CN102593272B - The preparation method of epitaxial structure - Google Patents
The preparation method of epitaxial structure Download PDFInfo
- Publication number
- CN102593272B CN102593272B CN201110025832.5A CN201110025832A CN102593272B CN 102593272 B CN102593272 B CN 102593272B CN 201110025832 A CN201110025832 A CN 201110025832A CN 102593272 B CN102593272 B CN 102593272B
- Authority
- CN
- China
- Prior art keywords
- carbon nanotube
- layer
- epitaxial
- substrate
- epitaxial growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 262
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 256
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 255
- 239000000758 substrate Substances 0.000 claims abstract description 126
- 239000002238 carbon nanotube film Substances 0.000 claims description 80
- 238000000034 method Methods 0.000 claims description 47
- 239000000463 material Substances 0.000 claims description 26
- 239000013078 crystal Substances 0.000 claims description 17
- 238000005411 Van der Waals force Methods 0.000 claims description 15
- 238000000407 epitaxy Methods 0.000 claims description 9
- 238000005229 chemical vapour deposition Methods 0.000 claims description 7
- 239000010409 thin film Substances 0.000 claims description 6
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 3
- 238000004871 chemical beam epitaxy Methods 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 claims description 3
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims description 2
- 238000001534 heteroepitaxy Methods 0.000 claims 5
- 229910010092 LiAlO2 Inorganic materials 0.000 claims 1
- 229910010936 LiGaO2 Inorganic materials 0.000 claims 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- 229910021386 carbon form Inorganic materials 0.000 claims 1
- 229910052593 corundum Inorganic materials 0.000 claims 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims 1
- 239000010931 gold Substances 0.000 claims 1
- 229910052737 gold Inorganic materials 0.000 claims 1
- 238000001657 homoepitaxy Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 230000006911 nucleation Effects 0.000 claims 1
- 238000010899 nucleation Methods 0.000 claims 1
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 1
- 239000010410 layer Substances 0.000 description 203
- 229910002601 GaN Inorganic materials 0.000 description 21
- 239000003960 organic solvent Substances 0.000 description 15
- 229910052594 sapphire Inorganic materials 0.000 description 11
- 239000010980 sapphire Substances 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000002356 single layer Substances 0.000 description 7
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000000654 additive Substances 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 239000012159 carrier gas Substances 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- RGGPNXQUMRMPRA-UHFFFAOYSA-N triethylgallium Chemical compound CC[Ga](CC)CC RGGPNXQUMRMPRA-UHFFFAOYSA-N 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 235000012431 wafers Nutrition 0.000 description 3
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical group O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 239000002071 nanotube Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910010093 LiAlO Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000010909 chemical acidification Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 239000002079 double walled nanotube Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 238000013532 laser treatment Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- IBEFSUTVZWZJEL-UHFFFAOYSA-N trimethylindium Chemical compound C[In](C)C IBEFSUTVZWZJEL-UHFFFAOYSA-N 0.000 description 1
- 238000000038 ultrahigh vacuum chemical vapour deposition Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
本发明涉及一种外延结构及其制备方法。该外延结构包括:一基底,该基底具有一外延生长面,以及一外延层形成于所述基底的外延生长面,其中,进一步包括一碳纳米管层设置于所述外延层与基底之间。该外延结构的制备方法包括以下步骤:提供一基底,该基底具有一支持外延层生长的外延生长面;在所述基底的外延生长面设置一碳纳米管层;以及在基底的外延生长面生长外延层。
The invention relates to an epitaxial structure and a preparation method thereof. The epitaxial structure includes: a base with an epitaxial growth plane, and an epitaxial layer formed on the epitaxial growth plane of the base, wherein a carbon nanotube layer is further included between the epitaxial layer and the base. The preparation method of the epitaxial structure comprises the following steps: providing a substrate, the substrate has an epitaxial growth surface supporting the growth of the epitaxial layer; setting a carbon nanotube layer on the epitaxial growth surface of the substrate; and growing on the epitaxial growth surface of the substrate epitaxial layer.
Description
技术领域technical field
本发明涉及一种外延结构及其制备方法。The invention relates to an epitaxial structure and a preparation method thereof.
背景技术Background technique
外延结构,尤其异质外延结构为制作半导体器件的主要材料之一。例如,近年来,制备发光二极管(LED)的氮化镓外延片成为研究的热点。Epitaxial structures, especially heteroepitaxial structures, are one of the main materials for making semiconductor devices. For example, in recent years, the preparation of gallium nitride epitaxial wafers for light-emitting diodes (LEDs) has become a research hotspot.
所述氮化镓外延片是指在一定条件下,将氮化镓材料分子,有规则排列,定向生长在蓝宝石基底上。然而,高质量氮化镓外延片的制备一直是研究的难点。由于氮化镓和蓝宝石基底的晶格常数以及热膨胀系数的不同,从而导致氮化镓外延层存在较多位错缺陷。而且,氮化镓外延层和蓝宝石基底之间存在较大应力,应力越大会导致氮化镓外延层破裂。这种异质外延结构普遍存在晶格失配现象,且易形成位错等缺陷。The gallium nitride epitaxial wafer means that under certain conditions, the molecules of gallium nitride material are regularly arranged and directional grown on the sapphire substrate. However, the preparation of high-quality GaN epitaxial wafers has always been a difficult research point. Due to the difference in lattice constant and thermal expansion coefficient between gallium nitride and sapphire substrates, there are many dislocation defects in the epitaxial layer of gallium nitride. Moreover, there is a large stress between the GaN epitaxial layer and the sapphire substrate, and the greater stress will cause the GaN epitaxial layer to crack. This heteroepitaxial structure generally has a lattice mismatch phenomenon, and is prone to form defects such as dislocations.
现有技术提供一种改善上述不足的方法,其采用非平整的蓝宝石基底外延生长氮化镓。然而,现有技术通常采用光刻等微电子工艺在蓝宝石基底表面形成沟槽从而构成非平整外延生长面。该方法不但工艺复杂,成本较高,而且会对蓝宝石基底外延生长面造成污染,从而影响外延结构的质量。The prior art provides a method for improving the above-mentioned disadvantages, which uses a non-flat sapphire substrate to epitaxially grow gallium nitride. However, in the prior art, microelectronic processes such as photolithography are usually used to form grooves on the surface of the sapphire substrate to form a non-flat epitaxial growth surface. This method is not only complicated in process and high in cost, but also pollutes the epitaxial growth surface of the sapphire substrate, thereby affecting the quality of the epitaxial structure.
发明内容Contents of the invention
综上所述,确有必要提供一种工艺简单,成本低廉,且不会对基底表面造成污染的外延结构的制备方法。To sum up, it is indeed necessary to provide a method for preparing an epitaxial structure with simple process, low cost and no pollution to the substrate surface.
一种外延结构的制备方法,其包括以下步骤:提供一基底,该基底具有一支持外延层生长的外延生长面;提供一自支撑的碳纳米管膜,该碳纳米管膜为包括多个碳纳米管的连续的整体结构,所述多个碳纳米管的轴向沿同一方向择优取向延伸,所述轴向沿同一方向择优取向延伸的相邻的碳纳米管通过范德华力首尾相连,所述碳纳米管膜中相邻的碳纳米管之间存在微孔或间隙从而构成开口;将该自支撑的碳纳米管膜直接铺设在所述基底的外延生长面,该自支撑的碳纳米管膜的多个碳纳米管沿着平行于外延生长面的方向延伸;以及,以该直接铺设的碳纳米管膜为掩模在基底的外延生长面生长外延层。A method for preparing an epitaxial structure, which includes the following steps: providing a substrate, the substrate has an epitaxial growth surface supporting the growth of an epitaxial layer; providing a self-supporting carbon nanotube film, the carbon nanotube film is composed of a plurality of carbon A continuous overall structure of nanotubes, the axial directions of the plurality of carbon nanotubes extend along the same preferred orientation, and the adjacent carbon nanotubes whose axial directions extend along the same preferred orientation are connected end to end by van der Waals force, the There are micropores or gaps between adjacent carbon nanotubes in the carbon nanotube film to form openings; the self-supporting carbon nanotube film is directly laid on the epitaxial growth surface of the substrate, and the self-supporting carbon nanotube film A plurality of carbon nanotubes extend along a direction parallel to the epitaxial growth plane; and an epitaxial layer is grown on the epitaxial growth plane of the substrate by using the directly laid carbon nanotube film as a mask.
与现有技术相比,由于在所述基底的外延生长面设置一碳纳米管层而获得图形化的掩模的方法工艺简单、成本低廉,大大降低了外延结构的制备成本,同时降低了对环境的污染。Compared with the prior art, the method for obtaining a patterned mask by arranging a carbon nanotube layer on the epitaxial growth surface of the substrate is simple in process and low in cost, which greatly reduces the preparation cost of the epitaxial structure, and at the same time reduces the need for pollution of the environment.
附图说明Description of drawings
图1为本发明实施例提供的异质外延结构的制备方法的工艺流程图。FIG. 1 is a process flow chart of a method for preparing a heteroepitaxial structure provided by an embodiment of the present invention.
图2为本发明实施例中采用的碳纳米管膜的扫描电镜照片。Fig. 2 is a scanning electron micrograph of the carbon nanotube film used in the embodiment of the present invention.
图3为图2中的碳纳米管膜中的碳纳米管片段的结构示意图。FIG. 3 is a schematic structural diagram of carbon nanotube segments in the carbon nanotube film in FIG. 2 .
图4为本发明实施例中采用的多层交叉设置的碳纳米管膜的扫描电镜照片。Fig. 4 is a scanning electron micrograph of a carbon nanotube film with multiple layers intersected in an embodiment of the present invention.
图5为本发明实施例中采用的非扭转的碳纳米管线的扫描电镜照片。Fig. 5 is a scanning electron micrograph of the non-twisted carbon nanotube wire used in the embodiment of the present invention.
图6为本发明实施例中采用的扭转的碳纳米管线的扫描电镜照片。Fig. 6 is a scanning electron micrograph of the twisted carbon nanotube wire used in the embodiment of the present invention.
图7为本发明实施例中异质外延层生长过程示意图。FIG. 7 is a schematic diagram of the growth process of the heteroepitaxial layer in the embodiment of the present invention.
图8为本发明第一实施例制备的异质外延结构截面的扫描电镜照片。FIG. 8 is a scanning electron micrograph of the cross-section of the heteroepitaxial structure prepared in the first embodiment of the present invention.
图9为本发明第一实施例制备的异质外延结构界面处的透射电镜照片。FIG. 9 is a transmission electron micrograph at the interface of the heteroepitaxial structure prepared in the first embodiment of the present invention.
图10为本发明第一实施例提供的异质外延结构的立体结构示意图。FIG. 10 is a schematic perspective view of the heteroepitaxial structure provided by the first embodiment of the present invention.
图11为图10所示的异质外延结构沿线XI-XI的剖面示意图。FIG. 11 is a schematic cross-sectional view of the heteroepitaxial structure shown in FIG. 10 along the line XI-XI.
图12为本发明第二实施例提供的异质外延结构的立体结构示意图。FIG. 12 is a schematic perspective view of the heteroepitaxial structure provided by the second embodiment of the present invention.
图13为本发明第三实施例提供的异质外延结构的立体结构示意图。FIG. 13 is a schematic perspective view of the heteroepitaxial structure provided by the third embodiment of the present invention.
主要元件符号说明Description of main component symbols
异质外延结构 10,20,30Heteroepitaxial structures 10, 20, 30
基底 100,200,300Base 100, 200, 300
外延生长面 101Epitaxial Growth Surface 101
碳纳米管层 102,202,302Carbon nanotube layers 102, 202, 302
孔洞 103Holes 103
异质外延层 104,204,304Heteroepitaxial layers 104, 204, 304
开口 105opening 105
异质外延晶粒 1042Heteroepitaxial grains 1042
异质外延薄膜 1044Heteroepitaxial thin films 1044
碳纳米管片段 143Carbon Nanotube Fragments 143
碳纳米管 145Carbon nanotubes 145
具体实施方式detailed description
以下将结合附图详细说明本发明实施例提供的外延结构及其制备方法。为了便于理解本发明的技术方案,本发明首先介绍一种异质外延结构的制备方法。The epitaxial structure provided by the embodiments of the present invention and its preparation method will be described in detail below with reference to the accompanying drawings. In order to facilitate the understanding of the technical solution of the present invention, the present invention first introduces a method for preparing a heteroepitaxial structure.
请参阅图1,本发明实施例提供一种异质外延结构10的制备方法,其具体包括以下步骤:Please refer to FIG. 1 , an embodiment of the present invention provides a method for preparing a heteroepitaxial structure 10, which specifically includes the following steps:
S10:提供一基底100,且该基底100具有一支持异质外延层104生长的外延生长面101;S10: providing a substrate 100, and the substrate 100 has an epitaxial growth surface 101 supporting the growth of the heteroepitaxial layer 104;
S20:在所述基底100的外延生长面101设置一碳纳米管层102;S20: disposing a carbon nanotube layer 102 on the epitaxial growth surface 101 of the substrate 100;
S30:在基底100的外延生长面101生长异质外延层104。S30 : growing a heteroepitaxial layer 104 on the epitaxial growth surface 101 of the substrate 100 .
请参阅图1,本发明实施例提供一种异质外延结构10的制备方法,其具体包括以下步骤:Please refer to FIG. 1 , an embodiment of the present invention provides a method for preparing a heteroepitaxial structure 10, which specifically includes the following steps:
S10:提供一基底100,且该基底100具有一支持异质外延层104生长的外延生长面101;S10: providing a substrate 100, and the substrate 100 has an epitaxial growth surface 101 supporting the growth of the heteroepitaxial layer 104;
S20:在所述基底100的外延生长面101设置一碳纳米管层102;S20: disposing a carbon nanotube layer 102 on the epitaxial growth surface 101 of the substrate 100;
S30:在基底100的外延生长面101生长异质外延层104。S30 : growing a heteroepitaxial layer 104 on the epitaxial growth surface 101 of the substrate 100 .
步骤S10中,所述基底100提供了异质外延层104的外延生长面101。所述基底100的外延生长面101是分子平滑的表面,且去除了氧或碳等杂质。所述基底100可以为单层或多层结构。当所述基底100为单层结构时,该基底100可以为一单晶结构体,且具有一晶面作为异质外延层104的外延生长面101。所述单层结构的基底100的材料可以为GaAs、GaN、Si、SOI、AlN、SiC、MgO、ZnO、LiGaO2、LiAlO2或Al2O3等。当所述基底100为多层结构时,其需要包括至少一层上述单晶结构体,且该单晶结构体具有一晶面作为异质外延层104的外延生长面101。所述基底100的材料可以根据所要生长的异质外延层104来选择,优选地,使所述基底100与异质外延层104具有相近的晶格常数以及热膨胀系数。所述基底100的厚度、大小和形状不限,可以根据实际需要选择。所述基底100不限于上述列举的材料,只要具有支持异质外延层104生长的外延生长面101的基底100均属于本发明的保护范围。In step S10 , the substrate 100 provides the epitaxial growth plane 101 of the heteroepitaxial layer 104 . The epitaxial growth surface 101 of the substrate 100 is a molecularly smooth surface, and impurities such as oxygen or carbon are removed. The substrate 100 can be a single-layer or multi-layer structure. When the substrate 100 is a single-layer structure, the substrate 100 may be a single crystal structure, and has a crystal plane as the epitaxial growth plane 101 of the heteroepitaxial layer 104 . The material of the single-layer structure substrate 100 may be GaAs, GaN, Si, SOI, AlN, SiC, MgO, ZnO, LiGaO 2 , LiAlO 2 or Al 2 O 3 . When the substrate 100 is a multilayer structure, it needs to include at least one layer of the above-mentioned single crystal structure, and the single crystal structure has a crystal plane as the epitaxial growth plane 101 of the heteroepitaxial layer 104 . The material of the substrate 100 can be selected according to the heteroepitaxial layer 104 to be grown. Preferably, the substrate 100 and the heteroepitaxial layer 104 have similar lattice constants and thermal expansion coefficients. The thickness, size and shape of the base 100 are not limited and can be selected according to actual needs. The substrate 100 is not limited to the materials listed above, as long as the substrate 100 has the epitaxial growth surface 101 supporting the growth of the heteroepitaxial layer 104, it falls within the protection scope of the present invention.
步骤S20中,所述碳纳米管层102为包括多个碳纳米管的连续的整体结构。所述碳纳米管层102中多个碳纳米管沿着基本平行于碳纳米管层102表面的方向延伸。当所述碳纳米管层102设置于所述基底100的外延生长面101时,所述碳纳米管层102中多个碳纳米管的延伸方向基本平行于所述基底100的外延生长面101。所述碳纳米管层的厚度为1纳米~100微米,或1纳米~1微米,或1纳米~200纳米,优选地厚度为10纳米~100纳米。所述碳纳米管层102为一图形化的碳纳米管层102。所述“图形化”是指所述碳纳米管层102具有多个开口105,该多个开口105从所述碳纳米管层102的厚度方向贯穿所述碳纳米管层102。当所述碳纳米管层102覆盖所述基底100的外延生长面101设置时,从而使所述基底100的外延生长面101对应该开口105的部分暴露以便于生长异质外延层104。所述开口105可以为微孔或间隙。所述开口105的尺寸为10纳米~500微米,所述尺寸是指所述微孔的孔径或所述间隙的宽度方向的间距。所述开口105的尺寸为10纳米~300微米、或10纳米~120微米、或10纳米~80微米、或10纳米~10微米。开口105的尺寸越小,有利于在生长外延层的过程中减少位错缺陷的产生,以获得高质量的异质外延层104。优选地,所述开口105的尺寸为10纳米~10微米。进一步地,所述碳纳米管层102的占空比为1∶100~100∶1,或1∶10~10∶1,或1∶2~2∶1,或1∶4~4∶1。优选地,所述占空比为1∶4~4∶1。所谓“占空比”指该碳纳米管层102设置于基底100的外延生长面101后,该外延生长面101被碳纳米管层102占据的部分与通过开孔105暴露的部分的面积比。In step S20, the carbon nanotube layer 102 is a continuous integral structure including a plurality of carbon nanotubes. A plurality of carbon nanotubes in the carbon nanotube layer 102 extend along a direction substantially parallel to the surface of the carbon nanotube layer 102 . When the carbon nanotube layer 102 is disposed on the epitaxial growth plane 101 of the substrate 100 , the extending direction of the carbon nanotubes in the carbon nanotube layer 102 is substantially parallel to the epitaxial growth plane 101 of the substrate 100 . The thickness of the carbon nanotube layer is 1 nanometer to 100 micrometers, or 1 nanometer to 1 micrometer, or 1 nanometer to 200 nanometers, preferably 10 nanometers to 100 nanometers. The carbon nanotube layer 102 is a patterned carbon nanotube layer 102 . The "patterning" means that the carbon nanotube layer 102 has a plurality of openings 105 , and the plurality of openings 105 penetrate the carbon nanotube layer 102 from the thickness direction of the carbon nanotube layer 102 . When the carbon nanotube layer 102 is disposed covering the epitaxial growth surface 101 of the substrate 100 , the portion of the epitaxial growth surface 101 of the substrate 100 corresponding to the opening 105 is exposed to facilitate the growth of the heteroepitaxial layer 104 . The opening 105 can be a micropore or a gap. The size of the opening 105 is 10 nanometers to 500 microns, and the size refers to the diameter of the micropores or the spacing in the width direction of the gaps. The size of the opening 105 is 10 nanometers to 300 micrometers, or 10 nanometers to 120 micrometers, or 10 nanometers to 80 micrometers, or 10 nanometers to 10 micrometers. The smaller the size of the opening 105 is, it is beneficial to reduce the occurrence of dislocation defects during the growth of the epitaxial layer, so as to obtain a high-quality heteroepitaxial layer 104 . Preferably, the size of the opening 105 is 10 nanometers to 10 micrometers. Further, the duty ratio of the carbon nanotube layer 102 is 1:100-100:1, or 1:10-10:1, or 1:2-2:1, or 1:4-4:1. Preferably, the duty ratio is 1:4˜4:1. The so-called “duty ratio” refers to the area ratio of the portion of the epitaxial growth surface 101 occupied by the carbon nanotube layer 102 to the portion exposed through the opening 105 after the carbon nanotube layer 102 is disposed on the epitaxial growth surface 101 of the substrate 100 .
进一步地,所述“图形化”是指所述碳纳米管层102中多个碳纳米管的排列方式是有序的、有规则的。例如,所述碳纳米管层102中多个碳纳米管的轴向均基本平行于所述基底100的外延生长面101且基本沿同一方向延伸。或者,所述碳纳米管层102中多个碳纳米管的轴向可有规律性地基本沿两个以上方向延伸。或者,所述碳纳米管层102中多个碳纳米管的轴向沿着基底100的一晶向延伸或与基底100的一晶向成一定角度延伸。上述碳纳米管层102中沿同一方向延伸的相邻的碳纳米管通过范德华力首尾相连。Further, the "patterning" means that the arrangement of the carbon nanotubes in the carbon nanotube layer 102 is orderly and regular. For example, the axial directions of the plurality of carbon nanotubes in the carbon nanotube layer 102 are substantially parallel to the epitaxial growth plane 101 of the substrate 100 and extend substantially in the same direction. Alternatively, the axial directions of the plurality of carbon nanotubes in the carbon nanotube layer 102 may regularly extend substantially along more than two directions. Alternatively, the axial direction of the plurality of carbon nanotubes in the carbon nanotube layer 102 extends along a crystal direction of the substrate 100 or extends at a certain angle with a crystal direction of the substrate 100 . Adjacent carbon nanotubes extending in the same direction in the carbon nanotube layer 102 are connected end to end by van der Waals force.
在所述碳纳米管层102具有如前所述的开口105的前提下,所述碳纳米管层102中多个碳纳米管也可无序排列、无规则排列。On the premise that the carbon nanotube layer 102 has the aforementioned openings 105 , a plurality of carbon nanotubes in the carbon nanotube layer 102 may also be arranged randomly or randomly.
优选地,所述碳纳米管层102设置于所述基底100的整个外延生长面101。所述碳纳米管层102中的碳纳米管可以为单壁碳纳米管、双壁碳纳米管或多壁碳纳米管中的一种或多种,其长度和直径可以根据需要选择。Preferably, the carbon nanotube layer 102 is disposed on the entire epitaxial growth surface 101 of the substrate 100 . The carbon nanotubes in the carbon nanotube layer 102 can be one or more of single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes, and the length and diameter can be selected as required.
所述碳纳米管层102用作生长异质外延层104的掩模。所谓“掩模”是指该碳纳米管层102用于遮挡所述基底100的部分外延生长面101,且暴露部分外延生长面101,从而使得异质外延层104仅从所述外延生长面101暴露的部分生长。由于碳纳米管层102具有多个开口105,所以该碳纳米管层102形成一图形化的掩模。当碳纳米管层102设置于基底100的外延生长面101后,多个碳纳米管沿着平行于外延生长面101的方向延伸。由于所述碳纳米管层102在所述基底100的外延生长面101形成多个开口105,从而使得所述基底100的外延生长面101上具有一图形化的掩模。可以理解,相对于光刻等微电子工艺,通过设置碳纳米管层102掩模进行外延生长的方法工艺简单、成本低廉,不易在基底100的延生长面101引入污染,而且绿色环保,可以大大降低了异质外延结构10的制备成本。The carbon nanotube layer 102 is used as a mask for growing the heteroepitaxial layer 104 . The so-called "mask" means that the carbon nanotube layer 102 is used to block part of the epitaxial growth surface 101 of the substrate 100, and expose part of the epitaxial growth surface 101, so that the heteroepitaxial layer 104 can only be formed from the epitaxial growth surface 101 The exposed part grows. Since the carbon nanotube layer 102 has a plurality of openings 105, the carbon nanotube layer 102 forms a patterned mask. After the carbon nanotube layer 102 is disposed on the epitaxial growth plane 101 of the substrate 100 , the plurality of carbon nanotubes extend along a direction parallel to the epitaxial growth plane 101 . Since the carbon nanotube layer 102 forms a plurality of openings 105 on the epitaxial growth surface 101 of the substrate 100 , a patterned mask is provided on the epitaxial growth surface 101 of the substrate 100 . It can be understood that compared with microelectronic processes such as photolithography, the method of epitaxial growth by setting a carbon nanotube layer 102 mask has simple process, low cost, and is not easy to introduce pollution on the extended growth surface 101 of the substrate 100. It is also environmentally friendly and can be greatly improved. The manufacturing cost of the heteroepitaxial structure 10 is reduced.
可以理解,所述基底100和碳纳米管层102共同构成了用于生长异质外延结构的衬底。该衬底可用于生长不同材料的异质外延层104,如半导体外延层、金属外延层或合金外延层。该衬底也可用于生长同质外延层,从而得到一同质外延结构。It can be understood that the substrate 100 and the carbon nanotube layer 102 together constitute a substrate for growing a heteroepitaxial structure. The substrate can be used to grow hetero-epitaxial layers 104 of different materials, such as semiconductor epitaxial layers, metal epitaxial layers or alloy epitaxial layers. The substrate can also be used to grow a homoepitaxial layer, thereby obtaining a homoepitaxial structure.
所述碳纳米管层102可以预先形成后直接铺设在所述基底100的外延生长面101。所述碳纳米管层102为一宏观结构,且所述碳纳米管层102为一个自支撑的结构。所谓“自支撑”指该碳纳米管层102不需要大面积的载体支撑,而只要相对两边提供支撑力即能整体上悬空而保持自身状态,即将该碳纳米管层102置于(或固定于)间隔特定距离设置的两个支撑体上时,位于两个支撑体之间的碳纳米管层102能够悬空保持自身状态。由于碳纳米管层102为自支撑结构,所述碳纳米管层102不必要通过复杂的化学方法形成在基底100的外延生长面101。进一步优选地,所述碳纳米管层102为多个碳纳米管组成的纯碳纳米管结构。所谓“纯碳纳米管结构”是指所述碳纳米管层在整个制备过程中无需任何化学修饰或酸化处理,不含有任何羧基等官能团修饰。The carbon nanotube layer 102 may be pre-formed and directly laid on the epitaxial growth surface 101 of the substrate 100 . The carbon nanotube layer 102 is a macroscopic structure, and the carbon nanotube layer 102 is a self-supporting structure. The so-called "self-supporting" means that the carbon nanotube layer 102 does not need a large-area carrier support, but as long as the supporting force is provided on both sides, it can be suspended as a whole and maintain its own state, that is, the carbon nanotube layer 102 is placed (or fixed) on ) on two supports arranged at a specific distance apart, the carbon nanotube layer 102 located between the two supports can be suspended and maintain its own state. Since the carbon nanotube layer 102 is a self-supporting structure, the carbon nanotube layer 102 does not need to be formed on the epitaxial growth surface 101 of the substrate 100 through complex chemical methods. Further preferably, the carbon nanotube layer 102 is a pure carbon nanotube structure composed of a plurality of carbon nanotubes. The so-called "pure carbon nanotube structure" means that the carbon nanotube layer does not need any chemical modification or acidification treatment during the whole preparation process, and does not contain any functional group modification such as carboxyl group.
所述碳纳米管层102还可以为一包括多个碳纳米管以及添加材料的复合结构。所述添加材料包括石墨、石墨稀、碳化硅、氮化硼、氮化硅、二氧化硅、无定形碳等中的一种或多种。所述添加材料还可以包括金属碳化物、金属氧化物及金属氮化物等中的一种或多种。所述添加材料包覆于碳纳米管层102中碳纳米管的至少部分表面或设置于碳纳米管层102的开口105内。优选地,所述添加材料包覆于碳纳米管的表面。由于,所述添加材料包覆于碳纳米管的表面,使得碳纳米管的直径变大,从而使碳纳米管之间的开口105减小。所述添加材料可以通过化学气相沉积(CVD)、物理气相沉积(PVD)、磁控溅射等方法形成于碳纳米管的表面。The carbon nanotube layer 102 can also be a composite structure including a plurality of carbon nanotubes and additive materials. The additive material includes one or more of graphite, graphene, silicon carbide, boron nitride, silicon nitride, silicon dioxide, amorphous carbon and the like. The additive material may also include one or more of metal carbides, metal oxides, and metal nitrides. The additive material is coated on at least part of the surface of the carbon nanotubes in the carbon nanotube layer 102 or disposed in the opening 105 of the carbon nanotube layer 102 . Preferably, the additive material is coated on the surface of the carbon nanotubes. Because the added material coats the surface of the carbon nanotubes, the diameter of the carbon nanotubes becomes larger, thereby reducing the openings 105 between the carbon nanotubes. The additive material can be formed on the surface of the carbon nanotubes by chemical vapor deposition (CVD), physical vapor deposition (PVD), magnetron sputtering and other methods.
将所述碳纳米管层102铺设在所述基底100的外延生长面101后还可以包括一有机溶剂处理的步骤,以使碳纳米管层102与外延生长面101更加紧密结合。该有机溶剂可选用乙醇、甲醇、丙酮、二氯乙烷和氯仿中一种或者几种的混合。本实施例中的有机溶剂采用乙醇。该使用有机溶剂处理的步骤可通过试管将有机溶剂滴落在碳纳米管层102表面浸润整个碳纳米管层102或将基底100和整个碳纳米管层102一起浸入盛有有机溶剂的容器中浸润。After laying the carbon nanotube layer 102 on the epitaxial growth surface 101 of the substrate 100 , a step of organic solvent treatment may be included to make the carbon nanotube layer 102 more closely bonded to the epitaxial growth surface 101 . The organic solvent can be selected from one or a combination of ethanol, methanol, acetone, dichloroethane and chloroform. The organic solvent in this embodiment adopts ethanol. The step of treating with an organic solvent can drop the organic solvent on the surface of the carbon nanotube layer 102 to soak the entire carbon nanotube layer 102 through a test tube, or immerse the substrate 100 and the entire carbon nanotube layer 102 together in a container filled with an organic solvent. .
所述碳纳米管层102也可以通过化学气相沉积(CVD)等方法直接生长在所述基底100的外延生长面101或先生长在硅基底表面,然后转印到所述基底100的外延生长面101。The carbon nanotube layer 102 can also be directly grown on the epitaxial growth surface 101 of the substrate 100 by methods such as chemical vapor deposition (CVD) or first grown on the surface of the silicon substrate, and then transferred to the epitaxial growth surface of the substrate 100 101.
具体地,所述碳纳米管层102可以包括碳纳米管膜或碳纳米管线。所述碳纳米管层102可以为一单层碳纳米管膜或多个层叠设置的碳纳米管膜。所述碳纳米管层102可包括多个平行设置的碳纳米管线或多个交叉设置的碳纳米管线。当所述碳纳米管层102为多个层叠设置的碳纳米管膜时,碳纳米管膜的层数不宜太多,优选地,为2层~100层。当所述碳纳米管层102为多个平行设置的碳纳米管线时,相邻两个碳纳米管线之间的距离为0.1微米~200微米,优选地,为10微米~100微米。所述相邻两个碳纳米管线之间的空间构成所述碳纳米管层102的开口105。相邻两个碳纳米管线之间的间隙长度可以等于碳纳米管线的长度。所述碳纳米管膜或碳纳米管线可以直接铺设在基底100的外延生长面101构成所述碳纳米管层102。通过控制碳纳米管膜的层数或碳纳米管线之间的距离,可以控制碳纳米管层102中开口105的尺寸。Specifically, the carbon nanotube layer 102 may include a carbon nanotube film or a carbon nanotube wire. The carbon nanotube layer 102 can be a single-layer carbon nanotube film or a plurality of stacked carbon nanotube films. The carbon nanotube layer 102 may include multiple carbon nanotube wires arranged in parallel or multiple carbon nanotube wires arranged crosswise. When the carbon nanotube layer 102 is a plurality of stacked carbon nanotube films, the number of carbon nanotube films should not be too many, preferably 2-100 layers. When the carbon nanotube layer 102 is a plurality of parallel carbon nanotube wires, the distance between two adjacent carbon nanotube wires is 0.1 micron to 200 micron, preferably, 10 micron to 100 micron. The space between the two adjacent carbon nanotube wires constitutes the opening 105 of the carbon nanotube layer 102 . The length of the gap between two adjacent carbon nanotube wires may be equal to the length of the carbon nanotube wires. The carbon nanotube film or carbon nanotube wire can be directly laid on the epitaxial growth surface 101 of the substrate 100 to form the carbon nanotube layer 102 . By controlling the number of carbon nanotube film layers or the distance between carbon nanotube wires, the size of the opening 105 in the carbon nanotube layer 102 can be controlled.
所述碳纳米管膜是由若干碳纳米管组成的自支撑结构。所述若干碳纳米管为沿同一方向择优取向延伸。所述择优取向是指在碳纳米管膜中大多数碳纳米管的整体延伸方向基本朝同一方向。而且,所述大多数碳纳米管的整体延伸方向基本平行于碳纳米管膜的表面。进一步地,所述碳纳米管膜中多数碳纳米管是通过范德华力首尾相连。具体地,所述碳纳米管膜中基本朝同一方向延伸的大多数碳纳米管中每一碳纳米管与在延伸方向上相邻的碳纳米管通过范德华力首尾相连。当然,所述碳纳米管膜中存在少数随机排列的碳纳米管,这些碳纳米管不会对碳纳米管膜中大多数碳纳米管的整体取向排列构成明显影响。所述自支撑为碳纳米管膜不需要大面积的载体支撑,而只要相对两边提供支撑力即能整体上悬空而保持自身膜状状态,即将该碳纳米管膜置于(或固定于)间隔特定距离设置的两个支撑体上时,位于两个支撑体之间的碳纳米管膜能够悬空保持自身膜状状态。所述自支撑主要通过碳纳米管膜中存在连续的通过范德华力首尾相连延伸排列的碳纳米管而实现。The carbon nanotube film is a self-supporting structure composed of several carbon nanotubes. The plurality of carbon nanotubes extend along the same preferred orientation. The preferred orientation means that the overall extension direction of most carbon nanotubes in the carbon nanotube film basically faces the same direction. Also, the overall extension direction of the majority of carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube film are connected end to end by van der Waals force. Specifically, each carbon nanotube in the majority of carbon nanotubes extending in the same direction in the carbon nanotube film is connected end-to-end with the adjacent carbon nanotubes in the extending direction through van der Waals force. Of course, there are a small number of randomly arranged carbon nanotubes in the carbon nanotube film, and these carbon nanotubes will not significantly affect the overall alignment of most carbon nanotubes in the carbon nanotube film. The self-supporting carbon nanotube film does not need a large-area carrier support, but as long as the supporting force is provided on the opposite sides, it can be suspended as a whole and maintain its own film state, that is, the carbon nanotube film is placed (or fixed) in the spacer. When the two supports are arranged at a specific distance, the carbon nanotube film located between the two supports can be suspended in the air and maintain its own film state. The self-support is mainly realized by the presence of continuous carbon nanotubes in the carbon nanotube film that are extended and arranged end to end through van der Waals force.
具体地,所述碳纳米管膜中基本朝同一方向延伸的多数碳纳米管,并非绝对的直线状,可以适当的弯曲;或者并非完全按照延伸方向上排列,可以适当的偏离延伸方向。因此,不能排除碳纳米管膜的基本朝同一方向延伸的多数碳纳米管中并列的碳纳米管之间可能存在部分接触。Specifically, most of the carbon nanotubes extending in the same direction in the carbon nanotube film are not absolutely straight and can be properly bent; or they are not completely arranged in the extending direction and can be appropriately deviated from the extending direction. Therefore, it cannot be ruled out that there may be partial contact between parallel carbon nanotubes among the plurality of carbon nanotubes extending substantially in the same direction in the carbon nanotube film.
请参阅图2及图3,具体地,所述碳纳米管膜包括多个连续且定向延伸的碳纳米管片段143。该多个碳纳米管片段143通过范德华力首尾相连。每一碳纳米管片段143包括多个相互平行的碳纳米管145,该多个相互平行的碳纳米管145通过范德华力紧密结合。该碳纳米管片段143具有任意的长度、厚度、均匀性及形状。所述碳纳米管膜可通过从一碳纳米管阵列中选定部分碳纳米管后直接拉取获得。所述碳纳米管膜的厚度为1纳米~100微米,宽度与拉取出该碳纳米管膜的碳纳米管阵列的尺寸有关,长度不限。所述碳纳米管膜中相邻的碳纳米管之间存在微孔或间隙从而构成开口105,且该微孔的孔径或间隙的尺寸小于10微米。优选地,所述碳纳米管膜的厚度为100纳米~10微米。该碳纳米管膜中的碳纳米管145沿同一方向择优取向延伸。所述碳纳米管膜及其制备方法具体请参见申请人于2007年2月9日申请的,于2010年5月26日公告的第CN101239712B号中国公开专利“碳纳米管膜结构及其制备方法”。为节省篇幅,仅引用于此,但上述申请所有技术揭露也应视为本发明申请技术揭露的一部分。Please refer to FIG. 2 and FIG. 3 , specifically, the carbon nanotube film includes a plurality of continuous and directionally extended carbon nanotube segments 143 . The plurality of carbon nanotube segments 143 are connected end to end by van der Waals force. Each carbon nanotube segment 143 includes a plurality of parallel carbon nanotubes 145, and the plurality of parallel carbon nanotubes 145 are closely combined by van der Waals force. The carbon nanotube segment 143 has any length, thickness, uniformity and shape. The carbon nanotube film can be obtained by directly drawing some carbon nanotubes from a carbon nanotube array. The thickness of the carbon nanotube film is 1 nanometer to 100 micrometers, the width is related to the size of the carbon nanotube array from which the carbon nanotube film is pulled out, and the length is not limited. There are micropores or gaps between adjacent carbon nanotubes in the carbon nanotube film to form openings 105 , and the size of the micropores or gaps is less than 10 microns. Preferably, the carbon nanotube film has a thickness of 100 nanometers to 10 micrometers. The carbon nanotubes 145 in the carbon nanotube film preferably extend in the same direction. For the carbon nanotube film and its preparation method, please refer to the Chinese Publication Patent No. CN101239712B "Carbon Nanotube Film Structure and Preparation Method" filed by the applicant on February 9, 2007 and announced on May 26, 2010. ". To save space, it is only cited here, but all the technical disclosures of the above applications should also be regarded as a part of the technical disclosures of the present application.
请参阅图4,当所述碳纳米管层包括层叠设置的多层碳纳米管膜时,相邻两层碳纳米管膜中的碳纳米管的延伸方向形成一交叉角度α,且α大于等于0度小于等于90度(0°≤α≤90°)。Please refer to Fig. 4, when the carbon nanotube layer comprises multi-layer carbon nanotube films stacked, the extension directions of the carbon nanotubes in the adjacent two layers of carbon nanotube films form a cross angle α, and α is greater than or equal to 0 degrees is less than or equal to 90 degrees (0°≤α≤90°).
为减小碳纳米管膜的厚度,还可以进一步对该碳纳米管膜进行加热处理。为避免碳纳米管膜加热时被破坏,所述加热碳纳米管膜的方法采用局部加热法。其具体包括以下步骤:局部加热碳纳米管膜,使碳纳米管膜在局部位置的部分碳纳米管被氧化;移动碳纳米管被局部加热的位置,从局部到整体实现整个碳纳米管膜的加热。具体地,可将该碳纳米管膜分成多个小的区域,采用由局部到整体的方式,逐区域地加热该碳纳米管膜。所述局部加热碳纳米管膜的方法可以有多种,如激光加热法、微波加热法等等。本实施例中,通过功率密度大于0.1×104瓦特/平方米的激光扫描照射该碳纳米管膜,由局部到整体的加热该碳纳米管膜。该碳纳米管膜通过激光照射,在厚度方向上部分碳纳米管被氧化,同时,碳纳米管膜中直径较大的碳纳米管束被去除,使得该碳纳米管膜变薄。In order to reduce the thickness of the carbon nanotube film, the carbon nanotube film can be further heat-treated. In order to avoid the destruction of the carbon nanotube film when heated, the method for heating the carbon nanotube film adopts a local heating method. It specifically includes the following steps: locally heating the carbon nanotube film to oxidize some carbon nanotubes in the local position of the carbon nanotube film; heating. Specifically, the carbon nanotube film may be divided into multiple small regions, and the carbon nanotube film may be heated region by region in a manner from local to global. There are many methods for locally heating the carbon nanotube film, such as laser heating, microwave heating and so on. In this embodiment, the carbon nanotube film is irradiated by scanning laser with a power density greater than 0.1×10 4 watts/square meter, and the carbon nanotube film is heated from local to whole. The carbon nanotube film is irradiated by laser, and part of the carbon nanotubes in the thickness direction are oxidized, and at the same time, the carbon nanotube bundles with larger diameters in the carbon nanotube film are removed, so that the carbon nanotube film becomes thinner.
可以理解,上述激光扫描碳纳米管膜的方法不限,只要能够均匀照射该碳纳米管膜即可。激光扫描可以沿平行碳纳米管膜中碳纳米管的排列方向逐行进行,也可以沿垂直于碳纳米管膜中碳纳米管的排列方向逐列进行。具有固定功率、固定波长的激光扫描碳纳米管膜的速度越小,碳纳米管膜中的碳纳米管束吸收的热量越多,对应被破坏的碳纳米管束越多,激光处理后的碳纳米管膜的厚度变小。但是,如果激光扫描速度太小,碳纳米管膜将吸收过多热量而被烧毁。本实施例中,激光的功率密度大于0.053×1012瓦特/平方米,激光光斑的直径在1毫米~5毫米范围内,激光扫描照射时间小于1.8秒。优选地,激光器为二氧化碳激光器,该激光器的功率为30瓦特,波长为10.6微米,光斑直径为3毫米,激光装置140与碳纳米管膜的相对运动速度小于10毫米/秒。It can be understood that the method for scanning the carbon nanotube film with the laser is not limited, as long as the carbon nanotube film can be irradiated uniformly. Laser scanning can be performed row by row along the direction parallel to the arrangement of carbon nanotubes in the carbon nanotube film, or can be performed column by row along the direction perpendicular to the arrangement direction of carbon nanotubes in the carbon nanotube film. The smaller the speed at which the laser with fixed power and fixed wavelength scans the carbon nanotube film, the more heat absorbed by the carbon nanotube bundles in the carbon nanotube film, and the more correspondingly destroyed carbon nanotube bundles, the carbon nanotubes after laser treatment The thickness of the film becomes smaller. However, if the laser scanning speed is too small, the carbon nanotube film will absorb too much heat and be burned. In this embodiment, the power density of the laser is greater than 0.053×10 12 watts/square meter, the diameter of the laser spot is in the range of 1 mm to 5 mm, and the laser scanning irradiation time is less than 1.8 seconds. Preferably, the laser is a carbon dioxide laser with a power of 30 watts, a wavelength of 10.6 microns, and a spot diameter of 3 mm. The relative movement speed between the laser device 140 and the carbon nanotube film is less than 10 mm/s.
所述碳纳米管线可以为非扭转的碳纳米管线或扭转的碳纳米管线。所述非扭转的碳纳米管线与扭转的碳纳米管线均为自支撑结构。具体地,请参阅图5,该非扭转的碳纳米管线包括多个沿平行于该非扭转的碳纳米管线长度方向延伸的碳纳米管。具体地,该非扭转的碳纳米管线包括多个碳纳米管片段,该多个碳纳米管片段通过范德华力首尾相连,每一碳纳米管片段包括多个相互平行并通过范德华力紧密结合的碳纳米管。该碳纳米管片段具有任意的长度、厚度、均匀性及形状。该非扭转的碳纳米管线长度不限,直径为0.5纳米~100微米。非扭转的碳纳米管线为将碳纳米管膜通过有机溶剂处理得到。具体地,将有机溶剂浸润所述碳纳米管膜的整个表面,在挥发性有机溶剂挥发时产生的表面张力的作用下,碳纳米管膜中的相互平行的多个碳纳米管通过范德华力紧密结合,从而使碳纳米管膜收缩为一非扭转的碳纳米管线。该有机溶剂为挥发性有机溶剂,如乙醇、甲醇、丙酮、二氯乙烷或氯仿,本实施例中采用乙醇。通过有机溶剂处理的非扭转的碳纳米管线与未经有机溶剂处理的碳纳米管膜相比,比表面积减小,粘性降低。The carbon nanotube wires may be non-twisted carbon nanotube wires or twisted carbon nanotube wires. Both the non-twisted carbon nanotubes and the twisted carbon nanotubes are self-supporting structures. Specifically, referring to FIG. 5 , the non-twisted carbon nanotube wire includes a plurality of carbon nanotubes extending parallel to the length of the non-twisted carbon nanotube wire. Specifically, the non-twisted carbon nanotube wire includes a plurality of carbon nanotube segments, the plurality of carbon nanotube segments are connected end to end by van der Waals force, and each carbon nanotube segment includes a plurality of carbon nanotube segments that are parallel to each other and closely combined by van der Waals force. nanotube. The carbon nanotube segment has any length, thickness, uniformity and shape. The length of the non-twisted carbon nanotubes is not limited, and the diameter is 0.5 nanometers to 100 microns. The non-twisted carbon nanotube wire is obtained by treating the carbon nanotube film with an organic solvent. Specifically, the entire surface of the carbon nanotube film is infiltrated with an organic solvent, and under the action of the surface tension generated when the volatile organic solvent volatilizes, multiple carbon nanotubes in the carbon nanotube film that are parallel to each other are tightly bound together by van der Waals force. Combined, so that the carbon nanotube film shrinks into a non-twisted carbon nanotube wire. The organic solvent is a volatile organic solvent, such as ethanol, methanol, acetone, dichloroethane or chloroform, and ethanol is used in this embodiment. Compared with the carbon nanotube film without organic solvent treatment, the non-twisted carbon nanotube wire treated by organic solvent has a smaller specific surface area and lower viscosity.
所述扭转的碳纳米管线为采用一机械力将所述碳纳米管膜两端沿相反方向扭转获得。请参阅图6,该扭转的碳纳米管线包括多个绕该扭转的碳纳米管线轴向螺旋延伸的碳纳米管。具体地,该扭转的碳纳米管线包括多个碳纳米管片段,该多个碳纳米管片段通过范德华力首尾相连,每一碳纳米管片段包括多个相互平行并通过范德华力紧密结合的碳纳米管。该碳纳米管片段具有任意的长度、厚度、均匀性及形状。该扭转的碳纳米管线长度不限,直径为0.5纳米~100微米。进一步地,可采用一挥发性有机溶剂处理该扭转的碳纳米管线。在挥发性有机溶剂挥发时产生的表面张力的作用下,处理后的扭转的碳纳米管线中相邻的碳纳米管通过范德华力紧密结合,使扭转的碳纳米管线的比表面积减小,密度及强度增大。The twisted carbon nanotube wire is obtained by using a mechanical force to twist the two ends of the carbon nanotube film in opposite directions. Please refer to FIG. 6 , the twisted carbon nanotube wire includes a plurality of carbon nanotubes extending helically around the twisted carbon nanotube wire axially. Specifically, the twisted carbon nanotube wire includes a plurality of carbon nanotube segments, the plurality of carbon nanotube segments are connected end to end by van der Waals force, and each carbon nanotube segment includes a plurality of carbon nanotubes that are parallel to each other and closely combined by van der Waals force. Tube. The carbon nanotube segment has any length, thickness, uniformity and shape. The length of the twisted carbon nanotubes is not limited, and the diameter is 0.5 nanometers to 100 microns. Further, the twisted carbon nanotubes can be treated with a volatile organic solvent. Under the action of the surface tension generated when the volatile organic solvent volatilizes, the adjacent carbon nanotubes in the treated twisted carbon nanotubes are closely combined by van der Waals force, so that the specific surface area of the twisted carbon nanotubes is reduced, and the density and Increased strength.
所述碳纳米管线及其制备方法请参见申请人于2002年9月16日申请的,于2008年8月20日公告的第CN100411979C号中国公告专利“一种碳纳米管绳及其制造方法”,申请人:清华大学,鸿富锦精密工业(深圳)有限公司,以及于2005年12月16日申请的,于2009年6月17日公告的第CN100500556C号中国公告专利“碳纳米管丝及其制作方法”,申请人:清华大学,鸿富锦精密工业(深圳)有限公司。For the carbon nanotube wire and its preparation method, please refer to the Chinese publication patent No. CN100411979C "a carbon nanotube rope and its manufacturing method" filed by the applicant on September 16, 2002 and announced on August 20, 2008 , Applicants: Tsinghua University, Hongfujin Precision Industry (Shenzhen) Co., Ltd., and the Chinese announcement patent No. CN100500556C, which was applied on December 16, 2005 and announced on June 17, 2009, "carbon nanotube wire and Its production method", applicant: Tsinghua University, Hongfujin Precision Industry (Shenzhen) Co., Ltd.
步骤S30中,所述异质外延层104的生长方法可以通过分子束外延法(MBE)、化学束外延法(CBE)、减压外延法、低温外延法、选择外延法、液相沉积外延法(LPE)、金属有机气相外延法(MOVPE)、超真空化学气相沉积法(UHVCVD)、氢化物气相外延法(HVPE)、以及金属有机化学气相沉积法(MOCVD)等中的一种或多种实现。In step S30, the heteroepitaxial layer 104 can be grown by molecular beam epitaxy (MBE), chemical beam epitaxy (CBE), decompression epitaxy, low temperature epitaxy, selective epitaxy, liquid phase deposition epitaxy One or more of (LPE), metal organic vapor phase epitaxy (MOVPE), ultra vacuum chemical vapor deposition (UHVCVD), hydride vapor phase epitaxy (HVPE), and metal organic chemical vapor deposition (MOCVD), etc. accomplish.
所述异质外延层104指通过外延法生长在基底100的外延生长面101的单晶结构体,其材料不同于基底100,所以称异质外延层104。所述异质外延层104的生长的厚度可以根据需要制备。具体地,所述异质外延层104的生长的厚度可以为0.5纳米~1毫米。例如,所述异质外延层104的生长的厚度可以为100纳米~500微米,或200纳米~200微米,或500纳米~100微米。所述异质外延层104可以为一半导体外延层,且该半导体外延层的材料为GaMnAs、GaAlAs、GaInAs、GaAs、SiGe、InP、Si、AlN、GaN、GaInN、AlInN、GaAlN或AlGaInN。所述异质外延层104可以为一金属外延层,且该金属外延层的材料为铝、铂、铜或银。所述异质外延层104可以为一合金外延层,且该合金外延层的材料为MnGa、CoMnGa或Co2MnGa。The heteroepitaxial layer 104 refers to a single crystal structure grown on the epitaxial growth plane 101 of the substrate 100 by epitaxy, and its material is different from that of the substrate 100 , so it is called the heteroepitaxial layer 104 . The growth thickness of the heteroepitaxial layer 104 can be prepared as required. Specifically, the growth thickness of the heteroepitaxial layer 104 may be 0.5 nanometers to 1 millimeter. For example, the growth thickness of the heteroepitaxial layer 104 may be 100 nanometers to 500 micrometers, or 200 nanometers to 200 micrometers, or 500 nanometers to 100 micrometers. The heteroepitaxial layer 104 can be a semiconductor epitaxial layer, and the material of the semiconductor epitaxial layer is GaMnAs, GaAlAs, GaInAs, GaAs, SiGe, InP, Si, AlN, GaN, GaInN, AlInN, GaAlN or AlGaInN. The heteroepitaxial layer 104 can be a metal epitaxial layer, and the material of the metal epitaxial layer is aluminum, platinum, copper or silver. The heteroepitaxial layer 104 can be an alloy epitaxial layer, and the material of the alloy epitaxial layer is MnGa, CoMnGa or Co 2 MnGa.
请参阅图7,具体地,所述异质外延层104的生长过程具体包括以下步骤:Please refer to FIG. 7, specifically, the growth process of the heteroepitaxial layer 104 specifically includes the following steps:
S31:沿着基本垂直于所述基底100的外延生长面101方向成核并外延生长形成多个异质外延晶粒1042;S31: Nucleate and epitaxially grow along a direction substantially perpendicular to the epitaxial growth plane 101 of the substrate 100 to form a plurality of heteroepitaxial crystal grains 1042;
S32:所述多个异质外延晶粒1042沿着基本平行于所述基底100的外延生长面101方向外延生长形成一连续的异质外延薄膜1044;S32: The plurality of heteroepitaxial crystal grains 1042 are epitaxially grown along a direction substantially parallel to the epitaxial growth plane 101 of the substrate 100 to form a continuous heteroepitaxial thin film 1044;
S33:所述异质外延薄膜1044沿着基本垂直于所述基底100的外延生长面101方向外延生长形成一异质外延层104。S33 : The heteroepitaxial thin film 1044 is epitaxially grown along a direction substantially perpendicular to the epitaxial growth plane 101 of the substrate 100 to form a heteroepitaxial layer 104 .
步骤S31中,所述多个异质外延晶粒1042在所述基底100的外延生长面101通过该碳纳米管层102的开口105暴露的部分开始生长,且其生长方向基本垂直于所述基底100的外延生长面101,即该步骤中多个异质外延晶粒1042进行纵向外延生长。In step S31, the plurality of heteroepitaxial crystal grains 1042 start to grow on the part of the epitaxial growth surface 101 of the substrate 100 exposed through the opening 105 of the carbon nanotube layer 102, and the growth direction thereof is substantially perpendicular to the substrate. The epitaxial growth surface 101 of 100, that is, a plurality of heteroepitaxial crystal grains 1042 undergo vertical epitaxial growth in this step.
步骤S32中,通过控制生长条件使所述多个异质外延晶粒1042沿着基本平行于所述基底100的外延生长面101的方向同质外延生长并连成一体将所述碳纳米管层102覆盖。即,该步骤中所述多个异质外延晶粒1042进行侧向外延生长直接合拢,并最终在碳纳米管周围形成多个孔洞103将碳纳米管包围。优选地,碳纳米管与包围该碳纳米管的异质外延层104间隔设置。所述孔洞的形状与碳纳米管层102中的碳纳米管的排列方向有关。当碳纳米管层102为单层碳纳米管膜或多个平行设置的碳纳米管线时,所述多个孔洞103为基本平行设置的沟槽。当碳纳米管层102为多层交叉设置的碳纳米管膜或多个交叉设置的碳纳米管线时,所述多个孔洞103为交叉设置的沟槽网络。In step S32, by controlling the growth conditions, the plurality of heteroepitaxial crystal grains 1042 grow homoepitaxially along a direction substantially parallel to the epitaxial growth plane 101 of the substrate 100 and integrate the carbon nanotube layer 102 covered. That is, in this step, the plurality of heteroepitaxial crystal grains 1042 undergo lateral epitaxial growth and directly close together, and finally form a plurality of holes 103 around the carbon nanotubes to surround the carbon nanotubes. Preferably, the carbon nanotubes are spaced apart from the heteroepitaxial layer 104 surrounding the carbon nanotubes. The shape of the hole is related to the arrangement direction of the carbon nanotubes in the carbon nanotube layer 102 . When the carbon nanotube layer 102 is a single-layer carbon nanotube film or a plurality of carbon nanotube wires arranged in parallel, the plurality of holes 103 are substantially parallel grooves. When the carbon nanotube layer 102 is a multi-layer intersecting carbon nanotube film or a plurality of intersecting carbon nanotube wires, the plurality of holes 103 is an intersecting trench network.
步骤S33中,由于所述碳纳米管层102的存在,使得异质外延晶粒1042与基底100之间的晶格位错在形成连续的异质外延薄膜1044的过程中停止生长。因此,该步骤的异质外延层104相当于在没有缺陷的异质外延薄膜1044表面进行同质外延生长。所述异质外延层104具有较少的缺陷。本发明第一实施例中,所述基底100为一蓝宝石(Al2O3)基片,所述碳纳米管层102为一单层碳纳米管膜。本实施采用MOCVD工艺进行外延生长。其中,采用高纯氨气(NH3)作为氮的源气,采用氢气(H2)作载气,采用三甲基镓(TMGa)或三乙基镓(TEGa)、三甲基铟(TMIn)、三甲基铝(TMAl)作为Ga源、In源和Al源。具体包括以下步骤。首先,将蓝宝石基底100置入反应室,加热到1100℃~1200℃,并通入H2、N2或其混合气体作为载气,高温烘烤200秒~1000秒。其次,继续同入载气,并降温到500℃~650℃,通入三甲基镓或三乙基镓以及氨气,生长GaN低温缓冲层,其厚度10纳米~50纳米。然后,停止通入三甲基镓或三乙基镓,继续通入氨气和载气,同时将温度升高到1100℃~1200℃,并恒温保持30秒~300秒,进行退火。最后,将基底100的温度保持在1000℃~1100℃,继续通入氨气和载气,同时重新通入三甲基镓或三乙基镓,在高温下完成GaN的侧向外延生长过程,并生长出高质量的GaN外延层。样品生长完毕后,分别用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对样品进行观察和测试。请参阅图8和图9,本实施例制备的异质外延结构中,异质外延层仅从基底的外延生长面没有碳纳米管层的位置开始生长,然后连成一体。所述异质外延层与基底接触的表面形成多个孔洞,所述碳纳米管层设置于该孔洞内,且与异质外延层间隔设置。具体地,从所述图8中可以清楚其看到GaN外延层和蓝宝石基底之间的界面,其中,深色部分为GaN外延层,浅色部分为蓝宝石基底。所述GaN外延层与蓝宝石基底接触的表面具有一排孔洞。从所述图9中可以看到,每个孔洞内设置有碳纳米管。所述孔洞内的碳纳米管设置于蓝宝石基底表面,且与形成孔洞的GaN外延层间隔设置。In step S33 , due to the presence of the carbon nanotube layer 102 , the lattice dislocations between the heteroepitaxial grains 1042 and the substrate 100 stop growing during the process of forming the continuous heteroepitaxial thin film 1044 . Therefore, the heteroepitaxial layer 104 in this step is equivalent to performing homoepitaxial growth on the surface of the defect-free heteroepitaxial film 1044 . The heteroepitaxial layer 104 has fewer defects. In the first embodiment of the present invention, the substrate 100 is a sapphire (Al 2 O 3 ) substrate, and the carbon nanotube layer 102 is a single-layer carbon nanotube film. This implementation adopts MOCVD process for epitaxial growth. Among them, high-purity ammonia (NH 3 ) is used as the source gas of nitrogen, hydrogen (H 2 ) is used as the carrier gas, trimethylgallium (TMGa) or triethylgallium (TEGa), trimethylindium (TMIn ), trimethylaluminum (TMAl) as Ga source, In source and Al source. Specifically include the following steps. Firstly, put the sapphire substrate 100 into the reaction chamber, heat it to 1100°C-1200°C, feed H 2 , N 2 or a mixture thereof as a carrier gas, and bake at high temperature for 200-1000 seconds. Next, continue to feed the carrier gas, and lower the temperature to 500°C to 650°C, pass in trimethylgallium or triethylgallium and ammonia gas, and grow a GaN low-temperature buffer layer with a thickness of 10nm to 50nm. Then, stop feeding trimethylgallium or triethylgallium, continue feeding ammonia gas and carrier gas, and simultaneously raise the temperature to 1100°C-1200°C, and keep it at a constant temperature for 30-300 seconds to perform annealing. Finally, keep the temperature of the substrate 100 at 1000° C. to 1100° C., continue to feed ammonia gas and carrier gas, and at the same time re-fuse trimethylgallium or triethylgallium to complete the lateral epitaxial growth process of GaN at high temperature. And grow high-quality GaN epitaxial layer. After the samples were grown, the samples were observed and tested with a scanning electron microscope (SEM) and a transmission electron microscope (TEM). Please refer to FIG. 8 and FIG. 9 , in the heteroepitaxial structure prepared in this embodiment, the heteroepitaxial layer only grows from the epitaxial growth surface of the substrate where there is no carbon nanotube layer, and then connects together. A plurality of holes are formed on the surface of the heteroepitaxial layer in contact with the substrate, and the carbon nanotube layer is arranged in the holes and spaced apart from the heteroepitaxial layer. Specifically, it can be clearly seen from FIG. 8 that the interface between the GaN epitaxial layer and the sapphire substrate, wherein the dark part is the GaN epitaxial layer, and the light part is the sapphire substrate. The surface of the GaN epitaxial layer in contact with the sapphire substrate has a row of holes. It can be seen from FIG. 9 that carbon nanotubes are arranged in each hole. The carbon nanotubes in the holes are arranged on the surface of the sapphire substrate, and are spaced apart from the GaN epitaxial layer forming the holes.
请参阅图10与图11,为本发明第一实施例制备获得的一种异质外延结构10,其包括:一基底100,一碳纳米管层102以及一异质外延层104。所述基底100具有一外延生长面101。所述碳纳米管层102设置于所述基底100的外延生长面101,该碳纳米管层102具有多个开口105,所述基底100的外延生长面101对应所述碳纳米管层102的开口105的部分暴露。所述异质外延层104设置于所述基底100的外延生长面101,并覆盖所述碳纳米管层102。所述碳纳米管层102设置于所述异质外延层104与基底100之间。Please refer to FIG. 10 and FIG. 11 , which illustrate a heteroepitaxial structure 10 prepared according to the first embodiment of the present invention, which includes: a substrate 100 , a carbon nanotube layer 102 and a heteroepitaxial layer 104 . The substrate 100 has an epitaxial growth surface 101 . The carbon nanotube layer 102 is disposed on the epitaxial growth surface 101 of the substrate 100, the carbon nanotube layer 102 has a plurality of openings 105, and the epitaxial growth surface 101 of the substrate 100 corresponds to the openings of the carbon nanotube layer 102 Partial exposure of 105. The heteroepitaxial layer 104 is disposed on the epitaxial growth surface 101 of the substrate 100 and covers the carbon nanotube layer 102 . The carbon nanotube layer 102 is disposed between the heteroepitaxial layer 104 and the substrate 100 .
所述异质外延层104将所述碳纳米管层102覆盖,并渗透所述碳纳米管层102的多个开口105与所述基底100的外延生长面101接触,即所述碳纳米管层102的多个开口105中均渗透有所述异质外延层104。所述异质外延层104与其覆盖的碳纳米管层102在微观上间隔设置,即所述异质外延层104与基底100接触的表面形成多个孔洞103,所述碳纳米管层102设置于该孔洞103内,具体地,所述碳纳米管层102中的碳纳米管分别设置在多个孔洞103内。所述孔洞103形成在异质外延层104与所述基底100接触的表面,在所述异质外延层104的厚度方向该孔洞103均为盲孔。在每个孔洞103内,碳纳米管均基本不与所述异质外延层104接触。The heteroepitaxial layer 104 covers the carbon nanotube layer 102, and penetrates a plurality of openings 105 of the carbon nanotube layer 102 to contact the epitaxial growth surface 101 of the substrate 100, that is, the carbon nanotube layer The heteroepitaxial layer 104 is penetrated into the plurality of openings 105 of the 102 . The heteroepitaxial layer 104 and the carbon nanotube layer 102 it covers are microscopically arranged at intervals, that is, a plurality of holes 103 are formed on the surface of the heteroepitaxial layer 104 in contact with the substrate 100, and the carbon nanotube layer 102 is arranged on In the holes 103 , specifically, the carbon nanotubes in the carbon nanotube layer 102 are respectively arranged in a plurality of holes 103 . The holes 103 are formed on the surface of the heteroepitaxial layer 104 in contact with the substrate 100 , and the holes 103 are all blind holes in the thickness direction of the heteroepitaxial layer 104 . In each hole 103 , carbon nanotubes are basically not in contact with the heteroepitaxial layer 104 .
所述碳纳米管层102为一自支撑结构。该碳纳米管层包括碳纳米管膜或碳纳米管线。本实施例中,所述碳纳米管层102为一单层碳纳米管膜,该碳纳米管膜包括多个碳纳米管,该多个碳纳米管的轴向沿同一方向择优取向延伸,延伸方向相同的相邻的碳纳米管通过范德华力首尾相连。在垂直于延伸方向的相邻的碳纳米管之间部分间隔设置存在微孔或间隙,从而构成开口105。The carbon nanotube layer 102 is a self-supporting structure. The carbon nanotube layer includes a carbon nanotube film or a carbon nanotube wire. In this embodiment, the carbon nanotube layer 102 is a single-layer carbon nanotube film, the carbon nanotube film includes a plurality of carbon nanotubes, and the axial direction of the plurality of carbon nanotubes extends along the same direction with preferred orientation, extending Adjacent carbon nanotubes with the same orientation are connected end to end by van der Waals force. Micropores or gaps are partially spaced between adjacent carbon nanotubes perpendicular to the extending direction, thereby constituting the opening 105 .
请参阅图12,为本发明第二实施例制备获得的一种异质外延结构20,其包括:一基底200,一碳纳米管层202以及一异质外延层204。本发明第二实施例中的异质外延结构20的基底200和异质外延层204的材料,以及基底200、碳纳米管层202与异质外延层204的位置关系与第一实施例的异质外延结构10基本相同,其区别在于,碳纳米管层202为多个平行且间隔设置的碳纳米管线,相邻的碳纳米管线之间形成微孔。Please refer to FIG. 12 , which is a heteroepitaxial structure 20 prepared according to the second embodiment of the present invention, which includes: a substrate 200 , a carbon nanotube layer 202 and a heteroepitaxial layer 204 . The materials of the substrate 200 and the heteroepitaxial layer 204 of the heteroepitaxial structure 20 in the second embodiment of the present invention, and the positional relationship between the substrate 200, the carbon nanotube layer 202 and the heteroepitaxial layer 204 are different from those in the first embodiment. The meta-epitaxial structure 10 is basically the same, the difference is that the carbon nanotube layer 202 is a plurality of parallel and spaced carbon nanotube wires, and micropores are formed between adjacent carbon nanotube wires.
所述碳纳米管线可以为非扭转的碳纳米管线或扭转的碳纳米管线。具体地,所述非扭转的碳纳米管线包括多个沿该非扭转的碳纳米管线长度方向延伸的碳纳米管。所述扭转的碳纳米管线包括多个绕该扭转的碳纳米管线轴向螺旋延伸的碳纳米管。The carbon nanotube wires may be non-twisted carbon nanotube wires or twisted carbon nanotube wires. Specifically, the non-twisted carbon nanotube wire includes a plurality of carbon nanotubes extending along the length direction of the non-twisted carbon nanotube wire. The twisted carbon nanotube wire includes a plurality of carbon nanotubes extending helically around the twisted carbon nanotube wire axially.
本发明第二实施例中,所述基底100为一绝缘体上的硅(SOI:silicon oninsulator)基片,所述碳纳米管层102为多个平行且间隔设置的碳纳米管线。本实施采用MOCVD工艺进行外延生长。其中,分别采用三甲基镓(TMGa)、三甲基铝(TMAl)作为Ga和Al的源物质,氨气(NH3)作为氮的源物质,氢气(H2)作载气,使用卧式水平反应炉加热。具体地,首先在SOI基底100的外延生长面101铺设多个平行且间隔设置的碳纳米管线。然后在基底100的外延生长面101外延生长GaN外延层,生长温度1070℃,生长时间450秒,主要是进行GaN的纵向生长;接着保持反应室压力不变,升高温度到1110℃,同时降低Ga源流量,而保持氨气流量不变,以促进侧向外延生长,生长时间为4900秒;最后,降低温度至1070℃,同时增加Ga源流量继续纵向生长10000秒。In the second embodiment of the present invention, the substrate 100 is a silicon on insulator (SOI: silicon oninsulator) substrate, and the carbon nanotube layer 102 is a plurality of parallel and spaced carbon nanotube lines. This implementation adopts MOCVD process for epitaxial growth. Among them, trimethylgallium (TMGa) and trimethylaluminum (TMAl) are used as the source material of Ga and Al respectively, ammonia gas (NH 3 ) is used as the source material of nitrogen, hydrogen gas (H 2 ) is used as the carrier gas, and the horizontal Type horizontal reactor heating. Specifically, firstly, a plurality of parallel and spaced carbon nanotube wires are laid on the epitaxial growth surface 101 of the SOI substrate 100 . Then epitaxially grow a GaN epitaxial layer on the epitaxial growth surface 101 of the substrate 100, the growth temperature is 1070°C, and the growth time is 450 seconds, mainly for the vertical growth of GaN; then keep the reaction chamber pressure constant, raise the temperature to 1110°C, and decrease The Ga source flow rate was kept constant to promote lateral epitaxial growth, and the growth time was 4900 seconds; finally, the temperature was lowered to 1070°C, and the Ga source flow rate was increased to continue vertical growth for 10000 seconds.
请参阅图13,本发明第三实施例提供一种异质外延结构30,其包括:一基底300,一碳纳米管层302以及一异质外延层304。本发明第三实施例中的异质外延结构30的基底300和异质外延层304的材料,以及基底300、碳纳米管层302与异质外延层304的位置关系与第二实施例的异质外延结构20基本相同,其区别在于,碳纳米管层302为多个交叉且间隔设置的碳纳米管线,交叉且间相邻的四个碳纳米管线之间形成微孔。具体地,该多个碳纳米管线分别沿第一方向与第二方向平行设置,所述第一方向与第二方向交叉设置。交叉且间相邻的四个碳纳米管线之间形成一开口。本实施例中,相邻的两个碳纳米管线平行设置,相交叉的两个碳纳米管线相互垂直。可以理解,所述碳纳米管线也可采用任意交叉方式设置,只需使碳纳米管层302形成多个开口,从而使基底300的外延生长面部分暴露即可。Referring to FIG. 13 , the third embodiment of the present invention provides a heteroepitaxial structure 30 , which includes: a substrate 300 , a carbon nanotube layer 302 and a heteroepitaxial layer 304 . The materials of the substrate 300 and the heteroepitaxial layer 304 of the heteroepitaxial structure 30 in the third embodiment of the present invention, and the positional relationship between the substrate 300, the carbon nanotube layer 302 and the heteroepitaxial layer 304 are different from those of the second embodiment. The meta-epitaxial structure 20 is basically the same, the difference is that the carbon nanotube layer 302 is a plurality of intersecting and spaced carbon nanotube wires, and micropores are formed between the four intersecting and adjacent carbon nanotube wires. Specifically, the plurality of carbon nanotube wires are arranged parallel to the first direction and the second direction respectively, and the first direction and the second direction are arranged to intersect. An opening is formed between four intersecting and adjacent carbon nanotube wires. In this embodiment, two adjacent carbon nanotube wires are arranged in parallel, and two intersecting carbon nanotube wires are perpendicular to each other. It can be understood that the carbon nanotube wires can also be arranged in any crossing manner, as long as a plurality of openings are formed in the carbon nanotube layer 302 so as to partially expose the epitaxial growth surface of the substrate 300 .
本发明第三实施例的异质外延结构30可以采用与第一实施例或第二实施例相同的方法制备。The heteroepitaxial structure 30 of the third embodiment of the present invention can be prepared by the same method as that of the first embodiment or the second embodiment.
本发明第四实施例提供一种同质外延结构,其包括:一基底,一碳纳米管层以及一外延层。本发明第四实施例中的碳纳米管层可采用上述第一实施例至第三实施例的碳纳米管层,基底、碳纳米管层与外延层的材料及位置关系与第一实施例基本相同,其区别在于,所述基底与外延层的材料相同,从而构成一同质外延结构。具体地,本实施例中,所述基底与外延层的材料均为GaN。A fourth embodiment of the present invention provides a homoepitaxial structure, which includes: a substrate, a carbon nanotube layer and an epitaxial layer. The carbon nanotube layer in the fourth embodiment of the present invention can adopt the carbon nanotube layer of the above-mentioned first embodiment to the third embodiment, and the materials and positional relationship of the substrate, the carbon nanotube layer and the epitaxial layer are basically the same as those of the first embodiment. The difference is that the substrate and the epitaxial layer are made of the same material, thus forming a homogeneous epitaxial structure. Specifically, in this embodiment, the materials of the substrate and the epitaxial layer are both GaN.
本发明第四实施例进一步提供一种同质外延结构的制备方法,其具体包括以下步骤:The fourth embodiment of the present invention further provides a method for preparing a homoepitaxial structure, which specifically includes the following steps:
S100:提供一基底,且该基底具有一支持同质外延层生长的外延生长面;S100: providing a substrate, and the substrate has an epitaxial growth surface supporting growth of a homoepitaxial layer;
S200:在所述基底的外延生长面设置一碳纳米管层,该基底与碳纳米管层共同构成一衬底;以及S200: disposing a carbon nanotube layer on the epitaxial growth surface of the substrate, where the substrate and the carbon nanotube layer together form a substrate; and
S300:在基底的外延生长面生长同质外延层。S300: growing a homoepitaxial layer on the epitaxial growth surface of the substrate.
本发明第四实施例的同质外延层的生长方法与第一实施例的异质外延层的生长方法基本相同,其区别在于,所述基底与外延层的材料相同,从而构成一同质外延结构。The growth method of the homoepitaxial layer in the fourth embodiment of the present invention is basically the same as the growth method of the heteroepitaxial layer in the first embodiment, the difference is that the material of the substrate and the epitaxial layer is the same, thereby forming a homoepitaxial structure .
本发明采用一碳纳米管层作为掩模设置于所述基底外延生长面生长外延层具有以下有以效果:The present invention adopts a carbon nanotube layer as a mask to be arranged on the epitaxial growth surface of the substrate to grow the epitaxial layer, which has the following effects:
第一,所述碳纳米管层为一自支撑结构,可直接铺设在基底的外延生长面,相对于现有技术通过沉积后光刻等工艺形成掩模,本发明工艺简单,成本低廉,有利于量产。First, the carbon nanotube layer is a self-supporting structure, which can be directly laid on the epitaxial growth surface of the substrate. Compared with the prior art, the mask is formed by processes such as photolithography after deposition, and the present invention has simple process, low cost, and Good for mass production.
第二,所述碳纳米管层为图形化结构,其厚度、开口尺寸均可达到纳米级,所述衬底用来生长外延层时形成的异质外延晶粒具有更小的尺寸,有利于减少位错缺陷的产生,以获得高质量的异质外延层。Second, the carbon nanotube layer is a patterned structure, its thickness and opening size can reach nanoscale, and the heteroepitaxial crystal grains formed when the substrate is used to grow the epitaxial layer have a smaller size, which is beneficial to Reduce the generation of dislocation defects to obtain high-quality heteroepitaxial layers.
第三,所述碳纳米管层的开口尺寸为纳米级,所述外延层从与纳米级开口对应的暴露的外延生长面生长,使得生长的外延层与基底之间的接触面积减小,减小了生长过程中外延层与衬底之间的应力,从而可以生长厚度较大的异质外延层,可进一步提高异质外延层的质量。Third, the opening size of the carbon nanotube layer is nanoscale, and the epitaxial layer grows from the exposed epitaxial growth surface corresponding to the nanoscale opening, so that the contact area between the grown epitaxial layer and the substrate is reduced, reducing The stress between the epitaxial layer and the substrate during the growth process is reduced, so that a thicker heteroepitaxial layer can be grown, and the quality of the heteroepitaxial layer can be further improved.
另外,本领域技术人员还可在本发明精神内作其它变化,当然这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。In addition, those skilled in the art can also make other changes within the spirit of the present invention. Of course, these changes made according to the spirit of the present invention should be included in the scope of protection claimed by the present invention.
Claims (8)
Priority Applications (19)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110025832.5A CN102593272B (en) | 2011-01-12 | 2011-01-24 | The preparation method of epitaxial structure |
US13/273,252 US9024310B2 (en) | 2011-01-12 | 2011-10-14 | Epitaxial structure |
US13/276,309 US8906788B2 (en) | 2011-01-12 | 2011-10-18 | Method for making epitaxial structure |
US13/276,251 US9466762B2 (en) | 2011-01-12 | 2011-10-18 | Base and method for making epitaxial structure using the same |
US13/276,275 US20120175629A1 (en) | 2011-01-12 | 2011-10-18 | Semiconductor epitaxial structure |
US13/276,278 US9515221B2 (en) | 2011-01-12 | 2011-10-18 | Epitaxial structure and method for making the same |
US13/276,285 US8455336B2 (en) | 2011-01-12 | 2011-10-18 | Method for making epitaxial structure |
US13/276,283 US8936681B2 (en) | 2011-01-12 | 2011-10-18 | Method for making epitaxial structure using carbon nanotube mask |
US13/275,564 US8633045B2 (en) | 2011-01-12 | 2011-10-18 | Method for making epitaxial structure |
US13/276,265 US8685773B2 (en) | 2011-01-12 | 2011-10-18 | Method for making semiconductor epitaxial structure |
US13/276,302 US20120175743A1 (en) | 2011-01-12 | 2011-10-18 | Epitaxial structure |
US13/276,294 US20120178248A1 (en) | 2011-01-12 | 2011-10-18 | Method for making epitaxial structure |
US13/276,280 US9196790B2 (en) | 2011-01-12 | 2011-10-18 | Method for making epitaxial structure |
JP2011238659A JP5931401B2 (en) | 2011-01-12 | 2011-10-31 | Epitaxial structure and manufacturing method thereof |
US14/098,767 US9219193B2 (en) | 2011-01-12 | 2013-12-06 | Method for making epitaxial structure |
US14/098,775 US9905726B2 (en) | 2011-01-12 | 2013-12-06 | Semiconductor epitaxial structure |
US14/098,743 US9559255B2 (en) | 2011-01-12 | 2013-12-06 | Epitaxial structure |
US15/263,338 US10177275B2 (en) | 2011-01-12 | 2016-09-12 | Epitaxial structure and method for making the same |
US16/177,449 US10622516B2 (en) | 2011-01-12 | 2018-11-01 | Epitaxial structure and method for making the same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110005809 | 2011-01-12 | ||
CN201110005809X | 2011-01-12 | ||
CN201110005809.X | 2011-01-12 | ||
CN201110025832.5A CN102593272B (en) | 2011-01-12 | 2011-01-24 | The preparation method of epitaxial structure |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102593272A CN102593272A (en) | 2012-07-18 |
CN102593272B true CN102593272B (en) | 2016-09-14 |
Family
ID=46481677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110025832.5A Active CN102593272B (en) | 2011-01-12 | 2011-01-24 | The preparation method of epitaxial structure |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5931401B2 (en) |
CN (1) | CN102593272B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104952989B (en) * | 2014-03-26 | 2018-02-27 | 清华大学 | epitaxial structure |
CN104952984B (en) * | 2014-03-27 | 2017-11-14 | 清华大学 | The preparation method of epitaxial structure |
CN115527843A (en) * | 2022-11-24 | 2022-12-27 | 广州粤芯半导体技术有限公司 | Composite substrate and its preparation method, semiconductor structure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101820036A (en) * | 2009-02-27 | 2010-09-01 | 清华大学 | Method for preparing light-emitting diode |
CN101868060A (en) * | 2009-04-20 | 2010-10-20 | 清华大学 | Stereo heat source |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008266064A (en) * | 2007-04-19 | 2008-11-06 | Nichia Corp | Substrate for semiconductor element and its manufacturing method |
JP5276852B2 (en) * | 2008-02-08 | 2013-08-28 | 昭和電工株式会社 | Method for manufacturing group III nitride semiconductor epitaxial substrate |
JP2010232464A (en) * | 2009-03-27 | 2010-10-14 | Showa Denko Kk | Group iii nitride semiconductor light emitting element, method of manufacturing the same, and laser diode |
-
2011
- 2011-01-24 CN CN201110025832.5A patent/CN102593272B/en active Active
- 2011-10-31 JP JP2011238659A patent/JP5931401B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101820036A (en) * | 2009-02-27 | 2010-09-01 | 清华大学 | Method for preparing light-emitting diode |
CN101868060A (en) * | 2009-04-20 | 2010-10-20 | 清华大学 | Stereo heat source |
Also Published As
Publication number | Publication date |
---|---|
CN102593272A (en) | 2012-07-18 |
JP5931401B2 (en) | 2016-06-08 |
JP2012144422A (en) | 2012-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102263171B (en) | Epitaxial substrate, preparation method of epitaxial substrate and application of epitaxial substrate as growing epitaxial layer | |
CN103367121B (en) | The preparation method of epitaxial structure | |
CN102737962B (en) | Epitaxial structure and preparation method thereof | |
CN102610718B (en) | Substrate used for growing epitaxial structure and using method thereof | |
CN102723408B (en) | Method for preparing semiconductor epitaxial structure | |
CN104952989B (en) | epitaxial structure | |
CN104952984B (en) | The preparation method of epitaxial structure | |
CN102605422B (en) | For mask and the using method thereof of growing epitaxial structure | |
CN102723407B (en) | Preparation method for epitaxial structure body | |
CN102593272B (en) | The preparation method of epitaxial structure | |
CN104952983B (en) | The preparation method of epitaxial structure | |
CN103367122B (en) | The preparation method of epitaxial structure | |
CN102723406B (en) | Semiconductor extension structure | |
TWI505984B (en) | A method for making an epitaxial structure | |
CN102723413B (en) | Substrate with microstructure and preparation method thereof | |
TWI476948B (en) | Epitaxial structure and method for making the same | |
TWI426159B (en) | Mask for growing epitaxial structure and method for using the same | |
TWI443863B (en) | Base for growing epitaxial structure and method for using the same | |
TWI466321B (en) | Method for making an epitaxial structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |