JPH0661141A - Crystal growth - Google Patents

Crystal growth

Info

Publication number
JPH0661141A
JPH0661141A JP7984491A JP7984491A JPH0661141A JP H0661141 A JPH0661141 A JP H0661141A JP 7984491 A JP7984491 A JP 7984491A JP 7984491 A JP7984491 A JP 7984491A JP H0661141 A JPH0661141 A JP H0661141A
Authority
JP
Japan
Prior art keywords
film
oxide film
substrate
silicon oxide
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7984491A
Other languages
Japanese (ja)
Inventor
Nobukazu Takado
宣和 高堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7984491A priority Critical patent/JPH0661141A/en
Publication of JPH0661141A publication Critical patent/JPH0661141A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a method of growing epitaxial layers of different materials, which has a sufficient fineness, has no processing damage and can be used for forming a pattern of a mask at the time of a selective growth, on an Si substrate. CONSTITUTION:The surface of an Si substrate 11 is heated up to 900 deg.C in an ultrahigh vacuum, a thermal oxidation of 900 deg.C is performed on the substrate 11 subjected to removal of a natural oxide film for 10 minutes in an oxygen atmosphere and a silicon oxide film (an SiO2 film) 12 of a thickness of 20 Angstroms is formed. Then, while zenon fluoride (XeF2) gas 14 of a gas pressure of 1mTorr is supplied, a focussed electron beam 13 of 5KeV is emitted on the film 12, whereby the film 12 is subjected to dry etching and an opening part 15 can be formed. Then, a metal-organic molecular beam epitaxy (MO-MBE) device is used and moreover, the film 12 is used as a mask at the time of a selective growth, whereby a selective growth of a GaAs film 16 becomes possible in the opening part 15 in the film 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はSi基板上の異種材料エ
ピタキシャル成長法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for epitaxially growing heterogeneous materials on a Si substrate.

【0002】[0002]

【従来の技術】Si基板上に高品質GaAs結晶をエピ
タキシャル成長することができれば、SiデバイスとG
aAsデバイスのモノリシック集積化が可能になる。ま
た大面積基板が安価に得られるようになり、GaAsデ
バイスの大規模集積化や光集積回路が可能になるなどの
特徴がある。しかし、Si基板上のGaAs結晶成長に
は、SiとGaAsの格子定数に約4%の格子不整合が
あるため、ミスフィット転位が発生し、また熱膨張係数
にも大きな差があるので、600℃付近で成長した基板
を室温まで降温すると、GaAs内に応力が発生し基板
が反ったりクラックが発生するなどの問題がある。これ
らを解決するために、SiO2などのマスクを用いた選
択成長によりSi基板上に部分的にGaAsの結晶成長
を行い、格子不整合や応力の問題を解決した例が、ジャ
ーナル・オブ・エレクトロニク・マテリアルス(Jou
rnal of Electronic Materi
als)第19巻6号,1990年,PP567−57
3にある。
2. Description of the Related Art If a high quality GaAs crystal can be epitaxially grown on a Si substrate, Si device and G
It enables monolithic integration of aAs devices. Further, it is possible to obtain a large-area substrate at low cost, and it is possible to realize large-scale integration of GaAs devices and optical integrated circuits. However, in GaAs crystal growth on a Si substrate, a lattice mismatch of about 4% between Si and GaAs causes misfit dislocations and a large difference in thermal expansion coefficient. When the temperature of a substrate grown at around ℃ is lowered to room temperature, stress is generated in GaAs and the substrate is warped or cracked. In order to solve these problems, an example of partially growing a GaAs crystal on a Si substrate by selective growth using a mask such as SiO 2 to solve the problems of lattice mismatch and stress is the Journal of Electro Nik Materials (Jou
rnal of Electronic Material
als) Vol. 19, No. 6, 1990, PP567-57.
In 3.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、現状で
はSiO2などのマスクのパターン化にウェットエッチ
ングや反応性イオンエッチングを用いているために、微
細性やパターン精度が問題となっており、また反応性イ
オンエッチングではSi基板への損傷が問題となってい
る。
However, since wet etching or reactive ion etching is currently used for patterning a mask such as SiO 2 , fineness and pattern accuracy are problems, and the reaction Damage to the Si substrate has become a problem in the reactive ion etching.

【0004】本発明の目的は、十分な微細度を有し、か
つ加工損傷がなく、選択成長マスクのパターン化が可能
なSi基板上の異種材料エピタキシャル成長法を提供す
ることにある。
It is an object of the present invention to provide a heterogeneous material epitaxial growth method on a Si substrate which has a sufficient degree of fineness, is free from processing damage, and is capable of patterning a selective growth mask.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係る結晶成長方法においては、シリコン
(Si)基板表面を酸化してシリコン酸化膜(Si
2)を形成する工程と、フッ素原子を含む反応性ガス
もしくはラジカル雰囲気中でこのシリコン酸化膜(Si
2)に集束電子ビームを照射することにより前記シリ
コン酸化膜(SiO2)のビーム照射部のみを選択的に
除去して前記シリコン酸化膜(SiO2)に開口部を形
成する工程と、シリコンと異なる半導体を前記シリコン
酸化膜(SiO2)の開口部を通して選択成長する工程
とを含むものである。
To achieve the above object, in the crystal growth method according to the present invention, the surface of a silicon (Si) substrate is oxidized to obtain a silicon oxide film (Si).
O 2 ), and in a reactive gas or radical atmosphere containing fluorine atoms, the silicon oxide film (Si 2
Forming an opening in the silicon oxide film (the selectively remove only the beam irradiation portion of SiO 2) silicon oxide film (SiO 2) by irradiating a focused electron beam to O 2), silicon And a step of selectively growing a semiconductor different from the above through the opening of the silicon oxide film (SiO 2 ).

【0006】また、本発明に係る結晶成長方法において
は、シリコン(Si)基板表面を窒化してシリコン窒化
膜(SiNx)を形成する工程と、フッ素原子を含む反
応性ガスもしくはラジカル雰囲気中でこのシリコン窒化
膜(SiNx)に集束電子ビームを照射することにより
前記シリコン窒化膜(SiNx)のビーム照射部のみを
選択的に除去して前記シリコン窒化膜(SiNx)に開
口部を形成する工程と、シリコンと異なる半導体を前記
シリコン窒化膜(SiNx)の開口部を通して選択成長
する工程とを含むものである。
Further, in the crystal growth method according to the present invention, a step of nitriding the surface of a silicon (Si) substrate to form a silicon nitride film (SiN x ), and a reactive gas containing a fluorine atom or a radical atmosphere is used. By irradiating the silicon nitride film (SiN x ) with a focused electron beam, only the beam irradiation portion of the silicon nitride film (SiN x ) is selectively removed to form an opening in the silicon nitride film (SiN x ). And a step of selectively growing a semiconductor different from silicon through the opening of the silicon nitride film (SiN x ).

【0007】[0007]

【作用】本発明では、シリコン(Si)基板表面を酸化
したシリコン酸化膜(SiO2)またはシリコン(S
i)基板表面を窒化したシリコン窒化膜(SiNx)に
フッ素原子を含む反応性ガスもしくはラジカル雰囲気中
で集束電子ビームを照射することにより、シリコン酸化
膜(SiO2)またはシリコン窒化膜(SiNx)に開口
部を形成し、シリコンと異なる半導体をシリコン酸化膜
(SiO2)またはシリコン窒化膜(SiNx)の開口部
を通して選択成長することにより、簡単な工程で寸法精
度のよい選択成長を実現することができる。
In the present invention, a silicon oxide film (SiO 2 ) or silicon (S) obtained by oxidizing the surface of a silicon (Si) substrate is used.
i) A silicon oxide film (SiO 2 ) or a silicon nitride film (SiN x ) is obtained by irradiating a silicon nitride film (SiN x ) whose surface is nitrided with a focused electron beam in a reactive gas or radical atmosphere containing fluorine atoms. ), A semiconductor different from silicon is selectively grown through the openings in the silicon oxide film (SiO 2 ) or silicon nitride film (SiN x ) to achieve selective growth with high dimensional accuracy in a simple process. can do.

【0008】[0008]

【実施例】以下、本発明の一実施例を図により説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0009】Si基板11の表面を超高真空中で900
℃に昇温し自然酸化膜を除去したSi基板11を、図1
(a)に示すように酸素分圧0.8Torr中で900
℃の熱酸化を10分間行い20オングストロング厚のシ
リコン酸化膜(SiO2)12を形成する。
The surface of the Si substrate 11 is set to 900 in an ultrahigh vacuum.
As shown in FIG.
As shown in (a), 900 in oxygen partial pressure 0.8 Torr
Thermal oxidation is performed at 10 ° C. for 10 minutes to form a silicon oxide film (SiO 2 ) 12 having a thickness of 20 Å.

【0010】次に図1(b)に示すようにガス圧1mT
orrのフッ化ゼノン(XeF2)ガス14を供給しな
がら5KeVの集束電子ビーム13をシリコン酸化膜
(SiO2)12に照射することにより、シリコン酸化
膜(SiO2)12はドライエッチングされ開口部15
を形成できる。
Next, as shown in FIG. 1B, the gas pressure is 1 mT.
The silicon oxide film (SiO 2 ) 12 is dry-etched by irradiating the silicon oxide film (SiO 2 ) 12 with the focused electron beam 13 of 5 KeV while supplying the ortho-zenon fluoride (XeF 2 ) gas 14. 15
Can be formed.

【0011】次に図1(b)の加工を行った電子ビーム
エッチング装置と真空を介して結合された有機金属分子
線結晶成長(MO−MBE)装置を用い、さらに図1
(b)で形成した開口部15を有するシリコン酸化膜
(SiO2)12を選択成長時のマスクとすることによ
り、図1(c)に示すようにシリコン酸化膜(Si
2)の開口部15にGaAs膜16の選択成長が可能
となる。このときの有機金属分子線結晶成長は、トリメ
チルガリウム(TMG)、固体ヒ素(As4)を原料と
し、TMG分圧2×10-5Torr、基板温度560℃
で行った。
Next, using the metal-organic molecular beam crystal growth (MO-MBE) apparatus coupled with the electron beam etching apparatus which has been processed as shown in FIG.
By using the silicon oxide film (SiO 2 ) 12 having the opening 15 formed in (b) as a mask during the selective growth, the silicon oxide film (Si 2) as shown in FIG.
It is possible to selectively grow the GaAs film 16 in the opening 15 of O 2 ). At this time, the organic metal molecular beam crystal growth is performed by using trimethylgallium (TMG) and solid arsenic (As 4 ) as raw materials, TMG partial pressure of 2 × 10 −5 Torr, and substrate temperature of 560 ° C.
I went there.

【0012】本実施例ではGaAsの結晶成長を示した
が、本発明は他の半導体、例えばGaP、InP系等他
の材料系にも適用可能であり、結晶成長法としては有機
金属分子線結晶成長法の例を示したが、その他の選択成
長可能な結晶成長法、例えば、有機金属気相成長法、原
子層結晶成長法等にも適用できる。
Although GaAs crystal growth is shown in this embodiment, the present invention can be applied to other semiconductors, for example, other material systems such as GaP and InP, and the crystal growth method is organometallic molecular beam crystal. Although an example of the growth method has been shown, it can be applied to other crystal growth methods capable of selective growth, such as a metal organic chemical vapor deposition method and an atomic layer crystal growth method.

【0013】またシリコン酸化膜(SiO2)の代わり
にシリコン窒化膜(SiNx)を形成しても、本発明の
効果が得られる。
Further, the effect of the present invention can be obtained by forming a silicon nitride film (SiN x ) instead of the silicon oxide film (SiO 2 ).

【0014】[0014]

【発明の効果】本発明によれば、シリコン酸化膜(Si
2)またはシリコン窒化膜(SiNx)を用いることに
よりフッ素原子を含む反応性ガスもしくはラジカル雰囲
気中で集束電子ビームを照射してマスクレスエッチング
することができ、またシリコン酸化膜(SiO2)また
はシリコン窒化膜(SiNx)はシリコン(Si)基板
表面を直接酸化または窒化して形成することができるた
め、構成が簡単で精度のよいパターン形成、選択成長が
可能となる。
According to the present invention, the silicon oxide film (Si
O 2 ) or a silicon nitride film (SiN x ) can be used for maskless etching by irradiation with a focused electron beam in a reactive gas or radical atmosphere containing fluorine atoms, and a silicon oxide film (SiO 2 ) Alternatively, since the silicon nitride film (SiN x ) can be formed by directly oxidizing or nitriding the surface of the silicon (Si) substrate, it is possible to perform pattern formation and selective growth with a simple structure and high precision.

【0015】また本発明は、レジストのマスクのフォト
リソグラフィに伴う現像液によるウェット処理を必要と
しないので、シリコン酸化膜(SiO2)またはシリコ
ン窒化膜(SiNx)の形成から選択成長まで真空一貫
プロセスで行うことができ、基板表面の大気からの汚染
を回避でき有効である。
Further, since the present invention does not require wet processing with a developing solution which accompanies the photolithography of the resist mask, it is vacuum-consistent from the formation of the silicon oxide film (SiO 2 ) or the silicon nitride film (SiN x ) to the selective growth. This is effective because it can be carried out by a process, and contamination of the substrate surface from the atmosphere can be avoided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を工程順に示す断面図であ
る。
FIG. 1 is a sectional view showing an embodiment of the present invention in the order of steps.

【符号の説明】[Explanation of symbols]

11 Si基板 12 シリコン酸化膜(SiO2) 13 集束電子ビーム 14 フッ化ゼノン(XeF2)ガス 15 開口部 16 選択成長によるGaAs層11 Si substrate 12 Silicon oxide film (SiO 2 ) 13 Focused electron beam 14 Zenon fluoride (XeF 2 ) gas 15 Opening 16 GaAs layer by selective growth

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 シリコン(Si)基板表面を酸化してシ
リコン酸化膜(SiO2)を形成する工程と、 フッ素原子を含む反応性ガスもしくはラジカル雰囲気中
でこのシリコン酸化膜(SiO2)に集束電子ビームを
照射することにより前記シリコン酸化膜(SiO2)の
ビーム照射部のみを選択的に除去して前記シリコン酸化
膜(SiO2)に開口部を形成する工程と、 シリコンと異なる半導体を前記シリコン酸化膜(SiO
2)の開口部を通して選択成長する工程とを含むことを
特徴とする結晶成長方法。
Focused to 1. A silicon (Si) substrate surface is oxidized silicon oxide film forming a (SiO 2), silicon oxide film by a reactive gas or in a radical atmosphere containing a fluorine atom (SiO 2) A step of selectively removing only the beam irradiation part of the silicon oxide film (SiO 2 ) by irradiating with an electron beam to form an opening in the silicon oxide film (SiO 2 ); Silicon oxide film (SiO
2 ) A step of selectively growing through the opening, the method of growing a crystal.
【請求項2】 シリコン(Si)基板表面を窒化してシ
リコン窒化膜(SiNx)を形成する工程と、 フッ素原子を含む反応性ガスもしくはラジカル雰囲気中
でこのシリコン窒化膜(SiNx)に集束電子ビームを
照射することにより前記シリコン窒化膜(SiNx)の
ビーム照射部のみを選択的に除去して前記シリコン窒化
膜(SiNx)に開口部を形成する工程と、 シリコンと異なる半導体を前記シリコン窒化膜(SiN
x)の開口部を通して選択成長する工程とを含むことを
特徴とする結晶成長方法。
2. A process of forming a silicon (Si) silicon nitride film of the substrate surface is nitrided (SiN x), focusing on the silicon nitride film by a reactive gas or in a radical atmosphere containing a fluorine atom (SiN x) A step of selectively removing only the beam irradiation portion of the silicon nitride film (SiN x ) by irradiating with an electron beam to form an opening in the silicon nitride film (SiN x ); Silicon nitride film (SiN
x ) a step of selectively growing through the opening, the method for growing a crystal.
JP7984491A 1991-04-12 1991-04-12 Crystal growth Pending JPH0661141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7984491A JPH0661141A (en) 1991-04-12 1991-04-12 Crystal growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7984491A JPH0661141A (en) 1991-04-12 1991-04-12 Crystal growth

Publications (1)

Publication Number Publication Date
JPH0661141A true JPH0661141A (en) 1994-03-04

Family

ID=13701515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7984491A Pending JPH0661141A (en) 1991-04-12 1991-04-12 Crystal growth

Country Status (1)

Country Link
JP (1) JPH0661141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120871A1 (en) * 2011-03-07 2012-09-13 住友化学株式会社 Semiconductor substrate, semiconductor device, and method for manufacturing semiconductor substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120871A1 (en) * 2011-03-07 2012-09-13 住友化学株式会社 Semiconductor substrate, semiconductor device, and method for manufacturing semiconductor substrate

Similar Documents

Publication Publication Date Title
US4994140A (en) Method capable of forming a fine pattern without crystal defects
JPH0799741B2 (en) How to make semiconductor devices
US5275687A (en) Process for removing surface contaminants from III-V semiconductors
WO1989004594A1 (en) Omcvd of iii-v material on silicon
JPH03114222A (en) Union of gaas on si substrate
JP3602443B2 (en) Semiconductor element manufacturing method
US5846609A (en) Masking methods for semiconductor materials
JPH0661141A (en) Crystal growth
US6589337B2 (en) Method of producing silicon carbide device by cleaning silicon carbide substrate with oxygen gas
JP2757642B2 (en) Dry etching method
JP3080860B2 (en) Dry etching method
JP2704931B2 (en) Method for forming selective growth mask and method for removing same
JP2699928B2 (en) Pretreatment method for compound semiconductor substrate
JPH05109670A (en) Dry etching method
JP2671089B2 (en) Quantum structure fabrication method
JPH04303923A (en) Method of forming selectively grown, buried semiconductor
JP2897107B2 (en) Crystal growth method
KR0138849B1 (en) Method of eiching silicon dioxide and growing silicongermanium selectively by using elemental si and ge beams
JP2917900B2 (en) Method for surface treatment of III-V compound semiconductor substrate
JP2717165B2 (en) Method for forming structure of compound semiconductor
JP2714703B2 (en) Selective epitaxial growth method
JPH0410739B2 (en)
JP2998336B2 (en) Method for etching compound semiconductor and method for forming semiconductor structure
JP2772416B2 (en) Film formation method
JP2647056B2 (en) Semiconductor pattern formation method