TW201220328A - Transparent conductive multilayered film, producing method of the same, and touch panel containing the same - Google Patents

Transparent conductive multilayered film, producing method of the same, and touch panel containing the same Download PDF

Info

Publication number
TW201220328A
TW201220328A TW100138394A TW100138394A TW201220328A TW 201220328 A TW201220328 A TW 201220328A TW 100138394 A TW100138394 A TW 100138394A TW 100138394 A TW100138394 A TW 100138394A TW 201220328 A TW201220328 A TW 201220328A
Authority
TW
Taiwan
Prior art keywords
laminate
transparent conductive
thickness
film
layer
Prior art date
Application number
TW100138394A
Other languages
Chinese (zh)
Other versions
TWI486973B (en
Inventor
Man-Ho Lee
Charlie Hong
Original Assignee
Bmc Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bmc Co Ltd filed Critical Bmc Co Ltd
Publication of TW201220328A publication Critical patent/TW201220328A/en
Application granted granted Critical
Publication of TWI486973B publication Critical patent/TWI486973B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Abstract

A transparent conductive multilayered film, producing method of the same, and touch panel containing the same is related to the transparent conductive lamination film with a high transmittance and a light color. Two layers of laminates with an adjustable refractive index and an adjustable thickness are laminated on a transparent base by PECVD process. Therefore, the laminated transparent conductive multilayered film has dense and steady structure. The transparent conductive multilayered film has a high visible transmittance, a light color, small change rate in surface resistivity in an environment with high temperature and high humidity, and high durability. The large area production is increased, and the manufacturing cost is reduced.

Description

201220328 六、發明說明: 【發明所屬之技術領域】 膜’特別是關於一種包含具有 導電層壓薄膜、其製造方法及 本發明係關於一種透明導電薄 各不相同的折射率的層壓體的透明 其用途。 【先前技術】 觸控螢幕是安裝在顯轉置的表面、將用戶的手指、觸控筆 等的物理接觸轉換為電子信號的輸岭置,被應關液晶顯示裝 置(i_dCrystaldiSplay)、電聚顯示面板(pla酿dis卿卿〇 和 EL (electro_iuminescence ’電場發光)元件等。 .這樣的觸控螢幕疋資簡示設備的特殊輸人裝置,根據實現 方式分為電阻式、電容式、超音波式、紅外線式和表面聲波式等。 最近,在使用量和應用範圍擴大的移動設備和導航設備之類 的小型可減設備t,電阻式和數位電容式的驗螢幕已廣泛應 用。特別是電阻式操作實現容易,製造成本低,大量應用於一般 的觸控螢幕手機和導航設備,然而最近,從現有的只能做標籤 (Tab)和拖動(Drag)的簡單操作的觸控螢幕觸摸方法脫離,將 容易實現多種方式的多點觸控的電容式的觸控螢幕安裝在智慧手 機和高檔移動設備的顯示器中的行為正在持續擴展。 電容式的觸控瑩幕包含觸摸圖案層,觸摸圖案層具有對應外 部物理接觸產生電信號的作用,但在用於電容式的觸控肇幕的透 4 201220328 明導電薄_情訂’必射見光透_、透射著色低且在透 =電極圖案敍刻工序後生成的透明電極圖案的可見度良好。特別 是,用於電容式的觸控歸的翻導電_為了不失真地表現顯 不晝面的色相,透射著色必須低,在觸控榮幕產品的結構上 明電極圖案_4後生成__可見度必須良好。為了與得 低的透射著色性和高的_可見度,必須使圖銳概肉眼可見 度減到最少,為此,需要反射光量減少崎射量增力刪壓結構。 然而,在财的難螢幕中使料透科電_—般具有對電阻 式合適的可見歧神。在祕克服這—點的多層結構的薄膜情 況下’即使是在提高透射率和確保對高溫和高濕度⑽。c、濕度 90%)以及熱衝擊的耐久性和電阻穩定性的情況下,還存在^ 多層膜的層壓導致生產時間增加而製造成本增加的問題。吼 為了解決上述問題,-直以來,形成具有比透明基底的折射 率大'比透料電層的折射率小財間層,降低透射柄色差儀 b*值從而義色魏黃色和標色的_剌了解決,但不能製作 在電容式情_财高透料的導電層壓薄膜。 此外,用於製作具有高騎率料電層壓薄朗另料他的 現有技術提出了在軸低折醉和糾射率的氧化__ 層壓薄膜的中間卿成的轉中作騎紅翻物理氣相沉積法 (PVD,physicalvapordep〇siti〇n)中濺射(s卿㈣)成膜的方 法’提高了透鮮和耐久性。細,用_法形成具有高折射率 和低折射率的兩層金屬和無機氧化物需要長時間的成_ # »、、 5 201220328 捲⑽一树續生產過-需觸 【發明内容】 [發明要解決的問題] 本U提(、光透射率南和透射著色低的翻導電層壓薄膜, 八即使在高溫和高_惡魏财表面她變化率也小和耐久 ==τ電極_可見度的同時能夠降低製造成本 的透明導電層壓薄膜及1萝 坦似Α人 。 /、^方法卞供包含翻導電層壓薄膜 4而,本發明要解決的啊不·社所制題,沒有提及 的其他問題,本領域的技術人員也可以從下_說财清楚地理 解。 [用於解決問題的方法] 為了解決上述問題,本發明的第—方面,提供了—種透明導 2壓薄膜,該透明導電層壓薄膜包含:光透明基底;利用電聚化 :礼相此積法(PECVD)層壓在光透明基底上至1〇nm〜3〇〇nm的 厚度包含热機氧化物、具有折射率為13〜2 5的第一層壓體;利 用電襞化學氣她積法層壓在帛—層壓體上^ iQnm〜施爪的厚 度包含與第一層壓體所含的無機氧化物不同的無機氧化物的第 -層壓體;及層壓在帛二層壓體上至·m〜1()()nm的厚度的透明 導電層。 6 201220328 在一種實施方式中,在透明導電層的厚度為5〇nm以上的情況 下’第二層_的折射率比第—層壓體的折射率大,但不限於此。 在種實她方式中,第一層壓體和第二層壓體的總厚度是 50〜350nm,但不限於此。 在-種實施方式中,第二層壓體的色差儀的L、a*、b*值中透 射色座標值為-7<b*<2,但不限於此。 在-種實施方式中,透明導電層包含氧化銦錫(ιτ〇)、氧化 錫録(ΑΓΟ)和氧化鋼鋅(ΙΖ〇)中的一種以上,但不限於此。 在種實知方式中’光透明基底包含塑膠薄膜,光透明基底 的厚度為25um〜350um,但不限於此。 在-種實施方式巾,更包含透明硬細,位在光透明基底的 一側或兩側,但不限於此。 本發明的第二方面’提供了一種透明導電層壓薄膜的製造方 去,4製造方法包含:利用電漿化學氣相沉積法(pECVD)在光 透明基底上層壓包含無機氧化物、折射率為13〜2 5的第一層壓體 至l〇nm〜30〇nm的厚度;利用電漿化學氣相沉積法在第一層壓體 上層壓包含與第-層賴所含的無機氧化物不同的無機氧化物的 第二層壓體至lOnm〜30〇nm的厚度;及在第二層壓體上層壓透明 導電層至10〜l〇〇nm的厚度。 在一種實施方式中’電漿化學氣相沉積法包含捲對捲方式的 電漿化學氣相沉積法,但不限於此。 在一種實施方式中,於層壓透明導電層之步驟,包含利用選 201220328 自由氣相沉積法、離子⑽法、_法、化學氣相沉積法和链刻 法級成的組中的-独上的方法和捲對捲卫序連_成透明導電 層,但不限於此。 在-種實施方式中’透明導電層壓薄膜的製造方法更包含. 於在層壓透明導麵之步驟後,在賊〜靴下進行熱=使 透明導電層結晶’但不限於此。 本發明的第三方面,提供了包含透明導電層壓薄膜的觸控榮 幕,但不限於此。 [發明的效果] 根據本發明’通過包含魏化學氣相沉積法在光透明基 底上層壓包含可調節折射率和厚度的兩層結構的層壓體的工序, 達到如下狀夠提供構賴紅狀崎 能夠提供可見光透射率高、透射菩w、p 魏 透射者色夕、在尚溫和高濕度環境中 义面電阻文化率小、具有高馳耐久性的透明導電層壓薄膜。 另方面纟於在包合可調節折射率和厚度的兩層結構的層 壓體的製造中應用了包含刺用接 1 ㈣翻魏化學氣她積法的工 ,一其他PVD工序(濺射,電子束 夠提高5倍〜7倍以上積#)相比,成膜速度能 造成本的效果。 匕有⑽“大面積生產性和降低製 此外,包含光透射率高、诱身+英A I、 产^着者色少以及在高溫和高濕度環 化狗、的糾料層壓__控螢幕,可在包 電谷式和電阻式的多種方式的觸控營幕令不受限制地進行應 8 201220328 用 【實施方式】 下面’參照附圖列舉和詳細說明本發明的實施方式和實施 例’以便本發明所屬技術領域中具有通常知識者可以容易地實施。 不過’本發明可以用各種不同的方式實施,不限於在此說明 的實施方式和實施例。料,在關中,為了明確說明本發明, 與說明無_部分省略,在整個說明書中,對類似的部分^ 類似的附圖符號。 在整個書中,如科現某-部分“包含,,某—元件,這音 味著除另有相反注财不排除其他元件,可以進—步包含其低 件。 、 “錄個說明書中,如果出現某一層或部件位於其他層或部件 之上,&不健指某—層或部件與其他層或部件接連的情況, 也包含在兩層或兩個部件_另外其他層或科其他料存在的 情況。 在整個說明書中使用的程度用語“基本〔藥〕”、“基本上,,等, 在提及的意思中提村固麵製造和物質公鱗可时該數值或 接近魏值的意思,騎魏解本發明、為防止不法侵權人不正 當地利用提及正麵或絕對的數值的公_容而使㈣。整個說 明Γ使賴語聊或•^是指“祕...的㈣ 的思思。 201220328 本發明的第-方面’提供了—種透明導電層壓薄膜,該透明 導電層壓薄膜包含:錢明基底;彻電漿化學氣相沉積法 (PECVD)層壓在光透明基底上至1〇nm〜3〇〇職的厚度、包含無 機氧化物具有折射率為13〜2.5的第一層墨體;利用電聚化學氣 相沉積法層壓在第—層壓體上至1Qnm〜·nm的厚度、包含與第 -層壓體所含的無機氧化物不同的無機氧化物的第二層壓體;和 層齡第二層壓體上^· IGnm〜lGGnm的厚度的咖導電層。 第一圖疋本發明的一種實施方式中透明導電層壓薄膜1〇〇的 剖視圖。下面,參考第—圖詳細說明本發_—種實施方式。 热機氧化物包含金屬氧化物或兩性金屬氧化物,作為具體的 例子’包含選自由鈦氧化物(titanium 〇xide)、辞氧化物(ζ^ 〇Xlde)、鈽氧化物(cerium oxide)、鋁氧化物(aiuminium oxide)、 钽氧化物(tantalum oxide)、釔氧化物(yttrium〇xide)、鏡氧化物 (ytterbium oxide)以及錯氧化物(zirc〇nium 〇xide)、矽氧化物 (silicon oxide),銻錫氧化物(antim〇ny tin 〇xi(Je)和銦錫氧化物 (indium tin oxide)組成的群組中的一種以上,但不限於此。在例 不的實施方式令,無機氧化物包含選自由二氧化鈦、二氧化矽和 氧化錯組成的組中的一種以上,但不限於此。在例示的實施方式 中,為提高透明電極圖案的可見度,無機氧化物包含三氧化鈦或 一氧化碎,但不限於此。 第一層壓體20的折射率為1.3〜2.5,厚度為〜3〇〇nm,但不 限於此。數值範圍是在包含第一層壓體2〇和第二層壓體3〇的層 201220328 壓體中在利用電漿化學氣相沉積法的沉積工序中構成兩層膜的光 的行為和構成多層層壓體的情況下必須考慮的層壓體的物理特 性,在數值範圍内層壓體物質的穩定性大,形成層壓體間的應力 匹配(matching) ’折射率變化小。作為應力匹配的例子,在第一 層壓體20層壓二氧化鈦(Ti〇2 )使其具有約ι.46的折射率,在第 二廣壓體30使用二氧化碎(Si〇2 )調整折射率從而構成兩層膜的 層壓體,在糾外部壓力猶況下含二氧化朗層歷承受拉伸 力(tenSile),含二氧化矽的層壓體承受收縮力(compressive strain),具有能夠保持對光透明基底1〇的力平衡的優勢。 第二層壓體30包含與第一層壓體2〇所含的金屬氧化物和/或 無機氧化物不同的無魏化物,厚度為1Qnm〜·,但不限於 此。在泰的實施方式中,在第—層壓體2G包含二氧化鈦的情況 I ’第二層壓體3G包含除二氧化鈦之外的金屬氧化物或作為無機 氧化物的二氧切H包含各利目_金屬氧化物和/或無機 氧化物的理由如上述職明的是因為可以確保層壓體的穩定性和 光透射率的優秀性等。 在種實施方式中,提供了一種透明導電層壓薄膜動,其 中’在透明導電層4〇的厚度為5()nm以上的情況下,第二層㈣ 30的折射率具有比第一層壓體2〇的折射率大的折射率,但不限於 在透月導電層40的厚度為5〇nm以上的情況下,第二層壓體 3〇的折射率必觀第體%的折神高,制不能具有高的 光透射性的效旲。 201220328 在-種實施方式中,第一物2〇和第二層咖 度是50〜350mn,但不限於此。在例 ^ J貝地方式中,第一辟厭雜 20和第二層壓體30的總厚度是9〇〜ή 9體 1〇nm ’但不限於此。在上述 數值範圍夠確保層壓體的高穩定性和高光透射率的優秀性。 第-驅2G·瓣3Q峽__,通過 電層40的表面電阻’提高了對由於 . rn ,.、 衣兄、特別是濕度和熱或 _ng)之__電狀性。此外,層壓的 2物的高密度和敏密的·構起到防止由透明樹脂薄膜基底產 =分和駒陳_機_相物繼的屏障作 用,提升對彎曲衝擊的緩衝功能。 在一種實施方式中,提供了具有第二層壓體30的色差儀的 L、^、b*值蝴關辑卻<2的透賴層壓薄膜獅。 、a*以及b*是指色差表,L值代表亮度由〇〜⑽表示。還有, a*和b*是像xy坐標_樣的平面坐_,橫滅a*值,縱轴指 =4方表示紅色,妨表示綠色,+b方表示黃色,七方表示 ▲色。在本發_麻的實施方式巾,提供了射色絲的^*、 Γ值中透射色座標值為·5物3的透明導電層㈣膜刚。在數值 =圍内,可以實現透明導電賴_⑽的完全的透射率和色座 標值’在具有各不相同的折射率的二層層_表面的局部最低反 射率波長⑽在35〇〜郷⑽伽时最健,在罐體的厚 度和折射率、卿魏化學氣她積法使其沉綱情況下,在色 差儀的透射色座魏的數字範咖,㈣減少紫色光或藍色光的 201220328 反射,也能夠減少透射光的著色。 在一種實施方式中,透明導電層4〇包含氧化銦錫(ΠΌ)、氧 化錫銻(ΑΤΟ)和氧化銦鋅(ΙΖ〇)中的一種以上,但不限於此。 透明導電層40包含金屬或金屬氧化物,但不限於此。在例示的實 施方式中,包含選自由氧化銦錫(ΙΤ〇)、氧化錫銻(ΑΤ〇)和氧 化銦鋅(ΙΖΟ)、金、銀、銅、鉑和鎳組成的組中的一種以上,但 不限於此。 在一種實施方式中,光透明基底1〇包含塑膠薄膜,光透明基 底的厚度為25〜350um,但不限於此。因此,光透明基底的厚度數 值範圍是從透明導電層壓薄膜1〇〇的透明度和生產性的觀點出發 所需。光透明基底10如果是能夠確保該基底的厚度和透明度的光 學透明物質’就可以包含技術人員根據需要適當選擇的基底。在 例示的實施方式中’光透明基底10例如包含選自由玻璃或聚對苯 二甲酸乙二醇酯(polyethyleneterephthalate,PET)、聚對苯二甲酸 丁一醇醋(polybutylene terephthalate)、聚碳酸酯(polycarbonate)、 聚曱基丙稀酸甲自旨共聚物(poly(methyl methacrylate)copolymer)、 三乙醯纖維素(triacetyl cellulose)、聚烯烴(polyolefin)、聚醯胺 (polyamide )、聚氯乙烯(Polyvinyl chloride )和非晶聚烯烴 (amorphouspolyolefin)組成的群組中的一種以上的基底,但不限 於此。光透明基底10的形態是片材、板或薄膜,但不限於此。· 在一種實施方式中,光透明基底10在其至少一側以上包含透 明的硬塗膜,但不限於此。為提高光透明基底的表面硬度和彎曲 201220328 度(bending) ’透明硬塗膜的厚度為2〜15um,但不限於此。在例 不的實k方式巾’是3〜15um ’但不限於此。硬塗膜是包含選自密 胺類樹脂、?《氨賴_旨、齡及賴樹 脂組成的組中的一種以上的固化型樹脂,但不限於此。 本發明的第二個方面,提供了一種透明導電層壓薄膜励的 製k方法’ 5錄造方法包含:湘電漿化學氣相沉積法在光透明 基底10上層壓包含無機氧化物、折射率為1.3〜2.$的第一層壓體 20至l〇nm〜300mn的厚度;利用電漿化學氣相沉積法在第一層壓 肢20上層壓包含與第一層壓體2〇所含的無機氧化物不同的無機 氧化物的第二層壓體30至l〇nm〜300!^的厚度;和在第二層壓體 30上層壓透明導電層40至10〜i〇〇nm的厚度。 在一種實施方式中,電漿化學氣相沉積法包含捲對捲方式的 電聚化學氣相沉積法’但不限於此。㈣化學氣相沉積法能夠將 具有高的密度和純度的層壓體形成緻密且均勻的薄膜。另一方 面’在沉積率(deposition rate)調整容易且是在低溫下沉積在光 學基底薄膜上的情況下,進行價格低廉的生產是可能的。電漿化 學氣相沉積法為獲得最佳的均勻,能夠根據溫度分佈和反 應器位置對反應氣體流動等流體力學參數和傳熱參數進行優化。 在例示的實施方式中,可以在低壓下對氣體供應高電能,通過產 生電桌體的電漿離子源(plasma i〇n s〇urce)啟動反應前體 (precursor),將被啟動的反應氣體移動至反應器中,在光透明基底 10上誘發相變,在低溫下形成所要的薄膜。在例示的實施方式中, 201220328 此時使用的前體在形成含二氧化鈦的層壓體的情況下,在使用鈦 酸乙酉旨(Utaniumethoxide)或四氣化鈦形 成含二氧化矽的層壓體時’將TMDS〇 (tetramethyldisil_e) +〇 2或SiH4+〇2用作反應前體’但不限於此。另一方面,電漿化學氣 相沉積法包含鋪捲方式,但不限於此。通過電漿化學氣相沉積 法的第-層壓體20和第二層壓體3〇的層壓細賴短並能夠確 保成膜後的層壓體的無機氧化物的緻密性和均勻分佈性,如此再 加上包含捲對捲方式,就能按順序的進行透明導電層壓薄膜卿 的連續生產。 在-種實施方式中,於層壓透明導電層4〇之步驟中,包含利 用選自由氣相沉積法、離子_法、靖法、化學氣相沉積法和 姓刻法組成的群組中的-種以上的方法和捲賴工序連續形成透 明導電層,但不限於此。 在-種實施方式中,更包含在層屢透明導電層4〇之步驟後, 在靴〜赋下進行财理,使透明導電層4()結晶的透明導電 層壓薄膜100的製造方法,但不限於此。在例示的實施方式中, 熱處理還包含在丨贼〜丨机下熱處理㈣分鐘,但不限於此。 *本發明的第三方面,提供了包含透明導電層輯膜⑽的觸 控螢幕’但祕於此。觸控螢幕是電容式_控螢幕,但不限於 此,電阻式的觸控螢幕也能翻。在例示的實施方式巾,透· 電層壓薄膜觸作絲板,在作為另一面板的玻璃板上形 銦錫(ITO) _後,_透料電玻璃來通過間隔對向配置該兩 15 201220328 個面板使氧化銦錫薄膜彼此相對,製诰你去 ^ 乂作為開關結構的觸控螢 幕,但不限於此。 下面’ _實施例進-步具體說明本發明,但本發明不限於 此。 [實施例1] 第一層壓艚20的辦诰 在由厚度為U5Um的PET膜構成的透明樹脂薄膜基底的一面 使用⑽公司PECVD調製器作為適用大面積四㈣線性源的電 漿化學氣相沉積設備。 向PECVD t注入PET,用40kHz的交流發電機向真空度維 持在1〜2〇mtorr的室的電漿離子源供電,作為反應前體(precus〇r) θ PECVD反應器/主入四虱化鈦(Tkanium Tetrachloride),在基板 上誘發相變,形成具有折射率為2.32的34nm厚的Τί02膜。 蓋一層Μ體30 Μ _ ψ 作為第一層壓體20的生產方法,作為反應前體(Precus〇r) 向PECVD反應器注入tmds〇和氣氛〇2,在第一層壓體2〇上形 成具有折射率為1.45的61nm厚的Si02膜的第二層壓體30。201220328 VI. Description of the Invention: [Technical Field] The film is particularly transparent to a laminate comprising a conductive laminate film, a method for producing the same, and a refractive index of the present invention relating to a transparent conductive thin film. Its use. [Prior Art] The touch screen is mounted on the surface of the transposition, and converts the physical contact of the user's finger, stylus, etc. into an electronic signal, and is turned off by the liquid crystal display device (i_dCrystaldiSplay). Panel (pla disdisqingqing EL and EL (electro_iuminescence 'electric field illuminating) components, etc.. Such a special input device of the touch screen 简 简 简 , , , , , 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊 特殊Infrared and surface acoustic waves, etc. Recently, small and measurable devices such as mobile devices and navigation devices with expanded usage and application range, resistive and digital capacitive inspection screens have been widely used, especially resistive. The operation is easy to implement, the manufacturing cost is low, and it is widely applied to general touch screen mobile phones and navigation devices. Recently, however, it has been separated from the existing touch screen touch method which can only perform tab (Tab) and drag (Drag) simple operation. Will be easy to implement multi-touch multi-touch capacitive touch screen installed in the display of smart phones and high-end mobile devices The capacitive touch screen includes a touch pattern layer, and the touch pattern layer has an electrical signal corresponding to external physical contact, but is used in a capacitive touch screen. The visibility of the transparent electrode pattern generated after the transmission of the light-transparent _, the transmission coloration is low, and after the penetration-electrode pattern characterization process is good. In particular, the conductive conductivity for the capacitive touch-back is _ The hue of the performance is not good, the transmission coloring must be low, and the visible __ visibility must be good after the electrode pattern _4 on the structure of the touch screen product. In order to achieve low transmission colorability and high _ visibility, it is necessary. To minimize the visibility of the naked eye, it is necessary to reduce the amount of reflected light to reduce the amount of force increase and force-cutting structure. However, in the difficult screen of the financial resources, the material is transparent. God. In the case of the film that overcomes this multi-layer structure, 'even in improving the transmittance and ensuring the durability and resistance stability against high temperature and high humidity (10), humidity, 90%) and thermal shock. Under conditions, there results ^ laminated multilayer film production time increases the manufacturing cost is increased.吼 In order to solve the above problem, directly, a refractive index having a refractive index larger than that of the transparent substrate is formed, which is smaller than the refractive index of the transparent dielectric layer, and the b* value of the transmission handle color difference meter is lowered to thereby obtain the color yellow and the color of the color. _ 剌 solved, but can not make a conductive laminate film in the capacitive   In addition, the prior art for making a high-ride rate electrical laminated thinner has been proposed to make a red-turn in the middle of the oxidation of the y__ laminated film of the shaft with low folding and correction rate. The method of sputtering (single (four)) film formation in physical vapor deposition (PVD, physical vapordep〇siti〇n) improves the freshness and durability. Fine, the formation of two layers of metal and inorganic oxides with high refractive index and low refractive index by _ method requires a long time to form _ # », 5 201220328 volume (10) a tree continued production - need to touch [invention] [invention The problem to be solved] The U-lead (the light transmissivity of the south and the low-transmission coloring of the conductive laminated film, eight even at high temperatures and high _ wei Weicai surface her rate of change is small and durable == τ electrode _ visibility At the same time, the transparent conductive laminated film capable of reducing the manufacturing cost and the like can be used. The method of the present invention is to provide a conductive laminated film 4, which is solved by the present invention. Other problems can be clearly understood by those skilled in the art from the following. [Method for Solving the Problem] In order to solve the above problems, the first aspect of the present invention provides a transparent conductive film. The transparent conductive laminate film comprises: a light transparent substrate; is laminated on the light transparent substrate by electropolymerization: a phase-by-layer method (PECVD) to a thickness of 1 〇 nm to 3 〇〇 nm, including a thermal oxide, having a first laminate having a refractive index of 13 to 2 5; Electrolytic chemical gas is laminated on the ruthenium-laminate body. The thickness of the iQnm~applicator comprises a first laminate of inorganic oxide different from the inorganic oxide contained in the first laminate; and a layer a transparent conductive layer pressed to a thickness of m·1 () () nm on the second laminate. 6 201220328 In one embodiment, in the case where the thickness of the transparent conductive layer is 5 〇 nm or more, the second The refractive index of the layer_ is larger than the refractive index of the first laminate, but is not limited thereto. In the manner of the invention, the total thickness of the first laminate and the second laminate is 50 to 350 nm, but is not limited thereto. In the embodiment, the L, a*, and b* values of the color difference meter of the second laminate have a transmission color coordinate value of -7 < b* < 2, but are not limited thereto. In one embodiment, the transparent conductive layer comprises one or more of indium tin oxide (ITO), tin oxide (yttrium oxide) and oxidized steel zinc (lanthanum), but is not limited thereto. In a known manner, the optically transparent substrate comprises The thickness of the plastic film and the transparent substrate is 25um~350um, but it is not limited thereto. In the embodiment, the towel is transparent and hard, and is transparent. One side or both sides of the substrate, but is not limited thereto. The second aspect of the present invention provides a transparent conductive laminated film, and the manufacturing method comprises: using plasma chemical vapor deposition (pECVD) Laminating a first laminate having an inorganic oxide having a refractive index of 13 to 25 to a thickness of from 10 nm to 30 nm on the light-transparent substrate; laminating on the first laminate by plasma chemical vapor deposition a second laminate comprising an inorganic oxide different from the inorganic oxide contained in the first layer to a thickness of from 1 nm to 30 nm; and a transparent conductive layer laminated on the second laminate to 10 to 1 〇〇 The thickness of nm. In one embodiment, the plasma chemical vapor deposition method includes a plasma-vapor chemical vapor deposition method in a roll-to-roll manner, but is not limited thereto. In one embodiment, the step of laminating the transparent conductive layer comprises using the selected 201220328 free vapor deposition method, the ion (10) method, the _ method, the chemical vapor deposition method, and the chain singulation method. The method and the roll-to-roll method are connected to the transparent conductive layer, but are not limited thereto. In the embodiment, the method for producing a transparent conductive laminate film further comprises: after the step of laminating the transparent guide surface, performing heat under the thief-boots = crystallizing the transparent conductive layer 'but is not limited thereto. In a third aspect of the invention, a touch screen comprising a transparent conductive laminate film is provided, but is not limited thereto. [Effects of the Invention] According to the present invention, a process of laminating a laminate comprising a two-layer structure having an adjustable refractive index and a thickness on a light-transparent substrate by containing a Wei chemical vapor deposition method is sufficient to provide a reddish shape as follows Saki can provide a transparent conductive laminate film with high visible light transmittance, transmission transparency, and high-humidity environment. On the other hand, in the manufacture of a laminate comprising a two-layer structure with adjustable refractive index and thickness, a work including a puncture method is used, and another PVD process (sputtering, The electron beam can be increased by 5 times to 7 times or more. #) The film formation speed can cause the present effect.匕(10) "Large-area productivity and reduction system In addition, including high light transmittance, enticing + British AI, less color, and entanglement in high temperature and high humidity circling dogs, __ control screen It is possible to perform unrestricted operation in various modes of the electric grid type and the resistive type. 8 201220328 [Embodiment] Hereinafter, embodiments and examples of the present invention will be enumerated and described in detail with reference to the accompanying drawings. It can be easily implemented by those skilled in the art to which the present invention pertains. However, the present invention may be embodied in various different forms, and is not limited to the embodiments and examples described herein. With the explanation no _ part omitted, throughout the specification, similar parts ^ similar reference symbols. Throughout the book, such as the section of the section - part "including, some - component, this sound is different On the contrary, the money does not exclude other components, and can be included in the lower part. "In the specification, if a layer or component is located on another layer or component, & does not refer to a layer or component connected to other layers or components, it is also included in two or two parts _ In addition, other layers or other materials exist. The degree of use in the entire specification is "basic [medicine]", "basically,", etc., in the meaning of the mention, it is possible to make the solid surface of the village and the material scale. This value or the value of the Wei value is used to prevent the unscrupulous infringer from improperly using the public or negative value of the reference to the positive or absolute value (4). The entire description makes Lai chat or ^^ refers to the "Similar (4) thinking. 201220328 The first aspect of the present invention provides a transparent conductive laminate film comprising: money a base layer; a plasma-based chemical vapor deposition (PECVD) laminated on a light-transparent substrate to a thickness of 1 〇 nm to 3 Å, comprising a first layer of ink having an inorganic oxide having a refractive index of 13 to 2.5 a second laminate comprising an inorganic oxide different from the inorganic oxide contained in the first laminate by lamination on the first laminate by electropolymerization chemical vapor deposition to a thickness of 1 Q nm to · nm And a coffee conductive layer having a thickness of IGnm 〜1GGnm on the second layer of the layer. First, a cross-sectional view of the transparent conductive laminate film 1 一种 in one embodiment of the present invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The heat engine oxide comprises a metal oxide or an amphoteric metal oxide, and as a specific example 'comprising selected from titanium oxide (titanium 〇xide), ox oxide (ζ^ 〇Xlde) , cerium oxide, aluminum oxide (aiuminium ox Ide), tantalum oxide, yttrium〇xide, ytterbium oxide, and zirc〇nium 〇xide, silicon oxide, antimony tin oxide One or more of the group consisting of antim〇ny tin 〇xi (Je) and indium tin oxide, but is not limited thereto. In an embodiment, the inorganic oxide is selected from the group consisting of titanium dioxide. One or more of the group consisting of cerium oxide and oxidizing errone, but is not limited thereto. In the illustrated embodiment, in order to improve the visibility of the transparent electrode pattern, the inorganic oxide contains titanium oxide or oxidized slag, but is not limited thereto. The first laminate 20 has a refractive index of 1.3 to 2.5 and a thickness of 〜3 〇〇 nm, but is not limited thereto. The numerical range is in the first laminate 2 〇 and the second laminate 3 包含Layer 201220328 The behavior of the light constituting the two-layer film in the deposition process by the plasma chemical vapor deposition method in the compact and the physical properties of the laminate which must be considered in the case of constituting the multilayer laminate, laminated in a numerical range Large body stability Forming a stress matching between the laminates 'The refractive index change is small. As an example of stress matching, titanium oxide (Ti〇2) is laminated on the first laminate 20 to have a refractive index of about ι.46, The second wide-bore body 30 uses a oxidized granule (Si〇2) to adjust the refractive index to form a laminate of two layers of film, and the tensile stress (tenSile) is contained in the oxidized layer under the condition of correcting external pressure. The laminate of cerium oxide is subjected to a compressive strain and has an advantage of being able to maintain a force balance with respect to the light-transparent substrate. The second laminate 30 contains a different derivative than the metal oxide and/or inorganic oxide contained in the first laminate 2, and has a thickness of 1 Q nm to, but is not limited thereto. In the embodiment of the present invention, in the case where the first laminate 2G contains titanium oxide, the second laminate 3G contains a metal oxide other than titanium oxide or a dioxygen H as an inorganic oxide. The reason for the metal oxide and/or the inorganic oxide is as described above because the stability of the laminate and the excellent light transmittance can be ensured. In an embodiment, a transparent conductive laminate film is provided, wherein 'in the case where the transparent conductive layer 4 has a thickness of 5 () nm or more, the second layer (four) 30 has a refractive index greater than that of the first laminate The refractive index of the body 2〇 having a large refractive index is not limited to the case where the thickness of the vapor-permeable layer 40 is 5 〇 nm or more, and the refractive index of the second laminate 3 必 is necessarily high. The system cannot have the effect of high light transmittance. 201220328 In the embodiment, the first object 2 and the second layer are 50 to 350 mn, but are not limited thereto. In the example, the total thickness of the first anodic 20 and the second laminate 30 is 9 〇 ή 9 〇 1 〇 nm ′ but is not limited thereto. The above numerical range is sufficient to ensure the high stability and high light transmittance of the laminate. The first-drive 2G·valve 3Q gorge __, through the surface resistance of the electric layer 40, improves the electrical properties of the rn, . , the brother, especially the humidity and heat or _ng. In addition, the high density and compactness of the laminated material prevents the barrier function from the transparent resin film substrate and the buffering function of the bending shock. In one embodiment, a L, ^, b* value of a color difference meter having a second laminate 30 is provided. , a* and b* refer to the color difference table, and the L value represents the brightness represented by 〇~(10). Also, a* and b* are plane sitting _ like xy coordinates _, traversing a* value, vertical axis means =4 squares indicate red, may indicate green, +b side indicates yellow, and seven squares indicate ▲ color. In the embodiment of the present invention, a transparent conductive layer (four) film of the coloring yarn is provided. In the value = square, the complete transmittance and color coordinate value of the transparent conductive Å (10) can be realized. The local minimum reflectance wavelength (10) of the two-layer _ surface having different refractive indices is 35 〇 郷 郷 (10) The gamma is the most robust, in the thickness and refractive index of the tank, the Qing Wei chemical gas her method to make it sink, the digital color coffee in the transmission color seat of the color difference meter, (four) reduce the purple light or blue light 201220328 Reflection can also reduce the color of transmitted light. In one embodiment, the transparent conductive layer 4A includes one or more of indium tin oxide (yttrium), tin oxide (yttrium), and indium zinc oxide (yttrium), but is not limited thereto. The transparent conductive layer 40 contains a metal or a metal oxide, but is not limited thereto. In the illustrated embodiment, one or more selected from the group consisting of indium tin oxide (yttrium), tin oxide (yttrium) and indium zinc oxide (yttrium), gold, silver, copper, platinum, and nickel are included. But it is not limited to this. In one embodiment, the light-transparent substrate 1 〇 comprises a plastic film, and the thickness of the light-transparent substrate is 25 to 350 um, but is not limited thereto. Therefore, the thickness range of the light-transparent substrate is required from the viewpoint of transparency and productivity of the transparent conductive laminate film. The optically transparent substrate 10, if it is an optically transparent substance capable of ensuring the thickness and transparency of the substrate, may comprise a substrate which is appropriately selected by a skilled person as needed. In the illustrated embodiment, the optically transparent substrate 10 comprises, for example, selected from the group consisting of glass or polyethylene terephthalate (PET), polybutylene terephthalate, polycarbonate ( Polycarbonate), poly(methyl methacrylate) copolymer, triacetyl cellulose, polyolefin, polyamide, polyvinyl chloride (polyvinyl chloride) One or more substrates in the group consisting of Polyvinyl chloride and amorphous polyolefin, but are not limited thereto. The form of the light transparent substrate 10 is a sheet, a plate or a film, but is not limited thereto. In one embodiment, the optically transparent substrate 10 comprises a transparent hard coat film on at least one side thereof, but is not limited thereto. In order to improve the surface hardness and bending of the light transparent substrate, the thickness of the 201220328 (bending) 'transparent hard coat film is 2 to 15 μm, but is not limited thereto. In the case of the actual k-type towel ', it is 3 to 15 um' but is not limited thereto. The hard coat film contains a resin selected from the group consisting of melamine resins. One or more types of curable resins in the group consisting of ammonia, age, and lysine are not limited thereto. According to a second aspect of the present invention, there is provided a method for producing a transparent conductive laminated film. The recording method comprises: a chemical vapor deposition method comprising: an inorganic oxide, a refractive index laminated on the optically transparent substrate 10. a thickness of the first laminate 20 to 1 〇 nm to 300 mn of 1.3 to 2. $; lamination on the first laminate limb 20 by plasma chemical vapor deposition and inclusion of the first laminate 2 a thickness of the second laminate of the inorganic oxide different inorganic oxides of 30 to 100 nm; and a thickness of the transparent conductive layer 40 to 10 Å to 〇〇 nm laminated on the second laminate 30 . In one embodiment, the plasma chemical vapor deposition method comprises, but is not limited to, a coil-to-roll type electropolymerization chemical vapor deposition method. (4) The chemical vapor deposition method is capable of forming a dense and uniform film of a laminate having high density and purity. On the other hand, in the case where the deposition rate is easily adjusted and deposited on the optical base film at a low temperature, it is possible to carry out inexpensive production. The plasma chemical vapor deposition method optimizes the hydrodynamic parameters and heat transfer parameters such as the reaction gas flow according to the temperature distribution and the position of the reactor. In the illustrated embodiment, the gas can be supplied with high electrical energy at a low pressure, and the reaction precursor is activated by a plasma ion source (plasma i〇ns〇urce) that generates an electric table body to move the activated reaction gas. In the reactor, a phase change is induced on the light-transparent substrate 10, and a desired film is formed at a low temperature. In the illustrated embodiment, 201220328 the precursor used at this time, in the case of forming a titania-containing laminate, when forming a cerium oxide-containing laminate using Utaniumethoxide or titanium tetrachloride 'Use TMDS〇(tetramethyldisil_e) +〇2 or SiH4+〇2 as the reaction precursor' but is not limited thereto. On the other hand, the plasma chemical vapor deposition method includes a winding method, but is not limited thereto. The lamination of the first laminate 20 and the second laminate 3 by the plasma chemical vapor deposition method is short and can ensure the compactness and uniform distribution of the inorganic oxide of the laminate after film formation. Thus, in addition to the roll-to-roll method, the continuous production of the transparent conductive laminate film can be carried out in sequence. In an embodiment, the step of laminating the transparent conductive layer 4 包含 comprises using a group selected from the group consisting of a vapor deposition method, an ion method, a method, a chemical vapor deposition method, and a surname method. - The above method and the winding process continuously form the transparent conductive layer, but are not limited thereto. In the embodiment, the method of manufacturing the transparent conductive laminate film 100 in which the transparent conductive layer 4 () is crystallized after the step of repeating the transparent conductive layer 4 , is performed, but the transparent conductive layer 4 is crystallized. Not limited to this. In the illustrated embodiment, the heat treatment further includes heat treatment (four) minutes under the squid-smashing machine, but is not limited thereto. * In a third aspect of the invention, a touch screen comprising a transparent conductive layer film (10) is provided, but this is the secret. The touch screen is a capacitive _ control screen, but it is not limited to this, and the resistive touch screen can also be turned over. In the illustrated embodiment, the transparent/electric laminate film is touched as a wire plate, and after indium tin (ITO) _ is formed on the glass plate as the other panel, the permeable glass is disposed to face the two by spacing 201220328 panels make the indium tin oxide films facing each other, so you can go to the touch screen as a switch structure, but not limited to this. The present invention will be specifically described below in the following, but the present invention is not limited thereto. [Example 1] The first laminate 20 was used on one side of a transparent resin film substrate composed of a PET film having a thickness of U5 Um (10) company PECVD modulator as a plasma chemical gas phase suitable for a large-area four (four) linear source. Deposition equipment. PET was injected into PECVD t, and a plasma ion source of a chamber maintained at a vacuum of 1 to 2 〇mtorr was supplied with a 40 kHz alternator as a reaction precursor (precus〇r) θ PECVD reactor/main enthalpy Titanium (Tkanium Tetrachloride) induced a phase transition on the substrate to form a 34 nm thick Τί02 film having a refractive index of 2.32. Covering a layer of the body 30 Μ _ ψ As a production method of the first laminate 20, as a reaction precursor (Precus〇r), a tmds crucible and an atmosphere 〇2 are injected into the PECVD reactor to form on the first laminate 2 A second laminate 30 having a 61 nm thick SiO 2 film having a refractive index of 1.45.

向濺射室注入第二層壓體3〇成膜的薄膜,以射頻磁控濺射法 形成的。目標是使用含5 (重量)%一氧化錫、95 (重量)%氧化 銦的燒結體轉室的初始真空度在5.GxlG.5torr,以氬氣啊和氧 201220328 氣2〇%分壓狀,在4.〇xurVi·的氣氛巾層壓作為財折射率為 2.〇5的25nm厚的透明導電層的IT〇薄膜,製造透明導電層㈣ 膜100。 曰/ <比較例1> 使透明導電層的厚度固定在25啦,為調查由於中間層结構導 致的透射率和透射著色值、對高溫和高濕度的可靠性,除了沒有 形成第-層壓體20的Ti〇2外,以與實施例i _的方式二二 折射率為I.45和厚度為似職的_薄膜的透明導電層壓薄膜 100。 Θ 、 <比較例2> 為研究透卿電層的厚度和電晴化、由於折射率的差別導 致的透射率和透射著色值_彳,通過真放積(細· b_ Evaporation )工序形成第一層壓體2〇和第二層壓體邓。 向沉積室注入厚度為125μπι的pET薄膜 注入第-㈣體2川叫和第二層壓體3G⑽别 維持初始真空為6.Gxl(rVr,邊照射電子束邊注入氧氣,提高無 械氧化物的反應性。在無機氧化物的光學薄膜的最佳氧分壓壓力 即5.〇xl〇-5t〇rr下進行操作。 製造具有2.16的折射率的厚度為66nm的Ti〇2膜和具有143 的折射率的厚度為43nm的Si〇2膜.的厚度和形成方法是以 與實施例1相同的方法製作透明導電層壓薄膜1〇〇。 201220328 測定根據本發明的一個實施例的實施例〗製造的透明導電層 麼薄臈_的透射率、色座標值、表面電阻及可雜等,將其與 比較例1和比較例2的結果一起表示在下面的表丨中。A film formed by injecting a second laminate 3 into the sputtering chamber was formed by radio frequency magnetron sputtering. The objective is to use a sintered body of 5 wt% tin oxide and 95 wt% indium oxide with an initial vacuum of 5. Gxl G.5 torr, with argon gas and oxygen 201220328 gas 2% by weight. A transparent conductive layer (IV) film 100 was produced by laminating an IT 〇 film of a 25 nm thick transparent conductive layer having a refractive index of 2.〇5 in an atmosphere of 4.〇xurVi.曰 / <Comparative Example 1> The thickness of the transparent conductive layer was fixed at 25, in order to investigate the transmittance and transmission coloring value due to the intermediate layer structure, reliability against high temperature and high humidity, except that the first laminate was not formed. In addition to Ti〇2 of the body 20, a transparent conductive laminate film 100 having a birefringence of 1.45 and a thickness of a film as in the case of Example i_ was used. 、 , <Comparative Example 2> In order to study the thickness and the electro-transparence of the transparent layer, the transmittance and the transmission coloring value _彳 due to the difference in refractive index, the first step is formed by the true accumulation (b_evaporation) process. A laminate 2 〇 and a second laminate Deng. Injecting a pET film having a thickness of 125 μm into the deposition chamber, injecting the -(4) body 2 and the second laminate 3G (10), maintaining the initial vacuum at 6. Gxl (rVr, injecting oxygen while irradiating the electron beam, and improving the mechanical oxide-free Reactivity: operation at an optimum oxygen partial pressure of an inorganic oxide optical film, ie, 〇xl〇-5t〇rr. A Ti〇2 film having a thickness of 2.16 and a thickness of 66. Thickness and formation method of Si〇2 film having a refractive index of 43 nm. A transparent conductive laminate film 1 was produced in the same manner as in Example 1. 201220328 Determination of an embodiment according to an embodiment of the present invention The transmittance of the transparent conductive layer, the color coordinate value, the surface resistance, and the miscibility were shown together with the results of Comparative Example 1 and Comparative Example 2 in the following table.

5壬均透射率色座標俏的消丨吾太法 > 與比較例—起測定根據本發明的-個實酬的透明導電層壓 薄膜100的透射率,透射率是使用日立公司分光光度計 (spectrophotometer)測定,使用αΕ色座標測定法和D75源分別 測定的。 5表面電阻杜避定和電阻轡化率的測宗古、土、 利用四端子法測定,在測定在室訂放置的咖導電層壓薄 膜1〇〇的ιτο面的表面電阻Ro (ohnW)後,放入加熱室,在 贼、95%濕度的氣氛中放f 小時後,測定ιτ〇表面電阻r, 計算表面電_變化率(R/Rg),評估高溫和高濕度的可靠性。 <屋膜的折射率和厚度的測定方法> 在各層上形成的Ti〇2、泌2和IT0膜的折射率與膜厚度的測 201220328 疋使用相位調製方式的分光橢圓儀(phase 丨站edThe transmittance of the transparent conductive laminated film 100 according to the present invention was measured by using a Hitachi spectrophotometer. (spectrophotometer) measurements were determined using the alpha color coordinate assay and the D75 source, respectively. 5 Surface resistance Du avoidance and resistance deuteration rate are measured by the four-terminal method. After measuring the surface resistance Ro (ohnW) of the ιττ surface of the chamber-mounted coffee conductive laminate film, After being placed in a heating chamber and placed in a thief, 95% humidity atmosphere for an hour, the surface resistance r of the ιτ〇 was measured, and the surface electric_change rate (R/Rg) was calculated to evaluate the reliability of high temperature and high humidity. <Method for Measuring Refractive Index and Thickness of Roof Film> Measurement of Refractive Index and Film Thickness of Ti〇2, Bi-2 and IT0 Films Formed on Each Layer 201220328 分A Spectroscopic Ellipsometer Using Phase Modulation Method (phase Station) Ed

Ellipsometry )。 由表1可以確3忍作為透明層壓體的的表面電阻對高溫和 问廣度的可罪性(R/Ro) ’在實施例i中由pEVCD形成兩層中間層 (第層壓體和第二層壓體)的情況具有比由pEVCD只形成單層 中間層的味例1和由電子纽積工序形成兩層巾_的比較例 2更優異的雜。對此,如上所述,通過Ti(>2# Sic^對外部的 熱衝擊分_雜伸力和收縮力,可見IT〇膜的表面張力可以穩 定化。 此外,由電子束形成的中間層即第一層壓體2〇和第二層壓體 3〇表現了低密度和鬆散的薄膜結構造成的抗熱和水分衝擊弱的結 果,這一結果可以確認利用作為本發明一個實施例的實施例i的 PECVD工序形成的高密度和緻密膜結構的第一層壓體2〇和第二 層壓體30對熱和水分等外部衝擊的可靠性特性非常優異。 第2A圖是測定根據本發明的實施例1的透明導電層壓薄膜 100的反射率的圖,第2B圖是測定根據比較例i的透明導電層壓 薄膜100的反射率的圖。 由表1、第2A圖和第2B圖可見,在比較例1中,與根據本 發明的一個實施例的實施例1相比,透射著色的數值有細微的差 別,但可以確定的是表示低可見光透射率值,在要求高的透射率 值的電容式的觸控螢幕中使用是不合適的。 在比較例2中’與根據本發明的一個實施例的實施例1相比, 19 201220328 透射率值是同一程度的值,但可見表示透射著色(黃色)的b*值 相對較高。 此外,比較第2A圖和第2B圖可以確認,根據本發明的一個 實施例的實施例1的情況與比較例3相比,在可見光範圍内的反 射率低,特別是在550mn波長範圍内非常低,通過這一點可以確 認,本發明的光透射性高。 [實施例2] 為研究透明導電層的厚度和電晴化、由於折射率的差別導 致的透射率和透射色值的差別,除了層壓取朗厚度為 和Si02膜的厚度為25nm、透明導電層4〇的厚度為4〇nm外,與 實施例1同樣層壓製造透明導電層壓薄膜丨〇〇。 <比幸交例3> 如實施例2那樣固定透料電層4〇的厚度,為研究由於中間 層結構導致的透射率和透射著色的變化,除了將第二層壓體如即Ellipsometry ). From Table 1, it can be confirmed that the surface resistance of the transparent laminate as a suspicion of high temperature and breadth (R/Ro) 'in the example i, two intermediate layers are formed by pEVCD (the first laminate and the first In the case of the two-layer laminate, it was more excellent than the first example in which the single layer of the intermediate layer was formed of pEVCD and the second example in which the two layers of the sheet were formed by the electron-integration step. In this regard, as described above, the surface tension of the IT tantalum film can be stabilized by the thermal impact of the Ti(>2# Sic^ external external force and the contraction force. Further, the intermediate layer formed by the electron beam That is, the first laminate 2〇 and the second laminate 3〇 exhibit a result of weak heat resistance and moisture shock caused by a low density and a loose film structure, and this result can be confirmed to be utilized as an embodiment of the present invention. The first laminate 2A and the second laminate 30 of the high-density and dense film structure formed in the PECVD process of Example i are excellent in reliability characteristics against external impact such as heat and moisture. FIG. 2A is a measurement according to the present invention. FIG. 2B is a view for measuring the reflectance of the transparent conductive laminate film 100 according to Comparative Example i. Table 1, FIG. 2A and FIG. 2B are diagrams showing the reflectance of the transparent conductive laminate film 100 of Example 1. It can be seen that in Comparative Example 1, the numerical value of the transmission coloring has a slight difference as compared with Embodiment 1 according to an embodiment of the present invention, but it can be confirmed that the low visible light transmittance value is required, and the high transmittance is required. Value of capacitive touch screen The use is not suitable. In Comparative Example 2 'Compared with Example 1 according to an embodiment of the present invention, 19 201220328 transmittance values are values of the same degree, but b* values indicating transmission coloring (yellow) are visible. Further, comparing FIGS. 2A and 2B, it can be confirmed that the case of Embodiment 1 according to an embodiment of the present invention is lower in reflectance in the visible light range than in Comparative Example 3, particularly at 550 nm. It is confirmed that the light transmittance of the present invention is high in the wavelength range. [Embodiment 2] In order to investigate the thickness and the electro-transparence of the transparent conductive layer, the transmittance and the transmission color value due to the difference in refractive index The difference was that a transparent conductive laminated film was laminated in the same manner as in Example 1 except that the thickness of the laminate was 25 nm and the thickness of the transparent conductive layer 4 was 4 Å. For example, the thickness of the dielectric layer 4 is fixed as in Example 2, in order to investigate the change in transmittance and transmission coloration due to the structure of the intermediate layer, except that the second laminate is

Si02的厚度改為24mn外,以與比較⑷相同的方法製作透明導電 層壓薄膜100。 &lt;比車交例4&gt; 除了在比較例2中作為第—層壓體2〇的吨層和作為第二層 壓體30 # Si〇2層以及作為透明導電層4〇❸IT〇的厚度分別是 —、25膽和-m外’以與比較例2相同的方法製作二導; 20 201220328 薄膜。 測定根據本發明的一個實施例的實施例2製造的透明導電層 壓/專膜100的透射率和色座標值,將其與比較例3和比較例4的 結果一起表示在下表2中。 [表2] 項目 F ΈΤ TiO, SiO〇 ITO 平均透 射率 折射 率 厚度 折射 率 厚度 (mm) 折射 率 厚度 (mm) 折射 率 厚度 (mm) (b” 實施 例2 U-*7*r 1.54 125μηι 2.32 61 1.45 25 2.05 40 88.67 2.6 仁匕較 例3 - 1.45 24 2.05 40 81.88 Ϊ1 ~~~' 較 例4 2.16 67 1.43 25 2.05 40 89.02 3.5 第3A圖是測定根據本發明的實施例2的透明導電層壓薄膜 100的反射率的圖,第3B圖是測定根據比較例3的透明導電層壓 薄膜100的反射率的圖。 由表2、第3A圖和第3B圖可見,在比較例3中,與根據本 發明的一個貫施例的實施例2相比,透射著色數值有細微的差別, 但可以確定的是表示低可見光透射率值,在要求高的透射率值的 電容式的觸控螢幕中使用是不合適的。 在比較例4中,與根據本發明的一個實施例的實施例丨相比, 透射率值是同一程度的值,但可見表示透射著色(黃色)的b*值 相對較高。 此外’比較第3A圖和第3B圖可以確認,根據本發明的一個 實施例的實施例2的情況與比較例5相比,在可見光範圍内的反 21 201220328 内非常低,通過這一點可以確 射率低,特別是在550nm波長範圍 認,本發明的光透射性高。 [實施例3] 在透明導電層40⑽趣率2G5)的厚度為5_以上的 情況下’作為光學透明樹脂在PET上形成的第一層壓體2〇和第二 層壓體3G的情況要求第二層壓體3Q的折射率比第—層壓體加的 折射率高。 在PET上層壓具有M5的折射率的_層至282腕的厚度 來製作弟-層壓體2〇’在第—層_2G上層壓具有折射率為找 的™2至57腿,將透明導電層40的厚度層壓到70nm,以製造 透明導電層壓薄膜1〇〇。 &lt;比較例5&gt; 與實施例3同樣地固定透明導電層4〇的厚度,為研究由於中 間層結構導致的透射率和透射著色的變化,除了將第二層壓體3〇 即Si〇2的厚度改為55nm外’以與比較例】相同的方法製作透明 導電層壓薄膜100。 &lt;比較例6&gt; 除了在比較例2令作為第—層壓體2〇的si〇2層和作為第二層 壓體30的Ti〇2層以及作為透明導電層的IT〇的厚度分別是 288nm、64nm和70nm外’以與比較例2相同的方法製作透明導 22 201220328 電薄膜。 測定根據本發明的一個實施例的實施例3製造的透明導電層 壓薄膜100的透射率和色座標值,將其與比較例5和比較例6的 結果一起表示在下表3中。 [表3] mWl ΡΙ ΞΤ Ti〇, SiO, ITO 平均透 射率 色座標 値(b* ) 折射 率 厚度 折射 率 厚度 (mm) 折射 率 厚度 (mm) 折射率 厚度 (mm) 實施例 —3 5 比較例 6 1.54 125μην 1.45 282 2.32 57 2.05 70 86.84 3.0 - 2.32 55 2.05 70 87.79 2.8 1.43 288 2.16 64 2.05 70 86.46 4.3 第4A圖是測定根據本發明的實施例2的透明導電層壓薄膜 1〇〇的反射率的圖’第4B圖是測定根據比較例5的透明導電層壓 薄膜100的反射率的圖。 由上表3、第4A圖和第4B圖可見,在比較例5中,與根據 本發明的一個實施例的實施例3相比,透射著色數值有細微的差 別’但可以確定的是表示低可見光透射率值,在要求高的透射率 值的電容式的觸控螢幕中使用是不合適的。 在比較例6中’與根據本發明的一個實施例的實施例1相比, 透射率值是同一程度的值,但可見表示透射著色(黃色)的b*值 相對較高。 此外,比較第4A圖和第4B圖可以確認,根據本發明的一個 實施例的實施例3的情況與比較例5相比,在可見光範圍内的反 射率低,特別是在550nm波長範圍内非常低,通過這一點可以確 23 201220328 認,本發明的光透射性高。 根據本發明的-個實施例的實施例卜實施例3的結果,本發 明在確保高透醉、低透射著色以及對高溫和高濕度的外部環境 的可靠性特性方面是非常好的。 以上列舉實施方式和實施例詳細說明了本發明,但可以理 解,本發明並不限於上述實施方式和實施例,可以有各種各樣的 變形例’本賴的通常知識者可以在本發_技術精㈣進行各 種形式的多種變形。 【圖式簡單說明】 第1圖是本發明的-種實施方式中透明導電層壓薄膜的剖視圖。 第2A圖是測定根據本發明的實施⑷的透明導電層壓薄膜的反射 率的圖。 第2B圖是測定根據比較例i的透明導電層壓薄膜的反射率的圖。 第3A圖是測定根據本發明的實施例2的透明導電層壓薄膜的 率的圖。 第3B圖是測雜據比較例3的透明導電層壓薄膜的反射率的圖 的反射 第4A圖是測定根據本發明的實施例2的透明導電層壓薄膜 率的圖。 、 層壓薄膜的反射率的圖。 第4B圖是測定根據比較例5的透明導電 【主要元件符號說明】 10 :光透明基底 24 201220328 20 :第一層壓體 30 :第二層壓體 40 :透明導電層 100 :透明導電層壓薄膜The transparent conductive laminate film 100 was produced in the same manner as in the comparison (4) except that the thickness of the SiO 2 was changed to 24 nm. &lt;Comparative Example 4&gt; Except for Comparative Example 2, the ton layer as the first laminate 2〇 and the thickness as the second laminate 30 #Si〇2 layer and as the transparent conductive layer 4〇❸IT〇, respectively Yes—, 25 bilis and -m outside' were produced in the same manner as in Comparative Example 2; 20 201220328 film. The transmittance and color coordinate value of the transparent conductive layer/specific film 100 manufactured according to Example 2 of one embodiment of the present invention were measured, which are shown together with the results of Comparative Example 3 and Comparative Example 4 in Table 2 below. [Table 2] Item F ΈΤ TiO, SiO〇ITO Average transmittance Refractive index Thickness Refractive index Thickness (mm) Refractive index thickness (mm) Refractive index thickness (mm) (b) Example 2 U-*7*r 1.54 125μηι 2.32 61 1.45 25 2.05 40 88.67 2.6 匕 匕 Comparative Example 3 - 1.45 24 2.05 40 81.88 Ϊ1 ~~~' Comparative Example 4 2.16 67 1.43 25 2.05 40 89.02 3.5 Figure 3A is a measurement of transparent conduction according to Example 2 of the present invention. Fig. 3B is a graph for measuring the reflectance of the transparent conductive laminate film 100 according to Comparative Example 3. As seen from Table 2, Fig. 3A and Fig. 3B, in Comparative Example 3, There is a slight difference in the transmission coloring value compared to the embodiment 2 according to one embodiment of the present invention, but it can be determined that the low visible light transmittance value is a capacitive touch that requires a high transmittance value. The use in the screen is not suitable. In Comparative Example 4, the transmittance values are values of the same degree as compared with the embodiment according to one embodiment of the present invention, but b* values indicating transmission coloring (yellow) are visible. Relatively high. Also 'Compare 3A and 3 It can be confirmed from the B diagram that the case of the embodiment 2 according to an embodiment of the present invention is very low in the anti-21 201220328 in the visible light range as compared with the comparative example 5, and the reflectance can be low by this point, especially at 550 nm. In the wavelength range, the light transmittance of the present invention is high. [Example 3] In the case where the transparent conductive layer 40 (10) has a thickness of 5 Å or more, the first laminate formed on the PET as an optically transparent resin In the case of 2 〇 and the second laminate 3G, the refractive index of the second laminate 3Q is required to be higher than that of the first laminate. The thickness of the _ layer to the 282 wrist having a refractive index of M5 is laminated on the PET. To make a brother-layer 2', laminate the TM2 to 57 legs having the refractive index found on the first layer_2G, and laminate the thickness of the transparent conductive layer 40 to 70 nm to manufacture the transparent conductive laminate film 1. <Comparative Example 5> The thickness of the transparent conductive layer 4A was fixed in the same manner as in Example 3, in order to investigate the change in transmittance and transmission coloration due to the structure of the intermediate layer, except that the second laminate 3 was The thickness of Si〇2 was changed to 55 nm, which was the same as in the comparative example. A transparent conductive laminate film 100 was produced. <Comparative Example 6> In addition to the comparative example 2, the Si〇2 layer as the first laminate 2 and the Ti〇2 layer as the second laminate 30 were used as the transparent conductive. The thickness of the IT 〇 of the layer was 288 nm, 64 nm, and 70 nm, respectively. A transparent conductive film 22 201220328 was produced in the same manner as in Comparative Example 2. The transmittance and color coordinate value of the transparent conductive laminate film 100 produced in Example 3 according to an embodiment of the present invention were measured, which are shown together with the results of Comparative Example 5 and Comparative Example 6 in Table 3 below. [Table 3] mWl ΡΙ ΞΤ Ti〇, SiO, ITO average transmittance color coordinate 値 (b* ) refractive index thickness refractive index thickness (mm) refractive index thickness (mm) refractive index thickness (mm) Example - 3 5 comparison Example 6 1.54 125μην 1.45 282 2.32 57 2.05 70 86.84 3.0 - 2.32 55 2.05 70 87.79 2.8 1.43 288 2.16 64 2.05 70 86.46 4.3 Fig. 4A is a reflection of the reflection of the transparent conductive laminate film 1 according to Example 2 of the present invention. Fig. 4B is a graph for measuring the reflectance of the transparent conductive laminate film 100 according to Comparative Example 5. As can be seen from the above Table 3, FIG. 4A and FIG. 4B, in Comparative Example 5, the transmission coloring value has a slight difference as compared with Embodiment 3 according to an embodiment of the present invention, but it can be determined that the expression is low. Visible light transmittance values are not suitable for use in capacitive touch screens that require high transmittance values. In Comparative Example 6, the transmittance values are values of the same degree as in Example 1 according to an embodiment of the present invention, but it is seen that the b* value indicating the transmission coloring (yellow) is relatively high. Further, comparing FIGS. 4A and 4B, it can be confirmed that the case of Embodiment 3 according to an embodiment of the present invention is lower in reflectance in the visible light range than in Comparative Example 5, particularly in the wavelength range of 550 nm. It is low, and it is confirmed by this that 23 201220328, the light transmittance of the present invention is high. According to the embodiment of the embodiment of the present invention, the present invention is excellent in ensuring high dripping, low transmission coloring, and reliability characteristics of an external environment of high temperature and high humidity. The present invention has been described in detail above with reference to the embodiments and embodiments, but it is understood that the present invention is not limited to the above-described embodiments and examples, and various modifications may be made. Fine (4) carries out various deformations in various forms. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a transparent conductive laminate film according to an embodiment of the present invention. Fig. 2A is a graph for measuring the reflectance of the transparent conductive laminate film according to the embodiment (4) of the present invention. Fig. 2B is a graph for measuring the reflectance of the transparent conductive laminate film according to Comparative Example i. Fig. 3A is a graph for measuring the rate of the transparent conductive laminate film according to Example 2 of the present invention. Fig. 3B is a view showing the reflection of the reflectance of the transparent conductive laminate film of Comparative Example 3. Fig. 4A is a view for measuring the rate of the transparent conductive laminate film according to Example 2 of the present invention. , a graph of the reflectance of a laminate film. 4B is a measurement of transparent conductive according to Comparative Example 5 [Major component symbol description] 10: Light transparent substrate 24 201220328 20: First laminate 30: Second laminate 40: Transparent conductive layer 100: Transparent conductive laminate film

Claims (1)

201220328 七、申請專利範圍: 1. 一種透明導電層壓薄膜,包含: 一光透明基底; -第-層壓體’利用電贱學氣相沉積法層壓在該光透明基 底上至lOnm〜30〇nm厚度、包含無機氧化物、具有折射率為 1.3〜2.5 ; -第二層壓體,利用電聚化學氣相沉積法層壓在該第一層壓 體上至10nm〜30〇nm厚度、包含與該第一層壓體所含的無機氧化 物不同的無機氧化物;及 -透明導電層’層壓在該第二層壓體上至ω〜刚厚度。 2. 如請求項1所述之透明導電層壓薄膜,其中在該透明導電層的 厚度為50nm α上的情況下,該第二層壓體的折射率比該第一 層壓體的折射率大。 3. 如請求項1所述之透明導電層壓薄膜,其中該第—層壓體和第 一層壓體的總厚度是50~350nm。 4. 如請求項1所述之透明導電層壓薄膜,其中該透明導電層包含 氧化銦錫、氧化錫銻和氧化銦鋅中的一種以上。 5. 如請求項i所述之透明導電層壓薄膜,其中該光透明基底包含 玻璃或塑膠薄膜,該光透明基底的厚度為25um〜35〇um。 6. 如請求項i所述之透明導電層_膜,其中該第二層麗體的色 差儀的L、a*、b*值中透射色座標值為_7如&lt;2。 7. 如請求項1所狀翻導電制_,更包含:—透明硬塗膜, 26 201220328 位於該光透明基底的一側或兩側。 8. —種透明導電層壓薄膜的製造方法,包含: 利用電漿化學氣相沉積法在一光透明基底上層壓包含無機氧 化物折射率為1.3〜2.5的一第一層壓體至i〇nm〜3〇〇nm的厚度; 利用電漿化學氣相沉積法在該第一層壓體上層壓包含與該第 曰堅體所g的热機氣化物不同的無機氧化物的一第二層壓體至 10nm〜300nm的厚度;及 在4第一層壓體上層壓一透明導電層至1〇〜卿咖的厚度。 9.如凊求項8所述之透明導電層壓薄膜的製造方法,其中該電矣 化學氣相沉積法包含捲對捲方式的電聚化學氣相沉積法。 1〇·如請求項8所述之透明導電層壓薄膜的製造方法,其中於㈣ /、月導電層之步驟’包含彻選自由氣相沉積法、離子如 賤射法、轉氣相沉積法和蝴法組成的群組巾的一種A 上的方法和捲對捲工序連續形成該透明導電層。 月求項8所述之透明導電層壓薄膜的製造方法,更包含:方 層壓該透明導電層之牛 # w 層之V驟後,在靴〜赋下進行熱處理 使該透明導電層結晶。 12. 種觸控螢幕’包含如請求項i 導電層壓薄膜。 至凊求項7中任一項之該透明 27201220328 VII. Patent application scope: 1. A transparent conductive laminated film comprising: a light transparent substrate; - a first laminate 'laminated on the light transparent substrate by electrospinning vapor deposition to lOnm~30 〇nm thickness, comprising an inorganic oxide, having a refractive index of 1.3 to 2.5; - a second laminate laminated on the first laminate by electropolymerization chemical vapor deposition to a thickness of 10 nm to 30 〇 nm, An inorganic oxide different from the inorganic oxide contained in the first laminate; and a transparent conductive layer 'laminated on the second laminate to ω to a thickness. 2. The transparent conductive laminate film according to claim 1, wherein, in the case where the thickness of the transparent conductive layer is 50 nm α, the refractive index of the second laminate is higher than the refractive index of the first laminate Big. 3. The transparent conductive laminate film according to claim 1, wherein the total thickness of the first laminate and the first laminate is 50 to 350 nm. 4. The transparent conductive laminate film according to claim 1, wherein the transparent conductive layer contains one or more of indium tin oxide, antimony tin oxide, and indium zinc oxide. 5. The transparent conductive laminate film of claim i, wherein the light transparent substrate comprises a glass or plastic film, the light transparent substrate having a thickness of 25 um to 35 um. 6. The transparent conductive layer_film according to claim i, wherein the L, a*, b* value of the color difference meter of the second layer is a _7 such as &lt;2. 7. In the case of claim 1, the conductive film _, further includes: - a transparent hard coating film, 26 201220328 is located on one or both sides of the light transparent substrate. 8. A method of producing a transparent conductive laminate film comprising: laminating a first laminate comprising an inorganic oxide having a refractive index of 1.3 to 2.5 onto a light transparent substrate by plasma chemical vapor deposition to i〇 a thickness of nm to 3 〇〇 nm; a second layer of inorganic oxide different from the thermal machine gas of the ruthenium body g is laminated on the first laminate by plasma chemical vapor deposition Pressing the body to a thickness of 10 nm to 300 nm; and laminating a transparent conductive layer on the first laminate of 4 to a thickness of 1 Å. 9. The method of producing a transparent conductive laminate film according to Item 8, wherein the electroless chemical vapor deposition method comprises a roll-to-roll type electropolymerization chemical vapor deposition method. The method for producing a transparent conductive laminate film according to claim 8, wherein the step (4) of the (4)/month conductivity layer is selected from the group consisting of vapor deposition, ions such as sputtering, and vapor phase deposition. The method of the A and the roll-to-roll process of the group towel composed of the butterfly method continuously form the transparent conductive layer. The method for producing a transparent conductive laminate film according to Item 8, further comprising: laminating the V layer of the bovine # w layer of the transparent conductive layer, and then heat-treating the shoe to form a transparent conductive layer. 12. A touch screen&apos; includes a conductive laminate film as claimed in item i. To the transparency of any of the items 7
TW100138394A 2010-11-12 2011-10-21 Transparent conductive multilayered film, producing method of the same, and touch panel containing the same TWI486973B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100112932A KR101045026B1 (en) 2010-11-12 2010-11-12 Transparent conductive multilayered film, producing method of the same, and touch panel containing the same

Publications (2)

Publication Number Publication Date
TW201220328A true TW201220328A (en) 2012-05-16
TWI486973B TWI486973B (en) 2015-06-01

Family

ID=44406218

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100138394A TWI486973B (en) 2010-11-12 2011-10-21 Transparent conductive multilayered film, producing method of the same, and touch panel containing the same

Country Status (4)

Country Link
JP (1) JP5692859B2 (en)
KR (1) KR101045026B1 (en)
CN (1) CN102467992B (en)
TW (1) TWI486973B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI476951B (en) * 2012-06-07 2015-03-11 Hon Hai Prec Ind Co Ltd Semiconductor structure

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5190854B2 (en) * 2011-05-10 2013-04-24 株式会社麗光 Transparent conductive film, transparent conductive laminate, and touch panel
JP6304712B2 (en) * 2012-03-22 2018-04-04 リンテック株式会社 Transparent conductive laminate and electronic device or module
CN103713761A (en) * 2012-10-09 2014-04-09 联胜(中国)科技有限公司 Touchpad and touch display device
KR101385951B1 (en) 2013-04-29 2014-04-16 주식회사 옵트론텍 Transparent electrode structure for touch screen using electron beam evaporation and touch screen panel comprising the same
KR101385952B1 (en) 2013-04-29 2014-04-16 주식회사 옵트론텍 Transparent electrode structure for touch screen applying for a vehicle
KR101523747B1 (en) * 2013-06-20 2015-05-28 주식회사 피치 Thin film type hard coating film and method for manufacturing the same
WO2015152481A1 (en) * 2014-04-02 2015-10-08 (주)비엠씨 High-hardness thin film-type transparent sheet glass, manufacturing method therefor, high-hardness thin film-type transparent sheet conductive glass and touch panel including same
KR101644038B1 (en) * 2014-04-28 2016-07-29 주식회사 피치 Transparent conductive film, method for manufacturing the same and touch panel containing the same
KR20160020696A (en) 2014-08-14 2016-02-24 (주) 유니플라텍 Transparent conductive film where multi-layer thin film is coated
CN105677097A (en) * 2016-01-04 2016-06-15 京东方科技集团股份有限公司 Touch screen and manufacturing method thereof
WO2018130289A1 (en) * 2017-01-12 2018-07-19 Applied Materials, Inc. Hardcoat layer system and method for manufacturing a hardcoat layer system in a continuous roll-to-roll process
CN108417313A (en) * 2018-03-14 2018-08-17 中南大学 A kind of flexibility roll-to-roll wet etching of indium tin oxide transparent conducting film and patterned method
US20210403387A1 (en) * 2018-08-20 2021-12-30 Tosoh Corporation Zirconia sintered body and method for producing the same
JP7374589B2 (en) * 2019-02-06 2023-11-07 日東電工株式会社 Temperature sensor film, conductive film and manufacturing method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4799745A (en) * 1986-06-30 1989-01-24 Southwall Technologies, Inc. Heat reflecting composite films and glazing products containing the same
JP2003293118A (en) * 2002-04-01 2003-10-15 Nitto Denko Corp Method for manufacturing transparent conductive laminate
TWI290328B (en) * 2002-05-23 2007-11-21 Nof Corp Transparent conductive laminated film and touch panel
JP2004152727A (en) * 2002-11-01 2004-05-27 Toyo Metallizing Co Ltd Transparent conductive film
JP4710220B2 (en) * 2003-09-26 2011-06-29 住友化学株式会社 Extruded ethylene polymer resin and ethylene polymer resin
EP1731299A1 (en) * 2004-03-31 2006-12-13 Konica Minolta Holdings, Inc. Transparent conductive film, method for producing transparent conductive film and organic electroluminescent device
JP4802568B2 (en) * 2004-11-30 2011-10-26 凸版印刷株式会社 Antireflection laminate, optical functional filter, optical display device and optical article
JP4419146B2 (en) * 2005-06-13 2010-02-24 日東電工株式会社 Transparent conductive laminate
JP2007023304A (en) * 2005-07-12 2007-02-01 Konica Minolta Holdings Inc Manufacturing method of gas barrier property film with transparent conductive film, and manufacturing method of organic electroluminescence element
KR100724336B1 (en) * 2005-11-03 2007-06-04 제일모직주식회사 Composition for conducting film of organic opto-electronic device comprising self-doped conducting polymer graft copolymer and organic opto-electronic device using the same
JP5166700B2 (en) * 2006-01-30 2013-03-21 日東電工株式会社 Crystalline transparent conductive thin film, manufacturing method thereof, transparent conductive film and touch panel
TWI314760B (en) * 2006-12-29 2009-09-11 Univ Southern Taiwan Tech Method for manufacturing transparent conductive thin films
JP5040500B2 (en) * 2007-07-27 2012-10-03 凸版印刷株式会社 Transparent conductive film, method for producing the same, and touch panel using the transparent conductive film
JP2009092913A (en) * 2007-10-09 2009-04-30 Toppan Printing Co Ltd Optical thin film laminate
JP2010015861A (en) * 2008-07-04 2010-01-21 Toyobo Co Ltd Transparent conductive laminate film
JP4966924B2 (en) * 2008-07-16 2012-07-04 日東電工株式会社 Transparent conductive film, transparent conductive laminate and touch panel, and method for producing transparent conductive film
JP5245893B2 (en) * 2009-02-13 2013-07-24 凸版印刷株式会社 Multilayer film and method for producing the same
JP5245892B2 (en) * 2009-02-13 2013-07-24 凸版印刷株式会社 Laminated film and method for producing the same
WO2011048647A1 (en) * 2009-10-19 2011-04-28 東洋紡績株式会社 Electrically conductive transparent film, and touch panel comprising same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI476951B (en) * 2012-06-07 2015-03-11 Hon Hai Prec Ind Co Ltd Semiconductor structure

Also Published As

Publication number Publication date
KR101045026B1 (en) 2011-06-30
JP2012101544A (en) 2012-05-31
CN102467992A (en) 2012-05-23
CN102467992B (en) 2016-03-02
TWI486973B (en) 2015-06-01
JP5692859B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
TW201220328A (en) Transparent conductive multilayered film, producing method of the same, and touch panel containing the same
TWI606373B (en) Transparent body for use in a touch panel manufacturing method and system for manufacturing a transparent body for use in a touch screen panel
KR101269316B1 (en) Method for fabricating transparent conductive film
JP5101719B2 (en) Transparent conductive film, method for producing the same, and touch panel provided with the same
JP5549216B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
JP5568398B2 (en) Substrate with transparent electrode and method for producing the same
JP2013242770A (en) Capacitance type touch panel substrate, and manufacturing method and manufacturing device of the same
TW200532336A (en) Method for manufacturing a transparent element with invisible electrodes
CN107004463A (en) Transparent conducting film and use its touch sensor
JP4349794B2 (en) Method for producing conductive transparent substrate with multilayer antireflection film
TWI473720B (en) Double-sided transparent conductive film with excellent visibility and method of manufacturing the same
KR20160082711A (en) Metal mesh type touch screen panel and method of manufacturing the same
JP6319302B2 (en) Transparent conductor and method for producing the same
KR20110000722A (en) The touch panel and the manufacturing method of the capacitive overlay where the reflectivity improves
TW201417117A (en) Transparent conductive film with excellent visibility and manufacturing method thereof
JP4245339B2 (en) Method for producing conductive transparent substrate with multilayer film
TWI483158B (en) Touch panel and touch display panel using the same
KR20140032708A (en) Transparent conductive film with low surface resistance and manufacturing method thereof
WO2014181538A1 (en) Transparent conductor and method for producing same
WO2014188683A1 (en) Touch panel electrode substrate, touch panel including touch panel electrode substrate, and display panel
JP2014186279A (en) Light-transmitting conductive film and touch panel having the same
KR101543394B1 (en) Transparent touch panel film for forming fine wire pattern, manufacturing method thereof, and touch panel including the same
JP2023053748A (en) Optical laminate and anti-reflection film
JP6546461B2 (en) Transparent insulation material and method for manufacturing the same
JP6228530B2 (en) Electrode and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees