TW201240168A - Light source module with enhanced heat dissipation efficiency and embedded package structure thereof - Google Patents

Light source module with enhanced heat dissipation efficiency and embedded package structure thereof Download PDF

Info

Publication number
TW201240168A
TW201240168A TW100109023A TW100109023A TW201240168A TW 201240168 A TW201240168 A TW 201240168A TW 100109023 A TW100109023 A TW 100109023A TW 100109023 A TW100109023 A TW 100109023A TW 201240168 A TW201240168 A TW 201240168A
Authority
TW
Taiwan
Prior art keywords
lead frame
layer
light
source module
light source
Prior art date
Application number
TW100109023A
Other languages
Chinese (zh)
Other versions
TWI464929B (en
Inventor
Cheng-Yi Liu
Original Assignee
Lextar Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lextar Electronics Corp filed Critical Lextar Electronics Corp
Priority to TW100109023A priority Critical patent/TWI464929B/en
Priority to CN2011101027934A priority patent/CN102683545A/en
Publication of TW201240168A publication Critical patent/TW201240168A/en
Application granted granted Critical
Publication of TWI464929B publication Critical patent/TWI464929B/en

Links

Abstract

A light source module with enhanced heat dissipation efficiency and embedded package structure thereof are provided. The light source module includes a light emitting device, a circuit layer, a lead frame, a thermal conductive material layer and a heat sink. The lead frame electrically connects between the light emitting device and the circuit layer. The thermal conductive material layer connects with the bottom of the lead frame and electrically insulates from the lead frame. The heat sink has a recess for accommodating the light emitting device and the lead frame. The thermal conductive material layer is located on the bottom of the recess so that the heat sink contacts with the bottom of the lead frame via the thermal conductive material layer.

Description

201240168 Λ VV / "Τ f -ΤΙ Γ\ 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種光源模組,且特別是有關於一種 提昇散熱效率之光源模組及其嵌入式封裝結構。 【先前技術】 一般而言,發光元件之底部係以散熱片來導熱,但是 發光元件所產生的熱必須經過電路基板上的錫膏、絕緣膠 (例如ΡΡ膠)以及背膠,才能到達散熱片。這三層材料 中,絕緣膠的熱阻最大,應設法盡量減少絕緣膠的使用。 但是,在熱電分離的封裝結構中,傳統上還是以導熱不導 電的絕緣膠來電性隔離發光元件與散熱片,因此傳統的熱 電分離的封裝結構仍無法解決散熱不佳的問題。另外,組 裝在散熱片上的封裝結構,常會發生組裝人員的手指觸碰 到封裝膠體,使其表面受力而造成内部的金線發生斷裂或 損壞,因此應設法避免封裝結構在組裝時被觸碰到的機 會0 【發明内容】 本發明係有關於一種提昇散熱效率之光源模組及其 嵌入式封裝結構,可將發光元件所產生的熱直接傳導至下 方的散熱片,以減少熱阻。此外,嵌入式封裝結構可内埋 於散熱片的凹槽中,進而有效減少封裝結構在組裝時被觸 碰到的機會。 根據本發明之一方面,提出一種提昇散熱效率之光源 4 201240168 i w 模組。此光源模組包括一發光元件、一電路層、一導線架、 一導熱材料層以及一散熱片。導線架電性連接於發光元件 與電路層之間。導熱材料層連接於導線架的底部,且導熱 材料層與導線架電性絕緣。散熱片具有一凹槽,用以容納 發光元件與導線架,其中導熱材料層位於凹槽的底部,以 使散熱片藉由導熱材料層與導線架的底部熱接觸。 根據本發明之另一方面,提出一種嵌入式封裝結構, 配置於一凹槽中,凹槽的外側設有一接墊。嵌入式封裝結 構包括一發光元件、一導線架以及一封膠。導線架電性連 接於發光元件。凹槽用以容納發光元件與導線架,導線架 上端延伸至凹槽的外侧,並與接墊電性連接。封膠包覆發 光元件以及部分導線架,其中導線架下端延伸至封膠内, 並與發光元件電性連接。 為了對本發明之上述及其他方面有更佳的瞭解,下文 特舉較佳實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 本實施例之提昇散熱效率之光源模組及其嵌入式封 裝結構,係於散熱片(例如鋁板)上加工以形成一 口字形 的凹槽,並在此凹槽的下表面做表面處理,以形成一導熱 材料層於凹槽中。藉由導熱材料層,發光元件所產生的熱 可以直接傳導至散熱片,不需經過絕緣層,以減少熱阻的 產生。此外,嵌入式封裝結構係採用向上彎折之導線架, 使得導線架可内埋於散熱片的凹槽中,並可藉由上錫焊接 而電性連接於發光元件與電路層之間。因此,嵌入式封裝 201240168 IW7474FA ·· 、’、構可又到適备的保護,以減少在組裝時被觸碰到的 會。 睛參照第1A〜1E圖,其繪示依照一實施例之光源模 組的散熱片之加工流程示意圖。加工流程包括下列步驟⑴ 〜⑷。在第ΙΑ ϋ巾’步驟⑴係形成一電路層112以及 、、邑緣層114於散熱片116的上表面。絕緣層114位於電 路層112與政熱片116之間,以電性隔離電路層I〗?與散 熱片116。在第1Β圖中,步驟(2)係以機械加工或蝕刻等 方式移除部分絕緣層114以及部分散熱片116而形成一凹 槽116a。電路層112的接墊n2a、n2b係位於凹槽U6a 的外側。在第1C圖中,步驟(3)係形成一金屬層118 (例 如鋼或鎳)於凹槽U6a的底部。在第1D圖中,步驟(4) 係形成一導熱材料層12〇於金屬層118上,而部分導熱材 料層122係可形成於電路層112的接墊112a、112b上。 在一實施例中,導熱材料層12〇例如以塗佈的方式形成於 凹槽116a的底部。導熱材料層丨2〇的材質包括錫,例如 疋低熔點的錫船合金或錫銀銅合金等。此外,當導熱材料 層120以網版塗佈在凹槽的底部時,部分導熱材料 層122可同時塗佈於接塾ii2a、112b上,以作為一焊接 材料層。另外,當散熱片116的材質為鋁時,由於銅(金 屬層118)與錫(導熱材料層120)的接合能力大於鋁(散 熱片116)與錫(導熱材料層120)的接合能力,因此本 實施例可藉由銅(金屬層118 )接合於導熱材料層12〇與 散熱片116之間,來增加散熱片116與導熱材料層12〇的 接合能力。 6 201240168 i W /Η/ΗΓ/\ 另外,請參考第IE圖,上述之加工流程中,於步驟 (4)之後,更可包括塗佈一防銲層124於絕緣層114上。 防銲層124覆蓋絕緣層114’並顯露出位於接墊U2a、U2b 上的部分導熱材料層122(焊接材料層)以及位於凹槽U6a 的底部的導熱材料層120,如第2A圖所示。 接著,明參知、第2A及2B圖,其分別繪示依照一實施 例之嵌入式封裝結構102的組裝示意圖。澈入式封裝結構 102可藉由組裝至散熱片116之凹槽丨丨仏中而組成一光源 模組100。此光源模組100之散熱片116上形成有接墊 112a、112b、一絕緣層114、一金屬層118以及一導熱材 料層120,其可經由第1A〜1D圖之加工流程製作,在此不 再贅述。嵌入式封裝結構102包括一發光元件11〇、一導 線架130以及-封B 140。|線架13〇電性連接於發光元 件110與接塾112a、112b之間。此外,散熱片116具有 一凹槽116a,此凹槽116a用以容納發光元件11〇與導線 架130 ’其中導熱材料層12〇位於凹槽116&的底部,以使 散熱片116藉由導熱材料層12〇與導線架13〇的底部熱接 觸。另外,嵌入式封裝結構1〇2更包括至少一導線142, 導線142電性連接於發光元件11〇與導線架13〇之間,以 傳遞訊號。 在上述實施例中,嵌入式封裝結構102因採用向上彎 折之導線架130,使得導線架下端13(^及導線架中端議 可内埋於散熱片116的凹槽U6a中。導線架上端^施延 伸至凹槽U6a的外側,並可藉由焊接材料層與接墊112a、 112b接合而電性連接。此外,封膠刚包覆發光元件 201240168201240168 ΛVV / "Τ f -ΤΙ Γ\ 6. Description of the invention: [Technical field of the invention] The present invention relates to a light source module, and in particular to a light source module for improving heat dissipation efficiency and its embedding Package structure. [Prior Art] Generally, the bottom of the light-emitting element is thermally insulated by a heat sink, but the heat generated by the light-emitting element must pass through solder paste, insulating glue (such as silicone) and adhesive on the circuit substrate to reach the heat sink. . Among the three layers of materials, the thermal resistance of the insulating rubber is the largest, and efforts should be made to minimize the use of insulating rubber. However, in the thermoelectric separation package structure, the heat-insulating and non-conductive insulating glue is conventionally used to electrically isolate the light-emitting element from the heat sink. Therefore, the conventional thermoelectric separation package structure cannot solve the problem of poor heat dissipation. In addition, the package structure assembled on the heat sink often causes the assembler's finger to touch the encapsulant, causing the surface to be stressed and causing the internal gold wire to be broken or damaged. Therefore, the package structure should be avoided to be touched during assembly. Opportunity 0 [Invention] The present invention relates to a light source module for improving heat dissipation efficiency and an embedded package structure thereof, which can directly transfer heat generated by a light-emitting element to a lower heat sink to reduce thermal resistance. In addition, the embedded package structure can be embedded in the recess of the heat sink, thereby effectively reducing the chance of the package being touched during assembly. According to an aspect of the invention, a light source 4 201240168 i w module for improving heat dissipation efficiency is proposed. The light source module comprises a light emitting component, a circuit layer, a lead frame, a heat conductive material layer and a heat sink. The lead frame is electrically connected between the light emitting element and the circuit layer. The layer of thermally conductive material is attached to the bottom of the leadframe and the layer of thermally conductive material is electrically insulated from the leadframe. The heat sink has a recess for receiving the light emitting element and the lead frame, wherein the layer of thermally conductive material is located at the bottom of the recess such that the heat sink is in thermal contact with the bottom of the lead frame by the layer of thermally conductive material. According to another aspect of the present invention, an embedded package structure is provided, which is disposed in a recess, and a pad is disposed on an outer side of the recess. The embedded package structure includes a light emitting element, a lead frame, and a glue. The lead frame is electrically connected to the light emitting element. The recess is configured to receive the light emitting component and the lead frame, and the upper end of the lead frame extends to the outside of the recess and is electrically connected to the pad. The encapsulant encapsulates the illuminating component and a portion of the lead frame, wherein the lower end of the lead frame extends into the encapsulant and is electrically connected to the illuminating element. In order to better understand the above and other aspects of the present invention, the preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings: [Embodiment] The light source module for improving heat dissipation efficiency of the present embodiment The embedded package structure is processed on a heat sink (for example, an aluminum plate) to form a groove-shaped groove, and the lower surface of the groove is surface-treated to form a heat conductive material layer in the groove. With the layer of thermally conductive material, the heat generated by the illuminating element can be directly conducted to the heat sink without passing through the insulating layer to reduce the generation of thermal resistance. In addition, the embedded package structure adopts an upwardly bent lead frame, so that the lead frame can be buried in the groove of the heat sink and can be electrically connected between the light emitting element and the circuit layer by soldering. Therefore, the embedded package 201240168 IW7474FA ··,, can be properly protected to reduce the chances of being touched during assembly. Referring to Figures 1A to 1E, there is shown a process flow diagram of a heat sink of a light source module in accordance with an embodiment. The processing flow includes the following steps (1) ~ (4). In the second step, the step (1) forms a circuit layer 112 and a flange layer 114 on the upper surface of the heat sink 116. The insulating layer 114 is located between the circuit layer 112 and the political fins 116 to electrically isolate the circuit layer I? With the heat sink 116. In the first drawing, the step (2) removes a portion of the insulating layer 114 and a portion of the fins 116 by machining or etching to form a recess 116a. The pads n2a, n2b of the circuit layer 112 are located outside the recess U6a. In Fig. 1C, step (3) forms a metal layer 118 (e.g., steel or nickel) at the bottom of the recess U6a. In Fig. 1D, step (4) forms a layer of thermally conductive material 12 on metal layer 118, and a portion of thermally conductive material layer 122 is formed on pads 112a, 112b of circuit layer 112. In one embodiment, the layer of thermally conductive material 12 is formed, for example, in the form of a coating on the bottom of the recess 116a. The material of the heat conductive material layer 包括2〇 includes tin, for example, a low-melting tin boat alloy or a tin-silver-copper alloy. Further, when the heat conductive material layer 120 is applied in a screen at the bottom of the groove, a portion of the heat conductive material layer 122 may be simultaneously coated on the joints ii2a, 112b as a layer of the welding material. In addition, when the material of the heat sink 116 is aluminum, since the bonding ability of the copper (metal layer 118) and the tin (heat conductive material layer 120) is greater than the bonding ability of the aluminum (the heat sink 116) and the tin (the heat conductive material layer 120), This embodiment can increase the bonding ability of the heat sink 116 and the heat conductive material layer 12 by bonding copper (metal layer 118) between the heat conductive material layer 12 and the heat sink 116. 6 201240168 i W /Η/ΗΓ/\ In addition, please refer to the IE diagram. In the above processing flow, after the step (4), a solder resist layer 124 may be coated on the insulating layer 114. The solder resist layer 124 covers the insulating layer 114' and exposes a portion of the thermally conductive material layer 122 (a layer of solder material) on the pads U2a, U2b and a layer of thermally conductive material 120 at the bottom of the recess U6a, as shown in FIG. 2A. Next, FIG. 2A and FIG. 2B are schematic diagrams showing the assembly of the embedded package structure 102 according to an embodiment. The transparent package structure 102 can be assembled into a light source module 100 by being assembled into the recesses of the heat sink 116. The heat sink 116 of the light source module 100 is formed with pads 112a and 112b, an insulating layer 114, a metal layer 118 and a heat conductive material layer 120, which can be fabricated through the processing flow of FIGS. 1A to 1D. Let me repeat. The embedded package structure 102 includes a light emitting element 11A, a wire frame 130, and a sealing B 140. The wire frame 13 is electrically connected between the light emitting element 110 and the ports 112a, 112b. In addition, the heat sink 116 has a recess 116a for accommodating the light-emitting element 11 and the lead frame 130' wherein the heat conductive material layer 12 is located at the bottom of the recess 116 & The layer 12 is in thermal contact with the bottom of the lead frame 13A. In addition, the embedded package structure 1 〇 2 further includes at least one wire 142 electrically connected between the light-emitting element 11 〇 and the lead frame 13 , to transmit a signal. In the above embodiment, the embedded package structure 102 adopts the upwardly bent lead frame 130, so that the lower end 13 of the lead frame and the middle end of the lead frame can be buried in the groove U6a of the heat sink 116. The upper end of the lead frame The extension extends to the outside of the recess U6a, and can be electrically connected by bonding the solder material layer to the pads 112a, 112b. In addition, the seal just covers the light-emitting element 201240168

i w m /HrA 以及部分導線架130,以使導線架下端13〇c延伸至封膠 140内,並位於發光元件110之周圍。在一實施例中,發 光元件110係以一對導線142與導線架下端130c電性連 接,以使發光元件110電致而發光。 在上述實施例中,導線架130的底部例如具有一晶片 座134,發光元件110配置於晶片座I34上’而導線架上 端130a由晶片座134之一侧呈L形·延伸出封膠140之外, 並顯露於封膠140之頂面。如第2B圖所示,當嵌入式封 裝結構102内埋於凹槽116a内時,位於底部的晶片座134 直接與導熱材料層120接觸,導熱材料層120例如為錫膏 或其他金屬,因此可將發光元件110所產生的熱直接傳導 至散熱片116,不需經過絕緣層114,以減少熱阻的產生。 此外,嵌入式封裝結構102的封膠140不會凸出於散熱片 116外,而是内埋於凹槽116a内,在組裝時不易觸碰,故 能保護内部的導線142不被按壓,以避免發生斷裂或損壞。 雖然上述實施例中,封膠140係於組裝前預先包覆發 光元件110以及部分導線架130,以形成一嵌入式封裝結 構102,再將嵌入式封裝結構1 〇2組裝至凹槽116a中,以 組成一體化的光源模組100。但在另一實施例中,封膠 亦可於組裝成光源模組100之後再填入於凹槽116a内, 並經由固化而包覆發光元件11〇以及部分導線架13〇,以 形成嵌入式封裝結構102。此外,封膠14〇可具有透鏡的 形狀及功能,例如具有凸面、凹面或其組合,藉以改變由 發光元件110發射之光的出光角度。 本發明上述實施例所揭露之提昇散熱效率之光源模 201240168i w m /HrA and a portion of the lead frame 130 such that the lower end 13c of the lead frame extends into the encapsulant 140 and is located around the light-emitting element 110. In one embodiment, the light-emitting element 110 is electrically connected to the lower end 130c of the lead frame by a pair of wires 142 to electrically illuminate the light-emitting element 110. In the above embodiment, the bottom of the lead frame 130 has, for example, a wafer holder 134, and the light-emitting element 110 is disposed on the wafer holder I34, and the upper end 130a of the lead frame is L-shaped from one side of the wafer holder 134. In addition, it is exposed on the top surface of the sealant 140. As shown in FIG. 2B, when the embedded package structure 102 is buried in the recess 116a, the wafer holder 134 at the bottom is in direct contact with the heat conductive material layer 120, and the heat conductive material layer 120 is, for example, solder paste or other metal. The heat generated by the light-emitting element 110 is directly transmitted to the heat sink 116 without passing through the insulating layer 114 to reduce the generation of thermal resistance. In addition, the encapsulant 140 of the embedded package structure 102 does not protrude from the outside of the heat sink 116, but is embedded in the recess 116a, and is not easy to touch during assembly, so that the inner lead 142 can be protected from being pressed. Avoid breakage or damage. In the above embodiment, the encapsulant 140 is pre-coated with the light-emitting component 110 and a portion of the lead frame 130 before assembly to form an embedded package structure 102, and then the embedded package structure 1 〇 2 is assembled into the recess 116a. To form an integrated light source module 100. However, in another embodiment, the encapsulant may be filled into the recess 116a after being assembled into the light source module 100, and the light-emitting component 11〇 and the partial lead frame 13〇 are covered by curing to form an embedded body. Package structure 102. Further, the sealant 14 can have the shape and function of a lens, for example, having a convex surface, a concave surface, or a combination thereof, thereby changing the light exit angle of the light emitted by the light-emitting element 110. Light source module for improving heat dissipation efficiency disclosed in the above embodiments of the present invention 201240168

1 W/4/4KA 組及其嵌入式封裝結構,係採用向上彎折之導線架,使得 導線架可内埋於散熱片的凹槽中,並可藉由上錫焊接而電 性連接於發光元件與電路層之間。因此,嵌入式封裝結構 可受到適當的保護,以減少在組裝時被觸碰到的機會。此 外,發光元件内埋之後,光源模組的整體厚度明顯地減 少,更能符合薄形化的需求。相對於傳統電路基板的絕緣 層熱阻過高的問題,本實施例之發光元件(例如為高功率 之發光二極體元件)所產生的熱可直接傳導至下方的導熱 材料層以及散熱片,不需經過絕緣層,因此可有效減少熱 阻的產生,以提昇光源模組的散熱效率。 綜上所述,雖然本發明已以諸實施例揭露如上,然其 並非用以限定本發明。本發明所屬技術領域中具有通常知 識者,在不脫離本發明之精神和範圍内,當可作各種之更 動與潤飾。因此,本發明之保護範圍當視後附之申請專利 範圍所界定者為準。 【圖式簡單說明】 第1A〜1E圖繪示依照一實施例之光源模組的散熱片 之加工流程示意圖。 第2A及2B圖分別繪示依照一實施例之嵌入式封裝結 構的組裝示意圖。 【主要元件符號說明】 100:光源模組 102:嵌入式封裝結構 2012401681 W/4/4KA group and its embedded package structure adopts an upwardly bent lead frame, so that the lead frame can be buried in the groove of the heat sink and can be electrically connected to the light by soldering on the solder. Between the component and the circuit layer. Therefore, the embedded package structure can be properly protected to reduce the chance of being touched during assembly. In addition, after the illuminating element is buried, the overall thickness of the light source module is significantly reduced, which is more in line with the demand for thinning. The heat generated by the light-emitting element (for example, a high-power light-emitting diode element) of the present embodiment can be directly transmitted to the underlying heat conductive material layer and the heat sink, insofar as the thermal resistance of the insulating layer of the conventional circuit substrate is too high. It does not need to pass through the insulating layer, so the heat resistance can be effectively reduced to improve the heat dissipation efficiency of the light source module. In conclusion, the present invention has been disclosed in the above embodiments, but is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A to 1E are schematic diagrams showing a processing flow of a heat sink of a light source module according to an embodiment. 2A and 2B are respectively assembled schematic views of an embedded package structure in accordance with an embodiment. [Main component symbol description] 100: Light source module 102: Embedded package structure 201240168

1 W/4/4^A 110 :發光元件 112 :電路層 112a、112b :接墊 114 :絕緣層 116 :散熱片 116a :凹槽 118 :金屬層 120 :導熱材料層 122 :部分導熱材料層(焊接材料層) 124 :防銲層 130 :導線架 130a :導線架上端 130b :導線架中端 130c ··導線架下端 134 .晶片座 140 :封膠 142 :導線1 W/4/4^A 110: light-emitting element 112: circuit layer 112a, 112b: pad 114: insulating layer 116: heat sink 116a: groove 118: metal layer 120: heat conductive material layer 122: part of heat conductive material layer ( Welding material layer) 124: solder resist layer 130: lead frame 130a: lead frame upper end 130b: lead frame middle end 130c · lead frame lower end 134. wafer holder 140: sealant 142: wire

Claims (1)

201240168 1 W/4/4PA 七、申清專利範圍: 1·種提昇散熱效率之光源模組,該光源模組包括: 一發光元件; 一電路層; 架電性連接於該發光元件與該電路層之間; 把a ‘熱材料層,連接於該導線架的底部,且該導熱材 料層與該導線架電性絕緣;以及 政…、片具有一凹槽,用以容納該發光元件與該導 、/二其t該導歸料層位於該凹槽的底部,以使該散熱 糟由該導熱材料層與該導線架的底部熱接觸。 一域2. 利㈣第1項所述之光源模組,更包括 ,、’ ^層,位於該電路層與該散熱片之間,該 該凹槽的外側。 -防Π睛專利範圍第2項所述之光源模組,更包括 方鋅層,塗佈於該絕緣層上,並顯露於該凹槽的外側。 4·如申請專利範圍第2項所述之光 =括至少一接塾,配置於該凹槽的外侧,該導:架 认伸至該凹槽的外側,並與該接墊電性連接。 二.?,專利範圍第4項所述之光源模組,更包括 ¥下:^復該發光元件以及部分該導線架,其中該導線 乙伸至该封膠内,並與該發光元件 成-嵌入式封裝結構。 -令L如申請專利範圍第1項所述之光源模組,更包括 位於該凹槽的底部,且接合於該導熱材料層盘 以…片之間’其中該金屬層與該導熱材料層的接合能力、 201240168 1 ύυ /τ /tr r\ 大於該散熱片與該導熱材料層的接合能力。 7.如申請專利範圍第6項所述之光源模組,其中該 金屬層的材質為銅,該散熱片的材質為鋁。 8·如申請專利範圍第丨項所述之光源模組,其中該 導熱材料層以塗佈的方式形成於該凹槽的底部。 9. 如申請專利範圍第8項所述之光源模組,其中該 導熱材料層的材質包括錫。 10. —種嵌入式封裝結構,配置於一凹槽中,該凹槽 的外侧設有一接墊,該嵌入式封裝結構包括: 一發光元件; 導線架,電性連接於該發光元件,該凹槽用以容納 該發光元件與該導線架,該導線架上端延伸至該凹槽的外 側,並與該接墊電性連接;以及 一封膠,包覆該發光元件以及部分該導線架其中該 導線架下端延伸至該封膠内,並與該發光元件電性^接二 11. 如申請專利範圍第1〇項所述之嵌入式封裝結 構’其中該導線架的底部具有—晶片座,該發光元件配置 於該晶片座上,而該導線架上端由該晶片座之一侧呈L彤 延伸出該封膠之外。 y 12.如申請專利範圍第u項所述之嵌入式封裝! 構,更包括至少一導線,該發光元件以該導線與該 下端電性連接。 : 12201240168 1 W/4/4PA VII. Shenqing Patent Range: 1. A light source module for improving heat dissipation efficiency, the light source module comprises: a light emitting element; a circuit layer; the frame is electrically connected to the light emitting element and the circuit Between the layers; a thermal material layer is attached to the bottom of the lead frame, and the layer of thermally conductive material is electrically insulated from the lead frame; and the sheet has a recess for receiving the light emitting element and the The conductive layer is located at the bottom of the recess such that the heat dissipating material is in thermal contact with the bottom of the lead frame by the layer of thermally conductive material. The light source module of the first aspect of the present invention, further comprising, a layer disposed between the circuit layer and the heat sink, outside the groove. The light source module of claim 2, further comprising a square zinc layer coated on the insulating layer and exposed on the outer side of the groove. 4. The light as described in claim 2 includes at least one interface disposed on the outer side of the groove, the guide: the frame is recognizable to the outside of the groove and electrically connected to the pad. two.? The light source module of the fourth aspect of the patent, further comprising: a plurality of the light-emitting elements and a portion of the lead frame, wherein the wire B extends into the sealant and is in an embedded package with the light-emitting component structure. The light source module of claim 1 further comprising a light source module according to claim 1 further comprising a bottom portion of the groove and bonded to the heat conductive material layer between the sheets, wherein the metal layer and the heat conductive material layer Bonding capacity, 201240168 1 ύυ /τ /tr r\ is greater than the ability of the heat sink to bond with the layer of thermally conductive material. 7. The light source module of claim 6, wherein the metal layer is made of copper, and the heat sink is made of aluminum. 8. The light source module of claim 2, wherein the layer of thermally conductive material is formed in a coating manner at the bottom of the recess. 9. The light source module of claim 8, wherein the material of the heat conductive material layer comprises tin. 10. An embedded package structure, disposed in a recess, the outer side of the recess is provided with a pad, the embedded package structure comprises: a light-emitting component; a lead frame electrically connected to the light-emitting component, the recess The slot is configured to receive the light-emitting component and the lead frame, the upper end of the lead frame extends to the outside of the groove and is electrically connected to the pad; and a glue covers the light-emitting component and a part of the lead frame. The lower end of the lead frame extends into the encapsulant and is electrically connected to the illuminating element. The embedded package structure as described in claim 1 wherein the bottom of the lead frame has a wafer holder, The light-emitting element is disposed on the wafer holder, and the upper end of the lead frame extends from the side of the wafer holder to the outside of the seal. y 12. The embedded package of claim 5, further comprising at least one wire, the light-emitting element being electrically connected to the lower end by the wire. : 12
TW100109023A 2011-03-16 2011-03-16 Light source module with enhanced heat dissipation efficiency and embedded package structure thereof TWI464929B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100109023A TWI464929B (en) 2011-03-16 2011-03-16 Light source module with enhanced heat dissipation efficiency and embedded package structure thereof
CN2011101027934A CN102683545A (en) 2011-03-16 2011-04-25 Light source module for improving heat dissipation efficiency and embedded packaging structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100109023A TWI464929B (en) 2011-03-16 2011-03-16 Light source module with enhanced heat dissipation efficiency and embedded package structure thereof

Publications (2)

Publication Number Publication Date
TW201240168A true TW201240168A (en) 2012-10-01
TWI464929B TWI464929B (en) 2014-12-11

Family

ID=46815181

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100109023A TWI464929B (en) 2011-03-16 2011-03-16 Light source module with enhanced heat dissipation efficiency and embedded package structure thereof

Country Status (2)

Country Link
CN (1) CN102683545A (en)
TW (1) TWI464929B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9713263B2 (en) 2014-06-23 2017-07-18 Taiwan Green Point Enterprises Co., Ltd. Circuit-and-heat-dissipation assembly and method of making the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI551818B (en) * 2015-01-22 2016-10-01 綠點高新科技股份有限公司 A method of manufacturing a heat dissipation module of an electronic component and the heat dissipation module of an electronic component
CN104966774B (en) * 2015-07-07 2019-06-11 宏齐光电子(深圳)有限公司 A kind of reverse buckling type small size high-power LED encapsulation structure
KR20190065748A (en) * 2017-12-04 2019-06-12 삼성전기주식회사 Printed circuit board
TWI720921B (en) * 2020-07-14 2021-03-01 欣興電子股份有限公司 Embedded component structure and manufacturing method thereof
CN112366269A (en) * 2020-12-11 2021-02-12 江西众能光电科技有限公司 High heat abstractor of LED

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI241658B (en) * 2003-10-22 2005-10-11 Siliconware Precision Industries Co Ltd Method of fabricating under bump metallurgy structure and semiconductor wafer with solder bumps
DE10351934B4 (en) * 2003-11-07 2017-07-13 Tridonic Jennersdorf Gmbh Light-emitting diode arrangement with heat dissipating board
CN2692845Y (en) * 2004-04-02 2005-04-13 相互股份有限公司 High-heat radiating LED
US20060097385A1 (en) * 2004-10-25 2006-05-11 Negley Gerald H Solid metal block semiconductor light emitting device mounting substrates and packages including cavities and heat sinks, and methods of packaging same
JP5297083B2 (en) * 2007-07-17 2013-09-25 新光電気工業株式会社 Solder bump formation method
CN101389202B (en) * 2007-09-12 2010-07-28 鑫电光科技股份有限公司 Cooling device for electronic element
US8378372B2 (en) * 2008-03-25 2013-02-19 Bridge Semiconductor Corporation Semiconductor chip assembly with post/base heat spreader and horizontal signal routing
CN201215259Y (en) * 2008-05-30 2009-04-01 和谐光电科技(泉州)有限公司 High-power LED and illuminating device using the high-power LED

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9713263B2 (en) 2014-06-23 2017-07-18 Taiwan Green Point Enterprises Co., Ltd. Circuit-and-heat-dissipation assembly and method of making the same

Also Published As

Publication number Publication date
TWI464929B (en) 2014-12-11
CN102683545A (en) 2012-09-19

Similar Documents

Publication Publication Date Title
TWI393275B (en) Light emitting diode package and fabrication method thereof
US8624388B2 (en) Package carrier and manufacturing method thereof
TW201240168A (en) Light source module with enhanced heat dissipation efficiency and embedded package structure thereof
JP2012186450A (en) Led module
JP4910220B1 (en) LED module device and manufacturing method thereof
TW200814362A (en) Light-emitting diode device with high heat dissipation property
WO2010050067A1 (en) Substrate for light emitting element package, and light emitting element package
TW201123410A (en) LED light-emitting module and its manufacturing method thereof.
JP2007288050A5 (en)
US20070252159A1 (en) Light emitting apparatus
TW201247038A (en) Package carrier and manufacturing method thereof
JP4904604B1 (en) LED module device and manufacturing method thereof
JP2007049045A (en) Semiconductor light emitting device and semiconductor device using the same
JP5607092B2 (en) Package structure and manufacturing method thereof
CN108962834A (en) The manufacturing method of semiconductor module, the bottom plate of semiconductor module and semiconductor device
TW201532316A (en) Package structure and manufacturing method thereof
JP2015038902A (en) Led module device and manufacturing method of the same
TWI482321B (en) Method for led package with slanting structure
CN102800798B (en) A kind of LED encapsulation structure and method for packing thereof
TWM593659U (en) Packaging structure for directly exporting thermal energy of electronic components
JP6679799B2 (en) Light emitting device
US8587115B2 (en) Heat dissipation substrate and manufacturing method thereof
TWI722560B (en) Packaging structure for directly deriving thermal energy of electronic components
CN116913905A (en) Multi-chip stacking packaging structure and packaging method thereof
KR101433734B1 (en) LED Package

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees