductor substrate. The substrate can reduce the manufacturing cost of the semiconductor substrate 100. The obstruction body 104 is located on the base substrate 102 and has an opening σ 104a reaching the 矽 crystal plane l 〇 2a. The inhibitor 1〇4 system hinders crystal growth. The hindrance body 1〇4 may be exemplified by oxidized oxidized stone, cerium nitride, oxynitride, or oxidized. The size of the open-mouth purchase is preferably _ phantom m, more preferably 5 to 50/zra, and particularly preferably 3 〇 (four). Here, when the base substrate 102 which is exposed by the opening is square, the "size of the opening" is the length of the side, 2 is the length of the short side when the square is square, and the length of the short axis when the area is elliptical, The area is the diameter when it is circular. 102a^ The layer 1〇6 is located in the crystal surface exposed by the opening 1〇4& preferably, the crystal layer 1〇6 is preferably composed of (10) coffee, and the Sir X ei:X (〇^ X<1) is composed. For example, the first crystal layer 106 may have a composition of two: lC, SiCGn 1 crystal layer 106, more preferably "the inner portion of the e, the crucible layer 1〇6 is formed in the small opening 104a of 3〇_ or less, and the i L 4 defect is small. Most of them can be formed without defects. As a result, the quality is improved as follows: 曰 is the quality of 〇6 'while' when the first crystal layer 106 is shaped with the smear S, 'the second crystal layer has fewer or no defects, σ The quality of the crystal layer m曰曰 layer 106 can be directly grown on the surface of the radish crystal 324031 201244045 surface 1〇2a, or can be grown through the Si buffer layer or the SiGe buffer layer. The first crystal layer 106 is the base of the barrier body 104. The opposite surface of the surface where the substrate 102 is in contact protrudes. That is, the thickness of the first crystal layer 1〇6 is larger than the thickness of the inhibitor 104. The first crystal layer 1〇6 is on the surface that is in contact with the inhibitor 104 and A metal contact surface that is in contact with the pair of first metal layers 110 or the pair of second metal layers 112 is provided between the opposite surfaces of the surfaces on which the base substrate 102 is in contact with each other. The metal contact faces may be opposite to the first crystal faces 1〇6. The lamination direction is inclined. The metal contact surface may have a surface parallel to the surface in contact with the first crystal layer 1〇6 and the obstruction body 104. And a surface parallel to the surface in contact with the first crystal layer ι6 and the base substrate 102. The first crystal layer 106 may be recessed on the opposite surface of the surface in contact with the base substrate 102 of the inhibitor 1〇4. That is, the thickness of the second crystal layer 1〇6 may be smaller than the thickness of the inhibitor 104. In this case, the first crystal layer 1〇6 is attached to the surface that is in contact with the inhibitor 104 and the base substrate 1〇2. The opposite side of the surface has a metal contact surface that is in contact with the pair of first metal layers 110 or the pair of second metal layers 112. The first crystal layer 106 can be formed as a p-type semiconductor. a Hall element constituting a P-type carrier. The pair of first metal layers 110 are located on the first crystal layer 1〇6, and the first metal layers 110 are disposed apart from each other. The pair of second metal layers 112 are located at the first stage. The second metal layer 112 is disposed apart from each other on the crystal layer 106. The second shortest line 112a that connects the first shortest line 110a' and the pair of second metal layers 112, respectively, to which the pair of first metal layers 110 are connected is The relationship between intersections or skews. That is, the 1st shortest line

324031 S 201244045 110a與第2最短線112a可為在同一平面上相交之關係, 第1最短線ll〇a與第2最短線112a可個別於相異平面且 互不平行,而為扭斜之關係。因具有如此關係,故一對第 1金屬層110及一對第2金屬層112任一者作為主電流用 電極、另一者作為檢測電極時,半導體基板100具有作為 凡得堡(van der Pauw)型之霍爾元件的機能。金屬層係例 如Au、AuGe、Ni之單層或該等2種以上之積層。 另外’第1最短線ll〇a與第2最短線112a較佳為由 形成第1金屬層11〇或第2金屬層U2之平面上方來看以 略為90之角度交叉。第丨最短線11〇a與第2最短線n2a 以略為90。之角度交叉之方式配置第丨金屬層11〇及第2 金屬層112,藉此可提高形成霍爾元件時之磁性檢測靈敏 度。 由上方來看之第1結晶層106之形狀.例如為四邊形。 由上方來看之第1結晶層106之形狀可為正方形。舉一例 子來說,一對第1金屬層110各自連結的第i最短線11〇a 之方向,係相等於由上方來看之第丨結晶層1〇6之2條對 角線之#第1對角線的方向。一對第2金屬層112各自 連結的第2最短線112a之方向’係相等於與由上方來看之 第1結晶層1G6之2條對角線之-的第β角線相異的第 2對角線之方向。 舉一例子來說,第1金屬層110及第2金屬層112由 上方來看之形狀為四邊形。帛1金屬層11G及第2金屬層 112由上方來看之形狀可為正方形。由上方來看,第1 : 324031 201244045 屬層110及第2金屬層112各自與第i結晶層1〇6重疊的 區域為四邊形。第i結晶層1〇6、第i金屬層11〇及第2 金屬層112由上方來看之形狀為正方形,上方來看,第工 金屬層110及第2金屬嚕112各自與第1結晶層1〇6重疊 的區域可為正方形。 上述構成中,第1金屬層110及第2金屬層112各自 與第1結晶層106重疊的區域係形成於第i結晶層1〇6四 角之四邊形區域。一對第丨金屬層11〇及一對第2金屬層 112藉由形成於第1結晶層1〇6四角之四邊形區域與阻礙 體104 ’即使第1結晶層1 〇6微小時,也可容易地形成第1 金屬層110及第2金屬層112。 在半導體裝置中’上述之半導體基板1〇〇係有第j結 晶層作為載體移動層、一對第丨金屬層11〇作為一對主電 /瓜用電極、一對第2金屬層112作為一對檢測電極之霍爾 元件的機能。另外,以下說明之其他半導體基板也同樣具 有可作為霍爾元件的機能。 根據半導體基板100,-對第!金屬層11〇及一對第2 金屬層110中,一對第1金屬層⑽各自連結之第1最短 線110a與-對第2金屬層112各自連結之第2最短線U2a 為相交的關係st扭斜之位置關係,因此可構成半導體裝置 中的霍爾7G件。接著’該霍爾元件因具有p型載體,故可 構成P型之霍爾元件。再者,因第!結晶層1G6之結晶品 質良好,故喊P型賴之㈣元件也可實現高靈敏度。 第2圖及第3圖表示半導體基板1〇〇之製造過程中的 324031 201244045 截面。如第2圖所示般,在基底基板102上形成阻礙體 104,並在阻礙體104上形成到達矽結晶面l〇2a之開口 104a。接著,如第3圖所示般’在藉由開口 1 〇4a所露出之 梦結晶面102a上,藉由蟲晶成長法形成由SixGei-x(0Sχ<1) 所構成之第1結晶層106。 第1結晶層106及後述之第2結晶層202之磊晶成長 可利用 CVD(Chemical Vapor Deposition :化學氣相沈積) 法或 MOCVD(Metal Organic Chemical Vapor Deposition : 金屬有機氣相沈積)法。CVD法中,Ge源可使用GeH4(錯 烷)、Si源可使用SiH〆矽烷)或Si2H6(二矽烷)。M0CVD法 中,Ge源可使用tBuGe(第三丁基鍺烷)、Si源可使用 TMeSi(四曱基矽烷)、In源可使用TMIn(三曱基銦)、Ga源 可使用TMGa(三曱基鎵)、A1源可使用TMA1 (三曱基鋁)、 As源可使用AsH3(胂)、P源可使用PH3(膦)、N源可使用 腿(氨)、Sb源可使用TMSb(三曱基銻)。載氣可使用氫。 反應溫度較佳為在300°C至11〇〇。(:之範圍内,以在450°C 至750°C之範圍内更佳。較佳之反應溫度係依藉由磊晶成 長而形成之結晶的組成而異。藉由適宜選擇反應時間而可 控制磊晶成長層的厚度。 形成第1結晶層106後,在阻礙體1〇4及第1結晶層 106上面成膜為金屬層,並將該金屬層圖形化,而形成一 對第1金屬層110及一對第2金屬層112。如此可製作第 1A圖及第1B圖所示之半導體基板1〇〇。 另外,第1結晶層較佳為實施退火。藉由退火而可得 324031 11 201244045 結晶品質良好之第i結晶層1〇6。此外,也可在金屬層經 蝕刻(圖形化)之痕跡中埋入絕緣體。此時絕緣體可舉出氧 化矽、氮化矽、氮氧化矽、氧化鋁等。 第4圖表示半導體基板200之截面。半導體基板200 除了半導體基板1〇〇之構件以外,具有第2結晶層2〇2。 第2結晶層202係位於第1結晶層ι〇6與第1金屬層u〇 或第2金屬層112之間。第2結晶層202係由Π-V族化合 物半導體所構成。第2結晶層202可為由InGaAlAsPNSb 所構成者’較佳為InGaAlAsP所構成。第2結晶層202可 舉出 GaAs、InSb、InAs、GaP、InP、GaN、InN、A1N 等。 第2結晶層202係形成於結晶性佳之第i結晶層106之上, 故結晶缺陷少,大多可無缺陷地形成。 第2結晶層202較佳為與第1結晶層1 〇6進行晶格匹 配(1 att ice-matched)或擬晶格匹配。藉由與結晶性佳之第 1結晶層106進行晶格匹配或擬晶格匹配,而可得結晶性 佳之第2結晶層202。第1結晶層1〇6為Ge時,第2結晶 層202較佳為與第1結晶層1〇6進行晶格匹配或擬晶格匹 配之 GaAs、InGaAs、InGaAsP 或 InGaAsN。 第1結晶層106為Ge時,第2結晶層202可使用與 GaAs進行晶格匹配或擬晶格匹配之結晶。將由Ge所構成 之第1結晶層106進行退火’藉此使在高品質化之Ge結晶 上形成之第2結晶層202為更高品質之結晶,故為較佳。 第2結晶層202可為互為相異組成之2個結晶層。藉 由使此2個結晶層之能帶間隙互相不同,而可使2個結晶 12 324031324031 S 201244045 110a and the second shortest line 112a may be in a relationship intersecting on the same plane, and the first shortest line lla and the second shortest line 112a may be independent of each other and not parallel to each other, and are skewed. . With such a relationship, when either of the pair of first metal layers 110 and the pair of second metal layers 112 is used as the main current electrode and the other is used as the detecting electrode, the semiconductor substrate 100 has van der Pauw. The function of the Hall element of the type. The metal layer is, for example, a single layer of Au, AuGe, or Ni or a laminate of two or more of these. Further, the first shortest line 11a and the second shortest line 112a preferably intersect at an angle of slightly 90 as viewed from above the plane on which the first metal layer 11 or the second metal layer U2 is formed. The second shortest line 11〇a and the second shortest line n2a are slightly 90. The second metal layer 11A and the second metal layer 112 are disposed at an angle to each other, whereby the magnetic detection sensitivity at the time of forming the Hall element can be improved. The shape of the first crystal layer 106 as seen from above is, for example, a quadrangle. The shape of the first crystal layer 106 as viewed from above may be square. For example, the direction of the i-th shortest line 11〇a connected to each of the pair of first metal layers 110 is equal to the two diagonal lines of the second crystal layer 1〇6 viewed from above. 1 diagonal direction. The direction 'the direction of the second shortest line 112a to which the pair of second metal layers 112 are connected is equal to the second angle different from the β-th angle of the two diagonal lines of the first crystal layer 1G6 as viewed from above. The direction of the diagonal. For example, the first metal layer 110 and the second metal layer 112 have a quadrangular shape as viewed from above. The shape of the 帛1 metal layer 11G and the second metal layer 112 as viewed from above may be square. From the top, the area where each of the genus layer 110 and the second metal layer 112 overlaps the ith crystal layer 〇6 is a quadrangle. The i-th crystal layer 1〇6, the i-th metal layer 11〇, and the second metal layer 112 have a square shape as viewed from above, and each of the first metal layer 110 and the second metal layer 112 and the first crystal layer are viewed from above. The area where 1〇6 overlaps may be square. In the above configuration, a region in which each of the first metal layer 110 and the second metal layer 112 overlaps with the first crystal layer 106 is formed in a quadrangular region of the four corners of the i-th crystal layer 1〇6. The pair of second metal layer 11A and the pair of second metal layers 112 can be easily formed by the quadrangular region formed at the four corners of the first crystal layer 1〇6 and the inhibitor 104' even if the first crystal layer 1 is 6 μm. The first metal layer 110 and the second metal layer 112 are formed. In the semiconductor device, the semiconductor substrate 1 described above has a j-th crystal layer as a carrier transfer layer, a pair of second metal layers 11 as a pair of main electric/melon electrodes, and a pair of second metal layers 112 as one. The function of the Hall element of the detection electrode. Further, the other semiconductor substrates described below also have a function as a Hall element. According to the semiconductor substrate 100, - on the first! Among the metal layer 11A and the pair of second metal layers 110, the first shortest line 110a to which the pair of first metal layers (10) are connected and the second shortest line U2a to which the second metal layer 112 is connected are intersecting relationship st The skewed positional relationship can thus constitute a Hall 7G piece in a semiconductor device. Then, since the Hall element has a p-type carrier, it can constitute a P-type Hall element. Again, because of the first! The crystal quality of the crystal layer 1G6 is good, so the P-type Laizhi (4) component can also achieve high sensitivity. Fig. 2 and Fig. 3 show a section of 324031 201244045 in the manufacturing process of the semiconductor substrate 1A. As shown in Fig. 2, an obstruction body 104 is formed on the base substrate 102, and an opening 104a reaching the crucible crystal plane l2a is formed on the obstruction body 104. Next, as shown in Fig. 3, a first crystal layer 106 composed of SixGei-x (0Sχ<1) is formed by the crystal growth method on the dream crystal plane 102a exposed by the opening 1 〇 4a. . The epitaxial growth of the first crystal layer 106 and the second crystal layer 202 to be described later can be performed by a CVD (Chemical Vapor Deposition) method or a MOCVD (Metal Organic Chemical Vapor Deposition) method. In the CVD method, GeH4 (stane) can be used as the Ge source, SiH decane can be used as the Si source, or Si2H6 (dioxane) can be used. In the M0CVD method, a Ge source can use tBuGe (tertiary butyl decane), a Si source can use TMeSi (tetradecyl decane), an In source can use TMIn (tridecyl indium), and a Ga source can use TMGa (three oxime). Glycerium), A1 source can use TMA1 (tridecyl aluminum), As source can use AsH3 (胂), P source can use PH3 (phosphine), N source can use leg (ammonia), Sb source can use TMSb (three曱基锑). Hydrogen can be used as the carrier gas. The reaction temperature is preferably from 300 ° C to 11 Torr. The range of (: is preferably in the range of 450 ° C to 750 ° C. The preferred reaction temperature varies depending on the composition of the crystal formed by epitaxial growth. It can be controlled by appropriately selecting the reaction time. The thickness of the epitaxial growth layer is formed. After the first crystal layer 106 is formed, a film is formed on the upper surface of the inhibitor 1〇4 and the first crystal layer 106, and the metal layer is patterned to form a pair of first metal layers. 110 and a pair of second metal layers 112. Thus, the semiconductor substrate 1A shown in Figs. 1A and 1B can be formed. Further, the first crystal layer is preferably annealed. By annealing, 324031 11 201244045 is obtained. The i-th crystal layer having a good crystal quality is 1〇6. In addition, an insulator may be buried in the trace of etching (patterning) of the metal layer. In this case, the insulator may be yttrium oxide, tantalum nitride, hafnium oxynitride, or oxidation. Fig. 4 shows a cross section of the semiconductor substrate 200. The semiconductor substrate 200 has a second crystal layer 2〇2 in addition to the member of the semiconductor substrate 1. The second crystal layer 202 is located in the first crystal layer ι6 and Between the first metal layer u〇 or the second metal layer 112. The second crystal 202 is composed of a Π-V group compound semiconductor. The second crystal layer 202 may be composed of InGaAlAsPNSb, preferably InGaAlAsP. Examples of the second crystal layer 202 include GaAs, InSb, InAs, GaP, and InP. GaN, InN, A1N, etc. The second crystal layer 202 is formed on the i-th crystal layer 106 having good crystallinity, so that crystal defects are few, and many of them can be formed without defects. The second crystal layer 202 is preferably formed with the first crystal. Layer 1 〇6 is lattice-matched (1 att ice-matched) or pseudo-lattice matching. By performing lattice matching or pseudo-lattice matching with the first crystal layer 106 having good crystallinity, the second crystallinity can be obtained. The crystal layer 202. When the first crystal layer 1〇6 is Ge, the second crystal layer 202 is preferably GaAs, InGaAs, InGaAsP or InGaAsN which is lattice-matched or pseudo-lattice matched to the first crystal layer 1〇6. When the crystal layer 106 is Ge, the second crystal layer 202 may be a crystal which is lattice-matched or pseudo-lattice-matched with GaAs. The first crystal layer 106 made of Ge is annealed, thereby making it high-quality. The second crystal layer 202 formed on the Ge crystal is preferably a higher quality crystal, and is preferred. The layer 202 can be two crystal layers which are mutually different compositions. By making the energy gaps of the two crystal layers different from each other, two crystals can be obtained 12 324031

S 201244045 層的界面形成異質障礙(hetero barrier)。使異質障礙作 為邊界,而可分離產生載體的層與移動載體的層。因此可 • 獲得更高之載體移動率。結果可獲得靈敏度更為提升之霍 . 爾元件。 第2結晶層202可以3個以上之結晶層構成。由該3 個以上之結晶層可形成量子醉(quantum well),而即使降 低該量子阱層之不純物原子的濃度,亦可獲得更高之移動 率。藉此可獲得靈敏度更為提升之霍爾元件。 以往之p型載體之移動率都不高,但根據本發明可得 p型載體移動度非常.南的霍爾元件。因此,可藉由組合p 型載體之霍爾元件與η型載體之霍爾元件而構成相輔型電 路。 第5圖表示半導體基板300之截面。半導體基板3〇〇 中’阻礙體104在與位於霍爾元件之開口 i〇4a相異之位置 具有其他開口 104b,並在其他開口 i〇4b内部具有第1結 晶層106。此外’將位於其他開口 i〇4b之第1結晶層106 上所形成之其他結晶層108、以及其他結晶層302作為活 性層而形成主動元件。接著,霍爾元件與主動元件以位於 阻礙體104上之配線304而相互連接。配線304係藉由絕 緣體306 ’而由位於其他開口 i〇4b之第1結晶層1〇6及其 他結晶層108分離。 主動元件可舉例如 HEMT(High Electron Mobility Transistor :高電子移動性電晶體)。例如第丨結晶層ι〇6 為Ge、結晶層1〇8為i_GaAs(純的砷化鎵)、結晶層3〇2 324031 13 201244045 為n-AlGaAsOi型砷化鎵鋁)時,可形成結晶層1〇8與結晶 層302作為活性層之HEMT。 此外,主動元件可舉例HBT(Heter〇juncti〇nBip〇lar · Transistor.異質接面雙極性電晶體)。例如第i結晶層 106形成Ge,並在第】結晶層1〇6上積層3層以上之結晶 層。例如在第1結晶層丨06上形成次汲極層(sub_c〇llect〇r layer)之n-GaAs(高不純物濃度之n型砷化鎵)、汲極層 (collector layer)之n-GaAs(n型砷化鎵)、基底層之 p+-GaAs(高不純物濃度之p型砷化鎵)、射極層(emitter layer)之n-InGaP(n型磷化銦鎵)、次射極層之n+_GaAs(高 不純物漠度之η型神化鎵)、射極沒極層之ηΜη_(高 不純物漢度之η型石申化銦鎵),藉此可形成作為主動元件機 能^ ΗΒΤ。也就是說’ ΗΒΤ可舉出依序具有n+_GaAs所構成 之-人汲極層、n-GaAs所構成之汲極層、p+_GaAs所構成之 基底層、n-InGaP所構成之射極層、n+_GaAs所構成之次射 極層、n -InGaAs所構成之射極汲極層之HBT。其他之主動 兀件可舉出 HFET(Hetero-Field Effect Transistor:異 質接面場效電晶體)。 也有位於其他開口 l〇4b之第1結晶層1〇6之上不存在 有其他結晶層之情形。此時第丨結晶層1〇6可作為主動元 件之活性層。例如藉由不純物原子之導入而可調整第1結 晶層106之導電性,而可形成第J結晶層1〇6成為通道之 FET(Fleid Effect Transistor ··場效電晶體)。此時第 i 、、,》b曰層106可舉出Ge及p型Ge。藉由使第1結晶層1 〇6 324031The interface of the S 201244045 layer forms a hetero barrier. The heterogeneous barrier is used as a boundary, and the layer that produces the carrier and the layer that moves the carrier can be separated. So you can • get a higher carrier movement rate. As a result, a Huerle component with improved sensitivity can be obtained. The second crystal layer 202 may be composed of three or more crystal layers. A quantum well can be formed from the three or more crystal layers, and a higher mobility can be obtained even if the concentration of the impurity atoms of the quantum well layer is lowered. This makes it possible to obtain a Hall element with improved sensitivity. The mobility of the conventional p-type carrier is not high, but according to the present invention, the Hall element having a very p-type carrier mobility can be obtained. Therefore, the complementary type circuit can be constructed by combining the Hall element of the p-type carrier and the Hall element of the n-type carrier. Fig. 5 shows a cross section of the semiconductor substrate 300. In the semiconductor substrate 3, the "obstruction body 104" has another opening 104b at a position different from the opening i?4a of the Hall element, and has a first crystal layer 106 inside the other opening i?4b. Further, the other crystal layer 108 formed on the first crystal layer 106 of the other opening i 〇 4b and the other crystal layer 302 are formed as active layers to form an active element. Next, the Hall element and the active element are connected to each other by a wiring 304 located on the blocking body 104. The wiring 304 is separated by the insulating layer 306' from the first crystal layer 1〇6 and other crystal layers 108 located in the other openings i〇4b. The active device may be, for example, a HEMT (High Electron Mobility Transistor). For example, when the second crystal layer ι〇6 is Ge, the crystal layer 1〇8 is i_GaAs (pure gallium arsenide), and the crystal layer 3〇2 324031 13 201244045 is n-AlGaAsOi type gallium arsenide aluminum, a crystal layer can be formed. 1〇8 and crystal layer 302 are used as the active layer of HEMT. In addition, the active component can be exemplified by HBT (Heter〇juncti〇nBip〇lar·Transistor. Heterojunction bipolar transistor). For example, the i-th crystal layer 106 forms Ge, and three or more crystal layers are laminated on the first crystal layer 1〇6. For example, on the first crystal layer 丨06, n-GaAs (sub-c〇llect〇r layer) n-GaAs (high impurity concentration n-type gallium arsenide) and a drain layer n-GaAs ( N-type gallium arsenide), p+-GaAs in the underlying layer (p-type gallium arsenide with high impurity concentration), n-InGaP (n-type indium gallium phosphide) in the emitter layer, and sub-emitter layer n+_GaAs (n-type deuterated gallium with high impurity indifference) and ηΜη_ (n-type stone indium gallium) of the emitter electrodeless layer can be formed as an active component function. In other words, the 汲 can include a human 汲 layer composed of n+ GaAs, a drain layer composed of n-GaAs, a base layer composed of p+ GaAs, and an emitter composed of n-InGaP. The layer, the sub-emitter layer composed of n+_GaAs, and the HBT of the emitter drain layer composed of n-InGaAs. Other active components include HFET (Hetero-Field Effect Transistor). There are also cases where other crystal layers are not present on the first crystal layer 1〇6 of the other openings l〇4b. At this time, the second crystal layer 1〇6 can serve as an active layer of the active element. For example, the conductivity of the first crystal layer 106 can be adjusted by the introduction of the impurity atoms, and the FET (Fleid Effect Transistor) which forms the channel of the J-th crystal layer 1〇6 can be formed. In this case, the i, , and "b" layers 106 include Ge and p-type Ge. By making the first crystal layer 1 〇 6 324031

