TW201222684A - Method for encapsulating an electronic arrangement - Google Patents
Method for encapsulating an electronic arrangement Download PDFInfo
- Publication number
- TW201222684A TW201222684A TW100128659A TW100128659A TW201222684A TW 201222684 A TW201222684 A TW 201222684A TW 100128659 A TW100128659 A TW 100128659A TW 100128659 A TW100128659 A TW 100128659A TW 201222684 A TW201222684 A TW 201222684A
- Authority
- TW
- Taiwan
- Prior art keywords
- adhesive material
- heat
- substrate
- adhesive
- activated
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 74
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000001301 oxygen Substances 0.000 claims abstract description 21
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 21
- 239000012466 permeate Substances 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims description 233
- 239000000853 adhesive Substances 0.000 claims description 199
- 230000001070 adhesive effect Effects 0.000 claims description 198
- 239000000758 substrate Substances 0.000 claims description 84
- 239000000203 mixture Substances 0.000 claims description 57
- 238000010438 heat treatment Methods 0.000 claims description 49
- 230000005291 magnetic effect Effects 0.000 claims description 33
- 230000004888 barrier function Effects 0.000 claims description 32
- 230000006698 induction Effects 0.000 claims description 29
- 239000002131 composite material Substances 0.000 claims description 21
- 230000035515 penetration Effects 0.000 claims description 16
- 239000004831 Hot glue Substances 0.000 claims description 14
- 230000008901 benefit Effects 0.000 claims description 13
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims description 12
- 238000004806 packaging method and process Methods 0.000 claims description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 8
- 230000003213 activating effect Effects 0.000 claims description 5
- 238000007725 thermal activation Methods 0.000 claims description 5
- 238000002834 transmittance Methods 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 4
- 238000010586 diagram Methods 0.000 claims description 3
- 230000001939 inductive effect Effects 0.000 claims description 3
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 104
- 239000010408 film Substances 0.000 description 48
- 239000011521 glass Substances 0.000 description 48
- 229920000139 polyethylene terephthalate Polymers 0.000 description 44
- 239000005020 polyethylene terephthalate Substances 0.000 description 44
- 230000000694 effects Effects 0.000 description 25
- 238000012360 testing method Methods 0.000 description 22
- 229920001169 thermoplastic Polymers 0.000 description 22
- 239000004416 thermosoftening plastic Substances 0.000 description 22
- 238000003466 welding Methods 0.000 description 22
- 230000006378 damage Effects 0.000 description 20
- 229910052751 metal Inorganic materials 0.000 description 20
- 239000002184 metal Substances 0.000 description 20
- 229920005989 resin Polymers 0.000 description 16
- 239000011347 resin Substances 0.000 description 16
- 230000035699 permeability Effects 0.000 description 15
- 230000004913 activation Effects 0.000 description 14
- 238000001994 activation Methods 0.000 description 14
- 238000004132 cross linking Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 11
- 229920000642 polymer Polymers 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- -1 polyethylene Polymers 0.000 description 10
- 230000005855 radiation Effects 0.000 description 10
- 238000000576 coating method Methods 0.000 description 9
- 229920006254 polymer film Polymers 0.000 description 9
- 235000013616 tea Nutrition 0.000 description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 8
- 229910052791 calcium Inorganic materials 0.000 description 8
- 239000011575 calcium Substances 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 238000010276 construction Methods 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- 239000004033 plastic Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 229920000459 Nitrile rubber Polymers 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000008595 infiltration Effects 0.000 description 6
- 238000001764 infiltration Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000005693 optoelectronics Effects 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000005977 Ethylene Substances 0.000 description 5
- 239000002313 adhesive film Substances 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 5
- 238000005538 encapsulation Methods 0.000 description 5
- 230000005294 ferromagnetic effect Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000007731 hot pressing Methods 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 239000003566 sealing material Substances 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 229910000859 α-Fe Inorganic materials 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 102100037681 Protein FEV Human genes 0.000 description 4
- 101710198166 Protein FEV Proteins 0.000 description 4
- 229920005601 base polymer Polymers 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 229920001400 block copolymer Polymers 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 238000003475 lamination Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000013021 overheating Methods 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 229920002633 Kraton (polymer) Polymers 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 210000000078 claw Anatomy 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000013017 mechanical damping Methods 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000002105 nanoparticle Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229920006267 polyester film Polymers 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229920001634 Copolyester Polymers 0.000 description 2
- 206010011469 Crying Diseases 0.000 description 2
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 2
- 239000004713 Cyclic olefin copolymer Substances 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- QYMGIIIPAFAFRX-UHFFFAOYSA-N butyl prop-2-enoate;ethene Chemical compound C=C.CCCCOC(=O)C=C QYMGIIIPAFAFRX-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 150000002118 epoxides Chemical class 0.000 description 2
- 229920006242 ethylene acrylic acid copolymer Polymers 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 2
- 229920006245 ethylene-butyl acrylate Polymers 0.000 description 2
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 2
- 229920006225 ethylene-methyl acrylate Polymers 0.000 description 2
- 239000005043 ethylene-methyl acrylate Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 230000005298 paramagnetic effect Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920002530 polyetherether ketone Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 229920001935 styrene-ethylene-butadiene-styrene Polymers 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- FAIFRACTBXWXGY-JTTXIWGLSA-N COc1ccc2C[C@H]3N(C)CC[C@@]45[C@@H](Oc1c24)[C@@]1(OC)C=C[C@@]35C[C@@H]1[C@](C)(O)CCc1ccccc1 Chemical compound COc1ccc2C[C@H]3N(C)CC[C@@]45[C@@H](Oc1c24)[C@@]1(OC)C=C[C@@]35C[C@@H]1[C@](C)(O)CCc1ccccc1 FAIFRACTBXWXGY-JTTXIWGLSA-N 0.000 description 1
- 241000282994 Cervidae Species 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 208000001613 Gambling Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 229920005987 OPPANOL® Polymers 0.000 description 1
- 241000765083 Ondina Species 0.000 description 1
- 229920002402 Oppanol® B 100 Polymers 0.000 description 1
- 241000935974 Paralichthys dentatus Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 206010036790 Productive cough Diseases 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 101001012040 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) Immunomodulating metalloprotease Proteins 0.000 description 1
- 239000004823 Reactive adhesive Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- QUQFTIVBFKLPCL-UHFFFAOYSA-L copper;2-amino-3-[(2-amino-2-carboxylatoethyl)disulfanyl]propanoate Chemical compound [Cu+2].[O-]C(=O)C(N)CSSCC(N)C([O-])=O QUQFTIVBFKLPCL-UHFFFAOYSA-L 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013039 cover film Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- HGVPOWOAHALJHA-UHFFFAOYSA-N ethene;methyl prop-2-enoate Chemical compound C=C.COC(=O)C=C HGVPOWOAHALJHA-UHFFFAOYSA-N 0.000 description 1
- XEKOWRVHYACXOJ-UHFFFAOYSA-N ethyl acetate Substances CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000004137 mechanical activation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 239000005026 oriented polypropylene Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 238000005289 physical deposition Methods 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920000307 polymer substrate Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 239000006254 rheological additive Substances 0.000 description 1
- 238000000518 rheometry Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 230000002000 scavenging effect Effects 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 210000003802 sputum Anatomy 0.000 description 1
- 208000024794 sputum Diseases 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920006132 styrene block copolymer Polymers 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 230000035922 thirst Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000010023 transfer printing Methods 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/842—Containers
- H10K50/8426—Peripheral sealing arrangements, e.g. adhesives, sealants
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/04—Non-macromolecular additives inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
- C09J5/06—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J9/00—Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M17/00—Producing multi-layer textile fabrics
- D06M17/04—Producing multi-layer textile fabrics by applying synthetic resins as adhesives
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
- H05B33/04—Sealing arrangements, e.g. against humidity
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/40—Thermal treatment, e.g. annealing in the presence of a solvent vapour
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2265—Oxides; Hydroxides of metals of iron
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/30—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
- C09J2301/304—Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being heat-activatable, i.e. not tacky at temperatures inferior to 30°C
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J2301/00—Additional features of adhesives in the form of films or foils
- C09J2301/40—Additional features of adhesives in the form of films or foils characterized by the presence of essential components
- C09J2301/416—Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Textile Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
201222684 六、發明說明: 【發明所屬之技術領域】 本發明係一種封裝電子元件之方法。 【先前技術】 (光電)電子元件在商業產品上的應用範圍愈來愈 廣’同時也有愈來愈多的(光電)電子元件即將被引進市 場。這種元件具有無機或有機電子結構,例如有機半導 體、金屬有機半導體、聚合物半導體、或是這些半導體 的混合物。可以根據應用上的需要將這些元件製作成硬 性或軟性的元件’其中尤以對軟性元件的需求愈來愈 大。製造這種元件的方法很多,其中一種是印刷法,例 如凸版印刷、凹版印刷、篩網印刷 '平版印刷、或是所 月的非衝擊式印刷(non impacting printing”),例如熱 轉移印刷、噴墨印刷、或數位印刷。另外一種常用的方 法疋真空法,例如化學氣相沉積法(CVD)、物理氣相沉 積法(PVD)、電漿輔助化學或物理沉積法(pECVD)、錢鲈 法、(電漿)腐蝕法、《蒸鍍法,其中所需的圖案化氺: 通常是利用掩膜完成。 "^ 1下疋一些已商業化或有市場潛力之(光電)電子 用的例子·電泳或電色譜構造物或顯示器、應用於: 裝置或照明裝置的有機發光二極體(OLED)或聚合#不 光二極體(PLED)、電致發光燈、發光的電化學光電聲 (LEEC)、有機太陽能電池、 牛 陽能電池、益機太陽二太“電池或聚合物太 石夕、鍺、銅、姻及石西為基的薄膜太陽能電池)、(有機y j文 201222684 應電晶體、有機電路元件、有機光學放大器、有機雷射 一極體有機或無機傳感器、有機或無機rfid轉發器。 在無機及/或有機(光電)電子學的領域,如何使(光電) 電子元件具有夠長的使用壽命及足夠的功能是一個很大 的技術挑戰,對有機(光電)電子學的領域而言,尤其重 要的是如何保護元件中的成分免於受到滲透物的影響。 渗透物可能是低分子有機或無機化合物,其中尤以水蒸 氣及氧最為常見。 無機及/或有機(光電)電子學(尤其是有機(光電)電 子學)對能夠防止氧及/或水蒸氣等滲透物滲入的軟性黏 著β丨有非*大的需求。除了防止渗透外,這種(光電)電 子凡件對於軟性黏著劑還有許多其他的要求。因此軟性 黏著劑不只要能夠在兩個基板之間形成良好的黏著效 果,還要具備其他優良特性,例如很高的抗剪強度及抗 剝離強度、很好的化學耐受性及抗老化性、很高的透明 性、易於使用、以及很好的撓曲性及韌性。 因此先前技術常用的一種解決方案是將電子元件置 於兩個不透水蒸氣及氧的基板之間,然後再將邊緣封裝 住°對非軟性的構造物是以玻璃或金屬基板作為基板, 玻璃及金屬基板都具有很好的防滲透作用,但缺點是對 機械負載的抵抗力不足。另外一個缺點是會使整個元件 的厚度變得相當大。如果是金屬基板則不具有透明性。 軟丨生元件則是使用扁平基板,例如可製成多層式的 透明或不透明薄膜。扁平基板可以是由不同的聚合物組 口而成’也可以是由無機或有機薄膜所組成。使用這種 •4- 201222684 扁平基板可以製造出具有挽曲性且非常薄的構造物。 可以針對不同的應用選擇不同的基板,例如薄臈、 編平面構成物、絨頭平面構成物、紙、或這些材料的組 合。 、 為了盡可能達到良好的封裝效果,應像用特殊的阻 隔黏著材料。#的(光電)電子元件封裝用黏著材且 備氧及水蒸氣的渗透率报低、以及在元件上有良好的黏 =性及流動性等特性。在元件上的黏著性太小會降低在 =界面的阻隔作用’因此不論黏著材料具有何種特性, 乳及水蒸氣都可能滲入。只有在黏著材料及基板之間的 接觸面是不能滲透的情況下,黏著材料的特性才會對黏 著材料的阻隔作用起到特定的作用。 通常是以氧滲透率0TR(〇xygen Transmission Rate) 及水蒸氣滲料WVTR(Water VapQr 心) 來表不阻隔作用。〇TRA WVTR分別表示在㈣的溫度 及分麼條件(必要時還包括其他的測量條件,例如相對滿 f )下早位面積及單位時間通過薄膜的氧氣流及水蒸氣 及WVTR的數值愈低,代表該材料愈適於作為 圭裝材料。參透性的表述不光是# wvtr《〇tr的數 ::疋還包括關於渗透路徑長度的說明,例如材料厚 又或標準化成一個特定的路徑長度。 滲透率P是衡量物體被氣體及/或㈣Uρ 一值低代表良好的阻隔作用。滲透率p是一特定材料及 :特:渗透物在固定條件下(特定的滲透路徑長度、分壓 及溫度)的-個特定的值。滲透率p是擴散項〇及溶解項 201222684 S的乘積:P = D*S。201222684 VI. Description of the Invention: [Technical Field of the Invention] The present invention is a method of packaging electronic components. [Prior Art] (Optoelectronic) electronic components are becoming more and more widely used in commercial products. At the same time, more and more (photovoltaic) electronic components are about to be introduced into the market. Such elements have inorganic or organic electronic structures such as organic semiconductors, metal organic semiconductors, polymer semiconductors, or mixtures of such semiconductors. These components can be made into rigid or flexible components according to the needs of the application, and in particular, the demand for soft components is increasing. There are many ways to make such components, one of which is printing, such as letterpress, gravure, screen printing 'lithographic printing, or monthly non-impact printing, such as thermal transfer printing, spraying. Ink printing, or digital printing. Another common method, vacuum method, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), plasma assisted chemical or physical deposition (pECVD), Qian Qian method (plasma) etching method, "vapor deposition method, in which the required patterning 氺: usually done with a mask. "^ 1 Some examples of commercial or market potential (photovoltaic) electronics Electrophoretic or electrochromatographic structures or displays, for use in: organic light-emitting diodes (OLEDs) or polymerizations of non-photodiodes (PLEDs), electroluminescent lamps, luminescent electrochemical photoacoustics (LEEC) ), organic solar cells, Niuyang energy batteries, Yiji Sun II too "battery or polymer Taishi Xi, 锗, copper, marriage and Shixi-based thin film solar cells", (organic yj text 201222684 should be electricity Body, organic circuit components, organic optical amplifiers, organic laser-polar organic or inorganic sensors, organic or inorganic rfid transponders. In the field of inorganic and/or organic (photovoltaic) electronics, how to make (photoelectric) electronic components A long enough service life and sufficient function is a big technical challenge. For the field of organic (photovoltaic) electronics, it is especially important to protect the components in the component from the influence of the permeate. It is a low molecular organic or inorganic compound, especially water vapor and oxygen. Inorganic and / or organic (photovoltaic) electronics (especially organic (photovoltaic) electronics) can prevent oxygen and / or water vapor and other permeate Infiltration of soft adhesive β丨 has a non-* large demand. In addition to preventing penetration, this (photovoltaic) electronic component has many other requirements for soft adhesives. Therefore, the soft adhesive can be used not only between the two substrates. Form a good adhesion, but also have other excellent characteristics, such as high shear strength and peel strength, good chemistry Tolerance and aging resistance, high transparency, ease of use, and good flexibility and toughness. Therefore, one solution commonly used in the prior art is to place electronic components on two substrates that are impermeable to water vapor and oxygen. Between and then the edge is encapsulated. The non-soft structure is a glass or metal substrate as the substrate. Both the glass and the metal substrate have good anti-seepage effect, but the disadvantage is insufficient resistance to mechanical load. One disadvantage is that the thickness of the entire component becomes quite large. If it is a metal substrate, it does not have transparency. The soft twin component uses a flat substrate, for example, a multilayer transparent or opaque film. The flat substrate can be Made of different polymer groups, it can also be composed of inorganic or organic thin films. Using this 4-201222684 flat substrate can produce a very flexible and very thin structure. Different substrates can be selected for different applications, such as thin webs, braided planar structures, pile flat compositions, paper, or a combination of these materials. In order to achieve a good packaging effect as much as possible, it should be like a special barrier adhesive material. #的(光电) Electronic components are used for encapsulating adhesive materials, and have low oxygen permeability and water vapor permeability, as well as good adhesion and fluidity on the components. Too small adhesion to the component will reduce the barrier at the interface. Thus, regardless of the nature of the adhesive material, both milk and water vapor may penetrate. Only when the contact surface between the adhesive material and the substrate is impermeable, the characteristics of the adhesive material play a specific role in the barrier effect of the adhesive material. It is usually shown by the oxygen permeability 0TR (〇xygen Transmission Rate) and the water vapor infiltration WVTR (Water VapQr core). 〇TRA WVTR indicates the lower the oxygen flow and the water vapor and WVTR of the film through the film at the temperature of the (4) temperature and the conditions (including other measurement conditions if necessary, such as relative full f). The more representative of the material, the more suitable it is. The expression of permeability is not only #wvtr“number of 〇tr ::疋 also includes a description of the length of the permeation path, such as material thickness or normalization to a specific path length. The permeability P is a measure of the good barrier effect of an object being gas and/or (iv) a low value of Uρ. The permeability p is a specific material and: a specific value of the permeate under fixed conditions (specific permeation path length, partial pressure and temperature). The permeability p is the product of the diffusion term and the solubility term 201222684 S: P = D*S.
其中岭解項S是描述阻隔黏著材料對渗透物的親人 性。以渗透物為水蒸氣為例,不吸濕的材料可以達到: 低的S值。擴散項D是描述渗透物在阻隔材料内的移動 性’其大小是直接由滲透物的分子移動性或自φ空間等 特性決定。高度交聯或高度結晶的材料通常能夠達到相 田低的D I但疋问度結晶的材料的透明度通常較低, 而高度交聯則會使材料的撓曲性變差。滲透率ρ通常 隨著分子移動性的升高而變A 玻璃轉換點。 例如當溫度“或跨越 要提同阻隔作用,就必須從這兩個參數(D及下 手,尤其是考量這兩個參數對水蒸氣及氧的渗透的影 響。除了②些化學特性外,也必須考慮到物理特性對參 透率的影響,尤其是平均渗透路徑長度及交界面特性(: 著材料的流動特性,黏著力)。理想的阻隔黏著材料的: 值及s,2很低,而且能夠彼好的黏著在基板上。 光是靠报低的溶解項S通常並不能達到良好的阻隔 特性。一個典型的例子是珍氧院彈性體。㈣材料㈣ 不吸濕(溶解項很低),但由於自由旋轉⑽鍵(擴散項报 大)的關係,使得這種材料對水蒸氣及氧的阻隔作用相春 差。因此要達到良好的阻隔作用的一個先決條件是溶; 項S及擴散項D之間要達到良好的平衡。 目前使用的主要是以環氧化物為基的液態黏著劑及 膠黏劑(w〇98/21287 a1;US4〇51195a;us45526〇 由於高度交聯的關係,此類液態黏著劑及谬 201222684 擴散項D都很低’且主要是應用在硬性元件的邊緣黏 著,但亦可應用在半軟性元件的邊緣黏著。此類液態黏 著劑及膠黏劑可以經由加熱或照射紫外線硬化。由於硬 化產生的收縮,因此幾乎不可能達到全面積黏著的程 度,這是因為硬化會在黏著劑及基板料之產生應力,這 可能導致黏著處剝離。 使用這種液態黏著劑有許多缺點。例如其低分子成 为(V ◦ C ’揮發性有機物)可能會對元件的電子結構造成 損害,導致產品中的元件難以與其他元件溝通。必須很 費事的將黏著劑塗在電子元件的每一個組成元件上。另 外一個缺點是需使用昂責的撒布裝置及固定裝置,才能 確保液態黏著劑的精確定位。此外,其塗覆方式不利於 快速連續作業的進行,以及後續需進行的層壓步驟可能 曰因為黏滯性較低而無法達到特定的層厚度及在狹窄區 域的黏著寬度。 卜 咼度交聯的黏著劑在硬化後僅剩下很小的撓 曲性。献4 ^ ’、、、 聯糸統的使用被限制在低溫範圍,或是雙成 分糸統的使用j . rQ it > — 用又到使用期的限制,也就是說必須在膠凝 前完成加工| ^ ^驟。在尚溫靶圍及反應時間很長的情況下 敏感的(光雷· ^ )电子結構也會對這種系統的可用性造成限 制:(光電)φ 2 ^ η 子結構的最咼可使用溫度通常是90°C,因 為"一旦超/ 其β人 a個溫度’(光電)電子結構就可能受損。尤 ..Jd4有機電子元件並以透明聚合物膜(或聚合物膜 二· 、、複合物)封裝的軟性元件的可使用溫度範圍 特別乍。這料 、對於在高壓下進行的層壓步驟也是如此。為 201222684 了遠到較佳的耐久性.,最好是刪除承受溫度負荷的步 驟,以及用較低的壓力進行層壓。 一種有利的方式是使用壓敏性或熱熔黏著材料封裝 這種(光電)電子元件。使用壓敏性黏著材料係屬於先前 技術(例如 US 2006/0100299 A1,w〇 2007/08728 1 A1, US 2005/0227082 Al,DE 10 2008 047 964 A,DE 10 2008 060 1 1 3 A)。最好是使用黏著後可以被引入的能量(例如 光化輻射熱能)活化的壓敏性黏著材料2006/〇1〇〇299 Al,WO 2007/08728 1 A1),因為被引入的能量引發的交 聯反應可以改善這種黏著材料的阻隔作用。 先前技術使用的另外一種封裝電子元件用的黏著材 料是熱熔黏著材料。此類黏著材料主要是乙烯共聚物, 例如乙烯-醋酸乙酯(EEA)、乙烯-丙烯酸共聚物(EAA)、 乙烯-丙烯酸丁酯(EBA)、乙烯丙浠酸甲酯(EMa)。以矽 晶圓為基的太陽能模組的封裝通常是使用交聯的乙烯_ 醋酸乙烯醋(EV A)共聚物。在封裝製程中,交聯反應是在 高壓及溫度高於1 2 0 °C的條件下進行。對許多以有機半 導體為基或薄膜法製成的(光電)電子元件而言,這個製 程中的高溫或壓力造成的機械負荷是不利的。jp 2002 260 847 A也將這個製程用於有機發光二極體的封裝。 US 5488266 A > WO 2008/036707 A2 ' WO 2003/002684 A、JP 2008 004 561 A、JP2005 298 703 A、 US 2004/0216778 Al等專利均有揭示其他以嵌段共聚物 或官能基化聚合物為基的熱熔黏著材料。此外,透過光 化輻射或加熱引入的能量引發交聯反應可以改善這些熱 201222684 ’熔黏著材料的特性(例如W〇2008/036707A、W02003/ 002684A、jp 2005 298 703 A、US 2004/0216778 A1)。 先刚技術使用之壓敏性或熱熔黏著材料的缺點是: 沒有又秘時’阻隔作用小於環氧化物黏著劑(尤其是對氧 的阻隔作用)’而且在高溫時,黏著材料的内聚性會大幅 降低。因此提尚了將元件存放在潮濕及溫暖之環境中產 生氣泡的危險性。 所明内聚性」通常是指使物質或物質混合物因分 子間及/或分子内的交互作用造成的物理效應。内聚性決 疋了黏著材料的黏滯性及流動性,這可以從黏度及抗剪 時間加以測疋。為了提高黏著材料的内聚性,通常會使 黏著材料再經過一次交聯,為此需將活性成分(可交聯成 分)或其他的化學交聯劑添加到黏性材料中及/或在後 處理過程中對黏著材料照射電離輻射。 所明「黏著性」通常是指兩個彼此接觸的相因發生 在接觸面的分子間交互作用而連結在接觸面上的物理效 應。黏著性決定了黏著材料在基板表面的附著性,從黏 著性(所明的「黏著力」)及黏著強度的測定可以得知黏 著材料的黏著性。為了對黏著材料的黏著性造成特定程 度的影響,通常會在黏著材料中加入軟化劑及/或提高黏 著力的樹脂(也就是所謂的增黏劑)。黏著材料的黏性特 徵主要是由内聚性及黏著性的關係決定。例如對某些應The ridge solution S is a description of the affinity of the barrier adhesive material to the permeate. Taking the permeate as water vapor as an example, a non-hygroscopic material can achieve: a low S value. The diffusion term D is a description of the mobility of the permeate in the barrier material. The size is directly determined by the molecular mobility of the permeate or from the properties of the space of φ. Highly cross-linked or highly crystalline materials are generally capable of achieving a low D I of phase, but the transparency of the material is generally low, while high cross-linking degrades the flexibility of the material. The permeability ρ generally changes to the A glass transition point as the mobility of the molecule increases. For example, when the temperature "or spans the barrier effect, it is necessary to take these two parameters (D and start, especially considering the effect of these two parameters on the penetration of water vapor and oxygen. In addition to the two chemical properties, it must also Considering the influence of physical properties on the penetration rate, especially the average penetration path length and interface characteristics (: the flow characteristics of the material, adhesion). The ideal barrier adhesive material: value and s, 2 is very low, and can Good adhesion to the substrate. Light is usually not able to achieve good barrier properties by the low dissolution term S. A typical example is the rare oxygen elastomer. (4) Material (4) Non-hygroscopic (low solubility), but Due to the relationship of the free rotation (10) bond (large diffusion term), the barrier effect of this material on water vapor and oxygen is different. Therefore, a prerequisite for achieving good barrier is dissolution; term S and diffusion term D A good balance should be achieved. The current use of epoxide-based liquid adhesives and adhesives (w〇98/21287 a1; US4〇51195a; us45526〇 due to the high degree of cross-linking, Liquid adhesives and 谬201222684 Diffusion term D are very low' and are mainly applied to the edge of hard components, but can also be applied to the edges of semi-soft components. Such liquid adhesives and adhesives can be heated or Irradiation by ultraviolet light. Due to the shrinkage caused by hardening, it is almost impossible to achieve full-area adhesion because hardening causes stress on the adhesive and the substrate material, which may cause peeling of the adhesive. The use of this liquid adhesive has There are many disadvantages. For example, its low molecular weight (V ◦ C 'volatile organic compounds) may damage the electronic structure of the component, making it difficult for the components in the product to communicate with other components. It is necessary to apply the adhesive to the electronic component very laboriously. On each of the components, another disadvantage is the need to use an unreliable spreading device and fixing device to ensure the precise positioning of the liquid adhesive. Moreover, the coating method is not conducive to the rapid continuous operation, and the subsequent needs The lamination step may be due to the low viscosity and the inability to achieve a specific layer thickness and The adhesion width of the narrow area. The cross-linked adhesive has only a small flexibility after hardening. The use of 4 ^ ', ,, and the system is limited to the low temperature range, or two-component 糸The use of j. rQ it > - the use of the limit of use, that is, must be completed before gelation | ^ ^. In the case of temperature target and long reaction time sensitive (light The electronic structure of Ray · ^) also limits the availability of such a system: (photoelectric) φ 2 ^ η The lowest usable temperature of the substructure is usually 90 ° C, because " once super / its β person a temperature The '(photoelectric) electronic structure may be damaged. In particular, the usable temperature range of the Jd4 organic electronic component packaged with a transparent polymer film (or polymer film, composite) is particularly high. This is also the case for the lamination step performed under high pressure. For 201222684 far better durability, it is best to remove the temperature-bearing step and laminate with a lower pressure. One advantageous way is to encapsulate such (photovoltaic) electronic components using pressure sensitive or hot melt adhesive materials. The use of pressure sensitive adhesive materials is a prior art (e.g., US 2006/0100299 A1, w〇 2007/08728 1 A1, US 2005/0227082 Al, DE 10 2008 047 964 A, DE 10 2008 060 1 1 3 A). It is preferable to use a pressure-sensitive adhesive material which is activated by adhesion (for example, actinic radiant heat energy) after adhesion, 2006/〇1〇〇299 Al, WO 2007/08728 1 A1), because of the energy induced by the introduction The coupling reaction can improve the barrier effect of the adhesive material. Another adhesive material for packaging electronic components used in the prior art is a hot-melt adhesive material. Such adhesive materials are mainly ethylene copolymers such as ethylene-ethyl acetate (EEA), ethylene-acrylic acid copolymer (EAA), ethylene-butyl acrylate (EBA), and ethylene methyl acrylate (EMa). The package of solar wafers based on 矽 wafers is typically a crosslinked ethylene-vinyl acetate (EV A) copolymer. In the encapsulation process, the crosslinking reaction is carried out under high pressure and at a temperature higher than 120 °C. For many (photovoltaic) electronic components based on organic semiconductor or thin film processes, the mechanical stress caused by high temperatures or pressures in this process is disadvantageous. Jp 2002 260 847 A also uses this process for the packaging of organic light-emitting diodes. US 5,488,266 A > WO 2008/036707 A2 'WO 2003/002684 A, JP 2008 004 561 A, JP 2005 298 703 A, US 2004/0216778 Al et al. all disclose other block copolymers or functionalized polymers A base-based hot melt adhesive material. In addition, the cross-linking reaction initiated by actinic radiation or heat can improve the properties of these heat-filled materials (eg, W〇2008/036707A, W02003/002684A, jp 2005 298 703 A, US 2004/0216778 A1) . The disadvantages of the pressure-sensitive or hot-melt adhesive materials used in the first technology are: no blocking effect is less than the epoxide adhesive (especially the barrier effect on oxygen) and at high temperatures, the cohesive material is cohesive Sex will be greatly reduced. This raises the risk of air bubbles in the wet and warm environment. The term "cohesiveness" generally refers to the physical effect of a substance or mixture of substances due to interactions between molecules and/or within molecules. Cohesiveness determines the viscosity and fluidity of the adhesive material, which can be measured from viscosity and shear time. In order to improve the cohesiveness of the adhesive material, the adhesive material is usually subjected to one cross-linking. For this purpose, the active ingredient (crosslinkable component) or other chemical cross-linking agent is added to the adhesive material and/or The adhesive material is irradiated with ionizing radiation during the treatment. The term "adhesive" generally refers to the physical effect of two molecules that are in contact with each other due to the interaction between molecules in the contact surface. Adhesion determines the adhesion of the adhesive to the surface of the substrate. The adhesion of the adhesive can be known from the adhesion (the "adhesion") and the measurement of the adhesive strength. In order to exert a certain degree of influence on the adhesion of the adhesive material, a softener and/or an adhesive-enhancing resin (also called a tackifier) is usually added to the adhesive material. The viscous characteristics of the adhesive material are mainly determined by the relationship between cohesiveness and adhesion. For example, for some should
用而言很重要的是,所使用的黏著材料必須是高内聚性 的’也就疋具有很強内部凝聚力D 如果要使黏著材料被熱交聯,熱能必須穿過電子结 201222684 構輸送到黏合處。此時通常需要加熱,但是這可能會造 成電子結構受損。另外一個難題是如何將熱能輪送限制 在待黏合的區域。例如,如果是以熱沖頭使熱能穿透聚 合物膜進入’則熱沖頭的溫度必須遠高於在黏合處需達 到的溫度’以盡可能縮短加熱時間。這可能會使聚合物 膜及其阻隔層受損,就如同橫向熱流可能導致電子:構 受損一樣。如何將熱能輸入限制在局部範圍的問題同樣 會出現在另外一種方法中,這種方法是在黏合處接合之 前’先將熱能輸入(例如透過紅外線輻射或熱氣對流)。 可輕射交聯的壓敏性或熱炫黏著材料也有相同的缺 點,因為輻射可能導致電子結構受損,而且一部分的電 子結構具有輻射透明性。由於電子結構中的許多成分(尤 其是有機電子材料)及所使用的許多聚合物對紫外線輻 射都很敏感’因此如果未採取實外的防護措施(例如加上 覆蓋膜),就無法長時間在戶外使用。可以在可紫外線硬 化的黏著劑系統經過紫外線硬化後再加上覆蓋膜,但是 這樣做不但會增加製程的複雜度,&會增加整個結構的 厚度。如何將熱能輸入限制在局部範圍的問題同樣會出 現在輻射交聯。雖然使用掩膜有助於解決這個問題,但 是這對連續生產的作業方式是一件很麻煩的事。 US 67063 1 6 B2揭示一種熔化低熔點之金 超音=封裝有機發光二極體的方法。這種方法是:基板 及覆蓋層之間放入金屬、線,在非常高的壓力(2_至 ⑷讀叫下以波音波壓製。由於封裝材料的金屬特性’ 因此必須在黏合處產生很高的溫度。由於需要高溫及很 •10- 201222684 大的壓力,因此這種方法不能應用於聚合物基板。us 67063 16 B2本身也有明確的指出,這個方法僅適用於玻 璃、金屬及陶究。由於封裝材料具有導電性,因此在電 子結構中還需要一個電絕緣層。 US 6195 142 B1揭示一種類似的封裝方法這種方 法是使用以低熔點的玻璃、金屬或液晶聚合物製的 焊料。這種方法具有和上一個方法類似的缺點。以玻璃 基板及玻璃保護蓋為例,超音波時間在2〇秒至3〇秒之 間。此專利建議使用PET製的軟性基板,保護蓋則是以 鋼或玻璃製成’ Jt明確指出環氧樹脂、聚 其他巨分子黏著劑較不適用。 ⑽"曰及 以上兩種方法需要用到的咼溫都帶有因導熱造成電 子結構受損的危險,而且由於基板及/或保護蓋的材料具 有很好的導熱性’使這個危險進一步升高。 US 6803245 B2是將超音波接合封裝電子元件作為 黏著接合的一個替代方案,並不是用超音波活化黏著劑。 DE 103 09 607 A1揭示一種電子元件之功能性組件 的封裝方法,這種方法是利用超音波焊接將設置在功能 性組件上方的密封罩與基板緊密的結合在一起。根據這 種方法的一種有利的實施方式,在超音波焊接之前,可 以在基板及密封罩之間放入一種可起音波焊接的密封材 料。但更佳的作法是,基板及密封罩都是由可焊接的熱 塑性塑膠構成,這樣基板及密封罩本身就可以經由超立 波彼此焊接在一起。和所有的焊接方法一樣,超音波焊 接的缺點是兩個接合件必須在其交界面被轉換成炫融狀 201222684 態’以使材料之門At 曰]月b夠進行焊接接合 散。如果因為鉍+:1 > 叮奸恢按。典型的分子相互擴 進行,則需此不相容’導致分子相互擴散無法 通常整個被轉換,放^助焊劑。在烊接時,助焊劑 接合件的同樣是& /狀態,以使其兩個交界面能夠與 從這-點來的交界面進行分子相互擴散。 另外-個缺點是:接合:^:::焊接方法並無區別。 有可能受損。這種产、、,、又|面上甚至整個斷面都 阻隔層的聚合物膜二生在封裝時使用的帶有 DE10 、導致烊接處的密封性不足。 9 6 0 7 A 1建議從玻璃焊料及划#制由 適當的密封材料,並明確…:坏料及黏者劑中選出 很好的密封材料。使::=二脂(:種黏卿 :::糊狀的黏著劑的劑量調配必須非 超曰焊接過程中出現黏著劑流動的情況。由於超立波 焊接必須使用很高㈣力,以便將聲能導人電子 因此很難避免液態黏著劑從焊縫被擠壓出來。、° 此外,也可以從軟性有機聚合物 熱塑性塑勝中選擇密封材料。這個選擇和二助焊劑的 是不-樣的,因為所選擇的密封材料必須斑者劑的選擇 均具有相容性,以確保分子相互㈣個接合件 此可選擇的範圍會受到很大的限制。此外刊進打。因 有前面提及的可能導致封裝材料受損的危這種方法也 【發明内容】 & ^ ° 本發明的目的是提出一種封裝電子_ 阻隔滲透,尤其是阻隔水蒸氣及氧的滲2件的方法,以 /此種方法需 -12- 201222684 間早且他夠快速執行,同時又 罢„ 受月匕夠達到良好的封裝效 果。此外,遝要透過使用適當 + i田的黏者材料(尤其是軟性黏 者材枓)延長(光電)電子元件的使用壽命。 採用本發明提出之主申嗜直》 ,α t 甲。月專利把圍的方法即可達到 边目的。其他附屬申請專利 圍的内容為本發明之各 裡有利的實施方式。 阻隔滲透的方法 本發明提出一種封裝電子元件以 包括以下的步驟: '準備一種具有至少 料的平面構成物; 一種熱活化性壓敏性或熱熔黏著材 -在承載/包含電子元件的基板上,使平面構成物至少圍 繞住電子元件之待封裝區域; 電子元件及至少將電子元件圍繞住的黏著材料加上 一個覆蓋層’其中黏著材料與覆蓋層接觸; 接著將黏著材料的至少一個子區域的面積熱活化,因 /成個至少由基板及覆蓋層構成的複合物。 其中熱活化所需的熱能是在至少包含黏著材料的平 構成物内自行產生,或是在黏著材料與基板及/或覆蓋 層的交界面内產生。 _另外一種封裝電子元件以阻隔滲透的方法是為電子 元件加上—伽办士 個塗有至少將電子元件圍繞住的黏著材料It is important to use that the adhesive material used must be highly cohesive. 'There is a strong internal cohesion. D If the adhesive material is to be thermally crosslinked, heat must be transported through the electron junction 201222684. Bonding. Heating is usually required at this time, but this may cause damage to the electronic structure. Another challenge is how to limit the heat transfer to the area to be bonded. For example, if a thermal punch is used to cause thermal energy to penetrate the polymer film into the 'the temperature of the thermal punch must be much higher than the temperature to be reached at the bond' to minimize the heating time. This can damage the polymer film and its barrier layer as if the lateral heat flow could cause electrons to damage. The problem of how to limit the thermal input to the local range is also present in another method, which involves inputting thermal energy (for example, by infrared radiation or hot gas convection) before bonding at the bond. Light-sensitive cross-linked pressure-sensitive or heat-sensitive adhesive materials have the same disadvantages because radiation may cause damage to electronic structures and a part of the electronic structure is radiation-transparent. Since many of the components in the electronic structure (especially organic electronic materials) and many of the polymers used are sensitive to UV radiation, they cannot be used for long periods of time if no external protective measures are taken (eg with a cover film). Outdoor use. The UV-cured adhesive system can be UV-cured and then covered, but this will not only increase the complexity of the process, but also increase the thickness of the entire structure. The problem of how to limit the heat input to the local range also occurs with radiation cross-linking. Although the use of a mask helps solve this problem, it is a cumbersome task for continuous production. US 67063 1 6 B2 discloses a method of melting a low melting point gold supersonic = encapsulating an organic light emitting diode. This method is: placing metal and wire between the substrate and the cover layer, and pressing at a very high pressure (2_ to (4) read by Boeing. Due to the metal characteristics of the package material, it must be high at the bond. The temperature cannot be applied to the polymer substrate due to the high temperature and the high pressure of 10 - 201222684. The us 67063 16 B2 itself also clearly indicates that this method is only applicable to glass, metal and ceramics. The encapsulating material is electrically conductive and therefore requires an electrically insulating layer in the electronic structure. US 6195 142 B1 discloses a similar encapsulation method using solder of a low melting point glass, metal or liquid crystal polymer. The method has similar disadvantages as the previous method. Taking the glass substrate and the glass protective cover as an example, the ultrasonic time is between 2 sec and 3 sec. This patent proposes to use a soft substrate made of PET, and the protective cover is made of steel. Or made of glass 'Jt clearly pointed out that epoxy resin, poly other macromolecular adhesive is less suitable. (10) "曰 and the above two methods need to use the temperature The danger of damage to the electronic structure due to thermal conduction, and the risk of further thermal conductivity of the substrate and/or the protective cover' is further increased. US 6803245 B2 is an adhesive bonding electronic component as an adhesive bond. The alternative is not to activate the adhesive with an ultrasonic wave. DE 103 09 607 A1 discloses a method of encapsulating a functional component of an electronic component by using ultrasonic welding to close the sealing cover disposed above the functional component to the substrate According to an advantageous embodiment of the method, a sound-welding sealing material can be placed between the substrate and the sealing cover before the ultrasonic welding, but it is better to use the substrate and The sealing covers are made of solderable thermoplastics so that the substrates and the sealing caps themselves can be welded together via super-waves. As with all welding methods, the disadvantage of ultrasonic welding is that the two joints must be at their interface. Converted into a dazzling 201222684 state 'to make the material door At 曰] month b enough for solder joint If the 的+:1 > 叮 rape restores. The typical molecules expand each other, then this incompatibility is required. The joints are also & / state, so that their two interfaces can be molecularly interdiffused from the interface from this point. Another disadvantage is that the joint: ^::: welding method is no different. It may be damaged. The polymer film of the barrier layer on the surface of the product, and even the whole section is covered with DE10 during packaging, resulting in insufficient sealing of the joint. 9 6 0 7 A 1 is recommended from glass solder and stenciled by a suitable sealing material, and clear ...: bad material and adhesive to choose a good sealing material. Make::=Self-fat (: kind of sticky::: The dosage of the paste-like adhesive must not exceed the flow of adhesive during the welding process. Because super-wave welding must use very high (four) force, so that the sound It is difficult to prevent the liquid adhesive from being squeezed out from the weld. ° In addition, the sealing material can be selected from the soft organic polymer thermoplastic. This choice and the second flux are not the same. Because the choice of sealing material must be compatible with the choice of the patch, to ensure that the molecular (four) joints of this joint range will be greatly limited. Also published in the fight. Because of the aforementioned This method may result in damage to the packaging material. [Invention] The object of the present invention is to provide a method for encapsulating electrons to block penetration, especially for blocking water vapor and oxygen. The method needs to be -12-201222684 early and he is fast enough to execute, and at the same time, it is good enough to achieve a good packaging effect. In addition, it is necessary to use the appropriate + i field adhesive material (especially soft sticky) The material 枓) extends the service life of the (photovoltaic) electronic component. The main application of the invention is as follows: α t A. The patent of the patent can achieve the purpose of the patent. Advantageous embodiments of the invention. Methods of Barrier Infiltration The present invention provides a packaged electronic component comprising the steps of: 'preparing a planar composition having at least a material; a heat-activated pressure-sensitive or hot-melt adhesive- Carrying/containing the electronic component on the substrate such that the planar structure surrounds at least the area to be packaged of the electronic component; the electronic component and at least the adhesive material surrounding the electronic component are provided with a cover layer in which the adhesive material contacts the cover layer; Thermally activating the area of at least one sub-region of the adhesive material by a composite comprising at least a substrate and a cover layer. wherein the thermal energy required for thermal activation is self-generated in a flat composition comprising at least the adhesive material, or It is produced at the interface between the adhesive material and the substrate and/or the cover layer. _ Another package of electronic components to block The method of infiltration is to add an electronic component to the adhesive material that is coated with at least the electronic component.
It # a *τ g ’,、中黏著材料至少與基板接觸。 封裝指的不只是以前面提及的平面構成物將電 件整低1 4+ 疋 '了伍’而是也包括以平面構成物將(光電)電子 件的待封奘卩 ^ 对展&域封住,也就是平面構成物僅將部分 -13- 將電子、结構框住。 透是指化學物質(例如原子、離 件或組件’尤其是電子或光電 其功能障礙。這些化學物質可 殼或外罩滲入,尤其是透過外 黏著處、4接處。此處所謂的 個或部分圍繞住’且除了機械 外殼或外罩。 透特別是指低分子量有機或無 指氫(H2)、氧(〇2)及水(h2〇)的 是氣態或蒸氣。 令人感到s牙異的認知,那就是 材料内部產生熱能的措施不會 影響’尤其是電子元件本身並 受損的現象。而且和DE 103 09 光前技術不一樣的是,本發明 部的黏著材料加熱,以產生及/ 明之方法的封裝品質亦遠優於 優點是熱能基本上被偈限在黏 面構成物内自行產生,因此只 為了能夠順利的傳遞熱能,以 的方法需要形成溫度梯度及過 法則不會有這個問題。因此本 夺間,並大幅降低橫向熱流(主 201222684 封住’例如單面覆蓋或是 在本發明中所謂的滲 子、分子,…)能夠滲入零 零件或組件,且可能導致 以是透過零件或組件的外 殼或外罩的開口或接缝、 外殼或外罩是指將零件整 功能外還具有保護功能的 在本發明中所謂的滲 機化合物的滲入,尤其是 渗入。滲入物的形式可能 本發明之基礎是一個 以下將詳細解說的在黏著 對電子元件造成任何不良 不會有值得一提的升溫或 607 A1第[0008]段描述之 提出的方法甚至可以將全 或強化黏合。此外,本發 傳統的加熱法。 本發明的方法的一個 合面上。由於熱能是在平 需加熱至活化溫度即可。 傳導、輻射或對流為基礎 度升溫,但是本發明的方 發明的方法可以縮短加熱 -14- 201222684 要是朝電子元件的方向)。 另外一個優點是,電子結構 '基板及覆蓋層都 要採取特殊的產生熱能的措施,也就是說無需形成 點接通以輸入電流,而是只需加上含有黏著材料的 構成物並配合在黏著材料内產生熱能的外 獲得足夠的熱能。 先前技術有許多不同的適當機制可以實現在平 成物内部自行產生熱能,例如利用放熱化學反應或 相變(例如結晶)加熱、透過電阻加熱、透過吸收光 射加熱、透過磁感應加熱、透過高頻電場的交互作^ 如微波輻射)加熱。 其中化學反應及物理相變通常無法產生可供活 著材料之用的足夠的比(容積)發熱。電阻加熱特定 電材料作為平面構成物的成分(例如在黏著材料中 導體,或是具有導電性的黏著材料),以及導入電流 接點。高頻加熱及微波加熱需要在平面構成物内加 殊的配合材料,或是使用特殊的黏著材料(例如以聚 或聚氣乙烯為基的黏著材料),該等配合材料或黏著 需調諧到特定頻率並具有很足夠高的介電損失係數 些條件都會對材料的選擇造成很大的限制。此外, 加熱很難將輻射範圍侷限在門加熱的區域。因此微 成電子元件受損的危險性很高。 種更有利的方式是透過磁感應在至少含有黏 料的平面構成物内產生熱能。WO 2009/021801 A1 不這種方法在其他方面的應用。 不需 電觸 平面 即可 面構 物理 化輻 3 (例 化黏 的導 加入 的外 入特 醯胺 材料 °這 微波 波造 著材 有揭 -15- 201222684 超曰波焊接是一種用來接合勒棚 果夫# 4 @ 木按α塑膠的方法。原則上如 呆未使用相應的接合件,就只能 口右為·¥ 接熱塑性塑膠。而且 八有在熱塑性塑膠彼此具有足夠 能吝斗且《 . J相令性的刖提下’才 長d性的接合。如果要使不 ^ 彼此桩 不相谷或非熱塑性塑膠 彼此接點,就必須使用適當 ^ , ^ ^ ^ „罢χ取Α 坪Μ,例如在接合件之 ‘將在物膜。和其他的焊Μ法—樣,必須輸入熱 :立、皮媒广置及/或黏合位置的材料活化(例如熔化卜 接所需的能量來自於高頻機械振動。這種方法 特徵是,焊接.所需的能量是在焊縫内經由分子及/ /父I面摩擦或振動在及/或助焊劑内產生。 本發明的方法建議以超音波加熱黏著材料。和超音 ^接不同的是,超音波加熱主要不是在交界面產生熱 月匕,而是透過黏著材料内的磁滞損粍產生埶能,特 很高的機械阻尼係數tan5有助於磁滞損耗的發生; 所需的超音波儀器主要是由部分構成: • 振盪器 • 振盪回路(焊頭) • 鐵砧 B利用振盪器產生超音波頻率。振盪器能夠將電源電 壓:換成高壓及高頻。電能經由一條屏蔽電纜被輸送到 Ϊ"! Ϊ轉換器’也就是所謂的變頻器。變頻器通常是按 二壓電效應工作,也就是利用在接通電阻時會膨脹及收 :之特定晶體的特性工作。因此而產生的機械振盪經由 一個振幅阻抗變換段傳送到焊頭。振幅阻抗變換段可以 影響振盛的振幅大小。㈣通常是在2至5MPa、的壓力 -16 - 201222684 下被傳送到固定在焊頭及其相對應之鐵砧之間的工件 以產生活化所需的熱能。 透過局部升溫使黏著劑開始軟化’同時機械阻尼係 數上升。機械阻尼係數升高使熱能的產出増加,使自我 加速的反應效應得以確保。本發明透過這種方式使黏著 劑很快的被活化,這對於實現很短的循環時間及很高的 經濟效益均有貢獻。 ’ 另外一個優點是升溫範圍受到很明確的限制,也就 是說被限制在焊頭表面與複合物接觸的範圍。 冷卻後黏合會變得很堅固。由於焊頭_直受到超立 波振動的衝擊,因此對製造焊頭的材料有报高=要求: 通常是以具有碳化物鍍膜的鈦作為製造焊頭的材料。 上14種方法的特徵是,超音波時間很短,因此具有很 高的經濟效益。超音波時間最好是在〇1秒至3秒、。仏 為了縮短超音波時間,一種有利的 人®m “ ,裡有⑴的方式是將單位黏 。面積的功率調到3W/mm2以上。 琅後平面構成物會 人& λ 队血/百〈间的永久接 。’利用這種方法可以使任意不同的材料彼此接合。 :個令人舒異的發現是’即使電子元件位於焊頭下 (但疋並未與焊頭接觸),也不會 損傷。一 #生 日對电子凡件造成任何 知傷4種情驗f丨現在與複 形壯A k1文’的坏頭表面的 狀為框木形’同時在框架的中 洞,因+ “ 2 T央入焊頭表面的凹 時無法接觸到焊頭。 物的^在焊頭被壓出 為 了保護覆蓋層與焊頭接觸的表面 不會被到機械損 -17- 201222684 傷,最後是在覆蓋層及 膜),或是在焊頭的接觸 材料。 焊頭之間設置一層保護膜(犧牲 面上有塗上一層彈性體或黏彈性 為了盡可此降低表面損傷的危險,一種有利的 疋將單位黏合面積的功率調到低於G.5W/mm2的程度/ 方面為了降低表面損傷的危險,但另一方面又 盡可能縮短波音浊pq p, , 〇 仅曰友時間,最好是將單位黏合面積的 調到0.5 W/mm2至3w/mm2之間。 將超音波時間及輸入功率相乘計算出的單位黏合面 積的最佳超音波能量是0.05 J/mm2至9J/mm2之間。。 根據本發明的一種有利的實施方式,在連續製程中 超音波能量是經由可展直的焊頭輸入。與此相應的超音 波技術屬於已知之超音波焊接的領域。 θ 另外一種非常有利的方式是透過磁感應在至少含有 黏著材料的平面構成物内產生熱能。ΕΡ 1 453 360 Α2有 揭不這種方法在其他方面的應用。 相較於超音波加熱,磁感應加熱的優點是,平面構 成物及覆蓋層或基板無需直接接觸,就可以利用外部加 熱裝置將平面構成物加熱,甚至可以在完全無接觸的情 況下完成加熱。例如可以用鬆散方式將平面構成物與基 板及覆蓋層等各層重疊,以使其不相接觸,以進行時感 應加熱。然後在下一個步驟再施力(壓制黏合位置)形成 堅固且長期性的接合。 本發明的一種有利的變化方式是將感應器整合到至 少一個沖麼工具中’因為這樣就可以移動感應場使其非 -18 - 201222684 吊接近黏合位置,因gi膝六虛, y 门守將感應琢的空間範圍限制在黏合 位置附近。 可以透過各種不同的效應在交互磁場内加熱:如果 合二磁场内加熱的物體具有導電區域,則交互磁場 :在這些區域感應生成渴流。如果這些區域的電阻不是 ::因此出現的渦流導線損耗就會產生焦耳熱(電流 …)。為了能夠形成這㈣流,導電區域必須達到-最小 尺寸’而且從外部接通的交互磁場的頻率愈低,這個最 小尺寸就愈大。 但是如果放到交磁i县& Λ 又互磁琢内加熱的物體具有鐵磁區 域’則迫些區域的元磁鐵就會對準平行於外部交互磁場 的方向在外。ρ交互磁場發生改變期間出現的磁滯損耗 (反復磁化損耗)就會將該物體加熱。視放到交互磁場内 的物體的材料而定(鐵磁金屬,例如冑m或是鐵 磁合金,例如猛游合今;5 4s β人Λ、 针〇至及鲇鎳鈷合金),可以同時利用這 兩種效應將物體加熱,或是只能利用其中—種效應將物 體加熱(非鐵磁金屬能利用渦流效應加熱,例如鋁,或是 導電性較差的金屬只能利用磁滞效應加熱,例如氧化鐵 微粒)。 如果要透過感應加熱將熱活化黏性平面構成物熱活 化’則通常是使用含有熱活化性黏著材料的平面構成 物,此黏著材料係塗在一個導電層的表面,例如塗在帶 有金屬膜或金屬化聚合物膜、中斷的金屬膜、金屬線網、 扁平輾薄的延展金屬、金屬絨或金屬纖維 、*的平面結構的 表面。最後提及的不連續平面結構的優點是,黏著材料 -19- 201222684 可以通過平面結構内的孔洞從平面結構穿出,因此有助 於改善平面構成物的内聚力,但是這會付出加熱效率降 低的代價。 近年來將感應加熱應用於黏合重新獲得業界的重 視。這是因為現今可掌握的奈米微粒系統,例如 MagSiliCa®(EV〇nik AG),這種奈米微粒系統可以被放入 待加熱之物體的材料中,其可使整個物體加熱,但是並 不會對物體的力學穩定性造成任何值得一提的損失。 MagSilica®是一種被二氧化矽包覆的極小的氧化鐵粒 子。 例如Lohmann公司生產的一種名為DUpl〇coll RCD® 的朦帶’其黏著材料含有一種可感應加熱的奈米微粒。 熱能是由MagSilica®與磁場的作用產生。如果含有 MagSilica®的黏著劑處於一快速變換的磁場,氧化鐵粒 子就會像羅盤的指針一樣開始振動。這樣就可以在黏著 劑内產生熱能,然後黏著劑很快就會硬化。因為無需將 電子兀件加熱,因此可以省下珍貴的熱能,並使生產過 程明顯加速。 目前已知有許多不同的加熱設備可應用於感應加 熱’不同的加熱設備產生的交互磁場具有不同的頻率。 可以使用100Hz至200kHz的頻率範圍(所謂的中頻,MF) 或3 00kHz至l〇〇MHz的頻率範圍(所謂的高頻,hf)進行 感應加熱。 但是由於奈米系統的尺寸很小,因此這種產品在交 互磁场中無法有效的以中頻範圍的頻率加熱而是需要 -20- 201222684 以向 又會 兩頻 符合 發現 也不 活化 好將 度。 的黏 因感 留在 導致 物除 儲熱 物的. 板、 熱活 IMPa 板全t 一個4 頻範圍的頻率才能有效的加熱。 摇古啻工 疋以尚頻率加熱 ,電子元件在交互場場中受損的危險。 祀圍的交互磁場所需的設備投 經濟效益。 口此亚不 ,此較佳是使用中頻範圍的頻率。—個令人言牙異的 ::有機電子元件在這個頻率範圍既不 會受損。 …、 為了達到工業製造過程要求的很高的加工 黏者平面構成物的加熱時間必須非常短暫 : 加熱時間控制在〇·!至10秒。 最 為了達到所需的黏合溫度’必須選擇报高的加埶速 但右是將熱活化黏著平面構成㈣4著在導熱性 合物(導熱性不超過5W/mk)間,、 雁也士 ΛΛ i ^千面構成物内 應生成的熱就無法從黏合物完全排出。這些熱會先 黏合面内-段時間,因而在該處形成蓄熱。;可能 平面構成物及黏合物因局部過熱而受損。如果黏2 了導熱性很差外,熱容也很低,因此使其無法暫: ,則發生過熱的危險更高。例如在黏合面含有聚人 黏合物就同時兼具導熱性差及熱容低的特性。永口 因此—種有利的方法是,在感應加熱時同時對由基 平面構成物及覆蓋層構成的預複合物施加一垂直於 化黏著平面構成物的一個表面段的麼力(至小 ,或最好是至少3 MPa),以便使黏著材料與黏合基 ^積接觸。所謂「垂直於熱活化黏著平面構成物二 &面奴」是指,在平面黏合時,壓力至少是垂直作 -21 - 201222684 用於平放之平面構成物.(包括其兩個表面也是平玫)的主 要延伸範圍’如果是三度空間拱起的黏合,則是指壓力 垂直作用於平面構成物的一個主要延伸範圍,因此是在 一個子區域垂直作用於平面構成物的表面。 使用—般常用的感應加熱器(感應器)即可執行本發 明的方法。所有常見及適當的感應加熱器(感應器)均可 ’心用於本發明’也就是當交流電流過其線圈、線阻咬導 ^彳复會產生適當強度之交變磁場的所有感應用均可使 用°使適當之電流流過具有適當圈數線圈長度之 w (. 、 4圈裝 置1如點感應器)即可產生加熱所需的磁場強度。感鹿 哭可以、力士 心 00 '又有磁鐵核芯,亦可具有由鐵或壓密之織氣粉末 構成的磁鐵核芯。可以直接將複合物置於由此產’ ~甲。另外一種可行的方式是將上述線圈裝置作為初級 線圈置於一磁場變壓器的初級側,其中在該磁場變壓器 的有一提供一較大電流的次級側。由於可獲得較大的電 流供應’設置在複合物旁邊的勵磁線圈就可以具有少的 ®數’而且不會使交變磁場的場強度變弱。 感應加熱的另外一個優點是,由於從黏著材料内部 發出的熱脈衝很短,因此基板及/或覆蓋層内現有的無機 阻障層受損的危險明顯小於時間較長的穿過阻障膜的電 導加熱或機械式超音波加熱。 最好是以金屬膜、聚合物膜、複合薄膜、或帶有有 機及/或無機層的薄膜或複合薄膜作為電子元件的基板 材料°所有常見的製造薄膜用的金屬及/或塑膠均可用來 201222684 製造這種薄膜/複合薄膜,以下是若干例子:鋼、鋁、鋼、 聚乙烯、聚丙烯(尤其是經由單軸或雙軸拉伸產生的定向 聚丙烯(OPP))、環形烯烴共聚物(COC)、聚氯乙稀 (PVC))、聚酯(尤其是聚對苯二曱酸乙二酯(PET)及聚萘 乙二酯(PEN))、乙烯-乙烯醇(EV0H) '聚偏二氯乙烯 (PVDC)、聚偏二氟乙烯(PVDF)、聚丙烯氰(pAN)、聚碳 酸酯(PC)、聚甲基丙烯酸甲酯(pMMA)、聚醯胺(pA)、聚 硫醚(PES)、聚醯亞胺(pi)。 基板材料也可以和有機或無機塗層或鍵膜結合在一 起。有多種常用的方法可以達到這個目的,例如塗漆、 壓·印、蒸鍍、濺鍍、共擠壓、層壓等方法。以下是一些 鍵膜的例子:矽及鋁的氧化物或氮化物、氧化銦物 (ITO)、矽膠鍍膜。 這種薄膜/複合薄膜(尤其是聚合物膜)最好是具有對 氧及水蒸氣的滲透阻隔作用,其中封裝區域對滲透阻隔 的要求為 WVTRC10·1 g/(m2d)及 OTIUIO·1 cm3/(m2d 巴),或最好是 WVTR<10-2 g/(m2d)及 OTRclO.2 cm3/(m2d 巴)。 氧滲透率(OTR)及水蒸氣滲透率(WVTR)的測量應按It # a *τ g ', the medium adhesive material is in contact with at least the substrate. Encapsulation refers not only to the lowering of the electrical components by the planar composition mentioned above, but also to the sealing of the (optoelectronic) electronic components by the planar composition. The domain is sealed, that is, the planar structure only frames part -13 - electrons and structures. Permeability refers to the dysfunction of chemical substances (such as atoms, components or components), especially electrons or optoelectronics. These chemicals can penetrate into the shell or the outer cover, especially through the outer adhesion, 4 joints. The so-called part or part here. Surrounded by 'and in addition to the mechanical casing or cover. Translucent especially refers to low molecular weight organic or hydrogen free (H2), oxygen (〇2) and water (h2〇) is a gaseous or vapor. That is, the measure of heat generation inside the material does not affect the phenomenon that the electronic component itself is damaged, and unlike the DE 103 09 pre-light technology, the adhesive material of the present invention is heated to generate and/or The encapsulation quality of the method is far superior to the advantage that the thermal energy is basically generated by itself in the adhesive surface composition. Therefore, in order to smoothly transfer the thermal energy, the method requires a temperature gradient and an over-rule does not have this problem. Therefore, this intervening, and greatly reduce the lateral heat flow (main 201222684 sealed 'such as single-sided coverage or so-called infiltration, molecules, ... in the present invention) can penetrate into zero a member or component, and which may result in an opening or seam of the outer casing or outer casing of the component or component, the outer casing or the outer casing refers to the infiltration of the so-called permeation compound in the present invention having a protective function in addition to the integral function of the component, In particular, the form of the infiltrated material may be based on a method described in the following paragraph [0008] which is not described in detail in the adhesion to the electronic component. It is possible to bond all or intensively. In addition, the conventional heating method of the present invention is a combination surface of the method of the present invention. Since the heat energy is heated to the activation temperature in a flat state, the temperature is increased by conduction, radiation or convection, but The method of the invention of the present invention can shorten the heating -14-2222684 to the direction of the electronic component). Another advantage is that the electronic structure 'substrate and the cover layer must adopt special measures for generating thermal energy, that is, no need to form a point to input current, but only need to add a composition containing the adhesive material and fit in the adhesion. Enough energy is generated outside the material to generate thermal energy. The prior art has a number of different suitable mechanisms for self-generating thermal energy within the flat product, such as by exothermic chemical reactions or phase changes (e.g., crystallization) heating, by resistive heating, by absorption radiant heating, by magnetic induction heating, by high frequency electric fields. The interaction is done ^ such as microwave radiation) heating. Among them, chemical reactions and physical phase transitions generally do not produce sufficient ratio (volume) heat for the use of living materials. The resistor heats a specific electrical material as a component of the planar composition (e.g., a conductor in the adhesive material, or an electrically conductive adhesive material), and introduces a current contact. High-frequency heating and microwave heating require special bonding materials in the planar composition, or use special adhesive materials (such as adhesive materials based on poly or polyethylene). These bonding materials or adhesives need to be tuned to specific Frequency and a sufficiently high dielectric loss factor will impose significant limitations on material selection. In addition, it is difficult for heating to limit the range of radiation to the area where the door is heated. Therefore, the risk of damage to the microelectronic components is high. A more advantageous way is to generate thermal energy in a planar composition containing at least a binder by magnetic induction. WO 2009/021801 A1 This method is not used in other aspects. No need to touch the plane to form the surface of the physicalized spokes 3. (Incorporating the adhesion of the imported conductive amine material. This microwave wave is made of material -15- 201222684 Ultra-wave welding is a kind of joint棚果夫# 4 @木 according to the method of α plastic. In principle, if you do not use the corresponding joints, you can only use the thermoplastics for the right and left. And the eight have enough plastics in each other to fight. J-phased 刖 刖 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' Μ, for example, in the joint of the 'will be in the film. And other soldering methods, must be input heat: vertical, leather medium and / or bonding material activation (such as the energy required to melt the connection comes from High-frequency mechanical vibration. This method is characterized in that the energy required for welding is generated in the weld by friction and vibration in the nucleus and/or parent side and/or in the flux. The method of the present invention suggests super The sound wave heats the adhesive material. Unlike the super sound, the super sound Heating is not mainly to generate heat in the interface, but to generate heat through the hysteresis loss in the adhesive material. The extremely high mechanical damping coefficient tan5 contributes to the occurrence of hysteresis loss; the required ultrasonic instruments are mainly It consists of: • Oscillator • Oscillation circuit (welding head) • Anvil B uses an oscillator to generate the ultrasonic frequency. The oscillator can change the supply voltage: high voltage and high frequency. The electric energy is sent to the Ϊ" ;! The Ϊ converter' is also the so-called frequency converter. The frequency converter usually works according to the two-piezoelectric effect, that is, it uses the specific crystal characteristics that will expand and receive when the resistance is turned on. It is transmitted to the horn through an amplitude impedance transformation section. The amplitude impedance transformation section can affect the amplitude of the oscillating amplitude. (4) It is usually transmitted to the welding head and its corresponding under the pressure of -2 to 5 MPa, the pressure -16 - 201222684. The workpiece between the anvils is used to generate the thermal energy required for activation. The localization is used to soften the adhesive and the mechanical damping coefficient increases. The mechanical damping coefficient The increase causes the output of thermal energy to increase, and the self-accelerating reaction effect is ensured. The present invention enables the adhesive to be activated quickly in this way, which contributes to achieving a short cycle time and high economic efficiency. Another advantage is that the temperature rise range is very limited, that is, it is limited to the range where the surface of the weld head is in contact with the composite. The bond will become very strong after cooling. Because the weld head is directly affected by the vibration of the super-wave. Therefore, there is a report on the material used to make the horn. = Requirements: Titanium with carbide coating is usually used as the material for manufacturing the horn. The above 14 methods are characterized by very short ultrasonic time and therefore high economics. Benefits. Ultrasonic time is preferably between 1 second and 3 seconds.仏In order to shorten the ultrasonic time, a favorable person®m” has the (1) method of adjusting the unit viscosity. The power of the area is adjusted to 3W/mm2 or more. The rear plane structure will be the person & λ team blood / Bai < Permanent connection between the two. 'This method allows any different materials to be joined to each other. A singular finding is that 'even if the electronic components are under the welding head (but the 疋 is not in contact with the welding head), it will not Injury. One #生日############################################################################################### When the T is inserted into the surface of the welding head, the welding head cannot be touched. The surface of the object is pressed out to protect the surface of the cover layer from contact with the soldering tip from mechanical damage -17- 201222684, and finally to the cover layer and film, or to the contact material of the soldering tip. A protective film is placed between the welding heads (the sacrificial surface is coated with a layer of elastomer or viscoelasticity in order to reduce the risk of surface damage. An advantageous 疋 adjusts the power of the unit bonding area to less than G.5W/mm2. In order to reduce the risk of surface damage, on the other hand, the Boeing turbidity pq p is shortened as much as possible, and the time is only adjusted to 0.5 W/mm2 to 3w/mm2. The optimum ultrasonic energy of the unit bonded area calculated by multiplying the ultrasonic time and the input power is between 0.05 J/mm 2 and 9 J/mm 2 . According to an advantageous embodiment of the present invention, the continuous process is super The sonic energy is input via a straightenable horn. The corresponding ultrasonic technology belongs to the field of known ultrasonic welding. θ Another very advantageous way is to generate heat energy in a planar structure containing at least an adhesive material by magnetic induction. ΕΡ 1 453 360 Α 2 has not been applied in other aspects of the method. Compared with ultrasonic heating, the advantage of magnetic induction heating is that the planar structure and the cover layer or substrate are not By direct contact, the planar structure can be heated by an external heating device, and heating can be completed even without contact. For example, the planar structure can be loosely overlapped with each layer such as the substrate and the cover layer to make it non-phase. Contacting to perform induction heating. Then applying force (pressing the bonding position) in the next step to form a strong and long-term joint. An advantageous variant of the invention is to integrate the inductor into at least one tool. In this way, the induction field can be moved to make the non--18 - 201222684 hang close to the bonding position. Because the gi knee is imaginary, the y gate guard limits the spatial range of the sensing cymbal near the bonding position. It can be heated in the interactive magnetic field through various effects. : If the object heated in the combined magnetic field has a conductive area, the alternating magnetic field: induces a thirst flow in these areas. If the resistance of these areas is not:: the resulting eddy current loss will produce Joule heat (current...). The ability to form this (four) flow, the conductive area must reach the - minimum size 'and from the outside The lower the frequency of the alternating magnetic field, the larger the minimum size. However, if placed in the magnetic county i & Λ and the object heated in the mutual magnetic field has a ferromagnetic region, then the elemental magnets in some areas will be The direction of quasi-parallel to the externally interacting magnetic field is outside. The hysteresis loss (repetitive magnetization loss) that occurs during the change of the ρ alternating magnetic field heats the object. Depending on the material of the object placed in the alternating magnetic field (ferromagnetic metal, For example, 胄m or ferromagnetic alloys, such as Mengyou Hejin; 5 4s β Λ, 〇 to 鲇 nickel-cobalt alloy, can use these two effects to heat objects at the same time, or can only use them. The effect heats the object (non-ferromagnetic metals can be heated by eddy current effects, such as aluminum, or metals with poor conductivity can only be heated by hysteresis, such as iron oxide particles). If the heat-activated viscous planar structure is to be thermally activated by induction heating, a planar composition containing a heat-activated adhesive material is usually applied, which is applied to the surface of a conductive layer, for example, with a metal film. Or a surface of a planar structure of a metallized polymer film, an interrupted metal film, a metal wire mesh, a flattened thin metal, a metal velvet or a metal fiber, *. The last mentioned discontinuous planar structure has the advantage that the adhesive material -19-201222684 can pass through the planar structure through holes in the planar structure, thus contributing to the improvement of the cohesive force of the planar structure, but this will pay the cost of reduced heating efficiency. . In recent years, the application of induction heating to bonding has regained industry attention. This is because of the nanoparticle systems that are available today, such as MagSiliCa® (EV〇nik AG), which can be placed in the material of the object to be heated, which heats the entire object, but not It will cause any loss worth mentioning for the mechanical stability of the object. MagSilica® is a tiny iron oxide particle coated with cerium oxide. For example, a belt called DUpl〇coll RCD® manufactured by Lohmann's adhesive material contains an inductively heated nanoparticle. Thermal energy is produced by the action of MagSilica® with a magnetic field. If the adhesive containing MagSilica® is in a rapidly changing magnetic field, the iron oxide particles will start vibrating like a compass pointer. This produces heat in the adhesive and the adhesive quickly hardens. Since there is no need to heat the electronic components, precious heat energy can be saved and the production process can be significantly accelerated. Many different heating devices are currently known for inductive heating. The different interactive devices generate different frequencies of interaction. Induction heating can be performed using a frequency range of 100 Hz to 200 kHz (so-called intermediate frequency, MF) or a frequency range of 300 kHz to l 〇〇 MHz (so-called high frequency, hf). However, due to the small size of the nano-system, this product cannot be effectively heated at the frequency of the intermediate frequency range in the alternating magnetic field, but it needs to be -20-201222684 to meet the two-frequency coincidence and not to activate the degree. The viscous susceptibility is left in the cause of the removal of the heat storage. The plate, the hot live IMPa plate is fully t-frequency in a 4-frequency range to be effective for heating. Shake the ancient 疋 加热 疋 heating at a frequency, the risk of damage to electronic components in the interactive field. The equipment required for the interaction of the magnetic field is economical. This is not the case, it is better to use the frequency of the intermediate frequency range. —Amazing :: Organic electronic components are not compromised in this frequency range. ..., in order to achieve the high processing requirements of the industrial manufacturing process, the heating time of the viscous planar composition must be very short: the heating time is controlled at 〇·! to 10 seconds. In order to achieve the desired bonding temperature, it is necessary to select the acceleration speed of the high rise, but the right is to form the heat-activated adhesive plane (4) 4 in the thermal conductive compound (thermal conductivity does not exceed 5W/mk), Yan Yishi ΛΛ i ^The heat that should be generated in the thousand-face composition cannot be completely discharged from the binder. This heat will adhere to the in-plane time and thus form heat storage there. Possible flat structures and adhesives are damaged by local overheating. If the thermal conductivity is very poor, the heat capacity is also very low, so it is impossible to temporarily:, the risk of overheating is higher. For example, when the adhesive surface contains a poly-adhesive, it has both low thermal conductivity and low heat capacity. Therefore, an advantageous method is to apply a force perpendicular to a surface section of the adhesive plane composition to the pre-composite composed of the base plane composition and the cover layer during induction heating (to a small, or It is preferably at least 3 MPa) in order to contact the adhesive material with the adhesive. The so-called "perpendicular to the heat-activated adhesive plane composition II & face slave" means that when the plane is bonded, the pressure is at least perpendicular to the plane composition of - 21,222,684 for flat placement. (The two surfaces are also flat. The main extension of the 'female' is the adhesion of the three-dimensional space, which means that the pressure acts perpendicularly on a main extension of the planar composition, and therefore acts perpendicularly to the surface of the planar composition in a sub-region. The method of the present invention can be carried out using a commonly used induction heater (inductor). All common and appropriate induction heaters (inductors) can be used in the present invention, that is, when the AC current passes through its coil and the line is blocked, the application of the alternating magnetic field of appropriate strength is applied. The magnetic field strength required for heating can be generated by using a suitable current to flow through a w (., 4 turn device 1 such as a point sensor) having a proper number of turns of the coil. Feeling deer crying, Luxi heart 00 'has a magnet core, and can also have a magnet core composed of iron or compacted weaving powder. The complex can be placed directly on the resulting product. Another possible way is to place the coil arrangement as a primary coil on the primary side of a magnetic field transformer, wherein the magnetic field transformer has a secondary side that provides a relatively large current. Since a larger current supply can be obtained, the field coil disposed beside the composite can have a small number of ® and does not weaken the field strength of the alternating magnetic field. Another advantage of induction heating is that the risk of damage to the existing inorganic barrier layer in the substrate and/or overlay is significantly less than the longer passage of the barrier film due to the short heat pulse from the interior of the adhesive material. Conductive heating or mechanical ultrasonic heating. It is preferable to use a metal film, a polymer film, a composite film, or a film or composite film with an organic and/or inorganic layer as a substrate material for electronic components. All common metals and/or plastics for manufacturing films can be used. 201222684 Manufacture of such film/composite film, the following are a few examples: steel, aluminum, steel, polyethylene, polypropylene (especially oriented polypropylene (OPP) produced by uniaxial or biaxial stretching), cyclic olefin copolymer (COC), polyvinyl chloride (PVC), polyester (especially polyethylene terephthalate (PET) and polyethylene naphthalate (PEN)), ethylene vinyl alcohol (EV0H) 'poly Preference to polyvinylidene chloride (PVDC), polyvinylidene fluoride (PVDF), polyacrylonitrile (pAN), polycarbonate (PC), polymethyl methacrylate (pMMA), polyamine (pA), polysulfide Ether (PES), polyimine (pi). The substrate material can also be combined with an organic or inorganic coating or key film. There are a number of commonly used methods for this purpose, such as painting, pressing, printing, evaporation, sputtering, co-extrusion, lamination, and the like. The following are examples of some bond films: tantalum and aluminum oxide or nitride, indium oxide (ITO), and tantalum coating. The film/composite film (especially the polymer film) preferably has a permeation barrier against oxygen and water vapor, wherein the requirements for the permeation barrier of the package region are WVTRC10·1 g/(m2d) and OTIUIO·1 cm3/ (m2d bar), or preferably WVTR <10-2 g/(m2d) and OTRclO.2 cm3/(m2d bar). Oxygen permeability (OTR) and water vapor permeability (WVTR) should be measured
照 DIN 53380 第 3 部分(OTR)及 ASTM F-124 9(WVTRW 規定進行。氧滲透率的測量是在23 t及相對濕度50%的 環境中進行。水蒸氣滲透率的測量是在37 ^c及相對濕 度90%的環境中進行。然後再將測量結果標準化為5〇μπι 的薄膜厚度。 本發明對帶有阻障層的薄膜的一個優點是可以降低 -23- 201222684 熱輸入及其可能對滲透阻隔之層結構造成的損害。 一種有利的方式是將薄膜/複合膜製造成透明狀 便使這種電子結構的整個結構都是透明的,或至少 線能夠射入電子結構或是從電子結構射出。此處所 「透明」是指波長4〇〇至8〇〇ηιη之可見光的平均透According to DIN 53380 Part 3 (OTR) and ASTM F-124 9 (WVTRW regulations. Oxygen permeability is measured in an environment of 23 t and 50% relative humidity. The measurement of water vapor permeability is at 37 ^c And the environment with a relative humidity of 90%. Then the measurement result is normalized to a film thickness of 5 〇μπι. One advantage of the present invention for a film with a barrier layer is that it can reduce the heat input of -23-201222684 and its possible Damage caused by the layer structure of the permeable barrier. An advantageous way is to make the film/composite film transparent so that the entire structure of the electronic structure is transparent, or at least the line can be injected into the electronic structure or from the electronic structure. Injection. “Transparent” here refers to the average transmission of visible light with wavelengths from 4〇〇 to 8〇〇ηη.
至少達到75%、或最好是高於85%(按照ASTM D 的方法測量)。物體的透明性或透明度是由其消光係 表面反射率、以及測量用之光線的波長決定。消光 疋一種由所使用之材料的吸光性決定的特性。為了 具有向透明度的材料,必須避免吸光及反射。 反射發生在所有的表面及材料交界面上。反射 所使用之材料的表面彳造度及折射率決定。在粗縫表 還會發生散射反射。在透明材料及光束垂直入射且 心略波長之衫響的特殊情況下,可以將菲涅耳方程 化為: R = (n2-n1)2/(n2 + n,)2 R=在交界面上的反射 n!=介質1的折射率 Μ”「'負· 2的折射率 空氣的折射率nLuft大約是i 反射發生在所有的表面上,因此會使物體 ,降低例如,假設光束射入薄膜及從薄膜射 菲耳疋律,折射率nz= 1.6之聚合物膜可達到 明度不會超過9〇%。 黏著材料及載體膜最好都是透明的,而且波長 ,以 使光 謂的 過率 1003 數、 係數 獲得 是由 面上 可以 式簡 明係 遵守 大透 400 -24- 60% 201222684 至800nm之光線對透明黏合膜的透光率較佳是大於 或最好是大於85%(按照ASTM D 1〇〇3的方法測量) 通常以%為單位的透光率(有時簡稱為透射)是 透過物體後到達物體之背面的光功率與光線入射在 之正面上的光功率的比例。透光率會因反射及光吸 變小。 因此透光率=(1_反射率_光吸收率) 原則上可以用作為基板材料相同的薄膜/複合 為覆蓋層含有電子結構在内的複合物也可以具有 的基板及覆蓋層。例如,複合物的兩個面通常不需 疋透明的,因此可以透明基板及不透明的覆蓋層進 裝。 如刖面所述’由於基板材料及覆蓋層經常是由 =焊接方法(例如超音波焊接或感應焊接)接合的材 «所構成’因此先前技術經常是以熱熔或壓敏性黏 面構成物進行接合。 _本發明將在平面構成物内產生熱能及黏合的優 合在一起,相較於使用液態黏著劑或焊接輔助膜, 明的方法可以達到驚人的綜合效應,包括大幅提高 品f以及使材料選擇的複雜性及封裝過程大幅簡化 別疋透過使用壓敏性黏著劑可以避免層狀複合物接 費事的定位及固定措施。 本發明的方法是準備—種含有至少一種熱活化 著材料的平面構成物/層狀材料,然後使該平面構』 層狀材料與基板或覆蓋層接觸,其中熱活化性黏著 〇 光線 物體 收面 膜作 不同 要都 行封 不能 料組 著平 點結 本發 封裝 0特 合時 性黏 良物/ 材料 -25- 201222684 是以形成層狀結構的方法被加到基板或覆蓋層上,例如 塗漆、壓印、蒸鍍、濺鍍、共擠壓等方法。以這種方式 產生的由熱活化性黏著材料及基板或覆蓋層構成的複合 物的一個例子是封裝領域習見之熱封裝膜,而且已被應 用於電子結構的封裝,例如日本Peccel Techn〇1〇gies公 司生產的PECHM-1膜。 本發明的一種有利的改良方式是先使平面構成物及 基板材料或覆蓋材料構成一預複合物。例如可以在將電 子το件置於基板上之前,就先將基板及平面構成物接合 在一起°另外一種可行的方式是先使覆蓋層及平面構成 物構成一預複合物,然後再定位在電子元件上。形成預 複合物的方法是熟習該項技術者熟悉之方法,例如層 壓、塗覆、壓印、濺鍍、共擠壓等方法。 本發明所稱之平面構成物包括常見及適當的平坦狀 構成物。平面構成物可以形成平面黏合,而且可以被設 計成不同的形式,尤其是軟性的黏合膜、膠帶、黏合標 籤、或是沖裁件。可以對平面構成物進行裁剪,使其形 狀與黏合面的形狀配合’以降低電子元件在加熱過程中 受損的危險。 本發明所稱之平面構成物具有兩個面,也就是—個 正面及一個背面。所謂正面及背面是指平面構成物平行 於其主要延伸範圍(平面延伸範圍,主延伸面)的兩個表 面’而且只是用來區分平面構成物的這兩個彼此相對而 立的表面’而不是用來定義這兩個表面的絕對空間位 置,因此正面也可以是指平面構成物在空間上位於後方 -26- 201222684 的表面,而背面則B左 一 j ^在工間上位於前方的表面。 這種熱活化勸人巫品战j_、& 基板黏合。因此平面構 應與帶有覆蓋層的黏合 而且U 成物的兩個表面中至少有-個表 面具有熱活化性黏著材料, 活化性黏著材料。敎二生:^是兩個表面均具有熱 间時此夠熱黏合、並在 幵 荷之接合的黏著材料=成可承受機械力負 形式出現。在最簡單的二=是以黏?材料層的 層熱活化性黏著材料構成 面構成物疋由hi 別與基板及覆蓋層黏合 _著材料的兩個面分 所明層疋指-具有一致性功 且其在一六門士 A · 〜尔、、此的十面構造, 兩=義尺寸(厚度或高度)遠小於在另外 兩個疋義主要延伸範圍之空間方 度P這種層可以是完整的 寸(長度及寬 可以是由單獨— 了以疋▼有穿孔的,而且 平倒種構成’也可以是由尤F! u " 是當這些不同材料有助於層的—致二Μ成(尤其 面積可以具有相同的厚度,也可以農時)。層的整個 外,層也可以具有—種以上的功能^不同的厚度。此 由於單層構造的結構簡單, 熱…使超音波加熱達到很高的效;別適於超音波加 式是熱活化性黏著材料的機械損耗因數二種有利的方 度23t及頻率1Hz的條件下)。 数δ大於〇.1(在溫 為了避免基板或蓋覆層在立 熱’ tan5 & * w料_ tanS 曰'σ熱時發生本身加 加及頻率此的條的值最好至少在溫度 -27-· 201222684 聚3物(例如教炫叙其At least 75%, or preferably more than 85% (measured according to ASTM D). The transparency or transparency of an object is determined by the reflectance of its matte surface and the wavelength of the light used for the measurement. Matting 疋 A property determined by the absorbance of the materials used. In order to have a transparent material, it is necessary to avoid absorption and reflection. Reflection occurs at all surfaces and material interfaces. The surface roughness and refractive index of the material used for reflection are determined. Scattered reflections also occur on the rough table. In the special case of transparent material and the vertical incidence of the beam and the sound of the center of the heart, the Fresnel equation can be transformed into: R = (n2-n1)2/(n2 + n,)2 R= at the interface Reflection n! = refractive index of medium 1 Μ" "refractive index 2 refractive index air refractive index nLuft is about i reflection occurs on all surfaces, thus causing objects, for example, assuming that the beam is incident on the film and From the film, the film of the refractive index nz=1.6 can reach a brightness of no more than 9〇%. The adhesive material and the carrier film are preferably transparent, and the wavelength is such that the light is over 1003. The number and coefficient obtained are succinct by the surface. The light transmittance of the transparent adhesive film is preferably greater than or preferably greater than 85% (according to ASTM D 1). Method for measuring 〇〇3) The light transmittance (usually simply referred to as transmission) in % is the ratio of the optical power that reaches the back of the object after passing through the object and the optical power that the light is incident on the front side. It will become smaller due to reflection and light absorption. Therefore, light transmittance = (1_reflectance_ Absorption rate) In principle, it is possible to use the same film as the substrate material/composite as a substrate and a cover layer which the cover layer contains the electronic structure. For example, the two faces of the composite are generally not required to be transparent. Therefore, it is possible to carry in a transparent substrate and an opaque cover layer. As described above, the substrate material and the cover layer are often composed of a material that is joined by a welding method (for example, ultrasonic welding or induction welding), so the prior art often It is joined by a hot-melt or pressure-sensitive adhesive surface composition. _ The present invention combines the generation of thermal energy and adhesion in a planar composition, compared to the use of a liquid adhesive or a solder-assisted film. Achieving an amazing combination of effects, including a substantial increase in the quality of the product, and the complexity of the material selection and the packaging process are greatly simplified. The use of pressure-sensitive adhesives can avoid the positioning and fixing measures of the layered composites. The method is to prepare a planar constituting/layered material containing at least one heat activated material, and then layering the plane The material is in contact with the substrate or the cover layer, wherein the heat-activated adhesive 〇 〇 〇 〇 〇 作 作 〇 〇 〇 〇 不能 不能 不能 不能 不能 不能 不能 不能 不能 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25 A method of forming a layered structure is applied to a substrate or a cover layer, such as painting, stamping, evaporation, sputtering, co-extrusion, etc. The heat-activated adhesive material and substrate or cover produced in this manner An example of a composite composed of layers is a thermal encapsulation film which is conventionally used in the field of packaging, and has been applied to packaging of electronic structures such as PICHMC-1 film manufactured by Peccel Techn〇1〇gies, Japan. An advantageous refinement of the invention consists in first forming a pre-composite of the planar composition and the substrate material or covering material. For example, the substrate and the planar structure may be bonded together before the electronic component is placed on the substrate. Another possible way is to first make the cover layer and the planar composition form a pre-composite, and then position the electron. On the component. The method of forming the pre-composite is familiar to those skilled in the art, such as lamination, coating, stamping, sputtering, co-extrusion, and the like. The planar structures referred to in the present invention include common and suitable flat compositions. The planar composition can be formed into a planar bond and can be designed in a variety of forms, particularly soft adhesive films, tapes, adhesive labels, or blanks. The planar structure can be tailored to conform to the shape of the adhesive surface to reduce the risk of damage to the electronic component during heating. The planar structure referred to in the present invention has two faces, that is, a front side and a back side. The front side and the back side refer to two surfaces of the plane structure parallel to its main extension range (planar extension range, main extension surface) and are only used to distinguish the two opposing surfaces of the plane composition from each other instead of To define the absolute spatial position of the two surfaces, the front side can also mean that the planar structure is spatially located on the surface of the rear -26-201222684, while the back side is B-left and the front surface of the work. This heat activation persuades the witchcraft to engage the j_, & substrate. Therefore, the planar structure is bonded to the cover layer and at least one of the two surfaces of the U-form has a heat-activated adhesive material, an activating adhesive material.敎二生: ^ is the adhesive material that is hot-bonded and bonded at both surfaces when both surfaces have heat, and can appear in a negative form that can withstand mechanical force. In the simplest two = is sticky? The layer of heat-activated adhesive material of the material layer constitutes the surface constituent 疋, which is bonded to the substrate and the cover layer by the hi--the two layers of the material are defined by the 疋--the consistency of the work and it is in a six-door A ‧ , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Separately - the 疋 ▼ has a perforated, and the flat composition of the 'can also be made by the special F! u " is when these different materials contribute to the layer - the second layer (especially the area can have the same thickness, It can also be used in agriculture.) The entire layer of the layer can also have more than one kind of function and different thickness. This is because the structure of the single layer structure is simple, the heat... makes the ultrasonic heating achieve high efficiency; The sonic addition is the mechanical loss factor of the heat-activated adhesive material with two favorable squares of 23t and a frequency of 1 Hz). The number δ is greater than 〇.1 (in order to avoid the substrate or the cover layer in the vertical heat 'tan5 & *w material _ tanS 曰' σ heat occurs when it is added and the frequency of the strip is preferably at least at the temperature - 27-· 201222684 Poly 3 (such as teaching dazzling
..44s .. …浴黏者材枓)的損耗因數是按照DIN ⑶z)。的扭轉振動試驗測得(試驗條件:.溫度^,頻率 黏著材料的損乾因數是在溫度饥及頻率iHz的條 下彖又扭力負何,以振動剪切實驗(動態力學分析, 〇ΜΑ)測得。這個實驗是為了研究流變特性,在Phaletal. 所者的 “Praktische Rhe〇1〇gie 化 _..44s .. ...Bathing material 枓) The loss factor is in accordance with DIN (3)z). Torsional vibration test (test conditions: temperature ^, the frequency of the adhesive material loss factor is under the temperature hungry frequency iHz bar and the torque is negative, to the vibration shear test (dynamic mechanical analysis, 〇ΜΑ) Measured. This experiment is to study the rheological properties, in Phaletal. The "Praktische Rhe〇1〇gie" _
ElaSt〇mere(塑膠及彈性體實用流變學),VDI-Verlag, 1995^ 57-60 Α 119·127頁”中有關於這個實驗的詳細說 明。這個實驗是利Ares公司生產的可控制剪切速度的 爪夂^進行,其使用之板對板配置的板直徑為。 平面構成物的單層構造對感應加熱也很有用。熱活 ,性黏著材料| 23°C時的導電率最好是大於2QMS/m, 聚合物本身很少具有這樣的固有導電率但是可以加入 填充物以達到這這樣的導電率。導電率的測量是在溫度 23°C及相對濕度50%的條件下按照ASTM D 2739_97的 規定進行。另外一種可行的方式是使黏著材料還具有鐵 電磁I1生、鐵氧磁性、或順磁性,例如可加入前面提及之 奈米微粒達到這個效果。 為了利於感應加熱’本發明的平面構成物具有至少 3個不同的層,也就是至少一個導電層、至少一個熱活 化性黏著材料層、以及至少一個另外一黏著材料層。這 另外一個黏著材料層和至少一個熱活化性黏著材料層是 可以是由相同或不同的黏著材料構成。例如,另外一個 黏著材料層可以含有熱活化性黏著材料,或是非熱活化 -28- 201222684 性黏著材料。 原則上該至少一個導電層可以被設計成任意形式, 例如很薄且整個面均完整的層,或是帶有穿孔的層(例如 格柵層)。導電層的層厚度較佳是小於5〇叫、2。阿、或 最好疋j於ΙΟμηα。層厚度小於1〇(xm時,很容易就可以 限制加熱速度的上限。 所有常見且適當的材料均可用來製作導電層,例如 鋁銅、金、鎳、坡莫金屬、鋁鎳鈷永磁合金、鐵氧體、 塑膠奈米管、石墨等材料。導電層最好還具有磁性,尤 其是鐵電磁性或順磁性。導電層的導電率較佳是大於 2〇MS/m(相當於比電阻小力5〇Qmm2/m)、或最好是大於 40MS/m(相當於比電阻小》25nmm2/m),以上數值都是 在〉m度為3 0 0 K的條件下測得。 除了该至少一個導電層外,平面構成物當然也可以 具有其他的導電層’這些其他的導電可以和該至少一個 導電層是相同或不同的導電層。 整體而f,可以將熱活化黏性平面構成物設計成任 意形式。例如’除了以上提及的層外,平面構成物還可 以具有其的層,例如永久性或暫時性的載體。 為了能夠以較小的厚度達到足夠的黏合強度,黏著 材料層的厚度較佳是在邛爪至20_之間。如果要達到 特別牢固的接合,厚度最好是在100μη1至500μιη之間。 原則上所有常見的熱活化黏性黏著材料系統均可作 為該至少一個熱活化黏性黏著材料。原則上可將熱活化 黏性黏著材料區分成兩大種類:熱塑性熱活化黏性黏著 -29- 201222684 材料(熱熔黏著材料)及反應性熱活化黏性黏著材料(反應 性黏著材料)。有些黏著材料可同時被歸類為這兩大種 類,也就是反應性熱塑性熱活化黏性黏著材料(反應性熱 熔黏著材料)。 " … 熱塑性黏著材料是以受熱時會可逆軟化、且在冷卻 過程中會再度硬化的基本聚合物為I。反之,反應:熱 活化黏性黏著材料則含有反應性成分。這些反應性成分 也稱為,,活性樹脂”,在活性樹脂内會因熱加熱而產生交 聯反應’並在交聯反應結束後形成即使受壓也能夠保持 長期穩定的接合。這種熱塑性黏著材料最好也含有彈性 士分:例如合成腈橡膠。由於具有很高的流動黏滞性, 故些彈性成分能夠使熱活化黏性黏著材 有很好的形狀穩定性。 尤-嵯也具 以下將描述若干對本發明而言特 活化黏性黏著材料系統。 八t的熱 熱塑性熱活化黏性黏著材料含有埶塑性美 物。熱塑性基本聚合物只要受到很 土本聚a 的流動性’因此在短暫的受壓了 1 ’沈具有很好 長期接合而言非常重要的最終:::可=到“持 糙基底或其他不同狀態的基底上也可以快速黏疋在粗 先前技術已知之熱塑性黏著材 D。所有 熱塑性熱活化黏性黏著材料。了作為本發明使用之 例如 DE 1〇 2006 042 8 1 6 Α1 Α , 即為適當之熱塑性黏著材料:;.,、、塑性黏著材料 當之熱塑性黏著材料。 …不表示這是唯-適 -30- 201222684 EP 1 475 424 A1有描述熱塑性黏著材料的典型成 刀例如熱塑性黏著材料可含有下列成分中的一或數種 成分(或是由下列成分中的一或數種成分所構成广聚烯 烴、乙烯-醋酸乙烯酯共聚物、乙烯_丙烯酸乙酯共聚物、 聚醯胺、|酯 '聚胺基曱酸酯、丁二烯-苯乙烯-嵌段共 聚物。j佳是使用Ep丨475 424 A1第[〇〇27]段所列的熱 塑性黏著材料。EP "56 063 A2有述其他的熱塑性黏著 材料i尤其是適於特殊領域(例如黏合玻璃基底)的熱塑 性黏著材料)。最好是使用可添加流變添加物以降低熔化 •ί占Λ|Γ )·生/的可熱塑性黏著材料,例如添加熱解碎酸、炭黑、 碳-奈米管、及/或其他聚合物作為混合成分。 反之,反應性熱活化黏性黏著材料較佳是含有一種 彈性基本聚合物及一種改性樹脂,其中該改性樹脂包含 種黏性祕脂及/或活性樹脂。由於使用彈性基本聚合物 的關係,黏合層會具有很好的尺寸穩定性。可根據具體 的應用情況,&先前技術已知之所有熱活化黏性黏著材 料選擇適當的反應性熱活化黏性黏著材料。 例如這也包括以腈橡膠或其衍生物(例如腈丁二烯 橡膠)或這些基本聚合物的混合物為基的反應性熱活化 黏性膜,而且這些基本聚合物還含有活性樹脂(例如酚醛 樹脂),在市面上可購得的tesa 84〇1就屬於此類產品。 由於具有很高的流動黏滯性,腈橡膠能夠使熱活化黏性 膜具有很好的形狀穩定性’因此經過交聯反應後能夠在 塑膠表面上實現很高的黏著力。 當然也可以使用其他的反應性熱活化黏性黏著材 •31- 201222684 料,例如含有黏性聚合物[佔50至95%(重量百分比及 一或數種環氧樹脂[佔5至50%(重量百分比)]的黏著材 料。黏性聚合物較佳是含有40至94%(重量苜分比)的丙 烯酸化合物及/或曱基丙烯酸化合物(通式為 CH^^CiR^KCOOR2),其中 Ι^=Η 或 CH3,R2 = H 或具有 1 至30個碳原子的線性或分枝烷基鏈)、5至30%(重量百 分比)的第一可共聚乙烯單體,該乙烯單體具有至少一個 酸基(尤其是羧酸及/或磺酸基及/或磷酸基)、1至10%(重 量百分比)的第二可共聚乙烯單體,該乙烯單體具有至少 一個環氧基或酸酐官能基、以及〇至20%(重量百分比) 的第三可共聚乙烯單體,該乙烯單體具有至少一種不同 於第一乙烯單體及第二乙烯單體之官能基的官能基。這 種黏著材料能夠快速被活化,並在很短的時間内達到最 終黏著力’因此可以確保在非極化基底上形成穩固的接 合0 另外一種可使用的反應性熱活化黏性黏著材料含有 40至98%(重量百分比)的嵌段共聚物(此種嵌段共聚物含 有丙稀酸醋)、2至50%(重量百分比)的樹脂成分、以及〇 至10%(重量百分比)的硬化成分。樹脂成分一或數種樹 脂,可能的樹脂種類有增加黏黏的環氧樹脂、酚醛清漆 樹脂及酚醛樹脂等。硬化成分的作用是使樹脂成分中的 樹脂交聯。由於在聚合物内會產生很強的物理交聯,因 此這種配方的優點是黏合層能夠達到較大的總厚度,而 且不會對黏合造成不良影響。因此這黏合層特別: 償基底的不平坦性。此外,這種黏著材料還具有很好的 •32- 201222684 抗老化性及較低的初始脫氣特性,這對於許多電子領域 的應用是很有利的。 如前面所述’除了這些特別有利的黏著材料外,原 則上所有其他的熱活化黏性黏著材料都可視應用上的實 際需要被選擇及使用。 最好是使用水蒸氣的滲透率或氧滲透率很低的熱活 化黏性黏著材料系統封裝(光電)電子結構。例如EP 〇 674Ela St〇mere (Applied Rheology of Plastics and Elastomers, VDI-Verlag, 1995^ 57-60 Α 119·127) contains a detailed description of this experiment. This experiment is a controlled shear produced by the company Ares. The speed of the claws is carried out, and the plate diameter of the board to board is used. The single layer structure of the plane composition is also useful for induction heating. Thermal activity, adhesive material | The conductivity at 23 ° C is preferably Above 2QMS/m, the polymer itself rarely has such intrinsic conductivity but fillers can be added to achieve such conductivity. Conductivity is measured at a temperature of 23 ° C and a relative humidity of 50% according to ASTM D The specification of 2739_97 is carried out. Another feasible way is to make the adhesive material further have iron electromagnetic I1, ferromagnetic, or paramagnetic. For example, the above-mentioned nanoparticle can be added to achieve this effect. In order to facilitate induction heating, the present invention The planar composition has at least 3 different layers, that is, at least one conductive layer, at least one heat-activated adhesive material layer, and at least one additional adhesive material layer. The material layer and the at least one heat-activated adhesive material layer may be composed of the same or different adhesive materials. For example, another adhesive material layer may contain a heat-activated adhesive material, or a non-thermally activated -28-201222684 adhesive material. In principle, the at least one electrically conductive layer can be designed in any form, for example a layer that is very thin and completely intact, or a layer with perforations (for example a grid layer). The layer thickness of the electrically conductive layer is preferably less than 5 〇, 2. A, or preferably ΙΟ j ΙΟμηα. When the layer thickness is less than 1 〇 (xm, it is easy to limit the upper limit of the heating rate. All common and appropriate materials can be used to make conductive layers, such as aluminum and copper , gold, nickel, permalloy, AlNiCo permanent magnet alloy, ferrite, plastic nanotube, graphite, etc. The conductive layer preferably also has magnetic properties, especially iron electromagnetic or paramagnetic. Conductive layer conductive The ratio is preferably greater than 2 〇 MS / m (equivalent to a specific resistance of 5 〇 Qmm 2 / m), or preferably greater than 40 MS / m (equivalent to a small specific resistance of 25 nmm 2 / m), the above values are in Bar with m degree of 3 0 0 K In addition to the at least one electrically conductive layer, the planar composition may of course have other electrically conductive layers 'these other electrically conductive layers which may be the same or different from the at least one electrically conductive layer. Overall, f, heat may be The activated viscous planar structure is designed in any form. For example, in addition to the layers mentioned above, the planar constituting material may also have a layer thereof, such as a permanent or temporary carrier. In order to be able to achieve sufficient thickness with a small thickness. The bonding strength, the thickness of the adhesive material layer is preferably between the jaws and 20_. If a particularly strong joint is to be achieved, the thickness is preferably between 100 μη and 500 μηη. In principle all common heat-activated adhesive adhesive materials. The system can function as the at least one heat activated viscous adhesive material. In principle, heat-activated viscous adhesive materials can be divided into two categories: thermoplastic heat-activated viscous adhesive -29-201222684 material (hot-melt adhesive material) and reactive heat-activated viscous adhesive material (reactive adhesive material). Some adhesive materials can be classified into two major types at the same time, namely reactive thermoplastic heat-activated viscous adhesive materials (reactive hot melt adhesive materials). " ... The thermoplastic adhesive material is a basic polymer which is reversibly softened when heated and hardens again during cooling. Conversely, the reaction: the thermally activated viscous adhesive material contains a reactive component. These reactive components are also referred to as "active resins" which cause cross-linking reaction by thermal heating in the active resin and form a joint which can maintain long-term stability even under pressure after the completion of the crosslinking reaction. The material preferably also contains elastic grades: for example, synthetic nitrile rubber. Due to its high flow viscosity, these elastic components can provide good shape stability for heat-activated viscous adhesives. A number of specially activated viscous adhesive material systems for the present invention will be described. The eight-ton thermal thermoplastic heat-activated viscous adhesive material contains bismuth plasticity. The thermoplastic base polymer is subject to the mobility of a very local poly-a. The pressure is 1 'sinking is very important for long-term bonding. The final::: can = "on a substrate with a rough substrate or other different states can also quickly adhere to the thermoplastic adhesive D known in the prior art. . All thermoplastic heat activated adhesive materials. For example, DE 1〇 2006 042 8 1 6 Α1 Α is used as a suitable thermoplastic adhesive material:;,, plastic adhesive material as a thermoplastic adhesive material. ... does not mean that this is only - -30 - 201222684 EP 1 475 424 A1 A typical forming tool for describing a thermoplastic adhesive material, such as a thermoplastic adhesive material, may contain one or more of the following ingredients (or one of the following ingredients) Or a plurality of components to form a wide polyolefin, an ethylene-vinyl acetate copolymer, an ethylene ethyl acrylate copolymer, a polyamidamine, an ester 'polyamino phthalate, a butadiene-styrene-block copolymer J. Jia is using the thermoplastic adhesive material listed in paragraph [〇〇27] of Ep丨475 424 A1. EP "56 063 A2 describes other thermoplastic adhesive materials i especially suitable for special fields (such as bonded glass substrates). ) thermoplastic adhesive material). It is best to use a thermoplastic adhesive that can be added with a rheological additive to reduce the melting, such as the addition of pyrolytic acid, carbon black, carbon nanotubes, and/or other polymerizations. As a mixed component. On the other hand, the reactive heat-activated viscous adhesive material preferably contains an elastic base polymer and a modified resin, wherein the modified resin contains a viscous secret and/or an active resin. Due to the use of the elastic base polymer, the adhesive layer will have good dimensional stability. Appropriate reactive heat-activated viscous adhesive materials can be selected for all heat-activated viscous adhesive materials known in the prior art, depending on the application. For example, this also includes a reactive heat-activated viscous film based on a nitrile rubber or a derivative thereof (for example, a nitrile butadiene rubber) or a mixture of these basic polymers, and these base polymers further contain an active resin (for example, a phenol resin) ), commercially available tesa 84〇1 is such a product. Due to its high flow viscosity, nitrile rubber provides a good shape stability for heat-activated viscous membranes, so it achieves high adhesion on plastic surfaces after cross-linking. Of course, other reactive heat-activated viscous adhesives can also be used. 31- 201222684, for example, containing viscous polymers [50 to 95% by weight and one or more epoxy resins [5 to 50% ( The adhesive material of the weight percent). The viscous polymer is preferably an acrylic compound and/or a mercapto acrylate compound (having the formula CH^^CiR^KCOOR2) containing 40 to 94% by weight, wherein Ι ^=Η or CH3, R2 = H or a linear or branched alkyl chain having 1 to 30 carbon atoms), 5 to 30% by weight of the first copolymerizable polyethylene monomer, the ethylene monomer having at least An acid group (especially a carboxylic acid and/or a sulfonic acid group and/or a phosphate group), 1 to 10% by weight of a second copolymerizable polyethylene monomer having at least one epoxy group or anhydride a functional group, and a third copolyethylene monomer having a hydrazine to 20% by weight, the ethylene monomer having at least one functional group different from the functional groups of the first ethylene monomer and the second ethylene monomer. This adhesive material is quickly activated and achieves ultimate adhesion in a short period of time 'thus ensuring a stable bond on a non-polarized substrate. 0 Another reactive heat-activated viscous adhesive material that can be used contains 40 Up to 98% by weight of block copolymer (such block copolymer contains acrylic acid vinegar), 2 to 50% by weight of resin component, and 〇 to 10% by weight of hardening component . Resin component One or several kinds of resin, possible resin types include epoxy resin, novolac resin and phenolic resin. The function of the hardening component is to crosslink the resin in the resin component. Because of the strong physical cross-linking in the polymer, the advantage of this formulation is that the adhesive layer can achieve a large total thickness without adversely affecting the bond. Therefore, this adhesive layer is particularly: to compensate for the unevenness of the substrate. In addition, this adhesive material also has excellent 32-201222684 anti-aging properties and low initial degassing characteristics, which is very beneficial for many electronic applications. As previously described, in addition to these particularly advantageous adhesive materials, all other thermally activated adhesive materials may be selected and used in accordance with the actual needs of the application. It is preferable to use a heat-activated viscous adhesive material system package (photoelectric) electronic structure having a water vapor permeability or a low oxygen permeability. Eg EP 〇 674
432 Al、US 2006/0100299 Al、WO 2007/08728 1 A1、DE 10 2009 036 970 A、JP 2005 298 703 A、EP 1 670 292 A、 以及US 2007 1 35552 A均有提及這種熱活化性黏著材 料二^ °玄項技術者都知道,只要加入適當的啟動劑(例 如過氧化物)’則可以透過光化輻射(例如紫外線輻射)活 化的黏著材料系統也很容易被熱活化。 黏著材料系統的WVRT較佳是小於100g/m2 d、或 最2好是小於1〇 g/m2 d ’及/或〇TR較佳是小於8〇〇〇cm3/ 爪dbar、小於3000cm3/ m2dbar、或最好是小於1〇〇cm3/ m2dba卜 者材料系統最好是含有滲透物(例如氧及水蒸 補捉材料,田& & u為這樣可以大幅延長滲透物穿透黏合 所需的時間。如, 口織丨象 例如US 6·936·13 1 (B2)描述的收氣劑、、音 淨劑、乾燥劑堂 ^ #都疋熟習該項技術者熟悉的補捉材料。 一種特为丨女< , 活化補捉特,利的方式是使用能夠以加熱或機械方式 學或物理轉"的補捉材料。所謂加熱或機械活化是指化 收的滲透物? 1破壞包覆材料、驅除及/或反應消除已吸 k樣做的優點是補捉材料可以在含水蒸氣 •33- 201222684 的大氣中被力στ_,工。 力造成报大的㈣。例::對補捉材料補捉滲透物的 如果在感應:熱=::::=裝補捉劑 需要-偭加堅裝1。所右對複““加麼力,則另 ^ ^ 斤有可施加壓力的適當的裝置均 作為本發明的加壓裝 勺 心m >魏 置,例如氣動壓力機或液壓機、 亦可使用i表择丁从 曲杯反力機、螺旋壓力機等 θ / 、々作的壓力機(例如壓輥)。加壓裝置可 疋一個分離的單元,士 置了 具有至少一個作為第— 軚佳疋使 罢 σ壓工具之沖頭元件的加壓 、^ ; 一個沖頭元件還具有感應加埶哭。 可以使感應場移動到非當土 .、、、 I樣 ^予*近黏合位置的區域,同暗 /、空間範圍限制在黏合位置附近。 、 【實施方式】 特徵及優點做進一步的說明。其中 _第1圖(光電)電子元件1的第-種構造方式。電 70件1具有一基板2,以及-置於純2上的電子結 3。基板2本身是作為對滲透物的阻隔層,因此也構成 子結構3之封裝的一部分。電子結構3是作為另外— 阻隔層的覆蓋層4 ’在本例中覆蓋層4與電子結構3 間有間隔一段距離。 為了將電子結構3的側面也封裝住,並使覆蓋層 與電子零# 1連結在-起’故以含有至少一種熱活化 壓敏或熱熔黏著材料5的平面構成物沿著基板2上的 子結構3的邊緣將電子結構3封住。平面構成物”冬 能 〇 外 可 偏 以 用 裝 就 將 子 構 電 個 之 4 性 電 覆 -34- 201222684 盍層4,、基板2連結在一起。只要平面構成物5的厚户 足夠,即可維持覆蓋層4與電子結構3原本的間隔。- 平面構成物5是-種將在後面的實施例中說明的以 交聯乙烯芳香族嵌段共聚物為基的熱溶黏著材料。平面 構成物5·的任務不只是將基板2與覆蓋層4連結在— 起而疋還包括構成-個對滲透物的阻隔層,以防止滲 透物(例如水蒸氣及氧)從側面渗入電子結構3。 在本實施例中,平面構成物5是由雙面膠帶沖裁成 的沖裁件。這種沖裁件的使用特別方便,而且在加 不會對電子元件造成直接損害。 ’ 第2圖顯不(光電)電子元件i的另外一種構造方 式。如第2圖所示,電子結構3被設置在基板2上並 被基板2從底部封住。電子結構3的上方及側面均被平 面構成物5全面積封住。因此電子結構3的上方整個被 平面構成物5封住。接著在平面構成物5的上方設置— 覆盍層4。由於平面構成物已提供很好的阻隔作用因 此覆蓋層4不必像前面提及的第一種構造方式必須具有 很好的阻隔作用。例如覆蓋層4可以只具有力學上的保 護作用,當然除此之外,覆蓋層4也可以具有滲透阻隔 作用。在本實施例中’平面構成物5的加熱可以對整個 黏著材料層進行’也可以只加熱部分區域,例如未將電 子結構覆蓋住的區域》 第3圖顯示(光電)電子元件1的另外一種構造方 式。和前面兩種構造方式不同的是,第3圖的構造方式 使用兩種平面構成物5a’ 5b,在本實施例中這兩種平面 -35· 201222684 構成物5a,5b是相同的平面構成物(但也可以是不同的 平面構成物)。其中第一種平面構成物5a將整個基板2 覆蓋住。電子結構3被設置在平面構成物5a上,並被平 面構成物5a固定住。接著以另外一種平面構成物5b將 平面構成物5 a及電子結構3構成的複合體整個覆蓋住, 运樣電子結構3的每一個面都被平面構成物5a,5b封裝 住。同樣的’在平面構成物的方同也設有一覆蓋層4。 在這個元件中’平面構成物5 a,5 b本身可以都被加熱, 也可以是平面構成物5a或5b本身被加熱。 在這種構造方式中,基板2及蓋板4都不必具有對 滲透物的阻隔作用。當然也可以使基板2及蓋板4具有 對滲透物的阻隔作用,以造一步防止滲透物滲入電子結 構3。 ° 此處要指出的是,第2圖及第3圖僅為示意圖。從 這些並無法看出平面構成物5最好是以厚均的厚度被塗 覆上去。均勻塗覆的好處是在過渡到電子結構的位置不 會出現尖銳的棱角’而是很順暢的過渡到電子結構同 時可以保留原有的未填滿及充氣的小區域。但必要時亦 可使平面構成物與基底完全密合,尤其是在真空中進行 塗覆的情況。此外,由於平面構成物會在局部受到不同 耘度的壓縮,因此經由流動過程可以在某種程度上縮小 在棱角處的厚度差。此外,為了便於說明及理解,上述 圖示並非按照正確的比例尺繪製,尤其是電子結構實際 上通吊是非常扁平的厚度通常小於Ιμιη。 以上所有實施例都是將平面構成物5製作成膠帶使 -36- 201222684 用。原則上這可以是具有基材的雙面膠帶、熱活化性薄 膜、或是無基材雙面膠帶。本實施例是一種熱活化性薄 膜。 不論是製作成無基材雙面膠帶、熱活化性薄膜 '或 是塗覆在爲平的構成物上’平面構成物的厚度都是在 Ιμπι至ΒΟμιη之間、較佳是在邛爪至75μηι之間、或最 好是在12μιη至50μιη之間。如果要提高在基板上的黏著 力及/或在(光電)電子元件内達到減震效果,可以使用較 厚的平面構成物層(5〇μπι至15〇μηι之間)。但這樣做的缺 點是滲透斷面會變大。較小的厚度(1μηι至12μηι之間) 可以I®小滲透斷面,以減少橫向滲透及(光電)電子元件 的總厚度。但這樣做的缺點是會降低在基板上的黏著 力則面提及的最佳厚度範圍可以在較小的厚度(因此滲 透斷2較小,以減少橫向滲透)及較大厚度(以產生足夠 的黏者力)之間取得很好的平衡。理想的厚度是由(光電) 電子70件、終端應用、以及平面構成物的種類等因素(有 時還包括扁平基板)決定。 έ式驗方法 使用哥命試驗: 、’J定不同之熱活化黏性平面構成物的 I:二:參數作為判定黏合品質的特徵值。= ’(先屯)電子元件的使用壽命有直接影變。 環二試:測定(光電)電子元件的使用;命。在氮 試驗測定的很薄㈣層沉積在-以 電)電子70件的使用壽命。辦層的厚度約 -37- 201222684 1 OOnm。為了將鈣層封住,同樣是在氮氣環境中利用一 框架形平面構成物(熱活化性黏著材料之邊緣長度3〇mm X 3 0mm,肋寬2mm)將鈣層環繞住,並以薄玻璃片 (200μπι,製造商:Firma Schott)作為覆蓋層。接著加熱 將黏著材料活化,並以適當的壓力(壓力大小視所使用的 黏著材料而定)將黏合面壓緊。活化時間結束後,繼續對 複合物施壓30秒,然後移開加壓裝置。由於玻璃基板及 膠帶的玻璃覆蓋層都不會被滲透,因此僅測定穿過黏合 面的滲透。 這個試驗是以鈣與水蒸氣及氧的反應為基礎,例如 在下面兩篇文章中有關於詞試驗的詳細說明:A G. Eriat et. Al. M7th Annual Technical Conference Proceedings-432 Al, US 2006/0100299 Al, WO 2007/08728 1 A1, DE 10 2009 036 970 A, JP 2005 298 703 A, EP 1 670 292 A, and US 2007 1 35552 A all mention this thermal activation Adhesive materials are known to all skilled artisans. Adhesive material systems that are activated by actinic radiation (eg, UV radiation) are also readily heat activated by the addition of a suitable promoter (eg, peroxide). The WVRT of the adhesive material system is preferably less than 100 g/m 2 d, or most preferably less than 1 〇g/m 2 d ' and/or 〇 TR is preferably less than 8 〇〇〇 cm 3 / claw dbar, less than 3000 cm 3 / m 2 dbar, Or preferably less than 1〇〇cm3/m2dba, the material system preferably contains permeate (for example, oxygen and water scavenging materials, Tian && u can greatly extend the penetration of the permeate required for penetration Time. For example, a woven object such as the gas-retaining agent described in US 6,936,13 1 (B2), a sound cleaner, and a desiccant can be familiar with the material of the skill familiar to the skilled person. For prostitutes, the way to activate the catch is to use a material that can be heated or mechanically or physically transferred. The so-called heating or mechanical activation refers to the absorbed permeate? The advantage of material, expulsion and/or reaction elimination is that the material can be trapped in the atmosphere of water vapor·33- 201222684. The force is caused by the force (4). Example: If you are in the induction of the permeate: heat =::::= need to make up the needy agent - 偭 plus the firm 1. Right right "If you add force, then another appropriate device that can apply pressure is used as the pressure-filling spoon of the present invention." For example, pneumatic presses or hydraulic presses, or i-types can be used. Cup counters, screw presses, etc. θ / , 々 的 press (such as pressure roller). The pressurizing device can smash a separate unit, and set up at least one as the first - 軚 疋 疋 σ 压 pressure tool Pressurization of the punch element, ^; a punch element also has induction plus crying. It can move the induction field to the area where the soil is not properly soiled,,,,,,,,,,,,,,,,,, The range is limited to the vicinity of the bonding position. [Embodiment] Features and advantages are further described. Among them, the first type of structure of the electronic component 1 is shown in Fig. 1. The 70 piece 1 has a substrate 2, and The electron junction 3 on pure 2. The substrate 2 itself acts as a barrier to the permeate and thus also forms part of the package of the substructure 3. The electronic structure 3 is a cover layer 4' as an additional barrier layer in this example There is a gap between the cover layer 4 and the electronic structure 3 In order to enclose the side of the electronic structure 3 and to bond the cover layer to the electronic zero #1, the planar structure containing at least one heat-activated pressure-sensitive or hot-melt adhesive material 5 is along the substrate 2. The edge of the upper substructure 3 encloses the electronic structure 3. The planar structure "winter energy can be biased to be used to electrically connect the substructures to -4 - 201222684 盍 layer 4, and the substrate 2 is connected Together, as long as the thickness of the planar structure 5 is sufficient, the original spacing of the cover layer 4 from the electronic structure 3 can be maintained. - The planar composition 5 is a thermally soluble adhesive material based on a crosslinked ethylene aromatic block copolymer described in the following examples. The task of the planar composition 5· is not only to connect the substrate 2 and the cover layer 4, but also to form a barrier layer for the permeate to prevent permeate (for example, water vapor and oxygen) from infiltrating into the electronic structure from the side. 3. In the present embodiment, the planar structure 5 is a punched member which is punched out by double-sided tape. The use of such blanks is particularly convenient and does not directly cause damage to electronic components. The second figure shows another construction of the (photoelectric) electronic component i. As shown in Fig. 2, the electronic structure 3 is placed on the substrate 2 and sealed by the substrate 2 from the bottom. Both the upper side and the side of the electronic structure 3 are sealed by the planar structure 5 in a full area. Therefore, the entire upper portion of the electronic structure 3 is sealed by the planar structure 5. Next, a cover layer 4 is provided above the planar structure 5. Since the planar composition has provided a good barrier effect, the cover layer 4 does not have to have a good barrier effect as in the first construction mentioned above. For example, the cover layer 4 may have only mechanical protection, and of course, the cover layer 4 may also have an osmotic barrier function. In the present embodiment, the heating of the planar structure 5 may be performed on the entire adhesive material layer, or only a partial region may be heated, for example, an area where the electronic structure is not covered. FIG. 3 shows another type of (photoelectric) electronic component 1. Construction method. Different from the previous two constructions, the construction of Fig. 3 uses two planar structures 5a' 5b, which in the present embodiment are the same planar components - 35· 201222684 constituents 5a, 5b (But it can also be a different planar composition). The first planar structure 5a covers the entire substrate 2. The electronic structure 3 is placed on the planar structure 5a and fixed by the planar structure 5a. Next, the composite of the planar structure 5a and the electronic structure 3 is entirely covered by the other planar structure 5b, and each surface of the electronic structure 3 is encapsulated by the planar structures 5a, 5b. The same 'in the plane composition is also provided with a cover layer 4. In this element, the 'planar constituents 5 a, 5 b may themselves be heated, or the planar constituent 5a or 5b itself may be heated. In this configuration, neither the substrate 2 nor the cover 4 need to have a barrier effect on the permeate. It is of course also possible to provide the substrate 2 and the cover 4 with a barrier to permeate to prevent penetration of the permeate into the electronic structure 3. ° It should be noted here that Figures 2 and 3 are only schematic views. It is not seen from these that the planar structure 5 is preferably coated with a thickness average thickness. The advantage of uniform coating is that there is no sharp corners at the transition to the electronic structure', but a smooth transition to the electronic structure while retaining the original unfilled and inflated small area. However, if necessary, the planar structure can be completely adhered to the substrate, especially in a vacuum. In addition, since the planar structure is locally compressed by different twists, the difference in thickness at the corners can be reduced to some extent via the flow process. Moreover, for ease of illustration and understanding, the above illustrations are not drawn to the correct scale, especially where the electronic structure is actually very flat and the thickness is typically less than Ιμιη. In all of the above embodiments, the flat structure 5 was made into a tape for -36-201222684. In principle this can be a double-sided tape with a substrate, a heat-activated film, or a substrate-free double-sided tape. This embodiment is a heat activated film. Whether made as a substrateless double-sided tape, a heat-activated film' or coated on a flat composition, the thickness of the 'planar composition' is between Ιμπι and ΒΟμιη, preferably from the claw to 75μηι Between, or preferably between 12 μηη and 50 μιη. If it is desired to increase the adhesion on the substrate and/or to achieve a shock absorbing effect in the (photoelectric) electronic component, a thick planar constituent layer (between 5 〇μπι and 15 〇μηι) can be used. However, the disadvantage of this is that the penetration section will become larger. Smaller thicknesses (between 1μηι and 12μηι) can be I® small penetration cross sections to reduce lateral penetration and total thickness of (optoelectronic) electronic components. However, the disadvantage of this is that it reduces the adhesion on the substrate. The optimum thickness range mentioned above can be at a smaller thickness (so the permeation break 2 is smaller to reduce the lateral penetration) and the larger thickness (to generate enough A good balance between the sticky forces). The ideal thickness is determined by factors such as 70 (photovoltaic) electrons, end applications, and the type of planar composition (and sometimes flat substrates). έ 验 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用 使用= ‘(屯屯) The lifetime of electronic components has a direct effect. Ring two test: measuring the use of (photoelectric) electronic components; life. The very thin (four) layer measured in the nitrogen test deposits a lifetime of -70 parts of electrons. The thickness of the layer is about -37- 201222684 1 OOnm. In order to seal the calcium layer, a frame-like planar composition (edge length of the heat-activated adhesive material: 3〇mm X 3 0mm, rib width 2mm) is used to surround the calcium layer in a nitrogen atmosphere, and is surrounded by a thin glass. A sheet (200 μm, manufacturer: Firma Schott) was used as the cover layer. Heating is then applied to activate the adhesive and compress the adhesive surface at an appropriate pressure (depending on the adhesive material used). After the activation time was over, the composite was continuously pressurized for 30 seconds and then the pressurization device was removed. Since the glass substrate and the glass cover of the tape are not infiltrated, only the penetration through the bonding surface is measured. This test is based on the reaction of calcium with water vapor and oxygen, for example in the following two articles: A G. Eriat et. Al. M7th Annual Technical Conference Proceedings-
Society of Vacuum Coaters,,,2004, 054-659 頁,及 Μ. E. Gross et. Al. “46th Annual Technical ConferenceSociety of Vacuum Coaters,,, 2004, pages 054-659, and Μ. E. Gross et. Al. “46th Annual Technical Conference
Proceedings-Society 〇f Vacuum Coaters», 2003, 89-92 頁。進行試驗時要監控光線對鈣層的透射率,這個透射 率會隨著鈣被轉換成氫氧化鈣及氧化鈣而變大。當鈣層 的面積減半時,就視為使用壽命已結束。測量環境為 及相對濕度90%。 目視及人工檢查 由於是將軟性(光電)電子結構封裝在聚酯膜之間, 因此後續的试驗是使用厚度1〇〇μιη的聚酯膜,例如 •jin DuPont Film公司生產的Meiinex 506。由於薄膜 本身沒有滲透阻隔層,因此不能進行使用壽命試驗。因 此僅對黏合進行目視檢查’並以人工檢查所形成的接合。 -38- 201222684 所使用的活化性黏著材料 黏著材料1 (壓敏性黏著材料): 50份 Kraton FG 1924 馬來酸酐改性SEBS,含13%嵌段聚 36%雙嵌段及1%馬來酸(製造商:Kratmi、。 50份 Kraton FG 1901 馬來酸酐改性SEBS,含30%嵌段聚 沒有雙嵌段及1.7%馬來酸(製造商:Kraton、。 70份 Escorez 5615 軟化溫度115°C的氫化KW樹脂(製造商7^^ 25份 Ondina 917 來自石蠟及環烷成分的白油(製造商: 1份 乙醯丙酮紹 ---- ----- 從溶液中製作出壓敏性黏著材料。將各種成分溶解 在曱笨中(固體物含量40%),並以1.5g/m2的塗覆量塗覆 在矽化離型紙上,然後以1 20°C乾燥1 5分鐘,最後產生 一單位面積質量25 g/m2的黏著材料層。因鋁螯合複合物 的配位鍵溶解而發生活化,導致黏滞性大幅降低,活化 溫度大約是120°C。 黏著材料2(壓敏性黏著材料): 100份 SiBStar 103T 嵌段聚苯乙烯含量30%的三嵌段SiBS(製造 商:Kaneka) 20份 SiBStar 042D 嵌段聚笨乙烯含量15%的雙嵌段SiB(製造 商:Kaneka) 從溶液中製作出熱熔黏著材料。將各種成分溶解在 甲苯中(固體物含量40%),並以1.5g/m2的塗覆量塗覆在 矽化離型紙上,然後以1 2〇°c乾燥1 5分鐘,最後產生一 -39- 201222684 單位面積質量25 g/m2及/或i3g/m2的黏著材料層。因此 在撕去離型紙後,可以獲得由純熱熔黏著材料構成的薄 膜。活化溫度大約是95°C。 黏著材料3至7 : 使用數種不同化學基及不同厚度的熱活化性黏著材 料膜作為其他的熱活化性黏著材料膜(見下表)。其中有 些是可在市面上購得的熱活化性膜(teas SE,Hamburg或 Peccell Technologies Inc.,日本)。表1顯示所使用的其他 黏著材料: 熱活化性黏著材料膜(HAF) 編號 化學基/ 活化溫度 原始厚度 [βη] 市面上可購得 的產品 用於超音波 的厚度 [um] 用於感應 的厚度 Γ //m] 3 N/P/18(TC 30 Teas 8471 25 13 4 PA/90°C 40 Teas 8440 25 13 5 PET/115°C 100 Teas 8464 25 13 6 SR/EP/16(TC 35 Teas 8865 25 13 7 MI/120°C 50 Peccell PECHM-1 50 — 縮寫. N/P :腈橡膠/酚醛樹脂 P A .共聚胺 PET :共聚酯 SR/EP :合成橡膠/環氧樹脂 MI :改性離子鍵聚體 t e a s 8 4 7 1是一種以賭橡膠/齡酿樹脂為基的熱交聯糸 -40 - 201222684 統(熱固性)。 teas 8440是一種以共聚胺為基的熱熔黏著劑(熱塑性)。 teas 8464是一種以共聚酯為基的純熱熔黏著劑(熱塑性)。 teas 8865是一種以腈橡膠/環氧樹脂為基的熱交聯系 統(熱固性)。 黏著材料8(壓敏性黏著材料): 25份 Oppanol B15 BASF公司生產的聚異丁埽,Mw=75_g/m〇i 5份 Oppanol B100 BASF公§]生產的聚異谓,Mw=n_〇g/m〇i 50份 Escorez 5615 公司生產的j化溫度i 15t的氫化Kw樹脂 20份 DCP 公司生產的二環癸烷·二羥曱醚二曱 基丙烯酸酯,二甲基丙烯酸酯單體 丁 —1份 DLP :氧化 ~~— 從溶液中製作出熱熔黏著材料。將各種成分溶解在 庚烷中(固體物含量45%),並以l 5g/m2的塗覆量塗覆在 矽化離型紙上,然後以10(rc乾燥15分鐘最後產生一 單位面積質量25 g/m2的黏著材料層。在存放時另外以離 型紙將這種無基材雙面黏著材料覆蓋住m度大約 是 120°C。 製作平面構成物 為了獲得比市售黏著材料膜厚度更薄的產品,必要 時可將厚度較大的產品溶解纟2_丁_或甲苯中,然後經 塗覆及乾燥從溶液中製成所需厚度的黏著材料層。製作 為了進行感應加熱’將厚纟13薄膜層壓在導 電平面構成物的每-個面上。以厚度36叫㈣膜作為 感應加熱用的導電平面構成物。在9(TC至not的溫度 -41- 201222684 中將金屬膜與黏著材料層層壓在一起。這個過程並未使 熱塑性膜產生足夠的黏性及啟動交聯反應,而僅是產生 附著作用。 所使用的基板及覆蓋層 以厚度3mm、面積50x50mm2的浮製坡璃作為使用 哥命s式驗用的基板及覆蓋層。 — 此外還使用Teijin_DuPont_Film公司生產的 5〇6型聚_膜(厚度100μιη)。 本發明之方法的執行及結果: 超音波活化: 利用 Hermann Ultraschamechnik 公司 制超音波機PS Mpcr+m,、〜v 率為35kH A 這個機器是之工作頻 羊為35kHZ,最大焊接功率1〇〇〇w。 煜萌,甘am… 尺用特殊的碳化鈦 定的壓;(以驗的黏合面相 活化之前,庫以祕ϋ 在進仃超a波 應以機械方式將試體固定在 音波機後,繼續施懕Μ # ,在鐵砧上。關掉超 買允壓30秒,以使黏著材料硬化。 -42- 201222684 表2顯示試驗資料及結果: 範例 編號 黏著材料 膜編號 基板/ 覆蓋層 超音波 時間[S] 超音波功 率[W] 壓力 [MPa] 使用壽 命Μ 目視/人 工檢查 1 1 玻璃/玻璃 0.5 350 1 434 未受損, 完全黏合 2 1 PET/PET 0.5 350 1 — 未受損, 完全黏合 3 2 玻璃/玻璃 0.4 350 1 408 未受損, 完全黏合 4 2 PET/PET 0.4 350 1 — 未受損, 完全黏合 5 3 玻璃/玻璃 0.8 550 3 144 未受損, 完全黏合 6 3 PET/PET 0.8 450 3 — 未受損, 完全黏合 7 4 玻璃/玻璃 0.5 400 1 45 未受損, 完全黏合 8 4 PET/PET 0.5 400 1 — 未受損, 完全黏合 9 5 玻璃/玻璃 0.6 400 1 235 未受損, 完全黏合 10 5 PET/PET 0.6 400 1 — 未受損, 完全黏合 11 6 玻璃/玻璃 0.8 450 1 680 未受損, 完全黏合 12 6 PET/PET 0.8 450 1 — 未受損, 完全黏合 13 7 玻璃/玻璃 0.6 400 1 139 未受損, 完全黏合 14 7 PET/PET 0.6 400 1 — 未受損, 完全黏合 15 8 玻璃/玻璃 0.6 350 1 380 未受損, 完全黏合 16 8 PET/PET 0.6 350 1 — 未受損, 完全黏合 試驗結果顯示,本發明的方法可以產生密閉性完全 是由所備使用之活化性黏著材料系統的滲透特性(尤其 -43- 201222684 是對水蒸成)決定的封裝。反之,巨觀上未完全密閉之試 體的使用壽命通常短於1小時。 感應加熱 利用IFF GmbH(Ismaning)公司生產的EW5F型感應 設備進行黏合。在局部產生交變磁場的感應器是一種鐵 氧體磁芯的線圈。第4圖以示意方式顯示一側視圖(未按 照比例繪製): 元件符號1 1代表鈣試驗用的層結構,鐵氧體磁芯 1 2被線圈1 3纏繞住。鐵氧體磁芯12的尺寸與膠帶的尺 寸相互配合。 將感應器埋在由聚醚醚酮(PEEK)構成的基材中,並 將由此形成的配置作為具有上沖頭元件之加壓裝置的下 沖頭元件。力F產生的將位於下沖頭元件及上沖頭元件 之間的層結構垂直壓向熱活化黏性平面構成物之表面的 壓力列於表3。黏合縫隙與感應器的距離約為3mm。將 PTFE板墊在聚酯膜之下。 利用經改良的感應设備產生一試驗用的交變磁場 (頻率10kHz,脈衝寬度10%)。脈衝寬度代表交變磁場的 脈衝持續時間(脈衝長度)佔交變磁場之總週期持續時間 (脈衝持續時間及兩個前後脈衝之間的持續時間的和)的 百分比。 熱活化黏性平面構成物受到交變磁場作用的時間 (也就是感應加熱的時間)在0.5至2秒之間。切斷磁場 後,應繼續施壓3 0秒’以使黏著材料硬化。 -44- 201222684 表3顯示顯示試驗資料及結果: 範例 編號 黏著材料 膜編號 基板/覆 蓋層 感應時 間[S] 脈衝寬 度[%] 壓力 [MPa] 使用壽 命[h] 目視/人 工檢查 15 1 玻璃/玻璃 1 10 2 324 未受損, 完全黏合 16 1 PET/PET 1 10 2 — 未受損, 完全黏合 17 2 玻璃/玻璃 1 10 2 385 未受損, 完全黏合 18 2 PET/PET 1 10 2 — 未受損, 完全黏合 19 3 玻璃/玻璃 2 10 10 113 未受損, 完全黏合 20 3 PET/PET 2 10 10 黏合縫區輕 微變形,完 全黏合 21 4 玻璃/玻璃 1 10 2 64 未受損, 完全黏合 22 4 PET/PET 1 10 2 — 未受損, 完全黏合 23 5 玻璃/玻璃 1.5 10 2 201 未受損, 完全黏合 24 5 PET/PET 1.5 10 2 — 未受損, 完全黏合 25 6 玻璃/玻璃 2 10 2 587 未受損, 完全黏合 26 6 PET/PET 2 10 2 ~ 黏合縫區輕 微變形,完 全黏合 試驗結果顯示,本發明的方法可以產生密閉性完全 是由所備使用之活化性黏著材料系統的滲透特性(尤其 是對水蒸氣)決定的封裝。反之,巨觀上未完全密閉之試 體的使用壽命通常短於1小時。 利用Fluke公司生產的Ti20型紅外線照相機測定試 驗6平面構原物内的溫度。為此應將覆蓋層從前面提及 -45- 201222684 之層結構去除,同時在感應時間内不能接通加壓裝置, 這樣照相機就可以拍攝到熱活化黏性平面構成物的一個 面。改變感應時間。試驗結果列於表4 : 範例編號 黏著材料 膜編號 基板/ 覆篆層 感應時 間⑷ 脈衝寬 度【%1 壓力 [MPal 最高溫度 m Τ1 6 ΡΕΤΛ 1 10 — — | ^ 1 104 Τ2 6 PET/- 1.5 10 — 171 Τ3 6 PET/- 2 10 — 264 此試驗測得的溫度對其他黏合範例亦具有代表性, 因為產生磁場之感受器的材料及尺寸是相同的。 比較例的執行及結果: 利用Muhlbauer公司生產的傳統式熱壓機加熱,以 作為比較之用。使用面對覆蓋層的鋁製上熱壓工具其中 上熱壓工具之形狀與鈣試驗用的黏合面的形狀相同。下 熱左工具疋一片溫度為室溫的鋁板。經由上熱壓工具將 ^疋的壓力(以黏合面為準)導入,以及透過導熱將熱能 在進行熱壓之前’應以機械方式將試體固定在下 =I工具上。熱壓時間結束後,短暫打開上熱壓工具, 並放入片溫度為室溫的鋁板,然後繼續施壓3 0秒,以 使黏著材料硬化。 使用和超音波黏合相同厚度(25 μπι)之熱活化黏性平 面構成物。 •46- 201222684 表4顯示顯示試驗資料及結果: 範例 編號 黏著材料 膜編號 基板/覆 蓋層 熱壓 時間Μ 工具溫 度rci 壓力 [MPal 使用壽 命「hi 目視/人工檢查 VI 1 玻璃/玻璃 1 250 2 — 未受損,未黏合 V2 1 玻璃/玻璃 5 250 2 338 未受損,完全黏合 V3 1 PET/PET 1 200 2 -- 在黏合縫隙區有明顯 變形,未黏合 V4 1 PET/PET 5 200 2 … 在黏合縫隙區有明顯 變形,完全黏合 V5 1 PET/PET 10 160 2 — 在黏合縫隙區有輕微 變形’完全黏合 V6 3 PET/PET 5 250 10 125 未受損,完全黏合 V7 3 PET/PET 10 160 10 ~ 在黏合縫隙區有輕微 變形,完全黏合,僅 具有熱塑性,因為未 達到活化溫度 V8 3 PET/PET 30 180 10 — 在黏合縫隙區有明顯 變形,完全黏合 V9 6 玻璃/玻璃 1 250 2 — 未受損,未黏合 V10 6 玻璃/玻璃 5 250 2 432 未受損,完全黏合 VII 6 PET/PET 10 160 2 — 在黏合縫隙區有輕微 變形,完全黏合 比較試驗的結果顯示,只有在活化溫度低於1 7 0 °C (也就是聚合物膜會明顯被熱沖頭損害的溫度)的情況 下,先前技術的方法才能夠形成在聚合基板上或在覆蓋 層之下的封裝。在這種情況下,形成黏合的時間也會比 本發明所需的時間長很多。此外,從範例26可看出,由 於製程時間很短,本發明的方法能夠容忍黏合縫隙内發 生在熱活化性黏著材料之範圍的短時間過熱,也不會對 PET膜造成值得一提的損害(所謂過熱是指加熱到超過 基板能夠承受的溫度)。 -47- 201222684 【簡單圖式說明】 第1圖:(光電)電子元件之第一種構造方式示意圖。 第2圖:(光電)電子元件之第二種構造方式示意圖。 第3圖:(光電)電子元件之第三種構造方式示意圖。 【主要元件符號說明】 1 (光電)電子零件 2 基板 3 電子結構 4 覆蓋層 5,5a,5b 平面構成物/熱熔黏著材料 層結構 鐵氧體磁芯 線圈 11 12 13 -48-Proceedings-Society 〇f Vacuum Coaters», 2003, pages 89-92. The transmittance of the light to the calcium layer is monitored during the test and this transmission becomes larger as the calcium is converted to calcium hydroxide and calcium oxide. When the area of the calcium layer is halved, it is considered that the service life has ended. The measurement environment is 90% relative humidity. Visual and manual inspection Since the soft (photovoltaic) electronic structure was encapsulated between polyester films, the subsequent test was to use a polyester film having a thickness of 1 μm, such as Meiinex 506 manufactured by Jin DuPont Film Co., Ltd. Since the film itself does not have a barrier layer, the life test cannot be performed. Therefore, only the adhesion is visually inspected' and the resulting bond is manually inspected. -38- 201222684 Activating adhesive material adhesive material 1 (pressure sensitive adhesive material): 50 parts Kraton FG 1924 maleic anhydride modified SEBS with 13% block poly 36% diblock and 1% Malay Acid (manufacturer: Kratmi, 50 parts Kraton FG 1901 maleic anhydride modified SEBS, containing 30% block poly without diblock and 1.7% maleic acid (manufacturer: Kraton, 70 parts Escorez 5615 softening temperature 115 °C hydrogenated KW resin (manufacturer 7^^ 25 parts Ondina 917 white oil from paraffin and naphthenic components (manufacturer: 1 part acetamidine------- made pressure from solution) Sensitive adhesive material. Dissolve various ingredients in a stupid (solid content 40%), and apply it on a deuterated release paper at a coating amount of 1.5 g/m2, and then dry at 1 20 ° C for 15 minutes. Finally, a layer of adhesive material with a mass per unit area of 25 g/m2 is produced. The activation of the coordination bond of the aluminum chelate complex is activated, resulting in a significant decrease in viscosity, and the activation temperature is about 120 ° C. Adhesive material 2 (pressure Sensitive Adhesive Material): 100 parts of SiBStar 103T block 30% triblock SiBS (manufacturer: Kaneka) 20 parts of SiBStar 042D block polystyrene content of 15% diblock SiB (manufacturer: Kaneka). A hot-melt adhesive material was prepared from the solution. The various components were dissolved in toluene (solid content 40%) and The coating amount of 1.5 g/m2 is coated on the deuterated release paper, and then dried at 12 ° C for 15 minutes to finally produce a bond of -39 to 201222684 mass per unit area of 25 g/m 2 and/or i3 g/m 2 . The material layer. Therefore, after the release paper is torn off, a film composed of a pure hot-melt adhesive material can be obtained. The activation temperature is about 95 ° C. Adhesive materials 3 to 7 : Thermal activation using several different chemical groups and different thicknesses Adhesive film as other heat-activated adhesive film (see table below), some of which are commercially available heat-activated films (teas SE, Hamburg or Peccell Technologies Inc., Japan). Table 1 shows Other Adhesive Materials Used: Thermally Active Adhesive Film (HAF) No. Chemical Base / Activation Temperature Original Thickness [βη] Commercially available products for ultrasonic thickness [um] Thickness for induction Γ // m] 3 N/P/18 (TC 30 Teas 84 71 25 13 4 PA/90°C 40 Teas 8440 25 13 5 PET/115°C 100 Teas 8464 25 13 6 SR/EP/16 (TC 35 Teas 8865 25 13 7 MI/120°C 50 Peccell PECHM-1 50 — Abbreviation. N/P : Nitrile rubber / phenolic resin PA . Copolyamine PET : Copolyester SR / EP : Synthetic rubber / Epoxy MI : Modified ionomers teas 8 4 7 1 is a kind of gambling rubber / Age-based resin-based thermal cross-linking 糸-40 - 201222684 (thermosetting). Teas 8440 is a copolyamine based thermofusible adhesive (thermoplastic). Teas 8464 is a pure hot melt adhesive (thermoplastic) based on copolyester. Teas 8865 is a nitrile rubber/epoxy based heat exchange system (thermosetting). Adhesive material 8 (pressure-sensitive adhesive material): 25 parts of Oppanol B15 BASF company's polyisobutyl hydrazine, Mw=75_g/m〇i 5 parts Oppanol B100 BASF §] produced polyisotropy, Mw=n_〇 g/m〇i 50 parts Escorez 5615 company produced j temperature i 15t hydrogenated Kw resin 20 parts DCP company produced dicyclodecane dihydroxy oxime dimercapto acrylate, dimethacrylate monomer —1 part DLP : Oxidation ~~— A hot-melt adhesive material is prepared from the solution. The ingredients were dissolved in heptane (solid content 45%) and coated on a deuterated release paper at a coating amount of 15 g/m2, and then dried at 10 (rc for 15 minutes to finally produce a unit area mass of 25 g). /m2 adhesive material layer. The substrate-free double-sided adhesive material is additionally covered with a release paper at a degree of about 120 ° C during storage. The planar composition is made to obtain a thinner film thickness than the commercially available adhesive material. The product may be dissolved in 纟2_丁_ or toluene if necessary, and then coated and dried to form a layer of adhesive material of the desired thickness from the solution. The film is laminated on each surface of the conductive planar structure. The film is called a (four) film having a thickness of 36 as a conductive planar composition for induction heating. The metal film and the adhesive material are in the temperature of TC to not -41-201222684. The layers are laminated together. This process does not produce sufficient viscosity and initiate cross-linking reaction of the thermoplastic film, but only produces an attached effect. The substrate and the cover layer used are made of floating glass with a thickness of 3 mm and an area of 50×50 mm 2 . Use the s Substrate and cover layer used - In addition, a 5〇6 type poly film (thickness 100 μm) produced by Teijin_DuPont_Film Co., Ltd. was used. Execution and results of the method of the present invention: Ultrasonic activation: Ultrasonic machine PS Mpcr manufactured by Hermann Ultraschamechnik +m,,~v rate is 35kH A This machine is the working frequency of sheep 35kHZ, the maximum welding power is 1〇〇〇w. 煜萌,甘am... The ruler uses special titanium carbide to set the pressure; Before the surface activation, the library should be secreted. After the ultrasonic wave is inserted into the ultrasonic machine, continue to apply the sputum # on the anvil. Turn off the overbought pressure for 30 seconds to make the adhesion. Material hardening. -42- 201222684 Table 2 shows the test data and results: Example No. Adhesive material film number substrate / overlay ultrasonic time [S] Ultrasonic power [W] Pressure [MPa] Service life 目 Visual/manual inspection 1 1 Glass/glass 0.5 350 1 434 undamaged, fully bonded 2 1 PET/PET 0.5 350 1 — undamaged, fully bonded 3 2 glass/glass 0.4 350 1 408 undamaged, fully bonded 4 2 PET/PET 0.4 350 1 — not Damage, fully bonded 5 3 glass/glass 0.8 550 3 144 undamaged, fully bonded 6 3 PET/PET 0.8 450 3 — undamaged, fully bonded 7 4 glass/glass 0.5 400 1 45 undamaged, fully bonded 8 4 PET/PET 0.5 400 1 — undamaged, fully bonded 9 5 glass/glass 0.6 400 1 235 undamaged, fully bonded 10 5 PET/PET 0.6 400 1 — undamaged, fully bonded 11 6 glass/glass 0.8 450 1 680 undamaged, fully bonded 12 6 PET/PET 0.8 450 1 — undamaged, fully bonded 13 7 glass/glass 0.6 400 1 139 undamaged, fully bonded 14 7 PET/PET 0.6 400 1 — not affected Damage, fully bonded 15 8 glass/glass 0.6 350 1 380 undamaged, fully bonded 16 8 PET/PET 0.6 350 1 — undamaged, complete adhesion test results show that the method of the invention can produce tightness completely The permeation characteristics of the activated adhesive material system (especially -43-201222684 is the evaporation of water). Conversely, the life of a test specimen that is not completely sealed on a giant view is usually less than one hour. Induction heating Adhesion was carried out using an EW5F type induction device manufactured by IFF GmbH (Ismaning). The inductor that locally generates an alternating magnetic field is a coil of a ferrite core. Fig. 4 shows a side view (not drawn to scale) in a schematic manner: Element symbol 1 1 represents a layer structure for calcium test, and ferrite core 12 is wound by coil 13 . The size of the ferrite core 12 matches the size of the tape. The inductor was buried in a substrate composed of polyetheretherketone (PEEK), and the thus formed configuration was used as a lower punch member of a pressurizing device having an upper punch member. The pressure generated by the force F to vertically press the layer structure between the lower punch member and the upper punch member against the surface of the heat activated viscous planar structure is shown in Table 3. The distance between the bonding gap and the inductor is about 3 mm. The PTFE sheet was placed under the polyester film. An experimental alternating magnetic field (frequency 10 kHz, pulse width 10%) was generated using a modified inductive device. The pulse width represents the percentage of the pulse duration (pulse length) of the alternating magnetic field to the total period duration of the alternating magnetic field (the sum of the pulse duration and the duration between the two front and back pulses). The time during which the thermally activated viscous planar structure is subjected to an alternating magnetic field (i.e., the time of induction heating) is between 0.5 and 2 seconds. After cutting off the magnetic field, continue to apply pressure for 30 seconds to harden the adhesive material. -44- 201222684 Table 3 shows the test data and results: Example No. Adhesive Material Film No. Substrate/Cover Layer Sensing Time [S] Pulse Width [%] Pressure [MPa] Service Life [h] Visual/Manual Inspection 15 1 Glass / Glass 1 10 2 324 undamaged, fully bonded 16 1 PET/PET 1 10 2 — undamaged, fully bonded 17 2 glass/glass 1 10 2 385 undamaged, fully bonded 18 2 PET/PET 1 10 2 — Uncorrupted, fully bonded 19 3 glass/glass 2 10 10 113 undamaged, fully bonded 20 3 PET/PET 2 10 10 slightly deformed adhesive seam, fully bonded 21 4 glass/glass 1 10 2 64 intact, Fully bonded 22 4 PET/PET 1 10 2 — undamaged, fully bonded 23 5 glass/glass 1.5 10 2 201 undamaged, fully bonded 24 5 PET/PET 1.5 10 2 — undamaged, fully bonded 25 6 glass /Glass 2 10 2 587 undamaged, fully bonded 26 6 PET/PET 2 10 2 ~ The adhesive joint area is slightly deformed, and the results of the complete adhesion test show that the method of the present invention can produce the tightness completely by the activation used. Penetration of adhesive material systems The characteristics (especially for water vapor) are determined by the package. Conversely, the life of a test specimen that is not completely sealed on a giant view is usually less than one hour. The temperature in the test plane 6 was measured using a Ti20 type infrared camera manufactured by Fluke Corporation. For this purpose, the cover layer should be removed from the layer structure mentioned above -45-201222684, and the pressurizing device cannot be switched on during the induction time so that the camera can capture one side of the heat-activated viscous planar structure. Change the sensing time. The test results are shown in Table 4: Example No. Adhesive Material Membrane Number Substrate / Covering Layer Induction Time (4) Pulse Width [%1 Pressure [MPal Maximum Temperature m Τ1 6 ΡΕΤΛ 1 10 — — | ^ 1 104 Τ 2 6 PET/- 1.5 10 — 171 Τ3 6 PET/- 2 10 — 264 The temperature measured in this test is also representative of other bonding examples because the materials and dimensions of the susceptor that produces the magnetic field are the same. Execution and results of the comparative example: Heating was carried out using a conventional hot press manufactured by Muhlbauer for comparison. The aluminum top hot pressing tool facing the cover layer has the same shape as the bonding surface for the calcium test. Lower hot left tool 疋 an aluminum plate at room temperature. The pressure of the crucible (which is based on the bonding surface) is introduced via the upper hot pressing tool, and the thermal energy is applied to the lower =I tool by heat conduction before the hot pressing. After the hot pressing time is over, the upper hot pressing tool is briefly opened, and an aluminum plate having a sheet temperature of room temperature is placed, and then pressure is continued for 30 seconds to harden the adhesive material. A heat-activated viscous planar composition of the same thickness (25 μm) is bonded to the ultrasonic wave. • 46- 201222684 Table 4 shows the test data and results: Example No. Adhesive Material Membrane No. Substrate/Cover Thermal Pressure Time Μ Tool Temperature rci Pressure [MPal Lifetime “hi Visual/Manual Inspection VI 1 Glass/Glass 1 250 2 — Uncorrupted, unbonded V2 1 glass/glass 5 250 2 338 undamaged, fully bonded V3 1 PET/PET 1 200 2 -- significantly deformed in the adhesive gap area, unbonded V4 1 PET/PET 5 200 2 ... Significant deformation in the adhesive gap area, fully bonded V5 1 PET/PET 10 160 2 — slightly deformed in the adhesive gap area 'completely bonded V6 3 PET/PET 5 250 10 125 intact, fully bonded V7 3 PET/PET 10 160 10 ~ Slightly deformed in the adhesive gap area, fully bonded, only thermoplastic, because the activation temperature is not reached V8 3 PET/PET 30 180 10 — significant deformation in the adhesive gap area, fully bonded V9 6 glass/glass 1 250 2 — undamaged, unbonded V10 6 glass/glass 5 250 2 432 undamaged, fully bonded VII 6 PET/PET 10 160 2 — slightly deformed in the adhesive gap area, fully bonded comparative test It has been shown that the prior art method can be formed on a polymeric substrate or in a cover layer only if the activation temperature is below 190 ° C (i.e., the temperature at which the polymer film is significantly damaged by the thermal punch). In this case, the bonding time is also much longer than the time required for the present invention. Furthermore, as can be seen from Example 26, the method of the present invention can tolerate the bonding gap due to the short processing time. Short-time overheating that occurs in the range of heat-activated adhesive materials does not cause any damage to the PET film (so-called overheating means heating beyond the temperature that the substrate can withstand). -47- 201222684 [Simple Schematic Description Fig. 1: Schematic diagram of the first construction mode of (photovoltaic) electronic components. Fig. 2: Schematic diagram of the second construction mode of (optoelectronic) electronic components. Fig. 3: The third construction mode of (optoelectronic) electronic components Schematic. [Main component symbol description] 1 (photoelectric) electronic component 2 substrate 3 electronic structure 4 cover layer 5, 5a, 5b planar composition / hot-melt adhesive material layer structure ferrite magnetic Coil 111213-48-
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010039320 | 2010-08-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201222684A true TW201222684A (en) | 2012-06-01 |
Family
ID=44773031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW100128659A TW201222684A (en) | 2010-08-13 | 2011-08-11 | Method for encapsulating an electronic arrangement |
Country Status (5)
Country | Link |
---|---|
KR (1) | KR101871317B1 (en) |
CN (1) | CN103270618B (en) |
DE (1) | DE112011102705A5 (en) |
TW (1) | TW201222684A (en) |
WO (1) | WO2012019909A1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104488107A (en) * | 2012-08-03 | 2015-04-01 | Lg化学株式会社 | Adhesive film and sealing method for organic electronic device using same |
TWI488042B (en) * | 2012-08-27 | 2015-06-11 | Invensas Corp | Co-support system and microelectronic assembly |
US9224431B2 (en) | 2011-10-03 | 2015-12-29 | Invensas Corporation | Stub minimization using duplicate sets of signal terminals |
US9281296B2 (en) | 2014-07-31 | 2016-03-08 | Invensas Corporation | Die stacking techniques in BGA memory package for small footprint CPU and memory motherboard design |
US9281271B2 (en) | 2011-10-03 | 2016-03-08 | Invensas Corporation | Stub minimization using duplicate sets of signal terminals having modulo-x symmetry in assemblies without wirebonds to package substrate |
US9287195B2 (en) | 2011-10-03 | 2016-03-15 | Invensas Corporation | Stub minimization using duplicate sets of terminals having modulo-x symmetry for wirebond assemblies without windows |
US9287216B2 (en) | 2011-07-12 | 2016-03-15 | Invensas Corporation | Memory module in a package |
US9368477B2 (en) | 2012-08-27 | 2016-06-14 | Invensas Corporation | Co-support circuit panel and microelectronic packages |
US9373565B2 (en) | 2011-10-03 | 2016-06-21 | Invensas Corporation | Stub minimization for assemblies without wirebonds to package substrate |
US9377824B2 (en) | 2011-10-03 | 2016-06-28 | Invensas Corporation | Microelectronic assembly including memory packages connected to circuit panel, the memory packages having stub minimization for wirebond assemblies without windows |
US9423824B2 (en) | 2011-10-03 | 2016-08-23 | Invensas Corporation | Stub minimization for multi-die wirebond assemblies with parallel windows |
US9460758B2 (en) | 2013-06-11 | 2016-10-04 | Invensas Corporation | Single package dual channel memory with co-support |
US9484080B1 (en) | 2015-11-09 | 2016-11-01 | Invensas Corporation | High-bandwidth memory application with controlled impedance loading |
US9679613B1 (en) | 2016-05-06 | 2017-06-13 | Invensas Corporation | TFD I/O partition for high-speed, high-density applications |
US9691437B2 (en) | 2014-09-25 | 2017-06-27 | Invensas Corporation | Compact microelectronic assembly having reduced spacing between controller and memory packages |
TWI829941B (en) * | 2020-02-14 | 2024-01-21 | 日月光半導體製造股份有限公司 | Semiconductor device package |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11131431B2 (en) | 2014-09-28 | 2021-09-28 | Jiaxing Super Lighting Electric Appliance Co., Ltd | LED tube lamp |
DE102011079685A1 (en) * | 2011-07-22 | 2013-01-24 | Tesa Se | Method for producing an adhesive bond with a heat-activatable adhesive by means of induction heating |
DE102012214401A1 (en) * | 2012-08-13 | 2014-02-13 | Tesa Se | Process for the production of a solar module |
US11480305B2 (en) | 2014-09-25 | 2022-10-25 | Jiaxing Super Lighting Electric Appliance Co., Ltd. | LED tube lamp |
CN205961494U (en) | 2014-09-28 | 2017-02-15 | 嘉兴山蒲照明电器有限公司 | LED (Light -emitting diode) straight lamp |
CN205331873U (en) * | 2014-09-28 | 2016-06-22 | 嘉兴山蒲照明电器有限公司 | LED (Light -emitting diode) straight lamp |
US10560989B2 (en) | 2014-09-28 | 2020-02-11 | Jiaxing Super Lighting Electric Appliance Co., Ltd | LED tube lamp |
US10514134B2 (en) | 2014-12-05 | 2019-12-24 | Jiaxing Super Lighting Electric Appliance Co., Ltd | LED tube lamp |
DE102015202415B4 (en) * | 2015-02-11 | 2021-02-11 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Adhesive, component, method for contactless temperature measurement of the adhesive, method for the improved connection of two components with the adhesive and use of the adhesive |
US9897265B2 (en) | 2015-03-10 | 2018-02-20 | Jiaxing Super Lighting Electric Appliance Co., Ltd. | LED tube lamp having LED light strip |
US10161569B2 (en) | 2015-09-02 | 2018-12-25 | Jiaxing Super Lighting Electric Appliance Co., Ltd | LED tube lamp |
CN105957980A (en) * | 2016-05-30 | 2016-09-21 | 京东方科技集团股份有限公司 | OLED packaging equipment and OLED packaging method |
DE102016213840A1 (en) * | 2016-07-27 | 2018-02-01 | Tesa Se | Adhesive tape for encapsulating electronic structures |
JP6789048B2 (en) * | 2016-09-23 | 2020-11-25 | 株式会社Screenホールディングス | Board processing equipment |
US9960389B1 (en) | 2017-05-05 | 2018-05-01 | 3M Innovative Properties Company | Polymeric films and display devices containing such films |
DE102018108724A1 (en) * | 2018-04-12 | 2019-10-17 | fos4X GmbH | Method for inductive bonding of sensors in wind turbines |
US12060502B2 (en) * | 2018-05-25 | 2024-08-13 | 3M Innovative Properties Company | Phase separated articles |
KR102263568B1 (en) * | 2021-02-15 | 2021-06-11 | 한국표준과학연구원 | Encapsulated constructure for quantum resistance standard |
TWI844043B (en) * | 2022-06-21 | 2024-06-01 | 德商Ses Rfid解決方案有限公司 | Chip packaging structure |
CN114433971B (en) * | 2021-12-20 | 2023-07-25 | 中国电子科技集团公司第二十九研究所 | Method for carrying out stacking welding with assistance of magnetic vibration particles |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4051195A (en) | 1975-12-15 | 1977-09-27 | Celanese Polymer Specialties Company | Polyepoxide-polyacrylate ester compositions |
GB1552046A (en) | 1977-02-02 | 1979-09-05 | Ciba Geigy Ag | Film adhesives |
JP3181737B2 (en) | 1992-12-28 | 2001-07-03 | 東北パイオニア株式会社 | Electroluminescence element |
GB9405799D0 (en) | 1994-03-24 | 1994-05-11 | Thomson Consumer Electronics | Shaped parabolic correction waveform for curved face plate display tube |
US6195142B1 (en) | 1995-12-28 | 2001-02-27 | Matsushita Electrical Industrial Company, Ltd. | Organic electroluminescence element, its manufacturing method, and display device using organic electroluminescence element |
JP2001503811A (en) | 1996-11-12 | 2001-03-21 | ミネソタ マイニング アンド マニュファクチャリング カンパニー | Thermosetting pressure-sensitive adhesive |
JP2000306664A (en) * | 1999-04-21 | 2000-11-02 | Stanley Electric Co Ltd | Organic el display device |
EP1453360B1 (en) * | 1999-11-03 | 2012-10-24 | OMG, Inc. | Induction heating system and method of adhesive bonding by induction heating |
JP2002260847A (en) | 2001-02-27 | 2002-09-13 | Bando Chem Ind Ltd | Electroluminescence element sealing film and sealed organic electroluminescence element |
US6706316B2 (en) | 2001-05-08 | 2004-03-16 | Eastman Kodak Company | Ultrasonically sealing the cover plate to provide a hermetic enclosure for OLED displays |
US6803081B2 (en) | 2001-06-26 | 2004-10-12 | National Starch And Chemical Investment Holding Corporation | Radiation curable adhesive |
US6803245B2 (en) | 2001-09-28 | 2004-10-12 | Osram Opto Semiconductors Gmbh | Procedure for encapsulation of electronic devices |
US6936131B2 (en) | 2002-01-31 | 2005-08-30 | 3M Innovative Properties Company | Encapsulation of organic electronic devices using adsorbent loaded adhesives |
KR20100080632A (en) | 2002-06-17 | 2010-07-09 | 세키스이가가쿠 고교가부시키가이샤 | Method for sealing organic electroluminescent element |
US20060100299A1 (en) | 2002-07-24 | 2006-05-11 | Ranjit Malik | Transformable pressure sensitive adhesive tape and use thereof in display screens |
US7449629B2 (en) | 2002-08-21 | 2008-11-11 | Truseal Technologies, Inc. | Solar panel including a low moisture vapor transmission rate adhesive composition |
DE10309607B9 (en) | 2003-03-05 | 2006-12-14 | Osram Opto Semiconductors Gmbh | Method for encapsulating functional components of an optoelectronic component |
EP1475424B1 (en) | 2003-05-07 | 2010-12-08 | Sika Technology AG | Stackable module |
CN1864438B (en) | 2003-10-03 | 2010-04-28 | Jsr株式会社 | Transparent sealant for organic EL element |
JP2005298703A (en) | 2004-04-13 | 2005-10-27 | Mitsui Chemicals Inc | Adhesive film, chassis and organic el light-emitting element using the same |
US20070135552A1 (en) | 2005-12-09 | 2007-06-14 | General Atomics | Gas barrier |
JP2007197517A (en) | 2006-01-24 | 2007-08-09 | Three M Innovative Properties Co | Adhesive sealing composition, sealing film and organic el element |
KR100759667B1 (en) * | 2006-01-27 | 2007-09-17 | 삼성에스디아이 주식회사 | Flat panel display and method of the same |
DE102006042816A1 (en) | 2006-09-08 | 2008-06-26 | Tesa Ag | Heat-activated adhesive punching surface element |
ATE469440T1 (en) | 2006-09-20 | 2010-06-15 | Dow Global Technologies Inc | ELECTRONIC DEVICE MODULE COMPRISING AN ETHYLENE MULTIBLOCK COPOLYMER |
DE102007006881A1 (en) | 2007-02-07 | 2008-08-21 | Henkel Ag & Co. Kgaa | Method for bonding a first component to a second component |
DE102007038458A1 (en) * | 2007-08-14 | 2009-02-19 | Tesa Ag | composite element |
JP4333786B2 (en) | 2007-08-23 | 2009-09-16 | 住友化学株式会社 | Organic electroluminescence device |
JP5793302B2 (en) * | 2007-10-05 | 2015-10-14 | コーニング インコーポレイテッド | Method and apparatus for sealing glass packages |
DE102008021676A1 (en) * | 2008-04-28 | 2009-10-29 | Osram Opto Semiconductors Gmbh | Radiation-emitting element i.e. organic LED, protecting component, has connecting material with ferromagnetic particles, and softened by inductive heating for mechanically connecting substrates |
KR101340820B1 (en) * | 2008-09-23 | 2013-12-11 | 코오롱인더스트리 주식회사 | Plastic substrate |
DE102008034859A1 (en) * | 2008-07-26 | 2009-08-27 | Daimler Ag | Adhesive-bonding station for manufacturing adhesive connection between/at motor vehicle body parts in the automobile body shell frame structure, comprises heating device with inductor for adhesive layer, and tensioning device with pliers |
DE102008047964A1 (en) * | 2008-09-18 | 2010-03-25 | Tesa Se | Method for encapsulating an electronic device |
DE102008060113A1 (en) | 2008-12-03 | 2010-07-29 | Tesa Se | Method for encapsulating an electronic device |
DE102009036970A1 (en) | 2009-08-12 | 2011-02-17 | Tesa Se | Method for encapsulating an electronic device |
-
2011
- 2011-07-27 DE DE112011102705T patent/DE112011102705A5/en not_active Withdrawn
- 2011-07-27 CN CN201180049543.7A patent/CN103270618B/en not_active Expired - Fee Related
- 2011-07-27 KR KR1020137006303A patent/KR101871317B1/en active IP Right Grant
- 2011-07-27 WO PCT/EP2011/062881 patent/WO2012019909A1/en active Application Filing
- 2011-08-11 TW TW100128659A patent/TW201222684A/en unknown
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9287216B2 (en) | 2011-07-12 | 2016-03-15 | Invensas Corporation | Memory module in a package |
US9508629B2 (en) | 2011-07-12 | 2016-11-29 | Invensas Corporation | Memory module in a package |
US10032752B2 (en) | 2011-10-03 | 2018-07-24 | Invensas Corporation | Microelectronic package having stub minimization using symmetrically-positioned duplicate sets of terminals for wirebond assemblies without windows |
US9373565B2 (en) | 2011-10-03 | 2016-06-21 | Invensas Corporation | Stub minimization for assemblies without wirebonds to package substrate |
US9281271B2 (en) | 2011-10-03 | 2016-03-08 | Invensas Corporation | Stub minimization using duplicate sets of signal terminals having modulo-x symmetry in assemblies without wirebonds to package substrate |
US9287195B2 (en) | 2011-10-03 | 2016-03-15 | Invensas Corporation | Stub minimization using duplicate sets of terminals having modulo-x symmetry for wirebond assemblies without windows |
US9224431B2 (en) | 2011-10-03 | 2015-12-29 | Invensas Corporation | Stub minimization using duplicate sets of signal terminals |
US10090280B2 (en) | 2011-10-03 | 2018-10-02 | Invensas Corporation | Microelectronic package including microelectronic elements having stub minimization for wirebond assemblies without windows |
US9515053B2 (en) | 2011-10-03 | 2016-12-06 | Invensas Corporation | Microelectronic packaging without wirebonds to package substrate having terminals with signal assignments that mirror each other with respect to a central axis |
US10643977B2 (en) | 2011-10-03 | 2020-05-05 | Invensas Corporation | Microelectronic package having stub minimization using symmetrically-positioned duplicate sets of terminals for wirebond assemblies without windows |
US9377824B2 (en) | 2011-10-03 | 2016-06-28 | Invensas Corporation | Microelectronic assembly including memory packages connected to circuit panel, the memory packages having stub minimization for wirebond assemblies without windows |
US9423824B2 (en) | 2011-10-03 | 2016-08-23 | Invensas Corporation | Stub minimization for multi-die wirebond assemblies with parallel windows |
US9679838B2 (en) | 2011-10-03 | 2017-06-13 | Invensas Corporation | Stub minimization for assemblies without wirebonds to package substrate |
US9679876B2 (en) | 2011-10-03 | 2017-06-13 | Invensas Corporation | Microelectronic package having at least two microelectronic elements that are horizontally spaced apart from each other |
US9530458B2 (en) | 2011-10-03 | 2016-12-27 | Invensas Corporation | Stub minimization using duplicate sets of signal terminals |
US9496243B2 (en) | 2011-10-03 | 2016-11-15 | Invensas Corporation | Microelectronic assembly with opposing microelectronic packages each having terminals with signal assignments that mirror each other with respect to a central axis |
US10692842B2 (en) | 2011-10-03 | 2020-06-23 | Invensas Corporation | Microelectronic package including microelectronic elements having stub minimization for wirebond assemblies without windows |
US9343697B2 (en) | 2012-08-03 | 2016-05-17 | Lg Chem, Ltd. | Adhesive film and sealing method for organic electronic device using same |
CN104488107B (en) * | 2012-08-03 | 2016-10-19 | Lg化学株式会社 | Bonding film and use the method for packing of organic electronic device of this bonding film |
CN104488107A (en) * | 2012-08-03 | 2015-04-01 | Lg化学株式会社 | Adhesive film and sealing method for organic electronic device using same |
US9368477B2 (en) | 2012-08-27 | 2016-06-14 | Invensas Corporation | Co-support circuit panel and microelectronic packages |
TWI488042B (en) * | 2012-08-27 | 2015-06-11 | Invensas Corp | Co-support system and microelectronic assembly |
US9460758B2 (en) | 2013-06-11 | 2016-10-04 | Invensas Corporation | Single package dual channel memory with co-support |
US9281296B2 (en) | 2014-07-31 | 2016-03-08 | Invensas Corporation | Die stacking techniques in BGA memory package for small footprint CPU and memory motherboard design |
US9691437B2 (en) | 2014-09-25 | 2017-06-27 | Invensas Corporation | Compact microelectronic assembly having reduced spacing between controller and memory packages |
US9484080B1 (en) | 2015-11-09 | 2016-11-01 | Invensas Corporation | High-bandwidth memory application with controlled impedance loading |
US10026467B2 (en) | 2015-11-09 | 2018-07-17 | Invensas Corporation | High-bandwidth memory application with controlled impedance loading |
US9679613B1 (en) | 2016-05-06 | 2017-06-13 | Invensas Corporation | TFD I/O partition for high-speed, high-density applications |
US9928883B2 (en) | 2016-05-06 | 2018-03-27 | Invensas Corporation | TFD I/O partition for high-speed, high-density applications |
TWI829941B (en) * | 2020-02-14 | 2024-01-21 | 日月光半導體製造股份有限公司 | Semiconductor device package |
Also Published As
Publication number | Publication date |
---|---|
CN103270618A (en) | 2013-08-28 |
KR101871317B1 (en) | 2018-06-27 |
KR20130097755A (en) | 2013-09-03 |
CN103270618B (en) | 2016-08-10 |
DE112011102705A5 (en) | 2013-05-29 |
WO2012019909A1 (en) | 2012-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201222684A (en) | Method for encapsulating an electronic arrangement | |
JP6077604B2 (en) | Induction heatable adhesive tape with different peel behavior | |
KR101967330B1 (en) | Heat-activated, glueable surface elements | |
TWI494404B (en) | Method for adhesion of heat -activated adherable face element | |
JP6261737B2 (en) | Adhesive film and organic electronic device manufacturing method using the same | |
TWI521038B (en) | Method for encapsulating an electronic arrangement | |
JP5634518B2 (en) | Method for encapsulating electronic devices | |
JP5896388B2 (en) | Adhesive film and organic electronic device sealing method using the same | |
TW201213490A (en) | Adhesive tape and solar cell module using the same | |
TW201228841A (en) | Adhesive and a method of encapsulating for an electric device | |
WO2014208518A1 (en) | Resin composition | |
TW201348382A (en) | Adhesive film | |
JP6105063B2 (en) | Adhesive film and organic electronic device sealing product using the same | |
KR102639338B1 (en) | Laminate for bonding, method for bonding two adherends, and method for manufacturing bonded structure | |
JP2004268383A (en) | Plastic bonding method | |
JP2006206787A (en) | Die attach film having dicing sheet function and manufacturing process of semiconductor device and semiconductor device using it | |
JP2007073647A (en) | Die attaching film with dicing sheet function, manufacturing method of semiconductor device using the same, and semiconductor device | |
JP5235270B2 (en) | Battery laminate exterior material and laminate battery | |
JP2016180719A (en) | Method of evaluating adhesion strength between base material plastic film and metal layer of metal vapor-deposition plastic film | |
KR102600729B1 (en) | Method for joining two adherends and manufacturing method for bonded structure | |
JP5095257B2 (en) | Plastic bonding method | |
WO2015001833A1 (en) | Laminate packaging material for cell, and laminate cell | |
JP6125364B2 (en) | Battery laminate exterior material and laminate battery | |
CN117597409A (en) | Adhesive tape, article, and method for removing article |