WO2012066976A1 - Crystalline glass powder - Google Patents

Crystalline glass powder Download PDF

Info

Publication number
WO2012066976A1
WO2012066976A1 PCT/JP2011/075700 JP2011075700W WO2012066976A1 WO 2012066976 A1 WO2012066976 A1 WO 2012066976A1 JP 2011075700 W JP2011075700 W JP 2011075700W WO 2012066976 A1 WO2012066976 A1 WO 2012066976A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
powder
crystals
dielectric
mass
Prior art date
Application number
PCT/JP2011/075700
Other languages
French (fr)
Japanese (ja)
Inventor
克 岩尾
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020137012726A priority Critical patent/KR101974907B1/en
Priority to CN201180055513.7A priority patent/CN103221355B/en
Publication of WO2012066976A1 publication Critical patent/WO2012066976A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/16Compositions for glass with special properties for dielectric glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates

Definitions

  • the present invention relates to a crystalline glass powder used as a glass ceramic dielectric material.
  • glass ceramic dielectrics are known as insulating materials for ceramic multilayer substrates, thick film circuit components, semiconductor packages and the like on which ICs, LSIs and the like are mounted at high density.
  • thinning is also required for substrates used in electronic components.
  • a glass ceramic dielectric formed by depositing diopside crystals (2SiO 2 ⁇ CaO ⁇ MgO) obtained by firing glass ceramic powder containing crystalline glass powder is used for the substrate.
  • diopside crystals (2SiO 2 ⁇ CaO ⁇ MgO) obtained by firing glass ceramic powder containing crystalline glass powder is used.
  • the presence of minute bubbles (voids) inside the glass ceramic dielectric makes the problem of wiring disconnection prominent. Also, dielectric loss tends to increase due to bubbles.
  • Bubbles generated inside the glass ceramic dielectric are caused by the high rate of formation of non-flowing parts due to crystallization in the sintering process of the raw crystalline glass powder, which hinders softening deformation of the entire sintered body. Arises. That is, when crystallization proceeds without the crystalline glass powder being softened and deformed, volume shrinkage due to crystallization does not spread over the entire sintered body, and bubbles remain in the gaps between the glass powders.
  • an object of the present invention is to provide a crystalline glass powder that can reduce internal bubbles and has low dielectric loss characteristics that can sufficiently cope with a high-performance high-frequency circuit.
  • the present inventor has found that the above problem can be solved by a crystalline glass powder in which a specific crystal is precipitated together with a diopside crystal as a main crystal, and proposes as the present invention.
  • the present invention relates to a crystalline glass powder characterized in that diopside crystals and feldspar crystals are precipitated as main crystals by heat treatment.
  • the present inventor has made it possible to crystallize part or all of the glass phase remaining after the precipitation of the diopside crystal into a feldspar crystal having a crystallization start temperature higher than that of the diopside crystal and a small volume shrinkage. It has been found that by using glass powder, the residual glass phase can be reduced while suppressing the generation of bubbles accompanying crystal precipitation as much as possible. This makes it possible to produce a glass ceramic dielectric with a low bubble rate and low low dielectric loss.
  • the “crystalline glass” means an amorphous glass having a property that crystals are precipitated from the glass matrix upon heat treatment.
  • the “diopside crystal” includes not only diopside crystals but also diopside solid solution crystals.
  • heat treatment means that crystallization sufficiently proceeds at a temperature higher than the crystallization start temperature of diopside crystals and feldspar crystals, for example, heat treatment at 800 to 1000 ° C. for 20 minutes or more.
  • the crystalline glass of the present invention is characterized in that the feldspar crystal is a barium feldspar crystal (BaAl 2 Si 2 O 8 ).
  • the crystalline glass of the present invention has a glass composition of mass%, SiO 2 20 to 65%, CaO 3 to 25%, MgO 7 to 30%, Al 2 O 3 0 to 20%, BaO 5 to It is characterized by containing 40% and satisfying the relationship of 1 ⁇ SiO 2 / BaO ⁇ 4 by mass ratio.
  • the crystalline glass of the present invention has the above composition, diopside crystals and feldspar crystals are likely to be precipitated as the main crystals by heat treatment.
  • SiO 2 —CaO—MgO-based glass has a strong tendency to devitrify, it can be stabilized by adding alkaline earth oxides such as Al 2 O 3 and BaO, and has excellent mass productivity. Glass can be obtained.
  • the present invention relates to a glass ceramic material comprising any one of the above crystalline glass powders 60 to 100% by mass and ceramic powders 0 to 40% by mass.
  • the glass ceramic material of the present invention is characterized in that the ceramic powder contains an Al component.
  • the ceramic powder contains an Al component, Si or Ba in the remaining glass phase after the precipitation of the diopside crystal reacts with the Al component in the ceramic powder, and feldspar crystals are likely to precipitate.
  • the present invention relates to a glass ceramic dielectric obtained by firing any one of the above glass ceramic materials.
  • the glass-ceramic dielectric of the present invention is characterized by containing 20 to 65% by mass of feldspar crystals.
  • the glass ceramic dielectric of the present invention is characterized in that the bubble ratio is 3% by volume or less.
  • the glass ceramic dielectric of the present invention is characterized in that the dielectric constant ⁇ is 6 to 11 and the dielectric loss tan ⁇ at a frequency of 0.1 GHz or more is 20 ⁇ 10 ⁇ 4 or less.
  • the glass-ceramic dielectric of the present invention is characterized by being used for a microwave circuit component material.
  • the crystalline glass powder of the present invention is characterized in that diopside crystals and feldspar crystals are precipitated as main crystals by heat treatment.
  • the feldspar crystal is preferably a barium feldspar crystal.
  • barium feldspar crystals By precipitating barium feldspar crystals, the residual glass phase after the heat treatment can be effectively reduced, and a glass-ceramic dielectric having a small bubble ratio and dielectric loss can be easily obtained.
  • calcium feldspar crystals (CaAl 2 Si 2 O 8 ) or the like may be precipitated within a range in which the dielectric loss and the bubble ratio do not increase.
  • the crystalline glass powder of the present invention has a glass composition of mass%, SiO 2 20 to 65%, CaO 3 to 25%, MgO 7 to 30%, Al 2 O 3 0 to 20%, BaO 5 to 40%. in content and, and the weight ratio, it is preferable to satisfy a relation of 1 ⁇ SiO 2 / BaO ⁇ 4 .
  • % means “% by mass” unless otherwise specified.
  • SiO 2 is a glass network former and is a constituent of diopside crystals and feldspar crystals.
  • the content of SiO 2 is preferably 20 to 65%, 30 to 65%, particularly 40 to 55%. If the content of SiO 2 is 20% or more, it becomes easier to vitrify, and if it is 65% or less, low-temperature firing (for example, 1000 ° C. or less) tends to be easier.
  • CaO is a constituent component of diopside crystal, and its content is preferably 3 to 25%, 3 to 20%, and particularly preferably 7 to 15%. If the CaO content is 3% or more, diopside crystals are more likely to precipitate, and as a result, the dielectric loss of the glass ceramic dielectric tends to be low. If the content of CaO is 25% or less, the fluidity of the glass tends to be improved.
  • MgO is also a constituent component of the diopside crystal, and its content is preferably 7 to 30%, 8 to 30%, 11 to 30%, particularly 12 to 20%. If the MgO content is 7% or more, crystals are more likely to precipitate, and if it is 30% or less, vitrification is easier.
  • Al 2 O 3 is a component for stabilizing the glass, and its content is preferably 0 to 20%, 0.5 to 20%, particularly 1 to 10%. If the content of Al 2 O 3 is 20% or less, diopside crystals are more likely to precipitate, and as a result, the dielectric loss of the glass ceramic dielectric tends to be low.
  • BaO is a constituent of barium feldspar crystals, and its content is preferably 5 to 40%, particularly 10 to 35%. If the content of BaO is 5% or more, barium feldspar crystals are more likely to precipitate. On the other hand, if the BaO content is 40% or less, the amount of diopside crystals deposited tends to increase, and as a result, the dielectric loss of the glass ceramic dielectric is unlikely to increase.
  • feldspar crystals can be efficiently precipitated from the remaining glass phase after firing. Specifically, it is preferable that the relationship 1 ⁇ SiO 2 / BaO ⁇ 4, particularly 1.05 ⁇ SiO 2 /BaO ⁇ 3.95 is satisfied. When the ratio of SiO 2 and BaO is within this range, feldspar crystals are more likely to precipitate or vitrification is more likely.
  • ZnO is a component that facilitates vitrification, and its content is preferably 0 to 20%, particularly preferably 0.1 to 15%. If the ZnO content is 20% or less, the crystallinity becomes stronger and the amount of precipitated diopside crystals tends to increase. As a result, the dielectric loss of the glass ceramic dielectric is difficult to increase.
  • CuO is a component that has an effect of suppressing the coloring of the glass ceramic dielectric due to Ag used as the wiring in the insulating material substrate.
  • the CuO content is preferably 0 to 1%, particularly preferably 0.01 to 0.2%. If the content of CuO is 1% or less, the dielectric loss of the glass ceramic dielectric tends to be small.
  • CeO 2 , MnO, Sb 2 O 3 , and SnO are components having the effect of suppressing coloring of the glass ceramic dielectric by Ag used as wiring in the insulating material substrate, similarly to CuO.
  • the contents of CeO 2 , MnO, Sb 2 O 3 and SnO are each preferably 0 to 1%, particularly preferably 0.01 to 0.8%. If the contents of CeO 2 , MnO, Sb 2 O 3 and SnO are each 1% or less, the dielectric loss of the glass ceramic dielectric tends to be small.
  • TiO 2 and ZrO 2 are components that have the effect of improving the chemical resistance (acid resistance and alkali resistance) of the glass ceramic dielectric.
  • the content of TiO 2 is preferably 0 to 15%, particularly preferably 0.1 to 13%. If the content of TiO 2 is 15% or less, the dielectric loss of the glass ceramic dielectric tends to be small.
  • the content of ZrO 2 is preferably 0 to 15%, particularly preferably 0.1 to 13%. If ZrO 2 is 15% or less, the dielectric loss of the glass ceramic dielectric tends to be small.
  • alkali metal oxides such as Li 2 O, Na 2 O, and K 2 O tend to cut the glass network and increase the dielectric loss.
  • the insulating properties of the glass ceramic dielectric tend to decrease. Accordingly, the total amount of alkali metal oxides is preferably 5% or less, particularly 1% or less, and most preferably not substantially contained (specifically, less than 0.1%).
  • the average particle diameter D 50 of the crystallizable glass powder of the present invention is 10 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the lower limit is not particularly limited, but is preferably 0.1 ⁇ m or more from the viewpoint of ease of handling and processing cost.
  • the particle size of the crystalline glass powder is measured by a laser diffraction scattering method.
  • the crystalline glass of the present invention has an alumina powder, cordierite powder, mullite powder, quartz powder, zircon powder, titania powder, zirconia as necessary for the purpose of improving characteristics such as thermal expansion coefficient, toughness and dielectric constant.
  • Ceramic powder such as powder or quartz glass powder or the like may be used alone or in combination as a glass ceramic material.
  • the glass ceramic material of the present invention comprises crystalline glass powder 60-100% by weight and ceramic powder 0-40% by weight, preferably crystalline glass powder 65-99.5% by weight and ceramic powder 0.05-35% by weight, More preferably, it contains 70 to 99% by mass of crystalline glass powder and 1 to 30% by mass of ceramic powder. When the content of the ceramic powder exceeds 40% by mass, densification of the glass ceramic dielectric tends to be difficult.
  • the average particle size D 50 of the ceramic powder is 0.01 ⁇ 100 [mu] m, in particular 0.1 ⁇ 50 [mu] m.
  • the average particle diameter D 50 of the ceramic powder is 0.01 ⁇ m or more, not dissolve the crystalline glass powder, thermal expansion coefficient, toughness, dielectric constant, tends to obtain the effect of improving properties such as chemical resistance.
  • the average particle diameter D 50 of the ceramic powder 100 ⁇ m or less not interfere with the flow of the crystallizable glass powder during firing, bubbles are less likely to occur in the glass ceramic dielectric.
  • each component of Si and Ba in the residual glass phase after diopside crystal precipitation reacts with Al component in the ceramic powder to produce feldspar crystals. Precipitates easily.
  • the ceramic powder containing Al component include alumina powder, cordierite powder, mullite powder, anorthite feldspar, albite feldspar, barium aluminate, aluminum titanate, spinel, calcium aluminate, magnesium aluminate, aluminum nitride, and the like. .
  • the crystallinity can be improved by mixing about 0.1 to 1% by mass of diopside or barium feldspar crystals as crystal nuclei.
  • the glass ceramic material containing the crystalline glass of the present invention is heat-treated at a temperature equal to or higher than the crystallization start temperature of the crystalline glass, thereby obtaining a glass ceramic dielectric in which diopside crystals and feldspar crystals are precipitated as main crystals.
  • the content of diopside crystals in the glass ceramic dielectric is preferably 35% by mass or more, particularly preferably 40% by mass or more. If the content of the diopside crystal is 35% by mass or more, the dielectric loss tends to be small.
  • the upper limit of the content of the diopside crystal is preferably 80% by mass or less, particularly preferably 70% by mass or less. If the content of the diopside crystal is 80% by mass or less, bubbles in the glass ceramic dielectric are reduced.
  • the content of feldspar crystals in the glass ceramic dielectric is preferably 20 to 65% by mass, 25 to 60% by mass, particularly 30 to 55% by mass. If the content of feldspar crystals is 20% by mass or more, the bubble ratio in the glass ceramic dielectric is decreased, and as a result, the low dielectric loss tends to be decreased. If the content of the feldspar crystal is 65% by mass or less, the diopside crystal is relatively increased, so that the dielectric loss tends to be reduced and the mechanical strength tends to be improved.
  • the residual glass phase is preferably 0.5% by mass or more, particularly 1% by mass or more. If the residual glass phase is 0.5% by mass or more, bubbles are hardly generated in the glass ceramic dielectric. In addition, it is preferable that the upper limit of content of a residual glass phase is 20 mass% or less, especially 10 mass% or less. If the content of the residual glass phase is 20% by mass or less, diopside crystals and feldspar crystals are relatively small, and the dielectric loss tends to be small.
  • the glass ceramic dielectric of the present invention preferably has a bubble ratio of 3% by volume or less, particularly 2% by volume or less.
  • the bubble ratio is 3% by volume or less, when used as an insulating material substrate, there is a tendency that disconnection of wiring hardly occurs or dielectric loss is reduced.
  • the glass ceramic dielectric of the present invention is characterized by a low dielectric constant and low dielectric loss in a high frequency region.
  • the glass ceramic dielectric of the present invention has a dielectric loss tan ⁇ of 20 ⁇ 10 ⁇ 4 or less at 25 ° C. in a high frequency region having a dielectric constant of 6 to 11, particularly 6 to 10, and 0.1 GHz or more. It is preferably 18 ⁇ 10 ⁇ 4 or less, particularly preferably 16 ⁇ 10 ⁇ 4 or less.
  • the crystalline glass powder of the present invention can be obtained by preparing a raw material powder so as to have a predetermined composition, melting at a temperature of 1300 to 1650 ° C., forming, cooling, and pulverizing.
  • the glass ceramic dielectric of the present invention is manufactured as follows, for example. First, ceramic powder is mixed as necessary with the crystalline glass powder obtained as described above, and a predetermined amount of binder, plasticizer and solvent are added to prepare a slurry.
  • binder include polyvinyl butyral resin and methacrylic acid resin
  • plasticizer include dibutyl phthalate
  • solvent include toluene and methyl ethyl ketone.
  • the resulting slurry is formed into a green sheet by the doctor blade method.
  • the green sheet is dried and cut into predetermined dimensions. If necessary, mechanical processing is performed to form a through hole, and a low resistance metal material to be a conductor or an electrode is printed on the surface of the through hole and the green sheet. Subsequently, a plurality of green sheets are laminated and integrated by thermocompression bonding.
  • the laminated green sheet is fired at 800 to 1000 ° C., 800 to 950 ° C., particularly 850 to 900 ° C. to deposit diopside crystals and feldspar crystals from the crystalline glass powder, and has an insulating layer made of glass ceramic.
  • a multilayer substrate i.e. a glass ceramic dielectric, can be obtained.
  • substrate was demonstrated here, it is not limited to this, For example, it can apply also to electronic component materials, such as a thick film circuit component and a semiconductor package. Is possible.
  • Tables 1 to 3 show examples of the present invention (sample Nos. 1 to 15), and Table 4 shows comparative examples (samples Nos. 16 to 20).
  • Each sample was prepared as follows. First, a raw material powder was prepared so as to have the composition shown in the table, melted at 1550 ° C., and then molded and cooled to produce crystalline glass. The resulting milled crystalline glass, the average particle diameter D 50 was prepared crystalline glass powder 2 [mu] m.
  • the ceramic powder shown in the table was mixed at a predetermined ratio with each crystalline glass powder, and the crystal was deposited by holding at the firing temperature shown in the table for 20 minutes to obtain a glass ceramic dielectric.
  • the precipitated crystals were identified, and the ratio of precipitated crystals and glass phase, bubble ratio, dielectric constant at 25 ° C. and dielectric loss were measured. The results are shown in Tables 1 to 4.
  • Precipitated crystals in the glass ceramic dielectric were identified by a powder X-ray diffractometer (Rigaku RINT 2100). The ratio of the precipitated crystals and the remaining glass phase was calculated from the X-ray diffraction pattern by a multiple peak separation method.
  • the bubble ratio was determined by image analysis of the SEM image of the glass ceramic dielectric cross section.
  • WINROOF of Mitani Corporation was used for image analysis. The image analysis procedure is shown below.
  • the outline of the bubble part appears brighter than the glass matrix part due to the edge effect. Therefore, the SEM image was binarized using WINROOF, and the outline of the bubble portion and the glass matrix portion were color-coded. Further, the bubble portion and the glass matrix portion were color-coded by painting the inside of the bubble with the same color as the outline of the bubble portion. Thereafter, the bubble ratio was calculated according to the following formula. It is generally known that the area ratio of bubbles in the glass ceramic dielectric cross section is equal to the volume ratio of bubbles in the glass ceramic dielectric (for example, Yoshihiro Kiyomiya, “Volume ratio of particles in composite material”). "Relationship between area ratio” and Meisei University, Faculty of Science and Engineering Bulletin 42, 2006, p. 21-24).
  • Bubble rate (volume%) (total area of bubble part / total area of processed image) ⁇ 100
  • the crystalline glass of the present invention Since the crystalline glass of the present invention has few internal bubbles and low dielectric loss in the high frequency band, it is suitable as a glass ceramic dielectric material used for small or thin multilayer substrates, microwave circuit components, packages, and the like. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Glass Compositions (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Provided is a crystalline glass powder which is reduced in internal air bubbles, while having low dielectric loss characteristics that are sufficiently suitable for a high performance high frequency circuit. The crystalline glass powder is characterized in that a diopside crystal and a feldspar crystal are deposited as primary crystals by a heat treatment. It is preferable that the crystalline glass powder has a glass composition that contains, in mass%, 20-65% of SiO2, 3-25% of CaO, 7-30% of MgO, 0-20% of Al2O3 and 5-40% of BaO and has a mass ratio satisfying the relation of 1 ≤ SiO2/BaO ≤ 4.

