TW201241876A - A epitaxialstructure and method for making the same - Google Patents

A epitaxialstructure and method for making the same Download PDF

Info

Publication number
TW201241876A
TW201241876A TW100115303A TW100115303A TW201241876A TW 201241876 A TW201241876 A TW 201241876A TW 100115303 A TW100115303 A TW 100115303A TW 100115303 A TW100115303 A TW 100115303A TW 201241876 A TW201241876 A TW 201241876A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
epitaxial
layer
substrate
nanotube layer
Prior art date
Application number
TW100115303A
Other languages
Chinese (zh)
Other versions
TWI431667B (en
Inventor
Yang Wei
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Publication of TW201241876A publication Critical patent/TW201241876A/en
Application granted granted Critical
Publication of TWI431667B publication Critical patent/TWI431667B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention relates to an epitaxial structure and a method for making the same. The method includes following steps: providing a substrate having an epitaxial growth surface; suspending a carbon nanotube layer above the epitaxial growth surface; growing an epitaxial layer on the epitaxial growth surface.

Description

201241876 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種外延結構體及其製備方法。 【先前技術】 [證]以GaN及InGaN,AlGaN為主的氮化物形成的外延結構體 為近年來備受關注的半導體結構’其連續可變的直接帶 隙’優異的物理化學穩定性,高飽和電子遷移率等特性 ,使之成為雷射器,發光二極體等光電子器件和微電子 器件的優選半導體結構。201241876 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to an epitaxial structure and a method of preparing the same. [Prior Art] [Evidence] An epitaxial structure formed of nitrides mainly composed of GaN and InGaN and AlGaN is a semiconductor structure that has been attracting attention in recent years. Its continuously variable direct band gap has excellent physicochemical stability and is high. Characteristics such as saturated electron mobility make it a preferred semiconductor structure for optoelectronic devices and microelectronic devices such as lasers and light-emitting diodes.

QQ

[0003] 由於GaN等本身生長技術的限製,現今大面積的GaN半導 體層大多生長在藍寶石等其他基底上。由於氮化鎵和藍 寶石基底的晶格常數不同,從而導致氮化鎵外延層存在 較多位錯缺陷。先前技術提供一種改善上述不足的方法 ’其採用非平整的藍寶石基底外延生長氮化鎵。然而, 先前技術通常採用光刻等微電子工藝在藍寶石基底表面 形成溝槽從而構成非平整外延生長面。該方法不但工藝 複雜,成本較高,而且會對藍寶石基底外延生長面造成 污染,從而影響外延結構的品質。 【發明内容】 [0004] 有鑒於此,提供一種工蓺符i+仅* Q ^ . -間早,成本低廉,且不會對基 構體的製備方法及—種應用廣 底表面造成污染的外延鈐 泛的外延結構體實為必要 [0005] 100115303 一種外延結構體的製備方法, 底’所述基底具有一外延生長 ,將該奈米碳管層靠近所迷夕卜 表單編號A0101 第3 頁/共36頁 包括以下步驟:提供一基 面;提供一層奈米碳管層 延生長面設置,該奈米碳 1002025601-0 201241876 管層至少部份相對於所述外延生長面懸空設置;在所述 基底的外延生長面生長一外延層將所述奈米碳管層包覆 〇 [0006] 一種外延結構體的製備方法,包括以下步驟:提供一基 底,所述基底具有一外延生長面;提供複數層奈米破管 層,將該複數層奈米碳管層懸空設置在所述基底的外延 生長面,該複數層奈米碳管層相互間隔且靠近所述外延 生長面設置;在所述基底的外延生長面生長一外延層將 所述複數層奈米碳管層包覆。 [0007] 一種外延結構體,所述外延結構體包括一外延層及至少 一奈米碳管層,其中,所述至少一奈米碳管層被包覆於 所述外延層中。 [0008] 與先前技術相比,本發明提供的外延結構體的製備方法 及外延結構體通過將奈米碳管層直接懸空設置於基底表 面作為掩膜的方式生長外延層,大大降低了外延結構體 的製備成本,並且所述奈米碳管層具有良好的導電性, 使得所述外延結構體具有廣泛用途。 【實施方式】 [0009] 以下將結合附圖詳細說明本發明實施例提供的外延結構 體的製備方法及外延結構體。 [0010] 請參閱圖1,本發明第一實施例提供一種外延結構體10的 製備方法,其具體包括以下步驟: toon] sii,提供一基底1〇〇,且該基底1〇〇具有一支持外延生 長的外延生長面101 ; 100115303 表單編號A0101 第4頁/共36頁 1002025601-0 201241876 [0012] S12,在所述外延生長面1〇1懸空設置一奈米碳管層1〇2 [0013] S13,在所述外延生長面1〇1生長一外延層1〇4將所述奈 米碳管層102包覆。 [0014]在步驟S11中,所述基底1〇〇提供了外延層1〇4的外延生 長面101。所述基底1〇〇的外延生長面1〇丨為分子平滑的 表面,且去除了氧或碳等雜質。所述基底100可為單層或 複數層結構。當所述基底100為單層結構時,該基底1〇〇 〇 可為一單晶結構體,且具有一晶面作為外延層104的外延 生長面101。所述單層結構的基底100的材料可為GaAs、[0003] Due to limitations of growth techniques such as GaN itself, most of today's large-area GaN semiconductor layers are grown on other substrates such as sapphire. Due to the different lattice constants of the gallium nitride and sapphire substrates, there are many dislocation defects in the gallium nitride epitaxial layer. The prior art provides a method for improving the above-described deficiencies, which epitaxially grows gallium nitride using a non-flat sapphire substrate. However, the prior art usually forms a groove on the surface of the sapphire substrate by a microelectronic process such as photolithography to constitute a non-planar epitaxial growth surface. The method is not only complicated in process, high in cost, but also pollutes the epitaxial growth surface of the sapphire substrate, thereby affecting the quality of the epitaxial structure. SUMMARY OF THE INVENTION [0004] In view of this, it is provided that the work tool i+ is only * Q ^ . - early, low cost, and does not affect the preparation method of the base body and the pollution caused by the application of the wide bottom surface. A wide epitaxial structure is necessary [0005] 100115303 A method for preparing an epitaxial structure, the bottom of which has an epitaxial growth, and the carbon nanotube layer is close to the form number A0101, page 3 / A total of 36 pages includes the steps of: providing a base surface; providing a layer of carbon nanotube layer growth surface, the nanocarbon 1002025601-0 201241876 tube layer being at least partially suspended relative to the epitaxial growth surface; An epitaxial growth surface of the substrate is grown by an epitaxial layer to coat the carbon nanotube layer. [0006] A method for preparing an epitaxial structure, comprising the steps of: providing a substrate having an epitaxial growth surface; providing a plurality a layer of nano-tube layer, the plurality of layers of carbon nanotubes are suspended in an epitaxial growth surface of the substrate, the plurality of layers of carbon nanotubes are spaced apart from each other and disposed adjacent to the epitaxial growth surface; Epitaxial growth of a growth surface of the epitaxial layer to the cladding layer a plurality of layers of carbon nanotubes. An epitaxial structure comprising an epitaxial layer and at least one carbon nanotube layer, wherein the at least one carbon nanotube layer is coated in the epitaxial layer. Compared with the prior art, the method for preparing an epitaxial structure and the epitaxial structure provided by the present invention grow the epitaxial layer by directly floating the carbon nanotube layer on the surface of the substrate as a mask, thereby greatly reducing the epitaxial structure. The preparation cost of the body, and the carbon nanotube layer has good electrical conductivity, making the epitaxial structure have a wide range of uses. [Embodiment] Hereinafter, a method for preparing an epitaxial structure and an epitaxial structure provided by an embodiment of the present invention will be described in detail with reference to the accompanying drawings. [0010] Please refer to FIG. 1. A first embodiment of the present invention provides a method for fabricating an epitaxial structure 10, which specifically includes the following steps: toon] sii, providing a substrate 1 〇〇, and the substrate 1 〇〇 has a support Epitaxially grown epitaxial growth surface 101; 100115303 Form No. A0101 Page 4/36 pages 1002025601-0 201241876 [0012] S12, a carbon nanotube layer 1 〇2 is suspended in the epitaxial growth surface 1〇1 [0013 S13, an epitaxial layer 1〇4 is grown on the epitaxial growth surface 1〇1 to coat the carbon nanotube layer 102. [0014] In step S11, the substrate 1 〇〇 provides an epitaxial growth surface 101 of the epitaxial layer 1〇4. The epitaxial growth surface 1 of the substrate 1 is a molecularly smooth surface, and impurities such as oxygen or carbon are removed. The substrate 100 may be a single layer or a plurality of layers. When the substrate 100 has a single layer structure, the substrate 1 〇 can be a single crystal structure and has a crystal plane as the epitaxial growth surface 101 of the epitaxial layer 104. The material of the single-layer structure substrate 100 may be GaAs,

GaN、Si、SOI、AIN、SiC、MgO、ZnO、LiGa〇2、LiA- 1〇2或人12〇3等。當所述基底loo為複數層結構時,其需要 包括至少一層上述單晶結構體,且該單晶結構體具有一 晶面作為外延層104的外延生長面ιοί ^所述基底1〇〇的 材料可根據所要生長的外延層104來選擇,優選地,使所 述基底100與外延層104具有相近的晶格常數及熱膨脹係 Ο 數。所述基底1〇〇的厚度、大小和形狀不限,可根據實際 需要選擇。所述基底100不限於上述列舉的材料,只要具 有支持外延層104生長的外延生長面101的基底1〇〇均屬 於本發明的保護範圍。本實施例中,所述基底1〇〇的材料 為 A1。〇 〇 2 3 [0015] 100115303 在步驟S12中,所述奈米碳管層102為包括複數奈米碳管 的連續的整體結構。所述奈米碳管層102為一宏觀結構體 。進一步的,所述奈米碳管層102為一自支撐的結構。所 謂“自支撐”指該奈米碳管層102不需要大面積的載體支 表單編號A0101 第5買/共36頁 1002025601-0 201241876 撐,而只要相對兩邊提供支撐力即能整體上懸空而保持 自身狀態’即將該奈米碳管層m置於(或固定於)間隔 特定距離設置的兩個支撐體上時,位於兩個支撐體之間 的奈米碳管層102能夠懸空保持自身狀態。由於奈米碳管 層1〇2為自支撐結構,所述奈米碳管層1〇2可直接相對於 所述基底1 00的外延生長面1 〇 1懸空設置,方法簡單可控 ,有利於實現大規模量產。所述相對於外延生長面1〇1懸 空設置係所述奈米碳管層102與所述基底1〇〇的外延生長 面101直接面對,奈米碳管層102與所述基底1〇〇的外延 生長面101之間沒有任何支撐體支撐。優選地,所述奈米 石反官層102為複數奈米碳管組成的純奈米碳管結構。所謂 純奈米碳管結構,,係所述奈米碳管層在整個製備過程 中無需任何化學修飾或酸化處理,不含有任何羧基等官 能團修飾。所述奈米碳管層1〇2中複數奈米碳管沿著基本 平行於奈米碳管層1〇2表面的方向延伸。 [0016] 所述奈米碳管層的厚度為丨奈米〜1〇〇微米,或丨奈米~丨微 米,或1奈米〜200奈米,優選地,厚度為1〇奈米~1〇〇奈 米。本實施例中,所述奈米碳管層1〇2的厚度為2〇奈米。 所述奈米碳管層102為一圖形化的奈米碳管層1〇2。所述 “圖形化”係所述奈米碳管層1〇2具有複數開口 1〇5,該 複數開口 105從所述奈米碳管層1〇2的厚度方向貫穿所述 奈米碳管層102。所述開口 105可為微孔或間隙。所述開 口 105的尺寸為1〇奈米〜5〇〇微米,所述尺寸係所述微孔 的孔徑或所述間隙的寬度方向的間距。所述開口 ι〇5的尺 寸為10奈米〜300微米、或1〇奈米〜12〇微米或1〇奈米 100115303 表單編號A0101 第6頁/共36頁 1002025601-0 201241876 80微米或1Q奈米〜1〇微米。開口的尺寸越小有 利於在生長外延層的過程中減少位錯缺陷的產生,以獲 知冋〇0貝的外延層1〇4。優選地,所述開口 的尺寸為 10奈米~10微米。進—步地,所述奈米碳管層1〇2的佔空 比為 1:100 〜100:卜或1:10~1(Μ,或1:22:1,或 1:4〜4:1。優選地,所述佔空比為1:4〜4:1。所謂“佔空 比”係指該奈米碳管層102懸空設置於基底1〇〇的外延生 長面101後,該外延生長面1〇1被奈米碳管層1〇2在外延 Ο [0017] 生長面101的正投影佔據的部份與通過開口 1〇5暴露的部 份的面積比。 Ο 進一步地,所述“圖形化”係所述奈米破管層1G2中複數 奈米碳%*的排列方式為有序的、有規則的。例如,所述 奈米碳管層1G2中複數奈米碳管的軸向均基本平行於所述 基底100的外延生長面101且基本沿同一方向延伸。或者 ,所述奈米碳管層102中複數奈米碳管的轴向可有規律性 地基本沿兩個以上方向延伸。或者,所述奈米碳管層1〇2 中複數奈米碳管的轴向沿著基底1〇〇的一晶向延伸或與基 底100的一晶向成一疋角度延伸。上述奈米碳管層1〇2中 沿同一方向延伸的相鄰的奈米碳管通過凡得瓦力(van der Waals force)首尾相連。 [0018] 在所述奈米碳管層102具有如前所述的開口 1〇5的前提下 ’所述奈米碳管層102中複數奈米碳管也可無序排列、無 規則排列。 優選地,所述奈米碳管層102懸空設置於所述基底1〇〇的 外延生長面1〇1。所述奈米碳管層102中的奈米碳管可為 100115303 表單編號A0101 第7頁/共36頁 [0019] 201241876 單壁奈米碳管、雙壁奈米碳管或多壁奈米碳管中的一種 或複數種,其長度和直徑可根據需要選擇。 [0020] 所述奈米碳管層102用作生長外延層104中的掩模。所謂 “掩模”係外延層104生長到奈米碳管層102所在的平面 後,僅從所述奈米碳管層102的開口 105處繼續延伸生長 。由於奈米碳管層102具有複數開口 105,所以該奈米碳 管層102形成一圖形化的掩模。當奈米碳管層102懸空設 置於基底100的外延生長面101後,複數奈米碳管可沿著 基本平行於外延生長面101的方向延伸。 [0021] 所述奈米碳管層1 0 2還可為一包括複數奈米碳管及添加材 料的複合結構。所述添加材料包括石墨、石墨稀、碳化 矽、氮化硼、氮化矽、二氧化矽、無定形碳等中的一種 或複數種。所述添加材料還可以包括金屬碳化物、金屬 氧化物及金屬氮化物等中的一種或複數種。所述添加材 料包覆於奈米碳管層102中奈米碳管的至少部份表面或設 置於奈米碳管層102的開口 105内。優選地,所述添加材 料包覆於奈米碳管的表面。由於,所述添加材料包覆於 奈米碳管的表面,使得奈米碳管的直徑變大,從而使奈 米碳管之間的開口 105減小。所述添加材料可以通過化學 氣相沈積(CVD)、物理氣相沈積(PVD)、磁控濺射等 方法形成於奈米碳管的表面。 [0022] 將所述奈米碳管層1 0 2可利用一有機溶劑處理,以增加其 機械強度。該有機溶劑可選用乙醇、曱醇、丙酮、二氯 乙烷和氯仿中一種或者幾種的混合。本實施例中的有機 溶劑採用乙醇。該使用有機溶劑處理的步驟可通過試管 100115303 表單編號A0101 第8頁/共36頁 1002025601-0 201241876 將有機溶劑滴落在奈米碳管層1 0 2表面浸潤整個奈米碳管 層1 0 2或將整個奈米碳管層1 0 2浸入盛有有機溶劑的容器 中浸潤。 [0023] ❹ ❹ 具體地,所述奈米碳管層1 02可以包括奈米碳管膜或奈米 碳管線。所述奈米碳管層102可為一單層奈米碳管膜或複 數層疊設置的奈米碳管膜。所述奈米碳管層102可包括複 數平行設置的奈米碳管線、複數交叉設置的奈米碳管線 或複數交叉設置的奈米碳管線或複數奈米碳管線任意排 列組成的網狀結構。當所述奈米碳管層102為複數層疊設 置的奈米碳管膜時,奈米碳管膜的層數不宜太多,優選 地,為2層〜100層。當所述奈米碳管層102為複數平行設 置的奈米碳管線時,相鄰兩個奈米碳管線之間的距離為 0. 1微米〜200微米,優選地,為10微米〜10 0微米。所述 相鄰兩個奈米碳管線之間的空間構成所述奈米碳管層102 的開口 105。相鄰兩個奈米碳管線之間的間隙長度可以等 於奈米碳管線的長度。所述奈米碳管膜或奈米碳管線均 可為自支撐結構,可以直接懸空設置在基底100的外延生 長面101構成所述奈米碳管層102。通過控製奈米碳管膜 的層數或奈米碳管線之間的距離,可以控製奈米碳管層 102中開口 105的尺寸。本實施例中,所述奈米碳管膜為 一奈米碳管拉膜。 [0024] 所述奈米碳管膜為由若干奈米碳管組成的自支撐結構。 所述若干奈米碳管為沿同一方向擇優取向延伸。所述擇 優取向係在奈米碳管膜中大多數奈米碳管的整體延伸方 向基本朝同一方向。而且,所述大多數奈米碳管的整體 100115303 表單編號A0101 第9頁/共36頁 1002025601-0 201241876 延伸方向基本平行於奈米碳管膜的表面。進一步地,所 述奈米碳管膜中多數奈米碳管為通過凡得瓦力首尾相連 。具體地,所述奈米碳管膜中基本朝同一方向延伸的大 多數奈米碳管中每一奈米碳管與在延伸方向上相鄰的奈 米碳管通過凡得瓦力首尾相連。當然,所述奈米碳管膜 中存在少數隨機排列的奈米碳管,這些奈米碳管不會對 奈米碳管膜中大多數奈米碳管的整體取向排列構成明顯 影響。所述自支撐為奈米碳管膜不需要大面積的載體支 撐,而只要相對兩邊提供支撐力即能整體上懸空而保持 自身膜狀狀態,即將該奈米碳管膜置於(或固定於)間 隔特定距離設置的兩個支撐體上時,位於兩個支撐體之 間的奈米碳管膜能夠懸空保持自身膜狀狀態。所述自支 撐主要通過奈米碳管膜中存在連續的通過凡得瓦力首尾 相連延伸排列的奈米碳管而實現。 [0025] 具體地,所述奈米碳管膜中基本朝同一方向延伸的複數 奈米碳管,並非絕對的直線狀,可以適當的彎曲;或者 並非完全按照延伸方向上排列,可以適當的偏離延伸方 向。因此,不能排除奈米碳管膜的基本朝同一方向延伸 的複數奈米碳管中並列的奈米碳管之間可能存在部份接 觸。 [0026] 請參閱圖2及圖3,具體地,所述奈米碳管膜包括複數連 續且定向延伸的奈米碳管片段143。該複數奈米碳管片段 143通過凡得瓦力首尾相連。每一奈米碳管片段143包括 複數相互平行的奈米碳管145,該複數相互平行的奈米碳 管145通過凡得瓦力緊密結合。該奈米碳管片段143具有 100115303 表單編號A0101 第10頁/共36頁 1002025601-0 201241876 任意的長度、厚度、均勻性及形狀。所述奈米碳管膜可 通過從一奈米碳管陣列中選定部份奈米碳管後直接拉取 獲得。所述奈米碳管膜的厚度為1奈米〜100微米,寬度與 拉取出該奈米碳管膜的奈米碳管陣列的尺寸有關,長度 不限。所述奈米碳管膜中相鄰的奈米碳管之間存在微孔 或間隙從而構成開口 105,且該微孔的孔徑或間隙的尺寸 小於10微米。優選地,所述奈米碳管膜的厚度為100奈米 〜10微米。該奈米碳管膜中的奈米碳管145沿同一方向擇 優取向延伸。所述奈米碳管膜及其製備方法具體請參見 Ο 申請人於200 7年2月12日申請的,於2010年7月11日公告 的第1 327177號中華民國專利“奈米碳管膜結構及其製備 方法”。為節省篇幅,僅引用於此,但上述申請所有技 術揭露也應視為本發明申請技術揭露的一部份。 [0027] 請參閱圖4,當所述奈米碳管層包括層疊設置的複數層奈 米碳管膜時,相鄰二層奈米碳管膜中的奈米碳管的延伸 方向形成一交叉角度α,且α大於等於0度小於等於90度 .. (0。“$90。)。 ‘ Ο [0028] 為減小奈米碳管膜的厚度,還可以進一步對該奈米碳管 膜進行加熱處理。為避免奈米碳管膜加熱時被破壞,所 述加熱奈米碳管膜的方法採用局部加熱法。其具體包括 以下步驟:局部加熱奈米碳管膜,使奈米碳管膜在局部 位置的部份奈米碳管被氧化;移動奈米碳管被局部加熱 的位置,從局部到整體實現整個奈米碳管膜的加熱。具 體地,可將該奈米碳管膜分成複數小的區域,採用由局 部到整體的方式,逐區域地加熱該奈米碳管膜。所述局 100115303 表單編號Α0101 第11頁/共36頁 1002025601-0 201241876 部加熱奈米碳管膜的方法可以有複數種,如雷射加熱法 、微波加熱法等等。本實施例中,通過功率密度大於0. 1 Χίο4瓦特/平方米的雷射掃描照射該奈米碳管膜,由局部 到整體的加熱該奈米碳管膜。該奈米碳管膜通過雷射照 射,在厚度方向上部份奈米碳管被氧化,同時,奈米碳 管膜中直徑較大的奈米碳管束被去除,使得該奈米碳管 膜變薄。 [0029] 可以理解,上述雷射掃描奈米碳管膜的方法不限,只要 能夠均勻照射該奈米碳管膜即可。雷射掃描可以沿平行 奈米碳管膜中奈米碳管的排列方向逐行進行,也可以沿 垂直於奈米碳管膜中奈米碳管的排列方向逐列進行。具 有固定功率、固定波長的雷射掃描奈米碳管膜的速度越 小,奈米碳管膜中的奈米碳管束吸收的熱量越多,對應 被破壞的奈米碳管束越多,雷射處理後的奈米碳管膜的 厚度變小。然,如果雷射掃描速度太小,奈米碳管膜將 吸收過多熱量而被燒毁。本實施例中,雷射的功率密度 Λ_¥〇.053χ1012瓦特/平方米,雷射光斑的直徑在1毫米 〜5毫米範圍内,雷射掃描照射時間小於1. 8秒。優選地, 雷射器為二氧化碳雷射器,該雷射器的功率為30瓦特, 波長為10.6微米,光斑直徑為3毫米,雷射裝置140與奈 米碳管膜的相對運動速度小於10毫米/秒。 [0030] 所述奈米碳管線可為非扭轉的奈米碳管線或扭轉的奈米 碳管線。所述非扭轉的奈米碳管線與扭轉的奈米碳管線 均為自支撐結構。具體地,請參閱圖5,該非扭轉的奈米 碳管線包括複數沿平行於該非扭轉的奈米碳管線長度方 100115303 表單編號Α0101 第12頁/共36頁 1002025601-0 201241876 向延伸的奈米碳管。具體地,該非扭轉的奈米碳管線包 括複數奈米碳管片段,該複數奈米碳管片段通過凡得瓦 力首尾相連,每一奈米碳管片段包括複數相互平行並通 過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有 任意的長度、厚度、均勻性及形狀。該非扭轉的奈米碳 管線長度不限,直徑為0. 5奈米〜100微米。非扭轉的奈米 碳管線為將所述奈米碳管膜通過有機溶劑處理得到。具 體地,將有機溶劑浸潤所述奈米碳管膜的整個表面,在 揮發性有機溶劑揮發時產生的表面張力的作用下,奈米 Ο 碳管膜中的相互平行的複數奈米碳管通過凡得瓦力緊密 結合,從而使奈米碳管膜收縮為一非扭轉的奈米碳管線 。該有機溶劑為揮發性有機溶劑,如乙醇、曱醇、丙_ 、二氣乙烷或氯仿,本實施例中採用乙醇。通過有機溶 劑處理的非扭轉的奈米碳管線與未經有機溶劑處理的奈 米碳管膜相比,比表面積減小,黏性降低。 [0031] 所述扭轉的奈米碳管線為採用一機械力將所述奈米碳管 膜兩端沿相反方向扭轉獲得。請參閱圖6,該扭轉的奈米 碳管線包括複數繞該扭轉的奈米碳管線軸向螺旋延伸的 奈米碳管。具體地,該扭轉的奈米碳管線包括複數奈米 碳管片段,該複數奈米碳管片段通過凡得瓦力首尾相連 ,每一奈米碳管片段包括複數相互平行並通過凡得瓦力 緊密結合的奈米碳管。該奈米碳管片段具有任意的長度 、厚度、均勻性及形狀。該扭轉的奈米碳管線長度不限 ,直徑為0.5奈米〜100微米。進一步地,可採用一揮發性 有機溶劑處理該扭轉的奈米碳管線。在揮發性有機溶劑 100115303 表單編號A0101 第13頁/共36頁 1002025601-0 201241876 揮發時產生的表面張力的作用下,處理後的扭轉的奈米 碳管線中相鄰的奈米碳管通過凡得瓦力緊密結合,使扭 轉的奈米碳管線的比表面積減小,密度及強度增大。 [0032] 所述奈米碳管線及其製備方法請參見申請人於2002年1 i 月5日申請的,於2008年11月21日公告的第ί3〇3239號 中華民國專利,申請人:鴻海精密工業股份有限公司, 及於2005年12月16日申請的,於2009年7月21日公告的 第1312337號中華民國專利’申請人:鴻海精密工業股份 有限公司。 [0033] 所述奈米碳管層102的懸空設置方式不限,如將奈米碳管 層102兩端拉起’使所述奈米碳管層1〇2的與外延生長面 101對應的部份與外延生長面101間隔;或將奈米碳管層 102兩端設置於兩間隔設置的支撐體上,使所述奈米碳管 層102的與外延生長面101對應的部份與外延生長面ιοί 間隔。優選地,所述奈米碳管層102與所述外延生長面 101平行設置。當所述奈米碳管層102懸空設置於所述基 底100的外延生長面101時,所述奈米碳管層1〇2靠近所 述外延生長面101設置,並且該奈米碳管層102至少部份 相對於所述外延生長面101懸空設置,即所述奈米碳管層 102平行於所述基底100的外延生長面101設置並與外延 生長面101間隔。所述奈米碳管層102中複數奈米碳管的 延伸方向基本平行於所述外延生長面101。所述奈米碳管 層102與外延生長面1〇1的間隔距離不限,可根據實際需 要進行選擇’如10奈米〜500微米。優選的,所述奈米碳· 管層102與外延生長面101的間隔距離為50奈米〜100微 100115303 表單編號Α0101 第14頁/共36頁 1002025601-0 201241876 Ο [0034] [0035] [0036] Ο 米’在此情況下’所述奈米碳管層102靠近基底100設裏 ’因此所述外延層1〇4從基底1〇〇表面向外生長的過程中 ’可比較容易的滲透出所述奈米碳管層102並將奈米碳管 層102包覆起來’從而可減少奈米碳管層102以上部份外 延層104中的缺陷,有利於製備厚度較大的高品質外延層 104 ;另一方面,所述奈米碳管層丨〇2靠近基底ι〇〇設置 ’從而使得所述外延層1〇4能較容易的滲透出所述奈米旅 管層102並將其包覆,形成所述外延結構體1〇,有利於提 高製備效率,降低製備成本。本實施例中,所述奈米破 管層102與基底1〇〇之間的間距為1〇微米。 本實施例中,所述間隔設置可通過以下步驟實現: 步驟S121,提供一支撐裝置,本實施例中所述支撐裝蓼 包括一第一支撐體112與第二支撐體114,所述第一支獲 體112與第二支撐體丨14間隔設置。 所述第—支撐體112與第二支撐體114的材料可為金屬革 質、金屬合金、導電複合材料等。可以理解,所述第〆 支標體112與第二支撐艎114的材料不限,只需保證所述 第一支撐體112與第二支撐體114具有一定的機械強度’ 能*夠使位於其上的奈米碳管層102的形狀保持不變即< ° 所述第—支撐體112與第二支撐體114間隔距離可根據基 底100的大小及實際需求設置,優選的,所述第一支撐體 112與第二支撐體u 4的間隔距離大於所述基底丨00的尺 寸’以使奈米碳管層102能夠整體懸空設置於基底1〇〇上 。該第—支撐體112與第二支撐體114的形狀不限,只需 確保第—支撐體112與第二支撐體114具有一平面,町以 100115303 表單編號A0101 第15頁/共36頁 1002025601-0 201241876 [0037] [0038] [0039] 100115303 使奈米碳管層102的兩端分別平鋪黏附即可。本實施例中 ,所述第一支撐體11 2與第二支撐體η4的形狀為一長方 體,所述第一支撐體112與第二支撐體π4相對設置於基 底100的邊緣外’所述基底1〇〇位於該第一支撐體112與 第二支撐體114之間且與其間隔設置。 步驟S12 2,將所述奈米碳管層1 〇 2懸空設置於外延生長面 101的上方。 所述懸空設置可通過將所述奈米碳管層102的一端平鋪黏 附於第一支撑體112上,將所述奈米碳管層102的另一端 平鋪黏附於第一支樓體114上,並使奈米碳管層1〇2中間 懸空6又置於基底100上並處於拉伸狀態。即所述奈米碳管 層102兩端分別固定於第一支撐體112與第二支撐體114 上,而所述奈米碳管層102的與外延生長面1〇1對應的部 份與外延生長面101間隔設置。由於所述奈米碳管層1〇2 本身具有一定的黏性,因此可將奈米碳管層1〇2兩端分別 直接黏附於第一支撐體112和第二支撐體114,也可通過 導電膠如銀膠等將奈米碳管層102的兩端分別黏附於第一 支撐體112和第二支撐體114。 步驟S13中,所述外延層104的生長方法可以分別通過分 子束外延法(ΜΒΕ)、化學束外延法(CBE)、減壓外延 法、低溫外延法、選擇外延法、液相沈積外延法(LpE) 、金屬有機氣相外延法(MOVPE)、超真空化學氣相沈積 法(UHVCVD)、氫化物氣相外延法(HvpE)、及金屬有機 化學氣相沈積法(MOCVD)等中的一種或複數種實現,所 述外延層104的材料可以與緩衝層1〇41的材料相同或者不 第16頁/共36頁 表單編號A0101 1002025601-0 201241876 [0040] Ο [0041] Ο [0042] 同。 所述外延層104的生長的厚度可根據需要製備。具體地, 所述外延層104的生長的厚度可為0. 5奈米〜1毫米。例如 ’所述外延層104的生長的厚度可為100奈米〜500微米, 或200奈米〜200微米,或500奈米〜1〇〇微米。所述外延層 104的材料為半導體材料,如Si ' GaAs、GaN、GaSb、 InN、InP、InAs、InSb、A1P、AlAs、AlSb、AIN、 GaP、SiC、SiGe、GaMnAs、GaAlAs、GalnAs、GaAIN 、GaInN、AlInN、GaAsP、InGaN、AlGaInN、Al- GalnP、GaP:Zn或GaP:N。可以理解,所述外延層i〇4的 材料也可為金屬或合金等其他材料’只要保證所述材料 可用上述生長方法如MBE、CBE、MOVPE等方法生長即可 〇 本發明第一實施例中,所述基底100為一藍寶石(Α1 〇 2 3 )基片’所述奈米碳管層102為一單層奈米碳管膜,所述 奈米碳管膜為由若干奈米碳管組成的自支撐結構,所述 :¾干奈米碳管為沿同一方向擇優取.向延伸。所述奈米碳 管層102平行於所述基底1〇〇的表面設置,且與所述基底 100之間的間距為1〇微米。本實施例採用Mocvj)工藝進行 外延生長。其中,採用高純氨氣(Nh3)作為氮的源氣,採 用氫氣(H2)作載氣,採用三甲基鎵(TMGa)或三乙基鎵 (TEGa)、三甲基銦(TMIn)、三甲基鋁(TMA1)作為Ga源 、In源和A1源。 所述外延層104的生長具體包括以下步驟: 100115303 表單編號A0101 第17頁/共36頁 1002025601-0 201241876 [0043] 首先,將藍寳石基底100置入反應室,加熱到11〇〇〇c 〜1 200°C,並通入\、^或其混合氣體作為載氣,高溫烘 烤2 0 0秒〜1 〇 〇 〇秒。 [0044] 其次,繼續同入載氣,並降溫到5 〇 〇 t〜6 5 〇它,通入三甲 基鎵或三乙基鎵及氨氣,低溫生長GaN層,所述低溫GaN 層作為繼續生長外延層1〇4的緩衝層,其厚度1〇奈米〜5〇 奈米。由於GaN外延層104與藍寳石基底1〇〇之間具有不 同的晶格常數,因此所述緩衝層用於減少外延層1〇4生長 過程中的晶格失配,降低生長的外延層1〇4的位元錯密度 〇 [0045] 然後,停止通入三甲基鎵或三乙基鎵,繼續通入氨氣和 載氣,同時將溫度升高到1100X:〜1200t,並恒溫保持 30秒〜300秒,進行退火。 [0046] 再次,將基底100的溫度保持在l〇〇(TC〜11〇(rc,繼續通 入氨氣和載氣,同時重新通入三曱基鎵或三乙基鎵,在 高溫下生長出高品質的外延層104。 [0047] 外延層104生長到奈米碳管層102所在的位置之後,外延 層1 〇 4從奈米碳管層1 〇 2的奈米碳管之間的間隙繼續生長 ’即從奈米碳管層10 2的開口 105處生長出來,然後圍繞 奈米碳管進行侧向外延生長直接合攏,並最終在奈米碳 管周圍形成複數孔洞103,形成具有微構造的外延層1〇4 ’將所述奈米碳管層102包覆起來。具體的,所述外延晶 粒從基底100的表面開始生長,當生長到奈米碳管層102 所在的位置時,所述外延晶粒僅在奈米碳管之間開口 1〇5 100115303 表單編號A0101 第18頁/共36頁 1002025601-0 201241876 處生長,並逐漸延伸滲透出所述開口 105。外延晶粒從奈 米石反官層102中的開口 1〇5生長出來之後,基本沿著平行 於外延生長面101表面的方向圍繞所述奈米碳管層1〇2申 的奈米碳管側向外延生長,然後逐漸連成—體,從而將 所述奈米碳管層1 〇2包覆起來,形成所述外延結構體1〇。 由於奈米碳管的存在,所述外延層104中形成複數孔洞 103 ’所述奈米碳管層102設置於該孔洞103内,所述奈 米奴管層102中的部份奈米碳管與孔洞1〇3的内表面相接 觸。所述複數孔洞1〇3在外延層1〇4中形成一“圖案化” 的結構’且所述外延層丨04的圖案化結構與圖案化奈米碳 管層中的圖案基本相同。 [0048] 可以理解的,在步驟S13之後本實施例提供外延結構體10 的製備方法還可以進一步包括一剝離基底的步驟。 [0049] 所述基底100的剝離方法可為雷射照射法、腐蝕法或溫差 自剝離法。所述去除方法可根據基底100及外延層1〇4材 料的不同進行選擇。 [0050] 本實施例中,所述基底100的去除方法為雷射照射法。具 體的’所述去除方法包括以下步驟: [0051] S151,將所述基底1〇〇中未生長外延層104的表面進行拋 光並清洗; [0052] S152,將經過表面清洗的基底1〇〇放置於一平臺(圖未示 )上,並利用雷射對所述基底100與外延層104進行掃描 照射; [0053] S153,將經雷射照射後的基底100浸入溶液中去除所述基 100115303 表單編號A0101 第19頁/共36頁 1002025601-0 201241876 底 100。 [0054] 在步驟S151中,所述拋光方法可為機械拋光法或化學拋 光法,使所述基底100的表面平整光滑,以減少後續雷射 照射中雷射的散射。所述清洗可用鹽酸、硫酸等沖洗所 述基底100的表面,從而去除表面的金屬雜質及油污等。 [0055] 在步驟S152中,所述雷射從基底100拋光後的表面入射, 且入射方向基本垂直於所述基底100拋光後的表面,即基 本垂直於所述基底100與外延層104的介面。所述雷射的 波長不限,可根據緩衝層及基底100的材料選擇。具體的 ,所述雷射的能量小於基底100的帶隙能量,而大於緩衝 層的帶隙能量,從而雷射能夠穿過基底100到達緩衝層, 在緩衝層與基底100的介面處進行雷射剝離。所述介面處 的緩衝層對雷射產生強烈的吸收,從而使得介面處的緩 衝層溫度快速升高而分解。而所述外延層104中其他部份 對雷射吸收較少,因此所述外延層104並不會被所述雷射 所破壞。可以理解,對於不同的緩衝層可以選擇不同波 長的雷射,使緩衝層對雷射具有很強的吸收作用。 [0056] 所述雷射照射的過程在一真空環境或保護性氣體環境進 行以防止在雷射照射的過程中奈米碳管被氧化而破壞。 所述保護性氣體可為氮氣、氦氣或氬氣等惰性氣體。 [0057] 在步驟S153中,可將雷射照射後的基底100及外延層104 浸入一酸性溶液中,以去除GaN分解後的Ga,從而實現基 底100與外延層104的剝離。 [0058] 由於奈米碳管層102包覆於所述外延層104中,所述奈米 100115303 表單編號A0101 第20頁/共36頁 1002025601-0 201241876 [0059] [0060]Ο 碳管層102並未與所述基底100直接接觸,因此,在剝離 所述基底100的過程中,所述奈米碳管層102不會受到破 壞而改變其整體結構。 本發明第一實施例進一步提供一種外延結構體10,所述 外延結構體10包括一基底100,一奈米碳管層102及一外 延層104,所述外延層104設置於基底100的表面,並包 覆所述奈米碳管層102。 所述述基底100與外延層104具有相近的晶格常數及熱膨 脹係數,所述基底100的材料可為GaAs、GaN、Si、SOI 、AIN、SiC、MgO、ZnO、LiGa〇9、LiAlO。或A1儿等。< 所述基底100的厚度、大小和形狀不限,可根據實際需要 選擇。 [0061] Ο [0062] 所述奈米碳管層102為包括複數奈米碳管的連續的整體結 構。所述奈米碳管層1〇2為一宏觀結構。進一步的,所述 奈米碳管層102為一個自支撐的結構。所述奈米碳管層 102具有複數開口 1〇5 ’該複數開口丨〇5從所述奈米碳管 層102的厚度方向貫穿所述奈米碳管層1〇2。所述開口 105可為微孔或間隙。 所述外延層104為一連續的整體結構,所述連續的整體結 構係在所述外延層104中沒有斷裂或介面,外延層1〇4以 連續而不間斷的狀態將所述奈米碳管層1〇2包覆起來。所 述外延層104的材料可為半導體材料,如Si、GaAs、GaN 、GaSb、InN、InP、InAs ' inSb ' Alp、A1As、A1Sb 、AIN 、 GaP 、 SiC 、 SiGe 、 GaMnAs 、 GaAlAs 、 GalnAs 100115303 表單編號A0101 第21頁/共36頁 1002025601-0 201241876 、GaAIN 、 GalnN 、 AlInN 、 GaAsP 、 InGaN 、 AlGalnN 、AlGalnP、GaP:Zn或GaP:N。可以理解,所述外延層 104的材料也可為金屬或合金等其他材料,只要保證所述 材料可用上述生長方法如MBE、cbe、MOVPE等方法生長 即可。所述外延層104中形成有複數孔洞1〇3,所述奈米 碳管層102中的奈米碳管設置於該孔洞103中,所述奈米 碳管層102中的部份奈米碳管與孔洞103的内表面相接觸 。所述外延層1 〇 4延伸滲透出所述開口 1 〇 5。所述複數孔 洞103基本位於同—平面内,當所述奈米碳管層1〇2為奈 米碳管膜或相互交叉設置的奈米碳管線時,所述複數孔 洞103可相互連通或部份連通;當所述奈米碳管層1〇2為 彼此平行且間隔設置的奈米碳管線時,所述複數孔洞1〇3 亦彼此平行且相互間隔。所述孔洞103橫截面的形狀不限 ,優選的,所述孔洞103的橫截面為圓形,其直徑為2奈 米〜200微米’優選的,所述孔洞1〇3橫截面直徑為2〇奈 米〜200奈米。所述孔洞1 〇3中設置有奈米碳管,相鄰的 孔洞103之間填充有外延層1〇4,且相鄰孔洞1〇3之間的 外延層104滲透到奈米碳管層1〇2的開口 1〇5中。 [0063] 如圖7所示,本發明第二實施例提供一種外延結構體2〇的 製備方法,其具體包括以下步驟: [0064] S21 ’提供一基底1〇〇,且該基底1〇〇具有一支持外延生 長的外延生長面101 ; [0065] S22,在所述外延生長面101懸空設置複數層奈米碳管層 1 0 2,所述複數層奈米碳管層1 0 2相互間隔設置; 100115303 表單編號A0101 第22頁/共36頁 1002025601-0 201241876 [0066] [0067] S23,在所述外延生長面1〇1生長一外延層1〇4將所述複 數層奈米碳管層102包覆。 Ο 本發明第二實施例提供的外延詰構體2〇的製備方法與第 一實施例中外延結構體1〇的製備方法基本相同,其不同 在於,在所述基底的外延生長面1〇1表面懸空設置複數層 奈米碳管層102,且奈米聲管層1〇2之間在垂直於所述外 延生長面101的方向上相亙間隔設置,其間隔距離1〇条米 〜500微米,可根據實際需求設置。優選的,所述複麩層 奈米碳管層102靠近外延生長面1〇1設置,且所述複歡奈 米碳官層10 2等間距間隔設置,相互之間的間隔距離相等 。所述外延層104在生長的過程中,分別從複數層間隖設 置的奈米碳管層102的開口 中外延生長出來,將戶斤述 每一奈米碳管層102中的奈米碳管包覆,形成一連續的整 體結構。 [0068] ❹ 所述外延晶粒從基底1〇〇的表面開始生長,當生長到奈米 碳管層102所在的位置時,所述外延晶粒僅在奈米破管之 間開口 105處生長,並逐漸延伸滲透出所述開口丨。外 延晶粒從奈米碳管層1〇2中的開口 1〇5生長出來之後’基 本沿著平行於外延生長面表面的方向圍繞所述条求奴 管層1 0 2中的奈米碳管側向外延生長,然後逐漸連成一體 ,從而將所述奈米碳管層1〇2包覆起來。在外延晶粒侧向 外延生長的同時,外延層1〇4在垂直於外延生長面101的 方向上繼續生長’到達另一奈米碳管層1〇2所在的平面, 並從該奈米碳管層102 f的開口 1〇5生長出來,然後再次 側向外延生長’形成複數孔洞1〇3將所述奈米碳管層102 100115303 表單編號A0101 第23頁/共36頁 1002025601-0 201241876 包覆,所述孔洞103之間的外延層104滲透到所述奈米碳 管層102的開口 105中。依次類推,所述外延層104將所 述複數層間隔設置的奈米碳管層102逐一包覆,形成一整 體結構。所述複數層間隔設置的奈米碳管層102可進一步 減少外延層104生長過程中的位錯缺陷,有利於提高所述 外延層1 0 4的品質。 [0069] 可以理解的,在步驟S23之後本實施例提供外延結構體20 的製備方法還可以進一步包括一剝離基底100的步驟,所 述剝離步驟與第一實施例中所述基底100的剝離方法相同 〇 [0070] 本發明第二實施例進一步提供一外延結構體20,所述外 延結構體20包括一基底100,複數層間隔層疊設置的奈米 碳管層102及一外延層104,所述外延層104設置於基底 100的表面,並包覆所述複數層奈米碳管層102。本發明 第二實施例提供的外延結構體20與第一實施例中所述外 延結構體10基本相同,其不同在於,所述外延層104中包 覆有複數層奈米碳管層102,且複數層奈米碳管層102相 互間隔層疊設置。 [0071] 本發明提供的外延結構體的製備方法及其外延結構體, 具有以下有益效果:首先,所述奈米碳管層為一自支樓 結構,因此可直接通過懸空設置的方法設置在所述基底 的外延生長面,方法簡單可控,有利於實現大規模量產 :其次,所述奈米碳管層為圖形化結構,其厚度、開口 尺寸均可達到奈米級,這種奈米級的圖形化結構有利於 減少位元錯缺陷的產生,以獲得高品質的外延層;再次 100115303 表單編號A0101 第24頁/共36頁 1002025601-0 201241876 ,本發明可在基底上懸空設置複數奈米碳管層製備外延 結構體,能夠進一步減小外延層中的缺陷,並且外延結 構體可將複數奈米碳管層包覆起來形成一體結構,可方 便的應用於製備電子器件。 [0072] Ο [0073] [0074] [0075] Ο [0076] [0077] [0078] [0079] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限製本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為本發明第一實施例提供的外延結構體的製備方法的 工藝流程圖。 圖2為本發明第一實施例中採用的奈米碳管膜的掃描電鏡 照片。 圖3為圖2所示的奈米碳管膜中的奈米碳管片段的結構示 意圖。 圖4為本發明採用的複數層交又設置的奈米碳管膜的掃描 電鏡照片。 圖5為本發明採用的非扭轉的奈米碳管線的掃描電鏡照片 〇 圖6為本發明採用的扭轉的奈米碳管線的掃描電鏡照片。 圖7為本發明第二實施例提供的外延結構體的製備方法的 工藝流程圖。 100115303 表單編號Α0101 第25頁/共36頁 1002025601-0 201241876 【主要元件符號說明】 [0080] 外延結構體: 10 [0081] 基底:100 [0082] 外延生長面: 101 [0083] 奈米碳管層: 102 [0084] 孔洞:103 [0085] 外延層:1 0 4 [0086] 開口 : 1 0 5 [0087] 第一支撐體: 112 [0088] 第二支撐體: 114 100115303 表單編號A0101 第26頁/共36頁 1002025601-0GaN, Si, SOI, AIN, SiC, MgO, ZnO, LiGa〇2, LiA-1〇2 or human 12〇3. When the substrate loo is a complex layer structure, it needs to include at least one layer of the above single crystal structure, and the single crystal structure has a crystal plane as an epitaxial growth surface of the epitaxial layer 104. The epitaxial layer 104 to be grown may be selected, preferably, the substrate 100 and the epitaxial layer 104 have similar lattice constants and thermal expansion coefficient. The thickness, size and shape of the substrate 1〇〇 are not limited and may be selected according to actual needs. The substrate 100 is not limited to the materials listed above, as long as the substrate 1 having the epitaxial growth surface 101 supporting the growth of the epitaxial layer 104 is within the scope of the present invention. In this embodiment, the material of the substrate 1 is A1. 〇 〇 2 3 [0015] 100115303 In step S12, the carbon nanotube layer 102 is a continuous unitary structure including a plurality of carbon nanotubes. The carbon nanotube layer 102 is a macrostructure. Further, the carbon nanotube layer 102 is a self-supporting structure. The so-called "self-supporting" means that the carbon nanotube layer 102 does not require a large-area carrier support form number A0101 5th buy / total 36 pages 1002025601-0 201241876 support, and as long as the support force is provided on both sides, the whole can be suspended and kept In its own state, when the carbon nanotube layer m is placed (or fixed) on two supports disposed at a certain distance apart, the carbon nanotube layer 102 located between the two supports can be suspended to maintain its own state. Since the carbon nanotube layer 1〇2 is a self-supporting structure, the carbon nanotube layer 1〇2 can be directly suspended relative to the epitaxial growth surface 1 〇1 of the substrate 100, and the method is simple and controllable, which is beneficial to Achieve mass production. The carbon nanotube layer 102 is directly disposed facing the epitaxial growth surface 101 of the substrate 1 悬 with respect to the epitaxial growth surface 1 〇 1 , and the carbon nanotube layer 102 and the substrate 1 〇〇 There is no support support between the epitaxial growth faces 101. Preferably, the nano-reverse layer 102 is a pure carbon nanotube structure composed of a plurality of carbon nanotubes. The so-called pure carbon nanotube structure, the carbon nanotube layer does not require any chemical modification or acidification treatment during the entire preparation process, and does not contain any functional group modification such as carboxyl groups. The plurality of carbon nanotubes in the carbon nanotube layer 1〇2 extend in a direction substantially parallel to the surface of the carbon nanotube layer 1〇2. [0016] The thickness of the carbon nanotube layer is 丨 nanometer ~ 1 〇〇 micron, or 丨 nanometer ~ 丨 micron, or 1 nanometer ~ 200 nanometers, preferably, the thickness is 1 〇 nanometer ~ 1 〇〇 Nano. In this embodiment, the carbon nanotube layer 1〇2 has a thickness of 2 nanometers. The carbon nanotube layer 102 is a patterned carbon nanotube layer 1〇2. The "patterning" is that the carbon nanotube layer 1〇2 has a plurality of openings 1〇5, and the plurality of openings 105 penetrate the carbon nanotube layer from the thickness direction of the carbon nanotube layer 1〇2. 102. The opening 105 can be a microhole or a gap. The size of the opening 105 is from 1 nanometer to 5 inches, and the size is the aperture of the microhole or the pitch of the gap in the width direction. The size of the opening ι〇5 is 10 nm to 300 μm, or 1 〇 nanometer ~ 12 〇 micrometer or 1 〇 nanometer 100115303 Form No. A0101 Page 6 / Total 36 Page 1002025601-0 201241876 80 micron or 1Q Nai Meters ~ 1 〇 micron. The smaller the size of the opening is, the less the generation of dislocation defects is reduced during the growth of the epitaxial layer, so that the epitaxial layer 1 〇 4 of 冋〇 0 is obtained. Preferably, the opening has a size of from 10 nanometers to 10 micrometers. Further, the duty ratio of the carbon nanotube layer 1 〇 2 is 1:100 ~100: Bu or 1:10~1 (Μ, or 1:22:1, or 1:4~4: 1. Preferably, the duty ratio is 1:4 to 4: 1. The so-called "duty ratio" means that the carbon nanotube layer 102 is suspended after the epitaxial growth surface 101 of the substrate 1 ,, the epitaxy The ratio of the area of the growth surface 1 〇 1 by the carbon nanotube layer 1 〇 2 in the epitaxial Ο [0017] the orthographic projection of the growth surface 101 and the portion exposed through the opening 1 〇 5 is further described. "Graphation" is an orderly and regular arrangement of the plurality of nanocarbon %* in the nanotube layer 1G2. For example, the axis of the plurality of carbon nanotubes in the carbon nanotube layer 1G2 The directions of the carbon nanotubes in the carbon nanotube layer 102 are substantially parallel to the two or more Or extending in the direction. Alternatively, the plurality of carbon nanotubes in the carbon nanotube layer 1〇2 extend along a crystal orientation of the substrate 1〇〇 or at an angle to a crystal orientation of the substrate 100. Carbon tube Adjacent carbon nanotubes extending in the same direction in layer 1〇2 are connected end to end by a van der Waals force. [0018] The carbon nanotube layer 102 has an opening as described above. On the premise of 1〇5, the plurality of carbon nanotubes in the carbon nanotube layer 102 may also be randomly arranged and randomly arranged. Preferably, the carbon nanotube layer 102 is suspended from the substrate 1〇 The epitaxial growth surface of the crucible is 1〇1. The carbon nanotube in the carbon nanotube layer 102 can be 100115303 Form No. A0101 Page 7 of 36 [0019] 201241876 Single-walled carbon nanotubes, double-walled nai One or more of the carbon nanotubes or the multi-walled carbon nanotubes may be selected in length and diameter as needed. [0020] The carbon nanotube layer 102 is used as a mask in the growth epitaxial layer 104. After the epitaxial layer 104 is grown to the plane in which the carbon nanotube layer 102 is located, the growth continues only from the opening 105 of the carbon nanotube layer 102. Since the carbon nanotube layer 102 has a plurality of openings 105, Therefore, the carbon nanotube layer 102 forms a patterned mask. When the carbon nanotube layer 102 is suspended from the substrate 100, After extending the growth surface 101, the plurality of carbon nanotubes may extend in a direction substantially parallel to the epitaxial growth surface 101. [0021] The carbon nanotube layer 102 may also be a plurality of carbon nanotubes and added a composite structure of materials comprising one or more of graphite, graphite thin, tantalum carbide, boron nitride, tantalum nitride, hafnium oxide, amorphous carbon, etc. The additive material may further include metal carbonization. One or more of a substance, a metal oxide, a metal nitride, etc. The additive material is coated on at least a part of the surface of the carbon nanotube layer 102 or disposed on the carbon nanotube layer 102. Inside the opening 105. Preferably, the additive material is coated on the surface of the carbon nanotube. Since the additive material is coated on the surface of the carbon nanotube, the diameter of the carbon nanotubes becomes large, so that the opening 105 between the carbon nanotubes is reduced. The additive material may be formed on the surface of the carbon nanotube by chemical vapor deposition (CVD), physical vapor deposition (PVD), magnetron sputtering or the like. [0022] The carbon nanotube layer 102 can be treated with an organic solvent to increase its mechanical strength. The organic solvent may be selected from a mixture of one or more of ethanol, methanol, acetone, dichloroethane and chloroform. The organic solvent in this example is ethanol. The step of treating with an organic solvent can be carried out through a test tube 100115303 Form No. A0101 Page 8 / Total 36 page 1002025601-0 201241876 The organic solvent is dropped on the surface of the carbon nanotube layer 10 2 infiltrated the entire carbon nanotube layer 1 0 2 Or the entire carbon nanotube layer 102 is immersed in a container containing an organic solvent to infiltrate. [0023] Specifically, the carbon nanotube layer 102 may include a carbon nanotube film or a nanocarbon line. The carbon nanotube layer 102 can be a single layer of carbon nanotube film or a plurality of stacked carbon nanotube films. The carbon nanotube layer 102 may comprise a plurality of parallel carbon nanotubes arranged in parallel, a plurality of interdigitated carbon nanotubes or a plurality of interdigitated carbon nanotubes or a plurality of nanocarbon pipelines arranged in any arrangement. When the carbon nanotube layer 102 is a carbon nanotube film which is laminated in a plurality of layers, the number of layers of the carbon nanotube film is not too high, and preferably, it is 2 to 100 layers. When the carbon nanotube layer 102 is a plurality of carbon nanotubes arranged in parallel, the distance between two adjacent carbon nanotubes is 0.1 micron to 200 micrometers, preferably 10 micrometers to 10 millimeters. Micron. The space between the adjacent two nanocarbon lines constitutes the opening 105 of the carbon nanotube layer 102. The length of the gap between two adjacent nanocarbon lines can be equal to the length of the nanocarbon line. The carbon nanotube film or the nano carbon line may each be a self-supporting structure, and the epitaxial growth surface 101 disposed on the substrate 100 may be directly suspended to constitute the carbon nanotube layer 102. The size of the opening 105 in the carbon nanotube layer 102 can be controlled by controlling the number of layers of the carbon nanotube film or the distance between the carbon nanotubes. In this embodiment, the carbon nanotube film is a carbon nanotube film. [0024] The carbon nanotube membrane is a self-supporting structure composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes extend in a preferred orientation along the same direction. The preferred orientation is such that the majority of the carbon nanotubes in the carbon nanotube film extend substantially in the same direction. Moreover, the majority of the carbon nanotubes are generally 100115303 Form No. A0101 Page 9 of 36 1002025601-0 201241876 The direction of extension is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube film are connected end to end by van der Waals force. Specifically, each of the majority of the carbon nanotubes extending substantially in the same direction in the carbon nanotube film is connected end to end with the carbon nanotubes adjacent in the extending direction by van der Waals. Of course, there are a small number of randomly arranged carbon nanotubes in the carbon nanotube membrane, and these carbon nanotubes do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube membrane. The self-supporting carbon nanotube film does not require a large-area carrier support, but can maintain a self-membrane state as long as the supporting force is provided on both sides, that is, the carbon nanotube film is placed (or fixed on) When the two supports are disposed at a certain distance apart, the carbon nanotube film located between the two supports can be suspended to maintain the self-membrane state. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending through the end of the van der Waals force in the carbon nanotube film. [0025] Specifically, the plurality of carbon nanotubes extending substantially in the same direction in the carbon nanotube film are not absolutely linear and may be appropriately bent; or are not completely aligned in the extending direction, and may be appropriately deviated Extend the direction. Therefore, partial contact between the carbon nanotubes juxtaposed in the plurality of carbon nanotubes extending substantially in the same direction of the carbon nanotube film cannot be excluded. Referring to FIG. 2 and FIG. 3, in particular, the carbon nanotube film includes a plurality of continuous and oriented extended carbon nanotube segments 143. The plurality of carbon nanotube segments 143 are connected end to end by van der Waals force. Each of the carbon nanotube segments 143 includes a plurality of carbon nanotubes 145 which are parallel to each other, and the plurality of mutually parallel carbon nanotubes 145 are tightly bonded by van der Waals force. The carbon nanotube segment 143 has 100115303 Form No. A0101 Page 10 of 36 1002025601-0 201241876 Any length, thickness, uniformity and shape. The carbon nanotube film can be obtained by directly drawing a part of a carbon nanotube from an array of carbon nanotubes. The carbon nanotube film has a thickness of from 1 nm to 100 μm, and the width is related to the size of the carbon nanotube array in which the carbon nanotube film is taken out, and the length is not limited. There are micropores or gaps between adjacent carbon nanotubes in the carbon nanotube film to form an opening 105, and the pore size or gap of the micropore is less than 10 microns. Preferably, the carbon nanotube film has a thickness of from 100 nm to 10 μm. The carbon nanotubes 145 in the carbon nanotube film extend in a preferred orientation in the same direction. For details of the carbon nanotube film and its preparation method, please refer to 中 Applicant's Patent No. 1 327177, which was filed on February 12, 2010, and the Republic of China patent "Nano Carbon Tube Film" Structure and preparation method thereof". In order to save space, only the above is cited, but all the technical disclosures of the above application are also considered as part of the disclosure of the technology of the present application. [0027] Referring to FIG. 4, when the carbon nanotube layer includes a plurality of laminated carbon nanotube films stacked in a stack, the extending direction of the carbon nanotubes in the adjacent two-layer carbon nanotube film forms an intersection. Angle α, and α is greater than or equal to 0 degrees and less than or equal to 90 degrees.. (0. "$90.". Ο [0028] In order to reduce the thickness of the carbon nanotube film, the carbon nanotube film can be further processed. Heat treatment. In order to avoid destruction of the carbon nanotube film during heating, the method for heating the carbon nanotube film adopts a local heating method, which specifically includes the following steps: locally heating the carbon nanotube film to make the carbon nanotube film Part of the carbon nanotubes in the local position are oxidized; the position where the mobile carbon nanotubes are locally heated, the entire carbon nanotube film is heated from the local to the whole. Specifically, the carbon nanotube film can be divided into In a plurality of small areas, the carbon nanotube film is heated region by region from a partial to a whole manner. The bureau 100115303 Form No. 1010101 Page 11/36 pages 1002025601-0 201241876 Heating the carbon nanotube film The method can have multiple kinds, such as laser heating method, microwave Thermal method, etc. In this embodiment, the carbon nanotube film is irradiated by a laser scanning having a power density greater than 0.1 Χίο4 watt/m 2 , and the carbon nanotube film is heated from a partial to a whole. The carbon nanotube film is irradiated by laser, and some of the carbon nanotubes are oxidized in the thickness direction, and at the same time, the carbon nanotube bundle having a larger diameter in the carbon nanotube film is removed, so that the carbon nanotube film is thinned. [0029] It can be understood that the above method of scanning the carbon nanotube film is not limited as long as the carbon nanotube film can be uniformly irradiated. The laser scanning can be performed along the carbon nanotube film in the parallel carbon nanotube film. The alignment direction is performed row by row, and can also be performed column by column in the direction perpendicular to the arrangement of the carbon nanotubes in the carbon nanotube film. The smaller the speed of the laser scanning carbon nanotube film with fixed power and fixed wavelength, the smaller the nanometer. The more heat absorbed by the carbon nanotube bundle in the carbon nanotube film, the more the number of carbon nanotubes corresponding to the damaged carbon nanotube bundle becomes smaller. However, if the laser scanning speed is too small The carbon nanotube film will absorb too much heat and be burned. In the embodiment, the power density of the laser is Λ 〇 〇 χ χ χ χ χ χ 12 χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ For a carbon dioxide laser, the laser has a power of 30 watts, a wavelength of 10.6 microns, a spot diameter of 3 mm, and a relative motion speed of the laser device 140 and the carbon nanotube film of less than 10 mm/sec. The nano carbon line may be a non-twisted nano carbon line or a twisted nano carbon line. The non-twisted nano carbon line and the twisted nano carbon line are both self-supporting structures. Specifically, please refer to Figure 5, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotubes extending along a length parallel to the non-twisted nanocarbon pipeline 100115303 Form No. 1010101 Page 12/36 pages 1002025601-0 201241876. Specifically, the non-twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by a van der Waals force, and each of the carbon nanotube segments includes a plurality of parallel and pass through a van der Waals force. Tightly bonded carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. 5纳米〜100微米。 The non-twisted nano carbon line length is not limited, the diameter is 0. 5 nanometers ~ 100 microns. The non-twisted nanocarbon line is obtained by treating the carbon nanotube film with an organic solvent. Specifically, the organic solvent is impregnated on the entire surface of the carbon nanotube film, and the mutually parallel plurality of carbon nanotubes in the carbon nanotube film pass through the surface tension generated by the volatilization of the volatile organic solvent. The van der Waals force is tightly combined to shrink the carbon nanotube film into a non-twisted nanocarbon line. The organic solvent is a volatile organic solvent such as ethanol, methanol, propane, di-ethane or chloroform, and ethanol is used in this embodiment. The non-twisted nanocarbon line treated by the organic solvent has a smaller specific surface area and a lower viscosity than the carbon nanotube film which is not treated with the organic solvent. [0031] The twisted nanocarbon line is obtained by twisting both ends of the carbon nanotube film in opposite directions by a mechanical force. Referring to Figure 6, the twisted nanocarbon line includes a plurality of carbon nanotubes extending axially around the twisted nanocarbon line. Specifically, the twisted nanocarbon pipeline includes a plurality of carbon nanotube segments, and the plurality of carbon nanotube segments are connected end to end by van der Waals, and each of the carbon nanotube segments includes a plurality of parallel and through van der Waals Tightly bonded carbon nanotubes. The carbon nanotube segments have any length, thickness, uniformity, and shape. The twisted nano carbon line is not limited in length and has a diameter of 0.5 nm to 100 μm. Further, the twisted nanocarbon line can be treated with a volatile organic solvent. In the volatile organic solvent 100115303 Form No. A0101 Page 13 / Total 36 Page 1002025601-0 201241876 Under the action of surface tension generated by volatilization, the adjacent carbon nanotubes in the treated twisted carbon nanotubes pass through The tight combination of the wattage reduces the specific surface area of the twisted nanocarbon line, and increases the density and strength. [0032] The nano carbon pipeline and the preparation method thereof are referred to the patent of the Republic of China patent No. ί3〇3239, which was filed on November 1, 2008 by the applicant, and the applicant: Hon Hai Precision Industry Co., Ltd., and the patent of the Republic of China patent No. 1312337, filed on December 16, 2005, filed on July 21, 2009, is the applicant: Hon Hai Precision Industry Co., Ltd. [0033] The manner in which the carbon nanotube layer 102 is suspended is not limited, such as pulling the both ends of the carbon nanotube layer 102 to 'correspond to the epitaxial growth surface 101 of the carbon nanotube layer 1〇2. The portion is spaced apart from the epitaxial growth surface 101; or the two ends of the carbon nanotube layer 102 are disposed on the two spaced apart support bodies to make the portion of the carbon nanotube layer 102 corresponding to the epitaxial growth surface 101 and epitaxial Growth surface ιοί interval. Preferably, the carbon nanotube layer 102 is disposed in parallel with the epitaxial growth surface 101. When the carbon nanotube layer 102 is suspended from the epitaxial growth surface 101 of the substrate 100, the carbon nanotube layer 1〇2 is disposed adjacent to the epitaxial growth surface 101, and the carbon nanotube layer 102 is disposed. At least a portion is suspended relative to the epitaxial growth surface 101, that is, the carbon nanotube layer 102 is disposed parallel to the epitaxial growth surface 101 of the substrate 100 and spaced apart from the epitaxial growth surface 101. The plurality of carbon nanotubes in the carbon nanotube layer 102 extend substantially parallel to the epitaxial growth surface 101. The distance between the carbon nanotube layer 102 and the epitaxial growth surface 1〇1 is not limited, and may be selected according to actual needs, such as 10 nm to 500 μm. Preferably, the distance between the nanocarbon tube layer 102 and the epitaxial growth surface 101 is 50 nm to 100 micro 100115303. Form No. 1010101 Page 14/36 pages 1002025601-0 201241876 Ο [0034] [0035] 0036] Ο米 'in this case, the carbon nanotube layer 102 is disposed close to the substrate 100. Therefore, the epitaxial layer 1〇4 can be easily penetrated during the process of growing outward from the surface of the substrate 1〇〇. Excluding the carbon nanotube layer 102 and coating the carbon nanotube layer 102, thereby reducing defects in the portion of the epitaxial layer 104 above the carbon nanotube layer 102, and facilitating the preparation of high-quality epitaxy with a large thickness Layer 104; on the other hand, the carbon nanotube layer 丨〇2 is disposed near the substrate 从而, so that the epitaxial layer 〇4 can easily permeate out the nano-bureau layer 102 and Coating and forming the epitaxial structure 1〇 is advantageous for improving preparation efficiency and reducing preparation cost. In this embodiment, the spacing between the nanotube breaking layer 102 and the substrate 1〇〇 is 1 μm. In this embodiment, the interval setting may be implemented by the following steps: Step S121, providing a supporting device, in the embodiment, the supporting device includes a first supporting body 112 and a second supporting body 114, the first The support body 112 is spaced apart from the second support body 14 . The material of the first support body 112 and the second support body 114 may be a metal leather, a metal alloy, a conductive composite material or the like. It can be understood that the material of the second support body 112 and the second support raft 114 is not limited, and it is only necessary to ensure that the first support body 112 and the second support body 114 have a certain mechanical strength. The shape of the upper carbon nanotube layer 102 remains unchanged < ° The distance between the first support body 112 and the second support body 114 may be set according to the size of the substrate 100 and the actual requirements. Preferably, the distance between the first support body 112 and the second support body u 4 is greater than The size of the substrate 丨00 is such that the carbon nanotube layer 102 can be suspended on the substrate 1 as a whole. The shape of the first support body 112 and the second support body 114 is not limited, and it is only necessary to ensure that the first support body 112 and the second support body 114 have a plane, and the town is 100115303. Form No. A0101 Page 15 / Total 36 pages 1002025601- [0039] [0039] 100115303 The two ends of the carbon nanotube layer 102 are respectively tiled and adhered. In this embodiment, the shape of the first support body 11 2 and the second support body η4 is a rectangular parallelepiped, and the first support body 112 and the second support body π4 are disposed opposite to the edge of the substrate 100. 1〇〇 is located between and spaced apart from the first support body 112 and the second support body 114. In step S12 2, the carbon nanotube layer 1 〇 2 is suspended above the epitaxial growth surface 101. The dangling arrangement may be performed by adhering one end of the carbon nanotube layer 102 to the first support body 112, and bonding the other end of the carbon nanotube layer 102 to the first branch body 114. Upper, and the intermediate layer 6 of the carbon nanotube layer 1〇2 is placed on the substrate 100 again and is in a stretched state. That is, the two ends of the carbon nanotube layer 102 are respectively fixed on the first support body 112 and the second support body 114, and the portion of the carbon nanotube layer 102 corresponding to the epitaxial growth surface 1〇1 and the epitaxy The growth faces 101 are spaced apart. Since the carbon nanotube layer 1〇2 itself has a certain viscosity, the two ends of the carbon nanotube layer 1〇2 can be directly adhered to the first support body 112 and the second support body 114, respectively. A conductive adhesive such as silver glue or the like adheres both ends of the carbon nanotube layer 102 to the first support 112 and the second support 114, respectively. In step S13, the growth method of the epitaxial layer 104 can be respectively performed by molecular beam epitaxy (ΜΒΕ), chemical beam epitaxy (CBE), vacuum deuteration, low temperature epitaxy, selective epitaxy, liquid deposition epitaxy ( LpE), metal organic vapor phase epitaxy (MOVPE), ultra-vacuum chemical vapor deposition (UHVCVD), hydride vapor phase epitaxy (HvpE), and metal organic chemical vapor deposition (MOCVD), or In a plurality of implementations, the material of the epitaxial layer 104 may be the same as the material of the buffer layer 〇41 or may be the same as the page number A0101 1002025601-0 201241876 [0040] 004 [0041]. The thickness of the growth of the epitaxial layer 104 can be prepared as needed. 5纳米〜1毫米。 The thickness of the epitaxial layer may be 0. 5 nm ~ 1 mm. For example, the growth of the epitaxial layer 104 may range from 100 nanometers to 500 micrometers, or from 200 nanometers to 200 micrometers, or from 500 nanometers to 1 micrometer. The material of the epitaxial layer 104 is a semiconductor material such as Si ' GaAs, GaN, GaSb, InN, InP, InAs, InSb, A1P, AlAs, AlSb, AIN, GaP, SiC, SiGe, GaMnAs, GaAlAs, GalnAs, GaAIN, GaInN, AlInN, GaAsP, InGaN, AlGaInN, Al-GalnP, GaP: Zn or GaP: N. It can be understood that the material of the epitaxial layer i〇4 may also be other materials such as metal or alloy, as long as the material can be grown by the above-mentioned growth methods such as MBE, CBE, MOVPE, etc., in the first embodiment of the present invention. The substrate 100 is a sapphire (Α1 〇2 3 ) substrate. The carbon nanotube layer 102 is a single-layer carbon nanotube film, and the carbon nanotube film is composed of a plurality of carbon nanotubes. The self-supporting structure, said: 3⁄4 dry carbon nanotubes are preferably taken in the same direction. The carbon nanotube layer 102 is disposed parallel to the surface of the substrate 1 and has a pitch of 1 μm from the substrate 100. This embodiment uses the Mocvj) process for epitaxial growth. Among them, high purity ammonia (Nh3) is used as the source gas of nitrogen, hydrogen (H2) is used as the carrier gas, and trimethylgallium (TMGa) or triethylgallium (TEGa) or trimethylindium (TMIn) is used. Trimethylaluminum (TMA1) acts as a Ga source, an In source, and an A1 source. The growth of the epitaxial layer 104 specifically includes the following steps: 100115303 Form No. A0101 Page 17 / Total 36 Page 1002025601-0 201241876 [0043] First, the sapphire substrate 100 is placed in the reaction chamber and heated to 11 〇〇〇c 〜 1 200 ° C, and pass \, ^ or its mixed gas as a carrier gas, high temperature baking 200 seconds ~ 1 sec. [0044] Next, continue to carry the same carrier gas, and cool it to 5 〇〇t~6 5 〇, pass through trimethylgallium or triethylgallium and ammonia gas, and grow a low-temperature GaN layer as the low-temperature GaN layer. The buffer layer of the epitaxial layer 1〇4 is continuously grown, and its thickness is 1 〇 nanometer ~ 5 〇 nanometer. Since the GaN epitaxial layer 104 and the sapphire substrate 1 具有 have different lattice constants, the buffer layer is used to reduce lattice mismatch during the growth of the epitaxial layer 1〇4, and to reduce the growth of the epitaxial layer. 4 bit error density 〇 [0045] Then, stop the introduction of trimethyl gallium or triethyl gallium, continue to pass ammonia and carrier gas, while raising the temperature to 1100X: ~ 1200t, and keep the temperature for 30 seconds Annealing is carried out for ~300 seconds. [0046] Again, the temperature of the substrate 100 is maintained at 1 〇〇 (TC 〜 11 〇 (rc, continue to pass ammonia and carrier gas, while re-introducing tris-gallium or triethylgallium, growing at high temperatures) A high quality epitaxial layer 104 is formed. [0047] After the epitaxial layer 104 is grown to the position where the carbon nanotube layer 102 is located, the epitaxial layer 1 〇4 is from the gap between the carbon nanotubes of the carbon nanotube layer 1 〇2 Continue to grow', that is, grow from the opening 105 of the carbon nanotube layer 102, and then directly expand the lateral epitaxial growth around the carbon nanotube, and finally form a plurality of pores 103 around the carbon nanotube to form a micro-structure. The epitaxial layer 1 〇 4 ' coats the carbon nanotube layer 102. Specifically, the epitaxial grains grow from the surface of the substrate 100, and when grown to the position where the carbon nanotube layer 102 is located, The epitaxial grains are grown only at the opening between the carbon nanotubes 1〇5 100115303 Form No. A0101, page 18/36 pages 1002025601-0 201241876, and gradually extend out of the opening 105. The epitaxial grains are from the Nai After the opening 1〇5 in the smectite layer 102 is grown, the basic edge Parallel epitaxial growth of the carbon nanotubes surrounding the carbon nanotube layer 1 in a direction parallel to the surface of the epitaxial growth surface 101, and then gradually forming a body, thereby forming the carbon nanotube layer 1 〇 2 Covering to form the epitaxial structure 1 . Due to the presence of a carbon nanotube, a plurality of holes 103 are formed in the epitaxial layer 104. The carbon nanotube layer 102 is disposed in the hole 103. A portion of the carbon nanotubes in the nanotube layer 102 are in contact with the inner surface of the hole 1〇3. The plurality of holes 1〇3 form a “patterned structure” in the epitaxial layer 1〇4 and The patterned structure of the epitaxial layer 丨04 is substantially the same as the pattern in the patterned carbon nanotube layer. [0048] It can be understood that the method for preparing the epitaxial structure 10 after the step S13 may further include a stripping process. The step of peeling off the substrate 100 may be a laser irradiation method, an etching method, or a temperature difference self-peeling method. The removal method may be selected according to the difference between the substrate 100 and the epitaxial layer material. 0050] In this embodiment, the removal of the substrate 100 The method is a laser irradiation method. The specific method includes the following steps: [0051] S151, polishing and cleaning the surface of the substrate 1 that does not grow the epitaxial layer 104; [0052] S152, will pass The surface-cleaned substrate 1 is placed on a platform (not shown), and the substrate 100 and the epitaxial layer 104 are scanned and irradiated by laser; [0053] S153, the laser-irradiated substrate 100 is immersed The base is removed from the solution 100115303 Form No. A0101 Page 19 of 36 Page 1002025601-0 201241876 Bottom 100. [0054] In step S151, the polishing method may be a mechanical polishing method or a chemical polishing method to smooth the surface of the substrate 100 to reduce scattering of lasers in subsequent laser irradiation. The cleaning may be performed by rinsing the surface of the substrate 100 with hydrochloric acid, sulfuric acid or the like to remove metal impurities, oil stains and the like on the surface. [0055] In step S152, the laser is incident from the polished surface of the substrate 100, and the incident direction is substantially perpendicular to the polished surface of the substrate 100, that is, substantially perpendicular to the interface between the substrate 100 and the epitaxial layer 104. . The wavelength of the laser is not limited and may be selected according to the material of the buffer layer and the substrate 100. Specifically, the energy of the laser is smaller than the band gap energy of the substrate 100 and larger than the band gap energy of the buffer layer, so that the laser can pass through the substrate 100 to reach the buffer layer, and the laser is performed at the interface between the buffer layer and the substrate 100. Stripped. The buffer layer at the interface strongly absorbs the laser, causing the temperature of the buffer layer at the interface to rise rapidly and decompose. The other portions of the epitaxial layer 104 absorb less of the laser, so the epitaxial layer 104 is not destroyed by the laser. It can be understood that different wavelengths of laser can be selected for different buffer layers, so that the buffer layer has a strong absorption effect on the laser. [0056] The laser irradiation process is performed in a vacuum environment or a protective gas atmosphere to prevent the carbon nanotubes from being destroyed by oxidation during the laser irradiation. The protective gas may be an inert gas such as nitrogen, helium or argon. [0057] In step S153, the substrate 100 and the epitaxial layer 104 after the laser irradiation may be immersed in an acidic solution to remove the Ga after the GaN decomposition, thereby achieving the peeling of the substrate 100 from the epitaxial layer 104. [0058] Since the carbon nanotube layer 102 is coated in the epitaxial layer 104, the nanometer 100115303 Form No. A0101 Page 20/36 pages 1002025601-0 201241876 [0059] [0060] 碳 Carbon tube layer 102 The substrate 100 is not in direct contact with each other, and therefore, during the process of peeling off the substrate 100, the carbon nanotube layer 102 is not damaged to change its overall structure. The first embodiment of the present invention further provides an epitaxial structure 10 including a substrate 100, a carbon nanotube layer 102 and an epitaxial layer 104. The epitaxial layer 104 is disposed on the surface of the substrate 100. The carbon nanotube layer 102 is coated. The substrate 100 and the epitaxial layer 104 have similar lattice constants and thermal expansion coefficients, and the material of the substrate 100 may be GaAs, GaN, Si, SOI, AIN, SiC, MgO, ZnO, LiGa〇9, LiAlO. Or A1 and so on. < The thickness, size and shape of the substrate 100 are not limited and may be selected according to actual needs. [0061] The carbon nanotube layer 102 is a continuous overall structure including a plurality of carbon nanotubes. The carbon nanotube layer 1〇2 is a macro structure. Further, the carbon nanotube layer 102 is a self-supporting structure. The carbon nanotube layer 102 has a plurality of openings 1〇5'. The plurality of openings 丨〇5 penetrate the carbon nanotube layer 1〇2 from the thickness direction of the carbon nanotube layer 102. The opening 105 can be a microhole or a gap. The epitaxial layer 104 is a continuous monolithic structure. The continuous monolithic structure has no fracture or interface in the epitaxial layer 104, and the epitaxial layer 1〇4 places the carbon nanotubes in a continuous and uninterrupted state. Layer 1〇2 is covered. The material of the epitaxial layer 104 may be a semiconductor material such as Si, GaAs, GaN, GaSb, InN, InP, InAs' inSb 'Alp, A1As, A1Sb, AIN, GaP, SiC, SiGe, GaMnAs, GaAlAs, GalnAs 100115303 No. A0101 Page 21 of 36 1002025601-0 201241876, GaAIN, GalnN, AlInN, GaAsP, InGaN, AlGalnN, AlGalnP, GaP: Zn or GaP: N. It can be understood that the material of the epitaxial layer 104 can also be other materials such as metal or alloy, as long as the material can be grown by the above-mentioned growth methods such as MBE, cbe, MOVPE and the like. A plurality of holes 1〇3 are formed in the epitaxial layer 104, and a carbon nanotube in the carbon nanotube layer 102 is disposed in the hole 103, and a portion of the carbon carbon in the carbon nanotube layer 102 The tube is in contact with the inner surface of the hole 103. The epitaxial layer 1 〇 4 extends out of the opening 1 〇 5 . The plurality of holes 103 are substantially in the same plane, and when the carbon nanotube layer 1〇2 is a carbon nanotube film or a carbon carbon line disposed at a cross, the plurality of holes 103 may communicate with each other or The plurality of holes 1 〇 3 are parallel to each other and spaced apart from each other when the carbon nanotube layers 1 〇 2 are nano carbon lines which are parallel and spaced apart from each other. The shape of the cross section of the hole 103 is not limited. Preferably, the hole 103 has a circular cross section and a diameter of 2 nm to 200 μm. Preferably, the hole 1〇3 has a cross-sectional diameter of 2〇. Nano ~ 200 nm. A carbon nanotube is disposed in the hole 1 〇3, and an epitaxial layer 1〇4 is filled between adjacent holes 103, and an epitaxial layer 104 between adjacent holes 1〇3 penetrates into the carbon nanotube layer 1 The opening of 〇2 is in 1〇5. [0063] As shown in FIG. 7, a second embodiment of the present invention provides a method for fabricating an epitaxial structure 2A, which specifically includes the following steps: [0064] S21' provides a substrate 1〇〇, and the substrate 1〇〇 An epitaxial growth surface 101 having epitaxial growth support is provided; [0065] S22, a plurality of layers of carbon nanotube layers 10 2 are suspended in the epitaxial growth surface 101, and the plurality of layers of carbon nanotube layers are spaced apart from each other Setting; 100115303 Form No. A0101 Page 22/36 Page 1002025601-0 201241876 [0067] S23, an epitaxial layer 1〇4 is grown on the epitaxial growth surface 1〇1 to form the plurality of layers of carbon nanotubes Layer 102 is coated. The preparation method of the epitaxial structure 2〇 provided by the second embodiment of the present invention is basically the same as the preparation method of the epitaxial structure 1〇 in the first embodiment, except that the epitaxial growth surface of the substrate is 1〇1. A plurality of layers of carbon nanotube layers 102 are disposed on the surface, and the nano-sound tube layers 1 〇 2 are disposed at intervals in a direction perpendicular to the epitaxial growth surface 101, and the spacing distance is 1 米 m to 500 μm. , can be set according to actual needs. Preferably, the complex bran layer carbon nanotube layer 102 is disposed adjacent to the epitaxial growth surface 1〇1, and the complex ceramic carbon layer 10 2 is equally spaced and spaced apart from each other by an equal distance. During the growth process, the epitaxial layer 104 is epitaxially grown from the openings of the carbon nanotube layer 102 disposed between the plurality of layers, and the carbon nanotube package in each carbon nanotube layer 102 is described. Covered to form a continuous overall structure. [0068] 外延 the epitaxial grains grow from the surface of the substrate 1 ,, and when grown to the position where the carbon nanotube layer 102 is located, the epitaxial grains grow only at the opening 105 between the nanotubes And gradually extending out of the opening 丨. After the epitaxial grains are grown from the opening 1〇5 in the carbon nanotube layer 1〇2, the carbon nanotubes in the tube layer 1 0 2 are substantially formed in a direction parallel to the surface of the epitaxial growth surface. The lateral epitaxial growth is then gradually integrated to cover the carbon nanotube layer 1〇2. While the epitaxial grain is laterally epitaxially grown, the epitaxial layer 1〇4 continues to grow in a direction perpendicular to the epitaxial growth surface 101, and reaches the plane where the other carbon nanotube layer 1〇2 is located, and from the nanocarbon The opening 1 〇 5 of the tube layer 102 f is grown, and then laterally epitaxially grown to form a plurality of holes 1 〇 3 to the carbon nanotube layer 102 100115303 Form No. A0101 Page 23 / Total 36 Page 1002025601-0 201241876 Package The epitaxial layer 104 between the holes 103 penetrates into the opening 105 of the carbon nanotube layer 102. In turn, the epitaxial layer 104 coats the plurality of layers of carbon nanotube layers 102 spaced one by one to form an integral structure. The plurality of layers of the carbon nanotube layer 102 disposed at intervals may further reduce dislocation defects during the growth of the epitaxial layer 104, and are advantageous for improving the quality of the epitaxial layer 104. [0069] It can be understood that, after the step S23, the method for preparing the epitaxial structure 20 may further include a step of peeling off the substrate 100, and the stripping step and the stripping method of the substrate 100 in the first embodiment. The second embodiment of the present invention further provides an epitaxial structure 20, the epitaxial structure 20 includes a substrate 100, a plurality of layers of carbon nanotube layers 102 and an epitaxial layer 104. The epitaxial layer 104 is disposed on the surface of the substrate 100 and covers the plurality of layers of the carbon nanotube layer 102. The epitaxial structure 20 provided by the second embodiment of the present invention is substantially the same as the epitaxial structure 10 of the first embodiment, except that the epitaxial layer 104 is covered with a plurality of layers of carbon nanotube layers 102, and The plurality of layers of carbon nanotube layers 102 are stacked one on another. [0071] The method for preparing an epitaxial structure and an epitaxial structure thereof provided by the present invention have the following beneficial effects: First, the carbon nanotube layer is a self-supporting structure, and thus can be directly disposed by a method of hanging The epitaxial growth surface of the substrate is simple and controllable, and is advantageous for mass production. Secondly, the carbon nanotube layer is a patterned structure, and the thickness and opening size thereof can reach the nanometer level. The meter-level structure of the meter level is advantageous for reducing the generation of bit error defects to obtain a high-quality epitaxial layer; again 100115303 Form No. A0101 Page 24/36 pages 1002025601-0 201241876, the present invention can be placed on the substrate to set a plurality of The epitaxial structure is prepared by the carbon nanotube layer, and the defects in the epitaxial layer can be further reduced, and the epitaxial structure can cover the plurality of carbon nanotube layers to form an integrated structure, which can be conveniently applied to the preparation of electronic devices. [0075] [0079] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a process flow diagram of a method for preparing an epitaxial structure according to a first embodiment of the present invention. Fig. 2 is a scanning electron micrograph of a carbon nanotube film used in the first embodiment of the present invention. Fig. 3 is a schematic view showing the structure of a carbon nanotube segment in the carbon nanotube film shown in Fig. 2. Figure 4 is a scanning electron micrograph of a plurality of layers of carbon nanotube membranes disposed in the present invention. Figure 5 is a scanning electron micrograph of a non-twisted nanocarbon line used in the present invention. Figure 6 is a scanning electron micrograph of a twisted nanocarbon line used in the present invention. FIG. 7 is a process flow diagram of a method for fabricating an epitaxial structure according to a second embodiment of the present invention. 100115303 Form No. 1010101 Page 25/36 Page 1002025601-0 201241876 [Explanation of Main Component Symbols] [0080] Epitaxial Structure: 10 [0081] Substrate: 100 [0082] Epitaxial Growth Surface: 101 [0083] Carbon Nanotube Layer: 102 [0084] Hole: 103 [0085] Epitaxial layer: 1 0 4 [0086] Opening: 1 0 5 [0087] First support: 112 [0088] Second support: 114 100115303 Form number A0101 26 Page / Total 36 pages 1002025601-0

Claims (1)

201241876 七、申請專利範圍: 1 . 一種外延結構體的製備方法,包括以下步驟: 提供一基底,所述基底具有一外延生長面; 提供一層奈米碳管層,將該奈米碳管層靠近所述外延生長 面設置,該奈米碳管層至少部份相對於所述外延生長面懸 空設置; 在所述基底的外延生長面生長一外延層將所述奈米碳管層 包覆。 . 2 .如申請專利範圍第1項所述的外延結構體的製備方法,其 〇 ^ 中,所述奈米碳管層為一連續的自支撐結構。 3 .如申請專利範圍第1項所述的外延結構體的製備方法,其 中,所述奈米碳管層平行於所述基底的外延生長面設置並 與外延生長面間隔。 4 .如申請專利範圍第1項所述的外延結構體的製備方法,其 中,所述奈米碳管層具有複數開口,所述外延層在生長過 程中滲透所述開口外延生長。 5 .如申請專利範圍第4項所述的外延結構體的製備方法,其 ❹ 中,所述外延層在所述奈米碳管層周圍形成複數孔洞將所 述奈米碳管層中的奈米碳管包圍。 6 .如申請專利範圍第1項所述的外延結構體的製備方法,其 中,所述懸空設置的奈米碳管層與基底的外延生長面之間 的距離為10奈米〜500微米。 7 .如申請專利範圍第6項所述的外延結構體的製備方法,其 中,所述懸空設置的奈米碳管層與基底的外延生長面之間 的距離為50奈米〜100微米。 100115303 表單編號A0101 第27頁/共36頁 1002025601-0 201241876 8 .如申請專利範圍第丨項所述的外延結構體的製備方法,其 中,所述基底為一單晶結構體,所述基底的材料為 、GaN、Si、SOI、AIN、SiC、MgO、ZnO、LiGaO、 T 2 [“1〇2或八12〇3。 9 ·如申請專利範圍第丨項所述的外延結構體的製備方法’其 中,所述外延層的生長方法包括分子束外延法、化學束外 延法、減壓外延法、低溫外延法、選擇外延法、液相沈積 外延法、金屬有機氣相外延法、超真空化學氣相沈積法、 氫化物氣相外延法、及金屬有機化學氣相沈積法中的一種 或複數種。 10 ·如申請專利範圍第1項所述的外延結構體的製備方法,其 中,在外延層將所述至少一奈米碳管層包覆之後進一步包 括一將所述基底剝離的步驟。 Η .如申請專利範圍第1〇項所述的外延結構體的製備方法其 中,所述剝離的方法為雷射照射法、腐蝕法或溫差自剝離 法。 2 . 種外延結構體的製備方法,包括以下步驟: 提供一基底,所述基底具有一外延生長面; 提供複數層奈米碳管層,將該複數層奈米碳管層懸空設置 在所述基底的外延生長面,該複數層奈米碳管層相互間隔 且靠近所述外延生長面設置; 在所述基底的外延生長面生長一外延層將所述複數層奈米 碳管層包覆。 ·如申請專利範圍第12項所述的外延結構體的製備方法其 中,所述複數層奈米碳管層之間的間隔距離為1〇奈米〜 500微米。 100115303 表單編號A0101 第28頁/共36頁 1002025601-0 201241876 14 . 一種外延結構體,所述外延結構體包括一外延層及至少一 奈米碳管層,其中,所述至少一奈米破管層被包覆於所述 外延層中。 15 .如申請專利範圍第14項所述的外延結構體,其中,所述外 延層為一連續的整體結構。 16 .如申請專利範圍第14項所述的外延結構體,其中,所述外 延結構體包括複數層奈米碳管層,且所述複數層奈米碳管 層相互間隔設置。 17 .如申請專利範圍第14項所述的外延結構體,其中,所述外201241876 VII. Patent application scope: 1. A method for preparing an epitaxial structure, comprising the steps of: providing a substrate having an epitaxial growth surface; providing a layer of carbon nanotubes, the carbon nanotube layer being close to The epitaxial growth surface is disposed, wherein the carbon nanotube layer is at least partially suspended relative to the epitaxial growth surface; and an epitaxial layer is grown on the epitaxial growth surface of the substrate to coat the carbon nanotube layer. 2. The method for preparing an epitaxial structure according to claim 1, wherein the carbon nanotube layer is a continuous self-supporting structure. 3. The method of producing an epitaxial structure according to claim 1, wherein the carbon nanotube layer is disposed parallel to an epitaxial growth surface of the substrate and spaced apart from the epitaxial growth surface. 4. The method of producing an epitaxial structure according to claim 1, wherein the carbon nanotube layer has a plurality of openings, and the epitaxial layer is epitaxially grown through the opening during growth. 5. The method for preparing an epitaxial structure according to claim 4, wherein the epitaxial layer forms a plurality of pores around the carbon nanotube layer to treat the naphthalene layer in the carbon nanotube layer. Surrounded by carbon tubes. 6. The method of producing an epitaxial structure according to claim 1, wherein a distance between the suspended carbon nanotube layer and the epitaxial growth surface of the substrate is from 10 nm to 500 μm. The method for producing an epitaxial structure according to claim 6, wherein a distance between the suspended carbon nanotube layer and the epitaxial growth surface of the substrate is 50 nm to 100 μm. The method for preparing an epitaxial structure according to the above-mentioned claim, wherein the substrate is a single crystal structure, and the substrate is a single crystal structure, the substrate is a single crystal structure, and the substrate is a single crystal structure. The material is GaN, Si, SOI, AIN, SiC, MgO, ZnO, LiGaO, T 2 ["1〇2 or 八12〇3. 9] The preparation method of the epitaxial structure as described in the scope of the patent application 'The method for growing the epitaxial layer includes molecular beam epitaxy, chemical beam epitaxy, vacuum deuteration, low temperature epitaxy, selective epitaxy, liquid phase deposition epitaxy, metal organic vapor phase epitaxy, ultra-vacuum chemistry One or more of a vapor phase deposition method, a hydride vapor phase epitaxy method, and a metal organic chemical vapor deposition method. The method for preparing an epitaxial structure according to claim 1, wherein After the layer coating the at least one carbon nanotube layer, further comprising a step of peeling the substrate. The method for preparing the epitaxial structure according to claim 1 The method of separating is a laser irradiation method, an etching method or a temperature difference self-peeling method. 2. A method for preparing an epitaxial structure, comprising the steps of: providing a substrate having an epitaxial growth surface; providing a plurality of layers of nanocarbon a tube layer, the plurality of layers of carbon nanotubes are suspended in an epitaxial growth surface of the substrate, the plurality of layers of carbon nanotubes being spaced apart from each other and disposed adjacent to the epitaxial growth surface; and an epitaxial growth surface of the substrate The method of preparing the epitaxial structure according to claim 12, wherein the separation distance between the plurality of layers of carbon nanotubes is 1 〇 nanometer ~ 500 micrometers. 100115303 Form No. A0101 page 28 / 36 pages 1002025601-0 201241876 14. An epitaxial structure comprising an epitaxial layer and at least one carbon nanotube layer, wherein The at least one nano tube layer is coated in the epitaxial layer. The epitaxial structure according to claim 14, wherein the epitaxial layer is a continuous The epitaxial structure according to claim 14, wherein the epitaxial structure comprises a plurality of layers of carbon nanotubes, and the plurality of layers of carbon nanotubes are spaced apart from each other. The epitaxial structure according to claim 14, wherein the outer structure 延層在所述奈米碳管層周圍形成複數孔洞,所述至少一奈 米碳管層中的奈米碳管設置於該複數孔洞中。 18 .如申請專利範圍第17項所述的外延結構體,其中,所述複 數孔洞位於同一平面内且相鄰的孔洞之間填充有外延層。 19 .如申請專利範圍第18項所述的外延結構體,其中,所述奈 米碳管層具有複數開口,所述孔洞之間的外延層滲透到奈 米碳管層的開口中。 20 .如申請專利範圍第14項所述的外延結構體,其中,所述奈 米碳管層靠近所述外延層的一表面設置,該奈米碳管層到 所述外延層所述表面的距離為10奈米〜500微米。 21 .如申請專利範圍第14項所述的外延結構體,其中,所述外 延結構體進一步包括一基底,所述外延層設置於基底表面 1002025601-0 100115303 表單編號A0101 第29頁/共36頁The extension layer forms a plurality of pores around the carbon nanotube layer, and the carbon nanotubes in the at least one carbon nanotube layer are disposed in the plurality of pores. The epitaxial structure according to claim 17, wherein the plurality of holes are located in the same plane and adjacent holes are filled with an epitaxial layer. The epitaxial structure according to claim 18, wherein the carbon nanotube layer has a plurality of openings, and an epitaxial layer between the holes penetrates into the opening of the carbon nanotube layer. The epitaxial structure according to claim 14, wherein the carbon nanotube layer is disposed adjacent to a surface of the epitaxial layer, and the carbon nanotube layer is on the surface of the epitaxial layer The distance is from 10 nm to 500 microns. The epitaxial structure according to claim 14, wherein the epitaxial structure further comprises a substrate disposed on the surface of the substrate 1002025601-0 100115303 Form No. A0101 Page 29 of 36
TW100115303A 2011-04-15 2011-05-02 A epitaxialstructure and method for making the same TWI431667B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110095149.9A CN102737962B (en) 2011-04-15 2011-04-15 Epitaxial structure and preparation method thereof

Publications (2)

Publication Number Publication Date
TW201241876A true TW201241876A (en) 2012-10-16
TWI431667B TWI431667B (en) 2014-03-21

Family

ID=46993234

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100115303A TWI431667B (en) 2011-04-15 2011-05-02 A epitaxialstructure and method for making the same

Country Status (3)

Country Link
JP (1) JP5379212B2 (en)
CN (1) CN102737962B (en)
TW (1) TWI431667B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI552946B (en) * 2014-04-14 2016-10-11 鴻海精密工業股份有限公司 Methods for transferring carbon nanotube arry and making carbon nanotube structure
US9630849B2 (en) 2014-06-13 2017-04-25 Tsinghua University Method for transferring carbon nanotube array and method for forming carbon nanotube structure
US9650253B2 (en) 2014-04-14 2017-05-16 Tsinghua University Method for forming carbon nanotube film
US9695045B2 (en) 2014-04-14 2017-07-04 Tsinghua University Method for forming carbon nanotube film
US9776872B2 (en) 2014-04-14 2017-10-03 Tsinghua University Method for transferring carbon nanotube array and method for forming carbon nanotube structure
US9776871B2 (en) 2014-04-14 2017-10-03 Tsinghua University Method for forming carbon nanotube film
US9862170B2 (en) 2014-06-16 2018-01-09 Tsinghua University Method for transferring carbon nanotube array and method for forming carbon nanotube structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111843247A (en) * 2020-06-28 2020-10-30 西安中科微精光子制造科技有限公司 Method for forming channels in diamond and diamond product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1868030A (en) * 2003-09-12 2006-11-22 哥本哈根大学 Method of fabrication and device comprising elongated nanosize elements
JP2008266064A (en) * 2007-04-19 2008-11-06 Nichia Corp Substrate for semiconductor element and its manufacturing method
JP5276852B2 (en) * 2008-02-08 2013-08-28 昭和電工株式会社 Method for manufacturing group III nitride semiconductor epitaxial substrate
CN101820036B (en) * 2009-02-27 2013-08-28 清华大学 Method for preparing light-emitting diode
JP2010232464A (en) * 2009-03-27 2010-10-14 Showa Denko Kk Group iii nitride semiconductor light emitting element, method of manufacturing the same, and laser diode

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI552946B (en) * 2014-04-14 2016-10-11 鴻海精密工業股份有限公司 Methods for transferring carbon nanotube arry and making carbon nanotube structure
US9643848B2 (en) 2014-04-14 2017-05-09 Tsinghua University Method for transferring carbon nanotube array and method for forming carbon nanotube structure
US9650253B2 (en) 2014-04-14 2017-05-16 Tsinghua University Method for forming carbon nanotube film
US9695045B2 (en) 2014-04-14 2017-07-04 Tsinghua University Method for forming carbon nanotube film
US9776872B2 (en) 2014-04-14 2017-10-03 Tsinghua University Method for transferring carbon nanotube array and method for forming carbon nanotube structure
US9776871B2 (en) 2014-04-14 2017-10-03 Tsinghua University Method for forming carbon nanotube film
US9630849B2 (en) 2014-06-13 2017-04-25 Tsinghua University Method for transferring carbon nanotube array and method for forming carbon nanotube structure
US9862170B2 (en) 2014-06-16 2018-01-09 Tsinghua University Method for transferring carbon nanotube array and method for forming carbon nanotube structure

Also Published As

Publication number Publication date
CN102737962B (en) 2014-12-31
CN102737962A (en) 2012-10-17
TWI431667B (en) 2014-03-21
JP5379212B2 (en) 2013-12-25
JP2012227508A (en) 2012-11-15

Similar Documents

Publication Publication Date Title
TWI477666B (en) Method of making epitaxial structure with micro-structure
TWI473758B (en) Method for making epitaxial structure
TWI464903B (en) Epitaxial base, method of making the same and application of epitaxial base for growing epitaxial layer
US9070794B2 (en) Method for making light emitting diode
US8981414B2 (en) Light emitting diode
TW201241876A (en) A epitaxialstructure and method for making the same
TWI504016B (en) Light-emitting diode
TWI458672B (en) Epitaxial structure with micro-structure
US9048347B2 (en) Epitaxial structure including carbon nanotube layer in grooves
US8435818B2 (en) Method for making light emitting diode
US9773664B2 (en) Epitaxial base
US9570293B2 (en) Method for making epitaxial base
TWI557064B (en) Method of making light emitting diode
TWI546248B (en) Light emitting diode
TWI557066B (en) Method of making epitaxial structure
TW201244159A (en) Light-emitting diode
TWI449659B (en) Method for making epitaxial structure
TW201238887A (en) A method for making epitaxial structure
TWI487143B (en) Method for making light-emitting diode
TWI442451B (en) A substrate with micro-structure and method for making the same
TWI426159B (en) Mask for growing epitaxial structure and method for using the same
TWI476948B (en) Epitaxial structure and method for making the same
TWI443863B (en) Base for growing epitaxial structure and method for using the same