TWI474966B - A method for making epitaxial structure - Google Patents

A method for making epitaxial structure Download PDF

Info

Publication number
TWI474966B
TWI474966B TW100112867A TW100112867A TWI474966B TW I474966 B TWI474966 B TW I474966B TW 100112867 A TW100112867 A TW 100112867A TW 100112867 A TW100112867 A TW 100112867A TW I474966 B TWI474966 B TW I474966B
Authority
TW
Taiwan
Prior art keywords
layer
epitaxial
carbon nanotube
substrate
epitaxial layer
Prior art date
Application number
TW100112867A
Other languages
Chinese (zh)
Other versions
TW201238887A (en
Inventor
Yang Wei
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Publication of TW201238887A publication Critical patent/TW201238887A/en
Application granted granted Critical
Publication of TWI474966B publication Critical patent/TWI474966B/en

Links

Description

外延構造體的製備方法 Method for preparing epitaxial structure

本發明涉及一種外延構造體的製備方法。 The invention relates to a method for preparing an epitaxial structure.

外延構造體,尤其異質外延構造體為製作半導體器件的主要材料之一。例如,近年來,製備發光二極體(LED)的氮化鎵外延片成為研究的熱點。 Epitaxial structures, especially heteroepitaxial structures, are one of the main materials for fabricating semiconductor devices. For example, in recent years, gallium nitride epitaxial wafers for preparing light-emitting diodes (LEDs) have become a research hotspot.

所述氮化鎵外延片是指在一定條件下,將氮化鎵材料分子,有規則排列,定向生長在藍寶石基底上。然而,高品質氮化鎵外延片的製備一直是研究的難點。由於氮化鎵和藍寶石基底的晶格常數以及熱膨脹係數的不同,從而導致氮化鎵外延層存在較多錯位缺陷(dislocation defect)。而且,氮化鎵外延層和藍寶石基底之間存在較大應力,應力越大會導致氮化鎵外延層破裂。這種異質外延構造普遍存在晶格失配現象,且易形成錯位等缺陷。 The gallium nitride epitaxial wafer refers to a GaN material molecule which is regularly arranged and oriented on a sapphire substrate under certain conditions. However, the preparation of high-quality GaN epitaxial wafers has been a difficult point of research. Due to the difference in lattice constant and thermal expansion coefficient of the gallium nitride and sapphire substrates, there are many dislocation defects in the gallium nitride epitaxial layer. Moreover, there is a large stress between the gallium nitride epitaxial layer and the sapphire substrate, and the greater the stress, the GaN epitaxial layer is broken. This heteroepitaxial structure generally has a lattice mismatch phenomenon, and is easy to form defects such as misalignment.

先前技術提供一種改善上述不足的方法,其採用非平整的藍寶石基底外延生長氮化鎵。然而,先前技術通常採用光刻等微電子方法在藍寶石基底表面形成溝槽從而構成非平整外延生長面。該方法不但製造過程複雜,成本較高,而且會對藍寶石基底外延生長面造成污染,從而影響外延構造體的品質。 The prior art provides a method for improving the above-described deficiencies by epitaxially growing gallium nitride using a non-flat sapphire substrate. However, the prior art generally forms a groove on the surface of the sapphire substrate by a microelectronic method such as photolithography to constitute a non-planar epitaxial growth surface. The method not only has a complicated manufacturing process, but also has high cost, and pollutes the epitaxial growth surface of the sapphire substrate, thereby affecting the quality of the epitaxial structure.

綜上所述,提供一種製程簡單,成本低廉,且不會對基底表面造 成污染的外延構造體的製備方法實為必要。 In summary, the invention provides a simple process, low cost, and does not make the surface of the substrate. The preparation of contaminated epitaxial structures is necessary.

一種外延構造體的製備方法,其包括以下步驟:提供一基底,該基底具有一外延生長面;於所述基底的外延生長面設置第一奈米碳管層;於所述基底的外延生長面生長一第一外延層並覆蓋所述第一奈米碳管層;於所述第一外延層的表面設置第二奈米碳管層,其中,所述第一外延層的表面為該第一外延層的外延生長面;以及,於所述第一外延層的表面生長一第二外延層並覆蓋所述第二奈米碳管層。 A method for preparing an epitaxial structure, comprising the steps of: providing a substrate having an epitaxial growth surface; providing a first carbon nanotube layer on an epitaxial growth surface of the substrate; and an epitaxial growth surface of the substrate Growing a first epitaxial layer and covering the first carbon nanotube layer; and providing a second carbon nanotube layer on a surface of the first epitaxial layer, wherein a surface of the first epitaxial layer is the first An epitaxial growth surface of the epitaxial layer; and a second epitaxial layer is grown on the surface of the first epitaxial layer and covers the second carbon nanotube layer.

一種外延構造體的製備方法,其包括以下步驟:提供一基底,且該基底具有一外延生長面;於所述基底的外延生長面設置一光罩層;在基底的外延生長面生長第1外延層並覆蓋所述光罩層;第1外延層的表面依序層疊生長第2至n層外延層,至少一相鄰外延層之間設置一光罩層;其中,n為大於等於3的整數,所述光罩層中至少一光罩層為奈米碳管層。 A method for preparing an epitaxial structure, comprising the steps of: providing a substrate, wherein the substrate has an epitaxial growth surface; providing a photomask layer on the epitaxial growth surface of the substrate; and growing the first epitaxial growth surface on the epitaxial growth surface of the substrate And covering the photomask layer; the surface of the first epitaxial layer is sequentially stacked to grow the second to n epitaxial layers, and at least one adjacent epitaxial layer is provided with a photomask layer; wherein n is an integer greater than or equal to 3. At least one of the photomask layers is a carbon nanotube layer.

與先前技術相比,由於在所述基底的外延生長面設置一奈米碳管層而獲得圖形化的光罩的方法製程簡單、成本低廉,大大降低了外延構造體的製備成本,同時降低了對環境的污染。進一步,所述包括奈米碳管層的外延構造體使得外延構造體具有廣泛用途。 Compared with the prior art, the method for obtaining a patterned photomask by providing a carbon nanotube layer on the epitaxial growth surface of the substrate is simple in process and low in cost, and the preparation cost of the epitaxial structure is greatly reduced, and the cost is reduced. Pollution to the environment. Further, the epitaxial structure including the carbon nanotube layer makes the epitaxial structure have a wide range of uses.

10,20,30‧‧‧外延構造體 10,20,30‧‧‧ Epitaxial structures

100‧‧‧基底 100‧‧‧Base

101‧‧‧外延生長面 101‧‧‧ Epitaxial growth surface

102‧‧‧第一奈米碳管層 102‧‧‧First carbon nanotube layer

103‧‧‧第一孔洞 103‧‧‧First hole

104‧‧‧第一外延層 104‧‧‧First epitaxial layer

105‧‧‧第一開口 105‧‧‧First opening

106‧‧‧表面 106‧‧‧ surface

107‧‧‧第二奈米碳管層 107‧‧‧Second carbon nanotube layer

108‧‧‧第二開口 108‧‧‧second opening

109‧‧‧第二外延層 109‧‧‧Second epilayer

1042‧‧‧外延晶粒 1042‧‧‧ Epitaxial grains

1044‧‧‧外延薄膜 1044‧‧‧ Epitaxial film

1092‧‧‧外延晶粒 1092‧‧‧ Epitaxial grains

1093‧‧‧第二孔洞 1093‧‧‧Second hole

1094‧‧‧外延薄膜 1094‧‧‧ Epitaxial film

143‧‧‧奈米碳管片段 143‧‧‧Nano carbon nanotube fragments

145‧‧‧奈米碳管 145‧‧・Nano carbon tube

圖1為本發明實施例提供的外延構造體的製備方法的製造方法流程圖。 1 is a flow chart of a manufacturing method of a method for preparing an epitaxial structure according to an embodiment of the present invention.

圖2為本發明實施例中採用的奈米碳管膜的掃描電鏡照片。 2 is a scanning electron micrograph of a carbon nanotube film used in an embodiment of the present invention.

圖3為圖2中的奈米碳管膜中的奈米碳管片段的構造示意圖。 Fig. 3 is a schematic view showing the structure of a carbon nanotube segment in the carbon nanotube film of Fig. 2.

圖4為本發明實施例中採用的複數層交叉設置的奈米碳管膜的掃描電鏡照片。 4 is a scanning electron micrograph of a carbon nanotube film disposed at a plurality of layers in an embodiment of the present invention.

圖5為本發明實施例中採用的非扭轉的奈米碳管線的掃描電鏡照片。 Figure 5 is a scanning electron micrograph of a non-twisted nanocarbon pipeline used in an embodiment of the present invention.

圖6為本發明實施例中採用的扭轉的奈米碳管線的掃描電鏡照片。 Figure 6 is a scanning electron micrograph of a twisted nanocarbon line employed in an embodiment of the present invention.

圖7為本發明實施例中第一外延層生長過程示意圖。 FIG. 7 is a schematic diagram showing a growth process of a first epitaxial layer in an embodiment of the present invention.

圖8為本發明第一實施例製備的外延構造體截面的掃描電鏡照片。 Fig. 8 is a scanning electron micrograph of a cross section of an epitaxial structure prepared in accordance with a first embodiment of the present invention.

圖9為本發明第一實施例製備的外延構造體介面處的透射電鏡照片。 Fig. 9 is a transmission electron micrograph of the interface of the epitaxial structure prepared in the first embodiment of the present invention.

圖10為本發明實施例中第二外延層生長過程示意圖。 FIG. 10 is a schematic view showing a growth process of a second epitaxial layer according to an embodiment of the present invention.

圖11為本發明第一實施例提供的外延構造體的立體構造示意圖。 FIG. 11 is a schematic perspective structural view of an epitaxial structure according to a first embodiment of the present invention.

圖12為圖11所示的外延構造體沿線XII-XII的剖面示意圖。 Fig. 12 is a schematic cross-sectional view of the epitaxial structure shown in Fig. 11 taken along line XII-XII.

圖13為本發明第二實施例提供的外延構造體的立體構造示意圖。 FIG. 13 is a schematic perspective structural view of an epitaxial structure according to a second embodiment of the present invention.

圖14為本發明第三實施例提供的外延構造體的立體構造示意圖。 FIG. 14 is a schematic perspective structural view of an epitaxial structure according to a third embodiment of the present invention.

以下將結合附圖詳細說明本發明實施例提供的外延構造體及其製備方法。為了便於理解本發明的技術方案,本發明首先介紹一種外延構造體的製備方法。 The epitaxial structure provided by the embodiment of the present invention and a preparation method thereof will be described in detail below with reference to the accompanying drawings. In order to facilitate understanding of the technical solution of the present invention, the present invention first introduces a method of preparing an epitaxial structure.

請參閱圖1,本發明實施例提供一種外延構造體10的製備方法, 其具體包括以下步驟:S10:提供一基底100,且該基底100具有一支持第一外延層104生長的外延生長面101;S20:於所述基底100的外延生長面101設置一第一奈米碳管層102;S30:在基底100的外延生長面101生長第一外延層104;S40:於所述第一外延層104的表面106設置一第二奈米碳管層107;S50:於所述第一外延層104的表面106生長第二外延層109。 Referring to FIG. 1 , an embodiment of the present invention provides a method for preparing an epitaxial structure 10 . Specifically, the method includes the following steps: S10: providing a substrate 100, and the substrate 100 has an epitaxial growth surface 101 supporting the growth of the first epitaxial layer 104; S20: providing a first nanometer on the epitaxial growth surface 101 of the substrate 100 a carbon nanotube layer 102; S30: a first epitaxial layer 104 is grown on the epitaxial growth surface 101 of the substrate 100; S40: a second carbon nanotube layer 107 is disposed on the surface 106 of the first epitaxial layer 104; S50: The surface 106 of the first epitaxial layer 104 grows a second epitaxial layer 109.

步驟S10中,所述基底100提供了第一外延層104的外延生長面101。所述基底100的外延生長面101是分子平滑的表面,且去除了氧或碳等雜質。所述基底100可為單層或複數層構造。當所述基底100為單層構造時,該基底100可為一單晶構造體,且具有一晶面作為第一外延層104的外延生長面101。所述單層構造的基底100的材料可為GaAs、GaN、Si、SOI(silicon on insultor)、AlN、SiC、MgO、ZnO、LiGaO2、LiAlO2或Al2O3等。當所述基底100為複數層構造時,其需要包括至少一層上述單晶構造體,且該單晶構造體具有一晶面作為第一外延層104的外延生長面101。所述基底100的材料可根據所要生長的第一外延層104來選擇,優選地,使所述基底100與第一外延層104具有相近的晶格常數以及熱膨脹係數。所述基底100的厚度、大小和形狀不限,可根據實際需要選擇。所述基底100不限於上述列舉的材料,只要具有支持第一外延層104生長的外延生長面101的基底100均屬於本發明的保護範 圍。 In step S10, the substrate 100 provides an epitaxial growth surface 101 of the first epitaxial layer 104. The epitaxial growth surface 101 of the substrate 100 is a molecularly smooth surface, and impurities such as oxygen or carbon are removed. The substrate 100 can be a single layer or a plurality of layers. When the substrate 100 has a single layer structure, the substrate 100 may be a single crystal structure and have a crystal plane as the epitaxial growth surface 101 of the first epitaxial layer 104. The material of the single-layer structure substrate 100 may be GaAs, GaN, Si, SOI (silicon on insultor), AlN, SiC, MgO, ZnO, LiGaO 2 , LiAlO 2 or Al 2 O 3 or the like. When the substrate 100 has a plurality of layers, it is required to include at least one of the above single crystal structures, and the single crystal structure has a crystal plane as the epitaxial growth surface 101 of the first epitaxial layer 104. The material of the substrate 100 may be selected according to the first epitaxial layer 104 to be grown, preferably, the substrate 100 and the first epitaxial layer 104 have similar lattice constants and coefficients of thermal expansion. The thickness, size and shape of the substrate 100 are not limited and may be selected according to actual needs. The substrate 100 is not limited to the materials listed above, as long as the substrate 100 having the epitaxial growth surface 101 supporting the growth of the first epitaxial layer 104 is within the scope of the present invention.

步驟S20中,所述第一奈米碳管層102為包括複數奈米碳管的連續的整體構造。所述第一奈米碳管層102中複數奈米碳管沿著基本平行於第一奈米碳管層102表面的方向延伸。當所述第一奈米碳管層102設置於所述基底100的外延生長面101時,所述第一奈米碳管層102中複數奈米碳管的延伸方向基本平行於所述基底100的外延生長面101。所述第一奈米碳管層102的厚度為1奈米~100微米,或1奈米~1微米,或1奈米~200奈米,優選地厚度為10奈米~100奈米。所述第一奈米碳管層102可為一圖形化的奈米碳管層。所述“圖形化”是指所述第一奈米碳管層102具有複數第一開口105,該複數第一開口105從所述第一奈米碳管層102的厚度方向貫穿所述第一奈米碳管層102。當所述第一奈米碳管層102覆蓋所述基底100的外延生長面101設置時,從而使所述基底100的外延生長面101對應該第一開口105的部份暴露以便於生長第一外延層104。所述第一開口105可為微孔或間隙。所述第一開口105的尺寸為10奈米~500微米,所述尺寸是指所述微孔的孔徑或所述間隙的寬度方向的間距。所述第一開口105的尺寸為10奈米~300微米、或10奈米~120微米、或10奈米~80微米、或10奈米~10微米。第一開口105的尺寸越小,有利於在生長外延層的過程中減少錯位缺陷的產生,以獲得高品質的第一外延層104。優選地,所述第一開口105的尺寸為10奈米~10微米。進一步地,所述第一奈米碳管層102的佔空比為1:100~100:1,或1:10~10:1,或1:2~2:1,或1:4~4:1。優選地,所述佔空比為1:4~4:1。所謂“佔空比”指該第一奈米碳管層102設置於基底100的外延生長面101後,該外延生長面101被第一奈米碳管層102佔據的部份與通過第一開口 105暴露的部份的面積比。 In step S20, the first carbon nanotube layer 102 is a continuous overall structure including a plurality of carbon nanotubes. The plurality of carbon nanotubes in the first carbon nanotube layer 102 extend in a direction substantially parallel to the surface of the first carbon nanotube layer 102. When the first carbon nanotube layer 102 is disposed on the epitaxial growth surface 101 of the substrate 100, the extending direction of the plurality of carbon nanotubes in the first carbon nanotube layer 102 is substantially parallel to the substrate 100 Epitaxial growth surface 101. The first carbon nanotube layer 102 has a thickness of from 1 nm to 100 μm, or from 1 nm to 1 μm, or from 1 nm to 200 nm, preferably from 10 nm to 100 nm. The first carbon nanotube layer 102 can be a patterned carbon nanotube layer. The "patterning" means that the first carbon nanotube layer 102 has a plurality of first openings 105 penetrating the first opening 105 from the thickness direction of the first carbon nanotube layer 102. The carbon nanotube layer 102. When the first carbon nanotube layer 102 covers the epitaxial growth surface 101 of the substrate 100, the epitaxial growth surface 101 of the substrate 100 is exposed to the portion of the first opening 105 to facilitate growth. Epitaxial layer 104. The first opening 105 can be a micro hole or a gap. The size of the first opening 105 is 10 nm to 500 μm, and the size refers to the aperture of the micro hole or the pitch of the gap in the width direction. The first opening 105 has a size of 10 nm to 300 μm, or 10 nm to 120 μm, or 10 nm to 80 μm, or 10 nm to 10 μm. The smaller the size of the first opening 105, the less the generation of misalignment defects during the growth of the epitaxial layer is obtained to obtain the high quality first epitaxial layer 104. Preferably, the first opening 105 has a size of 10 nm to 10 μm. Further, the duty ratio of the first carbon nanotube layer 102 is 1:100~100:1, or 1:10~10:1, or 1:2~2:1, or 1:4~4 :1. Preferably, the duty ratio is 1:4~4:1. The "duty ratio" means that the first carbon nanotube layer 102 is disposed on the epitaxial growth surface 101 of the substrate 100, and the portion of the epitaxial growth surface 101 occupied by the first carbon nanotube layer 102 passes through the first opening. The area ratio of the exposed portion of 105.

進一步地,所述“圖形化”是指所述第一奈米碳管層102中複數奈米碳管的排列方式是有序的、有規則的。例如,所述第一奈米碳管層102中複數奈米碳管的軸向均基本平行於所述基底100的外延生長面101且基本沿同一方向延伸。或者,所述第一奈米碳管層102中複數奈米碳管的軸向可有規律性地基本沿兩個以上方向延伸。或者,所述第一奈米碳管層102中複數奈米碳管的軸向沿著基底100的一晶向延伸或與基底100的一晶向成一定角度延伸。上述第一奈米碳管層102中沿同一方向延伸的相鄰的奈米碳管通過凡得瓦力(van der Waals force)首尾相連。 Further, the "patterning" means that the arrangement of the plurality of carbon nanotubes in the first carbon nanotube layer 102 is ordered and regular. For example, the plurality of carbon nanotubes in the first carbon nanotube layer 102 have an axial direction substantially parallel to the epitaxial growth surface 101 of the substrate 100 and extend substantially in the same direction. Alternatively, the axial directions of the plurality of carbon nanotubes in the first carbon nanotube layer 102 may regularly extend substantially in more than two directions. Alternatively, the plurality of carbon nanotubes in the first carbon nanotube layer 102 extend axially along a crystal orientation of the substrate 100 or at an angle to a crystal orientation of the substrate 100. Adjacent carbon nanotubes extending in the same direction in the first carbon nanotube layer 102 are connected end to end by a van der Waals force.

於所述第一奈米碳管層102具有如前所述的第一開口105的前提下,所述第一奈米碳管層102中複數奈米碳管也可無序排列、無規則排列。 On the premise that the first carbon nanotube layer 102 has the first opening 105 as described above, the plurality of carbon nanotubes in the first carbon nanotube layer 102 may also be disorderly arranged and randomly arranged. .

優選地,所述第一奈米碳管層102設置於所述基底100的整個外延生長面101。所述第一奈米碳管層102中的奈米碳管可為單壁奈米碳管、雙壁奈米碳管或多壁奈米碳管中的一種或複數種,其長度和直徑可根據需要選擇。 Preferably, the first carbon nanotube layer 102 is disposed on the entire epitaxial growth surface 101 of the substrate 100. The carbon nanotubes in the first carbon nanotube layer 102 may be one or a plurality of single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes, and the length and diameter thereof may be Choose as needed.

所述第一奈米碳管層102用作生長第一外延層104的光罩。所謂“光罩”是指該第一奈米碳管層102用於遮擋所述基底100的部份外延生長面101,且暴露部份外延生長面101,從而使得第一外延層104僅從所述外延生長面101暴露的部份生長。由於第一奈米碳管層102具有複數第一開口105,所以該第一奈米碳管層102形成一圖形化的光罩。當第一奈米碳管層102設置於基底100的外延生長面101後,複數奈米碳管沿著平行於外延生長面101的方向延伸。 由於所述第一奈米碳管層102於所述基底100的外延生長面101形成複數第一開口105,從而使得所述基底100的外延生長面101上具有一圖形化的光罩。可以理解,相對於光刻等微電子方法,通過設置奈米碳管層102光罩進行外延生長的方法製程簡單、成本低廉,不易在基底100的外延生長面101引入污染,而且綠色環保,可以大大降低了外延構造體10的製備成本。 The first carbon nanotube layer 102 serves as a reticle for growing the first epitaxial layer 104. By "photomask" is meant that the first carbon nanotube layer 102 is used to shield a portion of the epitaxial growth surface 101 of the substrate 100 and expose a portion of the epitaxial growth surface 101 such that the first epitaxial layer 104 is only The exposed portion of the epitaxial growth surface 101 is grown. Since the first carbon nanotube layer 102 has a plurality of first openings 105, the first carbon nanotube layer 102 forms a patterned mask. After the first carbon nanotube layer 102 is disposed on the epitaxial growth surface 101 of the substrate 100, the plurality of carbon nanotubes extend in a direction parallel to the epitaxial growth surface 101. Since the first carbon nanotube layer 102 forms a plurality of first openings 105 on the epitaxial growth surface 101 of the substrate 100, the epitaxial growth surface 101 of the substrate 100 has a patterned mask. It can be understood that, compared with the microelectronic method such as photolithography, the method of epitaxial growth by providing the carbon nanotube layer 102 mask is simple in process, low in cost, and difficult to introduce pollution on the epitaxial growth surface 101 of the substrate 100, and is environmentally friendly. The production cost of the epitaxial structure 10 is greatly reduced.

可以理解,所述基底100和第一奈米碳管層102共同構成了用於生長第一外延層104的襯底。該襯底可用於生長不同材料的第一外延層104,如半導體外延層、金屬外延層或合金外延層。該襯底也可用於生長同質外延層。 It will be appreciated that the substrate 100 and the first nanotube layer 102 together form a substrate for growing the first epitaxial layer 104. The substrate can be used to grow a first epitaxial layer 104 of a different material, such as a semiconductor epitaxial layer, a metal epitaxial layer, or an alloy epitaxial layer. The substrate can also be used to grow a homoepitaxial layer.

所述第一奈米碳管層102可預先形成後直接鋪設於所述基底100的外延生長面101。所述第一奈米碳管層102為一宏觀構造,且所述第一奈米碳管層102為一個自支撐的構造。所謂“自支撐”指該第一奈米碳管層102不需要大面積的載體支撐,而只要相對兩邊提供支撐力即能整體上懸空而保持自身狀態,即將該第一奈米碳管層102置於(或固定於)間隔特定距離設置的二支撐體上時,位於二支撐體之間的第一奈米碳管層102能夠懸空保持自身狀態。由於第一奈米碳管層102為自支撐構造,所述第一奈米碳管層102不必要通過複雜的化學方法形成在基底100的外延生長面101。進一步優選地,所述第一奈米碳管層102為複數奈米碳管組成的純奈米碳管構造。所謂“純奈米碳管構造”是指所述奈米碳管層在整個製備過程中無需任何化學修飾或酸化處理,不含有任何羧基等官能團修飾。 The first carbon nanotube layer 102 may be directly formed on the epitaxial growth surface 101 of the substrate 100 after being formed. The first carbon nanotube layer 102 is a macroscopic structure, and the first carbon nanotube layer 102 is a self-supporting structure. By "self-supporting", it is meant that the first carbon nanotube layer 102 does not require a large area of carrier support, and that the first carbon nanotube layer 102 can be maintained by merely providing a supporting force on both sides to maintain its own state. When placed (or fixed) on two supports spaced apart by a certain distance, the first carbon nanotube layer 102 between the two supports can be suspended to maintain its own state. Since the first carbon nanotube layer 102 is of a self-supporting configuration, the first carbon nanotube layer 102 does not have to be formed on the epitaxial growth surface 101 of the substrate 100 by complicated chemical methods. Further preferably, the first carbon nanotube layer 102 is a pure carbon nanotube structure composed of a plurality of carbon nanotubes. By "pure carbon nanotube structure", it is meant that the carbon nanotube layer does not require any chemical modification or acidification treatment throughout the preparation process, and does not contain any functional group modification such as a carboxyl group.

所述第一奈米碳管層102還可為一包括複數奈米碳管以及添加材 料的複合構造。所述添加材料包括石墨、石墨稀、碳化矽、氮化硼、氮化矽、二氧化矽、無定形碳等中的一種或複數種。所述添加材料還可以包括金屬碳化物、金屬氧化物及金屬氮化物等中的一種或複數種。所述添加材料包覆於第一奈米碳管層102中奈米碳管的至少部份表面或設置於第一奈米碳管層102的第一開口105內。優選地,所述添加材料包覆於奈米碳管的表面。由於,所述添加材料包覆於奈米碳管的表面,使得奈米碳管的直徑變大,從而使奈米碳管之間的第一開口105減小。所述添加材料可以通過化學氣相沈積(CVD)、物理氣相沈積(PVD)、磁控濺射等方法形成於奈米碳管的表面。 The first carbon nanotube layer 102 can also be a plurality of carbon nanotubes and additives Composite structure of the material. The additive material includes one or a plurality of graphite, graphite thin, lanthanum carbide, boron nitride, tantalum nitride, cerium oxide, amorphous carbon, and the like. The additive material may further include one or a plurality of metal carbides, metal oxides, metal nitrides, and the like. The additive material is coated on at least a portion of the surface of the carbon nanotube layer 102 in the first carbon nanotube layer 102 or in the first opening 105 of the first carbon nanotube layer 102. Preferably, the additive material is coated on the surface of the carbon nanotube. Since the additive material is coated on the surface of the carbon nanotube, the diameter of the carbon nanotubes becomes large, so that the first opening 105 between the carbon nanotubes is reduced. The additive material may be formed on the surface of the carbon nanotube by chemical vapor deposition (CVD), physical vapor deposition (PVD), magnetron sputtering, or the like.

將所述第一奈米碳管層102鋪設於所述基底100的外延生長面101後還可包括一有機溶劑處理的步驟,以使第一奈米碳管層102與外延生長面101更加緊密結合。該有機溶劑可選用乙醇、甲醇、丙酮、二氯乙烷和氯仿中一種或者幾種的混合。本實施例中的有機溶劑採用乙醇。該使用有機溶劑處理的步驟可通過試管將有機溶劑滴落在第一奈米碳管層102表面浸潤整個第一奈米碳管層102或將基底100和整個第一奈米碳管層102一起浸入盛有有機溶劑的容器中浸潤。 Laying the first carbon nanotube layer 102 on the epitaxial growth surface 101 of the substrate 100 may further include an organic solvent treatment step to make the first carbon nanotube layer 102 and the epitaxial growth surface 101 closer. Combine. The organic solvent may be selected from a mixture of one or more of ethanol, methanol, acetone, dichloroethane and chloroform. The organic solvent in this embodiment employs ethanol. The step of treating with an organic solvent may drip the organic solvent on the surface of the first carbon nanotube layer 102 through a test tube to infiltrate the entire first carbon nanotube layer 102 or the substrate 100 together with the entire first carbon nanotube layer 102. Immerse in a container filled with an organic solvent.

所述第一奈米碳管層102也可通過化學氣相沈積(CVD)等方法直接生長於所述基底100的外延生長面101或先生長在矽基底表面,然後轉印到所述基底100的外延生長面101,或將含奈米碳管的溶液直接沈積於所述基底100的外延生長面101等方法形成。 The first carbon nanotube layer 102 may also be directly grown on the epitaxial growth surface 101 of the substrate 100 or by the surface of the crucible substrate by chemical vapor deposition (CVD) or the like, and then transferred to the substrate 100. The epitaxial growth surface 101 is formed by directly depositing a solution containing a carbon nanotube on the epitaxial growth surface 101 of the substrate 100.

具體地,所述第一奈米碳管層102可以包括奈米碳管膜或奈米碳管線。所述第一奈米碳管層102可為一單層奈米碳管膜或複數層 疊設置的奈米碳管膜。所述第一奈米碳管層102可包括複數平行設置的奈米碳管線或複數交叉設置的奈米碳管線。當所述第一奈米碳管層102為複數層疊設置的奈米碳管膜時,奈米碳管膜的層數不宜太多,優選地,為2層~100層。當所述第一奈米碳管層102為複數平行設置的奈米碳管線時,相鄰二奈米碳管線之間的距離為0.1微米~200微米,優選地,為10微米~100微米。所述相鄰二奈米碳管線之間的空間構成所述第一奈米碳管層102的第一開口105。相鄰兩個奈米碳管線之間的間隙長度可以等於奈米碳管線的長度。所述奈米碳管膜或奈米碳管線可以直接鋪設在基底100的外延生長面101構成所述第一奈米碳管層102。通過控制奈米碳管膜的層數或奈米碳管線之間的距離,可以控制第一奈米碳管層102中第一開口105的尺寸。 Specifically, the first carbon nanotube layer 102 may include a carbon nanotube film or a nano carbon line. The first carbon nanotube layer 102 can be a single layer of carbon nanotube film or a plurality of layers Stacked carbon nanotube membranes. The first carbon nanotube layer 102 may include a plurality of carbon nanotubes disposed in parallel or a plurality of carbon nanotubes disposed in an intersecting manner. When the first carbon nanotube layer 102 is a plurality of carbon nanotube films stacked, the number of layers of the carbon nanotube film is not too high, and preferably, it is 2 to 100 layers. When the first carbon nanotube layer 102 is a plurality of parallel carbon nanotubes, the distance between adjacent two nanocarbon lines is from 0.1 micrometer to 200 micrometers, preferably from 10 micrometers to 100 micrometers. A space between the adjacent two nanocarbon lines constitutes a first opening 105 of the first carbon nanotube layer 102. The length of the gap between two adjacent nanocarbon lines may be equal to the length of the nanocarbon line. The carbon nanotube film or the nanocarbon line may be directly laid on the epitaxial growth surface 101 of the substrate 100 to constitute the first carbon nanotube layer 102. The size of the first opening 105 in the first carbon nanotube layer 102 can be controlled by controlling the number of layers of the carbon nanotube film or the distance between the carbon nanotubes.

所述奈米碳管膜是由若干奈米碳管組成的自支撐構造。所述若干奈米碳管為沿同一方向擇優取向延伸。所述擇優取向是指在奈米碳管膜中大多數奈米碳管的整體延伸方向基本朝同一方向。而且,所述大多數奈米碳管的整體延伸方向基本平行於奈米碳管膜的表面。進一步地,所述奈米碳管膜中複數奈米碳管是通過凡得瓦力首尾相連。具體地,所述奈米碳管膜中基本朝同一方向延伸的大多數奈米碳管中每一奈米碳管與在延伸方向上相鄰的奈米碳管通過凡得瓦力首尾相連。當然,所述奈米碳管膜中存在少數隨機排列的奈米碳管,這些奈米碳管不會對奈米碳管膜中大多數奈米碳管的整體取向排列構成明顯影響。所述自支撐為奈米碳管膜不需要大面積的載體支撐,而只要相對兩邊提供支撐力即能整體上懸空而保持自身膜狀狀態,即將該奈米碳管膜置於(或固定於)間隔特定距離設置的兩個支撐體上時,位於二支撐體之間的奈米 碳管膜能夠懸空保持自身膜狀狀態。所述自支撐主要通過奈米碳管膜中存在連續的通過凡得瓦力首尾相連延伸排列的奈米碳管而實現。 The carbon nanotube membrane is a self-supporting structure composed of a number of carbon nanotubes. The plurality of carbon nanotubes extend in a preferred orientation along the same direction. The preferred orientation means that the majority of the carbon nanotubes in the carbon nanotube film extend substantially in the same direction. Moreover, the overall direction of extension of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, the plurality of carbon nanotubes in the carbon nanotube film are connected end to end by van der Waals force. Specifically, each of the carbon nanotubes in the majority of the carbon nanotube membranes extending in the same direction and the carbon nanotubes adjacent in the extending direction are connected end to end by van der Waals force. Of course, there are a few randomly arranged carbon nanotubes in the carbon nanotube film, and these carbon nanotubes do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube film. The self-supporting carbon nanotube film does not require a large-area carrier support, but can maintain a self-membrane state as long as the supporting force is provided on both sides, that is, the carbon nanotube film is placed (or fixed on) ) when the two supports are placed at a certain distance, the nano between the two supports The carbon tube film can be suspended to maintain its own membranous state. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending through the end-to-end extension of the van der Waals force in the carbon nanotube film.

具體地,所述奈米碳管膜中基本朝同一方向延伸的複數奈米碳管,並非絕對的直線狀,可以適當的彎曲;或者並非完全按照延伸方向上排列,可以適當的偏離延伸方向。因此,不能排除奈米碳管膜的基本朝同一方向延伸的複數奈米碳管中並列的奈米碳管之間可能存在部份接觸。 Specifically, the plurality of carbon nanotubes extending substantially in the same direction in the carbon nanotube film are not absolutely linear, and may be appropriately bent; or may not be completely aligned in the extending direction, and may be appropriately deviated from the extending direction. Therefore, it is not possible to exclude partial contact between the carbon nanotubes juxtaposed in the plurality of carbon nanotubes extending substantially in the same direction of the carbon nanotube film.

請參閱圖2及圖3,具體地,所述奈米碳管膜包括複數連續且定向延伸的奈米碳管片段143。該複數奈米碳管片段143通過凡得瓦力首尾相連。每一奈米碳管片段143包括複數相互平行的奈米碳管145,該複數相互平行的奈米碳管145通過凡得瓦力緊密結合。該奈米碳管片段143具有任意的長度、厚度、均勻性及形狀。所述奈米碳管膜可通過從一奈米碳管陣列中選定部份奈米碳管後直接拉取獲得。所述奈米碳管膜的厚度為1奈米~100微米,寬度與拉取出該奈米碳管膜的奈米碳管陣列的尺寸有關,長度不限。所述奈米碳管膜中相鄰的奈米碳管之間存在微孔或間隙從而構成第一開口105,且該微孔的孔徑或間隙的尺寸小於10微米。優選地,所述奈米碳管膜的厚度為100奈米~10微米。該奈米碳管膜中的奈米碳管145沿同一方向擇優取向延伸。所述奈米碳管膜及其製備方法具體請參見申請人於2007年2月12日申請的,於2010年7月11日公告的第I327177號中華民國專利“奈米碳管薄膜結構及其製備方法”。為節省篇幅,僅引用於此,但上述申請所有技術揭露也應視為本發明申請技術揭露的一部份。 Referring to Figures 2 and 3, in particular, the carbon nanotube film comprises a plurality of continuous and oriented extended carbon nanotube segments 143. The plurality of carbon nanotube segments 143 are connected end to end by van der Waals force. Each of the carbon nanotube segments 143 includes a plurality of carbon nanotubes 145 that are parallel to each other, and the plurality of parallel carbon nanotubes 145 are tightly coupled by van der Waals force. The carbon nanotube segments 143 have any length, thickness, uniformity, and shape. The carbon nanotube film can be obtained by directly pulling a part of a carbon nanotube from an array of carbon nanotubes. The carbon nanotube film has a thickness of 1 nm to 100 μm, and the width is related to the size of the carbon nanotube array for taking out the carbon nanotube film, and the length is not limited. There are micropores or gaps between adjacent carbon nanotubes in the carbon nanotube film to constitute the first opening 105, and the pore size or gap size of the micropores is less than 10 micrometers. Preferably, the carbon nanotube film has a thickness of from 100 nm to 10 μm. The carbon nanotubes 145 in the carbon nanotube film extend in a preferred orientation in the same direction. For details of the carbon nanotube film and the preparation method thereof, please refer to the patent document "Nano Carbon Tube Film" of the Patent No. I327177, which was filed on February 12, 2010 by the applicant. Preparation". In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the disclosure of the technology of the present application.

請參閱圖4,當所述奈米碳管層包括層疊設置的複數層奈米碳管膜時,相鄰兩層奈米碳管膜中的奈米碳管的延伸方向形成一交叉角度α,且α大於等於0度小於等於90度(0°≦α≦90°)。 Referring to FIG. 4, when the carbon nanotube layer comprises a plurality of laminated carbon nanotube films stacked in a stack, the extending direction of the carbon nanotubes in the adjacent two layers of carbon nanotube film forms an intersection angle α, And α is greater than or equal to 0 degrees and less than or equal to 90 degrees (0° ≦ α ≦ 90 °).

為減小奈米碳管膜的厚度,還可以進一步對該奈米碳管膜進行加熱處理。為避免奈米碳管膜加熱時被破壞,所述加熱奈米碳管膜的方法採用局部加熱法。其具體包括以下步驟:局部加熱奈米碳管膜,使奈米碳管膜在局部位置的部份奈米碳管被氧化;移動奈米碳管被局部加熱的位置,從局部到整體實現整個奈米碳管膜的加熱。具體地,可將該奈米碳管膜分成複數小的區域,採用由局部到整體的方式,逐區域地加熱該奈米碳管膜。所述局部加熱奈米碳管膜的方法可以有複數種,如鐳射加熱法、微波加熱法等等。本實施例中,通過功率密度大於0.1×104瓦特/平方米的鐳射掃描照射該奈米碳管膜,由局部到整體的加熱該奈米碳管膜。該奈米碳管膜通過鐳射照射,在厚度方向上部份奈米碳管被氧化,同時,奈米碳管膜中直徑較大的奈米碳管束被去除,使得該奈米碳管膜變薄。 In order to reduce the thickness of the carbon nanotube film, the carbon nanotube film may be further heat treated. In order to prevent the carbon nanotube film from being destroyed upon heating, the method of heating the carbon nanotube film adopts a local heating method. Specifically, the method comprises the steps of: locally heating the carbon nanotube film, so that a part of the carbon nanotube film is oxidized at a local position; and moving the carbon nanotube to be locally heated, from the local to the whole Heating of the carbon nanotube film. Specifically, the carbon nanotube film can be divided into a plurality of small regions, and the carbon nanotube film is heated region by region in a partial to overall manner. The method of locally heating the carbon nanotube film may be plural, such as laser heating, microwave heating, or the like. In this embodiment, the carbon nanotube film is irradiated by a laser scan having a power density of more than 0.1 × 10 4 watts/m 2 , and the carbon nanotube film is heated from a partial to a whole. The carbon nanotube film is irradiated by laser, and some of the carbon nanotubes are oxidized in the thickness direction, and at the same time, the larger diameter carbon nanotube bundle in the carbon nanotube film is removed, so that the carbon nanotube film becomes thin.

可以理解,上述鐳射掃描奈米碳管膜的方法不限,只要能夠均勻照射該奈米碳管膜即可。鐳射掃描可以沿平行奈米碳管膜中奈米碳管的排列方向逐行進行,也可以沿垂直於奈米碳管膜中奈米碳管的排列方向逐列進行。具有固定功率、固定波長的鐳射掃描奈米碳管膜的速度越小,奈米碳管膜中的奈米碳管束吸收的熱量越多,對應被破壞的奈米碳管束越多,鐳射處理後的奈米碳管膜的厚度變小。但是,如果鐳射掃描速度太小,奈米碳管膜將吸收過多熱量而被燒毀。本實施例中,鐳射的功率密度大於0.053×1012 瓦特/平方米,鐳射光斑的直徑在1毫米~5毫米範圍內,鐳射掃描照射時間小於1.8秒。優選地,雷射器為二氧化碳雷射器,該雷射器的功率為30瓦特,波長為10.6微米,光斑直徑為3毫米,鐳射裝置與奈米碳管膜的相對運動速度小於10毫米/秒。 It is to be understood that the above method of scanning the carbon nanotube film is not limited as long as the carbon nanotube film can be uniformly irradiated. The laser scanning can be performed row by row along the arrangement direction of the carbon nanotubes in the parallel carbon nanotube film, or can be performed column by column in the direction perpendicular to the arrangement of the carbon nanotubes in the carbon nanotube film. The smaller the speed of the laser-scanned carbon nanotube film with fixed power and fixed wavelength, the more heat absorbed by the carbon nanotube bundle in the carbon nanotube film, the more the corresponding carbon nanotube bundle is destroyed, after laser treatment The thickness of the carbon nanotube film becomes small. However, if the laser scanning speed is too small, the carbon nanotube film will absorb too much heat and be burned. In this embodiment, the laser power density is greater than 0.053×10 12 watts/square meter, the laser spot diameter is in the range of 1 mm to 5 mm, and the laser scanning illumination time is less than 1.8 seconds. Preferably, the laser is a carbon dioxide laser having a power of 30 watts, a wavelength of 10.6 microns, a spot diameter of 3 mm, and a relative movement speed of the laser device and the carbon nanotube film of less than 10 mm/sec. .

所述奈米碳管線可為非扭轉的奈米碳管線或扭轉的奈米碳管線。所述非扭轉的奈米碳管線與扭轉的奈米碳管線均為自支撐構造。具體地,請參閱圖5,該非扭轉的奈米碳管線包括複數沿平行於該非扭轉的奈米碳管線長度方向延伸的奈米碳管。具體地,該非扭轉的奈米碳管線包括複數奈米碳管片段,該複數奈米碳管片段通過凡得瓦力首尾相連,每一奈米碳管片段包括複數相互平行並通過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有任意的長度、厚度、均勻性及形狀。該非扭轉的奈米碳管線長度不限,直徑為0.5奈米~100微米。非扭轉的奈米碳管線為將奈米碳管膜通過有機溶劑處理得到。具體地,將有機溶劑浸潤所述奈米碳管膜的整個表面,在揮發性有機溶劑揮發時產生的表面張力的作用下,奈米碳管膜中的相互平行的複數奈米碳管通過凡得瓦力緊密結合,從而使奈米碳管膜收縮為一非扭轉的奈米碳管線。該有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙酮、二氯乙烷或氯仿,本實施例中採用乙醇。通過有機溶劑處理的非扭轉的奈米碳管線與未經有機溶劑處理的奈米碳管膜相比,比表面積減小,黏性降低。 The nanocarbon line can be a non-twisted nanocarbon line or a twisted nanocarbon line. The non-twisted nanocarbon pipeline and the twisted nanocarbon pipeline are both self-supporting structures. Specifically, referring to FIG. 5, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes extending in a direction parallel to the length of the non-twisted nanocarbon pipeline. Specifically, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by a van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass through a van der Waals force. Tightly bonded carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. The non-twisted nano carbon line is not limited in length and has a diameter of 0.5 nm to 100 μm. The non-twisted nano carbon pipeline is obtained by treating the carbon nanotube membrane with an organic solvent. Specifically, the organic solvent is used to impregnate the entire surface of the carbon nanotube film, and the mutually parallel complex carbon nanotubes in the carbon nanotube film pass through the surface tension generated by the volatilization of the volatile organic solvent. The wattage is tightly combined to shrink the carbon nanotube membrane into a non-twisted nanocarbon pipeline. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, dichloroethane or chloroform, and ethanol is used in this embodiment. The non-twisted nanocarbon line treated by the organic solvent has a smaller specific surface area and a lower viscosity than the carbon nanotube film which is not treated with the organic solvent.

所述扭轉的奈米碳管線為採用一機械力將所述奈米碳管膜兩端沿相反方向扭轉獲得。請參閱圖6,該扭轉的奈米碳管線包括複數繞該扭轉的奈米碳管線軸向螺旋延伸的奈米碳管。具體地,該扭 轉的奈米碳管線包括複數奈米碳管片段,該複數奈米碳管片段通過凡得瓦力首尾相連,每一奈米碳管片段包括複數相互平行並通過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有任意的長度、厚度、均勻性及形狀。該扭轉的奈米碳管線長度不限,直徑為0.5奈米~100微米。進一步地,可採用一揮發性有機溶劑處理該扭轉的奈米碳管線。在揮發性有機溶劑揮發時產生的表面張力的作用下,處理後的扭轉的奈米碳管線中相鄰的奈米碳管通過凡得瓦力緊密結合,使扭轉的奈米碳管線的比表面積減小,密度及強度增大。 The twisted nanocarbon line is obtained by twisting both ends of the carbon nanotube film in opposite directions by a mechanical force. Referring to FIG. 6, the twisted nanocarbon pipeline includes a plurality of carbon nanotubes extending axially around the twisted nanocarbon pipeline. Specifically, the twist The converted nano carbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals, and each carbon nanotube segment includes a plurality of carbon nanotubes which are parallel to each other and closely coupled by van der Waals force. Carbon tube. The carbon nanotube segments have any length, thickness, uniformity, and shape. The twisted nanocarbon line is not limited in length and has a diameter of 0.5 nm to 100 μm. Further, the twisted nanocarbon line can be treated with a volatile organic solvent. Under the action of the surface tension generated by the volatilization of the volatile organic solvent, the adjacent carbon nanotubes in the treated twisted nanocarbon pipeline are tightly bonded by van der Waals to make the specific surface area of the twisted nanocarbon pipeline Decrease, increase in density and strength.

所述奈米碳管線及其製備方法請參見申請人於2002年11月5日申請的,於2008年11月21日公告的第I303239號中華民國專利,申請人:鴻海精密工業股份有限公司,及於2005年12月16日申請的,於2009年7月21日公告的第I312337號中華民國專利,申請人:鴻海精密工業股份有限公司。 For the nano carbon pipeline and the preparation method thereof, please refer to the patent of the Republic of China, No. I303239, filed on November 5, 2008, filed by the applicant on November 5, 2002, the applicant: Hon Hai Precision Industry Co., Ltd. And the application of the Republic of China patent No. I312337, which was filed on December 16, 2005, was filed on July 21, 2009. Applicant: Hon Hai Precision Industry Co., Ltd.

所述奈米碳管薄膜還可以由以下步驟形成:a、在一燒杯底部設置一基底;b、在另一燒杯中將製備的單壁奈米碳碳管在溶劑分散,並超聲波振盪十分鐘左右,去除沉澱並得到一浮在表層的溶液,而後將浮在表層的溶液倒入設置有基底的燒杯中;c、加熱燒杯從而蒸發所述溶劑,使得奈米碳碳管均勻的沈積在基底上,從而在基底表面形成奈米碳碳管膜。又該方法得到的奈米碳管薄膜中奈米碳管非定向性的排列分佈。可以理解,所述奈米碳管薄膜可以由電泳或沉澱等其他方法形成。 The carbon nanotube film can also be formed by the following steps: a, placing a substrate at the bottom of a beaker; b, dispersing the prepared single-walled carbon nanotube tube in a solvent in another beaker, and ultrasonically shaking for ten minutes. Left and right, remove the precipitate and obtain a solution floating on the surface layer, and then pour the solution floating on the surface layer into a beaker provided with a substrate; c, heat the beaker to evaporate the solvent, so that the carbon carbon nanotube tube is uniformly deposited on the substrate Upper, thereby forming a carbon carbon nanotube film on the surface of the substrate. In addition, the carbon nanotube film obtained by the method has a non-directional arrangement of carbon nanotubes. It will be appreciated that the carbon nanotube film can be formed by other methods such as electrophoresis or precipitation.

步驟S30中,所述第一外延層104的生長方法可以通過分子束外延法(MBE)、化學束外延法(CBE)、減壓外延法、低溫外延法、 選擇外延法、液相沈積外延法(LPE)、金屬有機氣相外延法(MOVPE)、超真空化學氣相沈積法(UHVCVD)、氫化物氣相外延法(HVPE)、以及金屬有機化學氣相沈積法(MOCVD)等中的一種或複數種實現。 In step S30, the growth method of the first epitaxial layer 104 may be performed by molecular beam epitaxy (MBE), chemical beam epitaxy (CBE), reduced pressure epitaxy, low temperature epitaxy, Selective epitaxy, liquid phase deposition epitaxy (LPE), metal organic vapor phase epitaxy (MOVPE), ultra-vacuum chemical vapor deposition (UHVCVD), hydride vapor phase epitaxy (HVPE), and metal organic chemical vapor phase One or a plurality of implementations of deposition methods (MOCVD) and the like.

所述第一外延層104是指通過外延法生長在基底100的外延生長面101的單晶構造體,其材料不同於基底100,所以也可稱為異質外延層。所述第一外延層104的生長的厚度可根據需要製備。具體地,所述第一外延層104的生長厚度可為0.5奈米~1毫米。例如,所述第一外延層104的生長的厚度可為100奈米~500微米,或200奈米~200微米,或500奈米~100微米。所述第一外延層104可為一半導體外延層,且該半導體外延層的材料為GaMnAs、GaAlAs、GaInAs、GaAs、SiGe、InP、Si、AlN、GaN、GaInN、AlInN、GaAlN或AlGaInN。所述第一外延層104可為一金屬外延層,且該金屬外延層的材料為鋁、鉑、銅或銀。所述第一外延層104可為一合金外延層,且該合金外延層的材料為MnGa、CoMnGa或Co2MnGa。 The first epitaxial layer 104 refers to a single crystal structure grown by epitaxial growth on the epitaxial growth surface 101 of the substrate 100, and the material thereof is different from the substrate 100, so it may also be referred to as a heteroepitaxial layer. The thickness of the growth of the first epitaxial layer 104 can be prepared as needed. Specifically, the first epitaxial layer 104 may have a growth thickness of 0.5 nm to 1 mm. For example, the first epitaxial layer 104 may have a thickness of from 100 nanometers to 500 micrometers, or from 200 nanometers to 200 micrometers, or from 500 nanometers to 100 micrometers. The first epitaxial layer 104 may be a semiconductor epitaxial layer, and the material of the semiconductor epitaxial layer is GaMnAs, GaAlAs, GaInAs, GaAs, SiGe, InP, Si, AlN, GaN, GaInN, AlInN, GaAlN or AlGaInN. The first epitaxial layer 104 can be a metal epitaxial layer, and the metal epitaxial layer is made of aluminum, platinum, copper or silver. The first epitaxial layer 104 may be an alloy epitaxial layer, and the material of the epitaxial layer of the alloy is MnGa, CoMnGa or Co 2 MnGa.

請參閱圖7,具體地,所述第一外延層104的生長過程具體包括以下步驟:S31:沿著基本垂直於所述基底100的外延生長面101方向成核並外延生長形成複數外延晶粒1042;S32:所述複數外延晶粒1042沿著基本平行於所述基底100的外延生長面101方向外延生長形成一連續的外延薄膜1044;S33:所述外延薄膜1044沿著基本垂直於所述基底100的外延生長 面101方向外延生長形成一第一外延層104。 Referring to FIG. 7 , specifically, the growth process of the first epitaxial layer 104 specifically includes the following steps: S31 : nucleating and epitaxially growing along the epitaxial growth surface 101 substantially perpendicular to the substrate 100 to form a plurality of epitaxial grains 1042: S32: the plurality of epitaxial grains 1042 are epitaxially grown along a direction substantially parallel to the epitaxial growth surface 101 of the substrate 100 to form a continuous epitaxial film 1044; S33: the epitaxial film 1044 is substantially perpendicular to the Epitaxial growth of substrate 100 Epitaxial growth in the direction of the face 101 forms a first epitaxial layer 104.

步驟S31中,所述複數外延晶粒1042於所述基底100的外延生長面101通過該第一奈米碳管層102的第一開口105暴露的部份開始生長,且其生長方向基本垂直於所述基底100的外延生長面101,即該步驟中複數外延晶粒1042進行縱向外延生長。 In step S31, the plurality of epitaxial grains 1042 are grown on a portion of the epitaxial growth surface 101 of the substrate 100 exposed through the first opening 105 of the first carbon nanotube layer 102, and the growth direction thereof is substantially perpendicular to The epitaxial growth surface 101 of the substrate 100, that is, the plurality of epitaxial grains 1042 in this step is longitudinally epitaxially grown.

步驟S32中,通過控制生長條件使所述複數外延晶粒1042沿著基本平行於所述基底100的外延生長面101的方向同質外延生長並連成一體將所述第一奈米碳管層102覆蓋。即,該步驟中所述複數外延晶粒1042進行側向外延生長直接合攏,並最終在奈米碳管周圍形成複數第一孔洞103將奈米碳管包圍。優選地,奈米碳管與包圍該奈米碳管的第一外延層104間隔設置。所述孔洞的形狀與第一奈米碳管層102中的奈米碳管的排列方向有關。當第一奈米碳管層102為單層奈米碳管膜或複數平行設置的奈米碳管線時,所述複數第一孔洞103為基本平行設置的溝槽。當第一奈米碳管層102為複數層交叉設置的奈米碳管膜或複數交叉設置的奈米碳管線時,所述複數第一孔洞103為交叉設置的溝槽網路。 In step S32, the plurality of epitaxial grains 1042 are homogenously epitaxially grown and integrated in a direction substantially parallel to the epitaxial growth surface 101 of the substrate 100 by controlling growth conditions to integrate the first carbon nanotube layer 102. cover. That is, the plurality of epitaxial grains 1042 are directly closed in the lateral epitaxial growth in this step, and finally a plurality of first holes 103 are formed around the carbon nanotubes to surround the carbon nanotubes. Preferably, the carbon nanotubes are spaced apart from the first epitaxial layer 104 surrounding the carbon nanotubes. The shape of the holes is related to the arrangement direction of the carbon nanotubes in the first carbon nanotube layer 102. When the first carbon nanotube layer 102 is a single-layer carbon nanotube film or a plurality of parallel disposed nano carbon lines, the plurality of first holes 103 are substantially parallel grooves. When the first carbon nanotube layer 102 is a plurality of layers of carbon nanotube film or a plurality of interdigitated carbon nanotubes, the plurality of first holes 103 are intersecting groove networks.

步驟S33中,由於所述第一奈米碳管層102的存在,使得外延晶粒1042與基底100之間的晶格位錯在形成連續的外延薄膜1044的過程中停止生長。因此,該步驟的第一外延層104相當於在沒有缺陷的外延薄膜1044表面進行同質外延生長。所述第一外延層104具有較少的缺陷。 In step S33, due to the presence of the first carbon nanotube layer 102, lattice dislocations between the epitaxial grains 1042 and the substrate 100 stop growing during the formation of the continuous epitaxial film 1044. Therefore, the first epitaxial layer 104 of this step is equivalent to homoepitaxial growth on the surface of the epitaxial film 1044 having no defects. The first epitaxial layer 104 has fewer defects.

本發明第一實施例中,所述基底100為一藍寶石(Al2O3)基片,所述第一奈米碳管層102為一單層奈米碳管膜。本實施採用MOCVD法進行外延生長。其中,採用高純氨氣(NH3)作為氮的源氣,採 用氫氣(H2)作載氣,採用三甲基鎵(TMGa)或三乙基鎵(TEGa)、三甲基銦(TMIn)、三甲基鋁(TMAl)作為Ga源、In源和Al源。具體包括以下步驟:首先,將藍寶石基底100置入反應室,加熱到1100℃~1200℃,並通入H2、N2或其混合氣體作為載氣,高溫烘烤200秒~1000秒。 In the first embodiment of the present invention, the substrate 100 is a sapphire (Al 2 O 3 ) substrate, and the first carbon nanotube layer 102 is a single-layer carbon nanotube film. This embodiment uses epitaxial growth by MOCVD. Among them, high-purity ammonia (NH 3 ) is used as the source gas of nitrogen, hydrogen (H 2 ) is used as the carrier gas, and trimethylgallium (TMGa) or triethylgallium (TEGa) or trimethylindium (TMIn) is used. And trimethylaluminum (TMAl) as a Ga source, an In source, and an Al source. Specifically, the method includes the following steps: First, the sapphire substrate 100 is placed in a reaction chamber, heated to 1100 ° C to 1200 ° C, and H 2 , N 2 or a mixed gas thereof is introduced as a carrier gas, and baked at a high temperature for 200 seconds to 1000 seconds.

其次,繼續通入載氣,並降溫到500℃~650℃,通入三甲基鎵或三乙基鎵以及氨氣,生長GaN低溫緩衝層,其厚度10奈米~50奈米。 Secondly, continue to pass the carrier gas, and cool down to 500 ° C ~ 650 ° C, through the introduction of trimethyl gallium or triethyl gallium and ammonia, grow GaN low temperature buffer layer, the thickness of 10 nm ~ 50 nm.

然後,停止通入三甲基鎵或三乙基鎵,繼續通入氨氣和載氣,同時將溫度升高到1100℃~1200℃,並恒溫保持30秒~300秒,進行退火。 Then, the passage of trimethylgallium or triethylgallium is stopped, and the ammonia gas and the carrier gas are continuously supplied, and the temperature is raised to 1100 ° C to 1200 ° C, and the temperature is maintained for 30 seconds to 300 seconds for annealing.

最後,將基底100的溫度保持在1000℃~1100℃,繼續通入氨氣和載氣,同時重新通入三甲基鎵或三乙基鎵,在高溫下完成GaN的側向外延生長過程,並生長出高品質的GaN外延層。 Finally, the temperature of the substrate 100 is maintained at 1000 ° C ~ 1100 ° C, and the ammonia gas and the carrier gas are continuously introduced, and trimethylgallium or triethylgallium is re-introduced, and the lateral epitaxial growth process of GaN is completed at a high temperature. And a high quality GaN epitaxial layer is grown.

樣品生長完畢後,分別用掃描電子顯微鏡(SEM)和透射電子顯微鏡(TEM)對樣品進行觀察和測試。請參閱圖8和圖9,本實施例製備的外延構造體中,第一外延層僅從基底的外延生長面沒有奈米碳管層的位置開始生長,然後連成一體。所述第一外延層與基底接觸的表面形成複數孔洞,所述奈米碳管層設置於該孔洞內,且與第一外延層間隔設置。由於所述孔洞的形狀與奈米碳管層中的奈米碳管的排列方向有關,該複數孔洞相互連通地分佈在一個平面內。優選地,該複數孔洞為奈米級孔洞。具體地,從所述圖8中可清楚其看到GaN外延層和藍寶石基底之間的介面,其中,深 色部份為GaN外延層,淺色部份為藍寶石基底。所述GaN外延層與藍寶石基底接觸的表面具有一排孔洞。從所述圖9中可以看到,每個孔洞內設置有奈米碳管。所述孔洞內的奈米碳管設置於藍寶石基底表面,且與形成孔洞的GaN外延層間隔設置。 After the sample was grown, the samples were observed and tested by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Referring to FIG. 8 and FIG. 9, in the epitaxial structure prepared in this embodiment, the first epitaxial layer is grown only from the position where the epitaxial growth surface of the substrate has no carbon nanotube layer, and then integrated. The surface of the first epitaxial layer in contact with the substrate forms a plurality of holes, and the carbon nanotube layer is disposed in the hole and spaced apart from the first epitaxial layer. Since the shape of the pore is related to the arrangement direction of the carbon nanotubes in the carbon nanotube layer, the plurality of pores are distributed in a plane in communication with each other. Preferably, the plurality of holes are nano-scale holes. Specifically, it can be clearly seen from FIG. 8 that the interface between the GaN epitaxial layer and the sapphire substrate is seen, wherein The color portion is a GaN epitaxial layer, and the light portion is a sapphire substrate. The surface of the GaN epitaxial layer in contact with the sapphire substrate has a row of holes. As can be seen from Fig. 9, a carbon nanotube is disposed in each of the holes. The carbon nanotubes in the holes are disposed on the surface of the sapphire substrate and spaced apart from the GaN epitaxial layer forming the holes.

步驟S40中,所述第二奈米碳管層107的構造、設置方式、形成方法以及材料等均與所述第一奈米碳管層102相同,因此在此不再進行贅述。 In the step S40, the structure, the arrangement, the forming method, the material and the like of the second carbon nanotube layer 107 are the same as those of the first carbon nanotube layer 102, and therefore will not be described herein.

所述第二奈米碳管層107具有複數第二開口108,該複數第二開口108從所述第二奈米碳管層107的厚度方向貫穿所述第二奈米碳管層107。當所述第二奈米碳管層107覆蓋所述第一外延層104的表面106設置時,使所述第一外延層104的表面106對應該第二開口108的部份暴露以便於生長第二外延層109。所述第二開口108可為微孔或間隙。所述第二開口108的尺寸及分佈方式與所述第一開口105的尺寸及分佈方式相同。 The second carbon nanotube layer 107 has a plurality of second openings 108 penetrating the second carbon nanotube layer 107 from the thickness direction of the second carbon nanotube layer 107. When the second carbon nanotube layer 107 covers the surface 106 of the first epitaxial layer 104, the surface 106 of the first epitaxial layer 104 is exposed to the portion of the second opening 108 for growth. Two epitaxial layers 109. The second opening 108 can be a micro hole or a gap. The second opening 108 is sized and distributed in the same manner as the first opening 105.

步驟S50中,所述第二外延層109是指通過外延法生長在第一外延層104的表面106的單晶構造體,其材料可與所述第一外延層104的材料相同也可以不相同。所述第二外延層109的生長方法及材料均可採用步驟S20中的所述第一外延層104的生長方法及材料。 In the step S50, the second epitaxial layer 109 refers to a single crystal structure grown on the surface 106 of the first epitaxial layer 104 by epitaxial method, and the material thereof may be the same as or different from the material of the first epitaxial layer 104. . The growth method and material of the second epitaxial layer 109 may adopt the growth method and material of the first epitaxial layer 104 in step S20.

請參閱圖10,具體地,所述第二外延層109的生長過程具體包括以下步驟:S51:沿著基本垂直於所述第一外延層104的遠離所述基底100的表面106方向成核並外延生長形成複數外延晶粒1092;S52:所述複數外延晶粒1092沿著基本平行於第一外延層104的遠 離所述基底100的表面106方向外延生長形成一連續的外延薄膜1094;S53:所述外延薄膜1094沿著基本垂直於所述第一外延層104的遠離所述基底100的表面106方向外延生長形成一第二外延層109。 Referring to FIG. 10, in particular, the growth process of the second epitaxial layer 109 specifically includes the following steps: S51: nucleating along a direction substantially perpendicular to the surface 106 of the first epitaxial layer 104 away from the substrate 100 and Epitaxially growing to form a plurality of epitaxial grains 1092; S52: the plurality of epitaxial grains 1092 are substantially parallel to the first epitaxial layer 104 Epitaxially growing from the surface 106 of the substrate 100 to form a continuous epitaxial film 1094; S53: the epitaxial film 1094 is epitaxially grown along a direction substantially perpendicular to the surface 106 of the first epitaxial layer 104 remote from the substrate 100. A second epitaxial layer 109 is formed.

步驟S51中,所述複數外延晶粒1092於所述第一外延層104的遠離所述基底100的表面106通過該第二奈米碳管層107的第二開口108暴露的部份開始生長,且其生長方向基本垂直於所述第一外延層104的遠離所述基底100的表面106,即該步驟中複數外延晶粒1092進行縱向外延生長。 In step S51, the plurality of epitaxial grains 1092 start to grow at a portion of the first epitaxial layer 104 that is away from the surface 106 of the substrate 100 through the second opening 108 of the second carbon nanotube layer 107. And the growth direction thereof is substantially perpendicular to the surface 106 of the first epitaxial layer 104 away from the substrate 100, that is, the plurality of epitaxial grains 1092 are longitudinally epitaxially grown in this step.

步驟S52中,通過控制生長條件使所述複數外延晶粒1092沿著基本平行於所述第一外延層104的遠離所述基底100的表面106的方向同質外延生長並連成一體將所述第二奈米碳管層107覆蓋。即,該步驟中所述複數外延晶粒1092進行側向外延生長直接合攏,並最終在奈米碳管周圍形成複數第二孔洞1093將奈米碳管包圍。優選地,奈米碳管與包圍該奈米碳管的第二外延層109間隔設置。所述孔洞的形狀與第二奈米碳管層107中的奈米碳管的排列方向有關。當第二奈米碳管層107為單層奈米碳管膜或複數平行設置的奈米碳管線時,所述複數第二孔洞1093為基本平行設置的溝槽。當第二奈米碳管層107為複數層交叉設置的奈米碳管膜或複數交叉設置的奈米碳管線時,所述複數第二孔洞1093為交叉設置的溝槽網路。 In step S52, the plurality of epitaxial grains 1092 are homogenously epitaxially grown and integrated in a direction substantially parallel to the surface 106 of the first epitaxial layer 104 away from the substrate 100 by controlling growth conditions. The carbon nanotube layer 107 is covered. That is, in the step, the plurality of epitaxial grains 1092 undergo direct lateral epitaxial growth, and finally a plurality of second holes 1093 are formed around the carbon nanotubes to surround the carbon nanotubes. Preferably, the carbon nanotubes are spaced apart from the second epitaxial layer 109 surrounding the carbon nanotubes. The shape of the holes is related to the arrangement direction of the carbon nanotubes in the second carbon nanotube layer 107. When the second carbon nanotube layer 107 is a single-layer carbon nanotube film or a plurality of parallel carbon nanotubes, the plurality of second holes 1093 are substantially parallel grooves. When the second carbon nanotube layer 107 is a plurality of layers of carbon nanotube film or a plurality of interdigitated carbon nanotubes, the plurality of second holes 1093 are intersecting groove networks.

步驟S53中,由於所述第二奈米碳管層107的存在,使得外延晶粒1092與基底100之間的晶格位錯在形成連續的外延薄膜1094的過程中停止生長。因此,該步驟的第二外延層109相當於在沒有缺 陷的外延薄膜1094表面進行同質外延生長。所述第二外延層109具有較少的缺陷。 In step S53, due to the presence of the second carbon nanotube layer 107, lattice dislocations between the epitaxial grains 1092 and the substrate 100 stop growing during the formation of the continuous epitaxial film 1094. Therefore, the second epitaxial layer 109 of this step is equivalent to no shortage The surface of the depressed epitaxial film 1094 is subjected to homoepitaxial growth. The second epitaxial layer 109 has fewer defects.

本發明第一實施例中,所述第二奈米碳管層107為一單層奈米碳管膜。本實施例採用MOCVD法進行外延生長所述第二外延層109。其中,採用高純氨氣(NH3)作為氮的源氣,採用氫氣(H2)作載氣,採用三甲基鎵(TMGa)或三乙基鎵(TEGa)、三甲基銦(TMIn)、三甲基鋁(TMAl)作為Ga源、In源和Al源。具體包括以下步驟:首先,將生長有第一外延層104的基底100置入反應室,加熱到1100℃~1200℃,並通入H2、N2或其混合氣體作為載氣,高溫烘烤200秒~1000秒。 In the first embodiment of the present invention, the second carbon nanotube layer 107 is a single-layer carbon nanotube film. In this embodiment, the second epitaxial layer 109 is epitaxially grown by the MOCVD method. Among them, high-purity ammonia (NH3) is used as the source gas of nitrogen, hydrogen (H2) is used as the carrier gas, and trimethylgallium (TMGa) or triethylgallium (TEGa) or trimethylindium (TMIn) is used. Trimethylaluminum (TMAl) is used as a Ga source, an In source, and an Al source. Specifically, the method includes the following steps: First, the substrate 100 on which the first epitaxial layer 104 is grown is placed in a reaction chamber, heated to 1100 ° C to 1200 ° C, and H 2 , N 2 or a mixed gas thereof is introduced as a carrier gas, and baked at a high temperature. 200 seconds to 1000 seconds.

其次,繼續同入載氣,並降溫到500℃~650℃,通入三甲基鎵或三乙基鎵以及氨氣,生長GaN低溫緩衝層,其厚度為10奈米~50奈米。 Secondly, continue to carry the same carrier gas, and cool down to 500 ° C ~ 650 ° C, through the introduction of trimethyl gallium or triethyl gallium and ammonia, grow GaN low temperature buffer layer, the thickness of 10 nm ~ 50 nm.

然後,停止通入三甲基鎵或三乙基鎵,繼續通入氨氣和載氣,同時將溫度升高到1100℃~1200℃,並恒溫保持30秒~300秒,進行退火。 Then, the passage of trimethylgallium or triethylgallium is stopped, and the ammonia gas and the carrier gas are continuously supplied, and the temperature is raised to 1100 ° C to 1200 ° C, and the temperature is maintained for 30 seconds to 300 seconds for annealing.

最後,將生長有第一外延層104的基底100的溫度保持在1000℃~1100℃,繼續通入氨氣和載氣,同時重新通入三甲基鎵或三乙基鎵,在高溫下完成GaN的側向外延生長過程,並生長出更高品質的GaN外延層。 Finally, the temperature of the substrate 100 on which the first epitaxial layer 104 is grown is maintained at 1000 ° C to 1100 ° C, and the ammonia gas and the carrier gas are continuously introduced, and the trimethyl gallium or triethyl gallium is re-introduced at a high temperature. The lateral epitaxial growth process of GaN and the growth of a higher quality GaN epitaxial layer.

請參閱圖11與圖12,為本發明第一實施例製備獲得的一種外延構造體10,其包括:一基底100、一第一奈米碳管層102、一第一外延層104、一第二奈米碳管層107以及第二外延層109。所述基底 100具有一外延生長面101。所述第一奈米碳管層102設置於所述基底100的外延生長面101,該第一奈米碳管層102具有複數第一開口105,所述基底100的外延生長面101對應所述第一奈米碳管層102的第一開口105的部份暴露。所述第一外延層104設置於所述基底100的外延生長面101,並覆蓋所述第一奈米碳管層102。所述第一奈米碳管層102設置於所述第一外延層104與基底100之間。所述第二奈米碳管層107設置於所述第一外延層104的遠離基底100的表面106,該第二奈米碳管層107具有複數第二開口108,所述第一外延層104的遠離基底100的表面106對應該第二奈米碳管層107第二開口108的部份暴露。所述第二外延層109設置於所述第一外延層104的遠離基底100的表面106,並覆蓋所述第二奈米碳管層107。所述第二奈米碳管層107位於所述第二外延層109與所述第一外延層104之間。 Referring to FIG. 11 and FIG. 12, an epitaxial structure 10 prepared by the first embodiment of the present invention includes: a substrate 100, a first carbon nanotube layer 102, a first epitaxial layer 104, and a first The carbon nanotube layer 107 and the second epitaxial layer 109. The substrate 100 has an epitaxial growth surface 101. The first carbon nanotube layer 102 is disposed on the epitaxial growth surface 101 of the substrate 100. The first carbon nanotube layer 102 has a plurality of first openings 105, and the epitaxial growth surface 101 of the substrate 100 corresponds to the A portion of the first opening 105 of the first carbon nanotube layer 102 is exposed. The first epitaxial layer 104 is disposed on the epitaxial growth surface 101 of the substrate 100 and covers the first carbon nanotube layer 102. The first carbon nanotube layer 102 is disposed between the first epitaxial layer 104 and the substrate 100. The second carbon nanotube layer 107 is disposed on the surface 106 of the first epitaxial layer 104 away from the substrate 100. The second carbon nanotube layer 107 has a plurality of second openings 108, and the first epitaxial layer 104 The surface 106 remote from the substrate 100 is exposed to a portion of the second opening 108 of the second carbon nanotube layer 107. The second epitaxial layer 109 is disposed on the surface 106 of the first epitaxial layer 104 away from the substrate 100 and covers the second carbon nanotube layer 107. The second carbon nanotube layer 107 is located between the second epitaxial layer 109 and the first epitaxial layer 104.

所述第一外延層104將所述第一奈米碳管層102覆蓋,並滲透所述第一奈米碳管層102的複數第一開口105與所述基底100的外延生長面101接觸,即所述第一奈米碳管層102的複數第一開口105中均滲透有所述第一外延層104。所述第一外延層104與其覆蓋的第一奈米碳管層102在微觀上間隔設置,即所述第一外延層104與基底100接觸的表面形成複數第一孔洞103,所述第一奈米碳管層102設置於該第一孔洞103內,具體地,所述第一奈米碳管層102中的奈米碳管分別設置在複數第一孔洞103內。所述第一孔洞103形成在第一外延層104與所述基底100接觸的表面,於所述第一外延層104的厚度方向該第一孔洞103均為盲孔。在每個第一孔洞103內,奈米碳管均基本不與所述第一外延層104接觸。 The first epitaxial layer 104 covers the first carbon nanotube layer 102, and penetrates the plurality of first openings 105 of the first carbon nanotube layer 102 to contact the epitaxial growth surface 101 of the substrate 100, That is, the first epitaxial layer 104 is infiltrated into the plurality of first openings 105 of the first carbon nanotube layer 102. The first epitaxial layer 104 is microscopically spaced from the first carbon nanotube layer 102 covered by the first epitaxial layer 104, that is, the surface of the first epitaxial layer 104 in contact with the substrate 100 forms a plurality of first holes 103, the first nai The carbon nanotube layer 102 is disposed in the first hole 103. Specifically, the carbon nanotubes in the first carbon nanotube layer 102 are respectively disposed in the plurality of first holes 103. The first hole 103 is formed on a surface of the first epitaxial layer 104 that is in contact with the substrate 100. The first holes 103 are blind holes in the thickness direction of the first epitaxial layer 104. Within each of the first holes 103, the carbon nanotubes are substantially not in contact with the first epitaxial layer 104.

所述第二外延層109將所述第二奈米碳管層107覆蓋,並滲透所述第二奈米碳管層107的複數第二開口108與所述第一外延層104的遠離基底100的表面106接觸,即所述第二奈米碳管層107的複數第二開口108中均滲透有所述第二外延層109。所述第二外延層109與其覆蓋的第二奈米碳管層107在微觀上間隔設置,即所述第二外延層109與所述第一外延層104接觸的表面形成複數第二孔洞1093,所述第二奈米碳管層107設置於該第二孔洞1093內,具體地,所述第二奈米碳管層107中的奈米碳管分別設置在複數第二孔洞1093內。所述第二孔洞1093形成於所述第二外延層109與所述第一外延層104接觸的表面,於所述第一外延層104的厚度方向該第二孔洞1093均為盲孔。在每個第二孔洞1093內,奈米碳管均基本不與所述第二外延層109接觸。 The second epitaxial layer 109 covers the second carbon nanotube layer 107 and penetrates the plurality of second openings 108 of the second carbon nanotube layer 107 and the first epitaxial layer 104 away from the substrate 100 The surface 106 is in contact with the second epitaxial layer 109 in the plurality of second openings 108 of the second carbon nanotube layer 107. The second epitaxial layer 109 is microscopically spaced from the second carbon nanotube layer 107 covered by the second epitaxial layer 109, that is, the surface of the second epitaxial layer 109 contacting the first epitaxial layer 104 forms a plurality of second holes 1093. The second carbon nanotube layer 107 is disposed in the second hole 1093. Specifically, the carbon nanotubes in the second carbon nanotube layer 107 are respectively disposed in the plurality of second holes 1093. The second hole 1093 is formed on a surface of the second epitaxial layer 109 that is in contact with the first epitaxial layer 104. The second hole 1093 is a blind hole in a thickness direction of the first epitaxial layer 104. Within each of the second holes 1093, the carbon nanotubes are substantially not in contact with the second epitaxial layer 109.

所述第一奈米碳管層102和所述第二奈米碳管層107均為一自支撐構造。該奈米碳管層包括奈米碳管膜或奈米碳管線。本實施例中,所述第一奈米碳管層102和所述第二奈米碳管層107分別為一單層奈米碳管膜,該奈米碳管膜包括複數奈米碳管,該複數奈米碳管的軸向沿同一方向擇優取向延伸,延伸方向相同的相鄰的奈米碳管通過凡得瓦力首尾相連。在垂直於延伸方向的相鄰的奈米碳管之間部份間隔設置存在微孔或間隙,從而構成第一開口105和第二開口108。 The first carbon nanotube layer 102 and the second carbon nanotube layer 107 are both self-supporting structures. The carbon nanotube layer comprises a carbon nanotube membrane or a nanocarbon pipeline. In this embodiment, the first carbon nanotube layer 102 and the second carbon nanotube layer 107 are respectively a single-layer carbon nanotube film, and the carbon nanotube film comprises a plurality of carbon nanotubes. The axial direction of the plurality of carbon nanotubes extends in a preferred orientation in the same direction, and adjacent carbon nanotubes extending in the same direction are connected end to end by van der Waals force. Micropores or gaps are provided at intervals between adjacent carbon nanotubes perpendicular to the extending direction to constitute a first opening 105 and a second opening 108.

請參閱圖13,為本發明第二實施例製備獲得的一種外延構造體20,其包括:一基底100、一第一奈米碳管層102、一第一外延層104、一第二奈米碳管層107以及一第二外延層109。本發明第二實施例中的外延構造體20的第一外延層104和第二外延層109的材 料,以及基底100、第一奈米碳管層102、第一外延層104、第二奈米碳管層107和第二外延層109的位置關係與第一實施例的外延構造體10基本相同,其區別在於,第一奈米碳管層102及第二奈米碳管層107分別由複數平行且間隔設置的奈米碳管線構成,相鄰的奈米碳管線之間形成微孔。 Referring to FIG. 13, an epitaxial structure 20 prepared according to a second embodiment of the present invention includes: a substrate 100, a first carbon nanotube layer 102, a first epitaxial layer 104, and a second nanometer. The carbon tube layer 107 and a second epitaxial layer 109. The material of the first epitaxial layer 104 and the second epitaxial layer 109 of the epitaxial structure 20 in the second embodiment of the present invention The positional relationship of the substrate 100, the first carbon nanotube layer 102, the first epitaxial layer 104, the second carbon nanotube layer 107, and the second epitaxial layer 109 is substantially the same as that of the epitaxial structure 10 of the first embodiment. The difference is that the first carbon nanotube layer 102 and the second carbon nanotube layer 107 are respectively composed of a plurality of parallel and spaced carbon nanotube lines, and micropores are formed between adjacent nano carbon lines.

所述奈米碳管線可為非扭轉的奈米碳管線或扭轉的奈米碳管線。具體地,所述非扭轉的奈米碳管線包括複數沿該非扭轉的奈米碳管線長度方向延伸的奈米碳管。所述扭轉的奈米碳管線包括複數繞該扭轉的奈米碳管線軸向螺旋延伸的奈米碳管。 The nanocarbon line can be a non-twisted nanocarbon line or a twisted nanocarbon line. Specifically, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes extending along the length of the non-twisted nanocarbon pipeline. The twisted nanocarbon pipeline includes a plurality of carbon nanotubes extending axially around the twisted nanocarbon pipeline.

另外,本實施例中,所述基底100為一絕緣體上的矽(SOI:silicon on insulator)基片。本實施例第一外延層104採用MOCVD法進行外延生長。其中,分別採用三甲基鎵(TMGa)、三甲基鋁(TMAl)作為Ga和Al的源物質,氨氣(NH3)作為氮的源物質,氫氣(H2)作載氣,使用臥式水準反應爐加熱。具體地,首先在SOI基底100的外延生長面101鋪設複數平行且間隔設置的奈米碳管線。然後在基底100的外延生長面101外延生長GaN外延層,生長溫度1070℃,生長時間450秒,主要是進行GaN的縱向生長;接著保持反應室壓力不變,升高溫度到1110℃,同時降低Ga源流量,而保持氨氣流量不變,以促進側向外延生長,生長時間為4900秒;最後,降低溫度至1070℃,同時增加Ga源流量繼續縱向生長10000秒。 In addition, in the embodiment, the substrate 100 is a silicon-on-insulator (SOI) substrate. The first epitaxial layer 104 of this embodiment is epitaxially grown by the MOCVD method. Among them, trimethylgallium (TMGa) and trimethylaluminum (TMAl) are used as the source materials of Ga and Al, ammonia (NH 3 ) is used as the source of nitrogen, and hydrogen (H 2 ) is used as the carrier gas. The leveling furnace is heated. Specifically, a plurality of parallel and spaced carbon nanotube lines are first laid on the epitaxial growth surface 101 of the SOI substrate 100. Then, a GaN epitaxial layer is epitaxially grown on the epitaxial growth surface 101 of the substrate 100, and the growth temperature is 1070 ° C, and the growth time is 450 seconds, mainly for longitudinal growth of GaN; then, the pressure of the reaction chamber is kept constant, and the temperature is raised to 1110 ° C while decreasing. The Ga source flow rate while maintaining the ammonia flow rate constant to promote lateral epitaxial growth with a growth time of 4900 seconds; finally, the temperature was lowered to 1070 ° C while increasing the Ga source flow rate and continuing longitudinal growth for 10,000 seconds.

請參閱圖14,本發明第三實施例提供一種外延構造體30,其包括:一基底100、一第一奈米碳管層102、一第一外延層104、一第二奈米碳管層107以及一第二外延層109。本發明第三實施例中的 外延構造體30的基底100、第一外延層104和第二外延層109的材料,以及基底100、第一奈米碳管層102、第一外延層104、第二奈米碳管層107與第二外延層109的位置關係與第一實施例的外延構造體10基本相同,其區別在於,第一奈米碳管層102及第二奈米碳管層107均由複數交叉且間隔設置的奈米碳管線構成,交叉且間相鄰的四個奈米碳管線之間形成微孔。具體地,該複數奈米碳管線分別沿第一方向與第二方向平行設置,所述第一方向與第二方向交叉設置。交叉且間相鄰的四個奈米碳管線之間形成一開口。本實施例中,相鄰的兩個奈米碳管線平行設置,相交叉的兩個奈米碳管線相互垂直。可以理解,所述奈米碳管線也可採用任意交叉方式設置,只需使第一奈米碳管層102及第二奈米碳管層107分別形成複數開口,從而使基底100及第一外延層104的外延生長面部份暴露即可。 Referring to FIG. 14 , a third embodiment of the present invention provides an epitaxial structure 30 including a substrate 100 , a first carbon nanotube layer 102 , a first epitaxial layer 104 , and a second carbon nanotube layer . 107 and a second epitaxial layer 109. In the third embodiment of the present invention The substrate 100 of the epitaxial structure 30, the material of the first epitaxial layer 104 and the second epitaxial layer 109, and the substrate 100, the first carbon nanotube layer 102, the first epitaxial layer 104, and the second carbon nanotube layer 107 are The positional relationship of the second epitaxial layer 109 is substantially the same as that of the epitaxial structure 10 of the first embodiment, except that the first carbon nanotube layer 102 and the second carbon nanotube layer 107 are each crossed and spaced apart. The nano carbon line is formed by forming micropores between the four nano carbon lines that are crossed and adjacent. Specifically, the plurality of carbon carbon pipelines are respectively disposed in parallel with the second direction along the first direction, and the first direction is disposed to intersect with the second direction. An opening is formed between the four nano carbon lines that are crossed and adjacent. In this embodiment, two adjacent nanocarbon pipelines are arranged in parallel, and the two nanocarbon pipelines intersecting each other are perpendicular to each other. It can be understood that the nano carbon pipeline can also be disposed in any intersection manner, and only the first carbon nanotube layer 102 and the second carbon nanotube layer 107 are respectively formed into a plurality of openings, thereby making the substrate 100 and the first epitaxy. The epitaxial growth surface of layer 104 may be partially exposed.

本發明第三實施例的外延構造體30可以採用與第一實施例或第二實施例相同的方法製備。 The epitaxial structure 30 of the third embodiment of the present invention can be produced by the same method as the first embodiment or the second embodiment.

本發明第四實施例提供一種複數層外延構造體,其包括:一基底,複數奈米碳管層以及複數外延層。本發明第四實施例中的奈米碳管層可採用上述第一實施例至第三實施例的奈米碳管層,基底、奈米碳管層與外延層的材料及位置關係與第一實施例基本相同,其區別在於,本實施例的外延構造體包括複數層疊的外延層,所述基底的外延生長面及每相鄰外延層之間均設置有奈米碳管層。 A fourth embodiment of the present invention provides a complex layer epitaxial structure comprising: a substrate, a plurality of carbon nanotube layers, and a plurality of epitaxial layers. The carbon nanotube layer in the fourth embodiment of the present invention may adopt the carbon nanotube layer of the first to third embodiments, the material and the positional relationship between the substrate, the carbon nanotube layer and the epitaxial layer, and the first The embodiments are basically the same, except that the epitaxial structure of the present embodiment includes a plurality of stacked epitaxial layers, and a carbon nanotube layer is disposed between the epitaxial growth surface of the substrate and each adjacent epitaxial layer.

本發明第四實施例進一步提供複數層的外延構造體的製備方法,其具體包括以下步驟: 第1步驟:提供一基底,且該基底具有一支持外延層生長的外延生長面;第2步驟:於所述基底的外延生長面設置一奈米碳管層,該基底與奈米碳管層共同構成一襯底;第3步驟:在基底的外延生長面生長第1外延層;第4步驟:第1外延層的表面設置一奈米碳管層;第5步驟:在第1外延層的表面生長第2外延層;第6步驟:第2外延層的遠離第1外延層的表面設置一奈米碳管層;第7步驟:在第2外延層的遠離第1外延層的表面生長第3外延層;…第S步驟:在第n外延層的遠離第外延層n-1的表面設置一奈米碳管層;第S+1步驟:在第n外延層的遠離第外延層n-1的表面生長第n+1外延層。 The fourth embodiment of the present invention further provides a method for preparing a plurality of layers of epitaxial structures, which specifically includes the following steps: The first step: providing a substrate, the substrate has an epitaxial growth surface supporting the epitaxial layer growth; and the second step: providing a carbon nanotube layer on the epitaxial growth surface of the substrate, the substrate and the carbon nanotube layer Forming a substrate together; a third step: growing a first epitaxial layer on the epitaxial growth surface of the substrate; a fourth step: providing a carbon nanotube layer on the surface of the first epitaxial layer; and a fifth step: in the first epitaxial layer Surface growth of the second epitaxial layer; sixth step: providing a carbon nanotube layer on the surface of the second epitaxial layer away from the first epitaxial layer; and seventh step: growing on the surface of the second epitaxial layer away from the first epitaxial layer 3 epitaxial layer; ... S step: providing a carbon nanotube layer on the surface of the nth epitaxial layer away from the epitaxial layer n-1; Step S+1: away from the epitaxial layer n- in the nth epitaxial layer The n+1th epitaxial layer was grown on the surface of 1.

其中,S為大於等於8的整數,n為大於等於3的整數。 Wherein S is an integer greater than or equal to 8, and n is an integer greater than or equal to 3.

本發明第四實施例的每一外延層的生長方法與第一實施例的外延層的生長方法基本相同。 The method of growing each epitaxial layer of the fourth embodiment of the present invention is substantially the same as the method of growing the epitaxial layer of the first embodiment.

可以理解,第2至n層外延層依序層疊生長於第1外延層的表面,每相鄰外延層之間設置一光罩層,所述光罩層中至少一光罩層為奈米碳管層。生長第n外延層時,第n-1外延層的遠離第n-2外延 層的表面,除了設置奈米碳管層用作光罩層以外,還可以設置例如圖形化處理的SiO2等其他光罩層。 It can be understood that the second to n-th epitaxial layers are sequentially stacked and grown on the surface of the first epitaxial layer, and a photomask layer is disposed between each adjacent epitaxial layer, and at least one photomask layer in the photomask layer is nanocarbon. Pipe layer. When the nth epitaxial layer is grown, the surface of the n-1th epitaxial layer away from the n-2th epitaxial layer may be provided with, for example, a patterned SiO 2 or the like in addition to a carbon nanotube layer. Mask layer.

本發明採用一奈米碳管層作為光罩設置於所述基底外延生長面生長外延層具有以下有以效果: The invention adopts a carbon nanotube layer as a photomask disposed on the epitaxial growth surface growth epitaxial layer of the substrate to have the following effects:

第一,所述奈米碳管層為一自支撐構造,可直接鋪設在基底的外延生長面,相對於先前技術通過沈積後光刻等製造方法形成光罩,本發明製程簡單,成本低廉,有利於量產。 First, the carbon nanotube layer is a self-supporting structure, and can be directly laid on the epitaxial growth surface of the substrate, and the photomask is formed by a manufacturing method such as post-deposition lithography, which is simple in process and low in cost. Conducive to mass production.

第二,所述奈米碳管層為圖形化構造,其厚度、開口尺寸均可達到奈米級,所述襯底用來生長外延層時形成的外延晶粒具有更小的尺寸,有利於減少位錯缺陷的產生,以獲得高品質的外延層。 Secondly, the carbon nanotube layer is a patterned structure, and the thickness and the opening size thereof can reach a nanometer level, and the epitaxial grains formed when the substrate is used to grow the epitaxial layer have a smaller size, which is advantageous for Reduce the generation of dislocation defects to obtain a high quality epitaxial layer.

第三,所述奈米碳管層的開口尺寸可達奈米級,所述外延層從與奈米級開口對應的暴露的外延生長面生長,使得生長的外延層與基底之間的接觸面積減小,減小了生長過程中外延層與襯底之間的應力,從而可以生長厚度較大的外延層,可進一步提高外延層的品質。 Third, the carbon nanotube layer has an opening size up to the nanometer scale, and the epitaxial layer is grown from the exposed epitaxial growth surface corresponding to the nanometer opening, such that the contact area between the grown epitaxial layer and the substrate The reduction and the stress between the epitaxial layer and the substrate during the growth process are reduced, so that the epitaxial layer having a larger thickness can be grown, and the quality of the epitaxial layer can be further improved.

第四,通過多次設置奈米碳管膜並多次外延生長外延層,可進一步減少外延層中的缺陷,提升外延層的品質。 Fourth, by setting the carbon nanotube film multiple times and epitaxially growing the epitaxial layer multiple times, defects in the epitaxial layer can be further reduced, and the quality of the epitaxial layer can be improved.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

10‧‧‧外延構造體 10‧‧‧ Epitaxial structures

100‧‧‧基底 100‧‧‧Base

101‧‧‧外延生長面 101‧‧‧ Epitaxial growth surface

102‧‧‧第一奈米碳管層 102‧‧‧First carbon nanotube layer

103‧‧‧第一孔洞 103‧‧‧First hole

104‧‧‧第一外延層 104‧‧‧First epitaxial layer

105‧‧‧第一開口 105‧‧‧First opening

106‧‧‧表面 106‧‧‧ surface

107‧‧‧第二奈米碳管層 107‧‧‧Second carbon nanotube layer

108‧‧‧第二開口 108‧‧‧second opening

109‧‧‧第二外延層 109‧‧‧Second epilayer

1093‧‧‧第二孔洞 1093‧‧‧Second hole

Claims (12)

一種外延構造體的製備方法,其包括以下步驟:提供一基底,該基底具有一外延生長面;於所述基底的外延生長面設置第一奈米碳管層;於所述基底的外延生長面生長一第一外延層並覆蓋所述第一奈米碳管層;於所述第一外延層的表面設置第二奈米碳管層,其中,所述第一外延層的表面為該第一外延層的外延生長面;以及,於所述第一外延層的表面生長一第二外延層並覆蓋所述第二奈米碳管層;其中,所述第一和第二奈米碳管層分別為包括複數奈米碳管的連續的整體構造,且所述複數奈米碳管分別沿著平行於第一和第二奈米碳管層表面的方向延伸。 A method for preparing an epitaxial structure, comprising the steps of: providing a substrate having an epitaxial growth surface; providing a first carbon nanotube layer on an epitaxial growth surface of the substrate; and an epitaxial growth surface of the substrate Growing a first epitaxial layer and covering the first carbon nanotube layer; and providing a second carbon nanotube layer on a surface of the first epitaxial layer, wherein a surface of the first epitaxial layer is the first An epitaxial growth surface of the epitaxial layer; and a second epitaxial layer is grown on the surface of the first epitaxial layer and covers the second carbon nanotube layer; wherein the first and second carbon nanotube layers Each is a continuous unitary structure comprising a plurality of carbon nanotubes, and the plurality of carbon nanotubes extend in a direction parallel to the surfaces of the first and second carbon nanotube layers, respectively. 如申請專利範圍第1項所述之外延構造體的製備方法,其中,所述第一外延層為一異質外延層。 The method for preparing an extended structure according to claim 1, wherein the first epitaxial layer is a heteroepitaxial layer. 如申請專利範圍第1項所述之外延構造體的製備方法,其中,所述基底為一單晶構造體,且所述基底的材料為GaAs、GaN、Si、SOI、AlN、SiC、MgO、ZnO、LiGaO2、LiAlO2或Al2O3The method for preparing an outer structure according to the first aspect of the invention, wherein the substrate is a single crystal structure, and the material of the substrate is GaAs, GaN, Si, SOI, AlN, SiC, MgO, ZnO, LiGaO 2 , LiAlO 2 or Al 2 O 3 . 如申請專利範圍第1項所述之外延構造體的製備方法,其中,所述在基底的外延生長面或所述第一外延層的表面設置奈米碳管層的方法為將奈米碳管膜或奈米碳管線直接鋪設於所述基底的外延生長面作為奈米碳管層。 The method for preparing an outer structure according to the first aspect of the invention, wherein the method of disposing a carbon nanotube layer on an epitaxial growth surface of the substrate or a surface of the first epitaxial layer is a carbon nanotube The film or nano carbon line is directly laid on the epitaxial growth surface of the substrate as a carbon nanotube layer. 如申請專利範圍第1項所述之外延構造體的製備方法,其中,所述奈米碳 管層中具有複數開口,所述第一外延層或所述第二外延層從所述外延生長面通過該開口暴露的部份生長。 The method for preparing an outer structure according to the first aspect of the invention, wherein the nano carbon The tube layer has a plurality of openings therein, and the first epitaxial layer or the second epitaxial layer is grown from a portion of the epitaxial growth surface exposed through the opening. 如申請專利範圍第1項所述之外延構造體的製備方法,其中,所述第一外延層或第二外延層的生長方法具體包括以下步驟:沿著基本垂直於所述外延生長面方向成核並外延生長形成複數外延晶粒;所述複數外延晶粒沿著基本平行於所述外延生長面方向外延生長形成一連續的外延薄膜;以及,所述外延薄膜沿著基本垂直於所述外延生長面方向外延生長形成一外延層。 The method for preparing an outer structure according to the first aspect of the invention, wherein the method for growing the first epitaxial layer or the second epitaxial layer comprises the following steps: forming a direction substantially perpendicular to the epitaxial growth surface And epitaxially growing to form a plurality of epitaxial grains; the plurality of epitaxial grains are epitaxially grown substantially parallel to the epitaxial growth surface to form a continuous epitaxial film; and the epitaxial film is substantially perpendicular to the epitaxial Epitaxial growth in the growth plane direction forms an epitaxial layer. 如申請專利範圍第1項所述之外延構造體的製備方法,其中,所述第一或第二外延層的生長方法包括分子束外延法、化學束外延法、減壓外延法、低溫外延法、選擇外延法、液相沈積外延法、金屬有機氣相外延法、超真空化學氣相沈積法、氫化物氣相外延法、以及金屬有機化學氣相沈積法中的一種或複數種。 The method for preparing an outer structure according to the first aspect of the invention, wherein the method for growing the first or second epitaxial layer comprises a molecular beam epitaxy method, a chemical beam epitaxy method, a vacuum deuteration method, and a low temperature epitaxy method. One or more of an epitaxial method, a liquid phase deposition epitaxy method, a metal organic vapor phase epitaxy method, an ultra-vacuum chemical vapor deposition method, a hydride vapor phase epitaxy method, and a metal organic chemical vapor deposition method. 如申請專利範圍第6項所述之外延構造體的製備方法,其中,所述第一或第二外延層於所述第二奈米碳管層周圍形成複數孔洞將所述奈米碳管層中的奈米碳管包圍。 The method for preparing an outer structure according to claim 6, wherein the first or second epitaxial layer forms a plurality of holes around the second carbon nanotube layer to form the carbon nanotube layer. Surrounded by carbon nanotubes in the middle. 如申請專利範圍第1項所述之外延構造體的製備方法,其中,所述第一外延層或所述第二外延層為一同質外延層。 The method for preparing an extended structure according to claim 1, wherein the first epitaxial layer or the second epitaxial layer is a homoepitaxial layer. 如申請專利範圍第1項所述之外延構造體的製備方法,其中,所述奈米碳管層為一自支撐構造。 The method for preparing an outer structure according to the first aspect of the invention, wherein the carbon nanotube layer is a self-supporting structure. 如申請專利範圍第1項所述之外延構造體的製備方法,其中,將所述奈米碳管層設置在外延生長面後進一步包括採用有機溶劑處理所述奈米碳管層,使奈米碳管層更緊密地貼附於所述外延生長面。 The method for preparing an outer structure according to the first aspect of the invention, wherein the placing the carbon nanotube layer on the epitaxial growth surface further comprises treating the carbon nanotube layer with an organic solvent to make a nanometer The carbon tube layer is more closely attached to the epitaxial growth surface. 一種外延構造體的製備方法,其包括以下步驟:提供一基底,且該基底具有一外延生長面;於所述基底的所述外延生長面設置一光罩層;在所述基底的外延生長面生長第1層外延層並覆蓋所述光罩層;所述第1層外延層表面依序層疊生長第2至n層外延層,所述第2至n層外延層中每相鄰二外延層之間設置一光罩層;其中,n為大於等於3的整數,所述光罩層中至少一光罩層為奈米碳管層;其中,所述奈米碳管層為包括複數奈米碳管的連續的整體構造,且所述複數奈米碳管分別沿著平行於奈米碳管層表面的方向延伸。 A method for preparing an epitaxial structure, comprising the steps of: providing a substrate, wherein the substrate has an epitaxial growth surface; providing a photomask layer on the epitaxial growth surface of the substrate; and forming an epitaxial growth surface on the substrate Growing a first epitaxial layer and covering the photomask layer; sequentially forming a second to n epitaxial layer on the surface of the first epitaxial layer, and each adjacent epitaxial layer in the second to n epitaxial layers A photomask layer is disposed therebetween; wherein n is an integer greater than or equal to 3, at least one photomask layer in the photomask layer is a carbon nanotube layer; wherein the carbon nanotube layer comprises a plurality of nanometer tubes A continuous overall configuration of the carbon tubes, and the plurality of carbon nanotubes extend in a direction parallel to the surface of the carbon nanotube layer, respectively.
TW100112867A 2011-03-29 2011-04-13 A method for making epitaxial structure TWI474966B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110076903.4A CN102723407B (en) 2011-03-29 2011-03-29 Preparation method for epitaxial structure body

Publications (2)

Publication Number Publication Date
TW201238887A TW201238887A (en) 2012-10-01
TWI474966B true TWI474966B (en) 2015-03-01

Family

ID=46949120

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100112867A TWI474966B (en) 2011-03-29 2011-04-13 A method for making epitaxial structure

Country Status (3)

Country Link
JP (1) JP5379211B2 (en)
CN (1) CN102723407B (en)
TW (1) TWI474966B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104952988B (en) * 2014-03-26 2017-07-07 清华大学 The preparation method of light emitting diode
CN104952983B (en) * 2014-03-26 2018-07-10 清华大学 The preparation method of epitaxial structure
CN104637795B (en) * 2015-01-30 2018-03-30 北京大学 The selective area growth method and structure of group III-nitride epitaxial film on silicon substrate
EP3404486B1 (en) * 2017-05-15 2021-07-14 IMEC vzw A method for forming a pellicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191657A (en) * 1997-04-11 1999-07-13 Nichia Chem Ind Ltd Growing method of nitride semiconductor and nitride semiconductor device
JP2009184899A (en) * 2008-02-08 2009-08-20 Showa Denko Kk Group iii nitride semiconductor epitaxial substrate and its manufacturing method
US20100130005A1 (en) * 2005-08-31 2010-05-27 Korea Advanced Institute Of Science & Technology Method of forming carbon nanotube on semiconductor substrate, method of forming semiconductor metal wire using the same, and method of fabricating inductor using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10326912A (en) * 1997-03-25 1998-12-08 Mitsubishi Cable Ind Ltd Production of non-dislocated gan substrate and gan base material
JP3930161B2 (en) * 1997-08-29 2007-06-13 株式会社東芝 Nitride-based semiconductor device, light-emitting device, and manufacturing method thereof
WO2007081381A2 (en) * 2005-05-10 2007-07-19 The Regents Of The University Of California Spinodally patterned nanostructures
JP2008266064A (en) * 2007-04-19 2008-11-06 Nichia Corp Substrate for semiconductor element and its manufacturing method
CN101820036B (en) * 2009-02-27 2013-08-28 清华大学 Method for preparing light-emitting diode
JP2010232464A (en) * 2009-03-27 2010-10-14 Showa Denko Kk Group iii nitride semiconductor light emitting element, method of manufacturing the same, and laser diode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191657A (en) * 1997-04-11 1999-07-13 Nichia Chem Ind Ltd Growing method of nitride semiconductor and nitride semiconductor device
US20100130005A1 (en) * 2005-08-31 2010-05-27 Korea Advanced Institute Of Science & Technology Method of forming carbon nanotube on semiconductor substrate, method of forming semiconductor metal wire using the same, and method of fabricating inductor using the same
JP2009184899A (en) * 2008-02-08 2009-08-20 Showa Denko Kk Group iii nitride semiconductor epitaxial substrate and its manufacturing method

Also Published As

Publication number Publication date
CN102723407A (en) 2012-10-10
CN102723407B (en) 2015-01-21
JP5379211B2 (en) 2013-12-25
TW201238887A (en) 2012-10-01
JP2012209533A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
TWI464903B (en) Epitaxial base, method of making the same and application of epitaxial base for growing epitaxial layer
US20190074408A1 (en) Epitaxial structure and method for making the same
TWI473758B (en) Method for making epitaxial structure
TWI431667B (en) A epitaxialstructure and method for making the same
TWI457271B (en) Method for making semiconductor epitaxial structure
CN102610718B (en) Substrate used for growing epitaxial structure and using method thereof
TWI474966B (en) A method for making epitaxial structure
TWI557065B (en) Method of making epitaxial structure
TWI557066B (en) Method of making epitaxial structure
CN102605422B (en) For mask and the using method thereof of growing epitaxial structure
TWI449659B (en) Method for making epitaxial structure
CN102593272B (en) The preparation method of epitaxial structure
TWI505984B (en) A method for making an epitaxial structure
TWI426159B (en) Mask for growing epitaxial structure and method for using the same
TWI476948B (en) Epitaxial structure and method for making the same
TWI442451B (en) A substrate with micro-structure and method for making the same
TWI479681B (en) Semiconductor epitaxial structure
TWI443863B (en) Base for growing epitaxial structure and method for using the same
TWI466321B (en) Method for making an epitaxial structure