WO2019172042A1 - Glass ceramic dielectric body - Google Patents

Glass ceramic dielectric body Download PDF

Info

Publication number
WO2019172042A1
WO2019172042A1 PCT/JP2019/007565 JP2019007565W WO2019172042A1 WO 2019172042 A1 WO2019172042 A1 WO 2019172042A1 JP 2019007565 W JP2019007565 W JP 2019007565W WO 2019172042 A1 WO2019172042 A1 WO 2019172042A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass ceramic
ceramic dielectric
powder
layer
Prior art date
Application number
PCT/JP2019/007565
Other languages
French (fr)
Japanese (ja)
Inventor
北村 嘉朗
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019015504A external-priority patent/JP7348587B2/en
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201980016831.9A priority Critical patent/CN111801308A/en
Publication of WO2019172042A1 publication Critical patent/WO2019172042A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics

Definitions

  • the present invention relates to a glass ceramic dielectric used for a circuit board or the like.
  • glass ceramic dielectrics are known as insulating materials for ceramic multilayer substrates, thick film circuit components, semiconductor packages and the like on which ICs, LSIs and the like are mounted at high density (see, for example, Patent Document 1).
  • a metal wiring having a predetermined pattern is formed on the surface of a glass ceramic dielectric and used as a circuit board.
  • the metal wiring is formed by a plating process, but the glass component contained in the glass ceramic dielectric is altered by the plating process, which may adversely affect characteristics such as dielectric constant and dielectric loss.
  • an object of the present invention is to provide a glass ceramic dielectric capable of plating the surface without causing alteration of the glass component.
  • the glass ceramic dielectric of the present invention comprises a glass ceramic layer and a barrier layer formed on the main surface thereof. If it does in this way, when forming metal wiring, such as gold
  • the glass ceramic dielectric of the present invention preferably has barrier layers formed on both main surfaces of the glass ceramic layer. If it does in this way, generation
  • the barrier layer is preferably made of an inorganic material. If it does in this way, when the surface of a glass ceramic dielectric material is plated, it will become easy to suppress that the glass component contained in a glass ceramic layer changes in quality.
  • the barrier layer is preferably made of amorphous glass. If it does in this way, when plating the surface of a glass ceramic dielectric material, it will become still easier to suppress that the glass component contained in a glass ceramic layer changes in quality.
  • the amorphous glass contains, by mass%, SiO 2 40% or more and B 2 O 3 15% or less as a glass composition. In this way, since a barrier layer having excellent acid resistance can be obtained, the function as a barrier layer can be enhanced.
  • the amorphous glass does not substantially contain an alkali metal component.
  • substantially no alkali metal component means that the alkali metal component is not intentionally contained as a raw material, and does not exclude inevitable contamination. Objectively, it means that the content of the alkali metal component is less than 0.1% by mass.
  • the glass-ceramic layer is preferably made of a powdered sintered body containing crystalline glass powder.
  • crystalline glass powder means a glass powder that precipitates crystals by heat treatment.
  • heat treatment means that crystallization sufficiently proceeds at a temperature higher than the crystallization start temperature, for example, a heat treatment at 800 to 1000 ° C. for 20 minutes or longer.
  • the crystalline glass powder has a glass composition in mass% of SiO 2 20 to 65%, CaO 3 to 25%, MgO 7 to 30%, Al 2 O 3 0 to 20%, It is preferable that BaO is contained in an amount of 5 to 40% and the relationship of 1 ⁇ SiO 2 / BaO ⁇ 4 is satisfied by mass ratio.
  • the crystalline glass powder having the composition has a property that feldspar crystals are precipitated together with diopside crystals (2SiO 2 ⁇ CaO ⁇ MgO) as main crystals by heat treatment. By precipitating both crystals, the degree of crystallinity due to firing is increased, and the residual glass phase that causes an increase in dielectric constant and dielectric loss can be reduced.
  • the feldspar crystal has a small volume shrinkage rate at the time of crystal precipitation, the generation of pores accompanying the crystal precipitation is suppressed. As a result, a glass ceramic dielectric having a low dielectric constant and dielectric loss can be obtained.
  • the glass ceramic layer is preferably composed of a sintered powder of a powder containing crystalline glass powder 30 to 100% by mass and filler powder 0 to 70% by mass.
  • the filler powder preferably contains an Al component. If it does in this way, each component of Si and Ba in the residual glass phase after diopside crystal precipitation will react with the Al component in filler powder, and a feldspar crystal will precipitate easily.
  • the glass ceramic layer preferably contains diopside crystals and feldspar crystals. For the above reasons, when both crystals are contained, a glass ceramic layer having a high degree of crystallinity and few pores can be easily obtained, and a glass ceramic dielectric having a low dielectric constant and dielectric loss can be obtained.
  • the glass ceramic dielectric of the present invention is suitable for circuit boards.
  • the circuit board of the present invention is characterized in that a metal wiring is formed on the surface of the barrier layer in the glass ceramic dielectric.
  • a method for producing a glass-ceramic dielectric of the present invention is a method for producing the above-mentioned glass-ceramic dielectric, which contains a green sheet for a glass-ceramic layer containing a crystalline glass powder and an amorphous glass powder.
  • the “non-crystalline glass powder” refers to a glass powder that does not substantially precipitate crystals by heat treatment. “Substantially no precipitation of crystals” means that the crystallinity of the glass after heat treatment is approximately 1% or less, including inevitable precipitation of devitrified substances.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the glass ceramic dielectric of the present invention.
  • the glass ceramic dielectric 1 includes a glass ceramic layer 2 and a barrier layer 3 formed on each of the main surface 2a and the main surface 2b of the glass ceramic layer 2. By plating the surface of the barrier layer 3 to form a metal wiring (not shown), it can be used as a circuit board. If necessary, a thermal via or the like may be formed inside the glass ceramic layer 2.
  • the glass ceramic dielectric 1 is a plate-like member whose planar shape is rectangular or circular.
  • the barrier layers 3 are not necessarily formed on both main surfaces of the glass ceramic layer 2, and the barrier layers 3 may be formed only on one main surface of the glass ceramic layer 2.
  • Glass ceramic layer consists of a sintered compact of the powder containing crystalline glass powder, for example.
  • the glass composition contains, by mass%, SiO 2 20 to 65%, CaO 3 to 25%, MgO 7 to 30%, Al 2 O 3 0 to 20%, BaO 5 to 40%. and a mass ratio include those satisfying the relation of 1 ⁇ SiO 2 / BaO ⁇ 4 .
  • the glass-ceramic dielectric obtained by firing the crystalline glass powder having the above composition has the property that a feldspar crystal is precipitated together with the diopside crystal as a main crystal by heat treatment, and the dielectric constant and dielectric loss. Low glass ceramic dielectric.
  • the dielectric loss tan ⁇ is 20 ⁇ 10 ⁇ 4 or less, 18 ⁇ 10 ⁇ 4 or less, particularly 16 or less in a high frequency region where the dielectric constant is 6 to 11, particularly 6 to 10, and 0.1 GHz or more. It becomes possible to achieve ⁇ 10 ⁇ 4 or less.
  • the feldspar crystals are preferably barium feldspar crystals (BaAl 2 Si 2 O 8 ). By precipitating barium feldspar crystals, the residual glass phase after heat treatment can be effectively reduced, and a glass-ceramic dielectric having a low porosity and dielectric loss can be easily obtained.
  • calcium feldspar crystals (CaAl 2 Si 2 O 8 ) or the like may be precipitated within a range where dielectric loss and porosity do not increase.
  • SiO 2 is a glass network former and is a constituent of diopside crystals and feldspar crystals.
  • the content of SiO 2 is preferably 20 to 65%, 30 to 65%, particularly 40 to 55%. When the content of SiO 2 is too small, vitrification is difficult, and when it is too large, low-temperature firing (for example, 1000 ° C. or less) tends to be difficult.
  • CaO is a constituent component of diopside crystal, and its content is preferably 3 to 25%, 3 to 20%, and particularly preferably 7 to 15%. If the content of CaO is too small, diopside crystals are difficult to precipitate, and as a result, the dielectric loss of the glass ceramic dielectric tends to increase. On the other hand, when there is too much content of CaO, the fluidity
  • MgO is also a constituent component of the diopside crystal, and its content is preferably 7 to 30%, 8 to 30%, 11 to 30%, particularly 12 to 20%. When the content of MgO is too small, crystals are difficult to precipitate, and when it is too large, vitrification is difficult.
  • Al 2 O 3 is a component for stabilizing the glass, and its content is preferably 0 to 20%, 0.5 to 20%, particularly 1 to 10%.
  • content of Al 2 O 3 is too large, diopside crystal becomes difficult precipitated, as a result there is a tendency that the dielectric loss of the glass ceramic dielectric increases.
  • BaO is a constituent of barium feldspar crystals, and its content is preferably 5 to 40%, particularly 10 to 35%. When there is too little content of BaO, it will become difficult to precipitate a barium feldspar crystal. On the other hand, if the content of BaO is too large, the amount of diopside crystals deposited tends to decrease, and as a result, the dielectric loss of the glass ceramic dielectric tends to increase.
  • feldspar crystals can be efficiently precipitated from the remaining glass phase after firing. Specifically, it is preferable that the relationship 1 ⁇ SiO 2 / BaO ⁇ 4, particularly 1.05 ⁇ SiO 2 /BaO ⁇ 3.95 is satisfied. When the ratio of SiO 2 and BaO is out of the range, feldspar crystals are difficult to precipitate or vitrification is difficult.
  • the following components can be added to the crystalline glass powder.
  • ZnO is a component that facilitates vitrification, and its content is preferably 0 to 20%, particularly preferably 0.1 to 15%.
  • crystallinity will become weak and there exists a tendency for the precipitation amount of a diopside crystal to decrease. As a result, the dielectric loss of the glass ceramic dielectric tends to increase.
  • TiO 2 and ZrO 2 are components that improve the chemical resistance (acid resistance and alkali resistance) of the glass ceramic dielectric.
  • the content of TiO 2 is preferably 0 to 15%, particularly preferably 0.1 to 13%. When the content of TiO 2 is too large, the dielectric loss of the glass ceramic dielectric tends to be too large.
  • the content of ZrO 2 is preferably 0 to 15%, particularly preferably 0.1 to 13%. When ZrO 2 is too large, there is a tendency that the dielectric loss of the glass ceramic dielectric becomes too large.
  • SrO, Nb 2 O 5 , La 2 O 3 , Y 2 O 3 , P 2 O 5 , B 2 O 3 as long as the characteristics such as dielectric loss of the glass ceramic dielectric are not impaired.
  • Bi 2 O 3 , CuO, CeO 2 , MnO, Sb 2 O 3 , SnO or the like may be added up to 30% in total.
  • alkali metal components such as Li 2 O, Na 2 O, and K 2 O tend to cut the glass network and increase the dielectric loss.
  • the insulating properties of the glass ceramic dielectric tend to decrease. Accordingly, the total amount of alkali metal oxides is preferably 5% or less, particularly 1% or less, and most preferably not substantially contained (specifically, less than 0.1%).
  • the average particle diameter D 50 of the crystallizable glass powder is 10 ⁇ m or less, and particularly preferably 5 ⁇ m or less. When the average particle diameter D 50 of the crystallizable glass powder is too large, pores are likely to occur in the glass ceramic dielectric.
  • the lower limit of the average particle diameter D 50 of the crystalline glass powder is not particularly limited, but is preferably 0.1 ⁇ m or more, particularly preferably 1 ⁇ m or more from the viewpoint of ease of handling and processing cost.
  • the particle diameter of the powder refers to a value measured by a laser diffraction scattering method.
  • a glass ceramic layer may be obtained by mixing and sintering filler powder in addition to crystalline glass powder.
  • the filler powder include alumina powder, cordierite powder, mullite powder, quartz powder, zircon powder, titania powder, zirconia powder and the like, or quartz glass powder. These may be used alone or in combination of two or more. Can be used.
  • Ceramic powder containing Al component As filler powder, Si and Ba components in the residual glass phase after diopside crystal precipitation react with Al component in ceramic powder to produce feldspar crystals. Precipitates easily.
  • the ceramic powder containing Al component include alumina powder, cordierite powder, mullite powder, anorthite feldspar, albite feldspar, barium aluminate, aluminum titanate, spinel, calcium aluminate, magnesium aluminate, aluminum nitride, and the like. .
  • the crystallinity can be improved by mixing a small amount (for example, about 0.1 to 1% by mass) of a diopside or barium feldspar crystal as a crystal nucleus.
  • the mixing ratio of the crystalline glass powder and the filler powder is preferably 30 to 100% by mass of the crystalline glass powder, 0 to 70% by mass of the filler powder, 40 to 90% by mass of the crystalline glass powder, and 10 to 60% of the filler powder. More preferably, the crystalline glass powder is 45 to 80 mass%, the filler powder is 20 to 55 mass%, more preferably the crystalline glass powder is 50 to 70 mass%, and the filler powder is 30 to 50 mass%. It is particularly preferred. If the content of the filler powder is too large, it tends to be difficult to densify the glass ceramic dielectric.
  • the average particle diameter D 50 of the filler powder is preferably 0.01 to 100 ⁇ m, 0.1 to 50 ⁇ m, 0.5 to 20 ⁇ m, particularly 1 to 10 ⁇ m.
  • the average particle diameter D 50 of the filler powder is too small, penetration into the crystallizable glass powder, thermal expansion coefficient, toughness, dielectric constant, the effect of improving characteristics such as chemical resistance is hardly obtained.
  • the average particle diameter D 50 of the filler powder is too large, it hinders the flow of crystalline glass powder during firing, the pores are likely to occur in the glass ceramic dielectric.
  • a glass ceramic layer in which diopside crystals and feldspar crystals are precipitated as main crystals is obtained by heat-treating crystalline glass powder or a mixture of crystalline glass powder and filler powder at a temperature higher than the crystallization start temperature of crystalline glass powder. can get.
  • the content of diopside crystals in the glass ceramic layer is preferably 35% by mass or more, particularly preferably 40% by mass or more.
  • the content of the diopside crystal is too small, the dielectric loss tends to increase.
  • the upper limit is preferably 80% by mass or less, particularly preferably 70% by mass or less.
  • the content of feldspar crystals in the glass ceramic layer is preferably 20 to 65% by mass, 25 to 60% by mass, and particularly preferably 30 to 55% by mass.
  • the content of feldspar crystals is too small, the porosity in the glass ceramic layer increases, and as a result, the dielectric loss tends to increase.
  • the content of the feldspar crystal is too large, the diopside crystal is relatively decreased, so that the dielectric loss tends to increase or the mechanical strength tends to decrease.
  • the residual glass phase is preferably 0.5% by mass or more, particularly preferably 1% by mass or more. If the residual glass phase is too small, pores are easily generated in the glass ceramic layer. In addition, when there is too much content of a residual glass phase, since a diopside crystal and a feldspar crystal will decrease relatively and there exists a tendency for a dielectric loss to become large, an upper limit is 20 mass% or less, especially 10 mass% or less. Preferably there is.
  • the glass ceramic layer preferably has a porosity of 3% by volume or less, particularly 2% by volume or less.
  • porosity increases, when a glass ceramic dielectric is used as a circuit board, there is a tendency that the disconnection of the wiring tends to occur or the dielectric loss increases.
  • the thickness of the glass ceramic layer is preferably adjusted as appropriate in the range of, for example, 200 to 2000 ⁇ m, 300 to 1500 ⁇ m, and more preferably 500 to 1000 ⁇ m so as to obtain a desired mechanical strength.
  • the barrier layer is preferably made of an inorganic material, particularly preferably amorphous glass. If it does in this way, when the surface of a glass ceramic dielectric material is plated, it will become easy to suppress that the glass component contained in a glass ceramic layer changes in quality.
  • the barrier layer (amorphous glass layer) made of amorphous glass is made of, for example, a sintered body of amorphous glass powder.
  • Amorphous glass (non-crystalline glass powder) is preferably contained in mass% as a glass composition, and SiO 2 40% or more and B 2 O 3 15% or less. The reason for limiting the glass composition in this way will be described below. In the following description of the content of each component, “%” means “% by mass” unless otherwise specified.
  • SiO 2 is a component that forms a glass network.
  • the content of SiO 2 is preferably 40% or more, 42% or more, 45% or more, particularly 47% or more. If the content of SiO 2 is too small, the acid resistance is inferior, and the amorphous glass layer hardly functions as a barrier layer when forming metal wiring on the surface of the glass ceramic dielectric. Incidentally, the content of SiO 2 is too large, poor sinterability, it difficult to obtain a dense amorphous glass layer, functions as a barrier layer tends to decrease. Therefore, the content of SiO 2 is preferably 85% or less, 80% or less, 70% or less, and particularly preferably 60% or less.
  • B 2 O 3 is a component that significantly improves the meltability by lowering the melting temperature, and has the effect of improving the fluidity of the glass powder during sintering for forming an amorphous glass layer.
  • the content of B 2 O 3 is preferably 15% or less, 12% or less, 10% or less, and particularly preferably 8% or less.
  • the content of B 2 O 3 is preferably 1% or more, 2% or more, particularly 3% or more.
  • the amorphous glass layer can contain the following components.
  • Al 2 O 3 is a component that improves the acid resistance of the amorphous glass layer.
  • the content of Al 2 O 3 is preferably 0 to 25%, 0.1 to 20%, 1 to 15%, particularly 2 to 10%. When the content of Al 2 O 3 is too large, there is a tendency that the melting is lowered.
  • MgO, CaO, SrO and BaO are components that lower the melting temperature to improve the meltability and lower the softening point.
  • the total amount of these components is preferably 0 to 45%, 0.1 to 45%, particularly 1 to 40%. When there is too much total amount of these components, acid resistance will fall easily.
  • the content of each component of MgO, CaO, SrO and BaO is preferably 0 to 35%, 0.1 to 33%, particularly 1 to 30%, respectively. When there is too much content of these components, there exists a tendency for acid resistance to fall.
  • ZnO is a component that improves the meltability by lowering the melting temperature.
  • the content of ZnO is preferably 0 to 10%, 0.1 to 7%, particularly 1 to 5%. When there is too much content of ZnO, there exists a tendency for acid resistance to fall.
  • P 2 O 5 , La 2 O 3 , Ta 2 O 5 , TeO 2 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , Y 2 O 3 , CeO 2 , Sb 2 O 3 , SnO 2 , Bi 2 O 3 , As 2 O 3, ZrO 2, etc. may each be contained in a range of 15% or less, further 10% or less, particularly 5% or less, and a total amount of 30% or less.
  • the alkali metal component Li 2 O, Na 2 O , K 2 O , etc.
  • the alkali metal component to reduce significantly the acid resistance of the amorphous glass layer preferably substantially free.
  • the softening point of the glass constituting the amorphous glass layer is preferably 700 to 1000 ° C., particularly preferably 750 to 900 ° C. If the softening point is too low, it will flow excessively during firing, making it difficult to obtain a barrier layer having a uniform thickness. As a result, the function as a barrier layer may be reduced. On the other hand, if the softening point is too high, it is difficult to obtain a dense barrier layer, and the function as a barrier layer may be reduced.
  • the thickness of the barrier layer is preferably 30 ⁇ m or more, 50 ⁇ m or more, particularly 80 ⁇ m or more so as to sufficiently perform its function. If the thickness of the barrier layer is too large, the dielectric constant and dielectric loss as a whole of the glass-ceramic dielectric increases, and therefore it is preferably 300 ⁇ m or less, 200 ⁇ m or less, particularly 150 ⁇ m or less.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of a method for producing a glass ceramic dielectric of the present invention.
  • a green sheet 2 ′ for a glass ceramic layer containing a crystalline glass powder and a green sheet 3 ′ for a barrier layer (amorphous glass layer) containing an amorphous glass powder are prepared by a known green sheet method. And prepare. Specifically, a glass paste is prepared by adding and kneading a vehicle containing a resin binder or an organic solvent to a crystalline glass powder or an amorphous glass powder as a raw material, and the obtained glass paste is PET. Each green sheet is obtained by sheet-forming with a doctor blade on base materials, such as a (polyethylene terephthalate) film.
  • the thickness of the green sheet may be appropriately selected according to the thickness of the target glass ceramic layer 2 or barrier layer 3, but is usually about 100 to 250 ⁇ m, more preferably about 120 to 200 ⁇ m. If necessary, each green sheet may be mechanically processed to provide through holes for forming conductors and electrodes.
  • the obtained glass ceramic layer green sheet 2 ′ and barrier layer green sheet 3 ′ are laminated to obtain a laminate.
  • FIG. 2 (a) three green sheets 2 'for glass ceramic layers are laminated, and one green sheet 3' for barrier layers is laminated on both sides to produce a laminate 1 '.
  • the number of glass ceramic layer green sheets 2 ' may be appropriately selected according to the desired thickness of the glass ceramic layer 2, but is usually 2 to 10, more preferably 3 to 7.
  • the number of the barrier layer green sheets 3 ′ may be one, or two or more.
  • the laminate 1 ′ is fired while being sandwiched between the pair of restraint sheets 4 (FIG. 2B).
  • the glass ceramic layer green sheet 2 ′ and the barrier layer green sheet 3 ′ become the glass ceramic layer 2 and the barrier layer (amorphous glass layer) 3, respectively.
  • the glass ceramic dielectric 1 in which the barrier layers 3 are formed on both principal surfaces of the glass ceramic layer 2 is obtained ((c) in FIG. 2).
  • the restraint sheet 4 plays a role of suppressing shrinkage in the surface direction of the laminated body 1 ′ during firing.
  • the constraining sheet 4 for example, a green sheet containing ceramic powder such as alumina powder can be used.
  • the ceramic powder contained in the constraining sheet 4 may adhere to the surface of the barrier layer 3.
  • the ceramic powder has characteristics such as dielectric loss of the glass ceramic dielectric 1. Since it has almost no influence, it is not always necessary to remove it by polishing or the like.
  • the firing temperature is preferably a temperature at which the crystalline glass powder contained in the glass ceramic layer green sheet 2 'is sufficiently crystallized. Specifically, the firing temperature is equal to or higher than the crystallization temperature of the crystalline glass powder, more than (crystallization start temperature of the crystalline glass powder + 50 ° C.) or more, particularly (crystallization start temperature of the crystalline glass powder + 100 ° C.) or more. (Sintering condition A) is preferable. In this way, it is possible to obtain a glass ceramic dielectric 1 that satisfies characteristics such as desired dielectric loss.
  • the firing temperature is preferably a temperature at which the amorphous glass powder contained in the barrier layer green sheet 3 ′ is sufficiently softened and fluidized to be sintered.
  • the firing temperature is equal to or higher than the softening point of the amorphous glass powder, more than (softening point of the amorphous glass powder + 50 ° C.), and particularly higher than (softening point of the amorphous glass powder + 100 ° C.). It is preferable (firing condition B). In this way, it is possible to obtain the glass ceramic dielectric 1 in which the barrier layer 3 having desired characteristics is formed.
  • the firing temperature preferably satisfies both the firing condition A and the firing condition B described above. Thereby, it is possible to obtain the glass ceramic dielectric 1 having desired characteristics.
  • the specific firing temperature is preferably 800 to 1000 ° C., 800 to 950 ° C., and particularly preferably 850 to 900 ° C.
  • a circuit board is obtained by performing a plating process on the surface of the barrier layer 3 in the obtained glass ceramic dielectric 1 to form a metal wiring (not shown).
  • Example 1 Production of Green Sheet for Glass Ceramic Layer As a glass composition, it is mass%, SiO 2 43.4%, Al 2 O 3 4%, BaO 28%, CaO 10%, MgO 14.5%, CuO 0.1.
  • the raw material powder was prepared so as to be%, melted at 1550 ° C., and then molded and cooled to produce crystalline glass.
  • the obtained crystalline glass was pulverized to produce a crystalline glass powder (crystallization start temperature of 890 ° C.) having an average particle diameter D 50 of 2 ⁇ m.
  • the glass composition is in mass%, SiO 2 50%, B 2 O 3 5%, Al 2 O 3 6%, ZnO 2%, CaO 12%.
  • a raw material powder was prepared so that the BaO would be 25%, melted at 1200 to 1700 ° C., and then molded and cooled to produce an amorphous glass.
  • the obtained amorphous glass was pulverized to produce an amorphous glass powder (softening point 850 ° C.) having an average particle diameter D 50 of 2 ⁇ m.
  • the thickness is 150 ⁇ m by the doctor blade method.
  • a green sheet for a barrier layer was obtained.
  • Example 2 (A) Production of Green Sheet for Glass Ceramic Layer A green sheet for a glass ceramic layer having a thickness of 150 ⁇ m was obtained in the same manner as in Example 1.
  • the glass composition is in mass%, SiO 2 43%, B 2 O 3 5%, Al 2 O 3 6%, ZnO 7%, CaO 8%.
  • a raw material powder was prepared so as to be 8% SrO and 23% BaO, melted at 1200 to 1700 ° C., and then molded and cooled to produce an amorphous glass.
  • the obtained amorphous glass was pulverized to produce an amorphous glass powder (softening point 800 ° C.) having an average particle diameter D 50 of 1.5 ⁇ m.
  • the thickness is 150 ⁇ m by the doctor blade method.
  • a green sheet for an amorphous glass layer was obtained.
  • a barrier layer (amorphous glass layer) was formed on both main surfaces of the glass ceramic layer (thickness 300 ⁇ m) in the same manner as in Example 1 using each of the green sheets obtained above. ) (Thickness of 100 ⁇ m) was obtained to obtain a glass ceramic dielectric.
  • the precipitated crystal in the glass ceramic layer was identified by a powder X-ray diffractometer (Rigaku RINT2100, Inc.), it was confirmed that diopside and barium feldspar were precipitated.
  • the glass ceramic dielectric of the present invention has excellent acid resistance due to the formation of a barrier layer (amorphous glass layer) on the surface of the glass ceramic layer. I understand. Therefore, it is considered that when the metal wiring is formed by the plating process, the alteration of the glass ceramic layer is suppressed, and as a result, characteristics such as dielectric loss are unlikely to deteriorate.
  • a barrier layer amorphous glass layer
  • the glass ceramic dielectric of the present invention is suitable for circuit boards for microwaves and the like.

Abstract

Provided is a glass ceramic dielectric body capable of preventing deterioration of a glass component when metal wiring is formed on the surface thereof. The glass-ceramic dielectric body 1 is characterized by being provided with a glass ceramic layer 2 and barrier layers 3 formed on the main surfaces thereof.

Description

ガラスセラミック誘電体Glass ceramic dielectric
 本発明は、回路基板等に用いられるガラスセラミック誘電体に関するものである。 The present invention relates to a glass ceramic dielectric used for a circuit board or the like.
 従来、IC、LSI等が高密度実装されるセラミック多層基板、厚膜回路部品、半導体パッケージ等の絶縁材料としてガラスセラミック誘電体が知られている(例えば特許文献1参照)。例えば、ガラスセラミック誘電体の表面には所定のパターンを有する金属配線が形成され、回路基板として使用される。 Conventionally, glass ceramic dielectrics are known as insulating materials for ceramic multilayer substrates, thick film circuit components, semiconductor packages and the like on which ICs, LSIs and the like are mounted at high density (see, for example, Patent Document 1). For example, a metal wiring having a predetermined pattern is formed on the surface of a glass ceramic dielectric and used as a circuit board.
特開平10-120436号公報Japanese Patent Laid-Open No. 10-120436
 通常、金属配線はメッキ処理により形成されるが、当該メッキ処理によりガラスセラミック誘電体に含まれるガラス成分が変質し、誘電率や誘電損失等の特性に悪影響を及ぼすおそれがある。 Usually, the metal wiring is formed by a plating process, but the glass component contained in the glass ceramic dielectric is altered by the plating process, which may adversely affect characteristics such as dielectric constant and dielectric loss.
 以上に鑑み、本発明は、ガラス成分の変質を生じることなく表面をメッキ処理することが可能なガラスセラミック誘電体を提供することを目的とする。 In view of the above, an object of the present invention is to provide a glass ceramic dielectric capable of plating the surface without causing alteration of the glass component.
 本発明のガラスセラミック誘電体は、ガラスセラミック層と、その主面に形成されてなるバリア層と、を備えることを特徴とする。このようにすれば、ガラスセラミック誘電体の表面にメッキ処理により金や銀等の金属配線を形成する際に、ガラスセラミック層に含まれるガラス成分が変質することを抑制できる。 The glass ceramic dielectric of the present invention comprises a glass ceramic layer and a barrier layer formed on the main surface thereof. If it does in this way, when forming metal wiring, such as gold | metal | money and silver, by the plating process on the surface of a glass ceramic dielectric material, it can suppress that the glass component contained in a glass ceramic layer changes in quality.
 本発明のガラスセラミック誘電体は、ガラスセラミック層の両主面にバリア層が形成されていることが好ましい。このようにすれば、本発明のガラスセラミック誘電体の製造時の焼成工程において、ガラスセラミック層とバリア層の熱膨張係数の違いに起因する反りの発生を抑制することができる。 The glass ceramic dielectric of the present invention preferably has barrier layers formed on both main surfaces of the glass ceramic layer. If it does in this way, generation | occurrence | production of the curvature resulting from the difference in the thermal expansion coefficient of a glass ceramic layer and a barrier layer can be suppressed in the baking process at the time of manufacture of the glass ceramic dielectric of this invention.
 本発明のガラスセラミック誘電体は、バリア層が無機材料からなることが好ましい。このようにすれば、ガラスセラミック誘電体の表面をメッキ処理した際に、ガラスセラミック層に含まれるガラス成分が変質することを抑制しやすくなる。 In the glass ceramic dielectric of the present invention, the barrier layer is preferably made of an inorganic material. If it does in this way, when the surface of a glass ceramic dielectric material is plated, it will become easy to suppress that the glass component contained in a glass ceramic layer changes in quality.
 本発明のガラスセラミック誘電体は、バリア層が非晶質ガラスからなることが好ましい。このようにすれば、ガラスセラミック誘電体の表面をメッキ処理した際に、ガラスセラミック層に含まれるガラス成分が変質することをより一層抑制しやすくなる。 In the glass ceramic dielectric of the present invention, the barrier layer is preferably made of amorphous glass. If it does in this way, when plating the surface of a glass ceramic dielectric material, it will become still easier to suppress that the glass component contained in a glass ceramic layer changes in quality.
 本発明のガラスセラミック誘電体は、非晶質ガラスが、ガラス組成として質量%で、SiO 40%以上、B 15%以下含有することが好ましい。このようにすれば、耐酸性に優れるバリア層が得られるため、バリア層としての機能を高めることができる。 In the glass-ceramic dielectric of the present invention, it is preferable that the amorphous glass contains, by mass%, SiO 2 40% or more and B 2 O 3 15% or less as a glass composition. In this way, since a barrier layer having excellent acid resistance can be obtained, the function as a barrier layer can be enhanced.
 本発明のガラスセラミック誘電体は、非晶質ガラスが、実質的にアルカリ金属成分を含有しないことが好ましい。このようにすれば、耐酸性に優れるバリア層が得られるため、バリア層としての機能を高めることができる。なお、「実質的にアルカリ金属成分を含有しない」とは、原料として意図的にアルカリ金属成分を含有させないことを意味し、不可避的不純物の混入を排除するものではない。客観的には、アルカリ金属成分の含有量が0.1質量%未満であることを意味する。 In the glass ceramic dielectric of the present invention, it is preferable that the amorphous glass does not substantially contain an alkali metal component. In this way, since a barrier layer having excellent acid resistance can be obtained, the function as a barrier layer can be enhanced. “Substantially no alkali metal component” means that the alkali metal component is not intentionally contained as a raw material, and does not exclude inevitable contamination. Objectively, it means that the content of the alkali metal component is less than 0.1% by mass.
 本発明のガラスセラミック誘電体は、ガラスセラミック層が、結晶性ガラス粉末を含む粉末の焼結体からなることが好ましい。なお、「結晶性ガラス粉末」とは、熱処理により結晶を析出するガラス粉末を意味する。ここで「熱処理」とは、結晶化開始温度以上で結晶化を十分に進行させることを意味し、例えば800~1000℃で20分以上の熱処理をいう。 In the glass-ceramic dielectric of the present invention, the glass-ceramic layer is preferably made of a powdered sintered body containing crystalline glass powder. The “crystalline glass powder” means a glass powder that precipitates crystals by heat treatment. Here, “heat treatment” means that crystallization sufficiently proceeds at a temperature higher than the crystallization start temperature, for example, a heat treatment at 800 to 1000 ° C. for 20 minutes or longer.
 本発明のガラスセラミック誘電体は、結晶性ガラス粉末が、ガラス組成として質量%で、SiO 20~65%、CaO 3~25%、MgO 7~30%、Al 0~20%、BaO 5~40%を含有し、かつ質量比で、1≦SiO/BaO≦4の関係を満たすことが好ましい。当該組成を有する結晶性ガラス粉末は、熱処理によって主結晶としてディオプサイド結晶(2SiO・CaO・MgO)とともに長石結晶が析出する性質を有する。両結晶が析出することにより、焼成による結晶化度が高くなり、誘電率や誘電損失が高くなる原因となる残存ガラス相を低減することができる。また、長石結晶は結晶析出時の体積収縮率が小さいため、結晶析出に伴う気孔の発生が抑制される。その結果、誘電率や誘電損失の低いガラスセラミック誘電体とすることが可能となる。 In the glass-ceramic dielectric of the present invention, the crystalline glass powder has a glass composition in mass% of SiO 2 20 to 65%, CaO 3 to 25%, MgO 7 to 30%, Al 2 O 3 0 to 20%, It is preferable that BaO is contained in an amount of 5 to 40% and the relationship of 1 ≦ SiO 2 / BaO ≦ 4 is satisfied by mass ratio. The crystalline glass powder having the composition has a property that feldspar crystals are precipitated together with diopside crystals (2SiO 2 · CaO · MgO) as main crystals by heat treatment. By precipitating both crystals, the degree of crystallinity due to firing is increased, and the residual glass phase that causes an increase in dielectric constant and dielectric loss can be reduced. Further, since the feldspar crystal has a small volume shrinkage rate at the time of crystal precipitation, the generation of pores accompanying the crystal precipitation is suppressed. As a result, a glass ceramic dielectric having a low dielectric constant and dielectric loss can be obtained.
 本発明のガラスセラミック誘電体は、ガラスセラミック層が、結晶性ガラス粉末 30~100質量%、フィラー粉末 0~70質量%を含む粉末の焼結体からなることが好ましい。ガラスセラミック誘電体を、結晶性ガラス粉末に加えてフィラー粉末を含む粉末の焼結体からなるものとすることにより、ガラスセラミック誘電体の熱膨張係数、靭性、誘電率等の特性を高めることができる。 In the glass ceramic dielectric of the present invention, the glass ceramic layer is preferably composed of a sintered powder of a powder containing crystalline glass powder 30 to 100% by mass and filler powder 0 to 70% by mass. By making the glass-ceramic dielectric material a sintered body of powder containing filler powder in addition to crystalline glass powder, it is possible to enhance the characteristics of the glass-ceramic dielectric such as thermal expansion coefficient, toughness, dielectric constant, etc. it can.
 本発明のガラスセラミック誘電体は、フィラー粉末がAl成分を含むことが好ましい。このようにすれば、ディオプサイド結晶析出後の残存ガラス相中のSi、Baの各成分とフィラー粉末中のAl成分が反応して長石結晶が析出しやすくなる。 In the glass ceramic dielectric of the present invention, the filler powder preferably contains an Al component. If it does in this way, each component of Si and Ba in the residual glass phase after diopside crystal precipitation will react with the Al component in filler powder, and a feldspar crystal will precipitate easily.
 本発明のガラスセラミック誘電体は、ガラスセラミック層が、ディオプサイド結晶及び長石結晶を含有することが好ましい。上述の理由から、両結晶を含有する場合は、結晶化度が高く、気孔の少ないガラスセラミック層が得られやすく、誘電率や誘電損失の低いガラスセラミック誘電体とすることが可能となる。 In the glass ceramic dielectric of the present invention, the glass ceramic layer preferably contains diopside crystals and feldspar crystals. For the above reasons, when both crystals are contained, a glass ceramic layer having a high degree of crystallinity and few pores can be easily obtained, and a glass ceramic dielectric having a low dielectric constant and dielectric loss can be obtained.
 本発明のガラスセラミック誘電体は、回路基板用として好適である。 The glass ceramic dielectric of the present invention is suitable for circuit boards.
 本発明の回路基板は、上記のガラスセラミック誘電体におけるバリア層の表面に金属配線が形成されていることを特徴とする。 The circuit board of the present invention is characterized in that a metal wiring is formed on the surface of the barrier layer in the glass ceramic dielectric.
 本発明のガラスセラミック誘電体の製造方法は、上記のガラスセラミック誘電体を製造するための方法であって、結晶性ガラス粉末を含有するガラスセラミック層用グリーンシートと、非結晶性ガラス粉末を含有するバリア層用グリーンシートを準備する工程、ガラスセラミック層用グリーンシートとバリア層用グリーンシートを積層して積層体を得る工程、及び、積層体を焼成する工程、を備えることを特徴とする。なお、「非結晶性ガラス粉末」とは、熱処理により結晶を実質的に析出しないガラス粉末を指す。「結晶を実質的に析出しない」とは不可避的な失透物の析出を含め、熱処理後のガラスの結晶化度が概ね1%以下のものを指す。 A method for producing a glass-ceramic dielectric of the present invention is a method for producing the above-mentioned glass-ceramic dielectric, which contains a green sheet for a glass-ceramic layer containing a crystalline glass powder and an amorphous glass powder. A step of preparing a barrier layer green sheet, a step of laminating the glass ceramic layer green sheet and the barrier layer green sheet to obtain a laminate, and a step of firing the laminate. The “non-crystalline glass powder” refers to a glass powder that does not substantially precipitate crystals by heat treatment. “Substantially no precipitation of crystals” means that the crystallinity of the glass after heat treatment is approximately 1% or less, including inevitable precipitation of devitrified substances.