Description

結晶性ガラス粉末Crystalline glass powder
 本発明はガラスセラミック誘電体材料として用いられる結晶性ガラス粉末に関するものである。 The present invention relates to a crystalline glass powder used as a glass ceramic dielectric material.
 従来より、IC、LSI等が高密度実装されるセラミック多層基板、厚膜回路部品、半導体パッケージ等の絶縁材料としてガラスセラミック誘電体が知られている。 Conventionally, glass ceramic dielectrics are known as insulating materials for ceramic multilayer substrates, thick film circuit components, semiconductor packages and the like on which ICs, LSIs and the like are mounted at high density.
 近年、通信機器の分野においては、利用される周波数帯域が0.1GHz以上の高周波となりつつあり、このような高周波帯域を利用する多層基板等の絶縁材料として使用可能な結晶性ガラス組成物の開発が進められている。また、高性能な高周波回路基板や誘電体フィルター等には、例えば誘電損失tanδが20×10-4以下という低誘電損失特性が求められている(例えば、特許文献1参照)。 In recent years, in the field of communication equipment, the frequency band used is becoming a high frequency of 0.1 GHz or more, and development of a crystalline glass composition that can be used as an insulating material such as a multilayer substrate using such a high frequency band. Is underway. In addition, high-performance high-frequency circuit boards, dielectric filters, and the like are required to have low dielectric loss characteristics such as dielectric loss tan δ of 20 × 10 −4 or less (see, for example, Patent Document 1).
日本国特開平10-120436号公報Japanese Laid-Open Patent Publication No. 10-120436
 ところで、近年、電子部品に対してますます小型化、薄型化のニーズが高まっており、電子部品に用いられる基板についても薄型化が求められている。当該基板には、例えば結晶性ガラス粉末を含むガラスセラミック粉末を焼成して得られる、ディオプサイド結晶(2SiO・CaO・MgO)を析出してなるガラスセラミック誘電体が使用される。しかし、基板の薄型化が進む中、ガラスセラミック誘電体内部に微小な気泡(空隙)が存在すると、配線の断線の問題が顕著になる。また、気泡が原因で誘電損失も増大する傾向にある。 Incidentally, in recent years, there is an increasing need for miniaturization and thinning of electronic components, and thinning is also required for substrates used in electronic components. For the substrate, for example, a glass ceramic dielectric formed by depositing diopside crystals (2SiO 2 · CaO · MgO) obtained by firing glass ceramic powder containing crystalline glass powder is used. However, as the thickness of the substrate is reduced, the presence of minute bubbles (voids) inside the glass ceramic dielectric makes the problem of wiring disconnection prominent. Also, dielectric loss tends to increase due to bubbles.
 ガラスセラミック誘電体内部に発生する気泡は、原料結晶性ガラス粉末の焼結工程において、結晶化による非流動部分の形成速度が速く、焼結体全体の軟化変形が阻害されることが原因となって生じる。すなわち、結晶性ガラス粉末が軟化変形することなく結晶化が進行すると、結晶化に伴う体積収縮が焼結体全体にいきわたらず、各ガラス粉末間の空隙に気泡が残存する。 Bubbles generated inside the glass ceramic dielectric are caused by the high rate of formation of non-flowing parts due to crystallization in the sintering process of the raw crystalline glass powder, which hinders softening deformation of the entire sintered body. Arises. That is, when crystallization proceeds without the crystalline glass powder being softened and deformed, volume shrinkage due to crystallization does not spread over the entire sintered body, and bubbles remain in the gaps between the glass powders.
 そこで、焼成時における結晶化速度を遅くして焼結体の軟化変形を可能にし、焼結体全体を均一に収縮させれば、ガスの放出やガラス相へのガスの溶解も促進され、気泡の残存の抑制に効果的である。結晶化速度を遅くするためには、結晶化後にガラス相が残存するように、結晶性ガラスの組成をディオプサイド結晶の理論組成からずらすことが有効であると考えられる。しかしながら、ガラスセラミック誘電体中における残存ガラス相の割合が多すぎると、誘電損失を上昇させる原因となるという問題がある。特に、残存ガラス相が多成分系組成である場合、誘電損失の上昇が顕著であり、高周波回路基板への使用が困難になる。 Therefore, by slowing the crystallization rate during firing to allow softening deformation of the sintered body and uniformly shrinking the entire sintered body, gas release and gas dissolution into the glass phase are promoted, and bubbles are produced. It is effective in suppressing the residual of In order to slow down the crystallization rate, it is considered effective to shift the composition of the crystalline glass from the theoretical composition of the diopside crystal so that the glass phase remains after crystallization. However, if the ratio of the remaining glass phase in the glass ceramic dielectric is too large, there is a problem that it causes an increase in dielectric loss. In particular, when the remaining glass phase has a multi-component composition, the dielectric loss is remarkably increased, making it difficult to use the high-frequency circuit board.
 そこで、本発明は、内部の気泡を低減し得るとともに、高性能な高周波回路に十分対応可能な低誘電損失特性を有する結晶性ガラス粉末を提供することを目的とする。 Accordingly, an object of the present invention is to provide a crystalline glass powder that can reduce internal bubbles and has low dielectric loss characteristics that can sufficiently cope with a high-performance high-frequency circuit.
 本発明者は種々検討を行った結果、主結晶としてディオプサイド結晶とともに特定の結晶が析出する結晶性ガラス粉末により前記課題を解決できることを見出し、本発明として提案するものである。 As a result of various studies, the present inventor has found that the above problem can be solved by a crystalline glass powder in which a specific crystal is precipitated together with a diopside crystal as a main crystal, and proposes as the present invention.
 すなわち、本発明は、熱処理によって、主結晶としてディオプサイド結晶と長石結晶が析出することを特徴とする結晶性ガラス粉末に関する。 That is, the present invention relates to a crystalline glass powder characterized in that diopside crystals and feldspar crystals are precipitated as main crystals by heat treatment.
 本発明者は、ディオプサイド結晶が析出した後に残存するガラス相の一部または全部を、結晶化開始温度がディオプサイド結晶より高くかつ体積収縮率の小さい長石結晶に結晶化可能な結晶性ガラス粉末を用いることにより、結晶析出に伴う気泡の発生を極力抑制しつつ、残存ガラス相を低減することができること見出した。これにより、気泡率が小さく低誘電損失が小さいガラスセラミック誘電体を作製することが可能となる。 The present inventor has made it possible to crystallize part or all of the glass phase remaining after the precipitation of the diopside crystal into a feldspar crystal having a crystallization start temperature higher than that of the diopside crystal and a small volume shrinkage. It has been found that by using glass powder, the residual glass phase can be reduced while suppressing the generation of bubbles accompanying crystal precipitation as much as possible. This makes it possible to produce a glass ceramic dielectric with a low bubble rate and low low dielectric loss.
 なお、本発明において「結晶性ガラス」とは、熱処理するとガラスマトリクス中から結晶が析出する性質を有する非晶質のガラスを意味する。また、「ディオプサイド結晶」とは、ディオプサイド結晶だけでなくディオプサイド固溶体結晶も含む。 In the present invention, the “crystalline glass” means an amorphous glass having a property that crystals are precipitated from the glass matrix upon heat treatment. The “diopside crystal” includes not only diopside crystals but also diopside solid solution crystals.
 また「熱処理」とは、ディオプサイド結晶および長石結晶の結晶化開始温度以上で結晶化を充分に進行させることを意味し、例えば800~1000℃で20分以上の熱処理をいう。 Further, “heat treatment” means that crystallization sufficiently proceeds at a temperature higher than the crystallization start temperature of diopside crystals and feldspar crystals, for example, heat treatment at 800 to 1000 ° C. for 20 minutes or more.
 第二に、本発明の結晶性ガラスは、長石結晶が、バリウム長石結晶(BaAlSi)であることを特徴とする。 Second, the crystalline glass of the present invention is characterized in that the feldspar crystal is a barium feldspar crystal (BaAl 2 Si 2 O 8 ).
 第三に、本発明の結晶性ガラスは、ガラス組成として質量%で、SiO 20~65%、CaO 3~25%、MgO 7~30%、Al 0~20%、BaO 5~40%を含有し、かつ質量比で、1≦SiO/BaO≦4の関係を満たすことを特徴とする。 Third, the crystalline glass of the present invention has a glass composition of mass%, SiO 2 20 to 65%, CaO 3 to 25%, MgO 7 to 30%, Al 2 O 3 0 to 20%, BaO 5 to It is characterized by containing 40% and satisfying the relationship of 1 ≦ SiO 2 / BaO ≦ 4 by mass ratio.
 本発明の結晶性ガラスが上記組成を有することにより、熱処理により、主結晶としてディオプサイド結晶と長石結晶が析出しやすくなる。なお、SiO-CaO-MgO系ガラスは失透傾向が強いが、Alや、BaO等のアルカリ土類酸化物を加えることでガラスを安定化することができ、量産性に優れたガラスを得ることができる。 When the crystalline glass of the present invention has the above composition, diopside crystals and feldspar crystals are likely to be precipitated as the main crystals by heat treatment. Although SiO 2 —CaO—MgO-based glass has a strong tendency to devitrify, it can be stabilized by adding alkaline earth oxides such as Al 2 O 3 and BaO, and has excellent mass productivity. Glass can be obtained.
 第四に、本発明は、前記いずれかの結晶性ガラス粉末60~100質量%およびセラミック粉末0~40質量%を含むことを特徴とするガラスセラミック材料に関する。 Fourthly, the present invention relates to a glass ceramic material comprising any one of the above crystalline glass powders 60 to 100% by mass and ceramic powders 0 to 40% by mass.
 第五に、本発明のガラスセラミック材料は、セラミック粉末がAl成分を含むことを特徴とする。 Fifth, the glass ceramic material of the present invention is characterized in that the ceramic powder contains an Al component.
 セラミック粉末がAl成分を含むと、ディオプサイド結晶析出後の残存ガラス相におけるSiや、Ba等のアルカリ土類金属とセラミック粉末中のAl成分が反応して長石結晶が析出しやすくなる。 If the ceramic powder contains an Al component, Si or Ba in the remaining glass phase after the precipitation of the diopside crystal reacts with the Al component in the ceramic powder, and feldspar crystals are likely to precipitate.
 第六に、本発明は、前記いずれかのガラスセラミック材料を焼成してなるガラスセラミック誘電体に関する。 Sixth, the present invention relates to a glass ceramic dielectric obtained by firing any one of the above glass ceramic materials.
 第七に、本発明のガラスセラミック誘電体は、長石結晶を20~65質量%含有することを特徴とする。 Seventh, the glass-ceramic dielectric of the present invention is characterized by containing 20 to 65% by mass of feldspar crystals.
 第八に、本発明のガラスセラミック誘電体は、気泡率が3体積%以下であることを特徴とする。 Eighth, the glass ceramic dielectric of the present invention is characterized in that the bubble ratio is 3% by volume or less.
 第九に、本発明のガラスセラミック誘電体は、誘電率εが6~11、かつ周波数0.1GHz以上での誘電損失tanδが20×10-4以下であることを特徴とする。 Ninthly, the glass ceramic dielectric of the present invention is characterized in that the dielectric constant ε is 6 to 11 and the dielectric loss tan δ at a frequency of 0.1 GHz or more is 20 × 10 −4 or less.
 第十に、本発明のガラスセラミック誘電体は、マイクロ波用回路部品材料に用いることを特徴とする。 Tenth, the glass-ceramic dielectric of the present invention is characterized by being used for a microwave circuit component material.
 本発明の結晶性ガラス粉末は、熱処理によって、主結晶としてディオプサイド結晶と長石結晶が析出することを特徴とする。 The crystalline glass powder of the present invention is characterized in that diopside crystals and feldspar crystals are precipitated as main crystals by heat treatment.
 長石結晶としては、バリウム長石結晶であることが好ましい。バリウム長石結晶を析出させることにより、熱処理後の残存ガラス相を効果的に低減することができ、気泡率および誘電損失が小さいガラスセラミック誘電体が得られやすくなる。なお、そのほかにも誘電損失や気泡率が上昇しない範囲でカルシウム長石結晶(CaAlSi)等が析出してもかまわない。 The feldspar crystal is preferably a barium feldspar crystal. By precipitating barium feldspar crystals, the residual glass phase after the heat treatment can be effectively reduced, and a glass-ceramic dielectric having a small bubble ratio and dielectric loss can be easily obtained. In addition, calcium feldspar crystals (CaAl 2 Si 2 O 8 ) or the like may be precipitated within a range in which the dielectric loss and the bubble ratio do not increase.
 本発明の結晶性ガラス粉末は、ガラス組成として質量%で、SiO 20~65%、CaO 3~25%、MgO 7~30%、Al 0~20%、BaO 5~40%を含有し、かつ質量比で、1≦SiO/BaO≦4の関係を満たすことが好ましい。以下に、ガラスの組成を上記のように限定した理由を述べる。なお、以下の成分含有量の説明において、「%」は特に断りのない限り「質量%」を意味する。 The crystalline glass powder of the present invention has a glass composition of mass%, SiO 2 20 to 65%, CaO 3 to 25%, MgO 7 to 30%, Al 2 O 3 0 to 20%, BaO 5 to 40%. in content and, and the weight ratio, it is preferable to satisfy a relation of 1 ≦ SiO 2 / BaO ≦ 4 . The reason for limiting the glass composition as described above will be described below. In the following description of component contents, “%” means “% by mass” unless otherwise specified.
 SiOはガラスのネットワークフォーマーであるとともに、ディオプサイド結晶および長石結晶の構成成分である。SiOの含有量は20~65%、30~65%、特に40~55%であることが好ましい。SiOの含有量が20%以上であればよりガラス化し易くなり、65%以下であれば低温焼成(例えば、1000℃以下)がより容易になる傾向がある。 SiO 2 is a glass network former and is a constituent of diopside crystals and feldspar crystals. The content of SiO 2 is preferably 20 to 65%, 30 to 65%, particularly 40 to 55%. If the content of SiO 2 is 20% or more, it becomes easier to vitrify, and if it is 65% or less, low-temperature firing (for example, 1000 ° C. or less) tends to be easier.
 CaOはディオプサイド結晶の構成成分であり、その含有量は3~25%、3~20%、特に7~15%であることが好ましい。CaOの含有量が3%以上であればディオプサイド結晶がより析出し易くなり、結果としてガラスセラミック誘電体の誘電損失が低くなる傾向がある。CaOの含有量が25%以下であればガラスの流動性がより良化する傾向がある。 CaO is a constituent component of diopside crystal, and its content is preferably 3 to 25%, 3 to 20%, and particularly preferably 7 to 15%. If the CaO content is 3% or more, diopside crystals are more likely to precipitate, and as a result, the dielectric loss of the glass ceramic dielectric tends to be low. If the content of CaO is 25% or less, the fluidity of the glass tends to be improved.
 MgOもディオプサイド結晶の構成成分であり、その含有量は7~30%、8~30%、11~30%、特に12~20%であることが好ましい。MgOの含有量が7%以上であれば結晶がより析出し易くなり、30%以下であればよりガラス化し易くなる。 MgO is also a constituent component of the diopside crystal, and its content is preferably 7 to 30%, 8 to 30%, 11 to 30%, particularly 12 to 20%. If the MgO content is 7% or more, crystals are more likely to precipitate, and if it is 30% or less, vitrification is easier.
 Alはガラスを安定化させるための成分であり、その含有量は0~20%、0.5~20%、特に1~10%であることが好ましい。Alの含有量が20%以下であれば、ディオプサイド結晶がより析出し易くなり、結果としてガラスセラミック誘電体の誘電損失が低くなる傾向がある。 Al 2 O 3 is a component for stabilizing the glass, and its content is preferably 0 to 20%, 0.5 to 20%, particularly 1 to 10%. If the content of Al 2 O 3 is 20% or less, diopside crystals are more likely to precipitate, and as a result, the dielectric loss of the glass ceramic dielectric tends to be low.
 BaOはバリウム長石結晶の構成成分であり、その含有量は5~40%、特に10~35%であることが好ましい。BaOの含有量が5%以上であれば、バリウム長石結晶がより析出し易くなる。一方、BaOの含有量が40%以下であれば、ディオプサイド結晶の析出量がより多くなる傾向があり、結果としてガラスセラミック誘電体の誘電損失が大きくなり難い。 BaO is a constituent of barium feldspar crystals, and its content is preferably 5 to 40%, particularly 10 to 35%. If the content of BaO is 5% or more, barium feldspar crystals are more likely to precipitate. On the other hand, if the BaO content is 40% or less, the amount of diopside crystals deposited tends to increase, and as a result, the dielectric loss of the glass ceramic dielectric is unlikely to increase.
 また、SiOとBaOの比(質量比)を特定の範囲に制限することで、焼成後の残存ガラス相から効率的に長石結晶を析出させることができる。具体的には、1≦SiO/BaO≦4、特に、1.05≦SiO/BaO≦3.95の関係を満たすことが好ましい。SiOとBaOの比が当該範囲である場合は、長石結晶がより析出し易くなったり、よりガラス化し易くなったりする。 Further, by limiting the ratio (mass ratio) of SiO 2 and BaO to a specific range, feldspar crystals can be efficiently precipitated from the remaining glass phase after firing. Specifically, it is preferable that the relationship 1 ≦ SiO 2 / BaO ≦ 4, particularly 1.05 ≦ SiO 2 /BaO≦3.95 is satisfied. When the ratio of SiO 2 and BaO is within this range, feldspar crystals are more likely to precipitate or vitrification is more likely.
 その他にも、本発明の結晶性ガラス粉末には、下記の成分を添加することができる。 In addition, the following components can be added to the crystalline glass powder of the present invention.
 ZnOはガラス化を容易にする成分であり、その含有量は0~20%、特に0.1~15%であることが好ましい。ZnOの含有量が20%以下であれば結晶性がより強くなり、ディオプサイド結晶の析出量が多くなる傾向がある。その結果、ガラスセラミック誘電体の誘電損失が大きくなり難い。 ZnO is a component that facilitates vitrification, and its content is preferably 0 to 20%, particularly preferably 0.1 to 15%. If the ZnO content is 20% or less, the crystallinity becomes stronger and the amount of precipitated diopside crystals tends to increase. As a result, the dielectric loss of the glass ceramic dielectric is difficult to increase.
 CuOは、絶縁材料基板において配線として使用されるAgによるガラスセラミック誘電体の着色を抑制する効果がある成分である。CuOの含有量は0~1%、特に0.01~0.2%であることが好ましい。CuOの含有量が1%以下であれば、ガラスセラミック誘電体の誘電損失が小さくなる傾向がある。 CuO is a component that has an effect of suppressing the coloring of the glass ceramic dielectric due to Ag used as the wiring in the insulating material substrate. The CuO content is preferably 0 to 1%, particularly preferably 0.01 to 0.2%. If the content of CuO is 1% or less, the dielectric loss of the glass ceramic dielectric tends to be small.
 また、CeO、MnO、Sb、SnOもCuOと同様、絶縁材料基板において配線として使用されるAgによるガラスセラミック誘電体の着色を抑制する効果がある成分である。CeO、MnO、Sb、SnOの含有量はそれぞれ0~1%、特に0.01~0.8%であることが好ましい。CeO、MnO、Sb、SnOの含有量がそれぞれ1%以下であれば、ガラスセラミック誘電体の誘電損失が小さくなる傾向がある。 Further, CeO 2 , MnO, Sb 2 O 3 , and SnO are components having the effect of suppressing coloring of the glass ceramic dielectric by Ag used as wiring in the insulating material substrate, similarly to CuO. The contents of CeO 2 , MnO, Sb 2 O 3 and SnO are each preferably 0 to 1%, particularly preferably 0.01 to 0.8%. If the contents of CeO 2 , MnO, Sb 2 O 3 and SnO are each 1% or less, the dielectric loss of the glass ceramic dielectric tends to be small.
 TiOおよびZrOはガラスセラミック誘電体の耐薬品性(耐酸性、耐アルカリ性)を向上させる効果がある成分である。 TiO 2 and ZrO 2 are components that have the effect of improving the chemical resistance (acid resistance and alkali resistance) of the glass ceramic dielectric.
 TiOの含有量は0~15%、特に0.1~13%であることが好ましい。TiOの含有量が15%以下であれば、ガラスセラミック誘電体の誘電損失が小さくなる傾向がある。 The content of TiO 2 is preferably 0 to 15%, particularly preferably 0.1 to 13%. If the content of TiO 2 is 15% or less, the dielectric loss of the glass ceramic dielectric tends to be small.
 ZrOの含有量は0~15%、特に0.1~13%であることが好ましい。ZrOが15%以下であれば、ガラスセラミック誘電体の誘電損失が小さくなる傾向がある。 The content of ZrO 2 is preferably 0 to 15%, particularly preferably 0.1 to 13%. If ZrO 2 is 15% or less, the dielectric loss of the glass ceramic dielectric tends to be small.
 また上記成分以外にも、ガラスセラミック誘電体の誘電損失等の特性を損なわない範囲で、SrO、Nb、La、Y、P、B、Bi等の他成分を合量で30%まで添加してもよい。 In addition to the above components, SrO, Nb 2 O 5 , La 2 O 3 , Y 2 O 3 , P 2 O 5 , B 2 O 3 , as long as the characteristics such as dielectric loss of the glass ceramic dielectric are not impaired. Other components such as Bi 2 O 3 may be added up to 30% in total.
 なお、LiO、NaO、KOといったアルカリ金属酸化物は、ガラスネットワークを切断し、誘電損失を上昇させる傾向がある。また、ガラスセラミック誘電体の絶縁性が低下する傾向がある。したがって、アルカリ金属酸化物は合量で5%以下、特に1%以下であることが好ましく、実質的に含有しない(具体的には0.1%未満)ことが最も好ましい。 Note that alkali metal oxides such as Li 2 O, Na 2 O, and K 2 O tend to cut the glass network and increase the dielectric loss. In addition, the insulating properties of the glass ceramic dielectric tend to decrease. Accordingly, the total amount of alkali metal oxides is preferably 5% or less, particularly 1% or less, and most preferably not substantially contained (specifically, less than 0.1%).
 本発明の結晶性ガラス粉末の平均粒径D50は10μm以下、特に5μm以下であることが好ましい。平均粒径D50が10μm以下であれば、ガラスセラミック誘電体中に気泡が発生し難くなる。一方、下限は特に限定されないが、取り扱いやすさや加工コストの観点から0.1μm以上であることが好ましい。結晶性ガラス粉末の粒径はレーザー回折散乱法により測定される。 The average particle diameter D 50 of the crystallizable glass powder of the present invention is 10μm or less, and particularly preferably 5μm or less. When the average particle diameter D 50 is 10μm or less, air bubbles hardly occurs in the glass ceramic dielectric. On the other hand, the lower limit is not particularly limited, but is preferably 0.1 μm or more from the viewpoint of ease of handling and processing cost. The particle size of the crystalline glass powder is measured by a laser diffraction scattering method.
 本発明の結晶性ガラスには、熱膨張係数、靭性、誘電率等の特性を改善する目的で、必要に応じてアルミナ粉末、コージェライト粉末、ムライト粉、クォーツ粉末、ジルコン粉末、チタニア粉末、ジルコニア粉末等のセラミック粉末あるいは石英ガラス粉末等を、1種または2種以上混合し、ガラスセラミック材料として用いてもよい。本発明のガラスセラミック材料は、結晶性ガラス粉末60~100質量%およびセラミック粉末0~40質量%、好ましくは結晶性ガラス粉末65~99.5質量%およびセラミック粉末0.05~35質量%、さらに好ましくは結晶性ガラス粉末70~99質量%およびセラミック粉末1~30質量%を含む。セラミック粉末の含有量が40質量%を超えると、ガラスセラミック誘電体の緻密化が困難となる傾向がある。 The crystalline glass of the present invention has an alumina powder, cordierite powder, mullite powder, quartz powder, zircon powder, titania powder, zirconia as necessary for the purpose of improving characteristics such as thermal expansion coefficient, toughness and dielectric constant. Ceramic powder such as powder or quartz glass powder or the like may be used alone or in combination as a glass ceramic material. The glass ceramic material of the present invention comprises crystalline glass powder 60-100% by weight and ceramic powder 0-40% by weight, preferably crystalline glass powder 65-99.5% by weight and ceramic powder 0.05-35% by weight, More preferably, it contains 70 to 99% by mass of crystalline glass powder and 1 to 30% by mass of ceramic powder. When the content of the ceramic powder exceeds 40% by mass, densification of the glass ceramic dielectric tends to be difficult.
 セラミック粉末の平均粒径D50は0.01~100μm、特に0.1~50μmであることが好ましい。セラミック粉末の平均粒径D50が0.01μm以上であれば、結晶性ガラス粉末中に溶け込まず、熱膨張係数、靭性、誘電率、耐薬品性等の特性改善の効果が得られ易くなる。一方、セラミック粉末の平均粒径D50が100μm以下であれば、焼成時の結晶性ガラス粉末の流動の妨げとならず、ガラスセラミック誘電体中に気泡が発生し難くなる。 It is preferable that the average particle size D 50 of the ceramic powder is 0.01 ~ 100 [mu] m, in particular 0.1 ~ 50 [mu] m. When the average particle diameter D 50 of the ceramic powder is 0.01μm or more, not dissolve the crystalline glass powder, thermal expansion coefficient, toughness, dielectric constant, tends to obtain the effect of improving properties such as chemical resistance. On the other hand, when the average particle diameter D 50 of the ceramic powder 100μm or less, not interfere with the flow of the crystallizable glass powder during firing, bubbles are less likely to occur in the glass ceramic dielectric.
 なお、セラミック粉末として、Al成分を含むセラミック粉末を使用することにより、ディオプサイド結晶析出後の残存ガラス相中のSi、Baの各成分とセラミック粉末中のAl成分が反応して長石結晶が析出しやすくなる。Al成分を含むセラミック粉末としては、アルミナ粉末、コージェライト粉末、ムライト粉末、アノーサイト長石、アルバイト長石、バリウムアルミネート、チタン酸アルミニウム、スピネル、カルシウムアルミネート、マグネシウムアルミネート、窒化アルミニウム等が挙げられる。 In addition, by using ceramic powder containing Al component as ceramic powder, each component of Si and Ba in the residual glass phase after diopside crystal precipitation reacts with Al component in the ceramic powder to produce feldspar crystals. Precipitates easily. Examples of the ceramic powder containing Al component include alumina powder, cordierite powder, mullite powder, anorthite feldspar, albite feldspar, barium aluminate, aluminum titanate, spinel, calcium aluminate, magnesium aluminate, aluminum nitride, and the like. .
 また、結晶核としてディオプサイドやバリウム長石の結晶物を0.1~1質量%程度混合することで、結晶化度の向上を図ることが可能となる。 In addition, the crystallinity can be improved by mixing about 0.1 to 1% by mass of diopside or barium feldspar crystals as crystal nuclei.
 本発明の結晶性ガラスを含むガラスセラミック材料を、結晶性ガラスの結晶化開始温度以上で熱処理することにより、主結晶としてディオプサイド結晶および長石結晶が析出したガラスセラミック誘電体が得られる。 The glass ceramic material containing the crystalline glass of the present invention is heat-treated at a temperature equal to or higher than the crystallization start temperature of the crystalline glass, thereby obtaining a glass ceramic dielectric in which diopside crystals and feldspar crystals are precipitated as main crystals.
 ガラスセラミック誘電体におけるディオプサイド結晶の含有量は35質量%以上、特に40質量%以上であることが好ましい。ディオプサイド結晶の含有量が35質量%以上であれば、誘電損失が小さくなる傾向がある。なお、ディオプサイド結晶の含有量の上限は80質量%以下、特に70質量%以下であることが好ましい。ディオプサイド結晶の含有量が80質量%以下であれば、ガラスセラミック誘電体中の気泡が少なくなる。 The content of diopside crystals in the glass ceramic dielectric is preferably 35% by mass or more, particularly preferably 40% by mass or more. If the content of the diopside crystal is 35% by mass or more, the dielectric loss tends to be small. In addition, the upper limit of the content of the diopside crystal is preferably 80% by mass or less, particularly preferably 70% by mass or less. If the content of the diopside crystal is 80% by mass or less, bubbles in the glass ceramic dielectric are reduced.
 ガラスセラミック誘電体における長石結晶の含有量は20~65質量%、25~60質量%、特に30~55質量%であることが好ましい。長石結晶の含有量が20質量%以上であれば、ガラスセラミック誘電体中の気泡率が小さくなり、結果として低誘電損失が小さくなる傾向がある。長石結晶の含有量が65質量%以下であれば、ディオプサイド結晶が相対的に多くなるため、誘電損失が小さくなったり、機械的強度が向上する傾向がある。 The content of feldspar crystals in the glass ceramic dielectric is preferably 20 to 65% by mass, 25 to 60% by mass, particularly 30 to 55% by mass. If the content of feldspar crystals is 20% by mass or more, the bubble ratio in the glass ceramic dielectric is decreased, and as a result, the low dielectric loss tends to be decreased. If the content of the feldspar crystal is 65% by mass or less, the diopside crystal is relatively increased, so that the dielectric loss tends to be reduced and the mechanical strength tends to be improved.
 ガラスセラミック誘電体において、残存ガラス相は0.5質量%以上、特に1質量%以上であることが好ましい。残存ガラス相が0.5質量%以上であれば、ガラスセラミック誘電体中に気泡が発生し難くなる。なお、残存ガラス相の含有量の上限は20質量%以下、特に10質量%以下であることが好ましい。残存ガラス相の含有量が20質量%以下であれば、相対的にディオプサイド結晶や長石結晶が少なくならず、誘電損失が小さくなる傾向がある。 In the glass ceramic dielectric, the residual glass phase is preferably 0.5% by mass or more, particularly 1% by mass or more. If the residual glass phase is 0.5% by mass or more, bubbles are hardly generated in the glass ceramic dielectric. In addition, it is preferable that the upper limit of content of a residual glass phase is 20 mass% or less, especially 10 mass% or less. If the content of the residual glass phase is 20% by mass or less, diopside crystals and feldspar crystals are relatively small, and the dielectric loss tends to be small.
 本発明のガラスセラミック誘電体は、気泡率が3体積%以下、特に2体積%以下であることが好ましい。気泡率が3体積%以下であれば、絶縁材料基板として用いた場合に配線の断線が生じ難くなったり、誘電損失が小さくなったりする傾向がある。 The glass ceramic dielectric of the present invention preferably has a bubble ratio of 3% by volume or less, particularly 2% by volume or less. When the bubble ratio is 3% by volume or less, when used as an insulating material substrate, there is a tendency that disconnection of wiring hardly occurs or dielectric loss is reduced.
 本発明のガラスセラミック誘電体は誘電率が低く、かつ高周波領域において誘電損失が低いことを特徴とする。具体的には、本発明のガラスセラミック誘電体は、25℃において、誘電率が6~11、特に6~10、かつ0.1GHz以上の高周波領域における誘電損失tanδが20×10-4以下、18×10-4以下、特に16×10-4以下であることが好ましい。 The glass ceramic dielectric of the present invention is characterized by a low dielectric constant and low dielectric loss in a high frequency region. Specifically, the glass ceramic dielectric of the present invention has a dielectric loss tan δ of 20 × 10 −4 or less at 25 ° C. in a high frequency region having a dielectric constant of 6 to 11, particularly 6 to 10, and 0.1 GHz or more. It is preferably 18 × 10 −4 or less, particularly preferably 16 × 10 −4 or less.
 次に、本発明の結晶性ガラス粉末およびガラスセラミック誘電体の製造方法を説明する。 Next, a method for producing the crystalline glass powder and the glass ceramic dielectric of the present invention will be described.
 本発明の結晶性ガラス粉末は、所定の組成となるように原料粉末を調製し、1300~1650℃の温度で溶融後、成形、冷却した後、粉砕することにより得られる。 The crystalline glass powder of the present invention can be obtained by preparing a raw material powder so as to have a predetermined composition, melting at a temperature of 1300 to 1650 ° C., forming, cooling, and pulverizing.
 本発明のガラスセラミック誘電体は、例えば以下のようにして製造される。まず、上記の通り得られた結晶性ガラス粉末に必要に応じてセラミック粉末を混合し、所定量の結合剤、可塑剤および溶剤を添加してスラリーを調製する。結合剤としては、例えばポリビニルブチラール樹脂、メタアクリル酸樹脂等、可塑剤としては例えばフタル酸ジブチル等、溶剤としては例えばトルエン、メチルエチルケトン等を使用することができる。 The glass ceramic dielectric of the present invention is manufactured as follows, for example. First, ceramic powder is mixed as necessary with the crystalline glass powder obtained as described above, and a predetermined amount of binder, plasticizer and solvent are added to prepare a slurry. Examples of the binder include polyvinyl butyral resin and methacrylic acid resin, examples of the plasticizer include dibutyl phthalate, and examples of the solvent include toluene and methyl ethyl ketone.
 得られたスラリーをドクターブレード法によってグリーンシートに成形する。グリーンシートを乾燥させ、所定寸法に切断する。必要に応じて、機械的加工を施してスルーホールを形成し、導体や電極となる低抵抗金属材料をスルーホールおよびグリーンシート表面に印刷する。続いてグリーンシートを複数枚積層し、熱圧着によって一体化する。 The resulting slurry is formed into a green sheet by the doctor blade method. The green sheet is dried and cut into predetermined dimensions. If necessary, mechanical processing is performed to form a through hole, and a low resistance metal material to be a conductor or an electrode is printed on the surface of the through hole and the green sheet. Subsequently, a plurality of green sheets are laminated and integrated by thermocompression bonding.
 さらに積層グリーンシートを、800~1000℃、800~950℃、特に850~900℃で焼成することによって結晶性ガラス粉末からディオプサイド結晶と長石結晶を析出させ、ガラスセラミックからなる絶縁層を有する多層基板、つまりガラスセラミック誘電体を得ることができる。 Further, the laminated green sheet is fired at 800 to 1000 ° C., 800 to 950 ° C., particularly 850 to 900 ° C. to deposit diopside crystals and feldspar crystals from the crystalline glass powder, and has an insulating layer made of glass ceramic. A multilayer substrate, i.e. a glass ceramic dielectric, can be obtained.
 なお、ここでは本発明のガラスセラミック誘電体を多層基板に適用した例を説明したが、これに限定されるものではなく、例えば厚膜回路部品や半導体パッケージ等の電子部品材料に適用することも可能である。 In addition, although the example which applied the glass-ceramic dielectric material of this invention to the multilayer board | substrate was demonstrated here, it is not limited to this, For example, it can apply also to electronic component materials, such as a thick film circuit component and a semiconductor package. Is possible.
 以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples.
 表1~3は、本発明の実施例(試料No.1~15)を示し、表4は、比較例(試料No.16~20)を示している。 Tables 1 to 3 show examples of the present invention (sample Nos. 1 to 15), and Table 4 shows comparative examples (samples Nos. 16 to 20).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 各試料は以下のように調製した。まず表に示す組成となるように原料粉末を調製し、1550℃で溶融後、成形、冷却することにより結晶性ガラスを作製した。得られた結晶性ガラスを粉砕し、平均粒径D50が2μmの結晶性ガラス粉末を作製した。 Each sample was prepared as follows. First, a raw material powder was prepared so as to have the composition shown in the table, melted at 1550 ° C., and then molded and cooled to produce crystalline glass. The resulting milled crystalline glass, the average particle diameter D 50 was prepared crystalline glass powder 2 [mu] m.
 各結晶性ガラス粉末に対し、表に示すセラミック粉末を所定の割合で混合し、表に示す焼成温度で20分間保持して結晶を析出させ、ガラスセラミック誘電体を得た。ガラスセラミック誘電体について、析出結晶を同定し、析出結晶およびガラス相の割合、気泡率、25℃における誘電率および誘電損失を測定した。結果を表1~4に示す。 The ceramic powder shown in the table was mixed at a predetermined ratio with each crystalline glass powder, and the crystal was deposited by holding at the firing temperature shown in the table for 20 minutes to obtain a glass ceramic dielectric. For the glass-ceramic dielectric, the precipitated crystals were identified, and the ratio of precipitated crystals and glass phase, bubble ratio, dielectric constant at 25 ° C. and dielectric loss were measured. The results are shown in Tables 1 to 4.
 ガラスセラミック誘電体における析出結晶は、粉末X線回折装置(株式会社リガク RINT2100)によって同定した。析出結晶および残存ガラス相の割合はX線回折パターンから多重ピーク分離法により算出した。 Precipitated crystals in the glass ceramic dielectric were identified by a powder X-ray diffractometer (Rigaku RINT 2100). The ratio of the precipitated crystals and the remaining glass phase was calculated from the X-ray diffraction pattern by a multiple peak separation method.
 気泡率は、ガラスセラミック誘電体断面のSEM像を画像解析することにより求めた。画像解析には三谷商事株式会社のWINROOFを使用した。以下に画像解析の手順を示す。 The bubble ratio was determined by image analysis of the SEM image of the glass ceramic dielectric cross section. For image analysis, WINROOF of Mitani Corporation was used. The image analysis procedure is shown below.
 SEM像において気泡部分の輪郭は、エッジ効果によりガラスマトリクス部分より明るく映し出される。そこで、WINROOFを用いてSEM像を2値化処理し、気泡部分の輪郭とガラスマトリクス部分を色別けした。さらに、気泡内部も気泡部分の輪郭と同じ色で塗りつぶすことで、気泡部分とガラスマトリクス部分を色分けした。その後、気泡率を以下の式に従い算出した。なお、ガラスセラミック誘電体断面における気泡の面積率は、ガラスセラミック誘電体における気泡の体積率と等しいことが一般的に知られている(例えば、清宮義博著、「複合材料中の粒子の体積率と面積率の関係」、明星大学理工学部研究紀要 42号、2006年発行、p.21~24参照)。 In the SEM image, the outline of the bubble part appears brighter than the glass matrix part due to the edge effect. Therefore, the SEM image was binarized using WINROOF, and the outline of the bubble portion and the glass matrix portion were color-coded. Further, the bubble portion and the glass matrix portion were color-coded by painting the inside of the bubble with the same color as the outline of the bubble portion. Thereafter, the bubble ratio was calculated according to the following formula. It is generally known that the area ratio of bubbles in the glass ceramic dielectric cross section is equal to the volume ratio of bubbles in the glass ceramic dielectric (for example, Yoshihiro Kiyomiya, “Volume ratio of particles in composite material”). "Relationship between area ratio" and Meisei University, Faculty of Science and Engineering Bulletin 42, 2006, p. 21-24).
 気泡率(体積%)=(気泡部分の総面積/処理画像の総面積)×100 Bubble rate (volume%) = (total area of bubble part / total area of processed image) × 100
 誘電率と誘電損失はハッキーアンドコールマン法(測定周波数10GHz)により求めた。 Dielectric constant and dielectric loss were determined by the Hacky and Coleman method (measurement frequency: 10 GHz).
 表1~3から明らかなように、実施例であるNo.1~15では、主結晶としてディオプサイド結晶とバリウム長石結晶が析出し、残存ガラス相が3~5質量%と少ないため、気泡率は2体積%以下と低かった。また、10GHzの周波数で誘電率が7~9、誘電損失が11~15×10-4と低かった。 As is apparent from Tables 1 to 3, examples No. In Nos. 1 to 15, since the diopside crystal and barium feldspar crystal were precipitated as main crystals and the remaining glass phase was as small as 3 to 5% by mass, the bubble ratio was as low as 2% by volume or less. Further, at a frequency of 10 GHz, the dielectric constant was as low as 7 to 9, and the dielectric loss was as low as 11 to 15 × 10 −4 .
 一方、比較例であるNo.16、20では、ディオプサイド結晶しか析出しなかったため、気泡率が5体積%以上と大きくなった。No.18~20では、残存ガラス相が8質量%以上と多くなり、誘電損失が25×10-4以上と大きくなった。なお、No.17では、SiO/BaOが0.8と小さかったためガラス化しなかった。 On the other hand, No. as a comparative example. In Nos. 16 and 20, only the diopside crystal was precipitated, and the bubble ratio increased to 5% by volume or more. No. In 18 to 20, the residual glass phase increased to 8% by mass or more, and the dielectric loss increased to 25 × 10 −4 or more. In addition, No. In No. 17, it was not vitrified because SiO 2 / BaO was as small as 0.8.
 本発明の結晶性ガラスは、内部の気泡が少なく高周波帯域において誘電損失が小さいため、小型または薄型の多層基板、マイクロ波用回路部品、パッケージ等に使用されるガラスセラミック誘電体用材料として好適である。 Since the crystalline glass of the present invention has few internal bubbles and low dielectric loss in the high frequency band, it is suitable as a glass ceramic dielectric material used for small or thin multilayer substrates, microwave circuit components, packages, and the like. is there.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2010年11月17日出願の日本特許出願(特願2010-256463)、2010年12月24日出願の日本特許出願(特願2010-287004)及び2011年5月2日出願の日本特許出願(特願2011-102732)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
The present application includes a Japanese patent application filed on November 17, 2010 (Japanese Patent Application No. 2010-256463), a Japanese patent application filed on December 24, 2010 (Japanese Patent Application No. 2010-287004), and an application filed on May 2, 2011. This is based on a Japanese patent application (Japanese Patent Application No. 2011-102732), the contents of which are incorporated herein by reference.

Claims (10)

  1.  熱処理によって、主結晶としてディオプサイド結晶と長石結晶が析出することを特徴とする結晶性ガラス粉末。 Crystalline glass powder characterized in that diopside crystals and feldspar crystals are precipitated as main crystals by heat treatment.
  2.  長石結晶が、バリウム長石結晶であることを特徴とする請求項1に記載の結晶性ガラス粉末。 The crystalline glass powder according to claim 1, wherein the feldspar crystal is a barium feldspar crystal.
  3.  ガラス組成として質量%で、SiO 20~65%、CaO 3~25%、MgO 7~30%、Al 0~20%、BaO 5~40%を含有し、かつ質量比で、1≦SiO/BaO≦4の関係を満たすことを特徴とする請求項1または2に記載の結晶性ガラス粉末。 As a glass composition, it contains SiO 2 20 to 65%, CaO 3 to 25%, MgO 7 to 30%, Al 2 O 3 0 to 20%, BaO 5 to 40%, and 1% by mass. The crystalline glass powder according to claim 1, wherein a relationship of ≦ SiO 2 / BaO ≦ 4 is satisfied.
  4.  請求項1~3のいずれかに記載の結晶性ガラス粉末60~100質量%およびセラミック粉末0~40質量%を含むことを特徴とするガラスセラミック材料。 A glass-ceramic material comprising 60 to 100% by mass of the crystalline glass powder according to any one of claims 1 to 3 and 0 to 40% by mass of a ceramic powder.
  5.  セラミック粉末がAl成分を含むことを特徴とする請求項4に記載のガラスセラミック材料。 The glass ceramic material according to claim 4, wherein the ceramic powder contains an Al component.
  6.  請求項4または5に記載のガラスセラミック材料を焼成してなるガラスセラミック誘電体。 A glass ceramic dielectric obtained by firing the glass ceramic material according to claim 4 or 5.
  7.  長石結晶を20~65質量%含有することを特徴とする請求項6に記載のガラスセラミック誘電体。 The glass-ceramic dielectric according to claim 6, comprising 20 to 65% by mass of feldspar crystals.
  8.  気泡率が3体積%以下であることを特徴とする請求項6または7に記載のガラスセラミック誘電体。 The glass ceramic dielectric according to claim 6 or 7, wherein a bubble ratio is 3% by volume or less.
  9.  誘電率εが6~11、かつ周波数0.1GHz以上での誘電損失tanδが20×10-4以下であることを特徴とする請求項6~8のいずれかに記載のガラスセラミック誘電体。 9. The glass-ceramic dielectric according to claim 6, wherein the dielectric loss ε is 6 × 11 and the dielectric loss tan δ at a frequency of 0.1 GHz or more is 20 × 10 −4 or less.
  10.  マイクロ波用回路部品材料に用いることを特徴とする請求項6~9のいずれかに記載のガラスセラミック誘電体。 10. The glass ceramic dielectric according to claim 6, wherein the glass ceramic dielectric is used for a microwave circuit component material.
PCT/JP2011/075700 2010-11-17 2011-11-08 Crystalline glass powder WO2012066976A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137012726A KR101974907B1 (en) 2010-11-17 2011-11-08 Crystalline glass powder
CN201180055513.7A CN103221355B (en) 2010-11-17 2011-11-08 Crystallinity glass powder

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010256463 2010-11-17
JP2010-256463 2010-11-17
JP2010287004 2010-12-24
JP2010-287004 2010-12-24
JP2011-102732 2011-05-02
JP2011102732A JP5835640B2 (en) 2010-11-17 2011-05-02 Crystalline glass powder

Publications (1)

Publication Number Publication Date
WO2012066976A1 true WO2012066976A1 (en) 2012-05-24

Family

ID=46083910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075700 WO2012066976A1 (en) 2010-11-17 2011-11-08 Crystalline glass powder

Country Status (5)

Country Link
JP (1) JP5835640B2 (en)
KR (1) KR101974907B1 (en)
CN (1) CN103221355B (en)
TW (1) TWI597249B (en)
WO (1) WO2012066976A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106242304A (en) * 2016-08-31 2016-12-21 安徽斯迈尔电子科技有限公司 A kind of preparation method of the glass dust for thick-film resistor
CN115724589A (en) * 2022-11-29 2023-03-03 西安创联电气科技(集团)有限责任公司 Sealing glass powder for radio frequency connector and preparation and sealing method thereof
CN116057019A (en) * 2020-09-23 2023-05-02 日本电气硝子株式会社 Glass ceramic dielectric material, sintered body, and circuit member for high frequency

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104464890A (en) * 2014-12-26 2015-03-25 常熟联茂电子科技有限公司 Thick film circuit resistor paste
CN104464884A (en) * 2014-12-26 2015-03-25 常熟联茂电子科技有限公司 Organic power resistance paste
JP6293704B2 (en) * 2015-05-28 2018-03-14 スナップトラック・インコーポレーテッド Glass ceramic sintered body and wiring board
CN108030228A (en) * 2017-11-29 2018-05-15 浙江大学 A kind of tartar-removing toothbrush silk and preparation method thereof
CN107898126A (en) * 2017-11-29 2018-04-13 浙江大学 A kind of compound tartar-removing toothbrush silk and preparation method thereof
WO2019172042A1 (en) * 2018-03-07 2019-09-12 日本電気硝子株式会社 Glass ceramic dielectric body
JP7348587B2 (en) * 2018-03-07 2023-09-21 日本電気硝子株式会社 glass ceramic dielectric
CN108439804A (en) * 2018-04-19 2018-08-24 苏州凌科特新材料有限公司 A kind of glass ceramic composite material and preparation method thereof
CN112537947B (en) * 2020-12-09 2022-03-29 江苏科技大学 Low-loss low-dielectric-constant microwave dielectric ceramic material and preparation method thereof
CN115925262A (en) * 2022-12-30 2023-04-07 中国电子科技集团公司第十二研究所 Glass ceramic, preparation method thereof and electrostatic chuck

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231334A (en) * 1990-12-28 1992-08-20 Hoya Corp Production of machinable ceramics
WO2003040057A1 (en) * 2001-11-05 2003-05-15 Asahi Glass Company, Limited Glass ceramic composition
JP2005306714A (en) * 2004-03-22 2005-11-04 Kyocera Corp Glass ceramic composition, glass ceramic sintered body and manufacturing method for the same, and circuit board and thin film circuit board both using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3721570B2 (en) 1996-10-22 2005-11-30 日本電気硝子株式会社 Glass ceramic dielectric material
CN1153747C (en) * 1998-09-02 2004-06-16 东北大学钎具开发研究中心 Process for preparing microcrystalline glass insulator and its products
GB2365007B (en) * 2000-07-21 2002-06-26 Murata Manufacturing Co Insulative ceramic compact

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04231334A (en) * 1990-12-28 1992-08-20 Hoya Corp Production of machinable ceramics
WO2003040057A1 (en) * 2001-11-05 2003-05-15 Asahi Glass Company, Limited Glass ceramic composition
JP2005306714A (en) * 2004-03-22 2005-11-04 Kyocera Corp Glass ceramic composition, glass ceramic sintered body and manufacturing method for the same, and circuit board and thin film circuit board both using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106242304A (en) * 2016-08-31 2016-12-21 安徽斯迈尔电子科技有限公司 A kind of preparation method of the glass dust for thick-film resistor
CN116057019A (en) * 2020-09-23 2023-05-02 日本电气硝子株式会社 Glass ceramic dielectric material, sintered body, and circuit member for high frequency
CN115724589A (en) * 2022-11-29 2023-03-03 西安创联电气科技(集团)有限责任公司 Sealing glass powder for radio frequency connector and preparation and sealing method thereof

Also Published As

Publication number Publication date
TW201228965A (en) 2012-07-16
CN103221355B (en) 2016-03-23
JP2012144417A (en) 2012-08-02
JP5835640B2 (en) 2015-12-24
CN103221355A (en) 2013-07-24
TWI597249B (en) 2017-09-01
KR20130135862A (en) 2013-12-11
KR101974907B1 (en) 2019-05-03

Similar Documents

Publication Publication Date Title
JP5835640B2 (en) Crystalline glass powder
JP3240271B2 (en) Ceramic substrate
JP2007294862A (en) Substrate and circuit board using the same
JP2008270741A (en) Wiring board
US20100080981A1 (en) Glass ceramic substrate
JP7348587B2 (en) glass ceramic dielectric
JP2001287984A (en) Glass ceramic composition
JP2010052953A (en) Glass ceramic composition for wiring board and glass ceramic sintered body
JP2004339049A (en) Lead-free glass for forming dielectric, glass ceramic composition for forming dielectric, dielectric and method of producing laminated dielectric
JP2005272289A (en) Dielectric ceramic composition and laminated ceramic component using the same
JPH0643258B2 (en) Dielectric material for circuit boards
JP2001278657A (en) Low temperature-burned ceramic composition and wiring board using it
JP2000128628A (en) Glass ceramics composition
JP2012250903A (en) Glass-ceramic composite material
JP6048665B2 (en) Glass ceramic materials and glass ceramics
JP2011213570A (en) Crystalline glass
JP2012051767A (en) Crystalline glass powder
JP4047050B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board using the same
JP4880022B2 (en) Low dielectric constant ceramic dielectric composition and low dielectric constant ceramic dielectric for low temperature firing
WO2019172042A1 (en) Glass ceramic dielectric body
JP2003137657A (en) Glass ceramics and method of manufacturing the same and wiring board
JP3125500B2 (en) Ceramic substrate
WO2022168624A1 (en) Multilayer glass ceramic dielectric material, sintered body, method for producing sintered body, and circuit member for high frequency use
JP4576151B2 (en) Ceramic composition and ceramic wiring board
CN116924784A (en) High-strength low-dielectric microwave dielectric ceramic material and preparation method thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180055513.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840727

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137012726

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840727

Country of ref document: EP

Kind code of ref document: A1