S 14 2〇1244045S 14 2〇1244045

為P型P w ’而可形成P型FET作為主動元件。 〜基底基板102之Si上形成n通道型mosfet dtal 〜〇y.j 欵電曰 lcle—Semiconductor FET :金屬氧化物半導體場 M〇SF=體),並在第1結晶層106之Ge上形成p通道型 金屬-而可構成 CMOSFET(Complementary M0SFET :互補 η通、首物半導體場效電晶體)。此時’基底基板102上之 ^-型M0SFET與第1結晶層上之ρ通道型M〇SFE:T與霍 動_ 错由配線304而互相連接。形成CM0SFET作為主 整片件時,由於霍爾元件與CM0S裝置(CM0SFE1T)可積體於 件與cmIs使裝置縮小化’因而較佳。此外,使結合霍爾元 陣列。裝置之單元於面内排列,藉此可形成磁性感測器A P-type FET can be formed as an active element for the P-type P w '. An n-channel type mosfet dtal 〇 〇 yj 欵 cle cle S S S S S 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底 基底Metal - can constitute a CMOSFET (Complementary MOSFET, complementary NMOS, first semiconductor field effect transistor). At this time, the ?-type MOSFET on the base substrate 102 and the p-channel type M?SFE:T on the first crystal layer are connected to each other by the wiring 304. When the CMOS transistor is formed as the main piece, it is preferable because the Hall element and the CMOS device (CM0SFE1T) can be integrated with the cmIs to make the device smaller. In addition, make a combination of Hall element arrays. The unit of the device is arranged in the plane, thereby forming a magnetic sensor

Ge所構成之霍爾元件與CMOS裝置之結合中,可使 用與霍H ϋ 因 、件同樣地選擇性成長之Ge層作為ρ型通道。Ge P型載體的移動率高,故也可使CMOS裝置高速化,因而 乂佳。再者因CMOS裝置耗電低,故為較佳。 以選擇性成長法形成主動元件(例如CM0SFET)與由Ge 斤構成之霍爾元件時,Ge之成長與其後之加熱較佳為以在 不會引起既成之主動元件(例如在基底基板 102上之η通道 型M0SFET)的熱劣化之範圍之溫度進行。藉由使用如此之 霍爾兀件與主動元件組合之裝置,而可應用於磁頭等。 另外,位於開口 l〇4a之第1結晶層1〇6與位於開口 104b之第1結晶層1〇6可藉由同一磊晶成長步驟而同時形 成。以同一轰晶成長步驟而同時形成第1結晶層1〇6時, 可簡化形成霍爾元件及主動元件之步驟,並可降低製造成 324031 15 201244045 本。 根據半導體基板300,而可在單一基底基板1〇2上將 霍爾兀件、電晶體等主動元件積體化。例如由霍爾元件之 λ號了使用於以電晶體等之主動元件增幅等之用途。上述 霍爾兀件之構成係可在單一基底基板1〇2上具有複數個上 述霍爾元件。此外,第5圖所示之霍爾元件與電晶體等之 主動兀件之構成,係可在單一基底基板1〇2上具有複數個 主動元件。 (實施例) 在石夕基板上藉由熱氧化法形成氧化石夕層,在氧化石夕層 上使用光刻法與⑽法而形成3()/ζπιϋ(邊長為之正 方形)的開π。藉μ晶成長法秘該開口形成厚度_ 之Ge層。將Ge層以重複800t與68〇〇c之2階段退火之循 環退火法而實施10週期的退火。再者,將Ti層與Au層所 構成之金屬層藉由真空蒸鍍法而分別形成Ti層厚度1〇〇 Α、Αιι屢厚度2500 A。將金屬層藉由圖形化而形成主電 流用電極與檢測電極。 第6圖為由上面觀察作之㈣元件之顯微鏡照 片。A及C為主電流用電極,…為檢測電極。各自之金 屬層互相分離8,。第7圖為所製作之霍㈣件之電流電 壓特性。並無觀察到肖縣(SehQttky)特性,而觀察到歐 姆⑽mie)躲。所製作之霍爾元件隸_定之結果,電 阻率為2.00土0.05[Qm]、霍爾係數為〇 〇6〇±〇 〇〇5、移動 率為 303±13[cin2/TS] ' 载體密度為 h 〇±〇· lxi〇2D[cm_3]。 324031 201244045 此外,藉由以下方法而可製造霍爾元件與作為主動元 件之CM0SFET在同一基板上整片形成之裝置。換句話說, 準備Si基板上的一部份形成η通道型M0SFET之基板,並 以S i 〇2所構成之絕緣層覆蓋基板表面。使用光刻法除去形 成p通道型M0SFET處、以及形成霍爾元件處之Si〇2,並 使Si基板露出而形成開口。將基板裝設於CVD裝置,並將In the combination of the Hall element formed by Ge and the CMOS device, a Ge layer selectively grown in the same manner as the device can be used as the p-type channel. Since the Ge P type carrier has a high mobility, it is also possible to speed up the CMOS device, which is preferable. Furthermore, since the CMOS device consumes less power, it is preferable. When the active device (for example, CMOS converter) and the Hall device composed of Ge jin are formed by the selective growth method, the growth of Ge and the subsequent heating are preferably performed so as not to cause the existing active device (for example, on the base substrate 102). The temperature of the range of thermal deterioration of the n-channel type MOSFET is performed. It can be applied to a magnetic head or the like by using such a device in which a Hall element is combined with an active element. Further, the first crystal layer 1〇6 located at the opening 104a and the first crystal layer 1〇6 located at the opening 104b can be simultaneously formed by the same epitaxial growth step. When the first crystal layer 1〇6 is simultaneously formed by the same crystal growth step, the steps of forming the Hall element and the active element can be simplified, and the manufacturing can be reduced to 324031 15 201244045. According to the semiconductor substrate 300, active elements such as a Hall element and a transistor can be integrated on the single base substrate 1A2. For example, the λ number of the Hall element is used for the purpose of amplifying an active element such as a transistor. The Hall element is constructed to have a plurality of the above Hall elements on a single base substrate 1〇2. Further, the active element of the Hall element and the transistor shown in Fig. 5 can have a plurality of active elements on the single base substrate 1〇2. (Example) A oxidized stone layer was formed by thermal oxidation on a stone substrate, and an open π of 3 () / ζ π ϋ (square of the side length) was formed on the oxidized stone layer by photolithography and (10). . The opening of the μ crystal growth method forms a Ge layer of thickness _. The Ge layer was annealed for 10 cycles by a cyclic annealing method in which a two-stage annealing of 800 t and 68 〇〇 c was repeated. Further, the Ti layer and the Au layer were each formed into a Ti layer having a thickness of 1 〇〇 Α and a thickness of 2500 A by vacuum deposition. The metal layer is patterned to form a main current electrode and a detecting electrode. Fig. 6 is a photomicrograph of the component (4) observed from above. A and C are electrodes for current, and ... are detection electrodes. The respective metal layers are separated from each other8. Figure 7 shows the current-voltage characteristics of the fabricated (four) pieces. No observation of the characteristics of Xiao (SehQttky), but observing Oum (10) mie). As a result of the fabrication of the Hall element, the resistivity is 2.00 ± 0.05 [Qm], the Hall coefficient is 〇〇 6 〇 ± 〇〇〇 5, and the mobility is 303 ± 13 [cin2 / TS] ' Carrier density For h 〇 ± 〇 · lxi 〇 2D [cm_3]. 324031 201244045 In addition, a device in which a Hall element and a CUSFET as an active element are integrally formed on the same substrate can be manufactured by the following method. In other words, a portion of the Si substrate is formed to form a substrate of an n-channel type MOSFET, and an insulating layer composed of S i 〇 2 covers the surface of the substrate. The formation of the p-channel type MOSFET and the formation of Si 〇 2 at the Hall element are performed by photolithography, and the Si substrate is exposed to form an opening. Mounting the substrate on the CVD device and

