TW201228965A - Crystalline glass powder - Google Patents

Crystalline glass powder Download PDF

Info

Publication number
TW201228965A
TW201228965A TW100142134A TW100142134A TW201228965A TW 201228965 A TW201228965 A TW 201228965A TW 100142134 A TW100142134 A TW 100142134A TW 100142134 A TW100142134 A TW 100142134A TW 201228965 A TW201228965 A TW 201228965A
Authority
TW
Taiwan
Prior art keywords
glass
dielectric
powder
mass
ceramic
Prior art date
Application number
TW100142134A
Other languages
Chinese (zh)
Other versions
TWI597249B (en
Inventor
Masaru Iwao
Original Assignee
Nippon Electric Glass Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co filed Critical Nippon Electric Glass Co
Publication of TW201228965A publication Critical patent/TW201228965A/en
Application granted granted Critical
Publication of TWI597249B publication Critical patent/TWI597249B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/16Compositions for glass with special properties for dielectric glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Glass Compositions (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Provided is a crystalline glass powder which is reduced in internal air bubbles, while having low dielectric loss characteristics that are sufficiently suitable for a high performance high frequency circuit. The crystalline glass powder is characterized in that a diopside crystal and a feldspar crystal are deposited as primary crystals by a heat treatment. It is preferable that the crystalline glass powder has a glass composition that contains, in mass%, 20-65% of SiO2, 3-25% of CaO, 7-30% of MgO, 0-20% of Al2O3 and 5-40% of BaO and has a mass ratio satisfying the relation of 1 = SiO2/BaO = 4.

Description

201228965 六、發明說明: 【發明所屬之技術領域】 本發明係關於-種用作玻璃H介電質材料之結晶性玻 璃粉末者。 . 【先前技術】 • 自先前以來,作為高密度安裝有ic(integrated circuit, 積體電路)、LSI(Large Scale Integration,大型積體電路) 等之陶竟多層基板 '厚膜電路零件、半導體封裝體等之絕 緣材料’已知有玻璃陶竞介電質。 近年來,於通信設備之領域中,所利用之頻帶逐漸成為 〇.1 GHz以上之间帛,正推進開發可用作利用此種高頻帶 之多層基板等之絕緣材料的結晶性玻璃組合物。又,就高 性能之高頻電路基板或介電質據波器等而言,例如要求介 電損失tan5為2〇χ 1 〇·4以τ > &人麻,丄 以下之低介電損失特性(例如參照專 利文獻1)。 先前技術文獻 專利文獻 專利文獻1:日本專利特開平10·120436號公報 【發明内容】 . 發明所欲解決之問題 然而’近年來,對於電子零件,小型化、薄型化之需求 愈加高满,且對用於電子零件之基板亦要求薄型化。就該 土板而„例如可使用將含有結晶性玻璃粉末之玻璃陶瓷 爭刀末進订锻燒而獲得的析出透輝石結晶(2si02⑽ J60I65.doc 201228965 而成之玻璃陶瓷介電質。然而,於基板之薄型化之進程 中,若於玻璃陶瓷介電質内部存在微小之氣泡(空隙),則 配線之斷線問題變顯著。又,存在因氣泡而導致介電損失 亦增大之傾向。 ' 於玻璃陶瓷介電質内部產生之氣泡係因以下原因而產 生:於原料結晶性玻璃粉末之燒結步驟中,由於結晶化而 導致非流動部分之形成速度較快,從而阻礙燒結體整體之 軟化變形。即,若結晶性玻璃粉末未軟化變形而進行結晶 化,則伴隨結晶化之體積收縮未遍及燒結體整體,而於各 玻璃粉末間之空隙中殘存氣泡。 因此,若降低煅燒時之結晶化速度使燒結體可軟化變 形,從而使燒結體整體均勻地收縮,則亦促進氣體之釋出 或氣體於玻璃相t之溶解,從而有效抑制氣泡之殘存。為 降低結晶化速度,認為如下方法有效:以於結晶化後殘存 玻璃相之方式使結晶性玻璃之組成偏離透輝石結晶之理論 組成。然而,若玻璃陶瓷介電質中之殘存玻璃相之比例過 多’則存在導致介電損失上升之問題1別是於殘存玻璃 相為多成分系組成之情形時,介電損失之上升顯著,變得 難以用於高頻電路基板。 因此,本發明之目的在於提供一種可減少内部之氣泡, 且具有可充分對應兩性能之高頻電路之低介電損失特性的 結晶性玻璃粉末。 解決問題之技術手段 本發明者進行各種研究,結果發現,藉由析出透輝石結 160165.doc -4- 201228965 曰曰與特定之結晶作為主結晶之結晶性玻璃粉末可解決上述 課題’從而作為本發明而提出。 即本發明係關於一種結晶性玻璃粉末,其特徵在於藉 由處理析出透輝石結晶與長石結晶作為主結晶。 本發明者發現’藉由使用可使析出透輝石結晶後殘存之 玻璃相之—部分或全部結晶化為結日日日化開始溫度高於透輝 石結晶且體積收縮率較小之長石結晶的結晶性玻璃粉末, 可儘量抑制伴隨結晶析出之氣泡之產生,且減少殘存玻璃 相。藉此’可製作氣泡率較小且介電損失較小之玻璃陶竟 結晶性玻璃」,係指具有若 出結晶之性質的非晶質玻 不僅為透輝石結晶,亦包 再者’於本發明中,所謂「 進行熱處理則自玻璃基質中析 璃。又,所謂「透輝石結晶」, 含透輝石固溶體結晶。 晶及長石結晶之 如指800〜l〇〇〇°c 又,所明「熱處理」,係指於透輝石結 結晶化開始溫度以上充分進行結晶化,例 下之20分鐘以上之熱處理。 第-’本發明之結晶性破璃之特徵在於,長石結晶為鎖 長石結晶(BaAl2Si208)。 第二’本發明之結晶性玻域夕枝辦+ 坂塥之特徵在於,以質量%計含 有 Si〇2 20〜65%、CaO 3〜w 八 25/0、Mg〇 7〜3〇〇/0、Al2〇3 〇〜20%、BaO 5〜40%作為玻琏έΒ 士、 „ 芍坡璃組成,且以質量比計滿足 1 S Si02/Ba0$ 4之關係。 可利用熱處 藉由使本發明之結晶性坡璃具有上述組成 I60165.doc 201228965 理容易地析出透輝石結晶與長石結晶作為主結晶。再者, 雖Si〇2_CaO-MgO系玻璃之失透傾向較強,但可藉由加入201228965 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a crystalline glass powder used as a glass H dielectric material. [Prior Art] As a high-density MOS (Integrated Circuit), LSI (Large Scale Integration, etc.) multilayer film substrate, thick film circuit parts, semiconductor package The insulating material of the body is known as the glass pottery. In recent years, in the field of communication equipment, the frequency band to be used has gradually become between 1 GHz and above, and a crystalline glass composition which can be used as an insulating material for a multilayer substrate or the like using such a high frequency band is being developed. Further, in the case of a high-performance high-frequency circuit board or a dielectric wave device, for example, a dielectric loss tan5 of 2 〇χ 1 〇·4 is required to be τ >& Loss characteristics (for example, refer to Patent Document 1). CITATION LIST Patent Literature Patent Literature 1: Japanese Patent Application Laid-Open No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 10,120,436, which is a problem to be solved by the invention. However, in recent years, the demand for miniaturization and thinning of electronic components has become more and more high, and Thinner substrates are also required for electronic components. For the soil plate, for example, a glass ceramic dielectric obtained by precipitating diopside crystals obtained by calcining a glass ceramic containing a crystalline glass powder (2si02(10) J60I65.doc 201228965 can be used. In the process of thinning the substrate, if there are minute bubbles (voids) in the glass ceramic dielectric, the problem of disconnection of the wiring becomes remarkable. Further, there is a tendency that dielectric loss increases due to bubbles. The bubbles generated inside the glass ceramic dielectric are caused by the following reasons: in the sintering step of the raw material crystalline glass powder, the formation of the non-flowing portion is faster due to crystallization, thereby hindering the softening deformation of the entire sintered body. In other words, when the crystallized glass powder is not softened and deformed to be crystallized, the volume shrinkage accompanying the crystallization does not extend over the entire sintered body, and bubbles remain in the gaps between the glass powders. Therefore, if the crystallization is reduced during firing, The speed makes the sintered body soften and deform, so that the whole body of the sintered body shrinks uniformly, which also promotes the release of gas or gas to the glass. The dissolution of the phase t effectively suppresses the residual of the bubbles. In order to reduce the crystallization rate, it is considered that the following method is effective: the composition of the crystallized glass is deviated from the theoretical composition of the diopside crystals in such a manner that the glass phase remains after crystallization. When the ratio of the residual glass phase in the glass ceramic dielectric is too large, there is a problem that the dielectric loss increases. 1 When the residual glass phase is composed of a multi-component system, the dielectric loss increases significantly and becomes difficult to use. Therefore, it is an object of the present invention to provide a crystalline glass powder which can reduce internal air bubbles and which has a low dielectric loss characteristic capable of sufficiently coping with two performances of high frequency circuits. As a result of various studies, the inventors have found that the above problem can be solved by precipitating a diopside structure 160165.doc -4- 201228965 曰曰 and a crystallized glass powder having a specific crystal as a main crystal. The invention relates to a crystalline glass powder characterized by treating precipitated diopside crystals and feldspar knots As the main crystal, the inventors have found that 'partially or completely crystallization of the glass phase remaining after the precipitation of diopside crystals is such that the onset temperature is higher than that of diopside crystals and the volume shrinkage is small. The crystallized glass powder of feldspar crystals can suppress the generation of bubbles accompanying crystallization and reduce the residual glass phase, thereby making it possible to produce a glass ceramic crystallized glass having a small cell ratio and a small dielectric loss. It means that the amorphous glass having the property of crystallizing is not only the diopside crystal, but also the one in the present invention, "the heat treatment is to deposit the glass from the glass matrix. Further, the so-called "diaphron crystal", Crystallization of diopside solid solution. For example, crystal and feldspar crystals refer to 800~l〇〇〇°c. The term "heat treatment" means that the crystallization is fully performed at the temperature above the crystallization peak of the diopside, for example, 20 Heat treatment of more than a minute. The crystallized glass of the present invention is characterized in that the feldspar crystal is a lock feldspar crystal (BaAl2Si208). The second 'crystalline glass sphere of the present invention is characterized by containing Si〇2 20 to 65% by mass%, CaO 3 to w 八 25/0, and Mg 〇 7 to 3 〇〇/ 0, Al2〇3 〇~20%, BaO 5~40% as a glass 、, „ 芍 璃 璃 , , , , , , 满足 组成 组成 组成 组成 组成 组成 组成 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足 满足The crystalline glass of the present invention has the above-mentioned composition I60165.doc 201228965, and the diopside crystal and the feldspar crystal are easily precipitated as the main crystal. Furthermore, although the devitrification tendency of the Si〇2_CaO-MgO-based glass is strong, it can be Join

Ah〇3或BaO等鹼土類氧化物而使玻璃穩定化,從而可獲得 量產性優異之玻璃。 第四,本發明係關於一種玻璃陶瓷材料,其特徵在於含 有上述任一項之結晶性玻璃粉末的〜丨〇〇質量%及陶竞粉末 0〜40質量〇/0。 第五,本發明之玻璃陶瓷材料之特徵在於,陶竟粉末含 有A1成分。 若陶瓷粉末含有A1成分,則透輝石結晶析出後之殘存玻 璃相中之Si或Ba等鹼土類金屬與陶瓷粉末中之八丨成分進行 反應’而使長石結晶變得容易析出。 第六’本發明係關於一種玻璃陶瓷介電質,其係將上述 任一項之玻璃陶瓷材料進行煅燒而成。 第七’本發明之玻璃陶瓷介電質之特徵在於含有長石結 晶20〜65質量。/。。 第八,本發明之玻璃陶瓷介電質之特徵在於,氣泡率為 3體積%以下。 第九’本發明之玻璃陶瓷介電質之特徵在於,介電係數 ε為6〜11 ’且(U GHz以上之頻率下之介電損失匕“為 2〇χ10_4以下。 第十,本發明之玻璃陶瓷介電質之特徵在於,其係用於 微波用電路零件材料。 【實施方式】 160165.doc -6 · 201228965 本發明之結晶性玻璃粉末之特徵在於藉由 輝石結晶與長石結晶作為主結晶。 、 析出透 作為長石結晶,較佳為鋇長石結晶。藉由析出 晶可有效減少熱處理後之殘存玻璃相,從而變得容:結 氣泡率及介電損失較小之玻璃陶宪介電質。再者,除^寻 外,亦可於介電損失或氣泡率不上升之範圍内析出約2 結晶(CaA〗2Si2〇8)等。 贫石 本發明之結晶性玻璃粉末較佳為以質量%計含有Si〇 20〜65%、Ca〇 3〜25%、Mg〇 7〜3〇%、a丨2〇3 〇〜纖、邮 5〜40%,且以質量比計滿足之關係。以 下,對如上述般限定玻璃之組成之理由進行陳述。再者, 於以下成分含量之說明中’「%」只要無特別限定則表示 「質量%」。The alkaline earth oxide such as Ah〇3 or BaO stabilizes the glass, and a glass excellent in mass productivity can be obtained. Fourthly, the present invention relates to a glass ceramic material characterized by containing ~% by mass of the crystalline glass powder of any of the above and 0 to 40 mass 〇/0 of Tao Jing powder. Fifth, the glass ceramic material of the present invention is characterized in that the ceramic powder contains the A1 component. When the ceramic powder contains the component A1, the alkaline earth metal such as Si or Ba in the residual glass phase after the precipitation of the diopside crystal reacts with the erbium component in the ceramic powder to cause the feldspar crystal to be easily precipitated. The sixth invention relates to a glass ceramic dielectric obtained by calcining a glass ceramic material according to any one of the above. The seventh 'glass ceramic dielectric of the present invention is characterized by containing feldspar crystals of 20 to 65 mass. /. . Eighth, the glass ceramic dielectric of the present invention is characterized in that the bubble ratio is 3% by volume or less. The ninth 'glass ceramic dielectric of the present invention is characterized in that the dielectric constant ε is 6 to 11 ' and (the dielectric loss 匕 at a frequency higher than U GHz is "2 〇χ 10 _ 4 or less." The glass ceramic dielectric is characterized in that it is used for a circuit component material for microwaves. [Embodiment] 160165.doc -6 · 201228965 The crystalline glass powder of the present invention is characterized in that pyroxene crystals and feldspar crystals are used as main crystals. As a feldspar crystal, it is preferably a celsian crystal. The precipitated crystal can effectively reduce the residual glass phase after the heat treatment, thereby becoming a glass ceramic dielectric with a small bubble rate and dielectric loss. In addition, in addition to the search, about 2 crystals (CaA 2Si2 〇 8) and the like may be precipitated in a range in which the dielectric loss or the bubble rate does not rise. Phenite The crystallized glass powder of the present invention is preferably contained in mass%. Si〇20~65%, Ca〇3~25%, Mg〇7~3〇%, a丨2〇3 〇~fiber, post 5~40%, and the relationship is satisfied by the mass ratio. The reason for limiting the composition of the glass as described above is stated. In addition, in the description of the content of the following components, "%" means "% by mass" unless otherwise specified.

Si〇2為玻璃之網絡成形劑(network former),且為透輝石 結晶及長石結晶之構成成分。Si〇2之含量較佳為20〜65%、 30〜65%、尤其是4〇〜55%。若si〇2之含量為2〇%以上則 變得更容易玻璃化,若為65%以下,則有低溫緞燒(例如 1000°C以下)變得更容易之傾向。Si〇2 is a network former of glass and is a constituent of diopside crystals and feldspar crystals. The content of Si〇2 is preferably from 20 to 65%, from 30 to 65%, especially from 4 to 55%. When the content of si〇2 is 2% by weight or more, it becomes easier to vitrify, and if it is 65% or less, it tends to be easier to form a low-temperature satin (for example, 1000 ° C or lower).

Ca〇為透輝石結晶之構成成分,其含量較佳為3〜25%、 3〜2〇%、尤其是7〜15°/。。若CaO之含量為3%以上,則有變 和·更谷易析出透輝石結晶,結果玻璃陶瓷介電質之介電損 失變低之傾向。若CaO之含量為25%以下,則有玻璃之流 動性進一步良化之傾向。Ca〇 is a constituent component of diopside crystals, and its content is preferably 3 to 25%, 3 to 2% by weight, particularly 7 to 15%. . When the content of CaO is 3% or more, the diopside crystals are easily precipitated, and the dielectric loss of the glass ceramic dielectric tends to be low. When the content of CaO is 25% or less, the fluidity of the glass tends to be further improved.

MgO亦為透輝石結晶之構成成分,其含量較佳為 160I65.doc 201228965 7〜30%、8〜30%、11〜30。/。、尤其是12〜2〇% e gMg〇之含量 為7 以上,則變得更容易析出結晶,若為3〇%以下,則變 得更容易玻璃化。MgO is also a constituent component of diopside crystals, and its content is preferably 160I65.doc 201228965 7~30%, 8~30%, 11~30. /. In particular, when the content of 12 to 2% by weight of e gMg is 7 or more, crystals are more likely to be precipitated, and if it is 3 % by weight or less, it becomes easier to vitrify.

AhO3係用以使玻璃穩定化之成分,其含量較佳為 0〜20%、0.5〜20%、尤其是1〜1〇%。若八丨2〇3之含量為2〇% 乂下貝丨有良付更谷易析出透輝石結晶,結果玻璃陶瓷介 電質之介電損失變低之傾向。AhO3 is a component for stabilizing the glass, and its content is preferably 0 to 20%, 0.5 to 20%, especially 1 to 1% by weight. If the content of gossip 2〇3 is 2〇%, there is a tendency for the diopside crystals to be precipitated in the lower shell, and the dielectric loss of the glass ceramic dielectric tends to be low.

BaO為鋇長石結晶之構成成分,其含量較佳為5〜4〇%, 尤佳為10〜35%。若BaO之含量為5%以上,則變得 析出領長石結m面,若祕之含量為娜以下易 則有透輝石結晶之析出量變得更多之傾向,結果玻璃n 介電質之介電損失難以變大。 又,藉由將Si〇2與Ba〇之比(質量比)限制為特定之 範圍,可自锻燒後之殘存玻璃相有效地析出長石結晶。具 體而言,較佳為滿足asi02/Ba0g4、尤其是 1.05^ Si〇2/BaO ^ 3 95 ^ M ^ ^ c. ^ . —之關係。於81〇2與Ba0之比為該範 圍之情形時,變得更容%ψ且 戈付文令易析出長石結晶’或變得更容 璃化。 除此以外,亦可於本發 、、口日曰 成分 丨王敬碉粉末中添加下述BaO is a constituent component of celsian feldspar crystals, and its content is preferably 5 to 4% by weight, particularly preferably 10 to 35%. When the content of BaO is 5% or more, the surface of the feldspar stone is precipitated, and if the content of the secret is less than Na, the amount of precipitation of diopside crystals tends to increase, and as a result, dielectric n dielectric is dielectric. The loss is difficult to grow. Further, by limiting the ratio (mass ratio) of Si 〇 2 to Ba 限制 to a specific range, feldspar crystals can be efficiently precipitated from the residual glass phase after calcination. Specifically, it preferably satisfies the relationship of asi02/Ba0g4, especially 1.05^Si〇2/BaO^3 95 ^ M ^ ^ c. ^ . When the ratio of 81〇2 to Ba0 is in this range, it becomes more accommodating and it is easier for Ge Fuwen to precipitate feldspar crystals or become more glazed. In addition, the following can also be added to the powder of the present and the Japanese ingredients.

Zn〇係使玻璃化變得容易之成分,其含量較佳為 〇〜20%,尤佳為(U〜15%。若Zn〇之含量為跳以下, 結晶性變得更強,透輝石結晶之析出量變多之傾向… 果,玻璃陶究介電質之介電損失難以變大。 一 160165.doc 201228965Zn 〇 is a component which makes vitrification easy, and its content is preferably 〇 20%, and particularly preferably (U 〜 15%. If the content of Zn 为 is below hop, crystallinity becomes stronger, diopside crystal The tendency for the amount of precipitation to increase is large... As a result, the dielectric loss of the glass ceramic dielectric is difficult to increase. 160165.doc 201228965

CuO係具有抑制由絕緣材料基板中用作配線之Ag引起的 玻璃陶瓷介電質之著色之效果的成分。Cu〇之含量較佳為 〇〜1%,尤佳為0.01~0.2%。若CuO之含量為1%以下,則有 玻璃陶瓷介電質之介電損失變小之傾向。 又’ Ce02、MnO、Sb2〇3、SnO亦與CuO同樣地為具有抑 制由絕緣材料基板中用作配線之Ag引起的玻璃陶瓷介電質 之f色之效果的成分。Ce02、MnO、Sb203、SnO之含量 分別較佳為0〜1°/。’尤佳為0.01〜〇 8%。若Ce〇2、Mn〇、The CuO system has a component for suppressing the coloring effect of the glass ceramic dielectric caused by Ag used as a wiring in the insulating material substrate. The content of Cu 较佳 is preferably 〇 1%, more preferably 0.01 to 0.2%. When the content of CuO is 1% or less, the dielectric loss of the glass ceramic dielectric tends to be small. Further, in the same manner as CuO, Ce02, MnO, Sb2〇3, and SnO are components having an effect of suppressing the f color of the glass ceramic dielectric caused by Ag used as wiring in the insulating material substrate. The content of Ce02, MnO, Sb203, and SnO is preferably 0 to 1 °/, respectively. 'Youjia is 0.01~〇 8%. If Ce〇2, Mn〇,

Sb>2〇3、SnO之含量分別為以下,則有玻璃陶瓷介電質 之介電損失變小之傾向。When the content of Sb>2〇3 and SnO is the following, the dielectric loss of the glass ceramic dielectric material tends to be small.

Ti〇2及Zr〇2係具有提高玻璃陶瓷介電質之耐化學品性 (耐酸性、耐鹼性)之效果之成分。Ti〇2 and Zr〇2 have components which improve the chemical resistance (acid resistance and alkali resistance) of the glass ceramic dielectric.

Ti02之含量較佳為〇〜15%,尤佳為〇 1〜13%。若Ti02之 含1為15❶/。以下’則有玻璃陶瓷介電質之介電損失變小之 傾向。The content of Ti02 is preferably 〇 15%, and particularly preferably 〇 1 to 13%. If Ti02 contains 1 for 15❶/. In the following, there is a tendency that the dielectric loss of the glass ceramic dielectric material becomes small.

ZrCh之含量較佳為〇〜15%,尤佳為〇卜^%。若Zr〇2之 έ里為15%以下,則有玻璃陶瓷介電質之介電損失變小之 傾向。 又,除上述成分以外,亦可於無損玻璃陶瓷介電質之介 電損失等特性之範圍内添加總量至多3〇%之Sr〇、Nb2〇5、 La2〇3、Y2〇3、p2〇5、b2〇3、Bi2〇3等其他成分。 再者,LuO、Na2〇、K:2〇等鹼金屬氧化物有切斷玻璃網 絡,使介電損失上升之傾向。又,有使玻璃陶瓷介電質之 絕緣性下降之傾向。因此,鹼金屬氧化物之總量較佳為 I60165.doc 201228965 5%以下’尤佳為胸下’最佳為實際上不含有鹼金屬氧 化物(具體而言未達0.1%)。 本發明之結晶性玻璃粉末之平均粒徑Dw較佳為l〇 pm# 下,尤佳為5 μηι以下。若平均粒徑〇5<)為1〇 μ〇ι以下,則於 玻璃陶瓷介電質中難以產生氣泡。另—方面,下限雖無特 別限定,但就操作容易性或加工成本之觀點而言,較佳為 0.1 μηι以上。結晶性玻璃粉末之粒徑係藉由雷射繞射型散 射法而測定。 於本發明之結晶性玻璃中,亦可錢善熱膨脹係數、勃 性、介電係數等特性為目的而視需要混合丨種或2種以上之 氧化鋁粉末、堇青石粉末、富鋁紅柱石粉、石英粉末、锆 英石粉末 '氧化鈦粉末、氧化錯粉末等陶党粉末或石英玻 璃粉末等,從而用作玻_㈣料。本發明之玻璃陶究材 料含有結晶性玻璃粉末60〜1〇〇質量%及陶究粉末〇~4〇質量 %,較佳為含有、结晶性玻璃粉末65〜99 5質量%及陶竟粉末 05 35質里/。,進而較佳為含有結晶性玻璃粉末〜質 量%及陶究粉末M0質量%。若陶£粉末之含量超過4〇質 量%’則有玻璃陶究介電質之細緻化變困難之傾向。 闹梵籾末之平均粒徑較佳為0·01〜100 μιη,尤佳為 ο·1〜50陣。若陶究粉末之平均粒徑D50為0.01㈣以上,則 不溶於結晶性料粉末巾,麟^獲得❹彡脹係數、勒 性、介電係數、耐化學品性等特性之改善效果。另-方 面,若陶竟粉末之平均粒徑D50為· μιη以下則不妨礙 煅燒時之結晶性玻壤粉末之流動,於玻璃陶竞介電質中鄭 160165.doc 201228965 以產生氣泡。 再者,藉由使用含有A1成分之陶瓷粉末作為陶瓷粉末, 可使透輝石結晶析出後之殘存玻璃相中之Si、0&之各成分 與陶兗粉末中之A1成分進行反應而變得容易析出長石結 晶。作為含有竭分之陶究粉末,可列舉:氧化銘粉末、。 堇青石粉末、富鋁紅柱石粉末、鈣長石、鈉長石、鋁酸 鋇、鈦酸紹、尖晶石、紹酸辦、紹酸鎮、氮化紹等。 又,藉由混合0.1〜1質量%左右之透輝石或鎖長石之結晶 物作為結晶核’可謀求結晶化度之提高。 藉由將含有本發日月之結晶性玻璃之麵㈣材料於結晶 性玻璃之結晶化開始溫度以上進行熱處理,可獲得析出透 輝石結晶及長石結晶作為主結晶之玻璃陶瓷介電質。 玻璃陶究介電質中之透輝石結晶之含量較佳為35質量% =上,尤佳為40質量%以上。若透輝石結晶之含量為35質 里以上,則有介電損失變小之傾向。再者,透輝石結晶 :含量之上限較佳為80質量%以下,尤佳為7〇質量%以 下。右透輝石結晶之含量為8〇 電質中之氣泡變少。 /下,則玻璃陶竞介 。玻璃陶竞介電質中之長石結晶之含量較佳為2〇〜65質量 :為f 4 %、尤其是3 〇〜5 5 f量%。若長石結晶之含 二 以上’則有玻璃陶兗介電質中之氣泡率變 旦、^果介電損失變小之傾向。若長石結晶之含量為㈣ :“下:則有透輝石結晶相對變多’因此介電損失變 小,或機械強度提高之傾向。 、 I60I65.doc 201228965 於玻璃陶兗介雷曾φ 1電質中,殘存玻璃相較佳為05質量%以 上’尤佳為巧量%以上。若殘存玻璃相為〇 5質量⑽ 上,則於玻璃陶竟介電質中難以產生氣泡。再者,殘存玻 璃相之含量之上限較佳為2Qf量%以下,尤佳㈣質量。4 以:。若殘存玻璃相之含量為2Gf量%以下,則有透輝石 結晶或長石結晶未相對變少,介電損失變小之傾向。 本發明之玻璃陶瓷介電質之氣泡率較佳為3體積%以 下’尤佳為2體積%以下。若氣泡率為3體積%以下,則有 於用作絕緣材料基板之情料難以發生配線之斷線,或介 電損失變小之傾向。 本發明之玻螭陶究介電質之特徵在於,介電係數較低, 且於高頻區域介電損失較低。具體而言,本發日月之玻璃陶 瓷介電質較佳為於25t:T·,介電係數為6〜u、尤其是 6〜10’且(U GHz以上之高頻區域之介電損失—為綱〇4 以下、18X10·4以下、尤其是16X10·4以下。 繼而對本發明之結晶性玻璃粉末及玻璃陶瓷介電質之 製造方法進行說明。 本發明之結晶性玻璃粉末係藉由以成為特定組成之方式 製備原料粉末,於i〜獅U溫度下熔融後,進行成 形、冷卻,之後粉粹而獲得。 本發明之破璃陶瓷介電質例如以如下方式製造。首先, 於如上述般獲得之結晶性玻璃粉末中視需要混合陶瓷粉 末,並添加特定量之接合劑、塑化劑及溶劑而製備漿料。 作為接合劑’例如可使用聚乙烯丁經樹脂、甲基丙烯酸樹 160165.doc 201228965 月曰專’作為塑化劑,例如可伟田咖— 巧s j便用鄰笨二曱酸二丁酯等,作 為溶劑,例如可使用甲苯、曱基乙基酮等。 藉由刮刀成形法使所得㈣成形為生片。將生片乾燥, 切割成特定尺寸。視需要施以機械加工而形成通孔,將成 為導體或電極之低電阻金屬㈣印刷於通孔及生片表面。 繼而,積層複數片之生片,藉由熱壓接合進行一體化。 進而,將積層生片於800〜i〇〇〇〇c、800〜95〇〇c、尤其是 850〜900 C下進行烺燒,藉此自結晶性玻璃粉末析出透輝 石結晶與長石結晶,從而可獲得含有包含玻璃陶瓷之絕緣 層之多層基板、即玻璃陶瓷介電質。 再者’此處對將本發明之玻璃陶瓷介電質應用於多層基 板之例進行了說明,但並非限定於該等,例如亦可應用於 厚膜電路零件或半導體封裝體等電子零件材料。 實施例 以下,基於實施例對本發明進行說明,但本發明並非限 定於該等實施例。 表1〜3表示本發明之實施例(試樣No·1〜15) ’表4表示比 較例(試樣No. 16〜20)。 160165.doc 13 201228965 [表l] 表1The content of ZrCh is preferably 〇~15%, and particularly preferably 〇b^%. If the Zr〇2 is 15% or less, the dielectric loss of the glass ceramic dielectric tends to be small. Further, in addition to the above components, a total amount of up to 3% by weight of Sr〇, Nb2〇5, La2〇3, Y2〇3, p2〇 may be added within a range of characteristics such as loss of dielectric loss of the glass ceramic dielectric. 5, b2〇3, Bi2〇3 and other ingredients. Further, alkali metal oxides such as LuO, Na2〇, and K:2〇 have a tendency to cut the glass network and increase the dielectric loss. Further, there is a tendency to lower the insulating properties of the glass ceramic dielectric. Therefore, the total amount of the alkali metal oxide is preferably I60165.doc 201228965 5% or less 'preferably lower chest' is optimally not actually containing an alkali metal oxide (specifically, less than 0.1%). The average particle diameter Dw of the crystalline glass powder of the present invention is preferably l〇 pm#, more preferably 5 μηι or less. When the average particle diameter 〇5 <) is 1 〇 μ〇 or less, it is difficult to generate bubbles in the glass ceramic dielectric. On the other hand, although the lower limit is not particularly limited, it is preferably 0.1 μηι or more from the viewpoint of ease of handling or processing cost. The particle size of the crystalline glass powder was measured by a laser diffraction type scattering method. In the crystallized glass of the present invention, it is also possible to mix the above-mentioned or two or more kinds of alumina powder, cordierite powder, mullite powder for the purpose of the characteristics such as the thermal expansion coefficient, the stagnation property, and the dielectric coefficient. , quartz powder, zircon powder 'titanium oxide powder, oxidized powder, such as ceramic powder or quartz glass powder, etc., and thus used as glass (four) material. The glass ceramic material of the present invention contains 60 to 1% by mass of the crystalline glass powder and 陶4% by mass of the ceramic powder, preferably containing, crystalline glass powder of 65 to 99% by mass and Taojing powder 05. 35 quality /. Further, it is preferable to contain the crystalline glass powder to the mass% and the ceramic powder M0% by mass. If the content of the powder of the ceramics exceeds 4% by mass, the glass ceramics tend to be more difficult to be refined. The average particle size of the Brahma is preferably from 0. 01 to 100 μιη, and particularly preferably from ο. 1 to 50. If the average particle diameter D50 of the ceramic powder is 0.01 (four) or more, it is insoluble in the crystalline powder towel, and the effect of improving the swelling coefficient, the property, the dielectric constant, and the chemical resistance is obtained. On the other hand, if the average particle diameter D50 of the ceramic powder is less than or equal to μιη, the flow of the crystalline glassy soil powder during calcination is not hindered, and it is produced in the glass pottery medium Zheng 160165.doc 201228965 to generate bubbles. Further, by using the ceramic powder containing the component A1 as the ceramic powder, it is easy to react the components of Si, 0, and the components in the remaining glass phase after the precipitation of the diopside crystals with the A1 component in the ceramic powder. Crystallization of feldspar crystals. As the powder containing the exhaustion, a oxidized powder can be mentioned. Cordierite powder, mullite powder, anorthite, albite, barium aluminate, titanic acid, spinel, Shaoshen, Shaoshen, Yanshun and so on. Further, the crystallinity can be improved by mixing crystals of diopside or lock feldspar of about 0.1 to 1% by mass as a crystal nucleus. By heat-treating the surface (4) of the crystallized glass containing the present invention at a crystallization start temperature or higher of the crystallized glass, a glass ceramic dielectric in which a diopside crystal and a feldspar crystal are precipitated as a main crystal can be obtained. The content of the diopside crystal in the glass ceramic dielectric is preferably 35 mass% = upper, and more preferably 40 mass% or more. If the content of the diopside crystals is 35 or more, the dielectric loss tends to be small. Further, the diopside crystal: the upper limit of the content is preferably 80% by mass or less, and more preferably 7% by mass or less. The content of the right diopside crystal is 8 变, and the bubbles in the electricity are less. / Next, then the glass Tao Jingjie. The content of feldspar crystals in the glass Tao Jing dielectric is preferably 2 〇 to 65 mass: f 4 %, especially 3 〇 5 5 5 %. If the feldspar crystal contains two or more Å, the bubble ratio in the dielectric of the glass ceramic enamel will become smaller, and the dielectric loss will become smaller. If the content of feldspar crystals is (4): "Bottom: there is a relatively large amount of diopside crystals", so the dielectric loss becomes smaller, or the mechanical strength tends to increase. I60I65.doc 201228965 In the glass pottery 兖雷曾 φ 1 In the case where the residual glass phase is preferably 5% by mass or more, it is preferably more than 5% by weight. If the remaining glass phase is 〇5 mass (10), it is difficult to generate bubbles in the glass ceramic dielectric. Further, the residual glass The upper limit of the content of the phase is preferably 2% by weight or less, more preferably (four) by mass. 4: If the content of the remaining glass phase is 2% by weight or less, the diopside crystal or the feldspar crystal is not relatively small, and the dielectric loss is The bubble ratio of the glass-ceramic dielectric material of the present invention is preferably 3% by volume or less, and particularly preferably 2% by volume or less. If the bubble ratio is 3% by volume or less, it is used as a substrate for an insulating material. It is difficult to cause disconnection of the wiring, or the tendency of the dielectric loss to become small. The glassy ceramic dielectric of the present invention is characterized by a low dielectric constant and a low dielectric loss in a high frequency region. In terms of the sun and moon glass ceramics The electric quantity is preferably 25t:T·, the dielectric constant is 6~u, especially 6~10' and (the dielectric loss in the high frequency region above U GHz is less than or equal to 4, less than 18X10·4, In particular, 16X10·4 or less. Next, a method for producing the crystalline glass powder and the glass ceramic dielectric of the present invention will be described. The crystalline glass powder of the present invention is prepared by preparing a raw material powder in a specific composition. After the lion U is melted at a temperature, it is formed, cooled, and then pulverized. The glass ceramic dielectric of the present invention is produced, for example, in the following manner. First, the ceramic powder is mixed as needed in the crystalline glass powder obtained as described above. And adding a specific amount of a bonding agent, a plasticizer, and a solvent to prepare a slurry. As the bonding agent, for example, a polyvinyl butyl resin, a methacrylic acid tree 160165.doc 201228965, a plasticizer can be used, for example, For the use of Weitian coffee, as a solvent, for example, toluene, mercaptoethyl ketone or the like can be used. The obtained (4) is formed into a green sheet by a doctor blade forming method. dry Cut into a specific size. If necessary, machined to form a through hole, and a low-resistance metal (4) which becomes a conductor or an electrode is printed on the surface of the through hole and the green sheet. Then, the green sheets of the plurality of sheets are laminated by thermocompression bonding. Further, the laminated green sheets are calcined at 800 to 100 ° C, 800 to 95 ° C, especially 850 to 900 ° C, whereby the diopside crystals and the feldspar crystals are precipitated from the crystalline glass powder. Thus, a multilayer substrate including a glass ceramic insulating layer, that is, a glass ceramic dielectric can be obtained. Further, an example in which the glass ceramic dielectric of the present invention is applied to a multilayer substrate is described herein, but is not limited thereto. For example, it can also be applied to electronic component materials such as thick film circuit parts or semiconductor packages. EXAMPLES Hereinafter, the present invention will be described based on examples, but the present invention is not limited to the examples. Tables 1 to 3 show examples of the present invention (sample Nos. 1 to 15). Table 4 shows comparative examples (sample Nos. 16 to 20). 160165.doc 13 201228965 [Table l] Table 1

No.l No.2 No.3 No.4 No.5 Si02 54.3 47.0 55.5 45.0 42.1 结晶*1生 CaO 11.0 13.4 8.7 9.6 12.3 玻璃粉 MgO 13.3 13.1 12.4 14.5 12.2 AI2O3 2.4 4.4 1.1 3.8 2.1 末(質量 BaO 19.0 22.0 22.3 27.0 31.2 %) CuO 0.1 0.1 0.1 Si02/BaO 2.9 2.1 2.5 1.7 1.3 陶瓷粉末 氧化鋁 氧化鋁 富紹紅柱石 氧化鋁 堇青石 玻璃粉末 (質量比) :陶瓷粉末 80:20 75:5 75:5 70:0 65:5 析出結晶 ※()内為含量(質量 透輝石 (55) Ba長石 透輝石 (63) Ba長石 透輝石(65) Ba長石(31) 透輝石 (59) Ba長石 透輝石 (53) Ba長石 (42) (34) (36) (43) 殘存玻璃相之比例 (質量%) 3 3 4 5 4 煅燒溫度(°c) 870 950 920 900 880 氣泡率(體積%) <1 1 1 <1 2 介電係數 8 8 9 8 8 介電損失(Χίο·4) 14 13 13 12 15 160165.doc •14- 201228965 [表2] 表2 No.6 No.7 No.8 No.9 No. 10 結晶性 玻璃粉 末(質 量%) Si02 CaO MgO Al2〇3 BaO Ti02 Zr02 Ce〇2 CuO 43.0 8.7 13.0 4.2 31.0 0.1 46.0 10.3 12.8 3.3 27.5 0.1 44.7 9.2 11.5 4.2 26.8 3.5 0.1 44.2 8.9 9.5 3.8 30.7 2.8 0.1 48.6 8.2 14.3 2.2 25.3 1.2 0.2 SiCVBaO 1.4 1.7 1.7 1.4 1.9 陶瓷粉末1 陶瓷粉末2 氧化鋁 氧化鈦 氧化鋁 氧化锆 氧化鋁 氧化鋁 氮化鋁 玻璃粉末:陶瓷粉 末1 :陶瓷粉末 2(質量比) 70:9:1 70:28:2 75:25:0 68:32:0 75:25:0 析出結晶 ※()内為含量(質量 %) 透輝石 (55) Ba長石 (40) 透輝石 (62) Ba長石 (33) 透輝石 (60) Ba長石 (37) 透輝石 (59) Ba長石 (37) 透輝石 (45) Ba長石 (52) 殘存玻璃相之比例 (質量%) 5 5 3 4 3 煅燒溫度(°C) 890 910 900 920 910 氣泡率(體積%) <1 <1 <1 <1 <1 介電係數 介電損失(xHT4) 8 11 8 12 9 14 8 13 8 11 I60165.doc •15- 201228965 [表3]No.1 No.2 No.3 No.4 No.5 Si02 54.3 47.0 55.5 45.0 42.1 Crystallization*1 Raw CaO 11.0 13.4 8.7 9.6 12.3 Glass powder MgO 13.3 13.1 12.4 14.5 12.2 12.2 AI2O3 2.4 4.4 1.1 3.8 2.1 End (mass BaO 19.0 22.0 22.3 27.0 31.2 %) CuO 0.1 0.1 0.1 Si02/BaO 2.9 2.1 2.5 1.7 1.3 Ceramic powder Alumina oxide Fused andalusite alumina cordierite glass powder (mass ratio): Ceramic powder 80:20 75:5 75:5 70:0 65:5 Precipitated crystal ※() is the content (mass diopside (55) Ba feldspar diopside (63) Ba feldspar diopside (65) Ba feldspar (31) diopside (59) Ba feldspar diopside ( 53) Ba feldspar (42) (34) (36) (43) Ratio of residual glass phase (% by mass) 3 3 4 5 4 Calcination temperature (°c) 870 950 920 900 880 Bubble ratio (% by volume) <1 1 1 <1 2 Dielectric coefficient 8 8 9 8 8 Dielectric loss (Χίο·4) 14 13 13 12 15 160165.doc •14- 201228965 [Table 2] Table 2 No.6 No.7 No.8 No .9 No. 10 Crystalline glass powder (% by mass) Si02 CaO MgO Al2〇3 BaO Ti02 Zr02 Ce〇2 CuO 43.0 8.7 13.0 4.2 31.0 0.1 46.0 10.3 12.8 3.3 27.5 0.1 44.7 9.2 11.5 4.2 2 6.8 3.5 0.1 44.2 8.9 9.5 3.8 30.7 2.8 0.1 48.6 8.2 14.3 2.2 25.3 1.2 0.2 SiCVBaO 1.4 1.7 1.7 1.4 1.9 Ceramic powder 1 Ceramic powder 2 Alumina oxide TiO2 Alumina zirconia Alumina oxide Alumina nitride Glass powder: Ceramic powder 1 : Ceramic powder 2 (mass ratio) 70:9:1 70:28:2 75:25:0 68:32:0 75:25:0 Precipitated crystals ※() content (% by mass) Diopside (55) Ba feldspar (40) Diopside (62) Ba feldspar (33) Diopside (60) Ba feldspar (37) Diopside (59) Ba feldspar (37) Diopside (45) Ba feldspar (52) Residual glass phase ratio (% by mass) 5 5 3 4 3 Calcination temperature (°C) 890 910 900 920 910 Bubble ratio (% by volume) <1 <1 <1 <1 <1 Dielectric coefficient dielectric loss (xHT4) 8 11 8 12 9 14 8 13 8 11 I60165.doc •15- 201228965 [Table 3]

No. 11 No. 12 No. 13 No. 14 No. 15 結晶性玻 璃粉末(質 量%) Si02 CaO MgO Al2〇3 BaO Ti02 Zr02 Ce〇2 CuO 44.2 7.4 13.6 33.2 1.5 0.1 48.6 8.7 17.8 2.9 22.0 45.3 8.4 13.8 7.8 21.8 2.8 0.1 40.5 11.0 17.8 4.0 26.6 0.1 54.1 8.9 15.0 22.0 Si〇2/BaO 1.3 2.2 2.1 1.5 2.5 陶瓷粉末1 陶瓷粉末2 氧化鋁 氧化鋁 氧化鋁 石英 氧化鋁 玻璃粉末.陶究粉末 1 :陶瓷粉末2(質量 比) 65:5 68:32 100:0 65:30:5 75:25 析出結晶 ※()内為含量(質量%) 透輝石 (45) Ba長石 h (50) 透輝石 (54) Ba長石 (42) 透輝石(53) Ba長石(44) 透輝石(50) Ba長石(46) 透輝石 (43) Ba長石 (53) 殘存玻璃相之比例(質 量%) 5 4 3 4 4 煅燒溫度(°C) 920 920 880 930 900 氣泡率(體積%) <1 <1 2 <1 <1 介電係數 介電損失(χιό4) 9 13 8 15 7 14 7 13 8 12 160165.doc -16- 201228965 [表4] 表4No. 11 No. 12 No. 14 No. 14 No. 14 No. 14 No. 14 No. 14 No. 14 No. 14 No. 14 No. 14 No. 14 No. 15 No. 15 No. 15 No. 15 No. 15 No. 15 No. 15 No. 14 No. 14 No. 14 No. 14 No. 14 No. 15 No. 15 No. 15 No. 15 No. 15 No. 15 No. 15 No. 15 No. 14 No. 15 No. 7.8 21.8 2.8 0.1 40.5 11.0 17.8 4.0 26.6 0.1 54.1 8.9 15.0 22.0 Si〇2/BaO 1.3 2.2 2.1 1.5 2.5 Ceramic powder 1 Ceramic powder 2 Alumina oxide alumina Alumina quartz glass powder. Ceramic powder 1: Ceramic powder 2 (mass ratio) 65:5 68:32 100:0 65:30:5 75:25 Precipitated crystals ※() content (% by mass) Diopside (45) Ba feldspar h (50) Diopside (54) Ba Feldspar (42) Diopside (53) Ba feldspar (44) Diopside (50) Ba feldspar (46) Diopside (43) Ba feldspar (53) Residual glass phase ratio (% by mass) 5 4 3 4 4 Calcination temperature (°C) 920 920 880 930 900 Bubble rate (% by volume) <1 <1 2 <1 <1 Dielectric coefficient dielectric loss (χιό4) 9 13 8 15 7 14 7 13 8 12 160165.doc -16- 201228965 [Table 4] Table 4

No. 16 Νο·17* No. 18 No. 19 No.20 Si02 46.3 33 58.3 43.3 54.1 CaO 22.5 7.3 9.4 5.2 21.4 結晶性玻璃 MgO 21.3 10.8 10.3 6.3 9.3 AI2O3 5.4 4.7 3.6 13.2 粉末(質量°/〇) BaO 4.5 44 18.4 32.0 15.2 CuO 0.2 Si02/BaO 10.3 0.8 3.2 1.4 3.6 陶瓷粉末 氧化鋁 堇青石 氧化鋁 鍅英石 玻璃粉末:陶瓷粉末 70 : 30 / 65 : 35 60 : 40 75 : 25 (質重比) / 析出結晶 透輝石 ί Ba長石 透輝石 ※0内為含量(質量%) (98) / (92) (88) 殘存玻璃相之比例(質量 2 / 100 8 12 %) / 煅燒溫度(°c) 920 / 900 880 850 氣泡率(體積%) 5 / 1 10 7 介電係數 8 / 8 8 8 介電損失(X10·4) 13 / 40 25 25 ※No.l7未進行玻璃化。 各試樣係以如下方式製備。首先,以成為表所示組成之 方式製備原料粉末,於1 550°C下熔融後,進行成形、冷 卻,藉此製作結晶性玻璃。將所得結晶性玻璃進行粉碎, 製作平均粒徑D5Q為2 μιη之結晶性玻璃粉末。 對各結晶性玻璃粉末以特定比例混合表所示陶瓷粉末, 並於表所示煅燒溫度下保持20分鐘而使結晶析出,從而獲 得玻璃陶瓷介電質。對於玻璃陶瓷介電質,鑑定析出結 晶,對析出結晶及玻璃相之比例、氣泡率、25°C下之介電 係數及介電損失進行測定。將結果示於表1〜4。 玻璃陶瓷介電質中之析出結晶係藉由粉末X射線繞射裝 置(Rigaku股份有限公司,RINT2100)而鑑定。析出結晶及 160165.doc -17- 201228965 殘存玻璃相之比例係藉由多重峰值分離法而自χ射線繞射 花樣算出。 氣泡率係藉由對玻璃陶瓷介電質截面之SEM(Scanning Electron Microscope,掃描式電子顯微鏡)圖像進行圖像分 析而求出。於圖像分析中使用三谷商事股份有限公司之 WINROOF。以下表示圖像分析之步驟。 於SEM圖像中,氣泡部分之輪廓由於邊緣效應而較玻璃 基質部分更清楚地映出。因此,使用WINR〇〇F對SEM圖 像進行二值化處理,以顏色區分氣泡部分之輪廓與玻璃基 質部分。進而,亦以與氣泡部分之輪廓相同之顏色塗滿氣 泡内部,藉此對氣泡部分與玻璃基質部分進行顏色區分。 其後,依照下式算出氣泡率。再者,通常已知玻璃陶瓷介 電質截面中之氣泡之面積率與玻璃陶瓷介電質中之氣泡之 體積率相等(例如參照清宮義博著,「複合材料中之粒子之 體積率與面積率之關係」,明星大學理工學部研究紀要42 號,2006年發行,ρ·21〜24)。 氣泡率(體積%)=(氣泡部分之總面積/處理圖像之總面 積)X100 介電係數與介電損失係藉由Hakki-coleman法(測定頻率 10 GHz)而求出。 根據表1〜3可明確,於實施例之Ν〇·ΐ〜15中,由於析出透 輝石結晶與鋇長石結晶作為主結晶,殘存玻璃相較少為 3〜5質量%,因此氣泡率較低為2體積%以下。又,於1〇 GHz之頻率下介電係數較低為7〜9,介電損失較低為 160165.doc 18 201228965 11 〜15χΐ〇-4 0 一方面’於比較例之N。·16、辦,由於僅析出透輝 石結晶,故氣泡率增大為5體積%以上。於N〇i8〜2〇中, 殘存玻璃相增多為8質量^上,騎電損失增大為25Χ1〇·4 以上。再者,於Νο·17中’因Si〇2/Ba〇較小為〇 8, 行玻璃化。 I.產業上之可利用性] 人本發明之結晶性玻璃因内部之氣泡較少,且於高頻帶中 介電損失較小,故適宜作為小型或薄型之多層基板、微波 用電路零件、封裝體等中所使用之玻璃陶究介電質用材 料0 以上詳細且參照特定之實施態樣對本發明進行了說明, 但業者明確’可不脫離本發明之精神與範g而實施各種變 更或修正。 本申請案係基於2010年11月17日提出申請之日本專利申 请(日本專利特願2010-256463)、2010年12月24日提出申請 之曰本專利申請(日本專利特願2〇1〇_287〇〇4)及2〇11年5月2 曰提出申請之曰本專利申請(曰本專利特願2〇11_1〇2732) 者,其内容被引入此處作為參照。 160165.doc -19·No. 16 Νο·17* No. 18 No. 19 No.20 Si02 46.3 33 58.3 43.3 54.1 CaO 22.5 7.3 9.4 5.2 21.4 Crystalline glass MgO 21.3 10.8 10.3 6.3 9.3 AI2O3 5.4 4.7 3.6 13.2 Powder (mass °/〇) BaO 4.5 44 18.4 32.0 15.2 CuO 0.2 Si02/BaO 10.3 0.8 3.2 1.4 3.6 Ceramic powder Alumina cordierite Alumina bismuth glass powder: ceramic powder 70 : 30 / 65 : 35 60 : 40 75 : 25 (mass weight ratio) / Crystalline diopside ί Ba feldspar diopside *0 content (% by mass) (98) / (92) (88) Residual glass phase ratio (mass 2 / 100 8 12 %) / calcination temperature (°c) 920 / 900 880 850 Bubble rate (% by volume) 5 / 1 10 7 Dielectric coefficient 8 / 8 8 8 Dielectric loss (X10·4) 13 / 40 25 25 * No.l7 is not vitrified. Each sample was prepared in the following manner. First, a raw material powder was prepared in the form shown in the table, and after melting at 1,550 ° C, it was molded and cooled to prepare a crystallized glass. The obtained crystalline glass was pulverized to prepare a crystalline glass powder having an average particle diameter D5Q of 2 μm. The ceramic powder shown in the above table was mixed in a specific ratio for each of the crystalline glass powders, and the crystals were precipitated at the calcination temperature shown in the table for 20 minutes to obtain a glass ceramic dielectric. For the glass ceramic dielectric, precipitation crystals were identified, and the ratio of the precipitated crystal and the glass phase, the bubble ratio, the dielectric constant at 25 ° C, and the dielectric loss were measured. The results are shown in Tables 1 to 4. The precipitated crystals in the glass ceramic dielectric were identified by a powder X-ray diffraction apparatus (Rigaku Co., Ltd., RINT 2100). Precipitating crystals and 160165.doc -17- 201228965 The ratio of residual glass phase is calculated from the enthalpy ray diffraction pattern by multiple peak separation method. The bubble ratio was determined by image analysis of a SEM (Scanning Electron Microscope) image of a glass ceramic dielectric cross section. WINROOF of Mitani Corporation was used for image analysis. The steps of image analysis are shown below. In the SEM image, the contour of the bubble portion is more clearly reflected by the edge effect than the portion of the glass substrate. Therefore, the SEM image is binarized using WINR〇〇F to distinguish the outline of the bubble portion from the glass base portion by color. Further, the inside of the bubble is also coated in the same color as the outline of the bubble portion, whereby the bubble portion and the glass substrate portion are color-coded. Thereafter, the bubble ratio was calculated according to the following formula. Furthermore, it is generally known that the area ratio of the bubbles in the dielectric cross section of the glass ceramic is equal to the volume fraction of the bubbles in the glass ceramic dielectric (for example, refer to Qing Gongyibo, "The volume fraction and area ratio of the particles in the composite material. The relationship, Star University University of Science and Technology Research No. 42, issued in 2006, ρ·21~24). Bubble ratio (% by volume) = (total area of the bubble portion / total area of the processed image) X100 The dielectric constant and the dielectric loss were determined by the Hakki-coleman method (measurement frequency 10 GHz). It is clear from Tables 1 to 3 that in the examples of Ν〇·ΐ~15, since the diopside crystal and the celsian crystal are precipitated as the main crystal, the residual glass phase is less than 3 to 5 mass%, so the bubble ratio is low. It is 2% by volume or less. Further, the dielectric constant is 7 to 9 at a frequency of 1 GHz, and the dielectric loss is 160165.doc 18 201228965 11 〜15χΐ〇-4 0 on the one hand in the comparative example N. -16. Since only the diopside crystals are precipitated, the bubble ratio is increased to 5% by volume or more. In N〇i8~2〇, the residual glass phase is increased to 8 masses, and the riding loss is increased to 25Χ1〇·4 or more. Furthermore, in Νο·17, 'Si 2 is less than 〇8, and it is vitrified. I. Industrial Applicability] The crystallized glass of the present invention is suitable as a small or thin multilayer substrate, a microwave circuit component, and a package because there are few internal bubbles and a small dielectric loss in a high frequency band. The present invention has been described with reference to the specific embodiments of the present invention, and it is to be understood that various changes and modifications may be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on November 17, 2010 (Japanese Patent Application No. 2010-256463), and a patent application filed on December 24, 2010 (Japanese Patent Special Purpose 2〇1〇_ 287〇〇4) and May 2, 2011 曰 申请 曰 曰 专利 专利 专利 专利 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 160165.doc -19·

Claims (1)

201228965 七、申請專利範圍: 1. 一種結晶性玻璃粉末,其特徵在於藉由熱處理析出透輝 石結晶與長石結晶作為主結晶。 2. 如請求項1之結晶性玻璃粉末,其中長石結晶為鋇長石 結晶。 • 3.如請求項1或2之結晶性玻璃粉末,其中以質量%計含有 Si〇2 20〜65%、CaO 3〜25%、MgO 7〜30¼、Al2〇3 0〜20%、Ba0 5〜4〇%作為玻璃組成,且以質量比計滿足 1客Si02/Ba0$ 4之關係。 4' 一種玻璃陶瓷材料,其特徵在於含有如請求項1至3中任 一項之結晶性玻璃粉末60〜1〇〇質量%及陶瓷粉末〇〜4〇質 量%。 5. 如請求項4之玻璃陶瓷材料,其中陶瓷粉末含有Al成分。 6. —種玻璃陶竞介電質’其係將如請求項4或5之玻璃陶竞 材料進行煅燒而成。 7. 如請求項6之玻璃陶竞介電質,其中含有長石結晶2〇〜65 質量%。 心如請求項6或7之玻璃㈣介電質’其中氣泡率為3體積% 以下。 9. 10. 如請求項6至8中任一項之玻璃陶究介電質 數ε為6〜11,且〇.1 GHz以上之頻率下之介 2〇xl〇_4以下。 如請求項6至9中任一項之玻螭陶究介電質 波用電路零件材料。 ’其中介電係 電損失tan5為’其係用於微 160165.doc 201228965 四、指定代表圖: (一) 本案指定代表圖為:(無) (二) 本代表圖之元件符號簡單說明: 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: (無) 160165.doc201228965 VII. Patent application scope: 1. A crystalline glass powder characterized in that diopside crystals and feldspar crystals are precipitated as main crystals by heat treatment. 2. The crystalline glass powder of claim 1, wherein the feldspar crystal is celsian crystal. 3. The crystalline glass powder according to claim 1 or 2, which contains, by mass%, Si〇2 20 to 65%, CaO 3 to 25%, MgO 7 to 301⁄4, Al2〇3 0 to 20%, Ba0 5 ~4〇% is used as the glass composition, and the relationship of 1 guest Si02/Ba0$4 is satisfied in terms of mass ratio. A glass-ceramic material characterized by containing 60 to 1% by mass of the crystalline glass powder according to any one of claims 1 to 3 and a ceramic powder of 〇4% by mass. 5. The glass-ceramic material of claim 4, wherein the ceramic powder contains an Al component. 6. A type of glass pottery dielectric ‘the system will be calcined as in the glass or ceramic material of claim 4 or 5. 7. The glass Tao Tao Jing dielectric of claim 6 contains feldspar crystals 2〇~65 mass%. The heart is as in the glass (iv) dielectric of claim 6 or 7 wherein the bubble ratio is 3% by volume or less. 9. 10. The glass ceramic dielectric ε of any one of claims 6 to 8 is 6 to 11, and is less than or equal to 2 〇 xl 〇 _4 at frequencies above 1 GHz. The material of the circuit material for the glass ray ceramic dielectric wave according to any one of claims 6 to 9. 'The dielectric charge loss tan5 is 'the system is used for micro 160165.doc 201228965 IV. Designated representative map: (1) The representative representative of the case is: (none) (2) The symbol of the representative figure is simple: If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: (none) 160165.doc
TW100142134A 2010-11-17 2011-11-17 Crystalline glass powder TWI597249B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010256463 2010-11-17
JP2010287004 2010-12-24
JP2011102732A JP5835640B2 (en) 2010-11-17 2011-05-02 Crystalline glass powder

Publications (2)

Publication Number Publication Date
TW201228965A true TW201228965A (en) 2012-07-16
TWI597249B TWI597249B (en) 2017-09-01

Family

ID=46083910

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100142134A TWI597249B (en) 2010-11-17 2011-11-17 Crystalline glass powder

Country Status (5)

Country Link
JP (1) JP5835640B2 (en)
KR (1) KR101974907B1 (en)
CN (1) CN103221355B (en)
TW (1) TWI597249B (en)
WO (1) WO2012066976A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104464890A (en) * 2014-12-26 2015-03-25 常熟联茂电子科技有限公司 Thick film circuit resistor paste
CN104464884A (en) * 2014-12-26 2015-03-25 常熟联茂电子科技有限公司 Organic power resistance paste
JP6293704B2 (en) * 2015-05-28 2018-03-14 スナップトラック・インコーポレーテッド Glass ceramic sintered body and wiring board
CN106242304A (en) * 2016-08-31 2016-12-21 安徽斯迈尔电子科技有限公司 A kind of preparation method of the glass dust for thick-film resistor
CN108030228A (en) * 2017-11-29 2018-05-15 浙江大学 A kind of tartar-removing toothbrush silk and preparation method thereof
CN107898126A (en) * 2017-11-29 2018-04-13 浙江大学 A kind of compound tartar-removing toothbrush silk and preparation method thereof
JP7348587B2 (en) * 2018-03-07 2023-09-21 日本電気硝子株式会社 glass ceramic dielectric
WO2019172042A1 (en) * 2018-03-07 2019-09-12 日本電気硝子株式会社 Glass ceramic dielectric body
CN108439804A (en) * 2018-04-19 2018-08-24 苏州凌科特新材料有限公司 A kind of glass ceramic composite material and preparation method thereof
JP2022052429A (en) * 2020-09-23 2022-04-04 日本電気硝子株式会社 Glass ceramic dielectric material, sintered body and high frequency circuit member
CN112537947B (en) * 2020-12-09 2022-03-29 江苏科技大学 Low-loss low-dielectric-constant microwave dielectric ceramic material and preparation method thereof
CN115724589A (en) * 2022-11-29 2023-03-03 西安创联电气科技(集团)有限责任公司 Sealing glass powder for radio frequency connector and preparation and sealing method thereof
CN115925262A (en) * 2022-12-30 2023-04-07 中国电子科技集团公司第十二研究所 Glass ceramic, preparation method thereof and electrostatic chuck

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231334A (en) * 1990-12-28 1992-08-20 Hoya Corp Production of machinable ceramics
JP3721570B2 (en) 1996-10-22 2005-11-30 日本電気硝子株式会社 Glass ceramic dielectric material
CN1153747C (en) * 1998-09-02 2004-06-16 东北大学钎具开发研究中心 Process for preparing microcrystalline glass insulator and its products
GB2365007B (en) * 2000-07-21 2002-06-26 Murata Manufacturing Co Insulative ceramic compact
JP4590866B2 (en) * 2001-11-05 2010-12-01 旭硝子株式会社 Glass ceramic composition
JP5057644B2 (en) * 2004-03-22 2012-10-24 京セラ株式会社 Glass ceramic composition and method for producing glass ceramic sintered body

Also Published As

Publication number Publication date
JP5835640B2 (en) 2015-12-24
KR20130135862A (en) 2013-12-11
KR101974907B1 (en) 2019-05-03
JP2012144417A (en) 2012-08-02
CN103221355A (en) 2013-07-24
WO2012066976A1 (en) 2012-05-24
TWI597249B (en) 2017-09-01
CN103221355B (en) 2016-03-23

Similar Documents

Publication Publication Date Title
TW201228965A (en) Crystalline glass powder
JP3387531B2 (en) Glass-based and glass-ceramic based composites
WO2009057878A1 (en) Low fired dielectric ceramic composition with high strength and high q-value
JPH11335134A (en) Production of glass composition and dielectric composition, and formation of green tape
JP7348587B2 (en) glass ceramic dielectric
JP3943341B2 (en) Glass ceramic composition
JP2010052953A (en) Glass ceramic composition for wiring board and glass ceramic sintered body
JPH0643258B2 (en) Dielectric material for circuit boards
JP4880022B2 (en) Low dielectric constant ceramic dielectric composition and low dielectric constant ceramic dielectric for low temperature firing
JP6048665B2 (en) Glass ceramic materials and glass ceramics
Dai et al. Sintering, crystallization and dielectric properties of CaO-B2O3-SiO2 system glass ceramics
JP3466561B2 (en) Low temperature fired porcelain composition, low temperature fired porcelain, and wiring board using the same
JP2012250903A (en) Glass-ceramic composite material
JP2011213570A (en) Crystalline glass
JP2002137960A (en) Low-temperature firing ceramics composition, low- temperature fired ceramics and wiring board using it
Synkiewicz-Musialska LTCC glass-ceramics based on diopside/cordierite/Al2O3 for ultra-high frequency applications
JPS62252340A (en) Sintered glass and sintered glass ceramic
WO2019172042A1 (en) Glass ceramic dielectric body
JP2003073162A (en) Glass ceramic and wiring board
KR950002232B1 (en) Glass-ceramics for low firing temperature substrate
JP2012051767A (en) Crystalline glass powder
JP2003137657A (en) Glass ceramics and method of manufacturing the same and wiring board
JP4047050B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board using the same
CN117865663A (en) Low dielectric low-loss LTCC material, preparation method thereof and green ceramic tape
JPH07242439A (en) Glass-ceramics substrate burnt at low temperature and production thereof