TW201238887A - A method for making epitaxial structure - Google Patents

A method for making epitaxial structure Download PDF

Info

Publication number
TW201238887A
TW201238887A TW100112867A TW100112867A TW201238887A TW 201238887 A TW201238887 A TW 201238887A TW 100112867 A TW100112867 A TW 100112867A TW 100112867 A TW100112867 A TW 100112867A TW 201238887 A TW201238887 A TW 201238887A
Authority
TW
Taiwan
Prior art keywords
epitaxial
layer
carbon nanotube
substrate
epitaxial layer
Prior art date
Application number
TW100112867A
Other languages
Chinese (zh)
Other versions
TWI474966B (en
Inventor
Yang Wei
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Publication of TW201238887A publication Critical patent/TW201238887A/en
Application granted granted Critical
Publication of TWI474966B publication Critical patent/TWI474966B/en

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to a method for making epitaxial structure. The method includes following steps of: providing a substrate having an epitaxial growth surface; placing a first carbon nanotube layer on the epitaxial growth surface; epitaxially growing a first epitaxial layer on the epitaxial growth surface to cover the first carbon nanotube layer; placing a second carbon nanotube layer on the first epitaxial layer; and epitaxially growing a second epitaxial layer on the first epitaxial layer to cover the second carbon nanotube layer. The method is simple and low cost.

Description

201238887 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種外延構邊體的焱備方法。 [先前技術] [0002] 外延構造體,尤其異質外延構造體為製作半導體器件的 主要材料之一。例如,近年來,製備發光二極體(led) 的氮化鎵外延片成為研究的熱點。 [0003] 所述氮化鎵外延片是指在一定條件下,將氮化鎵材料分 0 子,有規則排列,定向生長在藍寶石基底上。然而,高 品質氮化鎵外延片的製備一直是研究的難點。由於氣化 鎵和藍寶石基底的晶格常數以及熱膨脹係數的不同,從 •而導致氮化鎵外延層存在較多錯位缺陷(disl()catiQn defect)。而且,氮化鎵外延層和藍寶石基底之間存在較 大應力,應力越大會導致氮化鎵外延層破裂。這種異質 外延構造普遍存在晶格失現象,且㈣成錯位等缺陷 〇 〇 剛先前技術提供一種改善上述不足的方法,其採用非平整 的藍以基底外延生長氮化鎵。然、而,先前技術通常採 用光刻等微電子方法在藍寶石基底表面形成溝槽從而構 成非平整外延生長面。該方法不但製造過程複雜,成本 較高’而且會對藍寶石基底外延生長面造成污染,從而 影響外延構造體的品質。 【發明内容】 [0005] 綜上所述,描征 ^ A,» 耗供一種製程簡單,成本低廉,且不會對基 底表面造成染的外延構造趙的製備方法實為必要。 100112867 表單編號 Α0101 « 0 1002021430-0 第3頁/共48頁 201238887 [0006] 一種外延構造體的製備方法,其包括以下步驟:提供一 基底,硪基底具有一外延生長面;於所述基底的外延生 長面設置第一奈米碳管層;於所述基底的外延生長面生 長一第—外延層並覆蓋所述第一奈米碳管層;於所述第 一外延層的表面設置第二奈米碳管層,其中,所述第一 外延層的表面為該第一外延層的外延生長面;以及於 所述第一外延層的表面生長一第二外延層並覆蓋所述第 二奈米碳管層。 [0007] 一種外延構造體的製備方法,其包括以下步驟:提供一 基底,且該基底具有一外延生長面;於所述基底的外延 生長面設置一光罩層;在基底的外延生長面生長第ins 層並覆蓋所述光罩層;第1外延層的表面依序層疊生長第 2至11層外延層,至少一相鄰外延層之間設置一光罩層; 其中,η為大於等於3的整數,所述光罩層中至少一光罩 層為奈米碳管層。 [0008]與先前技術相比,由於在所述基底的外延生長面設置一 奈米碳管層而獲得圖形化的光罩的方法製程簡單、成本 低廉,大大降低了外延構造體的製備成本,同時降低了 對環境的污染。進—步’所述包括奈米碳管層的外延構 造體使得外延構造體具有廣泛用途。 【實施方式】 [00091以下將結合附圖詳細說明本發明實施例提供的外延構、止 體及其製備方法。為了便於理解本發明的技術方案,本 發明首先介紹一種外延構造體的製備方法。 100112867 請參閱圖1, 表單編號Α0101 本發明實施例提供一種外延構造體j 第4頁/共48頁 〇的製備 1002021430-0 [0010] 201238887 [0011] [0012] [0013] [0014] Ο [0015] [0016] 〇 100112867 方法’其具體包括以下步驟: S1〇 :提供一基底1〇〇,且該基底1〇〇具有一支持第一外 延層104生長的外延生長面1〇1 ; S20 :於所述基底10〇的外延生長面1〇1設置一第一奈米 碳管層102 ; S30 :在基底1〇〇的外延生長面1〇1生長第一外延層104 ; S40 :於所述第一外延層1〇4的表面1〇6設置一第一奈米 碳管層107 ; S50 :於所述第一外延層1〇4的表面1〇6生長第二外延層 109。 步驟S10中,所述基底1〇〇提供了第外延層1〇4的外延 生長面101。所述基底100的外延生長面101是分子平滑 的表面,且去除了氧或碳等雜質。所述基底100可為單層 或複數層構造。當所述基底100為單層構造時’該基底 100可為一單晶構造體,且具有一晶面作為第一外延層 104的外延生長面101。所述單層構造的基底100的材料 可為GaAs、GaN、Si、SOI(Siiicon 〇n insultor)、 AIN、SiC、MgO、ZnO、LiGaO、LiAlO。或Al9〇,等。當 2 Z ώ o 所述基底100為複數層構造時,其需要包括至少一層上述 單晶構造體,且該單晶構造體具有一晶面作為第一外延 層104的外延生長面101 ^所述基底1〇〇的材料可根據所 要生長的第-外延層1G4來選擇,優選地,使所述基底 100與第-外延層1G4具有相近的晶格常數以及熱膨脹係 數。所述基底丨_厚度、大小和形狀不限,可根據實際 表單编號麵 第5頁/共48頁 應 201238887 需要選擇。所述基底100不限於上述列舉的材料,只要具 有支持第一外延層104生長的外延生長面1〇1的基底100 均屬於本發明的保護範圍。 [0017] 步驟S20中,所述第一奈米碳管層102為包括複數奈米碳 管的連續的整體構造。所述第一奈米碳管層1〇2中複數奈 米碳管沿著基本平行於第一奈米碳管層i 〇2表面的方向延 伸。當所述第一奈米碳管層1〇2設置於所述基底1〇〇的外 延生長面101時,所述第一奈米碳管層1〇2中複數奈米碳 管的延伸方向基本平行於所述基底1〇〇的外延生長面1〇1 。所述第一奈米碳管層1〇2的厚度為1奈米〜1〇〇微米,或 1奈米〜1微米,或1奈米〜2〇〇奈米,優選地厚度為1〇奈米 〜100奈米。所述第一奈米碳管層102可為一圖形化的奈米 碳管層。所述‘‘圖形化,,是指所述第一奈米碳管層102具 有複數第一開口 105,該複數第一開口 105從所述第一奈 米碳管層102的厚度方向貫穿所述第一奈米碳管層1〇2。 當所述第一奈米碳管層102覆蓋所述基底1〇〇的外延生長 面101設置時,從而使所述基底1〇〇的外延生長面1〇1對 應該第一開口 1 〇 5的部份暴露以便於生長第一外延層丨〇 4 。所述第一開口 105可為微孔或間隙。所述第一開口 1〇5 的尺寸為10奈米〜500微米,所述尺寸是指所述微孔的孔 徑或所述間隙的寬度方向的間距。所述第一開口 ^ 〇5的尺 寸為10奈米〜300微米、或10奈米〜12〇微米 '或1〇奈米 〜80微米、或1〇奈米~1〇微米。第一開口 1〇5的尺寸越小 ,有利於在生長外延層的過程中減少錯位缺陷的產生, 以獲得高品質的第一外延層1〇4。優選地’所述第一開口 100112867 表單編號A0101 第6頁/共48頁 1002021430-0 201238887 [0018] Ο ο [0019] [0020] 100112867 105的尺寸為10奈米~1〇微米。進一步地,所述第—奈求 碳管層102的佔空比為1:100〜100:1,或1:1〇〜1〇:1,或 1:2〜2:1,或1:4〜4:1。優選地,所述佔空比為4 。所謂“佔空比”指該第一奈米碳管層1〇2設置於基底 100的外延生長面101後,該外延生長面1〇1被第—奈米 碳管層102佔據的部份與通過第一開口 1〇5暴露的部份的 面積比。 進一步地,所述“圖形化,,是指所述第一奈米碳管層1〇2 中複數奈米碳管的排列方式是有序的、有規則的。例如 ,所述第一奈米碳管層102中複數奈米碳管的轴向均基本 平行於所述基底1〇〇的外延生長面且基本沿同—方向 延伸。或者,所述第一奈米碳管層102中複數奈米碳管的 軸向可有規律性地基本沿兩個以上方向延伸。或者,所 述第一奈米碳管層102中複數奈米碳管的軸向沿著基底 100的一晶向延伸或與基底100的一晶向成一定角度延伸 。上述第一奈米碳管層102中沿同一方向延伸的相鄰的奈 米碳管通過凡得瓦力(van der Waals f〇rce)首尾相連 ο 於所述第一奈米碳管層102具有如前所述的第一開口 1〇5 的前提下,所述第一奈米碳管層102中複數奈米碳管也可 無序排列、無規則排列。 優選地,所述第一奈米碳管層102設置於所述基底1〇〇的 整個外延生長面1〇1。所述第一奈米碳管層1〇2中的奈米 碳管可為單壁奈米碳管、雙壁奈米碳管或多壁奈米碳管 中的一種或複數種,其長度和直徑可根據需要選擇。 表單編號Α0101 第7頁/共48頁 1002021430-0 201238887 [0021] [0022] [0023] 所述第一奈米碳管層102用作生長第一外延層1〇4的光罩 。所謂光罩是指該第一奈米碳管層102用於遮擋所述 基底100的部份外延生長面101,且暴露部份外延生長面 101 ’從而使得第一外延層1〇4僅從所述外延生長面1〇1 暴露的部份生長。由於第一奈米碳管層1〇2具有複數第一 開口 1 0 5,所以該第一奈米破管層1 〇 2形成一圖形化的光 罩。當第一奈米碳管層102設置於基底1〇〇的外延生長面 1 〇 1後,複數奈米碳管沿著平行於外延生長面i 〇丨的方向 延伸。由於所述第一奈米碳管層1〇2於所述基底10〇的外 延生長面101形成複數第一開口 1〇5,從而使得所述基底 100的外延生長面1〇1上具有一圖形化的光罩。可以理解 ,相對於光刻等微電子方法,通過設置奈米碳管層1〇2光 罩進行外延生長的方法製程簡單、成本低廉,不易在基 底100的外延生長面1〇1引入污染,而且綠色環保,可以 大大降低了外延構造體1〇的製備成本。 可以理解,所述基底1 〇〇和第一奈米碳管層102共同構成 了用於生長第一外延層1〇4的襯底。該襯底可用於生長不 同材料的第一外延層丨〇4,如半導體外延層、金屬外延層 或合金外延層。該襯底也可用於生長同質外延層。 所述第一奈米碳管層〗〇2可預先形成後直接鋪設於所述基 底100的外延生長面10!。所述第一奈米碳管層1〇2為一 宏觀構造,且所述第一奈米碳管層1〇2為一個自支撐的構 ^所明自支撐指該第一奈米碳管層1〇2不需要大面 積的載體支撑,而只要相對兩邊提供支揮力即能整體上 懸空而保持自身狀態,即將該第一奈米碳管層i02置於( 100112867 表單編號A0] 01 第8頁/共48頁 1002021430-0 201238887 或=疋於)間隔狀距離設置的二支撑體上時,位於_ 支:體之間的第一奈米碳管層1〇2能狗懸空保持^ 奈米碳管層⑽為自支撑構造,所述第 ^層1〇2不必要通過漏的化學方法形纽基底ι〇〇的 外延生長面m。進-步優選地,所述第一奈米碳管層 、…L複數奈米碳官組成的純奈米碳管構造。所謂“純奈 不含有任何羧基等官能團 只構疋指所述奈米碳管層在整個製備過程中無 需任何化學修飾或酸化處理, 修飾。 所述第-奈来碳管㈣2還可為_包括複數奈織管以及 添加材料的複合構造。所述添加材料包括石墨、 石墨稀 Ο 碳化石夕、氮化删、氣化石夕、二氧化石夕、無定形碳等中 的-種或複數種。所述添加材料還可料括金屬碳化物 金屬氧化物及金屬氮化物等中的—種或複數種。所述 添加材料包覆於第一奈米碳管層1〇2中奈米碳管的至少部 份表面或設置於第一奈米碳管層102的第 一開口 10 5内。 優選地,所述添加材料包覆於奈米碳管的表面。由於, 所述添加材料包覆於奈米碳管的表面,使得奈米碳管的 直徑變大’從而使奈米碳管之間的第一開口 105減小。所 述添加材料可以通過化學氣相沈積(CVD)、物理氣相沈 積(PVD)、磁控濺射等方法形成於奈米碳管的表面。 [0025] 將所述第一奈米碳管層1〇2鋪設於所述基底1〇〇的外延生 長面101後還可包括一有機溶劑處理的步驟,以使第一奈 米碳管層102與外延生長面1〇1更加緊密結合。該有機溶 劑可選用乙醇、曱醇、丙酮、二氣乙烷和氯仿中一種或 100112867 表單編號A0101 第9頁/共48頁 1002021430-0 201238887 者幾種的混合。本實施例中的有機溶劑採用乙醇。該使 用有機溶劑處理的步驟可通過試管將有機溶劑滴落在第 一奈米碳管層102表面浸潤整個第一奈米碳管層102或將 基底100和整個第一奈米碳管層102—起浸入盛有有機溶 劑的容器中浸潤。 [0026] 所述第一奈米碳管層102也可通過化學氣相沈積(CVD) 等方法直接生長於所述基底100的外延生長面101或先生 長在矽基底表面,然後轉印到所述基底100的外延生長面 101,或將含奈米碳管的溶液直接沈積於所述基底100的 外延生長面101等方法形成。 [0027] 具體地,所述第一奈米碳管層102可以包括奈米碳管膜或 奈米碳管線。所述第一奈米碳管層102可為一單層奈米碳 管膜或複數層疊設置的奈米碳管膜。所述第一奈米碳管 層102可包括複數平行設置的奈米碳管線或複數交叉設置 的奈米碳管線。當所述第一奈米碳管層102為複數層疊設 置的奈米碳管膜時,奈米碳管膜的層數不宜太多,優選 地,為2層〜100層。當所述第一奈米碳管層102為複數平 行設置的奈米碳管線時,相鄰二奈米碳管線之間的距離 為0. 1微米〜200微米,優選地,為10微米〜100微米。所 述相鄰二奈米碳管線之間的空間構成所述第一奈米碳管 層102的第一開口 105。相鄰兩個奈米碳管線之間的間隙 長度可以等於奈米碳管線的長度。所述奈米碳管膜或奈 米碳管線可以直接鋪設在基底100的外延生長面101構成 所述第一奈米碳管層102。通過控制奈米碳管膜的層數或 奈米碳管線之間的距離,可以控制第一奈米碳管層102中 100112867 表單編號A0101 第10頁/共48頁 1002021430-0 201238887 第一開口 105的尺寸。 [0028] Ο201238887 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a method for preparing an epitaxial body. [Prior Art] [0002] Epitaxial structures, particularly heteroepitaxial structures, are one of the main materials for fabricating semiconductor devices. For example, in recent years, gallium nitride epitaxial wafers for preparing light-emitting diodes (LEDs) have become a research hotspot. [0003] The gallium nitride epitaxial wafer refers to a gallium nitride material divided into a regular arrangement and grown on a sapphire substrate under certain conditions. However, the preparation of high quality GaN epitaxial wafers has been a difficult point of research. Due to the difference in lattice constant and thermal expansion coefficient of the gallium and sapphire substrates, there are many dislocation defects (disl() catiQn defect) in the gallium nitride epitaxial layer. Moreover, there is a relatively large stress between the gallium nitride epitaxial layer and the sapphire substrate, and the greater the stress, the GaN epitaxial layer is broken. This heteroepitaxial structure generally has a lattice loss phenomenon, and (4) defects such as misalignment 〇 先前 The prior art provides a method for improving the above-mentioned deficiencies, which uses a non-flat blue to epitaxially grow gallium nitride. However, the prior art generally uses a microelectronic method such as photolithography to form a groove on the surface of the sapphire substrate to form a non-planar epitaxial growth surface. This method not only has a complicated manufacturing process, but also has a high cost, and it also pollutes the epitaxial growth surface of the sapphire substrate, thereby affecting the quality of the epitaxial structure. SUMMARY OF THE INVENTION [0005] In summary, the description of ^ A,» consumption is a simple process, the cost is low, and the method of preparing the epitaxial structure Zhao which does not cause dyeing of the substrate surface is necessary. 100112867 Form No. Α0101 « 0 1002021430-0 Page 3 / Total 48 Pages 201238887 [0006] A method of preparing an epitaxial structure, comprising the steps of: providing a substrate, the germanium substrate having an epitaxial growth surface; a first carbon nanotube layer is disposed on the epitaxial growth surface; a first epitaxial layer is grown on the epitaxial growth surface of the substrate and covers the first carbon nanotube layer; and a second surface is disposed on the surface of the first epitaxial layer a carbon nanotube layer, wherein a surface of the first epitaxial layer is an epitaxial growth surface of the first epitaxial layer; and a second epitaxial layer is grown on the surface of the first epitaxial layer and covers the second nano-layer Carbon tube layer. [0007] A method for preparing an epitaxial structure, comprising the steps of: providing a substrate having an epitaxial growth surface; providing a photomask layer on an epitaxial growth surface of the substrate; and growing on an epitaxial growth surface of the substrate The ins layer covers the photomask layer; the surface of the first epitaxial layer is sequentially stacked to grow the second to eleven epitaxial layers, and at least one adjacent epitaxial layer is provided with a photomask layer; wherein η is greater than or equal to 3 An integer of at least one of the mask layers in the mask layer is a carbon nanotube layer. Compared with the prior art, the method for obtaining a patterned photomask by providing a carbon nanotube layer on the epitaxial growth surface of the substrate is simple in process and low in cost, and the preparation cost of the epitaxial structure is greatly reduced. At the same time, it reduces the pollution to the environment. The epitaxial structure comprising the carbon nanotube layer allows the epitaxial structure to have a wide range of uses. [Embodiment] [00091] The epitaxial structure, the stopper, and the preparation method thereof according to the embodiments of the present invention will be described in detail below with reference to the accompanying drawings. In order to facilitate understanding of the technical solution of the present invention, the present invention first introduces a method of preparing an epitaxial structure. 100112867 Please refer to FIG. 1, Form No. Α0101. Embodiments of the present invention provide an epitaxial structure j. Preparation of page 4/48 pages 100 1002021430-0 [0010] 201238887 [0011] [0012] [0014] [0014] [0016] 〇100112867 The method specifically includes the following steps: S1〇: providing a substrate 1〇〇, and the substrate 1〇〇 has an epitaxial growth surface 1〇1 supporting the growth of the first epitaxial layer 104; S20: a first carbon nanotube layer 102 is disposed on the epitaxial growth surface 1〇1 of the substrate 10〇; S30: a first epitaxial layer 104 is grown on the epitaxial growth surface 1〇1 of the substrate 1 ;; S40: A surface 1〇6 of the first epitaxial layer 1〇4 is provided with a first carbon nanotube layer 107; S50: a second epitaxial layer 109 is grown on the surface 1〇6 of the first epitaxial layer 1〇4. In step S10, the substrate 1 is provided with an epitaxial growth surface 101 of the epitaxial layer 1〇4. The epitaxial growth surface 101 of the substrate 100 is a molecularly smooth surface, and impurities such as oxygen or carbon are removed. The substrate 100 can be a single layer or a plurality of layers. When the substrate 100 has a single layer structure, the substrate 100 may be a single crystal structure and have a crystal plane as the epitaxial growth surface 101 of the first epitaxial layer 104. The material of the single-layer structure substrate 100 may be GaAs, GaN, Si, SOI (Siiicon inn insultor), AIN, SiC, MgO, ZnO, LiGaO, LiAlO. Or Al9〇, etc. When the substrate 100 is a plurality of layers, it is necessary to include at least one layer of the single crystal structure, and the single crystal structure has a crystal plane as the epitaxial growth surface 101 of the first epitaxial layer 104. The material of the substrate 1 可 may be selected according to the first epitaxial layer 1G4 to be grown, and preferably, the substrate 100 and the epitaxial layer 1G4 have similar lattice constants and thermal expansion coefficients. The thickness 大小, thickness, size and shape of the substrate are not limited, and can be selected according to the actual number of the form page 5 / 48 pages should be selected 201238887. The substrate 100 is not limited to the materials listed above, as long as the substrate 100 having the epitaxial growth surface 1〇1 supporting the growth of the first epitaxial layer 104 is within the scope of the present invention. [0017] In step S20, the first carbon nanotube layer 102 is a continuous overall structure including a plurality of carbon nanotubes. The plurality of carbon nanotubes in the first carbon nanotube layer 1〇2 extend in a direction substantially parallel to the surface of the first carbon nanotube layer i 〇 2 . When the first carbon nanotube layer 1〇2 is disposed on the epitaxial growth surface 101 of the substrate 1 , the extending direction of the plurality of carbon nanotubes in the first carbon nanotube layer 1〇2 is basically An epitaxial growth surface 1〇1 parallel to the substrate 1〇〇. The thickness of the first carbon nanotube layer 1〇2 is 1 nm to 1 μm, or 1 nm to 1 μm, or 1 nm to 2 μN, preferably 1 N Meters ~ 100 nm. The first carbon nanotube layer 102 can be a patterned carbon nanotube layer. The ''patterning' means that the first carbon nanotube layer 102 has a plurality of first openings 105, and the plurality of first openings 105 penetrate through the thickness direction of the first carbon nanotube layer 102. The first carbon nanotube layer is 1〇2. When the first carbon nanotube layer 102 covers the epitaxial growth surface 101 of the substrate 1 , so that the epitaxial growth surface 1 〇 1 of the substrate 1 对 corresponds to the first opening 1 〇 5 Partial exposure facilitates growth of the first epitaxial layer 丨〇4. The first opening 105 can be a micro hole or a gap. The size of the first opening 1〇5 is 10 nm to 500 μm, and the size refers to the diameter of the micropores or the pitch of the gap in the width direction. The first opening ^ 〇 5 has a size of 10 nm to 300 μm, or 10 nm to 12 μm or 1 〇 nanometer to 80 μm, or 1 〇 nanometer to 1 μm. The smaller the size of the first opening 1〇5, the smaller the generation of misalignment defects during the growth of the epitaxial layer, to obtain the high-quality first epitaxial layer 1〇4. Preferably said first opening 100112867 Form No. A0101 Page 6 / Total 48 pages 1002021430-0 201238887 [0018] [0020] The size of 100112867 105 is from 10 nm to 1 μm. Further, the duty ratio of the first carbon nanotube layer 102 is 1:100~100:1, or 1:1〇~1〇:1, or 1:2~2:1, or 1:4 ~4:1. Preferably, the duty cycle is four. The term "duty ratio" means that the first carbon nanotube layer 1〇2 is disposed on the epitaxial growth surface 101 of the substrate 100, and the portion of the epitaxial growth surface 1〇1 occupied by the first carbon nanotube layer 102 is The area ratio of the portion exposed through the first opening 1〇5. Further, the "graphical" means that the arrangement of the plurality of carbon nanotubes in the first carbon nanotube layer 1〇2 is ordered and regular. For example, the first nanometer The axial direction of the plurality of carbon nanotubes in the carbon tube layer 102 is substantially parallel to the epitaxial growth surface of the substrate 1 且 and extends substantially in the same direction. Alternatively, the first carbon nanotube layer 102 has a plurality of The axial direction of the carbon nanotube may extend substantially in more than two directions. Or, the axial direction of the plurality of carbon nanotubes in the first carbon nanotube layer 102 extends along a crystal orientation of the substrate 100 or Extending at an angle to a crystal orientation of the substrate 100. Adjacent carbon nanotubes extending in the same direction in the first carbon nanotube layer 102 are connected end to end by van der Waals f〇rce. On the premise that the first carbon nanotube layer 102 has the first opening 1〇5 as described above, the plurality of carbon nanotubes in the first carbon nanotube layer 102 may also be disorderly arranged, Preferably, the first carbon nanotube layer 102 is disposed on the entire epitaxial growth surface 1 of the substrate 1 1. The carbon nanotubes in the first carbon nanotube layer 1〇2 may be one or a plurality of single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes, The length and diameter can be selected as needed. Form No. 101 0101 Page 7 / Total 48 Page 1002021430-0 201238887 [0022] [0023] The first carbon nanotube layer 102 is used to grow the first epitaxial layer 1 The photomask of 4 means that the first carbon nanotube layer 102 is used to block a portion of the epitaxial growth surface 101 of the substrate 100, and exposes a portion of the epitaxial growth surface 101' such that the first epitaxial layer 1 〇4 is only grown from the exposed portion of the epitaxial growth surface 1〇1. Since the first carbon nanotube layer 1〇2 has a plurality of first openings 1 0 5 , the first nano tube breaking layer 1 〇 2 Forming a patterned mask. After the first carbon nanotube layer 102 is disposed on the epitaxial growth surface 1 〇1 of the substrate 1 , the plurality of carbon nanotubes extend in a direction parallel to the epitaxial growth surface i 〇丨Forming a plurality of first openings 1〇5 due to the first carbon nanotube layer 1〇2 on the epitaxial growth surface 101 of the substrate 10〇, thereby causing the The epitaxial growth surface 1 〇 1 of the bottom 100 has a patterned mask. It can be understood that the method for epitaxial growth by providing a carbon nanotube layer 1 〇 2 mask is simple, compared with microelectronic methods such as photolithography. The cost is low, it is not easy to introduce pollution on the epitaxial growth surface 1 of the substrate 100, and the environmental protection can greatly reduce the preparation cost of the epitaxial structure 1 可以. It can be understood that the substrate 1 and the first carbon nanotube The layers 102 collectively constitute a substrate for growing the first epitaxial layer 〇4. The substrate can be used to grow a first epitaxial layer 不同4 of a different material, such as a semiconductor epitaxial layer, a metal epitaxial layer or an alloy epitaxial layer. The substrate can also be used to grow a homoepitaxial layer. The first carbon nanotube layer 〇2 can be directly formed on the epitaxial growth surface 10 of the substrate 100 after being formed. The first carbon nanotube layer 1〇2 is a macroscopic structure, and the first carbon nanotube layer 1〇2 is a self-supporting structure, and the self-supporting refers to the first carbon nanotube layer. 1〇2 does not require a large area of support, but as long as the support is provided on both sides, it can be suspended and maintained in its own state, that is, the first carbon nanotube layer i02 is placed (100112867 Form No. A0) 01 No. 8 Page / Total 48 pages 1002021430-0 201238887 or = 疋 ) 间隔 间隔 间隔 间隔 间隔 间隔 间隔 间隔 间隔 间隔 间隔 间隔 间隔 间隔 间隔 间隔 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一The carbon tube layer (10) is a self-supporting structure, and the first layer 1〇2 does not have to pass through the epitaxial growth surface m of the base layer ι〇〇 by a leaking chemical method. Preferably, the first carbon nanotube layer, ... L is composed of a plurality of carbon nanotubes composed of a carbon nanotube. The so-called "pure naphthalene does not contain any functional groups such as carboxyl groups" means that the carbon nanotube layer is modified without any chemical modification or acidification treatment throughout the preparation process. The first-nano carbon nanotubes (4) 2 may also be _ a composite structure of a plurality of n-ray tubes and an additive material, and the additive materials include graphite or graphite, carbonized carbide, nitriding, gasification, sulphur dioxide, amorphous carbon, and the like. The additive material may also include one or a plurality of metal carbide metal oxides, metal nitrides, etc. The additive material is coated on at least the carbon nanotubes of the first carbon nanotube layer 1〇2. A portion of the surface is disposed in the first opening 10 5 of the first carbon nanotube layer 102. Preferably, the additive material is coated on the surface of the carbon nanotube. Since the additive material is coated on the nanometer. The surface of the carbon tube makes the diameter of the carbon nanotubes larger, thereby reducing the first opening 105 between the carbon nanotubes. The additive material can be deposited by chemical vapor deposition (CVD), physical vapor deposition ( PVD), magnetron sputtering, etc. Surface of the carbon nanotubes. [0025] After the first carbon nanotube layer 1〇2 is laid on the epitaxial growth surface 101 of the substrate 1 , an organic solvent treatment step may be further included to enable the first step. The carbon nanotube layer 102 is more closely bonded to the epitaxial growth surface 1〇1. The organic solvent may be one of ethanol, decyl alcohol, acetone, dioxane and chloroform or 100112867 Form No. A0101 Page 9 of 48 1002021430-0 201238887 Several kinds of mixing. The organic solvent in this embodiment uses ethanol. The step of treating with an organic solvent can drip the organic solvent on the surface of the first carbon nanotube layer 102 through a test tube to infiltrate the entire first nai. The carbon nanotube layer 102 or the substrate 100 and the entire first carbon nanotube layer 102 are immersed in a container containing an organic solvent to infiltrate. [0026] The first carbon nanotube layer 102 can also pass through a chemical vapor phase. A method such as deposition (CVD) is directly grown on the epitaxial growth surface 101 of the substrate 100 or on the surface of the ruthenium substrate, and then transferred to the epitaxial growth surface 101 of the substrate 100, or the solution containing the carbon nanotubes is directly Epitaxial deposition on the substrate 100 The method of growing surface 101, etc. is formed. [0027] Specifically, the first carbon nanotube layer 102 may include a carbon nanotube film or a nano carbon pipeline. The first carbon nanotube layer 102 may be a single a layer of carbon nanotube film or a plurality of stacked carbon nanotube films. The first carbon nanotube layer 102 may comprise a plurality of parallel carbon nanotubes or a plurality of interdigitated carbon nanotubes. When the first carbon nanotube layer 102 is a plurality of stacked carbon nanotube films, the number of layers of the carbon nanotube film is not too high, preferably 2 to 100. When the first nanocarbon When the tube layer 102 is a plurality of carbon nanotubes arranged in parallel, the distance between the adjacent two nano carbon lines is from 0.1 μm to 200 μm, preferably from 10 μm to 100 μm. The space between the adjacent two nanocarbon lines constitutes a first opening 105 of the first carbon nanotube layer 102. The length of the gap between two adjacent nanocarbon lines may be equal to the length of the nanocarbon line. The carbon nanotube film or the carbon nanotube line may be directly laid on the epitaxial growth surface 101 of the substrate 100 to constitute the first carbon nanotube layer 102. By controlling the number of layers of the carbon nanotube film or the distance between the carbon nanotubes, the first carbon nanotube layer 102 can be controlled to be 100112867. Form No. A0101 Page 10 / Total 48 Page 1002021430-0 201238887 First opening 105 size of. [0028] Ο

所述奈米碳管膜是由若干奈米碳管組成的自支撐構造。 所述若干奈米碳管為沿同一方向擇優取向延伸。所述擇 優取向是指在奈米碳管膜中大多數奈米碳管的整體延伸 方向基本朝同一方向。而且,所述大多數奈米碳管的整 體延伸方向基本平行於奈米碳管膜的表面。進一步地, 所述奈米碳管膜中複數奈米碳管是通過凡得瓦力首尾相 連。具體地,所述奈米碳管膜中基本朝同一方向延伸的 大多數奈米碳管中每一奈米碳管與在延伸方向上相鄰的 奈米碳管通過凡得瓦力首尾相連。當然,所述奈米碳管 膜中存在少數隨機排列的奈米碳管,這些奈米碳管不會 對奈米碳管膜中大多數奈米碳管的整體取向排列構成明 顯影響。所述自支撐為奈米碳管膜不需要大面積的載體 支撐,而只要相對兩邊提供支撐力即能整體上懸空而保 持自身膜狀狀態,即將該奈米碳管膜置於(或固定於) 間隔特定距離設置的兩個支撐體上時,位於二支撐體之 間的奈米碳管膜能夠懸空保持自身膜狀狀態。所述自支 撐主要通過奈米碳管膜中存在連續的通過凡得瓦力首尾 相連延伸排列的奈米碳管而實現。 [0029] 具體地,所述奈米碳管膜中基本朝同一方向延伸的複數 奈米碳管,並非絕對的直線狀,可以適當的彎曲;或者 並非完全按照延伸方向上排列,可以適當的偏離延伸方 向。因此,不能排除奈米碳管膜的基本朝同一方向延伸 的複數奈米碳管中並列的奈米碳管之間可能存在部份接 觸。 100112867 表單編號Α0101 第11頁/共48頁 1002021430-0 201238887 [0030] 請參閱圖2及圖3,具體地,所述奈米碳管膜包括複數連 續且定向延伸的奈米碳管片段143。該複數奈米碳管片段 143通過凡得瓦力首尾相連。每一奈米碳管片段143包括 複數相互平行的奈米碳管145,該複數相互平行的奈米碳 管145通過凡得瓦力緊密結合。該奈米碳管片段143具有 任意的長度、厚度、均勻性及形狀。所述奈米碳管膜可 通過從一奈米碳管陣列中選定部份奈米碳管後直接拉取 獲得。所述奈米碳管膜的厚度為1奈米〜100微米,寬度與 拉取出該奈米碳管膜的奈米碳管陣列的尺寸有關,長度 不限。所述奈米碳管膜中相鄰的奈米碳管之間存在微孔 或間隙從而構成第一開口 105,且該微孔的孔徑或間隙的 尺寸小於10微米。優選地,所述奈米碳管膜的厚度為100 奈米〜10微米。該奈米碳管膜中的奈米碳管145沿同一方 向擇優取向延伸。所述奈米碳管膜及其製備方法具體請 參見申請人於2 007年2月12日申請的,於2010年7月11日 公告的第13271 77號中華民國專利“奈米碳管薄膜結構及 其製備方法”。為節省篇幅,僅引用於此,但上述申請 所有技術揭露也應視為本發明申請技術揭露的一部份。 [0031] 請參閱圖4,當所述奈米碳管層包括層疊設置的複數層奈 米碳管膜時,相鄰兩層奈米碳管膜中的奈米碳管的延伸 方向形成一交叉角度α,且α大於等於0度小於等於90度 (0。S α $90。)。 [0032] 為減小奈米碳管膜的厚度,還可以進一步對該奈米碳管 膜進行加熱處理。為避免奈米碳管膜加熱時被破壞,所 述加熱奈米碳管膜的方法採用局部加熱法。其具體包括 100112867 表單編號Α0101 第12頁/共48頁 1002021430-0 201238887 ❹ 以下步驟:局部加熱奈米碳管膜,使奈米碳管膜在局部 位置的部份奈米碳管被氧化;移動奈米碳管被局部加熱 的位置,從局部到整體實現整個奈米碳管膜的加熱。具 體地,可將該奈米碳管膜分成複數小的區域,採用由局 部到整體的方式,逐區域地加熱該奈米碳管膜。所述局 部加熱奈米碳管膜的方法可以有複數種,如鐳射加熱法 、微波加熱法等等。本實施例中,通過功率密度大於0. 1 xlO4瓦特/平方米的鐳射掃描照射該奈米碳管膜,由局部 到整體的加熱該奈米碳管膜。該奈米碳管膜通過鐳射照 射,在厚度方向上部份奈米碳管被氧化,同時,奈米碳 管膜中直徑較大的奈米碳管束被去除,使得該奈米碳管 膜變薄。 [0033]The carbon nanotube membrane is a self-supporting structure composed of a number of carbon nanotubes. The plurality of carbon nanotubes extend in a preferred orientation along the same direction. The preferred orientation means that the majority of the carbon nanotubes in the carbon nanotube film extend substantially in the same direction. Moreover, the overall direction of extension of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, the plurality of carbon nanotubes in the carbon nanotube film are connected end to end by van der Waals force. Specifically, each of the plurality of carbon nanotubes extending substantially in the same direction in the carbon nanotube film is connected end to end with a vanadium force in the extending direction. Of course, there are a small number of randomly arranged carbon nanotubes in the carbon nanotube membrane, and these carbon nanotubes do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube membrane. The self-supporting carbon nanotube film does not require a large-area carrier support, but can maintain a self-membrane state as long as the supporting force is provided on both sides, that is, the carbon nanotube film is placed (or fixed on) When the two supports are placed at a certain distance, the carbon nanotube film located between the two supports can be suspended to maintain the self-membrane state. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending through the end of the van der Waals force in the carbon nanotube film. [0029] Specifically, the plurality of carbon nanotubes extending substantially in the same direction in the carbon nanotube film are not absolutely linear and may be appropriately bent; or are not completely aligned in the extending direction, and may be appropriately deviated Extend the direction. Therefore, partial contact between the carbon nanotubes juxtaposed in the plurality of carbon nanotubes extending substantially in the same direction of the carbon nanotube film cannot be excluded. 100112867 Form No. Α 0101 Page 11 of 48 1002021430-0 201238887 [0030] Referring to Figures 2 and 3, in particular, the carbon nanotube membrane comprises a plurality of continuous and oriented elongated carbon nanotube segments 143. The plurality of carbon nanotube segments 143 are connected end to end by van der Waals force. Each of the carbon nanotube segments 143 includes a plurality of carbon nanotubes 145 which are parallel to each other, and the plurality of mutually parallel carbon nanotubes 145 are tightly bonded by van der Waals force. The carbon nanotube segments 143 have any length, thickness, uniformity, and shape. The carbon nanotube film can be obtained by directly drawing a part of a carbon nanotube from an array of carbon nanotubes. The carbon nanotube film has a thickness of from 1 nm to 100 μm, and the width is related to the size of the carbon nanotube array in which the carbon nanotube film is taken out, and the length is not limited. There are micropores or gaps between adjacent carbon nanotubes in the carbon nanotube film to form a first opening 105, and the pore size or gap size of the micropores is less than 10 microns. Preferably, the carbon nanotube film has a thickness of from 100 nm to 10 μm. The carbon nanotubes 145 in the carbon nanotube film extend in a preferred orientation in the same direction. For details of the carbon nanotube film and the preparation method thereof, please refer to the patent No. 13271 77 of the Republic of China patent "Nano Carbon Tube Film Structure" filed on July 12, 2010, filed by the applicant on February 12, 2010. And its preparation method". In order to save space, only the above is cited, but all the technical disclosures of the above application should also be considered as part of the technical disclosure of the present application. [0031] Referring to FIG. 4, when the carbon nanotube layer includes a plurality of laminated carbon nanotube films stacked in a stack, the extending direction of the carbon nanotubes in the adjacent two carbon nanotube films forms a cross. The angle α, and α is greater than or equal to 0 degrees and less than or equal to 90 degrees (0.S α $90.). [0032] In order to reduce the thickness of the carbon nanotube film, the carbon nanotube film may be further subjected to heat treatment. In order to prevent the carbon nanotube film from being destroyed upon heating, the method of heating the carbon nanotube film adopts a local heating method. Specifically, it includes 100112867 Form No. 1010101 Page 12/48 pages 1002021430-0 201238887 ❹ The following steps: locally heating the carbon nanotube film to partially oxidize the carbon nanotube film at a local position; The carbon nanotubes are locally heated to achieve heating of the entire carbon nanotube film from partial to integral. Specifically, the carbon nanotube film can be divided into a plurality of small regions, and the carbon nanotube film is heated region by region in a manner from the local to the whole. The method of locally heating the carbon nanotube film may be plural, such as laser heating, microwave heating, or the like. In this embodiment, the carbon nanotube film is irradiated by a laser scan having a power density of more than 0.1 x 10 4 watts per square meter, and the carbon nanotube film is heated from a partial to a whole. The carbon nanotube film is irradiated by laser, and some of the carbon nanotubes are oxidized in the thickness direction, and at the same time, the larger diameter carbon nanotube bundle in the carbon nanotube film is removed, so that the carbon nanotube film becomes thin. [0033]

可以理解,上述鐳射掃描奈米碳管膜的方法不限,只要 能夠均勻照射該奈米碳管膜即可。鐳射掃描可以沿平行 奈米碳管膜中奈米碳管的排列方向逐行進行,也可以沿 垂直於奈米碳管膜令奈米碳管的排列方向逐列進行。具 有固定功率、固定波長的鐳射掃描奈米碳管膜的速度越 小,奈米碳管膜中的奈米碳管束吸收的熱量越多,對應 被破壞的奈米碳管束越多,鐳射處理後的奈米碳管膜的 厚度變小。但是,如果鐳射掃描速度太小,奈米碳管膜 將吸收過多熱量而被燒毀。本實施例中,鐳射的功率密 度大於0. 053x1 012瓦特/平方米,鐳射光斑的直徑在1毫 米~5毫米範圍内,鐳射掃描照射時間小於1. 8秒。優選地 ,雷射器為二氧化碳雷射器,該雷射器的功率為30瓦特 ,波長為10. 6微米,光斑直徑為3毫米,鐳射裝置與奈米 100112867 表單編號A0101 第13頁/共48頁 1002021430-0 201238887 碳管膜的相對運動速度小於ίο毫米/秒。 [0034] 所述奈米碳管線可為非扭轉的奈米碳管線或扭轉的奈米 碳管線。所述非扭轉的奈米碳管線與扭轉的奈米碳管線 均為自支撐構造。具體地,請參閱圖5,該非扭轉的奈米 碳管線包括複數沿平行於該非扭轉的奈米碳管線長度方 向延伸的奈米碳管。具體地,該非扭轉的奈米碳管線包 括複數奈米碳管片段,該複數奈米碳管片段通過凡得瓦 力首尾相連,每一奈米碳管片段包括複數相互平行並通 過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有 任意的長度、厚度、均勻性及形狀。該非扭轉的奈米碳 管線長度不限,直徑為0. 5奈米~1 00微米。非扭轉的奈米 碳管線為將奈米碳管膜通過有機溶劑處理得到。具體地 ,將有機溶劑浸潤所述奈米碳管膜的整個表面,在揮發 性有機溶劑揮發時產生的表面張力的作用下,奈米碳管 膜中的相互平行的複數奈米碳管通過凡得瓦力緊密結合 ,從而使奈米碳管膜收縮為一非扭轉的奈米碳管線。該 有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙酮、二 氣乙烷或氣仿,本實施例中採用乙醇。通過有機溶劑處 理的非扭轉的奈米碳管線與未經有機溶劑處理的奈米碳 管膜相比,比表面積減小,黏性降低。 [0035] 所述扭轉的奈米碳管線為採用一機械力將所述奈米碳管 膜兩端沿相反方向扭轉獲得。請參閱圖6,該扭轉的奈米 碳管線包括複數繞該扭轉的奈米碳管線軸向螺旋延伸的 奈米碳管。具體地,該扭轉的奈米碳管線包括複數奈米 碳管片段,該複數奈米碳管片段通過凡得瓦力首尾相連 100112867 表單編號A0101 第14頁/共48頁 1002021430-0 201238887 ,每一奈米碳管片段包括複數相互平行並通過凡得瓦力 緊密結合的奈米碳管。該奈米碳管片段具有任意的長度 、厚度、均勻性及形狀。該扭轉的奈米碳管線長度不限 ,直徑為0. 5奈米〜100微米。進一步地,可採用一揮發性 有機溶劑處理該扭轉的奈米碳管線。在揮發性有機溶劑 揮發時產生的表面張力的作用下,處理後的扭轉的奈米 碳管線中相鄰的奈米碳管通過凡得瓦力緊密結合,使扭 轉的奈米碳管線的比表面積減小,密度及強度增大。 [0036] 所述奈米碳管線及其製備方法請參見申請人於2002年11 Ο 月5日申請的,於2008年11月21日公告的第1303239號 中華民國專利,申請人:鴻海精密工業股份有限公司, 及於2005年12月16日申請的,於2009年7月21日公告的 第1 31 2337號中華民國專利,申請人:鴻海精密工業股份 有限公司。 [0037] 所述奈米碳管薄膜還可以由以下步驟形成:a、在一燒杯 底部設置一基底;b、在另一燒杯中將製備的單壁奈米碳 〇 碳管在溶劑分散,並超聲波振盪十分鐘左右,去除沉澱 並得到一浮在表層的溶液,而後將浮在表層的溶液倒入 設置有基底的燒杯中;C、加熱燒杯從而蒸發所述溶劑, 使得奈米碳碳管均勻的沈積在基底上,從而在基底表面 形成奈米碳碳管膜。又該方法得到的奈米碳管薄膜中奈 米碳管非定向性的排列分佈。可以理解,所述奈米碳管 薄膜可以由電泳或沉澱等其他方法形成。 [0038] 步驟S30中,所述第一外延層104的生長方法可以通過分 子束外延法(MBE)、化學束外延法(CBE)、減壓外延 100112867 表單編號A0101 第15頁/共48頁 1002021430-0 201238887 '、低溫外延法、選擇外延法、液相沈積外延法(LPE) 金屬有機氣相外延法(MOVPE)、超真空化學氣相沈積 法(UHVCVD)、氫化物氣相外延法(HVPE) 、以及金屬有 機化學氣相沈積法(MOCVD)等中的一種或複數種實現。 [0039] [0040] [0041] 所述第~外延層104是指通過外延法生長在基底100的外 ^生長面丨〇1的單晶構造體’其材料不同於基底100,所 以也可稱為異質外延層。所述第一外延層104的生長的厚 度可根據需要製備。具體地,所述第一外延層104的生長 厚度可為0. 5奈米〜1毫米。例如,所述第一外延層1〇4的 生長的厚度可為1〇〇奈米〜500微米,或200奈米~200微米 或5〇〇奈米〜1〇〇微米。所述第一外延層1〇4可為一半導 體外延層’且該半導體外延層的材料為GaMnAs、GaAlAsIt is to be understood that the above method of scanning the carbon nanotube film is not limited as long as the carbon nanotube film can be uniformly irradiated. The laser scanning can be carried out row by row along the arrangement direction of the carbon nanotubes in the parallel carbon nanotube film, or can be carried out column by column along the arrangement direction of the carbon nanotubes perpendicular to the carbon nanotube film. The smaller the speed of the laser-scanned carbon nanotube film with fixed power and fixed wavelength, the more heat absorbed by the carbon nanotube bundle in the carbon nanotube film, the more the corresponding carbon nanotube bundle is destroyed, after laser treatment The thickness of the carbon nanotube film becomes small. However, if the laser scanning speed is too small, the carbon nanotube film will absorb too much heat and be burned. 5秒。 In this embodiment, the laser power density is greater than 0. 053x1 012 watts / square meter, the diameter of the laser spot is in the range of 1 mm to 5 mm, the laser scanning exposure time is less than 1.8 seconds. Preferably, the laser is a carbon dioxide laser having a power of 30 watts, a wavelength of 10.6 microns, a spot diameter of 3 mm, a laser device and a nanometer 100112867 Form No. A0101 Page 13 of 48 Page 1002021430-0 201238887 The relative movement speed of the carbon film is less than ίο mm / sec. [0034] The nanocarbon line may be a non-twisted nanocarbon line or a twisted nanocarbon line. The non-twisted nanocarbon line and the twisted nanocarbon line are both self-supporting structures. Specifically, referring to Figure 5, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes extending in a direction parallel to the length of the non-twisted nanocarbon pipeline. Specifically, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by a van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass through a van der Waals force. Tightly bonded carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米至1 00微米。 The non-twisted nano carbon line length is not limited, the diameter is 0. 5 nm ~ 1 00 microns. The non-twisted nano carbon line is obtained by treating the carbon nanotube membrane with an organic solvent. Specifically, the organic solvent is used to impregnate the entire surface of the carbon nanotube film, and the mutually parallel complex carbon nanotubes in the carbon nanotube film pass through the surface tension generated by the volatilization of the volatile organic solvent. The wattage is tightly combined to shrink the carbon nanotube membrane into a non-twisted nanocarbon pipeline. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, dihexane or gas, and ethanol is used in this embodiment. The non-twisted nanocarbon line treated by the organic solvent has a smaller specific surface area and a lower viscosity than the carbon nanotube film which is not treated with the organic solvent. [0035] The twisted nanocarbon line is obtained by twisting both ends of the carbon nanotube film in opposite directions by a mechanical force. Referring to Figure 6, the twisted nanocarbon line includes a plurality of carbon nanotubes extending axially around the twisted nanocarbon line. Specifically, the twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals 100112867 Form No. A0101 Page 14 / 48 pages 1002021430-0 201238887, each The carbon nanotube segments include a plurality of carbon nanotubes that are parallel to each other and closely coupled by van der Waals. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米〜100微米。 The twisted nano carbon line length is not limited, the diameter is 0. 5 nanometers ~ 100 microns. Further, the twisted nanocarbon line can be treated with a volatile organic solvent. Under the action of the surface tension generated by the volatilization of the volatile organic solvent, the adjacent carbon nanotubes in the treated twisted nanocarbon pipeline are tightly bonded by van der Waals to make the specific surface area of the twisted nanocarbon pipeline Decrease, increase in density and strength. [0036] The nano carbon pipeline and the preparation method thereof are referred to the patent of the Republic of China patent No. 1303239, which was filed by the applicant on November 5, 2002, and filed on November 21, 2008. Applicant: Hon Hai Precision Industry Co., Ltd., and the application for the Republic of China patent No. 1 31 2337, filed on December 16, 2005, the applicant: Hon Hai Precision Industry Co., Ltd. [0037] The carbon nanotube film may also be formed by: a, providing a substrate at the bottom of a beaker; b, dispersing the prepared single-walled carbon nanotube carbon tube in a solvent in another beaker, and Ultrasonic shaking for about ten minutes, removing the precipitate and obtaining a solution floating on the surface layer, and then pouring the solution floating on the surface layer into a beaker provided with a substrate; C, heating the beaker to evaporate the solvent, so that the carbon carbon nanotube tube is uniform The deposition on the substrate forms a carbon nanotube film on the surface of the substrate. In addition, the carbon nanotubes in the carbon nanotube film obtained by the method have a non-directional arrangement of carbon nanotubes. It will be understood that the carbon nanotube film may be formed by other methods such as electrophoresis or precipitation. [0038] In step S30, the growth method of the first epitaxial layer 104 may be performed by molecular beam epitaxy (MBE), chemical beam epitaxy (CBE), decompression epitaxy 100112867, form number A0101, page 15 / total 48 pages 1002021430 -0 201238887 ', low temperature epitaxy, selective epitaxy, liquid phase deposition epitaxy (LPE) metal organic vapor phase epitaxy (MOVPE), ultra-vacuum chemical vapor deposition (UHVCVD), hydride vapor phase epitaxy (HVPE) And one or more of metal organic chemical vapor deposition (MOCVD). [0040] The first epitaxial layer 104 refers to a single crystal structure in which the outer growth surface 丨〇1 of the substrate 100 is grown by epitaxial method, and the material thereof is different from the substrate 100, so it can also be called It is a heteroepitaxial layer. The thickness of the growth of the first epitaxial layer 104 can be prepared as needed. 5纳米〜1毫米。 The thickness of the first epitaxial layer 104 may be 0. 5 nanometers ~ 1 mm. For example, the thickness of the first epitaxial layer 1〇4 may be from 1 nanometer to 500 micrometers, or from 200 nanometers to 200 micrometers or from 5 nanometers to 1 micrometer. The first epitaxial layer 1〇4 may be a half-conductor epitaxial layer' and the material of the semiconductor epitaxial layer is GaMnAs, GaAlAs

GalnAs、GaAs、SiGe、InP、Si、AIN、GaN、GalnN A1InN、GaAIN或AlGalnN。所述第一外延層可為 五屬外延層’且該金屬外延層的材料為鋁、鉑、銅或 銀。所述第—外延層104可為__合金外延層,且該合金外 延層的材料為MnGa、CoMnGa或Co MnGa。 2 叫參閱圖7 ’具體地’所述第一外延層1〇4的生長過程具 體包括以下步驟: ~ S31 :沿著基本垂直於所述基底1〇〇的外延生長面“I方 向成核並外延生長形成複數外延晶粒1〇42 ; [0042] S32 :所述複數外延晶粒1042沿著基本平行 100的外延生長面101方向外延生長形成—連續 膜 1044 ; &所述基底 的外延薄 100112867 表單編號A0101 第16頁/共48頁 1002021430-0 201238887 [0043] [0044] [0045] ΟGalnAs, GaAs, SiGe, InP, Si, AIN, GaN, GalnN A1InN, GaAIN or AlGalnN. The first epitaxial layer may be a five-element epitaxial layer' and the material of the metal epitaxial layer is aluminum, platinum, copper or silver. The first epitaxial layer 104 may be an __alloy epitaxial layer, and the material of the alloy epitaxial layer is MnGa, CoMnGa or Co MnGa. 2 Referring to FIG. 7 'specifically' the growth process of the first epitaxial layer 1 具体 4 specifically includes the following steps: ~ S31 : nucleation along the epitaxial growth plane substantially perpendicular to the substrate 1 并Epitaxially growing a plurality of epitaxial grains 1 〇 42; [0042] S32: the plurality of epitaxial grains 1042 are epitaxially grown along a substantially parallel epitaxial growth surface 101 to form a continuous film 1044; & epitaxial thin 100112867 Form No. A0101 Page 16 / Total 48 Page 1002021430-0 201238887 [0044] [0045] Ο

[0046] S33 :所述外延薄膜1〇44沿著基本垂直於所述基底1〇〇的 外延生長面1〇1方向外延生長形成一第—外延層1〇4。 步驟S31中’所述複數外延晶粒1042於所述基底1〇〇的外 延生長面101通過該第一奈米碳管層1〇2的第一開口 105 暴路的部份開始生長,且其生長方向基本垂直於所述基 底1〇0的外延生長面1〇1,即該步驟中複數外延晶粒1〇42 進行縱向外延生長。 步驟S32中’通過控制生長條件使所述複數外延晶粒1〇42 沿著基本平行於所述基底1〇〇的外延生長面101的方向同 質外延生長並連成一體將所述第一奈米碳管層1〇2覆蓋。 即’該步驟中所述複數外延晶粒1〇42進行側向外延生長 直接合攏,並最終在奈米碳管周圍形成複數第一孔洞1〇3 將奈米碳_管包圍。優選地,奈米碳管與包圍該奈米碳管 的第一外延層104間隔設置。所述孔洞的形狀與第一奈米 碳管層102中的奈米碳管的排列方向有關。當第一奈米碳 管層102為單層奈米複管膜或複數平行設置的奈米碳管線 時,所述複數第一孔洞103為基本平行設置的溝槽。當第 一奈米碳管層102為複數層交又設置的奈米碳管膜或複數 交叉設置的奈米碳管線時’所述複數第一孔洞1〇3為交又 設置的溝槽網路。 步驟S33中,由於所述第一奈米碳管層1〇2的存在,使得 外延晶粒1042與基底100之間的晶格位錯在形成連續的外 延薄膜1044的過程中停止生長。因此,該步驟的第一外 延層104相當於在沒有缺陷的外延薄膜丨〇44表面進行同質 外延生長。所述第一外延層104具有較少的缺陷。 100112867 表單編號A0101 第17頁/共48頁 1002021430-0 201238887 [0047] 本發明第一實施例中,所述基底100為一藍寶石(Al2〇3 )基片,所述第一奈米碳管層102為一單層奈米碳管膜。 本實施採用MOCVD法進行外延生長。其中,採用高純氨氣 (nh3)作為氮的源氣,採用氫氣(h2)作載氣,採用三曱基 鎵(TMGa)或三乙基鎵(TEGa)、三甲基銦(TMIn)、三甲 基鋁(TMA1)作為Ga源、In源和A1源。具體包括以下步驟[0046] S33: the epitaxial film 1〇44 is epitaxially grown along a direction perpendicular to the epitaxial growth surface 1〇1 of the substrate 1形成 to form a first epitaxial layer 1〇4. In step S31, the complex epitaxial grains 1042 are grown on the epitaxial growth surface 101 of the substrate 1 through the portion of the first opening 105 of the first carbon nanotube layer 1〇2, and The growth direction is substantially perpendicular to the epitaxial growth surface 1〇1 of the substrate 1〇0, that is, the plurality of epitaxial grains 1〇42 in this step are longitudinally epitaxially grown. In step S32, 'the first epitaxial grains 1 〇 42 are homogenously epitaxially grown and integrated in a direction substantially parallel to the epitaxial growth surface 101 of the substrate 1 by controlling growth conditions to integrate the first nanometer. The carbon tube layer is covered by 1〇2. That is, in the step, the plurality of epitaxial grains 1 〇 42 are laterally epitaxially grown and directly closed, and finally a plurality of first holes 1 〇 3 are formed around the carbon nanotubes to surround the carbon nanotubes. Preferably, the carbon nanotubes are spaced apart from the first epitaxial layer 104 surrounding the carbon nanotubes. The shape of the holes is related to the arrangement direction of the carbon nanotubes in the first carbon nanotube layer 102. When the first carbon nanotube layer 102 is a single-layer nano tube or a plurality of parallel carbon nanotubes, the plurality of first holes 103 are substantially parallel grooves. When the first carbon nanotube layer 102 is a plurality of layers of carbon nanotube film or a plurality of interdigitated carbon nanotubes, the plurality of first holes 1 〇 3 are interconnected trench networks. . In step S33, due to the presence of the first carbon nanotube layer 1〇2, lattice dislocations between the epitaxial grains 1042 and the substrate 100 stop growing during the formation of the continuous epitaxial film 1044. Therefore, the first epitaxial layer 104 of this step corresponds to homoepitaxial growth on the surface of the epitaxial film 丨〇44 having no defects. The first epitaxial layer 104 has fewer defects. 100112867 Form No. A0101 Page 17 of 48 1002021430-0 201238887 In the first embodiment of the present invention, the substrate 100 is a sapphire (Al2〇3) substrate, the first carbon nanotube layer 102 is a single layer of carbon nanotube film. This embodiment uses epitaxial growth by MOCVD. Among them, high-purity ammonia (nh3) is used as the source gas of nitrogen, hydrogen (h2) is used as the carrier gas, and trimethylgallium (TMGa) or triethylgallium (TEGa) or trimethylindium (TMIn) is used. Trimethylaluminum (TMA1) acts as a Ga source, an In source, and an A1 source. Specifically includes the following steps

[〇_] 首先,將藍寶石基底100置入反應室,加熱到1100°C ~1 200°C,並通入H2、\或其混合氣體作為載氣,高溫烘 烤2 0 0秒~ 1 0 0 0秒。 [0049] 其次,繼續通入載氣,並降溫到500°C〜650°C,通入三甲 基鎵或三乙基鎵以及氨氣,生長GaN低溫緩衝層,其厚度 10奈米〜50奈米。 [0050] 然後,停止通入三曱基鎵或三乙基鎵,繼續通入氨氣和 載氣,同時將溫度升高到1100°C〜1 200°c,並恒溫保持 3 0秒~ 3 0 0秒,進行退火。 [0051] 最後,將基底100的溫度保持在1 000°C〜1100°C,繼續通 入氨氣和載氣,同時重新通入三曱基鎵或三乙基鎵,在 高溫下完成GaN的侧向外延生長過程,並生長出高品質的 G a N外延層。 [0052] 樣品生長完畢後,分別用掃描電子顯微鏡(SEM)和透射電 子顯微鏡(TEM)對樣品進行觀察和測試。請參閱圖8和圖9 ,本實施例製備的外延構造體中,第一外延層僅從基底 的外延生長面沒有奈米碳管層的位置開始生長,然後連 100112867 表單編號A0101 第18頁/共48頁 1002021430-0 201238887 成一體。所祕始 洞,[〇_] First, put the sapphire substrate 100 into the reaction chamber, heat it to 1100 ° C ~ 1 200 ° C, and pass H2, \ or its mixed gas as a carrier gas, high temperature baking 2 0 0 seconds ~ 1 0 0 0 seconds. [0049] Next, continue to pass the carrier gas, and reduce the temperature to 500 ° C ~ 650 ° C, pass through trimethyl gallium or triethyl gallium and ammonia, grow GaN low temperature buffer layer, the thickness of 10 nm ~ 50 Nano. [0050] Then, stop the introduction of trimethyl gallium or triethyl gallium, continue to pass ammonia gas and carrier gas, while raising the temperature to 1100 ° C ~ 1 200 ° c, and maintaining a constant temperature of 30 seconds ~ 3 0 0 seconds, annealing was performed. [0051] Finally, the temperature of the substrate 100 is maintained at 1 000 ° C to 1100 ° C, and the ammonia gas and the carrier gas are continuously introduced, and the tris-gallium or triethyl gallium is re-introduced to complete the GaN at a high temperature. The lateral epitaxial growth process and the growth of a high quality G a N epitaxial layer. [0052] After the samples were grown, the samples were observed and tested by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Referring to FIG. 8 and FIG. 9 , in the epitaxial structure prepared in this embodiment, the first epitaxial layer starts to grow only from the position where the epitaxial growth surface of the substrate has no carbon nanotube layer, and then is connected to 100112867, Form No. A0101, page 18 / A total of 48 pages 1002021430-0 201238887 into one. The secret hole,

間隔設置。 Ο [0053]Interval setting. Ο [0053]

[0054]G[0054] G

[0055] 100112867 炭=的排列方向有關,該複數孔洞相互連通地分伟在一 個平面内。優選地’該複數孔洞為奈米級孔洞。具體地 ’從所述圖8中可清楚其看到GaN外延層和藍寶石基底之 間的介面,其中,深色部份為GaN外延層,淺色部份為藍 寶石基底。所述GaN外延層與藍寶石基底接觸的表面具有 一排孔洞。從所述圖9中可以看到,每個孔洞内設置有奈 米碳管。所述孔洞内的奈米碳管設置於藍寶石基底表面 ’且與形成孔洞的GaN外延層間隔設置。 步驟S40中,所述第二奈米碳管層107的構造、設置方式 、形成方法以及材料等均與所述第一奈米碳管層102相同 ’因此在此不再進行贅述。 所述第二奈米碳管層1 具有複數第二開口 1〇8,該複數 第二開口 108從所述第二奈米碳管層1〇7的厚度方向貫穿 所述第二奈米碳管層丨〇7。當所述第二奈米碳管層107覆 蓋所述第一外延層104的表面106設置時’使所述第一外 延層104的表面1〇6對應該第二開口 1〇8的部份暴露以便 · 於生長第二外延層109。所述第二開口 108可為微孔或間 隙。所述第二開口 108的尺寸及分佈方式與所述第一開口 105的尺寸及分佈方式相同。 步驟S50中’所述第二外延層1〇9是指通過外延法生長在 第一外延層104的表面1 的單晶構造體’其材料可與所 述第一外延層104的材料相同也可以不相同。所述第二外 表單編號A0101 第19頁/共48頁 1002021430-0 201238887 延層109的生長方法及材料均可採用步驟S2{) T的所述楚 一外延層1 0 4的生長方法及材料。 100112867 [0056] [0057] [0058] [0059] [0060] [0061] 請參閱圖10,具體地’所述第二外延層1〇9 體包括以下步驟: 的生長過程具 S51 :沿著基本垂直於所述第-外延層1()4的_~ 底100的表面106方向成核並外延生長形成複數 ____ 峡晶叙 1092 S52 :所述複數外延晶粒1 092沿著基本平行於第 104的遠離所述基底100的表面1〇6方向外妹 咬生長形成— 連續的外延薄膜1 094 ; S53 :所述外延薄膜1〇94沿著基本垂直於所述 104的遠離所述基底100的表面1〇6方向外延生 第二外延層109。 外延層 第—外延層 長形成一 步驟S5lt ’所述複數外延晶粒1()92於所述第—外延層 的遠離所述基底1()㈣表面1()6通過該第二奈米碳管 層107的第二開σ1{)8暴露的部份開始生長且其生長方 向基本垂直於所述第—外延層1G4的遠離所述基底100的 表面106 ’即該步驟中複數外延晶粒1G92進行縱向外延生 步驟S 5 2中 、 ’通過控制生長條件使所述複數外延晶粒1092 沿著基本平杆 ;所述第一外延層104的遠離所述基底1〇〇 止〜106的方向同質外延生長並連成一體將所述第二奈 米碳管層1〇7覆基 . 歲。即’該步驟中所述複數外延晶粒1092 矣,向外延生長直接合攏,並最終在奈米碳管周圍形 表單編號Α0ΗΠ 第 20 頁/共 48 頁 1002021430-0 201238887 [0062] Ο 成複數第二孔洞1 0 9 3將奈米破管包圍。優選地,奈米碳 管與包圍該奈米碳管的第二外延層109間隔設置。所述孔 洞的形狀與第二奈米碳管層1 0 7中的奈米碳管的排列方向 有關。當第二奈米碳管層107為單層奈米碳管膜或複數平 行設置的奈米碳管線時,所述複數第二孔洞1 093為基本 平行設置的溝槽。當第二奈米碳管層107為複數層交叉設 置的奈米碳管膜或複數交叉設置的奈米碳管線時,所述 複數第二孔洞1093為交又設置的溝槽網路。 步驟S53中,由於所述第二奈米碳管層107的存在,使得 外延晶粒1 092與基底100之間的晶格位錯在形成連續的外 延薄膜1094的過程中停止生長。因此,該步驟的第二外 延層109相當於在沒有缺陷的外延薄膜1094表面進行同質 外延生長。所述第二外延層10 9具有較少的缺陷。 [0063] 本發明第一實施例中,所述第二奈米碳管層107為一單層 奈米碳管膜。本實施例採用MOCVD法進行外延生長所述第 二外延層109。其中,採用高純氨氣(ΝΗ3)作為氮的源氣 ❹ ,採用氫氣(Η2)作載氣,採用三甲基鎵(TMGa)或三乙基 鎵(TEGa)、三甲基銦(TMIn)、三甲基鋁(TMA1)作為Ga 源、In源和A1源。具體包括以下步驟: [0064] 首先,將生長有第一外延層104的基底100置入反應室, 加熱到1100°C〜1 200°C,並通入h2、\或其混合氣體作 為載氣,高溫烘烤200秒~ 1 000秒。 [0065] 其次,繼續同入載氣,並降溫到500°C~650°C,通入三曱 基鎵或三乙基鎵以及氨氣,生長GaN低溫緩衝層,其厚度 100112867 表單編號A0101 第21頁/共48頁 1002021430-0 201238887 為10奈米〜50奈米。 [0066] 然後’停止通入三曱基鎵或三乙基鎵,繼續通入氨氣和 載氣,同時將溫度升高到ll〇〇t〜1200t,並恒溫保持 30秒~300秒,進行退火。 [0067] 最後’將生長有第一外延層104的基底100的溫度保持在 1000°c~1100°c,繼續通入氨氣和載氣,同時重新通入 二曱基鎵或三乙基鎵,在高溫下完成GaN的侧向外延生長 過私,並生長出更尚品質的GaN外延層。 [0068] 請參閱圖11與圖12,為本發明第一實施例製備獲得的一 種外延構造體10,其包括:一基底1〇〇、一第一奈米碳管 層102、一第一外延層1〇4、一第二奈米碳管層丨〇7以及 第二外延層109。所述基底1〇〇具有一外延生長面。 所述第一奈米碳管層102設置於所述基底1〇〇的外延生長 面101 ’該第一奈米碳管層102具有複數第一開口 1〇5, 所述基底100的外延生長面101對應所述第一奈米碳管層 102的第一開口 1〇5的部份暴露。所述第一外延層1〇4設 置於所述基底1〇〇的外延生長面,並覆蓋所述第一奈 米碳管層102。所述第一奈米碳管層1〇2設置於所述第一 外延層104與基底100之間。所述第二奈米碳管層IQ?設 置於所述第一外延層104的遠離基底1〇〇的表面1〇6,該 第二奈米碳管層107具有複數第二開口 1〇8,所述第一外 延層104的遠離基底100的表面1〇6對應該第二奈米碳管 層107第二開口 108的部份暴露。所述第二外延廣1〇9設 置於所述第一外延層104的遠離基底ι〇〇的表面1〇6,並 覆蓋所述第二奈米礙管層107。所述第二奈米碳管層ι〇7 100112867 表單編號Α0101 第22頁/共48頁 201238887 位於所述第二外延層1〇9與所述第一外延層104之間。 [0069] Ο 所述第—外延層1 04將所述第-奈米破管層1G2覆蓋並 渗透所述第-奈米礙管層102的複數第,開口 105與所述 基底100的外延生長面丨〇1接觸,即所述第一奈米碳官層 102的複數第—開口 1〇5中均滲透有所述第一外延層104 。所述第-外延層1G4與其覆蓋的第,奈米礙管層1〇2在 微觀上間隔設置,即所述第一外延層1〇4與基底1〇〇接觸 的表面形成複數第—孔洞1〇3,所述第奈米碳管層1〇2 設置於該第-孔洞103内,具體地,所述第-奈米碳管層 102中的奈米碳管分別設置在複數第/孔洞103内。所述 第—孔洞103形成在第一外延層1〇4與所述基底100接觸 的表面,於所述第一外延層104的厚度方向該第一孔洞 Ϊ03均為盲孔。在每個第一孔洞丨内,奈米碳管均基本 不與所述第—外延層104接觸。 [0070] ❹ 所述第二外延層1〇9將所述第二奈米碳管層107覆蓋’並 渗透所述第二奈米碳管層1〇7的複數第二開口 108與所述 第—外延層104的遠離基底1〇〇的表面106接觸,即所述 第一奈米碳管層107的複數第二開口 1〇8中均滲透有所述 第一外延層109。所述第二外延層1〇9與其覆蓋的第二奈 米碳管層107在微觀上間隔設置,即所述第二外延層1〇9 與所述第一外延層104接觸的表面形成複數第二孔洞1〇93 ’所述第二奈米碳管層107設置於該第二孔洞1〇93内,具 體地’所述第二奈米碳管層107中的奈米碳管分別設置在 複數第二孔洞1093内。所述第二孔洞1 093形成於所述第 二外延層109與所述第一外延層ι〇4接觸的表面,於所述 100112867 表單編號A0101 第23頁/共48頁 1002021430-0 201238887 第一外延層104的厚度方向該第二孔洞1 093均為盲孔。在 每個第二孔洞1 0 9 3内,奈米碳管均基本不與所述第二外 延層1 09接觸。 [0071] 所述第一奈米碳管層102和所述第二奈米碳管層107均為 一自支樓構造。該奈米碳管層包括奈米碳管膜或奈米碳 管線。本實施例中,所述第一奈米碳管層102和所述第二 奈米碳管層107分別為一單層奈米碳管膜,該奈米碳管膜 包括複數奈米碳管,該複數奈米碳管的軸向沿同一方向 擇優取向延伸,延伸方向相同的相鄰的奈米碳管通過凡 得瓦力首尾相連。在垂直於延伸方向的相鄰的奈米碳管 之間部份間隔設置存在微孔或間隙,從而構成第一開口 105和第二開口 108。 [0072] 請參閱圖13,為本發明第二實施例製備獲得的一種外延 構造體20,其包括:一基底100、一第一奈米碳管層102 、一第一外延層104 ' —第二奈米碳管層107以及一第二 外延層109。本發明第二實施例中的外延構造體20的第一 外延層104和第二外延層109的材料,以及基底100、第 一奈米碳管層102、第一外延層104、第二奈米碳管層 1 〇 7和第二外延層1 0 9的位置關係與第一實施例的外延構 造體10基本相同,其區別在於,第一奈米碳管層102及第 二奈米碳管層107分別由複數平行且間隔設置的奈米碳管 線構成,相鄰的奈米碳管線之間形成微孔。 [0073] 所述奈米碳管線可為非扭轉的奈米碳管線或扭轉的奈米 碳管線。具體地,所述非扭轉的奈米碳管線包括複數沿 該非扭轉的奈米碳管線長度方向延伸的奈米碳管。所述 100112867 表單編號A0101 第24頁/共48頁 1002021430-0 201238887 [0074] [0075][0055] 100112867 The orientation of the carbon = is related, and the plurality of holes are connected to each other in a plane. Preferably, the plurality of holes are nano-scale holes. Specifically, it is clear from Fig. 8 that the interface between the GaN epitaxial layer and the sapphire substrate is seen, wherein the dark portion is a GaN epitaxial layer and the light portion is a sapphire substrate. The surface of the GaN epitaxial layer in contact with the sapphire substrate has a row of holes. As can be seen from Fig. 9, a carbon nanotube is disposed in each of the holes. The carbon nanotubes in the holes are disposed on the surface of the sapphire substrate and are spaced apart from the GaN epitaxial layer forming the holes. In step S40, the structure, arrangement, formation method, material, and the like of the second carbon nanotube layer 107 are the same as those of the first carbon nanotube layer 102. Therefore, no further description is given here. The second carbon nanotube layer 1 has a plurality of second openings 1〇8, and the plurality of second openings 108 penetrate the second carbon nanotubes from the thickness direction of the second carbon nanotube layer 1〇7 Layer 丨〇 7. When the second carbon nanotube layer 107 covers the surface 106 of the first epitaxial layer 104, the surface 1〇6 of the first epitaxial layer 104 is exposed to a portion corresponding to the second opening 1〇8. In order to grow the second epitaxial layer 109. The second opening 108 can be a microhole or a gap. The second opening 108 is sized and distributed in the same manner as the first opening 105. In the step S50, the second epitaxial layer 1〇9 refers to a single crystal structure grown on the surface 1 of the first epitaxial layer 104 by epitaxial method, and the material thereof may be the same as that of the first epitaxial layer 104. Not the same. The second outer form number A0101, page 19 / total 48 pages 1002021430-0 201238887 The growth method and material of the extension layer 109 can adopt the growth method and material of the Chu-e epitaxial layer 104 of step S2{) T . [0056] [0060] [0060] Referring to FIG. 10, specifically, the second epitaxial layer 1 〇 9 body includes the following steps: The growth process has S51: along the basic Vertically nucleating and epitaxially growing in the direction of the surface 106 of the first epitaxial layer 1() 4 to form a complex number ____ gorge 1092 S52: the complex epitaxial grains 1 092 are substantially parallel to the first The outer surface of the surface of the substrate 100 away from the surface of the substrate 100 is formed by a bite growth - a continuous epitaxial film 1 094; S53: the epitaxial film 1 〇 94 is substantially perpendicular to the substrate 100 away from the substrate 100 The second epitaxial layer 109 is epitaxially grown in the surface 1〇6 direction. The epitaxial layer first-epitaxial layer length forms a step S5lt', and the complex epitaxial grain 1() 92 passes through the second nanocarbon of the first epitaxial layer away from the substrate 1()(4) surface 1()6 The exposed portion of the second opening σ1{)8 of the tube layer 107 begins to grow and its growth direction is substantially perpendicular to the surface 106' of the first epitaxial layer 1G4 away from the substrate 100. That is, the plurality of epitaxial grains 1G92 in this step In the longitudinal epitaxial growth step S 5 2, 'the plurality of epitaxial grains 1092 are along the substantially flat rod by controlling the growth conditions; the first epitaxial layer 104 is homogenous in the direction away from the substrate 1 to 106. Epitaxially growing and integrating to form the second carbon nanotube layer 1〇7. That is, the complex epitaxial grains 1092 in the step are directly closed to epitaxial growth, and finally form a number around the carbon nanotubes. ΗΠ0ΗΠ Page 20 of 48 1002021430-0 201238887 [0062] Ο Two holes 1 0 9 3 surrounded by a broken tube. Preferably, the carbon nanotubes are spaced apart from the second epitaxial layer 109 surrounding the carbon nanotubes. The shape of the hole is related to the arrangement direction of the carbon nanotubes in the second carbon nanotube layer 107. When the second carbon nanotube layer 107 is a single-layer carbon nanotube film or a plurality of parallelly disposed nanocarbon lines, the plurality of second holes 1 093 are substantially parallel disposed grooves. When the second carbon nanotube layer 107 is a plurality of layers of carbon nanotube films or a plurality of interdigitated carbon nanotube circuits, the plurality of second holes 1093 are interposed groove networks. In step S53, due to the presence of the second carbon nanotube layer 107, lattice dislocations between the epitaxial grains 1 092 and the substrate 100 stop growing during the formation of the continuous epitaxial film 1094. Therefore, the second epitaxial layer 109 of this step corresponds to homoepitaxial growth on the surface of the epitaxial film 1094 which is free from defects. The second epitaxial layer 109 has fewer defects. In the first embodiment of the present invention, the second carbon nanotube layer 107 is a single-layer carbon nanotube film. In this embodiment, the second epitaxial layer 109 is epitaxially grown by the MOCVD method. Among them, high-purity ammonia (ΝΗ3) is used as the source gas of nitrogen, hydrogen (Η2) is used as the carrier gas, and trimethylgallium (TMGa) or triethylgallium (TEGa) or trimethylindium (TMIn) is used. Trimethylaluminum (TMA1) is used as a Ga source, an In source, and an A1 source. Specifically, the following steps are included: [0064] First, the substrate 100 on which the first epitaxial layer 104 is grown is placed in a reaction chamber, heated to 1100 ° C to 1 200 ° C, and h2, \ or a mixed gas thereof is used as a carrier gas. , high temperature baking 200 seconds ~ 1 000 seconds. [0065] Next, continue to carry the same carrier gas, and cool down to 500 ° C ~ 650 ° C, through the tri-n-gallium or triethyl gallium and ammonia, grow GaN low-temperature buffer layer, the thickness of 100112867 Form No. A0101 21 pages / total 48 pages 1002021430-0 201238887 for 10 nm ~ 50 nm. [0066] Then 'stop the introduction of trimethyl gallium or triethyl gallium, continue to pass ammonia and carrier gas, while raising the temperature to ll 〇〇 t ~ 1200t, and maintaining the temperature for 30 seconds ~ 300 seconds, annealing. [0067] Finally, the temperature of the substrate 100 on which the first epitaxial layer 104 is grown is maintained at 1000 ° C to 1100 ° C, and the ammonia gas and the carrier gas are continuously supplied, and the germanium or triethyl gallium is re-introduced. The lateral epitaxial growth of GaN is completed at a high temperature, and a higher quality GaN epitaxial layer is grown. [0068] Referring to FIG. 11 and FIG. 12, an epitaxial structure 10 obtained by the first embodiment of the present invention includes: a substrate 1 〇〇, a first carbon nanotube layer 102, and a first epitaxy. The layer 1〇4, a second carbon nanotube layer 7 and a second epitaxial layer 109. The substrate 1 has an epitaxial growth surface. The first carbon nanotube layer 102 is disposed on the epitaxial growth surface 101 of the substrate 1 '. The first carbon nanotube layer 102 has a plurality of first openings 1 〇 5, and the epitaxial growth surface of the substrate 100 A portion of the first opening 1〇5 corresponding to the first carbon nanotube layer 102 is exposed. The first epitaxial layer 1〇4 is disposed on an epitaxial growth surface of the substrate 1 and covers the first carbon nanotube layer 102. The first carbon nanotube layer 1〇2 is disposed between the first epitaxial layer 104 and the substrate 100. The second carbon nanotube layer IQ is disposed on a surface 1〇6 of the first epitaxial layer 104 away from the substrate 1 , and the second carbon nanotube layer 107 has a plurality of second openings 1〇8, The surface 1〇6 of the first epitaxial layer 104 remote from the substrate 100 is exposed to a portion of the second opening 108 of the second carbon nanotube layer 107. The second epitaxial layer 1 is disposed on the surface 1〇6 of the first epitaxial layer 104 away from the substrate ι and covers the second nano-barrier layer 107. The second carbon nanotube layer ι〇7 100112867 Form No. Α0101 Page 22 of 48 201238887 is located between the second epitaxial layer 1〇9 and the first epitaxial layer 104. [0069] 第 the first epitaxial layer 104 covers the first nano-tube layer 1G2 and penetrates the plurality of the first-nano-damage layer 102, and the epitaxial growth of the opening 105 and the substrate 100 The facet 1 contact, that is, the first epitaxial layer 104 is infiltrated into the plurality of first openings 1〇5 of the first nanocarbon layer 102. The first epitaxial layer 1G4 and the covered nano-barrier layer 1〇2 are microscopically spaced apart, that is, the surface of the first epitaxial layer 1〇4 in contact with the substrate 1〇〇 forms a plurality of first holes 1 〇3, the first carbon nanotube layer 1〇2 is disposed in the first hole 103. Specifically, the carbon nanotubes in the first carbon nanotube layer 102 are respectively disposed in the plurality of holes/holes 103. Inside. The first hole 103 is formed on a surface of the first epitaxial layer 1〇4 in contact with the substrate 100, and the first hole Ϊ03 is a blind hole in a thickness direction of the first epitaxial layer 104. In each of the first holes, the carbon nanotubes are substantially not in contact with the first epitaxial layer 104. [0070] ❹ the second epitaxial layer 1〇9 covers the second carbon nanotube layer 107 and penetrates the plurality of second openings 108 of the second carbon nanotube layer 1〇7 and the first The surface 106 of the epitaxial layer 104 remote from the substrate 1 is in contact with the first epitaxial layer 109 in the plurality of second openings 1 〇 8 of the first carbon nanotube layer 107. The second epitaxial layer 1〇9 is microscopically spaced from the second carbon nanotube layer 107 covered by the second epitaxial layer 1〇9, that is, the surface of the second epitaxial layer 1〇9 in contact with the first epitaxial layer 104 forms a plurality of The second carbon nanotube layer 107 is disposed in the second hole 1〇93, and specifically the carbon nanotubes in the second carbon nanotube layer 107 are respectively disposed in plural Inside the second hole 1093. The second hole 1 093 is formed on a surface of the second epitaxial layer 109 that is in contact with the first epitaxial layer ι 4, in the 100112867 Form No. A0101 Page 23 / Total 48 Page 1002021430-0 201238887 First The second holes 1 093 are all blind holes in the thickness direction of the epitaxial layer 104. Within each of the second holes 1 0 9 3 , the carbon nanotubes are substantially not in contact with the second epitaxial layer 109. [0071] The first carbon nanotube layer 102 and the second carbon nanotube layer 107 are both self-supporting structures. The carbon nanotube layer comprises a carbon nanotube membrane or a nanocarbon pipeline. In this embodiment, the first carbon nanotube layer 102 and the second carbon nanotube layer 107 are respectively a single-layer carbon nanotube film, and the carbon nanotube film comprises a plurality of carbon nanotubes. The axial direction of the plurality of carbon nanotubes extends in a preferred orientation in the same direction, and adjacent carbon nanotubes extending in the same direction are connected end to end by van der Waals force. Micropores or gaps are provided at intervals between adjacent carbon nanotubes perpendicular to the extending direction to constitute a first opening 105 and a second opening 108. Referring to FIG. 13, an epitaxial structure 20 prepared according to a second embodiment of the present invention includes: a substrate 100, a first carbon nanotube layer 102, and a first epitaxial layer 104'. The carbon nanotube layer 107 and a second epitaxial layer 109. The material of the first epitaxial layer 104 and the second epitaxial layer 109 of the epitaxial structure 20 in the second embodiment of the present invention, and the substrate 100, the first carbon nanotube layer 102, the first epitaxial layer 104, and the second nanometer The positional relationship between the carbon tube layer 1 〇7 and the second epitaxial layer 109 is substantially the same as that of the epitaxial structure 10 of the first embodiment, except that the first carbon nanotube layer 102 and the second carbon nanotube layer 107 is composed of a plurality of parallel and spaced carbon nanotubes, and micropores are formed between adjacent nanocarbon lines. [0073] The nanocarbon line may be a non-twisted nanocarbon line or a twisted nanocarbon line. Specifically, the non-twisted nanocarbon line includes a plurality of carbon nanotubes extending along the length of the non-twisted nanocarbon line. The 100112867 form number A0101 page 24 / total 48 page 1002021430-0 201238887 [0074] [0075]

扭轉的奈米碳管線包括複數繞該扭轉的奈米碳管線軸向 螺旋延伸的奈米碳管。 另外,本實施例中,所述基底100為一絕緣體上的矽( SOI: silicon on insulator)基片。本實施例第一外 延層104採用M0CVD法進行外延生長。其中,分別採用三 曱基鎵(TMGa)、三曱基鋁(TMA1)作為Ga和A1的源物質 ,氨氣(NH3)作為氮的源物質,氫氣(H2)作載氣,使用臥 式水準反應爐加熱。具體地,首先在SOI基底100的外延 生長面101鋪設複數平行且間隔設置的奈米碳管線。然後 在基底100的外延生長面101外延生長GaN外延層,生長 溫度1070°C,生長時間450秒,主要是進行GaN的縱向生 長;接著保持反應室壓力不變,升高溫度到1110°C,同 時降低Ga源流量,而保持氨氣流量不變,以促進側向外 延生長,生長時間為4900秒;最後,降低溫度至1070°C ,同時增加Ga源流量繼續縱向生長1 0000秒。 請參閱圖14,本發明第三實施例提供一種外延構造體30 ,其包括:一基底100、一第一奈米碳管層102、一第一 外延層104、一第二奈米碳管層107以及一第二外延層 109。本發明第三實施例中的外延構造體30的基底100、 第一外延層104和第二外延層109的材料,以及基底100 、第一奈米碳管層102、第一外延層104、第二奈米碳管 層107與第二外延層109的位置關係與第一實施例的外延 構造體10基本相同,其區別在於,第一奈米碳管層102及 第二奈米碳管層107均由複數交叉且間隔設置的奈米碳管 線構成,交叉且間相鄰的四個奈米碳管線之間形成微孔 100112867 表單編號A0101 第25頁/共48頁 1002021430-0 201238887 。具體地,該複數奈米碳管線分別沿第一方向與第二方 向平行設置,所述第一方向與第二方向交叉設置。交又 且間相鄰的四個奈米碳管線之間形成—開口。本實施例 中,相鄰的兩個奈米碳管線平行設置,相交叉的兩個奈 米碳管線相互垂直。可以理解,所述奈米碳管線也吁採 用任意交又方式設置,只需使第一奈米碳管層1〇2及第二 奈米碳管層107分別形成複數開口,從而使基底1〇〇及第 外延層1〇4的外延生長面部份暴露即可。 [0076] 本發明第三實施例的外延構造體3 0可以採用與第一實施 例或第二實施例相同的方法製備。 [0077] 本發明第四實施例提供一種複數層外延構造體,其包括 .一基底,複數奈米碳管層以及複數外延層。本發明第 四實施例中的奈米碳管層可採用上述第一實施例至第三 實細•例的奈米碳管層,基底、奈米碳管層與外延層的材 料及位置關係與第一實施例基本相同,其區別在於,本 實施例的外延構造體包括複數層疊的外延層,所述基底 的外延生長面及每相鄰外延層之間均設置有奈米碳管層 〇 [0078] 本發明第四實施例進一步提供複數層的外延構造體的製 備方法,其具體包括以下步驟: [0079] 第1步驟.提供一基底’且該基底具有一支持外延層生長 的外延生長面; [0080] 第2步驟:於所述基底的外延生長面設置一奈米碳管層, 該基底與奈米碳管層共同構成一襯底; 100112867 表單編號A0101 第26頁/共48頁 1002021430-0 201238887 [0081] 第3步驟 [0082] 第4步驟 [0083] 第5步驟 [0084] 第6步驟 碳管層; [0085] 第7步驟 外延層; 在基底的外延生長面生長第1外延層; 第1外延層的表面設置一奈米碳管層; 在第1外延層的表面生長第2外延層; 第2外延層的遠離第1外延層的表面設置一奈来 在第2外延層的遠離第1外延層的表面生長第3 [0086]… [0087] 第S步驟:在第η外延層的遠離第外延層n-1的表面設置一 奈米碳管層; [0088] 第S + 1步驟:在第η外延層的遠離第外延層n-1的表面生長 第n + 1外延層。 [0089] 其中,S為大於等於8的整數,η為大於等於3的整數。 [0090] 本發明第四實施例的每一外延層的生長方法與第一實施 例的外延層的生長方法基本相同。 [0091] 可以理解,第2至η層外延層依序層疊生長於第1外延層的 表面,每相鄰外延層之間設置一光罩層,所述光罩層中 至少一光罩層為奈米碳管層。生長第η外延層時,第n-1 外延層的遠離第n-2外延層的表面,除了設置奈米碳管層 用作光罩層以外,還可以設置例如圖形化處理的5丨〇2等 其他光罩層。 [0092] 本發明採用一奈米碳管層作為光罩設置於所述基底外延 100112867 表翠編號A0101 第27頁/共48頁 1002021430-0 201238887 生長面生長外延層具有以下有以效果: [0093] 第_,所述奈米碳管層為一自支撐構造’可直接鋪設在 基底的外延生長面,相對於先前技術通過沈積後光刻等 製造方法形成光罩,本發明製程簡單’成本低廉,有利 於量產。 [0094] 第二,所述奈米碳管層為圖形化構造,其厚度、開口尺 寸均可達到奈米級,所述襯底用來生長外延層時形成的 外延晶粒具有更小的尺 <,有利於減少位錯缺陷的產生 ,以獲得高品質的外延層。 [0095] 第三,所述奈米碳管層的開口尺寸可達奈米級,所述外 延層從與奈米級開口對應的暴露的外延生長面生長,使 得生長的外延層與基底之間的接觸面積減小,減小了生 長過程中外延層與襯底之間的應力,從而可以生長厚度 較大的外延層,可進一步提高外延層的品質。 [0096] 第四’通過多次設置奈米碳管膜並多次外延生長外延層 ,可進一步減少外延層中的缺陷,提升外延層的品質。 [0097] 综上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限製本案之申請專利範圍。舉凡習知本荦 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0098] 圖1為本發明實施例提供的外延構造體的製備方法的製造 方法流程圖。 100112867 表單編號A0101 第28頁/共48頁 201238887 [0099] 圖2為本發明實施例中採用的奈米碳管膜的掃描電鏡照片 〇 [0100] 圖3為圖2中的奈米碳管膜中的奈米碳管片段的構造示意 圖。 [0101] 圖4為本發明實施例中採用的複數層交叉設置的奈米碳管 膜的掃描電鏡照片。 [0102] 圖5為本發明實施例中採用的非扭轉的奈米碳管線的掃描 電鏡照片。 Ο [0103] 圖6為本發明實施例中採用的扭轉的奈米碳管線的掃描電 鏡照片。 [0104] 圖7為本發明實施例中第一外延層生長過程示意圖。 [0105] 圖8為本發明第一實施例製備的外延構造體截面的掃描電 鏡照片。 [0106] 圖9為本發明第一實施例製備的外延構造體介面處的透射 電鏡照片。 [0107] 圖10為本發明實施例中第二外延層生長過程示意圖。 [0108] 圖11為本發明第一實施例提供的外延構造體的立體構造 示意圖。 [0109] 圖1 2為圖11所示的外延構造體沿線X11 - X11的剖面示意 圖。 [0110] 圖13為本發明第二實施例提供的外延構造體的立體構造 示意圖。 100112867 表單編號A0101 第29頁/共48頁 1002021430-0 201238887 [0111] 圖14為本發明第三實施例提供的外延構造體的立體構造 示意圖。 【主要元件符號說明】 [0112] 外延構造體:10,20,30 [0113] 基底:100 [0114] 外延生長面:101 [0115] 第一奈米碳管層:102 [0116] 第一孔洞:1 0 3 [0117] 第一外延層:104 [0118] 第一開口 : 1 0 5 [0119] 表面:106 [0120] 第二奈米碳管層:107 [0121] 第二開口 : 108 [0122] 第二外延層:109 [0123] 外延晶粒:1042 [0124] 外延薄膜:1044 [0125] 外延晶粒:1092 [0126] 第二孔洞:1093 [0127] 外延薄膜:1094 [0128] 奈米碳管片段:143 1002021430-0 100112867 表單編號A0101 第30頁/共48頁 145 201238887 [0129] 奈米碳管The twisted nanocarbon line includes a plurality of carbon nanotubes extending axially around the twisted nanocarbon line. In addition, in the embodiment, the substrate 100 is a silicon-on-insulator (SOI) substrate. In the present embodiment, the first epitaxial layer 104 is epitaxially grown by the M0CVD method. Among them, tricarbyl gallium (TMGa) and trisyl aluminum (TMA1) are used as the source materials of Ga and A1, ammonia (NH3) is used as the source of nitrogen, hydrogen (H2) is used as carrier gas, and horizontal level is used. The furnace is heated. Specifically, a plurality of parallel and spaced carbon nanotube lines are first laid on the epitaxial growth surface 101 of the SOI substrate 100. Then, a GaN epitaxial layer is epitaxially grown on the epitaxial growth surface 101 of the substrate 100, the growth temperature is 1070 ° C, and the growth time is 450 seconds, mainly for longitudinal growth of GaN; then, the pressure of the reaction chamber is kept constant, and the temperature is raised to 1110 ° C. At the same time, the Ga source flow rate is reduced, while the ammonia gas flow rate is kept constant to promote lateral epitaxial growth, and the growth time is 4900 seconds. Finally, the temperature is lowered to 1070 ° C, and the Ga source flow rate is increased to continue longitudinal growth for 1 0000 seconds. Referring to FIG. 14 , a third embodiment of the present invention provides an epitaxial structure 30 including a substrate 100 , a first carbon nanotube layer 102 , a first epitaxial layer 104 , and a second carbon nanotube layer . 107 and a second epitaxial layer 109. The substrate 100, the material of the first epitaxial layer 104 and the second epitaxial layer 109 of the epitaxial structure 30 in the third embodiment of the present invention, and the substrate 100, the first carbon nanotube layer 102, the first epitaxial layer 104, The positional relationship between the second carbon nanotube layer 107 and the second epitaxial layer 109 is substantially the same as that of the epitaxial structure 10 of the first embodiment, except that the first carbon nanotube layer 102 and the second carbon nanotube layer 107 are different. Each consists of a plurality of carbon nanotubes that are interdigitated and spaced apart, and micropores are formed between the intersecting and adjacent four nanocarbon lines. Form No. A0101, page 25 of 48, 1002021430-0 201238887. Specifically, the plurality of carbon nanotubes are respectively disposed in parallel with the second direction in the first direction, and the first direction is disposed to intersect the second direction. An opening is formed between the four adjacent carbon carbon lines that are adjacent to each other. In this embodiment, two adjacent nanocarbon pipelines are arranged in parallel, and the two nanocarbon pipelines intersecting each other are perpendicular to each other. It can be understood that the nano carbon pipeline is also arranged in any way, and only the first carbon nanotube layer 1〇2 and the second carbon nanotube layer 107 are respectively formed into a plurality of openings, so that the substrate 1〇 The epitaxial growth surface of the epitaxial layer 1〇4 may be partially exposed. The epitaxial structure 30 of the third embodiment of the present invention can be produced by the same method as the first embodiment or the second embodiment. A fourth embodiment of the present invention provides a plurality of epitaxial structures including a substrate, a plurality of carbon nanotube layers, and a plurality of epitaxial layers. The carbon nanotube layer in the fourth embodiment of the present invention may adopt the carbon nanotube layer of the first embodiment to the third embodiment, the material and the positional relationship between the substrate, the carbon nanotube layer and the epitaxial layer. The first embodiment is substantially the same, except that the epitaxial structure of the present embodiment includes a plurality of stacked epitaxial layers, and an epitaxial growth surface of the substrate and a carbon nanotube layer are disposed between each adjacent epitaxial layer. The fourth embodiment of the present invention further provides a method for preparing a plurality of epitaxial structures, which specifically includes the following steps: [0079] Step 1. Providing a substrate and having an epitaxial growth surface supporting epitaxial layer growth [0080] Step 2: providing a carbon nanotube layer on the epitaxial growth surface of the substrate, the substrate and the carbon nanotube layer together forming a substrate; 100112867 Form No. A0101 Page 26 / Total 48 Page 1002021430 -0 201238887 [0081] Step 3 [0082] Step 4 [0083] Step 5 [0084] Step 6 Carbon tube layer; [0085] Step 7 Epitaxial layer; Growth of the first epitaxial growth surface of the substrate Layer; surface of the first epitaxial layer a carbon nanotube layer is disposed; a second epitaxial layer is grown on the surface of the first epitaxial layer; and a surface of the second epitaxial layer remote from the first epitaxial layer is provided on the surface of the second epitaxial layer away from the first epitaxial layer [0086] Step S: providing a carbon nanotube layer on the surface of the η epitaxial layer away from the epitaxial layer n-1; [0088] Step S+1: in the η epitaxial The n + 1 epitaxial layer of the layer is grown away from the surface of the epitaxial layer n-1. Wherein S is an integer greater than or equal to 8, and η is an integer greater than or equal to 3. [0090] The growth method of each epitaxial layer of the fourth embodiment of the present invention is substantially the same as the growth method of the epitaxial layer of the first embodiment. [0091] It can be understood that the second to n-layer epitaxial layers are sequentially stacked and grown on the surface of the first epitaxial layer, and a photomask layer is disposed between each adjacent epitaxial layer, and at least one photomask layer in the photomask layer is Carbon nanotube layer. When the nth epitaxial layer is grown, the surface of the n-1th epitaxial layer away from the n-2th epitaxial layer may be provided with, for example, a patterned process, in addition to the carbon nanotube layer being used as a photomask layer. Wait for other mask layers. [0092] The present invention uses a carbon nanotube layer as a mask to be disposed on the substrate epitaxial 100112867. Table No. A0101 Page 27 / Total 48 Page 1002021430-0 201238887 The growth surface growth epitaxial layer has the following effects: [0093] The _, the carbon nanotube layer is a self-supporting structure that can be directly laid on the epitaxial growth surface of the substrate, and the reticle is formed by a manufacturing method such as post-deposition lithography with respect to the prior art, and the process of the invention is simple and low-cost It is conducive to mass production. [0094] Second, the carbon nanotube layer is a patterned structure, and the thickness and the opening size thereof can reach a nanometer level, and the epitaxial grains formed when the substrate is used to grow the epitaxial layer have a smaller ruler. <, it is advantageous to reduce the generation of dislocation defects to obtain a high quality epitaxial layer. [0095] Third, the carbon nanotube layer has an opening size up to the nanometer level, and the epitaxial layer is grown from the exposed epitaxial growth surface corresponding to the nanometer opening, so that the grown epitaxial layer and the substrate are between The contact area is reduced, and the stress between the epitaxial layer and the substrate during the growth process is reduced, so that the epitaxial layer having a larger thickness can be grown, and the quality of the epitaxial layer can be further improved. [0096] Fourth, by setting the carbon nanotube film multiple times and epitaxially growing the epitaxial layer multiple times, defects in the epitaxial layer can be further reduced, and the quality of the epitaxial layer can be improved. [0097] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art will be encompassed within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0098] FIG. 1 is a flow chart showing a manufacturing method of a method for fabricating an epitaxial structure according to an embodiment of the present invention. 100112867 Form No. A0101 Page 28/Total 48 Page 201238887 [0099] FIG. 2 is a scanning electron micrograph of a carbon nanotube film used in an embodiment of the present invention [0100] FIG. 3 is a carbon nanotube film of FIG. Schematic diagram of the structure of the carbon nanotube fragments in the middle. 4 is a scanning electron micrograph of a carbon nanotube film disposed at a plurality of layers in an embodiment of the present invention. 5 is a scanning electron micrograph of a non-twisted nanocarbon line used in an embodiment of the present invention. Figure 6 is a scanning electron micrograph of a twisted nanocarbon line used in an embodiment of the present invention. 7 is a schematic view showing a growth process of a first epitaxial layer in an embodiment of the present invention. 8 is a scanning electron micrograph of a cross section of an epitaxial structure prepared in accordance with a first embodiment of the present invention. 9 is a transmission electron micrograph at the interface of the epitaxial structure prepared in the first embodiment of the present invention. 10 is a schematic view showing a growth process of a second epitaxial layer in an embodiment of the present invention. 11 is a perspective view showing the three-dimensional structure of an epitaxial structure according to a first embodiment of the present invention. 12 is a schematic cross-sectional view of the epitaxial structure shown in FIG. 11 taken along line X11 - X11. 13 is a perspective view showing a perspective structure of an epitaxial structure according to a second embodiment of the present invention. 100112867 Form No. A0101 Page 29 of 48 1002021430-0 201238887 [0111] FIG. 14 is a perspective view showing a three-dimensional structure of an epitaxial structure according to a third embodiment of the present invention. [Explanation of main component symbols] [0112] Epitaxial structure: 10, 20, 30 [0113] Substrate: 100 [0114] Epitaxial growth surface: 101 [0115] First carbon nanotube layer: 102 [0116] First hole : 1 0 3 [0117] First epitaxial layer: 104 [0118] First opening: 1 0 5 [0119] Surface: 106 [0120] Second carbon nanotube layer: 107 [0121] Second opening: 108 [ 0122] Second epitaxial layer: 109 [0123] Epitaxial grain: 1042 [0124] Epitaxial film: 1044 [0125] Epitaxial grain: 1092 [0126] Second hole: 1093 [0127] Epitaxial film: 1094 [0128] Carbon tube fragment: 143 1002021430-0 100112867 Form number A0101 Page 30 of 48 145 201238887 [0129] Nano carbon tube

100112867 表單編號A0101 第31頁/共48頁 1002021430-0100112867 Form No. A0101 Page 31 of 48 1002021430-0

Claims (1)

201238887 七、申請專利範圍: 1 . 一種外延構造體的製備方法,其包括以下步驟: 提供一基底,該基底具有一外延生長面; 於所述基底的外延生長面設置第一奈米碳管層; 於所述基底的外延生長面生長一第一外延層並覆蓋所述第 一奈米碳管層; 於所述第一外延層的表面設置第二奈米碳管層,其中,所 述第一外延層的表面為該第一外延層的外延生長面;以及 , 於所述第一外延層的表面生長一第二外延層並覆蓋所述第 二奈米碳管層。 2 .如申請專利範圍第1項所述之外延構造體的製備方法,其 中,所述第一外延層為一異質外延層。 3 .如申請專利範圍第1項所述之外延構造體的製備方法,其 中,所述基底為一單晶構造體,且所述基底的材料為 GaAs ' GaN、Si、SOI、AIN、SiC、MgO、ZnO ' LiGa〇2 、LiA102或Al2〇3 。 4 .如申請專利範圍第1項所述之外延構造體的製備方法,其 中,所述在基底的外延生長面或第一外延層的表面設置奈 米碳管層的方法為將奈米碳管膜或奈米碳管線直接鋪設於 所述基底的外延生長面作為奈米碳管層。 5.如申請專利範圍第1項所述之外延構造體的製備方法,其 中,所述奈米碳管層中具有複數開口,所述第一外延層或 第二外延層從所述外延生長面通過該開口暴露的部份生長 1002021430-0 100112867 表單編號A0101 第32頁/共48頁 201238887 6 . 如申請專利範圍第!項所迷之外延構造栌W 以 中,所述第-外延層或第二外延層的生長方法臭 下步驟: 戒 沿著基本垂直於所述外延生長面方向成核炎外厂 複數外延晶粒; 卜 所述複數外延晶粒沿著基本平行於所述外延生長面方 〇 7 延生長形烕一連續的外延薄祺;以及, 所述外延薄膜沿著基本垂直於所述外延生長面 長形成一外延層。 其 如申請專職圍第1項所述〇卜延麟卜延法 中,所述第-或第二外延層的生長方法包〆 法 、化學束外延法、減壓外科、低溫外一,透⑽拳氣 、液相沈積外延法、金屬有機氣相外延法、超真:氣相亦 相沈積法、氫化物氣相外延法、以及金屬有機牝 積法中的一種或複數種 其201238887 VII. Patent application scope: 1. A method for preparing an epitaxial structure, comprising the steps of: providing a substrate having an epitaxial growth surface; and providing a first carbon nanotube layer on an epitaxial growth surface of the substrate Forming a first epitaxial layer on the epitaxial growth surface of the substrate and covering the first carbon nanotube layer; and providing a second carbon nanotube layer on a surface of the first epitaxial layer, wherein the The surface of an epitaxial layer is an epitaxial growth surface of the first epitaxial layer; and a second epitaxial layer is grown on the surface of the first epitaxial layer and covers the second carbon nanotube layer. 2. The method of preparing a structure according to claim 1, wherein the first epitaxial layer is a heteroepitaxial layer. 3. The method according to claim 1, wherein the substrate is a single crystal structure, and the material of the substrate is GaAs 'GaN, Si, SOI, AIN, SiC, MgO, ZnO 'LiGa〇2, LiA102 or Al2〇3. 4. The method for preparing an outer structure according to the first aspect of the invention, wherein the method of providing a carbon nanotube layer on an epitaxial growth surface of the substrate or a surface of the first epitaxial layer is a carbon nanotube The film or nano carbon line is directly laid on the epitaxial growth surface of the substrate as a carbon nanotube layer. 5. The method according to claim 1, wherein the carbon nanotube layer has a plurality of openings, and the first epitaxial layer or the second epitaxial layer is from the epitaxial growth surface. The portion exposed through the opening grows 1002021430-0 100112867 Form No. A0101 Page 32 / Total 48 Page 201238887 6. As claimed in the patent scope! The growth process of the first epitaxial layer or the second epitaxial layer is smothered in the following steps: 戒 nucleation of a plurality of epitaxial grains in a direction perpendicular to the epitaxial growth surface The plurality of epitaxial grains are grown along a substantially parallel epitaxial thin film extending substantially parallel to the epitaxial growth surface; and the epitaxial film is formed along a length substantially perpendicular to the epitaxial growth surface An epitaxial layer. The method for growing the first or second epitaxial layer, the chemical beam exfoliation method, the decompression surgery, the low temperature external one, the permeation (10) fist gas, the liquid, is as described in the application of the full-time enclosure. Phase deposition epitaxy, metal organic vapor phase epitaxy, super-true: vapor phase deposition, hydride vapor phase epitaxy, and metal organic deposition method 如申請專利範圍第6項所述之外延構造艘的製備方法’ 中,所述第-或第二外延層於所述第;条米旅管廣周 9 . 10 . 11 . 成複數孔洞將所述奈米碳管層中的奈米破管包圉。 如申請專利㈣第1項所述之外延構製備方法’其 中,所述第一外延層或第二外延層為〆同質外延廣。 如申請專利範圍第1項所述之外延構造_製備方法’其 中,所述奈米碳管料—自切構造。 如申請專利範圍第1項所述之外延構造體的製備方法,其 中,將奈米碳管層設置在外延生長面後進一步包括採用有 機溶劑處理所述奈来碳管層,使奈米碳管層更緊密地貼附 於所述外延生長面。 100112867 表單編號A0101 第33頁/共48頁 1002021430-° 201238887 12 . 一種外延構造體的製備方法,其包括以下步驟: 提供一基底,且該基底具有一外延生長面; 於所述基底的外延生長面設置一光罩層; 在基底的外延生長面生長第1層外延層並覆蓋所述光罩層 第1層外延層表面依序層疊生長第2至η層外延層,每相鄰 二外延層之間設置一光罩層; 其中,η為大於等於3的整數,所述光罩層中至少一光罩層 為奈米碳管層。 100112867 表單編號Α0101 第34頁/共48頁 1002021430-0In the preparation method of the outer structure ship according to the sixth aspect of the patent application scope, the first or second epitaxial layer is in the section; the strip meter travels wide circumference 9.10.11. The nano-tubes in the carbon nanotube layer are described. The method for preparing a composition according to the above-mentioned item (4), wherein the first epitaxial layer or the second epitaxial layer has a wide heteroepitaxial extension. The outer structure according to claim 1, wherein the carbon nanotube material is a self-cutting structure. The method for preparing an outer structure according to the first aspect of the invention, wherein the carbon nanotube layer is disposed on the epitaxial growth surface, further comprising treating the carbon nanotube layer with an organic solvent to form a carbon nanotube The layer is more closely attached to the epitaxial growth surface. 100112867 Form No. A0101 Page 33 of 48 1002021430-° 201238887 12. A method of preparing an epitaxial structure, comprising the steps of: providing a substrate having an epitaxial growth surface; epitaxial growth on the substrate Forming a mask layer on the surface; growing a first epitaxial layer on the epitaxial growth surface of the substrate and covering the surface of the first epitaxial layer of the photomask layer to sequentially grow the second to nth epitaxial layers, each adjacent two epitaxial layers A photomask layer is disposed therebetween; wherein η is an integer greater than or equal to 3, and at least one of the photomask layers is a carbon nanotube layer. 100112867 Form Number Α0101 Page 34 of 48 1002021430-0
TW100112867A 2011-03-29 2011-04-13 A method for making epitaxial structure TWI474966B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110076903.4A CN102723407B (en) 2011-03-29 2011-03-29 Preparation method for epitaxial structure body

Publications (2)

Publication Number Publication Date
TW201238887A true TW201238887A (en) 2012-10-01
TWI474966B TWI474966B (en) 2015-03-01

Family

ID=46949120

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100112867A TWI474966B (en) 2011-03-29 2011-04-13 A method for making epitaxial structure

Country Status (3)

Country Link
JP (1) JP5379211B2 (en)
CN (1) CN102723407B (en)
TW (1) TWI474966B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI557064B (en) * 2014-03-26 2016-11-11 鴻海精密工業股份有限公司 Method of making light emitting diode
TWI557066B (en) * 2014-03-26 2016-11-11 鴻海精密工業股份有限公司 Method of making epitaxial structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104637795B (en) * 2015-01-30 2018-03-30 北京大学 The selective area growth method and structure of group III-nitride epitaxial film on silicon substrate
EP3404486B1 (en) * 2017-05-15 2021-07-14 IMEC vzw A method for forming a pellicle

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326912A (en) * 1997-03-25 1998-12-08 Mitsubishi Cable Ind Ltd Production of non-dislocated gan substrate and gan base material
JPH11191657A (en) * 1997-04-11 1999-07-13 Nichia Chem Ind Ltd Growing method of nitride semiconductor and nitride semiconductor device
JP3930161B2 (en) * 1997-08-29 2007-06-13 株式会社東芝 Nitride-based semiconductor device, light-emitting device, and manufacturing method thereof
US7820064B2 (en) * 2005-05-10 2010-10-26 The Regents Of The University Of California Spinodally patterned nanostructures
KR100663076B1 (en) * 2005-08-31 2007-01-02 한국과학기술원 Method of forming on predetermined area of substrate with grown carbon nanotube, and method of forming semiconductor metal wire and inductor by using the same
JP2008266064A (en) * 2007-04-19 2008-11-06 Nichia Corp Substrate for semiconductor element and its manufacturing method
JP5276852B2 (en) * 2008-02-08 2013-08-28 昭和電工株式会社 Method for manufacturing group III nitride semiconductor epitaxial substrate
CN101820036B (en) * 2009-02-27 2013-08-28 清华大学 Method for preparing light-emitting diode
JP2010232464A (en) * 2009-03-27 2010-10-14 Showa Denko Kk Group iii nitride semiconductor light emitting element, method of manufacturing the same, and laser diode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI557064B (en) * 2014-03-26 2016-11-11 鴻海精密工業股份有限公司 Method of making light emitting diode
TWI557066B (en) * 2014-03-26 2016-11-11 鴻海精密工業股份有限公司 Method of making epitaxial structure

Also Published As

Publication number Publication date
CN102723407A (en) 2012-10-10
CN102723407B (en) 2015-01-21
JP5379211B2 (en) 2013-12-25
TWI474966B (en) 2015-03-01
JP2012209533A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
US10622516B2 (en) Epitaxial structure and method for making the same
CN102263171B (en) Epitaxial substrate, preparation method for epitaxial substrate and application of epitaxial substrate as grown epitaxial layer
TWI473758B (en) Method for making epitaxial structure
TW201241876A (en) A epitaxialstructure and method for making the same
TWI457271B (en) Method for making semiconductor epitaxial structure
CN102610718B (en) Substrate used for growing epitaxial structure and using method thereof
TWI474966B (en) A method for making epitaxial structure
CN102605422B (en) For mask and the using method thereof of growing epitaxial structure
CN102593272B (en) The preparation method of epitaxial structure
TWI449659B (en) Method for making epitaxial structure
TWI505984B (en) A method for making an epitaxial structure
TWI426159B (en) Mask for growing epitaxial structure and method for using the same
TWI479681B (en) Semiconductor epitaxial structure
TWI476948B (en) Epitaxial structure and method for making the same
TWI443863B (en) Base for growing epitaxial structure and method for using the same
TWI466321B (en) Method for making an epitaxial structure