Gelh作為原料而於開口選擇地成長Ge,接著進行提升結晶 品質之退火。藉由蒸鑛法而在應形成霍爾元件的部份之Ge 結晶上形成電極。另一方面,在應形成p型之部份 之Ge結晶上形成成為閘極絕緣層之氧化層,並以配線連接 各元件。藉由上述而可將霍爾元件與CM0S元件在同一基板 上形成整片。 另外,本說明書中 層Gelh is used as a raw material to selectively grow Ge in the opening, followed by annealing for improving the crystal quality. An electrode is formed on the Ge crystal of the portion where the Hall element should be formed by a steaming method. On the other hand, an oxide layer serving as a gate insulating layer is formed on the Ge crystal to be formed into a p-type portion, and the respective elements are connected by wiring. By the above, the Hall element and the CMOS element can be formed on the same substrate as a whole. In addition, the middle layer of this specification

Ihe碼扳之類之第1要件 位於第2要件上(Qn)時’除了第丨要件直接位於第2要件 上以外’也包括在第丨要件及f 2要件之間具有a ==間接地位於第2要件上之情形。此外,藉由 露出之矽結晶面是指開口底部之 【圖式簡單說明】 八、〇日日面。 第 第 第 第 第 第 1A圖係表示半導體基板ι〇〇之平面。 1B圖係表示半導體基板1〇〇之截面。 2圖係表示半導體基板1〇〇之製造過程中 3圖係表示半導體基板100之製造過程中 4圖係表示半導體基板200之截面。 5圖係表示半導體基板300之戴面。 的截面。 的截面。 324031 17 201244045 第6圖係表示實施例之半導體基板之顯微鏡照片。 第7圖係表示實施例之霍爾元件之電流電壓特性。 【主要元件符號說明】 100、200、300 半導體基板 102 基底基板 102a 矽結晶面 104 阻礙體 104a、 104b 開口 106 第1結晶層 108 結晶層 110 第1金屬層 110a 第1最短線 112 第2金屬層 112a 第2最短線 202 第2結晶層 302 結晶層 304 配線 306 絕緣層 324031 18When the first element such as the Ihe code is located on the second element (Qn), 'except for the second element directly on the second element', it is also included between the second element and the f 2 element with a == indirectly The situation on the second element. In addition, by exposing the crystal surface, it means the bottom of the opening. [Simple description of the figure] 8. The sun surface. The first, first, and first drawings show the plane of the semiconductor substrate. 1B shows a cross section of the semiconductor substrate 1A. 2 is a view showing a manufacturing process of a semiconductor substrate 1 . 3 shows a cross section of the semiconductor substrate 200 during the manufacturing process of the semiconductor substrate 100. The figure 5 shows the wearing surface of the semiconductor substrate 300. Cross section. Cross section. 324031 17 201244045 Fig. 6 is a photomicrograph showing a semiconductor substrate of the embodiment. Fig. 7 is a graph showing the current-voltage characteristics of the Hall element of the embodiment. [Description of main components] 100, 200, 300 Semiconductor substrate 102 Base substrate 102a 矽 Crystal plane 104 Obstruction body 104a, 104b Opening 106 First crystal layer 108 Crystal layer 110 First metal layer 110a First shortest line 112 Second metal layer 112a second shortest line 202 second crystal layer 302 crystal layer 304 wiring 306 insulating layer 324031 18

Claims (1)

201244045 » 七、申請專利範圍: 1. 一種半導體基板,其具有: w 表面全部或一部份為珍結晶面之基底基板; _ 位於前述基底基板上,具有到達前述矽結晶面之開 口,並阻礙結晶成長之阻礙體; 位於藉由前述開口而暴露之前述矽結晶面之上的 第1結晶層; 位於前述第1結晶層上,並互相分離而配置之一對 第1金屬層; 位於前述第1結晶層上,並互相分離而配置之一對 第2金屬層; 其中,前述一對第1金屬層各自連結之第1最短 線、前述一對第2金屬層各自連結之第2最短線為相交 之關係或扭斜之位置關係。 2. 如申請專利範圍第1項所述之半導體基板,其中,由上 面側來看之前述第1結晶層之形狀為四邊形, 前述第1最短線之方向與由上面侧來看之前述第1 結晶層之第1對角線之方向相等; 前述第2最短線之方向與第2對角線之方向相等, 該第2對角線係與由上面側來看之第1結晶層中之前述 第1對角線相異。 3. 如申請專利範圍第1項所述之半導體基板,其中,前述 第1結晶層係p型半導體。 4. 如申請專利範圍第1項所述之半導體基板,其中,前述 324031 1 201244045 第1結晶層係SixGei-x(〇$x<l)所構成。 5.如申請專利範圍第丨項所述之半導體基板,其中,在前 述第1結晶層與前述第1金屬層或前述第2金屬層之 間,復具有由ΠΙ-V族化合物半導體所構成之第2結晶 層。 6· —種半導體裝置’係具有申請專利範圍第j項所述之半 導體基板之半導體裝置,其具有包括:前述第丨結晶層 作為載體移動層、前述一對第丨金屬層作為一對主電流 用電極、刚述一對第2金屬層作為一對檢測電極之霍爾 元件。 7. 如申請專利範圍第6項所述之半導體裝置,其中,前述 阻礙體在與位於前述霍爾元件之前述開口相異的位置 具有其他開口, 且復具有: 位於前述其他開口之前述第1結晶層、以及 將位於前述其他開口之前述第1結晶層作為活性 層之主動元件, 前述霍爾元件與前述主動元件以位於前述阻礙體 上之配線相互連接。 8. 如申請專利範圍第6項所述之半導體裝置,其中,前述 阻礙體在與位於前述霍爾元件之前述開口相異的位置 具有其他開口,且復具有: 位於前述其他開口之前述第1結晶層、 在位於前述其他開口之前述第1結晶層上所形成 324031 S 201244045 之其他結晶層、以及 將前述其他結晶層作為活性層之主動元件, 前述霍爾元件與前述主動元件以位於前述阻礙體 上之配線相互連接。 9. 一種半導體基板之製造方法,其具有下述步驟: 在表面全部或一郄份為矽結晶面之基底基板上形 成阻礙體之步驟; 在前述阻礙體上,形成到達前逃砂|#晶面之開口之 步驟; 在糟由前述開 7、、否 晶成長法形成第1結晶層之步驟 在前述阻礙體及前述第i .結晶層之上面成臈為金 屬層之步驟;以及 將前述金屬層圖形化’形成一對 對檢測電極之步驟。 U電極與- 10·如申請專利範圍 其令,前十㈣騎之製造方法, 月J述形成一對主電流用電極 驟中,使俞、+、 對檢測電極之步 直線方向與前述-對檢測電極其各I 極相連結之 直線方向成為相交的關係& 電極相連結之 成-對主電流用電極與一對檢測電極。關係之方式,形 324031 3201244045 » VII. Patent application scope: 1. A semiconductor substrate having: w a base substrate having all or part of a surface of a crystal surface; _ located on the base substrate, having an opening reaching the aforementioned crystal plane, and obstructing a first crystal layer located on the first crystal layer exposed by the opening; One of the second metal layers is disposed on the first crystal layer, and the second shortest line connecting the first shortest line and the pair of second metal layers respectively connected to the pair of first metal layers is The relationship between intersections or skews. 2. The semiconductor substrate according to claim 1, wherein the shape of the first crystal layer viewed from the upper side is a quadrangle, and the direction of the first shortest line and the first one seen from the upper side. The direction of the first diagonal line of the crystal layer is equal; the direction of the second shortest line is equal to the direction of the second diagonal line, and the second diagonal line is the same as that of the first crystal layer seen from the upper side The first diagonal is different. 3. The semiconductor substrate according to claim 1, wherein the first crystal layer is a p-type semiconductor. 4. The semiconductor substrate according to claim 1, wherein the first crystal layer of the above-mentioned 324031 1 201244045 is composed of SixGei-x (〇$x<l). 5. The semiconductor substrate according to claim 2, wherein the first crystal layer and the first metal layer or the second metal layer are made of a bismuth-V compound semiconductor. The second crystal layer. A semiconductor device having a semiconductor substrate according to claim j, comprising: the second germanium crystal layer as a carrier moving layer, and the pair of second metal layers as a pair of main currents The electrode is a Hall element in which a pair of second metal layers are used as a pair of detecting electrodes. 7. The semiconductor device according to claim 6, wherein the obstructing body has another opening at a position different from the opening of the Hall element, and further includes: the first one located in the other opening The crystal layer and the active element of the first crystal layer located in the other opening are used as an active layer, and the Hall element and the active element are connected to each other by a wiring located on the inhibitor. 8. The semiconductor device according to claim 6, wherein the obstructing body has another opening at a position different from the opening of the Hall element, and further includes: the first one located in the other opening a crystal layer, another crystal layer of 324031 S 201244045 formed on the first crystal layer of the other opening, and an active element having the other crystal layer as an active layer, wherein the Hall element and the active element are located in the foregoing hindrance The wiring on the body is connected to each other. A method of manufacturing a semiconductor substrate, comprising the steps of: forming a barrier on a base substrate having all or one of a surface of a ruthenium crystal surface; forming a pre-escape sand on the hindering body a step of forming an opening of the surface; a step of forming a first crystal layer by the crystal growth method; and forming a first crystal layer on the upper surface of the inhibitor and the first crystal layer; and forming the metal layer Layer patterning 'steps of forming a pair of detection electrodes. U-electrode and -10· As claimed in the patent application, the manufacturing method of the first ten (fourth) riding, the formation of a pair of main current electrode steps, so that Yu, +, the direction of the detection electrode in the straight line direction and the aforementioned - pair The linear direction in which the respective electrodes of the detecting electrodes are connected is a relationship of intersections & the electrodes are connected to each other to the main current electrode and the pair of detecting electrodes. Way of relationship, shape 324031 3
TW101107622A 2011-03-07 2012-03-07 Semiconductor substrate, semiconductor device and method for making a semiconductor substrate TW201244045A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011049566 2011-03-07

Publications (1)

Publication Number Publication Date
TW201244045A true TW201244045A (en) 2012-11-01

Family

ID=46797842

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101107622A TW201244045A (en) 2011-03-07 2012-03-07 Semiconductor substrate, semiconductor device and method for making a semiconductor substrate

Country Status (3)

Country Link
JP (1) JP5998380B2 (en)
TW (1) TW201244045A (en)
WO (1) WO2012120871A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481891B (en) * 2013-04-11 2015-04-21 Univ Nat Taipei Technology Vertical two - dimensional differential folding Hall device
TWI509273B (en) * 2014-07-09 2015-11-21 Voltafield Technology Corp Testing assembly for testing magnetic sensor and method for testing magnetic sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108028314B (en) * 2015-09-24 2021-08-13 旭化成微电子株式会社 Hall element, Hall sensor and lens module
CN109301062B (en) * 2018-10-12 2024-04-16 苏州矩阵光电有限公司 Hall device integrated with amplifying device and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0661141A (en) * 1991-04-12 1994-03-04 Nec Corp Crystal growth
JP2793440B2 (en) * 1991-07-16 1998-09-03 旭化成工業株式会社 Magnetic sensor and method of manufacturing the same
JPH06163399A (en) * 1992-11-25 1994-06-10 Matsushita Electric Works Ltd Manufacture of semiconductor substrate
JPH06164015A (en) * 1992-11-27 1994-06-10 Nippondenso Co Ltd Magnetic sensor
JPH0870146A (en) * 1994-06-21 1996-03-12 Asahi Chem Ind Co Ltd Magnetic sensor
JPH1126835A (en) * 1997-07-02 1999-01-29 Toshiba Corp Semiconductor hall element and its manufacture
US6492697B1 (en) * 2000-04-04 2002-12-10 Honeywell International Inc. Hall-effect element with integrated offset control and method for operating hall-effect element to reduce null offset
JP4870472B2 (en) * 2006-05-12 2012-02-08 旭化成エレクトロニクス株式会社 Equipment that uses paper rolls
JP5073429B2 (en) * 2007-09-18 2012-11-14 日本碍子株式会社 Magnetic sensor, Hall element, magnetoresistive effect element, method for producing Hall element, method for producing magnetoresistive effect element
ATE523904T1 (en) * 2008-06-09 2011-09-15 Hitachi Ltd MAGNETIC RESISTANCE DEVICE
CN102341889A (en) * 2009-03-11 2012-02-01 住友化学株式会社 Semiconductor substrate, method for manufacturing semiconductor substrate, electronic device and method for manufacturing electronic device
US8384183B2 (en) * 2010-02-19 2013-02-26 Allegro Microsystems, Inc. Integrated hall effect element having a germanium hall plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI481891B (en) * 2013-04-11 2015-04-21 Univ Nat Taipei Technology Vertical two - dimensional differential folding Hall device
TWI509273B (en) * 2014-07-09 2015-11-21 Voltafield Technology Corp Testing assembly for testing magnetic sensor and method for testing magnetic sensor

Also Published As

Publication number Publication date
WO2012120871A1 (en) 2012-09-13
JP2012199524A (en) 2012-10-18
JP5998380B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
TWI471910B (en) Semiconductor wafer, electronic device, and method for fabricating the semiconductor wafer
US8390091B2 (en) Semiconductor structure, an integrated circuit including a semiconductor structure and a method for manufacturing a semiconductor structure
US7498618B2 (en) Nitride semiconductor device
JP5678485B2 (en) Semiconductor device
JP4190754B2 (en) Method for manufacturing field effect transistor
US10109736B2 (en) Superlattice buffer structure for gallium nitride transistors
US20080070355A1 (en) Aspect ratio trapping for mixed signal applications
JP5357134B2 (en) Monolithically integrated composite group III-V and group IV semiconductor device and method for manufacturing the same
JPWO2005015642A1 (en) Semiconductor device and manufacturing method thereof
JP2010021583A (en) Semiconductor substrate, production process of semiconductor substrate, and electronic device
TW201110315A (en) Monolithic vertically integrated composite group III-V and group IV semiconductor device and method for fabricating same
US20140091392A1 (en) Semiconductor device, semiconductor wafer, method for producing semiconductor wafer, and method for producing semiconductor device
JP2017059671A (en) High electron mobility transistor and method for manufacturing high electron mobility transistor
TW201019375A (en) Semiconductor wafer, electronic device, and method for making a semiconductor wafer
KR20110091507A (en) Semiconductor device, process for producing semiconductor device, semiconductor substrate, and process for producing semiconductor substrate
US20140091398A1 (en) Semiconductor device, semiconductor wafer, method for producing semiconductor wafer, and method for producing semiconductor device
TWI476821B (en) Semiconductor substrate, method for manufacturing semiconductor substrate, electronic device and method for manufacturing electronic device
JP6560117B2 (en) Manufacturing method of semiconductor device
JP2017073525A (en) Nitride semiconductor device
TW201244045A (en) Semiconductor substrate, semiconductor device and method for making a semiconductor substrate
US20210057211A1 (en) Epitaxies of a Chemical Compound Semiconductor
US20140091393A1 (en) Semiconductor device, semiconductor wafer, method for producing semiconductor wafer, and method for producing semiconductor device
WO2018072075A1 (en) Structure integrating field-effect transistor with heterojunction bipolar transistor
JP6531243B2 (en) Tunnel field effect transistor and method of manufacturing field effect transistor
KR101874663B1 (en) Semiconductor substrate, semiconductor device, and method for producing semiconductor substrate