 本発明によれば、ガラス成分の変質を生じることなく表面をメッキ処理することが可能なガラスセラミック誘電体を提供することができる。 According to the present invention, it is possible to provide a glass ceramic dielectric capable of plating the surface without causing alteration of the glass component.
本発明のガラスセラミック誘電体の一実施形態を示す模式的断面図である。It is a typical sectional view showing one embodiment of the glass ceramic dielectric of the present invention. 本発明のガラスセラミック誘電体の製造方法の一実施形態を示す模式的断面図である。It is typical sectional drawing which shows one Embodiment of the manufacturing method of the glass ceramic dielectric material of this invention.
 以下、本発明のガラスセラミック誘電体の実施形態を図面を用いて説明する。 Hereinafter, embodiments of the glass ceramic dielectric of the present invention will be described with reference to the drawings.
 図1は本発明のガラスセラミック誘電体の一実施形態を示す模式的断面図である。ガラスセラミック誘電体1は、ガラスセラミック層2と、ガラスセラミック層2の主面2a及び主面2bにそれぞれ形成されてなるバリア層3とを備えている。バリア層3の表面にメッキ処理を施して金属配線(図示せず)を形成することにより、回路基板として使用することができる。必要に応じて、ガラスセラミック層2の内部にサーマルビア等を形成してもよい。なお、ガラスセラミック誘電体1は、平面形状が矩形や円形等の板状部材である。 FIG. 1 is a schematic cross-sectional view showing an embodiment of the glass ceramic dielectric of the present invention. The glass ceramic dielectric 1 includes a glass ceramic layer 2 and a barrier layer 3 formed on each of the main surface 2a and the main surface 2b of the glass ceramic layer 2. By plating the surface of the barrier layer 3 to form a metal wiring (not shown), it can be used as a circuit board. If necessary, a thermal via or the like may be formed inside the glass ceramic layer 2. The glass ceramic dielectric 1 is a plate-like member whose planar shape is rectangular or circular.
 ガラスセラミック層2の両主面にバリア層3を形成することにより、ガラスセラミック誘電体1の製造時の焼成工程において、ガラスセラミック層2とバリア層3の熱膨張係数の違いに起因する反りの発生を抑制することができる。なお、必ずしもガラスセラミック層2の両主面にバリア層3が形成されている必要はなく、ガラスセラミック層2の一方の主面のみにバリア層3が形成されていてもよい。 By forming the barrier layers 3 on both main surfaces of the glass ceramic layer 2, the warpage caused by the difference in thermal expansion coefficient between the glass ceramic layer 2 and the barrier layer 3 in the firing step when the glass ceramic dielectric 1 is manufactured. Occurrence can be suppressed. The barrier layers 3 are not necessarily formed on both main surfaces of the glass ceramic layer 2, and the barrier layers 3 may be formed only on one main surface of the glass ceramic layer 2.
 以下、各構成要素ごとに詳細に説明する。 Hereinafter, each component will be described in detail.
 (ガラスセラミック層)
 ガラスセラミック層は、例えば結晶性ガラス粉末を含む粉末の焼結体からなる。結晶性ガラス粉末としては、ガラス組成として質量%で、SiO 20~65%、CaO 3~25%、MgO 7~30%、Al 0~20%、BaO 5~40%を含有し、かつ質量比で、1≦SiO/BaO≦4の関係を満たすものが挙げられる。上述したように、当該組成を有する結晶性ガラス粉末を焼成して得られるガラスセラミック誘電体は、熱処理によって主結晶としてディオプサイド結晶とともに長石結晶が析出する性質を有し、誘電率や誘電損失の低いガラスセラミック誘電体とすることが可能となる。具体的には、25℃において、誘電率が6~11、特に6~10、かつ0.1GHz以上の高周波領域における誘電損失tanδが20×10-4以下、18×10-4以下、特に16×10-4以下を達成することが可能となる。
(Glass ceramic layer)
A glass ceramic layer consists of a sintered compact of the powder containing crystalline glass powder, for example. As the crystalline glass powder, the glass composition contains, by mass%, SiO 2 20 to 65%, CaO 3 to 25%, MgO 7 to 30%, Al 2 O 3 0 to 20%, BaO 5 to 40%. and a mass ratio include those satisfying the relation of 1 ≦ SiO 2 / BaO ≦ 4 . As described above, the glass-ceramic dielectric obtained by firing the crystalline glass powder having the above composition has the property that a feldspar crystal is precipitated together with the diopside crystal as a main crystal by heat treatment, and the dielectric constant and dielectric loss. Low glass ceramic dielectric. Specifically, at 25 ° C., the dielectric loss tan δ is 20 × 10 −4 or less, 18 × 10 −4 or less, particularly 16 or less in a high frequency region where the dielectric constant is 6 to 11, particularly 6 to 10, and 0.1 GHz or more. It becomes possible to achieve × 10 −4 or less.
 なお、長石結晶はバリウム長石結晶(BaAlSi)であることが好ましい。バリウム長石結晶を析出させることにより、熱処理後の残存ガラス相を効果的に低減することができ、気孔率及び誘電損失が小さいガラスセラミック誘電体が得られやすくなる。その他にも、誘電損失や気孔率が上昇しない範囲でカルシウム長石結晶(CaAlSi)等が析出してもかまわない。 The feldspar crystals are preferably barium feldspar crystals (BaAl 2 Si 2 O 8 ). By precipitating barium feldspar crystals, the residual glass phase after heat treatment can be effectively reduced, and a glass-ceramic dielectric having a low porosity and dielectric loss can be easily obtained. In addition, calcium feldspar crystals (CaAl 2 Si 2 O 8 ) or the like may be precipitated within a range where dielectric loss and porosity do not increase.
 以下に、結晶性ガラス粉末の組成を上記の通り限定した理由を述べる。なお、以下の各成分の含有量の説明において、「%」は特に断りのない限り「質量%」を意味する。 The reason why the composition of the crystalline glass powder is limited as described above will be described below. In the following description of the content of each component, “%” means “% by mass” unless otherwise specified.
 SiOはガラスのネットワークフォーマーであるとともに、ディオプサイド結晶及び長石結晶の構成成分である。SiOの含有量は20~65%、30~65%、特に40~55%であることが好ましい。SiOの含有量が少なすぎるとガラス化しにくくなり、多すぎると低温焼成(例えば、1000℃以下)が困難になる傾向がある。 SiO 2 is a glass network former and is a constituent of diopside crystals and feldspar crystals. The content of SiO 2 is preferably 20 to 65%, 30 to 65%, particularly 40 to 55%. When the content of SiO 2 is too small, vitrification is difficult, and when it is too large, low-temperature firing (for example, 1000 ° C. or less) tends to be difficult.
 CaOはディオプサイド結晶の構成成分であり、その含有量は3~25%、3~20%、特に7~15%であることが好ましい。CaOの含有量が少なすぎるとディオプサイド結晶が析出しにくくなり、結果としてガラスセラミック誘電体の誘電損失が高くなる傾向がある。一方、CaOの含有量が多すぎるとガラスの流動性が低下し、緻密な焼結体が得にくくなる。 CaO is a constituent component of diopside crystal, and its content is preferably 3 to 25%, 3 to 20%, and particularly preferably 7 to 15%. If the content of CaO is too small, diopside crystals are difficult to precipitate, and as a result, the dielectric loss of the glass ceramic dielectric tends to increase. On the other hand, when there is too much content of CaO, the fluidity | liquidity of glass will fall and it will become difficult to obtain a precise | minute sintered compact.
 MgOもディオプサイド結晶の構成成分であり、その含有量は7~30%、8~30%、11~30%、特に12~20%であることが好ましい。MgOの含有量が少なすぎると結晶が析出しにくくなり、多すぎるとガラス化しにくくなる。 MgO is also a constituent component of the diopside crystal, and its content is preferably 7 to 30%, 8 to 30%, 11 to 30%, particularly 12 to 20%. When the content of MgO is too small, crystals are difficult to precipitate, and when it is too large, vitrification is difficult.
 Alはガラスを安定化させるための成分であり、その含有量は0~20%、0.5~20%、特に1~10%であることが好ましい。Alの含有量が多すぎると、ディオプサイド結晶が析出しにくくなり、結果としてガラスセラミック誘電体の誘電損失が高くなる傾向がある。 Al 2 O 3 is a component for stabilizing the glass, and its content is preferably 0 to 20%, 0.5 to 20%, particularly 1 to 10%. When the content of Al 2 O 3 is too large, diopside crystal becomes difficult precipitated, as a result there is a tendency that the dielectric loss of the glass ceramic dielectric increases.
 BaOはバリウム長石結晶の構成成分であり、その含有量は5~40%、特に10~35%であることが好ましい。BaOの含有量が少なすぎると、バリウム長石結晶が析出しにくくなる。一方、BaOの含有量が多すぎると、ディオプサイド結晶の析出量が少なくなる傾向があり、結果としてガラスセラミック誘電体の誘電損失が大きくなりやすい。 BaO is a constituent of barium feldspar crystals, and its content is preferably 5 to 40%, particularly 10 to 35%. When there is too little content of BaO, it will become difficult to precipitate a barium feldspar crystal. On the other hand, if the content of BaO is too large, the amount of diopside crystals deposited tends to decrease, and as a result, the dielectric loss of the glass ceramic dielectric tends to increase.
 また、SiOとBaOの比(質量比)を特定の範囲に制限することで、焼成後の残存ガラス相から効率的に長石結晶を析出させることができる。具体的には、1≦SiO/BaO≦4、特に、1.05≦SiO/BaO≦3.95の関係を満たすことが好ましい。SiOとBaOの比が当該範囲から外れる場合は、長石結晶が析出しにくくなったり、ガラス化しにくくなったりする。 Further, by limiting the ratio (mass ratio) of SiO 2 and BaO to a specific range, feldspar crystals can be efficiently precipitated from the remaining glass phase after firing. Specifically, it is preferable that the relationship 1 ≦ SiO 2 / BaO ≦ 4, particularly 1.05 ≦ SiO 2 /BaO≦3.95 is satisfied. When the ratio of SiO 2 and BaO is out of the range, feldspar crystals are difficult to precipitate or vitrification is difficult.
 その他にも、結晶性ガラス粉末には、下記の成分を添加することができる。 In addition, the following components can be added to the crystalline glass powder.
 ZnOはガラス化を容易にする成分であり、その含有量は0~20%、特に0.1~15%であることが好ましい。ZnOの含有量が多すぎると結晶性が弱くなり、ディオプサイド結晶の析出量が少なくなる傾向がある。その結果、ガラスセラミック誘電体の誘電損失が大きくなりやすい。 ZnO is a component that facilitates vitrification, and its content is preferably 0 to 20%, particularly preferably 0.1 to 15%. When there is too much content of ZnO, crystallinity will become weak and there exists a tendency for the precipitation amount of a diopside crystal to decrease. As a result, the dielectric loss of the glass ceramic dielectric tends to increase.
 TiO及びZrOはガラスセラミック誘電体の耐薬品性(耐酸性、耐アルカリ性)を向上させる成分である。TiOの含有量は0~15%、特に0.1~13%であることが好ましい。TiOの含有量が多すぎると、ガラスセラミック誘電体の誘電損失が大きくなりすぎる傾向がある。ZrOの含有量は0~15%、特に0.1~13%であることが好ましい。ZrOが多すぎると、ガラスセラミック誘電体の誘電損失が大きくなりすぎる傾向がある。 TiO 2 and ZrO 2 are components that improve the chemical resistance (acid resistance and alkali resistance) of the glass ceramic dielectric. The content of TiO 2 is preferably 0 to 15%, particularly preferably 0.1 to 13%. When the content of TiO 2 is too large, the dielectric loss of the glass ceramic dielectric tends to be too large. The content of ZrO 2 is preferably 0 to 15%, particularly preferably 0.1 to 13%. When ZrO 2 is too large, there is a tendency that the dielectric loss of the glass ceramic dielectric becomes too large.
 また上記成分以外にも、ガラスセラミック誘電体の誘電損失等の特性を損なわない範囲で、SrO、Nb、La、Y、P、B、Bi、CuO、CeO、MnO、Sb、SnO等を合量で30%まで添加してもよい。 In addition to the above components, SrO, Nb 2 O 5 , La 2 O 3 , Y 2 O 3 , P 2 O 5 , B 2 O 3 , as long as the characteristics such as dielectric loss of the glass ceramic dielectric are not impaired. Bi 2 O 3 , CuO, CeO 2 , MnO, Sb 2 O 3 , SnO or the like may be added up to 30% in total.
 なお、LiO、NaO、KO等のアルカリ金属成分は、ガラスネットワークを切断し、誘電損失を上昇させる傾向がある。また、ガラスセラミック誘電体の絶縁性が低下する傾向がある。したがって、アルカリ金属酸化物は合量で5%以下、特に1%以下であることが好ましく、実質的に含有しない(具体的には0.1%未満)ことが最も好ましい。 Note that alkali metal components such as Li 2 O, Na 2 O, and K 2 O tend to cut the glass network and increase the dielectric loss. In addition, the insulating properties of the glass ceramic dielectric tend to decrease. Accordingly, the total amount of alkali metal oxides is preferably 5% or less, particularly 1% or less, and most preferably not substantially contained (specifically, less than 0.1%).
 結晶性ガラス粉末の平均粒子径D50は10μm以下、特に5μm以下であることが好ましい。結晶性ガラス粉末の平均粒子径D50が大きすぎると、ガラスセラミック誘電体中に気孔が発生しやすくなる。一方、結晶性ガラス粉末の平均粒子径D50の下限は特に限定されないが、取り扱いやすさや加工コストの観点から0.1μm以上、特に1μm以上であることが好ましい。なお、本明細書において、粉末の粒子径はレーザー回折散乱法により測定された値を指す。 The average particle diameter D 50 of the crystallizable glass powder is 10μm or less, and particularly preferably 5μm or less. When the average particle diameter D 50 of the crystallizable glass powder is too large, pores are likely to occur in the glass ceramic dielectric. On the other hand, the lower limit of the average particle diameter D 50 of the crystalline glass powder is not particularly limited, but is preferably 0.1 μm or more, particularly preferably 1 μm or more from the viewpoint of ease of handling and processing cost. In the present specification, the particle diameter of the powder refers to a value measured by a laser diffraction scattering method.
 なお、熱膨張係数、靭性、誘電率等の特性を改善する目的で、結晶性ガラス粉末に加えてフィラー粉末を混合して焼結することによりガラスセラミック層を得てもよい。フィラー粉末としては、アルミナ粉末、コージェライト粉末、ムライト粉、クォーツ粉末、ジルコン粉末、チタニア粉末、ジルコニア粉末等のセラミック粉末、あるいは石英ガラス粉末等が挙げられ、これらを単独または2種以上混合して使用することができる。 For the purpose of improving characteristics such as thermal expansion coefficient, toughness and dielectric constant, a glass ceramic layer may be obtained by mixing and sintering filler powder in addition to crystalline glass powder. Examples of the filler powder include alumina powder, cordierite powder, mullite powder, quartz powder, zircon powder, titania powder, zirconia powder and the like, or quartz glass powder. These may be used alone or in combination of two or more. Can be used.
 なお、フィラー粉末として、Al成分を含むセラミック粉末を使用することにより、ディオプサイド結晶析出後の残存ガラス相中のSi、Baの各成分とセラミック粉末中のAl成分が反応して長石結晶が析出しやすくなる。Al成分を含むセラミック粉末としては、アルミナ粉末、コージェライト粉末、ムライト粉末、アノーサイト長石、アルバイト長石、バリウムアルミネート、チタン酸アルミニウム、スピネル、カルシウムアルミネート、マグネシウムアルミネート、窒化アルミニウム等が挙げられる。 By using ceramic powder containing Al component as filler powder, Si and Ba components in the residual glass phase after diopside crystal precipitation react with Al component in ceramic powder to produce feldspar crystals. Precipitates easily. Examples of the ceramic powder containing Al component include alumina powder, cordierite powder, mullite powder, anorthite feldspar, albite feldspar, barium aluminate, aluminum titanate, spinel, calcium aluminate, magnesium aluminate, aluminum nitride, and the like. .
 また、結晶核としてディオプサイドやバリウム長石の結晶物を少量(例えば0.1~1質量%程度)混合することで、結晶化度の向上を図ることが可能となる。 In addition, the crystallinity can be improved by mixing a small amount (for example, about 0.1 to 1% by mass) of a diopside or barium feldspar crystal as a crystal nucleus.
 結晶性ガラス粉末とフィラー粉末の混合割合は、結晶性ガラス粉末 30~100質量%、フィラー粉末 0~70質量%であることが好ましく、結晶性ガラス粉末 40~90質量%、フィラー粉末 10~60質量%であることがより好ましく、結晶性ガラス粉末 45~80質量%、フィラー粉末 20~55質量%であることがさらに好ましく結晶性ガラス粉末 50~70質量%、フィラー粉末 30~50質量%であることが特に好ましい。フィラー粉末の含有量が多すぎると、ガラスセラミック誘電体の緻密化が困難となる傾向がある。 The mixing ratio of the crystalline glass powder and the filler powder is preferably 30 to 100% by mass of the crystalline glass powder, 0 to 70% by mass of the filler powder, 40 to 90% by mass of the crystalline glass powder, and 10 to 60% of the filler powder. More preferably, the crystalline glass powder is 45 to 80 mass%, the filler powder is 20 to 55 mass%, more preferably the crystalline glass powder is 50 to 70 mass%, and the filler powder is 30 to 50 mass%. It is particularly preferred. If the content of the filler powder is too large, it tends to be difficult to densify the glass ceramic dielectric.
 フィラー粉末の平均粒子径D50は0.01~100μm、0.1~50μm、0.5~20μm、特に1~10μmであることが好ましい。フィラー粉末の平均粒子径D50が小さすぎると、結晶性ガラス粉末中に溶け込み、熱膨張係数、靭性、誘電率、耐薬品性等の特性改善の効果が得にくくなる。一方、フィラー粉末の平均粒子径D50が大きすぎると、焼成時の結晶性ガラス粉末の流動の妨げとなり、ガラスセラミック誘電体中に気孔が発生しやすくなる。なお、結晶性ガラス粉末とフィラー粉末の粒子径を近くすることにより、両者を混合した際の分散性に優れ、均質なガラスセラミック誘電体が得やすくなる。また、焼結性が向上するため、緻密なガラスセラミック誘電体が得やすくなる。 The average particle diameter D 50 of the filler powder is preferably 0.01 to 100 μm, 0.1 to 50 μm, 0.5 to 20 μm, particularly 1 to 10 μm. When the average particle diameter D 50 of the filler powder is too small, penetration into the crystallizable glass powder, thermal expansion coefficient, toughness, dielectric constant, the effect of improving characteristics such as chemical resistance is hardly obtained. On the other hand, when the average particle diameter D 50 of the filler powder is too large, it hinders the flow of crystalline glass powder during firing, the pores are likely to occur in the glass ceramic dielectric. By making the particle diameters of the crystalline glass powder and filler powder close to each other, it is easy to obtain a homogeneous glass ceramic dielectric having excellent dispersibility when they are mixed. In addition, since the sinterability is improved, a dense glass ceramic dielectric is easily obtained.
 結晶性ガラス粉末、あるいは結晶性ガラス粉末とフィラー粉末の混合物を、結晶性ガラス粉末の結晶化開始温度以上で熱処理することにより、主結晶としてディオプサイド結晶及び長石結晶が析出したガラスセラミック層が得られる。 A glass ceramic layer in which diopside crystals and feldspar crystals are precipitated as main crystals is obtained by heat-treating crystalline glass powder or a mixture of crystalline glass powder and filler powder at a temperature higher than the crystallization start temperature of crystalline glass powder. can get.
 ガラスセラミック層におけるディオプサイド結晶の含有量は35質量%以上、特に40質量%以上であることが好ましい。ディオプサイド結晶の含有量が少なすぎると、誘電損失が大きくなる傾向がある。一方、ディオプサイド結晶の含有量が多すぎると、ガラスセラミック層中の気孔が多くなるため、上限は80質量%以下、特に70質量%以下であることが好ましい。 The content of diopside crystals in the glass ceramic layer is preferably 35% by mass or more, particularly preferably 40% by mass or more. When the content of the diopside crystal is too small, the dielectric loss tends to increase. On the other hand, if the content of the diopside crystal is too large, the number of pores in the glass ceramic layer increases, so the upper limit is preferably 80% by mass or less, particularly preferably 70% by mass or less.
 ガラスセラミック層における長石結晶の含有量は20~65質量%、25~60質量%、特に30~55質量%であることが好ましい。長石結晶の含有量が少なすぎると、ガラスセラミック層中の気孔率が大きくなり、結果として誘電損失が大きくなる傾向がある。一方、長石結晶の含有量が多すぎると、ディオプサイド結晶が相対的に少なくなるため、誘電損失が大きくなったり、機械的強度が低下する傾向がある。 The content of feldspar crystals in the glass ceramic layer is preferably 20 to 65% by mass, 25 to 60% by mass, and particularly preferably 30 to 55% by mass. When the content of feldspar crystals is too small, the porosity in the glass ceramic layer increases, and as a result, the dielectric loss tends to increase. On the other hand, when the content of the feldspar crystal is too large, the diopside crystal is relatively decreased, so that the dielectric loss tends to increase or the mechanical strength tends to decrease.
 ガラスセラミック層において、残存ガラス相は0.5質量%以上、特に1質量%以上であることが好ましい。残存ガラス相が少なすぎると、ガラスセラミック層中に気孔が発生しやすくなる。なお、残存ガラス相の含有量が多すぎると、相対的にディオプサイド結晶や長石結晶が少なくなり、誘電損失が大きくなる傾向があるため、上限は20質量%以下、特に10質量%以下であることが好ましい。 In the glass ceramic layer, the residual glass phase is preferably 0.5% by mass or more, particularly preferably 1% by mass or more. If the residual glass phase is too small, pores are easily generated in the glass ceramic layer. In addition, when there is too much content of a residual glass phase, since a diopside crystal and a feldspar crystal will decrease relatively and there exists a tendency for a dielectric loss to become large, an upper limit is 20 mass% or less, especially 10 mass% or less. Preferably there is.
 ガラスセラミック層は、気孔率が3体積%以下、特に2体積%以下であることが好ましい。気孔率が大きくなると、ガラスセラミック誘電体を回路基板として用いた場合に配線の断線が生じやすくなったり、誘電損失が大きくなったりする傾向がある。 The glass ceramic layer preferably has a porosity of 3% by volume or less, particularly 2% by volume or less. When the porosity increases, when a glass ceramic dielectric is used as a circuit board, there is a tendency that the disconnection of the wiring tends to occur or the dielectric loss increases.
 ガラスセラミック層の厚みは所望の機械的強度が得られるよう、例えば200~2000μm、300~1500μm、さらには500~1000μmの範囲で適宜調整することが好ましい。 The thickness of the glass ceramic layer is preferably adjusted as appropriate in the range of, for example, 200 to 2000 μm, 300 to 1500 μm, and more preferably 500 to 1000 μm so as to obtain a desired mechanical strength.
 (バリア層)
 バリア層は無機材料からなることが好ましく、特に非晶質ガラスからなることが好ましい。このようにすれば、ガラスセラミック誘電体の表面をメッキ処理した際に、ガラスセラミック層に含まれるガラス成分が変質することを抑制しやすくなる。
(Barrier layer)
The barrier layer is preferably made of an inorganic material, particularly preferably amorphous glass. If it does in this way, when the surface of a glass ceramic dielectric material is plated, it will become easy to suppress that the glass component contained in a glass ceramic layer changes in quality.
 非晶質ガラスからなるバリア層(非晶質ガラス層)は、例えば非結晶性ガラス粉末の焼結体からなる。非晶質ガラス(非結晶性ガラス粉末)は、ガラス組成として質量%で、SiO 40%以上、B 15%以下含有することが好ましい。以下に、ガラス組成をこのように限定した理由を述べる。なお、以下の各成分の含有量の説明において、「%」は特に断りのない限り「質量%」を意味する。 The barrier layer (amorphous glass layer) made of amorphous glass is made of, for example, a sintered body of amorphous glass powder. Amorphous glass (non-crystalline glass powder) is preferably contained in mass% as a glass composition, and SiO 2 40% or more and B 2 O 3 15% or less. The reason for limiting the glass composition in this way will be described below. In the following description of the content of each component, “%” means “% by mass” unless otherwise specified.
 SiOはガラスネットワークを形成する成分である。SiOの含有量は40%以上、42%以上、45%以上、特に47%以上であることが好ましい。SiOの含有量が少なすぎると、耐酸性に劣り、ガラスセラミック誘電体の表面に金属配線を形成する際に、非晶質ガラス層がバリア層として機能しにくくなる。なお、SiOの含有量が多すぎると、焼結性に劣り、緻密な非晶質ガラス層が得にくくなり、バリア層としての機能が低下しやすくなる。よって、SiOの含有量は85%以下、80%以下、70%以下、特に60%以下であることが好ましい。 SiO 2 is a component that forms a glass network. The content of SiO 2 is preferably 40% or more, 42% or more, 45% or more, particularly 47% or more. If the content of SiO 2 is too small, the acid resistance is inferior, and the amorphous glass layer hardly functions as a barrier layer when forming metal wiring on the surface of the glass ceramic dielectric. Incidentally, the content of SiO 2 is too large, poor sinterability, it difficult to obtain a dense amorphous glass layer, functions as a barrier layer tends to decrease. Therefore, the content of SiO 2 is preferably 85% or less, 80% or less, 70% or less, and particularly preferably 60% or less.
 Bは溶融温度を低下させて溶融性を著しく改善する成分であり、また、非晶質ガラス層を形成するための焼結時にガラス粉末の流動性を向上させる効果がある。ただし、その含有量が多すぎると、耐酸性に劣り、非晶質ガラス層のバリア層としての機能が低下しやすくなる。よって、Bの含有量は15%以下、12%以下、10%以下、特に8%以下であることが好ましい。なお、上記の溶融性改善や流動性の効果を得るためには、Bの含有量は1%以上、2%以上、特に3%以上であることが好ましい。 B 2 O 3 is a component that significantly improves the meltability by lowering the melting temperature, and has the effect of improving the fluidity of the glass powder during sintering for forming an amorphous glass layer. However, when there is too much the content, it will be inferior in acid resistance and the function as a barrier layer of an amorphous glass layer will fall easily. Therefore, the content of B 2 O 3 is preferably 15% or less, 12% or less, 10% or less, and particularly preferably 8% or less. In order to obtain the above-described improvement in meltability and fluidity, the content of B 2 O 3 is preferably 1% or more, 2% or more, particularly 3% or more.
 非晶質ガラス層には、上記成分以外にも以下の成分を含有させることができる。 In addition to the above components, the amorphous glass layer can contain the following components.
 Alは非晶質ガラス層の耐酸性を向上させる成分である。Alの含有量は0~25%、0.1~20%、1~15%、特に2~10%であることが好ましい。Alの含有量が多すぎると、溶融性が低下する傾向がある。 Al 2 O 3 is a component that improves the acid resistance of the amorphous glass layer. The content of Al 2 O 3 is preferably 0 to 25%, 0.1 to 20%, 1 to 15%, particularly 2 to 10%. When the content of Al 2 O 3 is too large, there is a tendency that the melting is lowered.
 MgO、CaO、SrO及びBaOは溶融温度を低下させて溶融性を改善し、軟化点を低下させる成分である。これらの成分の合量は0~45%、0.1~45%、特に1~40%であることが好ましい。これらの成分の合量が多すぎると、耐酸性が低下しやすくなる。なお、MgO、CaO、SrO及びBaOの各成分の含有量は各々0~35%、0.1~33%、特に1~30%であることが好ましい。これらの成分の含有量が多すぎると、耐酸性が低下する傾向がある。 MgO, CaO, SrO and BaO are components that lower the melting temperature to improve the meltability and lower the softening point. The total amount of these components is preferably 0 to 45%, 0.1 to 45%, particularly 1 to 40%. When there is too much total amount of these components, acid resistance will fall easily. The content of each component of MgO, CaO, SrO and BaO is preferably 0 to 35%, 0.1 to 33%, particularly 1 to 30%, respectively. When there is too much content of these components, there exists a tendency for acid resistance to fall.
 ZnOは溶融温度を低下させて溶融性を改善する成分である。ZnOの含有量は0~10%、0.1~7%、特に1~5%であることが好ましい。ZnOの含有量が多すぎると、耐酸性が低下する傾向がある。 ZnO is a component that improves the meltability by lowering the melting temperature. The content of ZnO is preferably 0 to 10%, 0.1 to 7%, particularly 1 to 5%. When there is too much content of ZnO, there exists a tendency for acid resistance to fall.
 また、上記成分以外にも、本発明の効果を損なわない範囲で種々の成分を含有させることができる。例えば、P、La、Ta、TeO、TiO、Nb、Gd、Y、CeO、Sb、SnO、Bi、As及びZrO等を各々15%以下、さらには10%以下、特に5%以下、合量で30%以下の範囲で含有させてもよい。 In addition to the above components, various components can be contained within a range not impairing the effects of the present invention. For example, P 2 O 5 , La 2 O 3 , Ta 2 O 5 , TeO 2 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , Y 2 O 3 , CeO 2 , Sb 2 O 3 , SnO 2 , Bi 2 O 3 , As 2 O 3, ZrO 2, etc. may each be contained in a range of 15% or less, further 10% or less, particularly 5% or less, and a total amount of 30% or less.
 なお、アルカリ金属成分(LiO、NaO、KO等)は非晶質ガラス層の耐酸性を著しく低下させるため、実質的に含有しないことが好ましい。 Incidentally, the alkali metal component (Li 2 O, Na 2 O , K 2 O , etc.) to reduce significantly the acid resistance of the amorphous glass layer preferably substantially free.
 非晶質ガラス層を構成するガラスの軟化点は700~1000℃、特に750~900℃であることが好ましい。軟化点が低すぎると、焼成時に過剰に流動して、均一な厚みのバリア層が得にくくなる。その結果、バリア層としての機能が低下するおそれがある。一方、軟化点が高すぎると、緻密なバリア層が得にくくなり、バリア層としての機能が低下するおそれがある。  The softening point of the glass constituting the amorphous glass layer is preferably 700 to 1000 ° C., particularly preferably 750 to 900 ° C. If the softening point is too low, it will flow excessively during firing, making it difficult to obtain a barrier layer having a uniform thickness. As a result, the function as a barrier layer may be reduced. On the other hand, if the softening point is too high, it is difficult to obtain a dense barrier layer, and the function as a barrier layer may be reduced.
 バリア層の厚みは、その機能を十分に果たすよう、30μm以上、50μm以上、特に80μm以上であることが好ましい。なお、バリア層の厚みが大きすぎると、ガラスセラミック誘電体全体としての誘電率や誘電損失が大きくなるため、300μm以下、200μm以下、特に150μm以下であることが好ましい。 The thickness of the barrier layer is preferably 30 μm or more, 50 μm or more, particularly 80 μm or more so as to sufficiently perform its function. If the thickness of the barrier layer is too large, the dielectric constant and dielectric loss as a whole of the glass-ceramic dielectric increases, and therefore it is preferably 300 μm or less, 200 μm or less, particularly 150 μm or less.
 (ガラスセラミック誘電体の製造方法)
 図2は、本発明のガラスセラミック誘電体の製造方法の一実施形態を示す模式的断面図である。
(Manufacturing method of glass ceramic dielectric)
FIG. 2 is a schematic cross-sectional view showing an embodiment of a method for producing a glass ceramic dielectric of the present invention.
 まず、結晶性ガラス粉末を含有するガラスセラミック層用グリーンシート2’と、非結晶性ガラス粉末を含有するバリア層(非晶質ガラス層)用グリーンシート3’を、公知のグリーンシート法により作製し、準備する。具体的には、原料となる結晶性ガラス粉末や非結晶性ガラス粉末に対し、樹脂バインダーや有機溶剤等を含むビークルを添加して混練してガラスペーストを作製し、得られたガラスペーストをPET(ポリエチレンテレフタレート)フィルム等の基材上に、ドクターブレードによりシート成形することにより各グリーンシートを得る。グリーンシートの厚みは、目的とするガラスセラミック層2やバリア層3の厚みに応じて適宜選択すればよいが、通常は100~250μm程度、さらには120~200μm程度である。必要に応じて、各グリーンシートに機械的加工を施して、導体や電極を形成するためのスルーホールを設けてもよい。 First, a green sheet 2 ′ for a glass ceramic layer containing a crystalline glass powder and a green sheet 3 ′ for a barrier layer (amorphous glass layer) containing an amorphous glass powder are prepared by a known green sheet method. And prepare. Specifically, a glass paste is prepared by adding and kneading a vehicle containing a resin binder or an organic solvent to a crystalline glass powder or an amorphous glass powder as a raw material, and the obtained glass paste is PET. Each green sheet is obtained by sheet-forming with a doctor blade on base materials, such as a (polyethylene terephthalate) film. The thickness of the green sheet may be appropriately selected according to the thickness of the target glass ceramic layer 2 or barrier layer 3, but is usually about 100 to 250 μm, more preferably about 120 to 200 μm. If necessary, each green sheet may be mechanically processed to provide through holes for forming conductors and electrodes.
 次に、得られたガラスセラミック層用グリーンシート2’とバリア層用グリーンシート3’を積層して積層体を得る。ここで、加熱プレスで各グリーンシートを熱圧着することにより、各層の密着性を高めることが好ましい。図2の(a)では、ガラスセラミック層用グリーンシート2’を3枚積層し、その両面にバリア層用グリーンシート3’を1枚ずつ積層して積層体1’を作製している。ガラスセラミック層用グリーンシート2’の積層枚数は目的とするガラスセラミック層2の厚みに応じて適宜選択すればよいが、通常、2~10枚、さらには3~7枚である。バリア層用グリーンシート3’の積層枚数は1枚でよいが、2枚以上積層してもよい。 Next, the obtained glass ceramic layer green sheet 2 ′ and barrier layer green sheet 3 ′ are laminated to obtain a laminate. Here, it is preferable to improve the adhesion of each layer by thermocompression bonding each green sheet with a hot press. In FIG. 2 (a), three green sheets 2 'for glass ceramic layers are laminated, and one green sheet 3' for barrier layers is laminated on both sides to produce a laminate 1 '. The number of glass ceramic layer green sheets 2 'may be appropriately selected according to the desired thickness of the glass ceramic layer 2, but is usually 2 to 10, more preferably 3 to 7. The number of the barrier layer green sheets 3 ′ may be one, or two or more.
 続いて、積層体1’を一対の拘束シート4の間に挟持した状態で焼成する(図2の(b))。これにより、ガラスセラミック層用グリーンシート2’及びバリア層用グリーンシート3’が、それぞれガラスセラミック層2及びバリア層(非晶質ガラス層)3となる。このようにして、ガラスセラミック層2の両主面にバリア層3が形成されてなるガラスセラミック誘電体1を得る(図2の(c))。 Subsequently, the laminate 1 ′ is fired while being sandwiched between the pair of restraint sheets 4 (FIG. 2B). As a result, the glass ceramic layer green sheet 2 ′ and the barrier layer green sheet 3 ′ become the glass ceramic layer 2 and the barrier layer (amorphous glass layer) 3, respectively. Thus, the glass ceramic dielectric 1 in which the barrier layers 3 are formed on both principal surfaces of the glass ceramic layer 2 is obtained ((c) in FIG. 2).
 拘束シート4は、焼成時における積層体1’の面方向の収縮を抑制する役割を果たす。拘束シート4としては、例えばアルミナ粉末等のセラミック粉末を含むグリーンシートを使用することができる。なお、焼成後に拘束シート4を除去した際、拘束シート4に含まれるセラミック粉末がバリア層3の表面に付着する場合があるが、当該セラミック粉末はガラスセラミック誘電体1の誘電損失等の特性にほとんど影響を与えないため、必ずしも研磨等により除去する必要はない。 The restraint sheet 4 plays a role of suppressing shrinkage in the surface direction of the laminated body 1 ′ during firing. As the constraining sheet 4, for example, a green sheet containing ceramic powder such as alumina powder can be used. When the constraining sheet 4 is removed after firing, the ceramic powder contained in the constraining sheet 4 may adhere to the surface of the barrier layer 3. However, the ceramic powder has characteristics such as dielectric loss of the glass ceramic dielectric 1. Since it has almost no influence, it is not always necessary to remove it by polishing or the like.
 焼成温度は、ガラスセラミック層用グリーンシート2’に含まれる結晶性ガラス粉末が十分結晶化する温度であることが好ましい。具体的には、焼成温度は結晶性ガラス粉末の結晶化温度以上、さらには(結晶性ガラス粉末の結晶化開始温度+50℃)以上、特に(結晶性ガラス粉末の結晶化開始温度+100℃)以上であることが好ましい(焼成条件A)。このようにすれば、所望の誘電損失等の特性を満たすガラスセラミック誘電体1を得ることが可能となる。 The firing temperature is preferably a temperature at which the crystalline glass powder contained in the glass ceramic layer green sheet 2 'is sufficiently crystallized. Specifically, the firing temperature is equal to or higher than the crystallization temperature of the crystalline glass powder, more than (crystallization start temperature of the crystalline glass powder + 50 ° C.) or more, particularly (crystallization start temperature of the crystalline glass powder + 100 ° C.) or more. (Sintering condition A) is preferable. In this way, it is possible to obtain a glass ceramic dielectric 1 that satisfies characteristics such as desired dielectric loss.
 別の観点では、焼成温度は、バリア層用グリーンシート3’に含まれる非結晶性ガラス粉末が十分に軟化流動して焼結する温度であることが好ましい。具体的には、焼成温度は非結晶性ガラス粉末の軟化点以上、さらには(非結晶性ガラス粉末の軟化点+50℃)以上、特に(非結晶性ガラス粉末の軟化点+100℃)以上であることが好ましい(焼成条件B)。このようにすれば、所望の特性を有するバリア層3が形成されてなるガラスセラミック誘電体1を得ることが可能となる。 From another viewpoint, the firing temperature is preferably a temperature at which the amorphous glass powder contained in the barrier layer green sheet 3 ′ is sufficiently softened and fluidized to be sintered. Specifically, the firing temperature is equal to or higher than the softening point of the amorphous glass powder, more than (softening point of the amorphous glass powder + 50 ° C.), and particularly higher than (softening point of the amorphous glass powder + 100 ° C.). It is preferable (firing condition B). In this way, it is possible to obtain the glass ceramic dielectric 1 in which the barrier layer 3 having desired characteristics is formed.
 焼成温度は上記の焼成条件A及び焼成条件Bの両方を満たすことが好ましい。これにより、所望の特性を有するガラスセラミック誘電体1を得ることが可能となる。なお、具体的な焼成温度としては、800~1000℃、800~950℃、特に850~900℃であることが好ましい。 The firing temperature preferably satisfies both the firing condition A and the firing condition B described above. Thereby, it is possible to obtain the glass ceramic dielectric 1 having desired characteristics. The specific firing temperature is preferably 800 to 1000 ° C., 800 to 950 ° C., and particularly preferably 850 to 900 ° C.
 なお、得られたガラスセラミック誘電体1におけるバリア層3の表面に、メッキ処理を施して金属配線(図示せず)を形成することにより回路基板を得る。 In addition, a circuit board is obtained by performing a plating process on the surface of the barrier layer 3 in the obtained glass ceramic dielectric 1 to form a metal wiring (not shown).
 以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.
 (実施例1)
 (a)ガラスセラミック層用グリーンシートの作製
 ガラス組成として質量%で、SiO 43.4%、Al 4%、BaO 28%、CaO 10%、MgO 14.5%、CuO 0.1%となるように原料粉末を調製し、1550℃で溶融後、成形、冷却することにより結晶性ガラスを作製した。得られた結晶性ガラスを粉砕し、平均粒子径D50が2μmの結晶性ガラス粉末(結晶化開始温度890℃)を作製した。
Example 1
(A) Production of Green Sheet for Glass Ceramic Layer As a glass composition, it is mass%, SiO 2 43.4%, Al 2 O 3 4%, BaO 28%, CaO 10%, MgO 14.5%, CuO 0.1. The raw material powder was prepared so as to be%, melted at 1550 ° C., and then molded and cooled to produce crystalline glass. The obtained crystalline glass was pulverized to produce a crystalline glass powder (crystallization start temperature of 890 ° C.) having an average particle diameter D 50 of 2 μm.
 結晶性ガラス粉末60質量部、及び、平均粒子径が2μmであるアルミナ粉末40質量部を含む混合粉末に対して、ポリビニルブチラール(PVB)を15質量部、フタル酸ベンジルブチルを3質量部、トルエン50質量部を混合、混練したのち、ドクターブレード法により、厚みが150μmのガラスセラミック層用グリーンシートを得た。 15 parts by mass of polyvinyl butyral (PVB), 3 parts by mass of benzylbutyl phthalate, and toluene with respect to mixed powder containing 60 parts by mass of crystalline glass powder and 40 parts by mass of alumina powder having an average particle diameter of 2 μm After mixing and kneading 50 parts by mass, a green sheet for a glass ceramic layer having a thickness of 150 μm was obtained by a doctor blade method.
 (b)バリア層(非晶質ガラス層)用グリーンシートの作製
 ガラス組成として質量%で、SiO 50%、B 5%、Al 6%、ZnO 2%、CaO 12%、BaO 25%となるように原料粉末を調製し、1200~1700℃で溶融後、成形、冷却することにより非結晶性ガラスを作製した。得られた非結晶性ガラスを粉砕し、平均粒子径D50が2μmの非結晶性ガラス粉末(軟化点850℃)を作製した。
(B) Production of Green Sheet for Barrier Layer (Amorphous Glass Layer) The glass composition is in mass%, SiO 2 50%, B 2 O 3 5%, Al 2 O 3 6%, ZnO 2%, CaO 12%. A raw material powder was prepared so that the BaO would be 25%, melted at 1200 to 1700 ° C., and then molded and cooled to produce an amorphous glass. The obtained amorphous glass was pulverized to produce an amorphous glass powder (softening point 850 ° C.) having an average particle diameter D 50 of 2 μm.
 非結晶性ガラス粉末100質量部に対して、ポリビニルブチラール(PVB)を15質量部、フタル酸ベンジルブチルを3質量部、トルエン50質量部を混合、混練したのち、ドクターブレード法により、厚みが150μmのバリア層用グリーンシートを得た。 After mixing and kneading 15 parts by weight of polyvinyl butyral (PVB), 3 parts by weight of benzylbutyl phthalate and 50 parts by weight of toluene with respect to 100 parts by weight of the amorphous glass powder, the thickness is 150 μm by the doctor blade method. A green sheet for a barrier layer was obtained.
 (c)ガラスセラミック誘電体の作製
 上記で得られた各グリーンシートを30mm×30mmに切断した。ガラスセラミック層用グリーンシートを3枚積層し、その両表面にバリア層用グリーンシートを積層し、加熱プレスして熱圧着することにより積層体を得た。得られた積層体を、拘束シートである一対のアルミナグリーンシートの間に挟持した状態で、900℃で20分間焼成した。これにより、ガラスセラミック層(厚み300μm)の両主面にバリア層(非晶質ガラス層)(厚み100μm)が形成されてなるガラスセラミック誘電体を得た。なお、ガラスセラミック層における析出結晶を、粉末X線回折装置(株式会社リガク RINT2100)によって同定したところ、ディオプサイドとバリウム長石が析出していることが確認された。
(C) Production of glass ceramic dielectric Each green sheet obtained above was cut into 30 mm × 30 mm. Three green sheets for glass ceramic layers were laminated, green sheets for barrier layers were laminated on both surfaces, and a laminate was obtained by hot pressing and thermocompression bonding. The obtained laminate was fired at 900 ° C. for 20 minutes in a state of being sandwiched between a pair of alumina green sheets as a restraint sheet. As a result, a glass ceramic dielectric having a barrier layer (amorphous glass layer) (thickness 100 μm) formed on both main surfaces of the glass ceramic layer (thickness 300 μm) was obtained. In addition, when the precipitated crystal in the glass ceramic layer was identified by a powder X-ray diffractometer (Rigaku RINT2100, Inc.), it was confirmed that diopside and barium feldspar were precipitated.
 (d)耐酸性の評価
 上記で得られたガラスセラミック誘電体を、超音波槽内に準備した10質量%の希釈塩酸に浸漬し、25℃で20分間超音波振動下で保持した後、純水で十分に洗浄し、110℃で30分間乾燥した。ガラスセラミック誘電体について、浸漬前後での質量変化を測定したところ、質量減少は0.1質量%以下であった。また、試料表面を走査型電子顕微鏡により観察したところ、浸漬前後で変質は見られなかった。
(D) Evaluation of acid resistance The glass ceramic dielectric obtained above was immersed in 10% by mass diluted hydrochloric acid prepared in an ultrasonic bath and held at 25 ° C. for 20 minutes under ultrasonic vibration. It was thoroughly washed with water and dried at 110 ° C. for 30 minutes. When the change in mass of the glass ceramic dielectric before and after immersion was measured, the mass reduction was 0.1% by mass or less. Further, when the sample surface was observed with a scanning electron microscope, no alteration was observed before and after immersion.
 (実施例2)
 (a)ガラスセラミック層用グリーンシートの作製
 実施例1と同様にして、厚みが150μmのガラスセラミック層用グリーンシートを得た。
(Example 2)
(A) Production of Green Sheet for Glass Ceramic Layer A green sheet for a glass ceramic layer having a thickness of 150 μm was obtained in the same manner as in Example 1.
 (b)バリア層(非晶質ガラス層)用グリーンシートの作製
 ガラス組成として質量%で、SiO 43%、B 5%、Al 6%、ZnO 7%、CaO 8%、SrO 8%、BaO 23%となるように原料粉末を調製し、1200~1700℃で溶融後、成形、冷却することにより非結晶性ガラスを作製した。得られた非結晶性ガラスを粉砕し、平均粒子径D50が1.5μmの非結晶性ガラス粉末(軟化点800℃)を作製した。
(B) Production of Green Sheet for Barrier Layer (Amorphous Glass Layer) The glass composition is in mass%, SiO 2 43%, B 2 O 3 5%, Al 2 O 3 6%, ZnO 7%, CaO 8%. A raw material powder was prepared so as to be 8% SrO and 23% BaO, melted at 1200 to 1700 ° C., and then molded and cooled to produce an amorphous glass. The obtained amorphous glass was pulverized to produce an amorphous glass powder (softening point 800 ° C.) having an average particle diameter D 50 of 1.5 μm.
 非結晶性ガラス粉末100質量部に対して、ポリビニルブチラール(PVB)を15質量部、フタル酸ベンジルブチルを3質量部、トルエン50質量部を混合、混練したのち、ドクターブレード法により、厚みが150μmの非晶質ガラス層用グリーンシートを得た。 After mixing and kneading 15 parts by weight of polyvinyl butyral (PVB), 3 parts by weight of benzylbutyl phthalate and 50 parts by weight of toluene with respect to 100 parts by weight of the amorphous glass powder, the thickness is 150 μm by the doctor blade method. A green sheet for an amorphous glass layer was obtained.
 (c)ガラスセラミック誘電体の作製
 上記で得られた各グリーンシートを使用して、実施例1と同様にして、ガラスセラミック層(厚み300μm)の両主面にバリア層(非晶質ガラス層)(厚み100μm)が形成されてなるガラスセラミック誘電体を得た。なお、ガラスセラミック層における析出結晶を、粉末X線回折装置(株式会社リガク RINT2100)によって同定したところ、ディオプサイドとバリウム長石が析出していることが確認された。
(C) Production of Glass Ceramic Dielectric A barrier layer (amorphous glass layer) was formed on both main surfaces of the glass ceramic layer (thickness 300 μm) in the same manner as in Example 1 using each of the green sheets obtained above. ) (Thickness of 100 μm) was obtained to obtain a glass ceramic dielectric. In addition, when the precipitated crystal in the glass ceramic layer was identified by a powder X-ray diffractometer (Rigaku RINT2100, Inc.), it was confirmed that diopside and barium feldspar were precipitated.
 (d)耐酸性の評価
 上記で得られたガラスセラミック誘電体について、実施例1と同様にして耐酸性の評価を行ったところ、質量減少は0.1質量%以下であった。また、浸漬前後で試料表面に変質は見られなかった。
(D) Evaluation of acid resistance The glass ceramic dielectric obtained above was evaluated for acid resistance in the same manner as in Example 1. As a result, the mass reduction was 0.1% by mass or less. In addition, no alteration was observed on the sample surface before and after immersion.
 (比較例)
 上記で得られたガラスセラミック層用グリーンシートを3枚積層し、加熱プレスして熱圧着することにより積層体を得た。得られた積層体を、拘束シートである一対のアルミナグリーンシートの間に挟持した状態で、900℃で20分間焼成した。これにより、ガラスセラミック層(厚み300μm)のみからなるガラスセラミック誘電体を得た。
(Comparative example)
Three green sheets for the glass ceramic layer obtained above were laminated, and a laminate was obtained by hot pressing and thermocompression bonding. The obtained laminate was fired at 900 ° C. for 20 minutes in a state of being sandwiched between a pair of alumina green sheets as a restraint sheet. This obtained the glass ceramic dielectric which consists only of a glass ceramic layer (thickness 300 micrometers).
 実施例1と同様にして耐酸性の評価を行ったところ、質量減少は4質量%であった。また、耐酸性評価後、試料表面にはガラス成分の溶出による空隙が多数見られた。 When the acid resistance was evaluated in the same manner as in Example 1, the mass reduction was 4% by mass. Moreover, after the acid resistance evaluation, many voids due to elution of glass components were observed on the sample surface.
 実施例と比較例の耐酸性の評価結果から、本発明のガラスセラミック誘電体はガラスセラミック層の表面にバリア層(非晶質ガラス層)が形成されていることにより耐酸性に優れていることがわかる。そのため、メッキ処理により金属配線を形成した際に、ガラスセラミック層の変質が抑制され、結果として誘電損失等の特性が低下しにくいと考えられる。 From the evaluation results of acid resistance of Examples and Comparative Examples, the glass ceramic dielectric of the present invention has excellent acid resistance due to the formation of a barrier layer (amorphous glass layer) on the surface of the glass ceramic layer. I understand. Therefore, it is considered that when the metal wiring is formed by the plating process, the alteration of the glass ceramic layer is suppressed, and as a result, characteristics such as dielectric loss are unlikely to deteriorate.
 本発明のガラスセラミック誘電体は、マイクロ波用等の回路基板等に好適である。 The glass ceramic dielectric of the present invention is suitable for circuit boards for microwaves and the like.
 1  ガラスセラミック誘電体
 1’ 積層体
 2  ガラスセラミック層
 2’ ガラスセラミック層用グリーンシート
 3  バリア層
 3’ バリア層用グリーンシート
 4  拘束シート
DESCRIPTION OF SYMBOLS 1 Glass ceramic dielectric 1 'Laminated body 2 Glass ceramic layer 2' Green sheet for glass ceramic layers 3 Barrier layer 3 'Green sheet for barrier layers 4 Restraint sheet

Claims (14)

  1.  ガラスセラミック層と、その主面に形成されてなるバリア層と、を備えることを特徴とするガラスセラミック誘電体。 A glass ceramic dielectric comprising a glass ceramic layer and a barrier layer formed on a main surface thereof.
  2.  ガラスセラミック層の両主面にバリア層が形成されていることを特徴とする請求項1に記載のガラスセラミック誘電体。 The glass ceramic dielectric according to claim 1, wherein barrier layers are formed on both main surfaces of the glass ceramic layer.
  3.  バリア層が無機材料からなることを特徴とする請求項1または2に記載のガラスセラミック誘電体。 3. The glass ceramic dielectric according to claim 1, wherein the barrier layer is made of an inorganic material.
  4.  バリア層が非晶質ガラスからなることを特徴とする請求項1~3のいずれかに記載のガラスセラミック誘電体。 4. The glass ceramic dielectric according to claim 1, wherein the barrier layer is made of amorphous glass.
  5.  非晶質ガラスが、ガラス組成として質量%で、SiO 40%以上、B 15%以下含有することを特徴とする請求項4に記載のガラスセラミック誘電体。 5. The glass-ceramic dielectric according to claim 4, wherein the amorphous glass contains, by mass%, SiO 2 40% or more and B 2 O 3 15% or less as a glass composition.
  6.  非晶質ガラスが、実質的にアルカリ金属成分を含有しないことを特徴とする請求項4または5に記載のガラスセラミック誘電体。 The glass ceramic dielectric according to claim 4 or 5, wherein the amorphous glass contains substantially no alkali metal component.
  7.  ガラスセラミック層が、結晶性ガラス粉末を含む粉末の焼結体からなることを特徴とする請求項1~6のいずれかに記載のガラスセラミック誘電体。 7. The glass-ceramic dielectric according to claim 1, wherein the glass-ceramic layer is made of a sintered powder containing a crystalline glass powder.
  8.  結晶性ガラス粉末が、質量%で、SiO 20~65%、CaO 3~25%、MgO 7~30%、Al 0~20%、BaO 5~40%を含有し、かつ質量比で、1≦SiO/BaO≦4の関係を満たすことを特徴とする請求項7に記載のガラスセラミック誘電体。 The crystalline glass powder contains, by mass%, SiO 2 20 to 65%, CaO 3 to 25%, MgO 7 to 30%, Al 2 O 3 0 to 20%, BaO 5 to 40%, and mass ratio. The glass ceramic dielectric according to claim 7, wherein a relationship of 1 ≦ SiO 2 / BaO ≦ 4 is satisfied.
  9.  ガラスセラミック層が、結晶性ガラス粉末 30~100質量%、フィラー粉末 0~70質量%を含む粉末の焼結体からなることを特徴とする請求項7または8に記載のガラスセラミック誘電体。 9. The glass-ceramic dielectric according to claim 7, wherein the glass-ceramic layer comprises a sintered body of powder containing crystalline glass powder 30 to 100% by mass and filler powder 0 to 70% by mass.
  10.  フィラー粉末がAl成分を含むことを特徴とする請求項9に記載のガラスセラミック誘電体。 The glass ceramic dielectric according to claim 9, wherein the filler powder contains an Al component.
  11.  ガラスセラミック層が、ディオプサイド結晶及び長石結晶を含有することを特徴とする請求項1~10のいずれかに記載のガラスセラミック誘電体。 11. The glass ceramic dielectric according to claim 1, wherein the glass ceramic layer contains diopside crystals and feldspar crystals.
  12.  回路基板用として用いられることを特徴とする請求項1~11のいずれかに記載のガラスセラミック誘電体。 12. The glass ceramic dielectric according to claim 1, wherein the glass ceramic dielectric is used for a circuit board.
  13.  請求項12に記載のガラスセラミック誘電体におけるバリア層の表面に金属配線が形成されていることを特徴とする回路基板。 13. A circuit board, wherein a metal wiring is formed on a surface of a barrier layer in the glass ceramic dielectric according to claim 12.
  14.  請求項4~12のいずれかに記載のガラスセラミック誘電体を製造するための方法であって、
     結晶性ガラス粉末を含有するガラスセラミック層用グリーンシートと、非結晶性ガラス粉末を含有するバリア層用グリーンシートを準備する工程、
     ガラスセラミック層用グリーンシートとバリア層用グリーンシートを積層して積層体を得る工程、及び、
     積層体を焼成する工程、
    を備えることを特徴とするガラスセラミック誘電体の製造方法。
    A method for producing a glass-ceramic dielectric according to any of claims 4-12, comprising:
    Preparing a green sheet for a glass ceramic layer containing a crystalline glass powder and a green sheet for a barrier layer containing an amorphous glass powder;
    A step of obtaining a laminate by laminating a green sheet for a glass ceramic layer and a green sheet for a barrier layer; and
    A step of firing the laminate,
    A method for producing a glass-ceramic dielectric, comprising:
PCT/JP2019/007565 2018-03-07 2019-02-27 Glass ceramic dielectric body WO2019172042A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980016831.9A CN111801308A (en) 2018-03-07 2019-02-27 Glass ceramic dielectric

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-040322 2018-03-07
JP2018040322 2018-03-07
JP2019-015504 2019-01-31
JP2019015504A JP7348587B2 (en) 2018-03-07 2019-01-31 glass ceramic dielectric

Publications (1)

Publication Number Publication Date
WO2019172042A1 true WO2019172042A1 (en) 2019-09-12

Family

ID=67847242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007565 WO2019172042A1 (en) 2018-03-07 2019-02-27 Glass ceramic dielectric body

Country Status (1)

Country Link
WO (1) WO2019172042A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122680A (en) * 1999-10-26 2001-05-08 Sumitomo Metal Mining Co Ltd Glass ceramic substrate and method of producing the same
JP2006137618A (en) * 2004-11-10 2006-06-01 Sanyo Electric Co Ltd Dielectric ceramic substrate
JP2007015878A (en) * 2005-07-06 2007-01-25 Murata Mfg Co Ltd Ceramic composition, ceramic substrate, and electronic component
JP2012111681A (en) * 2010-11-04 2012-06-14 Nippon Electric Glass Co Ltd Semiconductor encapsulating non-lead glass and semiconductor encapsulating coating tube
JP2012144417A (en) * 2010-11-17 2012-08-02 Nippon Electric Glass Co Ltd Crystalline glass powder
JP2014236072A (en) * 2013-05-31 2014-12-15 エプコス アクチエンゲゼルシャフトEpcos Ag Multilayered wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001122680A (en) * 1999-10-26 2001-05-08 Sumitomo Metal Mining Co Ltd Glass ceramic substrate and method of producing the same
JP2006137618A (en) * 2004-11-10 2006-06-01 Sanyo Electric Co Ltd Dielectric ceramic substrate
JP2007015878A (en) * 2005-07-06 2007-01-25 Murata Mfg Co Ltd Ceramic composition, ceramic substrate, and electronic component
JP2012111681A (en) * 2010-11-04 2012-06-14 Nippon Electric Glass Co Ltd Semiconductor encapsulating non-lead glass and semiconductor encapsulating coating tube
JP2012144417A (en) * 2010-11-17 2012-08-02 Nippon Electric Glass Co Ltd Crystalline glass powder
JP2014236072A (en) * 2013-05-31 2014-12-15 エプコス アクチエンゲゼルシャフトEpcos Ag Multilayered wiring board

Similar Documents

Publication Publication Date Title
KR101974907B1 (en) Crystalline glass powder
US4621066A (en) Low temperature fired ceramics
JP3240271B2 (en) Ceramic substrate
JP4994052B2 (en) Board and circuit board using the same
EP2168928B1 (en) Glass Ceramic Substrate
JPH05211005A (en) Dielectric composition
JP7348587B2 (en) glass ceramic dielectric
JP4295682B2 (en) Multilayer wiring board
JP2010052953A (en) Glass ceramic composition for wiring board and glass ceramic sintered body
WO2019172042A1 (en) Glass ceramic dielectric body
JP2005272289A (en) Dielectric ceramic composition and laminated ceramic component using the same
JPH0643258B2 (en) Dielectric material for circuit boards
JP2020196635A (en) Alumina sintered body, and printed circuit board
JP2012250903A (en) Glass-ceramic composite material
JP2010034176A (en) Multilayer wiring board, and method of manufacturing the same
JP2003277852A (en) Copper metallized composition and ceramic wiring board
JP4047050B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board using the same
JP2003073162A (en) Glass ceramic and wiring board
JP2003137657A (en) Glass ceramics and method of manufacturing the same and wiring board
JP3101966B2 (en) High thermal expansion Al2O3-SiO2-based sintered body and method for producing the same
JP2012051767A (en) Crystalline glass powder
WO2022168624A1 (en) Multilayer glass ceramic dielectric material, sintered body, method for producing sintered body, and circuit member for high frequency use
JP4345458B2 (en) Glass ceramic substrate
JP5499766B2 (en) Glass ceramic substrate, method for manufacturing the same, and wiring substrate
CN116848594A (en) Laminated glass ceramic dielectric material, sintered body, method for producing sintered body, and circuit member for high frequency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19763158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19763158

Country of ref document: EP

Kind code of ref document: A1