JP2010015861A - Transparent conductive laminate film - Google Patents
Transparent conductive laminate film Download PDFInfo
- Publication number
- JP2010015861A JP2010015861A JP2008175497A JP2008175497A JP2010015861A JP 2010015861 A JP2010015861 A JP 2010015861A JP 2008175497 A JP2008175497 A JP 2008175497A JP 2008175497 A JP2008175497 A JP 2008175497A JP 2010015861 A JP2010015861 A JP 2010015861A
- Authority
- JP
- Japan
- Prior art keywords
- transparent conductive
- thin film
- layer
- film
- conductive thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
本発明は透明プラスチックフィルムからなる基材上に高屈折率層、低屈折率層及び透明導電性薄膜層をこの順で積層した透明導電性フィルムに関するものである。特に静電容量式タッチパネル等のパターニングされた電極フィルムとして用いた場合、透明導電性薄膜層を有する部分と除去された部分での光学特性の差が小さいため、視認性を向上できる透明導電性フィルムに関するものである。 The present invention relates to a transparent conductive film in which a high refractive index layer, a low refractive index layer, and a transparent conductive thin film layer are laminated in this order on a substrate made of a transparent plastic film. In particular, when used as a patterned electrode film such as a capacitive touch panel, the difference in optical properties between the portion having the transparent conductive thin film layer and the removed portion is small, so that the transparent conductive film that can improve visibility It is about.
透明プラスチックフィルムからなる基材上に、透明でかつ抵抗が小さい薄膜を積層した透明導電性フィルムは、その導電性を利用した用途、例えば、液晶ディスプレイやエレクトロルミネッセンス(ELと略記される場合がある)ディスプレイなどのようなフラットパネルディスプレイや、抵抗膜式タッチパネルの透明電極など、電気、電子分野の用途に広く使用されている。 A transparent conductive film obtained by laminating a transparent thin film with low resistance on a substrate made of a transparent plastic film is used for applications utilizing the conductivity, for example, a liquid crystal display or electroluminescence (EL may be abbreviated as EL). ) Widely used in electrical and electronic fields such as flat panel displays such as displays and transparent electrodes of resistive touch panels.
近年、静電容量式のタッチパネルが携帯電話、携帯音楽端末などのモバイル機器に搭載されるケースが増えてきた。このような静電容量式のタッチパネルではパターニングされた導体上に誘電体層を積層した構成を有し、指などでタッチすることにより、人体の静電容量を介して接地される。この際、パターニング電極と接地点との間の抵抗値に変化が生じ、位置入力を認識する。しかしながら従来の透明導電性フィルムを用いた場合、透明導電性薄膜層を有する部分と除去された部分での光学特性の差が大きいため、パターニングが強調され、液晶ディスプレイ等の表示体の前面に配置した際に視認性が低下するという問題があった。 In recent years, an increasing number of cases where a capacitive touch panel is mounted on a mobile device such as a mobile phone or a portable music terminal. Such a capacitive touch panel has a configuration in which a dielectric layer is laminated on a patterned conductor, and is touched with a finger or the like to be grounded via the capacitance of the human body. At this time, a change occurs in the resistance value between the patterning electrode and the ground point, and the position input is recognized. However, when a conventional transparent conductive film is used, the difference in optical characteristics between the portion having the transparent conductive thin film layer and the removed portion is large, so that patterning is emphasized and placed on the front surface of a display body such as a liquid crystal display. There has been a problem that the visibility is lowered when it is done.
透明導電性フィルムの透過率または色目を向上させるために、反射防止加工等で用いられている屈折率の異なる層を積層させ光の干渉を利用する方法が提案されている。すなわち、透明導電性薄膜層と基材フィルムの間に屈折率の異なる層を設けて光学干渉を利用する方法が提案されている(特許文献1〜3)。
すなわち、本発明の目的は、上記の従来の問題点に鑑み、透明導電性薄膜層を有する部分と除去された部分の光学特性の差を小さくすることによって、液晶ディスプレイ等に使用した際に視認性が良好で、かつパターニングが強調されない透明導電性積層フィルムを提供することにある。 That is, in view of the above-mentioned conventional problems, the object of the present invention is to visually recognize when used in a liquid crystal display or the like by reducing the difference in optical characteristics between the portion having the transparent conductive thin film layer and the removed portion. An object of the present invention is to provide a transparent conductive laminated film that has good properties and does not emphasize patterning.
本発明は、上記のような状況に鑑みなされたものであって、上記の課題を解決することができた透明導電性積層とは、以下の構成よりなる。
1.透明プラスチックフィルムからなる基材上に、高屈折率層、低屈折率層及び透明導電性薄膜層をこの順に積層した構成を有し、高屈折率層の屈折率が1.70〜2.50、膜厚が4〜20nmの範囲にあり、低屈折率層の屈折率が1.30〜1.60、膜厚が20〜50nmの範囲であることを特徴とする透明導電性積層フィルム。
2.透明導電性積層フィルムのJIS K7105(1999年版)によって規定される0.125mmの光学くしを使った場合の透過法の像鮮明度と2.0mmの光学くしを使った場合の透過法の像鮮明度の比が下記(1)式を満たすことを特徴とする1.に記載の透明導電性積層フィルム。
0.125mm幅くしの値/2mm幅くしの値≧0.7 (1)
3.透明導電性薄膜層が非晶質な金属酸化物薄膜からなることを特徴とする1.又は2.に記載の透明導電性積層フィルム。
4.透明導電性薄膜層が酸化スズの含有率が10〜60質量%である非晶質なインジウム−スズ複合酸化物であることを特徴とする3.に記載の透明導電性積層フィルム。
5.1.〜4.いずれかに記載の透明導電性積層フィルムの透明導電性薄膜層をパターニングした透明導電性積層フィルムの透明導電性薄膜層側に、屈折率が1.40〜1.70の誘電体層を積層したことを特徴とする透明導電性積層フィルム。
6.5.に記載の透明導電性積層フィルムのパターニングによる透明導電性薄膜層を有する部分と有しない部分の光学特性の差が下記(2)式及び(3)式を満たすことを特徴とする透明導電性積層フィルム。
0≦|T1−T0|≦1.0 (2)
0≦|b1−b0|≦1.0 (3)
(T1:透明導電性薄膜層を有する部分のフィルムの全光線透過率、
b1:透明導電性薄膜層を有する部分のフィルムのカラーb値、
T0:透明導電性薄膜層を有しない部分のフィルムの全光線透過率、
b0:透明導電性薄膜層を有しない部分のフィルムのカラーb値)
This invention is made | formed in view of the above situations, Comprising: The transparent conductive lamination which was able to solve said subject consists of the following structures.
1. A high refractive index layer, a low refractive index layer, and a transparent conductive thin film layer are laminated in this order on a substrate made of a transparent plastic film, and the refractive index of the high refractive index layer is 1.70 to 2.50. A transparent conductive laminated film, wherein the film thickness is in the range of 4 to 20 nm, the refractive index of the low refractive index layer is 1.30 to 1.60, and the film thickness is in the range of 20 to 50 nm.
2. Image clarity of transmission method when using 0.125mm optical comb specified by JIS K7105 (1999 edition) of transparent conductive laminated film, and image clarity of transmission method using 2.0mm optical comb The ratio of degrees satisfies the following formula (1): The transparent conductive laminated film described in 1.
0.125 mm width comb value / 2 mm width comb value ≧ 0.7 (1)
3. 1. The transparent conductive thin film layer is made of an amorphous metal oxide thin film. Or 2. The transparent conductive laminated film described in 1.
4). 2. The transparent conductive thin film layer is an amorphous indium-tin composite oxide having a tin oxide content of 10 to 60% by mass. The transparent conductive laminated film described in 1.
5.1. ~ 4. A dielectric layer having a refractive index of 1.40 to 1.70 was laminated on the transparent conductive thin film layer side of the transparent conductive thin film obtained by patterning the transparent conductive thin film layer of any one of the transparent conductive laminated films. A transparent conductive laminated film characterized by that.
6.5. The transparent conductive laminate, wherein the difference in optical characteristics between the portion having the transparent conductive thin film layer and the portion not having the transparent conductive thin film layer by patterning of the transparent conductive laminate film described in the following (2) and (3) is satisfied: the film.
0 ≦ | T1-T0 | ≦ 1.0 (2)
0 ≦ | b1-b0 | ≦ 1.0 (3)
(T1: Total light transmittance of the film of the part having the transparent conductive thin film layer,
b1: Color b value of a film having a transparent conductive thin film layer,
T0: total light transmittance of a film of a portion not having the transparent conductive thin film layer,
b0: Color b value of the film of the portion not having the transparent conductive thin film layer)
本発明の透明導電性積層フィルムは、透明プラスチックフィルムからなる基材上に、高屈折率層、低屈折率層及び透明導電性薄膜層の順に積層した構成を有し、透明導電性薄膜層をパターニングした際、透明導電性薄膜層を有する部分と有しない部分の光学特性の差が小さいため、液晶ディスプレイ等の表示体の前面に配置しても透明導電性薄膜層のパターニングがみえないため視認性の低下を抑制できる。 The transparent conductive laminated film of the present invention has a configuration in which a high refractive index layer, a low refractive index layer, and a transparent conductive thin film layer are laminated in this order on a substrate made of a transparent plastic film. When patterning, the difference in optical properties between the part with and without the transparent conductive thin film layer is small, so even if it is placed on the front of a display such as a liquid crystal display, the pattern of the transparent conductive thin film layer is not visible. The decline in sex can be suppressed.
本発明の透明導電性積層フィルムは、透明プラスチックフィルムからなる基材上に、高屈折率層、低屈折率層及び透明導電性薄膜層をこの順に積層した構成を有する。
さらに、上記透明導電性積層フィルムの透明導電性薄膜層をパターニングした透明導電性積層フィルムの透明導電性薄膜層側に、誘電体層を積層したことを特徴とする透明導電性積層フィルムである。
以下、各層別に詳細に説明する。
The transparent conductive laminated film of the present invention has a configuration in which a high refractive index layer, a low refractive index layer, and a transparent conductive thin film layer are laminated in this order on a substrate made of a transparent plastic film.
Furthermore, it is a transparent conductive laminated film characterized by laminating a dielectric layer on the transparent conductive thin film layer side of the transparent conductive laminated film obtained by patterning the transparent conductive thin film layer of the transparent conductive laminated film.
Hereinafter, each layer will be described in detail.
(透明プラスチックフィルムからなる基材)
本発明で用いる透明プラスチックフィルムからなる基材とは、有機高分子をフィルム状に溶融押出し又は溶液押出しをしてフィルム状に成形し、必要に応じ、長手方向及び/又は幅方向に延伸、熱固定、熱弛緩処理を施したフィルムである。有機高分子としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリプロピレンテレフタレート、ナイロン6、ナイロン4、ナイロン66、ナイロン12、ポリイミド、ポリアミドイミド、ポリエーテルサルファン、ポリエーテルエーテルケトン、ポリカーボネート、ポリアリレート、セルロースプロピオネート、ポリ塩化ビニール、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエーテルイミド、ポリフェニレンスルフィド、ポリフェニレンオキサイド、ポリスチレン、シンジオタクチックポリスチレン、ノルボルネン系ポリマーなどが挙げられる。
(Base material made of transparent plastic film)
The substrate made of a transparent plastic film used in the present invention is formed by forming an organic polymer into a film by melt extrusion or solution extrusion into a film, and if necessary, stretching in the longitudinal direction and / or the width direction, A film that has been fixed and heat-relaxed. Organic polymers include polyethylene, polypropylene, polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, nylon 6, nylon 4, nylon 66, nylon 12, polyimide, polyamideimide, polyethersulfan, polyetheretherketone , Polycarbonate, polyarylate, cellulose propionate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyether imide, polyphenylene sulfide, polyphenylene oxide, polystyrene, syndiotactic polystyrene, norbornene-based polymer, and the like.
これらの有機高分子のなかで、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリエチレン−2,6−ナフタレート、シンジオタクチックポリスチレン、ノルボルネン系ポリマー、ポリカーボネート、ポリアリレートなどが好適である。また、これらの有機高分子は他の有機重合体の単量体を少量共重合してもよいし、他の有機高分子をブレンドしてもよい。 Among these organic polymers, polyethylene terephthalate, polypropylene terephthalate, polyethylene-2,6-naphthalate, syndiotactic polystyrene, norbornene polymer, polycarbonate, polyarylate and the like are preferable. These organic polymers may be copolymerized with a small amount of other organic polymer monomers, or may be blended with other organic polymers.
本発明で用いる透明プラスチックフィルムからなる基材の厚みは、10〜300μmであることが好ましく、より好ましくは70〜260μmである。プラスチックフィルムの厚みが10μm未満では機械的強度が不足し、透明導電性薄膜のパターン形成工程でのハンドリングが難しくなるため好ましくない。一方、厚みが300μmを越えると、タッチパネルの厚みが厚くなりすぎるため、モバイル機器などには適さない。 It is preferable that the thickness of the base material which consists of a transparent plastic film used by this invention is 10-300 micrometers, More preferably, it is 70-260 micrometers. If the thickness of the plastic film is less than 10 μm, the mechanical strength is insufficient, and handling in the pattern forming process of the transparent conductive thin film becomes difficult, which is not preferable. On the other hand, if the thickness exceeds 300 μm, the thickness of the touch panel becomes too thick, which is not suitable for mobile devices.
本発明で用いる透明プラスチックフィルムからなる基材は、本発明の目的を損なわない範囲で、前記フィルムをコロナ放電処理、グロー放電処理、火炎処理、紫外線照射処理、電子線照射処理、オゾン処理などの表面活性化処理を施してもよい。 The substrate made of a transparent plastic film used in the present invention is a range that does not impair the purpose of the present invention, such as corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, ozone treatment, etc. A surface activation treatment may be performed.
また、本発明で用いる透明プラスチックフィルムからなる基材には、高屈折率層との密着性向上、耐薬品性の付与、オリゴマーなどの低分子量物の析出防止を目的として、硬化型樹脂を主たる構成成分とする硬化物層を設けてもよい。 In addition, the base material made of the transparent plastic film used in the present invention mainly includes a curable resin for the purpose of improving adhesion with a high refractive index layer, imparting chemical resistance, and preventing precipitation of low molecular weight substances such as oligomers. You may provide the hardened | cured material layer made into a structural component.
前記の硬化型樹脂は、加熱、紫外線照射、電子線照射などのエネルギー印加により硬化する樹脂であれば特に限定されなく、シリコーン樹脂、アクリル樹脂、メタクリル樹脂、エポキシ樹脂、メラミン樹脂、ポリエステル樹脂、ウレタン樹脂などが挙げられる。生産性の観点からは、紫外線硬化型樹脂を主成分とする硬化型樹脂が好ましい。 The curable resin is not particularly limited as long as it is a resin that is cured by application of energy such as heating, ultraviolet irradiation, electron beam irradiation, etc., and silicone resin, acrylic resin, methacrylic resin, epoxy resin, melamine resin, polyester resin, urethane Resin etc. are mentioned. From the viewpoint of productivity, a curable resin containing an ultraviolet curable resin as a main component is preferable.
このような紫外線硬化型樹脂としては、例えば、多価アルコールのアクリル酸又はメタクリル酸エステルのような多官能性のアクリレート樹脂、ジイソシアネート、多価アルコール及びアクリル酸又はメタクリル酸のヒドロキシアルキルエステルなどから合成されるような多官能性のウレタンアクリレート樹脂などを挙げることができる。必要に応じて、これらの多官能性の樹脂に単官能性の単量体、例えば、ビニルピロリドン、メチルメタクリレート、スチレンなどを加えて共重合させることができる。 Examples of such ultraviolet curable resins are synthesized from polyfunctional acrylate resins such as acrylic acid or methacrylic acid ester of polyhydric alcohol, diisocyanate, polyhydric alcohol and hydroxyalkyl ester of acrylic acid or methacrylic acid. Such polyfunctional urethane acrylate resins can be mentioned. If necessary, a monofunctional monomer such as vinyl pyrrolidone, methyl methacrylate, or styrene can be added to these polyfunctional resins for copolymerization.
また、高屈折率層と硬化物層との付着力を向上するために、硬化物層を更に表面処理することが有効である。具体的な方法としては、グロー放電又はコロナ放電を照射する放電処理法を用いて、カルボニル基、カルボキシル基、水酸基を増加させる方法、酸又はアルカリで処理する化学薬品処理法を用いて、アミノ基、水酸基、カルボニル基などの極性基を増加させる方法、などが挙げられる。 In order to improve the adhesion between the high refractive index layer and the cured product layer, it is effective to further treat the cured product layer. Specific methods include a discharge treatment method that irradiates glow discharge or corona discharge, a method of increasing carbonyl group, carboxyl group, hydroxyl group, a chemical treatment method of treating with acid or alkali, and an amino group. And a method of increasing polar groups such as a hydroxyl group and a carbonyl group.
紫外線硬化型樹脂は、通常、光重合開始剤を添加して使用される。光重合開始剤としては、紫外線を吸収してラジカルを発生する公知の化合物を特に限定なく使用することができ、このような光重合開始剤としては、例えば、各種ベンゾイン類、フェニルケトン類、ベンゾフェノン類などを挙げることができる。光重合開始剤の添加量は、紫外線硬化型樹脂100質量部に対して、1〜5質量部とすることが好ましい。 The ultraviolet curable resin is usually used by adding a photopolymerization initiator. As the photopolymerization initiator, known compounds that absorb ultraviolet rays and generate radicals can be used without any particular limitation. Examples of such photopolymerization initiators include various benzoins, phenyl ketones, and benzophenones. And the like. The addition amount of the photopolymerization initiator is preferably 1 to 5 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
塗布液中の樹脂成分の濃度は、コーティング法に応じた粘度などを考慮して適切に選択することができる。例えば、塗布液中に紫外線硬化型樹脂、光重合開始剤の合計量が占める割合は、通常は20〜80質量%である。また、この塗布液には、必要に応じて、その他の公知の添加剤、例えば、シリコーン系界面活性剤、フッ素系界面活性剤などのレベリング剤などを添加してもよい。 The concentration of the resin component in the coating solution can be appropriately selected in consideration of the viscosity according to the coating method. For example, the proportion of the total amount of the ultraviolet curable resin and the photopolymerization initiator in the coating solution is usually 20 to 80% by mass. Moreover, you may add other well-known additives, for example, leveling agents, such as a silicone type surfactant and a fluorine type surfactant, to this coating liquid as needed.
本発明において、調製された塗布液は透明プラスチックフィルムからなる基材上にコーティングされる。コーティング法には特に限定されなく、バーコート法、グラビアコート法、リバースコート法などの従来から知られている方法を使用することができる。 In the present invention, the prepared coating solution is coated on a substrate made of a transparent plastic film. The coating method is not particularly limited, and conventionally known methods such as a bar coating method, a gravure coating method, and a reverse coating method can be used.
また、硬化物層の厚みは0.1〜15μmの範囲であることが好ましく、より好ましくは0.5〜10μm、特に好ましくは1〜8μmである。硬化物層の厚みが0.1μm未満の場合には、十分に架橋した構造が形成されにくくなるため、耐薬品性が低下しやすくなり、オリゴマーなどの低分子量による密着性の低下もおこりやすくなる。一方、硬化物層の厚みが15μmを超える場合には、生産性が低下する傾向がある。 Moreover, it is preferable that the thickness of a hardened | cured material layer is the range of 0.1-15 micrometers, More preferably, it is 0.5-10 micrometers, Most preferably, it is 1-8 micrometers. When the thickness of the cured product layer is less than 0.1 μm, it becomes difficult to form a sufficiently cross-linked structure, so that chemical resistance is likely to be lowered, and adhesion due to low molecular weight such as oligomer is also liable to occur. . On the other hand, when the thickness of the cured product layer exceeds 15 μm, the productivity tends to decrease.
また、斜め方向から見た場合のパターニング部分を見えにくくすることを目的に、下記条件を満たすように硬化物層中に粒子を含有させることが好ましい。
JIS K7105(1999年版)によって規定される0.125mmの光学くしを使った場合の透過法の像鮮明度と2.0mmの光学くしを使った場合の透過法の像鮮明度の比が0.125mm幅くしの値/2mm幅くしの値≧0.7の範囲に設計することが好ましい。さらに好ましくは0.8以上である。0.7未満の場合には、高精細な液晶ディスプレイ等の表示体の前面に設置した場合、ギラツキ現象が生じるために視認性が低下する。
In addition, for the purpose of making it difficult to see the patterning portion when viewed from an oblique direction, it is preferable to contain particles in the cured product layer so as to satisfy the following conditions.
The ratio of the image clarity of the transmission method when using the 0.125 mm optical comb defined by JIS K7105 (1999 edition) to the image clarity of the transmission method when using the 2.0 mm optical comb is 0. It is preferable to design in the range of 125 mm width comb value / 2 mm width comb value ≧ 0.7. More preferably, it is 0.8 or more. In the case of less than 0.7, when it is installed on the front surface of a display body such as a high-definition liquid crystal display, the glare phenomenon occurs and the visibility is lowered.
硬化物層に含有させる粒子としては特に限定はないが、無機粒子(例えば、シリカ、炭酸カルシウムなど)、耐熱性有機粒子(例えば、シリコン粒子、PTFE粒子、ポリイミド粒子など)、架橋高分子粒子(架橋PS粒子、架橋アクリル系粒子など)が例示される。これらの粒子の平均粒径(電子顕微鏡法による)は、0.05〜5μmが好ましく、0.1〜2μmであることがより好ましい。平均粒径が0.05μm未満の場合、斜め方向から見た場合のパターニング部分を見えにくくする効果が少なく、平均粒径が5μmを超えると、高精細な液晶ディスプレイ等の表示体の前面に設置した場合、ギラツキ現象が生じるために視認性が低下する場合がある。
(高屈折率層)
本発明で用いることのできる高屈折率層の屈折率は1.70〜2.50の範囲であり、好ましくは1.9〜2.3である。1.70未満の場合、低屈折率層との屈折率差が小さすぎるため、透明導電性薄膜層をパターニングした際、透明導電性薄膜層を有する部分と有しない部分の光学特性を近づけることが困難となる。一方、屈折率が2.50を越える場合、斜め方向のパターニングの見やすさを低減することが困難となる。高屈折率層の具体的素材としては、TiO2、Nb2O5、ZrO2、Ta2O5、ZnO、In2O3、SnO2等およびこれらの複合酸化物が挙げられる。これらのなかでも産性の観点からZnO、In2O3、SnO2およびこれらの複合酸化物が好ましい。
The particles to be contained in the cured product layer are not particularly limited, but inorganic particles (for example, silica, calcium carbonate, etc.), heat resistant organic particles (for example, silicon particles, PTFE particles, polyimide particles, etc.), crosslinked polymer particles ( Cross-linked PS particles, cross-linked acrylic particles, etc.). The average particle diameter (by electron microscopy) of these particles is preferably 0.05 to 5 μm, and more preferably 0.1 to 2 μm. When the average particle size is less than 0.05 μm, there is little effect of making the patterning portion difficult to see when viewed from an oblique direction. When the average particle size exceeds 5 μm, it is installed on the front surface of a display such as a high-definition liquid crystal display. In such a case, the glare phenomenon may occur and visibility may deteriorate.
(High refractive index layer)
The refractive index of the high refractive index layer that can be used in the present invention is in the range of 1.70 to 2.50, preferably 1.9 to 2.3. If it is less than 1.70, the difference in refractive index from the low refractive index layer is too small, so that when the transparent conductive thin film layer is patterned, the optical characteristics of the portion having the transparent conductive thin film layer and the portion not having the transparent conductive thin film layer can be made closer. It becomes difficult. On the other hand, when the refractive index exceeds 2.50, it becomes difficult to reduce the visibility of patterning in an oblique direction. Specific materials for the high refractive index layer include TiO 2 , Nb 2 O 5 , ZrO 2 , Ta 2 O 5 , ZnO, In 2 O 3 , SnO 2, and complex oxides thereof. Among these, ZnO, In 2 O 3 , SnO 2 and composite oxides thereof are preferable from the viewpoint of productivity.
高屈折率層の膜厚は、4〜20nmであり、好ましくは、7〜15nmである。膜厚が4nm未満の場合、不連続な膜となり、膜の安定性が低下する。一方、膜厚が20nmを超える場合、光の反射が強くなるため、透明導電性薄膜層をパターニングした際、透明導電性薄膜層を有する部分と有しない部分の光学特性を近づけることが困難となり、液晶ディスプレイ等の表示体の前面に配置した際に透明導電性薄膜層のパターニングが見え視認性が低下する。 The film thickness of the high refractive index layer is 4 to 20 nm, preferably 7 to 15 nm. When the film thickness is less than 4 nm, the film becomes discontinuous and the stability of the film decreases. On the other hand, when the film thickness exceeds 20 nm, the reflection of light becomes strong. Therefore, when the transparent conductive thin film layer is patterned, it becomes difficult to bring the optical characteristics of the portion having the transparent conductive thin film layer close to the portion without the transparent conductive thin film layer, When it is arranged on the front surface of a display body such as a liquid crystal display, the patterning of the transparent conductive thin film layer is visible and the visibility is lowered.
本発明における高屈折率層の成膜方法としては、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法などが知られており、必要とする膜厚に応じて、前記の方法を適宜用いることができるが、膜厚のバラツキを低減するという観点からスパッタリング法が好ましい。
スパッタリング法では一般的に金属ターゲットから反応性ガスを導入して金属酸化物を作製する反応性スパッタリング法と酸化物ターゲットから金属酸化物をする方法がある。反応性スパッタリング法においては反応性ガスの流量によって成膜速度が急激に変化する遷移領域が存在する。このため膜厚のバラツキを抑制するには酸化物ターゲットを用いることが好ましい。
(低屈折率層)
本発明で用いる低屈折率層の屈折率は1.30〜1.60であり、好ましくは1.4〜1.5である。屈折率が1.30未満の場合、ポーラスな膜となるため、その上に形成した透明導電性薄膜層の電気特性を低下させてしまう。一方、屈折率が1.60を越える場合、透明導電性薄膜層との光の干渉が弱くなりすぎるため、透明導電性薄膜層をパターニングした際、透明導電性薄膜層を有する部分と有しない部分の光学特性を近づけることが困難となり、液晶ディスプレイ等の表示体の前面に配置した際に透明導電性薄膜層のパターニングが見え視認性が低下する。
低屈折率層の具体的素材としては、SiO2、Al2O3などの透明金属酸化物及びSiO2−Al2O3等の複合金属酸化物が挙げられる。
As a method for forming a high refractive index layer in the present invention, a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a spray method, and the like are known. Can be used as appropriate, but sputtering is preferred from the viewpoint of reducing variations in film thickness.
In general, the sputtering method includes a reactive sputtering method in which a reactive gas is introduced from a metal target to produce a metal oxide, and a method in which a metal oxide is formed from an oxide target. In the reactive sputtering method, there is a transition region in which the film formation rate changes rapidly depending on the flow rate of the reactive gas. For this reason, it is preferable to use an oxide target in order to suppress variations in film thickness.
(Low refractive index layer)
The refractive index of the low refractive index layer used in the present invention is 1.30 to 1.60, preferably 1.4 to 1.5. When the refractive index is less than 1.30, a porous film is formed, and the electrical characteristics of the transparent conductive thin film layer formed thereon are deteriorated. On the other hand, when the refractive index exceeds 1.60, the interference of light with the transparent conductive thin film layer becomes too weak. Therefore, when the transparent conductive thin film layer is patterned, a portion having the transparent conductive thin film layer and a portion having no transparent conductive thin film layer It becomes difficult to make the optical characteristics close to each other, and when it is arranged on the front surface of a display body such as a liquid crystal display, the patterning of the transparent conductive thin film layer is visible and the visibility is lowered.
Specific material of the low refractive index layer, a composite metal oxide such as SiO 2, Al 2 transparent metal oxide such as O 3 and SiO 2 -Al 2 O 3 and the like.
低屈折率層の膜厚は、20〜50nmであり、好ましくは25〜45nmである。50nmを超えると透明導電性薄膜層との光の干渉により、波長依存性が強くなりすぎるため、透明導電性薄膜層をパターニングした際、透明導電性薄膜層を有する部分と有しない部分の光学特性を近づけることが困難となる。一方20nm未満の場合、透明導電性薄膜層との光の干渉が起こりにくく、透過率を向上することができないため、透明導電性薄膜層をパターニングした際、透明導電性薄膜層を有する部分と有しない部分の光学特性を近づけることが困難となり、液晶ディスプレイ等の表示体の前面に配置した際に透明導電性薄膜層のパターニングが見え視認性が低下する。 The film thickness of the low refractive index layer is 20 to 50 nm, preferably 25 to 45 nm. If it exceeds 50 nm, the wavelength dependence becomes too strong due to light interference with the transparent conductive thin film layer. Therefore, when the transparent conductive thin film layer is patterned, the optical characteristics of the portion with and without the transparent conductive thin film layer It becomes difficult to bring close. On the other hand, when the thickness is less than 20 nm, light interference with the transparent conductive thin film layer hardly occurs and the transmittance cannot be improved. Therefore, when the transparent conductive thin film layer is patterned, the transparent conductive thin film layer and the portion having the transparent conductive thin film layer are present. It becomes difficult to bring the optical characteristics of the portion not to be close to each other, and when it is arranged on the front surface of a display body such as a liquid crystal display, the patterning of the transparent conductive thin film layer is visible and the visibility is lowered.
本発明における低屈折率層の成膜方法としては、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法などが知られており、必要とする膜厚に応じて、前記の方法を適宜用いることができるが、膜厚のバラツキを低減するという観点からスパッタリング法が好ましい。一般的にスパッタリングで形成する場合は反応性DC又はACスパッタリング法が用いられる。成膜速度を向上するためにDC又はAC電源の電圧値を一定に保つように反応性ガス流量を制御するインピーダンス制御又は特定元素のプラズマ中での発光強度を一定に保つように反応性ガス流量を制御するプラズマエミッション法が用いられる。 As a method for forming a low refractive index layer in the present invention, a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a spray method, and the like are known, and the above method is used depending on the required film thickness. Can be used as appropriate, but sputtering is preferred from the viewpoint of reducing variations in film thickness. In general, when forming by sputtering, a reactive DC or AC sputtering method is used. Impedance control for controlling the reactive gas flow rate so as to keep the voltage value of the DC or AC power source constant in order to improve the deposition rate, or the reactive gas flow rate so as to keep the emission intensity in the plasma of a specific element constant. A plasma emission method for controlling the pressure is used.
(透明導電性薄膜層)
本発明における透明導電性薄膜としては、酸化インジウム、酸化スズ、酸化亜鉛、インジウム−スズ複合酸化物、スズ−アンチモン複合酸化物、亜鉛−アルミニウム複合酸化物、インジウム−亜鉛複合酸化物などが挙げられる。これらのうち、環境安定性や回路加工性の観点から、インジウム−スズ複合酸化物が好適である。
本発明において透明導電性薄膜層を積層して、透明導電性積層フィルムの表面抵抗値を好ましくは50〜2000Ω/□、更に好ましくは100〜1500Ω/□とすることによって、透明導電性積層フィルムとしてタッチパネルなどに使用できる。表面抵抗値が50Ω/□未満であったり、2000Ω/□を超える場合、タッチパネルの位置認識精度が悪くなり、好ましくない。
(Transparent conductive thin film layer)
Examples of the transparent conductive thin film in the present invention include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. . Of these, indium-tin composite oxides are preferable from the viewpoints of environmental stability and circuit processability.
In the present invention, a transparent conductive thin film layer is laminated, and the surface resistance value of the transparent conductive laminated film is preferably 50 to 2000 Ω / □, more preferably 100 to 1500 Ω / □. Can be used for touch panels. When the surface resistance value is less than 50Ω / □ or exceeds 2000Ω / □, the position recognition accuracy of the touch panel is deteriorated, which is not preferable.
透明導電性薄膜の膜厚は、4〜30nmの範囲が好ましく、更に好ましくは10〜25nmである。透明導電性薄膜の膜厚が4nm未満の場合、連続した薄膜になりにくく、良好な導電性が得られにくくなる。一方、透明導電性薄膜の膜厚が30nmよりも厚い場合、透明導電性薄膜層をパターニングした際、透明導電性薄膜層を有する部分と有しない部分の光学特性を近づけることが困難となる。 The thickness of the transparent conductive thin film is preferably in the range of 4 to 30 nm, more preferably 10 to 25 nm. When the film thickness of the transparent conductive thin film is less than 4 nm, it is difficult to form a continuous thin film, and it is difficult to obtain good conductivity. On the other hand, when the film thickness of the transparent conductive thin film is larger than 30 nm, when the transparent conductive thin film layer is patterned, it becomes difficult to make the optical characteristics of the portion having the transparent conductive thin film layer close to the portion not having the transparent conductive thin film layer.
透明導電性薄膜層は非晶質であることが好ましい。結晶質な透明導電性薄膜層を用いた場合、塩酸などで透明導電性薄膜をパターニングする際に溶けにくいため、加工に時間がかかる、微細なパターニングがきれいにできない等の問題が生じる。 The transparent conductive thin film layer is preferably amorphous. When a crystalline transparent conductive thin film layer is used, since it is difficult to dissolve when patterning the transparent conductive thin film with hydrochloric acid or the like, there are problems that processing takes time and fine patterning cannot be cleaned.
非晶質な透明導電性薄膜層を得るために、ドーパント量を調整することが好ましい。例えば、透明導電性薄膜層としてインジウム−スズ複合酸化物を用いる場合、酸化スズの含有率は10〜60質量%が好ましく、更に好ましくは20〜50質量%である。酸化スズ含有率が10質量%未満の場合、成膜中に結晶化を抑制することが困難となる。一方、酸化スズの含有率が60質量%を超える場合、ターゲットの密度を向上させることが困難となり、生産中に放電異常が発生しやすくなり生産性の観点から好ましくない。 In order to obtain an amorphous transparent conductive thin film layer, the amount of dopant is preferably adjusted. For example, when an indium-tin composite oxide is used as the transparent conductive thin film layer, the content of tin oxide is preferably 10 to 60% by mass, and more preferably 20 to 50% by mass. When the tin oxide content is less than 10% by mass, it becomes difficult to suppress crystallization during film formation. On the other hand, when the content of tin oxide exceeds 60% by mass, it becomes difficult to improve the density of the target, and an abnormal discharge tends to occur during production, which is not preferable from the viewpoint of productivity.
また生産性の観点から透明導電性薄膜は高屈折率層と同じ組成であることが好ましい。組成が異なる場合、高屈折率用、透明導電性薄膜用のそれぞれのターゲットおよびカソードが必要となり、設備的にも大掛かりな装置となってしまう。 From the viewpoint of productivity, the transparent conductive thin film preferably has the same composition as the high refractive index layer. When the composition is different, the target and cathode for high refractive index and transparent conductive thin film are necessary, which makes the apparatus large in terms of equipment.
透明導電性薄膜の層構造は、単層構造でもよいし、2層以上の積層構造でもよい。2層以上の積層構造を有する透明導電性薄膜の場合、各層を構成する前記の金属酸化物は同一でもよいし、異なっていてもよい。 The layer structure of the transparent conductive thin film may be a single layer structure or a laminated structure of two or more layers. In the case of a transparent conductive thin film having a laminated structure of two or more layers, the metal oxides constituting each layer may be the same or different.
本発明における透明導電性薄膜の成膜方法としては、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法などが知られており、必要とする膜厚に応じて、前記の方法を適宜用いることができる。
例えば、スパッタリング法の場合、酸化物ターゲットを用いた通常のスパッタリング法、あるいは、金属ターゲットを用いた反応性スパッタリング法等が用いられる。この時、反応性ガスとして、酸素、窒素、等を導入したり、オゾン添加、プラズマ照射、イオンアシスト等の手段を併用したりしてもよい。また、本発明の目的を損なわない範囲で、基板に直流、交流、高周波などのバイアスを印加してもよい。
As a method for forming a transparent conductive thin film according to the present invention, a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a spray method, and the like are known. Can be used as appropriate.
For example, in the case of the sputtering method, a normal sputtering method using an oxide target, a reactive sputtering method using a metal target, or the like is used. At this time, oxygen, nitrogen, or the like may be introduced as a reactive gas, or means such as ozone addition, plasma irradiation, or ion assist may be used in combination. In addition, a bias such as direct current, alternating current, and high frequency may be applied to the substrate as long as the object of the present invention is not impaired.
(屈折率が1.40〜1.70の誘電体層(保護層))
本発明において屈折率が1.40〜1.70の誘電体層とは、表示体の部材として透明導電性積層フィルムを使用する際に透明導電性薄膜を保護するために積層する保護層としての目的と、指などでタッチした際の静電容量変化を大きくし、位置入力精度を向上させる目的を併せ持つ層である。
屈折率が1.40〜1.70の誘電体層としては、例えば、SiO2、Al2O3などの透明金属酸化物及びSiO2−Al2O3等の複合金属酸化物、アクリル、シリコーン、ポリエステル系の樹脂からなる有機物等が用いられる。
(Dielectric layer (protective layer) having a refractive index of 1.40 to 1.70)
In the present invention, a dielectric layer having a refractive index of 1.40 to 1.70 is a protective layer that is laminated to protect a transparent conductive thin film when a transparent conductive laminated film is used as a display member. This layer has both the purpose and the purpose of increasing the change in capacitance when touched with a finger or the like and improving the position input accuracy.
The dielectric layer having a refractive index of 1.40 to 1.70, for example, transparent metal oxide such as SiO 2, Al 2 O 3 and composite metal oxides such as SiO 2 -Al 2 O 3, acrylic, silicone Organic materials made of polyester resins are used.
(透明導電性積層フィルムの光学特性)
本願発明においては、透明導電性積層フィルムの透明導電性薄膜層をパターニングしてから、屈折率が1.40〜1.70の誘電体層を透明導電性薄膜層側に積層した状態において、透明導電性薄膜層を有する部分と有しない部分の光学特性の差が少ないことが重要であり、下記(2)及び(3)式を満たすことが好ましい。
0≦|T1−T0|≦1.0 (2)
0≦|b1−b0|≦1.0 (3)
(T1:透明導電性薄膜層を有する部分のフィルムの全光線透過率、
b1:透明導電性薄膜層を有する部分のフィルムのカラーb値、
T0:透明導電性薄膜層を有しない部分のフィルムの全光線透過率、
b0:透明導電性薄膜層を有しない部分のフィルムのカラーb値)
(Optical characteristics of transparent conductive laminated film)
In the present invention, after patterning the transparent conductive thin film layer of the transparent conductive laminated film, the dielectric layer having a refractive index of 1.40 to 1.70 is laminated on the transparent conductive thin film layer side. It is important that the difference in optical properties between the portion having the conductive thin film layer and the portion not having the conductive thin film layer is small, and it is preferable to satisfy the following expressions (2) and (3).
0 ≦ | T1-T0 | ≦ 1.0 (2)
0 ≦ | b1-b0 | ≦ 1.0 (3)
(T1: Total light transmittance of the film of the part having the transparent conductive thin film layer,
b1: Color b value of a film having a transparent conductive thin film layer,
T0: total light transmittance of a film of a portion not having the transparent conductive thin film layer
b0: Color b value of the film of the portion not having the transparent conductive thin film layer)
また、透明導電性積層フィルムのJIS K7105(1999年版)によって規定される0.125mmの光学くしを使った場合の透過法の像鮮明度と2.0mmの光学くしを使った場合の透過法の像鮮明度の比が0.7以上であることが好ましい。0.7未満の場合には、高精細な液晶ディスプレイ等の表示体の前面に設置した場合、ギラツキ現象が生じるために視認性が低下してしまう。 In addition, the image clarity of the transmission method when using a 0.125 mm optical comb defined by JIS K7105 (1999 edition) of a transparent conductive laminated film and the transmission method when using a 2.0 mm optical comb. The image definition ratio is preferably 0.7 or more. In the case of less than 0.7, when it is installed on the front surface of a display body such as a high-definition liquid crystal display, the glare phenomenon occurs and the visibility is lowered.
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。なお、透明導電性積層フィルムの性能は、下記の方法により測定した。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by these Examples. In addition, the performance of the transparent conductive laminated film was measured by the following method.
(1)全光線透過率
JIS−K7136に準拠し、日本電色工業(株)製、NDH−1001DPを用いて、全光線透過率を測定した。
なお、(2)式及び(3)式におけるT1、T0は、パターニングした透明導電性積層フィルムに屈折率が1.40〜1.70の誘電体層を透明導電性薄膜層側に積層した状態において測定した透明導電性薄膜層を有する部分及び透明導電性薄膜層が無い部分の値である。
(1) Total light transmittance Based on JIS-K7136, the total light transmittance was measured using Nippon Denshoku Industries Co., Ltd. product and NDH-1001DP.
In addition, T1 and T0 in the formulas (2) and (3) are states in which a dielectric layer having a refractive index of 1.40 to 1.70 is laminated on the transparent conductive thin film layer side on the patterned transparent conductive laminated film. It is the value of the part which does not have a transparent conductive thin film layer, and the part which does not have a transparent conductive thin film layer measured in.
(2)表面抵抗値
JIS−K7194に準拠し、4端子法にて表面抵抗値を測定した。測定器は、三菱油化(株)製、Lotest AMCP−T400を用いた。
(2) Surface resistance value Based on JIS-K7194, the surface resistance value was measured by the 4-terminal method. As a measuring instrument, Lotest AMCP-T400 manufactured by Mitsubishi Oil Chemical Co., Ltd. was used.
(3)カラーb値
JIS−K7105に準拠し、色差計(日本電色工業製、ZE−2000)を用いて、標準の光C/2でカラーb値を測定した。
なお、(2)式及び(3)式におけるb1、b0は、パターニングした透明導電性積層フィルムに屈折率が1.40〜1.70の誘電体層を透明導電性薄膜層側に積層した状態において測定した透明導電性薄膜層を有する部分及び透明導電性薄膜層が無い部分の値である。
(3) Color b value Based on JIS-K7105, the color b value was measured with standard light C / 2 using a color difference meter (manufactured by Nippon Denshoku Industries Co., Ltd., ZE-2000).
In addition, b1 and b0 in the formulas (2) and (3) are states in which a dielectric layer having a refractive index of 1.40 to 1.70 is laminated on the transparent conductive thin film layer side on the patterned transparent conductive laminated film. It is the value of the part which does not have a transparent conductive thin film layer, and the part which does not have a transparent conductive thin film layer measured in.
(4)視認性評価
透明導電性積層フィルムにエッチングレジストを印刷した後、1N塩酸中に浸漬、アルカリ浸漬により、1×3cmのパターンを形成した。透明導電性薄膜側に屈折率1.52のアクリル系粘着層を有する二軸配向ポリエチレンテレフタレート(以下PETと略記する)フィルムを保護フィルムとして貼り合わせた。富士通社製FMV−BIBLOLOOX T70M/Tを用いて画面を白色表示にし、保護フィルムを貼り合わせたフィルムをその前に置いて、様々な角度からパターニングの見え方を評価した。
○: パターニングがほとんどみえない。
△: パターニングが少しみえる。
×: パターニングがみえる。
(4) Visibility evaluation After printing an etching resist on the transparent conductive laminated film, a 1 × 3 cm pattern was formed by immersion in 1N hydrochloric acid and alkaline immersion. A biaxially oriented polyethylene terephthalate (hereinafter abbreviated as PET) film having an acrylic adhesive layer with a refractive index of 1.52 on the transparent conductive thin film side was bonded as a protective film. Using FMV-BIBLOLOOX T70M / T manufactured by Fujitsu Ltd., the screen was displayed in white, and a film on which a protective film was bonded was placed in front of it, and the appearance of patterning was evaluated from various angles.
○: Patterning is hardly seen.
Δ: Patterning is slightly visible.
X: Patterning is visible.
(5)ギラツキ評価
富士通社製FMV−BIBLOLOOX T70M/Tを用いて画面を緑色表示にしてフィルムをその前においてギラツキを評価した。
○: ギラツキが全く気にならない。
△: ギラツキがほとんど気にならない。
×: ギラツキが気になる。
(5) Glitter evaluation The screen was displayed in green using FMV-BIBLOOX T70M / T manufactured by Fujitsu Ltd., and glare was evaluated before the film.
○: I don't care about glare.
Δ: I don't mind the glare.
×: I'm worried about glare.
(6)像鮮明度
JIS−K7105(1999年版)に準拠し、スガ試験機社製ICM−1Tを用いて、光学くしが0.125mm、2.0mmでの像鮮明度を測定した。
(6) Image sharpness Based on JIS-K7105 (1999 edition), image sharpness was measured at 0.125 mm and 2.0 mm with an optical comb using ICM-1T manufactured by Suga Test Instruments Co., Ltd.
(7)高屈折率層、低屈折率層、透明導電性薄膜層の膜厚
高屈折率層、低屈折率層、透明導電性薄膜層を積層したフィルム試料片を1mm×10mmの大きさに切り出し、電子顕微鏡用エポキシ樹脂に包埋した。これをウルトラミクロトームの試料ホルダに固定し、包埋した試料片の短辺に平行な断面薄切片を作製した。次いで、この切片の薄膜の著しい損傷がない部位において、透過型電子顕微鏡(JEOL社製、JEM−2010)を用い、加速電圧200kV、明視野で観察倍率1万倍にて写真撮影を行って得られた写真から膜厚を求めた。
(7) Film thickness of high refractive index layer, low refractive index layer, transparent conductive thin film layer A film sample piece in which a high refractive index layer, a low refractive index layer, and a transparent conductive thin film layer are laminated has a size of 1 mm × 10 mm. It cut out and embedded in the epoxy resin for electron microscopes. This was fixed to a sample holder of an ultramicrotome, and a cross-sectional thin section parallel to the short side of the embedded sample piece was produced. Next, in a section where the thin film of this section is not significantly damaged, a transmission electron microscope (manufactured by JEOL, JEM-2010) is used to obtain a photograph at an acceleration voltage of 200 kV and a bright field at an observation magnification of 10,000 times. The film thickness was determined from the photograph taken.
(8)高屈折率層、低屈折率層、透明導電性薄膜層の屈折率
シリコンウェハー上に各層をそれぞれ同成膜条件にて作製した試料について分光エリプソメーター(大塚電子株式会社製、FE−5000)を用いて550nmの屈折率を評価した。また、各層を設けたフィルムの分光透過率測定データに対して光学シミュレーションソフトを用いてフィッティングを行い、屈折率を算出した。この際、各層の膜厚は前記膜厚評価方法により評価した値を用いた。さらにこのように算出した各層の屈折率がシリコンウェハー上の各層の屈折率と大差ないことを確認した。
(8) Refractive Index of High Refractive Index Layer, Low Refractive Index Layer, and Transparent Conductive Thin Film Layer A spectroscopic ellipsometer (FE- manufactured by Otsuka Electronics Co., Ltd., FE-) was prepared on each silicon wafer under the same film forming conditions. 5000) was used to evaluate the refractive index at 550 nm. The refractive index was calculated by fitting the spectral transmittance measurement data of the film provided with each layer using optical simulation software. At this time, the value evaluated by the film thickness evaluation method was used for the film thickness of each layer. Furthermore, it was confirmed that the refractive index of each layer calculated in this way was not significantly different from the refractive index of each layer on the silicon wafer.
〔実施例1〕
光重合開始剤含有紫外線硬化型アクリル系樹脂(大日精化工業社製、セイカビームEXF−01J)100質量部に、溶剤としてトルエン/MEK(80/20:質量比)の混合溶媒を、固形分濃度が50質量%になるように加え、撹拌して均一に溶解し塗布液を調製した。
[Example 1]
A mixed solvent of toluene / MEK (80/20: mass ratio) as a solvent was added to 100 parts by mass of a photopolymerization initiator-containing ultraviolet curable acrylic resin (manufactured by Dainichi Seika Kogyo Co., Ltd., Seika Beam EXF-01J). Was added so as to be 50% by mass, and stirred to dissolve uniformly to prepare a coating solution.
両面に易接着層を有する二軸配向透明PETフィルム(東洋紡績社製、A4340、厚み188μm)に、塗膜の厚みが5μmになるように、調製した塗布液を、マイヤーバーを用いて塗布した。80℃で1分間乾燥を行った後、紫外線照射装置(アイグラフィックス社製、UB042−5AM−W型)を用いて紫外線を照射(光量:300mJ/cm2)し、塗膜を硬化させた。次いで、反対面についても同様に塗膜を設けた後、180℃で1分間の加熱処理を施して、揮発成分の低減を行った。 The prepared coating solution was applied to a biaxially oriented transparent PET film (Toyobo Co., Ltd., A4340, thickness 188 μm) having an easy-adhesion layer on both sides using a Meyer bar so that the coating thickness was 5 μm. . After drying at 80 ° C. for 1 minute, the coating film was cured by irradiating with ultraviolet rays (light quantity: 300 mJ / cm 2 ) using an ultraviolet ray irradiation device (UB042-5AM-W type, manufactured by Eye Graphics Co., Ltd.). . Next, after a coating film was similarly provided on the opposite surface, a heat treatment was performed at 180 ° C. for 1 minute to reduce volatile components.
また、この硬化物層を積層した二軸配向透明PETフィルムを真空暴露するために、真空チェンバー中で巻き返し処理を行った。このときの圧力は0.002Paであり、暴露時間は20分とした。また、センターロールの温度は40℃とした。 Moreover, in order to expose the biaxially oriented transparent PET film on which the cured product layer was laminated in a vacuum, a rewinding process was performed in a vacuum chamber. The pressure at this time was 0.002 Pa, and the exposure time was 20 minutes. The temperature of the center roll was 40 ° C.
次に、この硬化物層上に高屈折率層としてインジウム−スズ複合酸化物からなる透明導電性薄膜を成膜した。このとき、スパッタリング前の圧力を0.0001Paとし、ターゲットとして酸化スズを36質量%含有した酸化インジウム(住友金属鉱山社製、密度6.9g/cm3)に用いて、2W/cm2のDC電力を印加した。また、Arガスを130sccm、O2ガスを表面抵抗値が最小となるO2流量の3倍の流速で流し、0.4Paの雰囲気下でDCマグネトロンスパッタリング法を用いて成膜した。ただし、通常のDCではなく、アーク放電を防止するために、日本イーエヌアイ製RPG−100を用いて5μs幅のパルスを50kHz周期で印加した。また、センターロール温度は0℃として、スパッタリングを行った。 Next, a transparent conductive thin film made of indium-tin composite oxide was formed as a high refractive index layer on the cured product layer. At this time, the pressure before sputtering was 0.0001 Pa, and the target was indium oxide containing 36% by mass of tin oxide (manufactured by Sumitomo Metal Mining Co., Ltd., density: 6.9 g / cm 3 ). DC of 2 W / cm 2 Power was applied. Further, Ar gas was flowed at 130 sccm, and O 2 gas was flowed at a flow rate three times the O 2 flow rate at which the surface resistance value was minimized, and a film was formed by DC magnetron sputtering in an atmosphere of 0.4 Pa. However, in order to prevent arc discharge instead of normal DC, a pulse with a width of 5 μs was applied at a frequency of 50 kHz using an RPG-100 manufactured by Nippon NI. The center roll temperature was 0 ° C. and sputtering was performed.
また、雰囲気の酸素分圧をスパッタプロセスモニター(LEYBOLD INFICON社製、XPR2)にて常時観測しながら、インジウム−スズ複合酸化物薄膜中の酸化度が一定になるように酸素ガスの流量計及びDC電源にフィートバックした。以上のようにして、厚さ10nmのインジウム−スズ複合酸化物からなる高屈折率層を堆積させた。このようにして得られた高屈折率層の表面抵抗値は1×106Ω/□以上であった。 Also, while constantly monitoring the oxygen partial pressure of the atmosphere with a sputtering process monitor (manufactured by LEYBOLD INFICON, XPR2), an oxygen gas flow meter and a DC are provided so that the degree of oxidation in the indium-tin composite oxide thin film becomes constant. I went back to power. As described above, a high refractive index layer made of an indium-tin composite oxide having a thickness of 10 nm was deposited. The surface resistance value of the high refractive index layer thus obtained was 1 × 10 6 Ω / □ or more.
さらに前記高屈折層上に低屈折率層としてSiO2薄膜を形成するため、シリコンをターゲットに用いて、直流マグネトロンスパッタリング法で、真空度を0.27Pa、ガスとしてArガスを500sccm、O2ガスを80sccmの流速で流した。また、基板の背面には0℃の冷却ロールを設けて、透明プラスチックフィルムを冷却した。このときのターゲットには7.8W/cm2の電力を供給し、ダイナミックレートは23nm・m/分であった。
また、成膜中の電圧値を常時観測しながら、電圧値が一定となるように酸素ガスの流量計にフィートバックした。以上のようにして、厚さ35nm、屈折率1.46の低屈折率層を堆積させた。
Further, in order to form a SiO 2 thin film as a low refractive index layer on the high refractive layer, a DC magnetron sputtering method using silicon as a target is performed with a vacuum degree of 0.27 Pa, a gas of Ar gas of 500 sccm, and an O 2 gas. At a flow rate of 80 sccm. Further, a 0 ° C. cooling roll was provided on the back surface of the substrate to cool the transparent plastic film. At this time, a power of 7.8 W / cm 2 was supplied to the target, and the dynamic rate was 23 nm · m / min.
Further, while constantly observing the voltage value during the film formation, the oxygen gas flow meter was footed back so that the voltage value was constant. As described above, a low refractive index layer having a thickness of 35 nm and a refractive index of 1.46 was deposited.
次に、この低屈折率層上にインジウム−スズ複合酸化物からなる透明導電性薄膜を成膜した。このとき、スパッタリング前の圧力を0.0001Paとし、ターゲットとして酸化スズを36質量%含有した酸化インジウム(住友金属鉱山社製、密度6.9g/cm3)に用いて、2W/cm2のDC電力を印加した。また、Arガスを130sccm、O2ガスを表面抵抗値が最小となる流速で流し、0.4Paの雰囲気下でDCマグネトロンスパッタリング法を用いて成膜した。ただし、通常のDCではなく、アーク放電を防止するために、日本イーエヌアイ製RPG−100を用いて5μs幅のパルスを50kHz周期で印加した。また、センターロール温度は10℃として、スパッタリングを行った。 Next, a transparent conductive thin film made of indium-tin composite oxide was formed on the low refractive index layer. At this time, the pressure before sputtering was 0.0001 Pa, and the target was indium oxide containing 36% by mass of tin oxide (manufactured by Sumitomo Metal Mining Co., Ltd., density: 6.9 g / cm 3 ). DC of 2 W / cm 2 Power was applied. Further, Ar gas was flowed at 130 sccm and O 2 gas was flowed at a flow velocity at which the surface resistance value was minimized, and a film was formed by DC magnetron sputtering in an atmosphere of 0.4 Pa. However, in order to prevent arc discharge instead of normal DC, a pulse with a width of 5 μs was applied at a frequency of 50 kHz using an RPG-100 manufactured by Nippon NI. The center roll temperature was 10 ° C. and sputtering was performed.
また、雰囲気の酸素分圧をスパッタプロセスモニター(LEYBOLD INFICON社製、XPR2)にて常時観測しながら、インジウム−スズ複合酸化物薄膜中の酸化度が一定になるように酸素ガスの流量計及びDC電源にフィートバックした。以上のようにして、厚さ15nm、屈折率1.96のインジウム−スズ複合酸化物からなる透明導電性薄膜を堆積させた。 Also, while constantly monitoring the oxygen partial pressure of the atmosphere with a sputtering process monitor (manufactured by LEYBOLD INFICON, XPR2), an oxygen gas flow meter and DC I went back to power. As described above, a transparent conductive thin film made of an indium-tin composite oxide having a thickness of 15 nm and a refractive index of 1.96 was deposited.
〔実施例2〕
透明導電性薄膜層の膜厚を25nmとする以外は実施例1と同様にして透明導電性積層フィルムを作製した。
[Example 2]
A transparent conductive laminated film was produced in the same manner as in Example 1 except that the thickness of the transparent conductive thin film layer was 25 nm.
〔実施例3〕
硬化物層に平均粒子径1.0μmのシリカ粒子を添加する以外は実施例1と同様にして透明導電性積層フィルムを作製した。
Example 3
A transparent conductive laminated film was produced in the same manner as in Example 1 except that silica particles having an average particle diameter of 1.0 μm were added to the cured product layer.
〔実施例4〕
硬化物層に平均粒子径10.0μmのシリカ粒子を添加する以外は実施例1と同様にして透明導電性積層フィルムを作製した。
Example 4
A transparent conductive laminated film was produced in the same manner as in Example 1 except that silica particles having an average particle diameter of 10.0 μm were added to the cured product layer.
〔比較例1〕
高屈折率層、低屈折率層を設けずに、透明導電性薄膜層の膜厚を22nmとした以外は実施例1と同様にして透明導電性積層フィルムを作製した。
〔比較例2〕
高屈折率層を設けない以外は実施例1と同様にして透明導電性積層フィルムを作製した。
[Comparative Example 1]
A transparent conductive laminated film was produced in the same manner as in Example 1 except that the film thickness of the transparent conductive thin film layer was changed to 22 nm without providing the high refractive index layer and the low refractive index layer.
[Comparative Example 2]
A transparent conductive laminated film was produced in the same manner as in Example 1 except that the high refractive index layer was not provided.
〔比較例3〕
低屈折率層の膜厚を10nmにした以外は実施例1と同様にして透明導電性積層フィルムを作製した。
〔比較例4〕
低屈折率層の膜厚を100nmにした以外は実施例1と同様にして透明導電性積層フィルムを作製した。
[Comparative Example 3]
A transparent conductive laminated film was produced in the same manner as in Example 1 except that the thickness of the low refractive index layer was 10 nm.
[Comparative Example 4]
A transparent conductive laminated film was produced in the same manner as in Example 1 except that the thickness of the low refractive index layer was 100 nm.
表1の結果より、本願発明の範囲を満足する実施例1〜4記載の透明導電性積層フィルムは、透明導電性薄膜層をパターニングしても、パターニングされた部分が強調されることがないため、液晶ディスプレイ等の表示体の前面に配置して用いた際に、視認性に優れるものであった。
一方、高屈折率層、低屈折率層が適切に配置されていない、又は膜厚が適切でない比較例1〜4に記載の透明導電性積層フィルムは、パターニングされた部分とされていない部分が見えるために視認性が劣った。
From the results shown in Table 1, the transparent conductive laminated films described in Examples 1 to 4 that satisfy the scope of the present invention are not emphasized even when the transparent conductive thin film layer is patterned. When used in the front of a display body such as a liquid crystal display, it was excellent in visibility.
On the other hand, the transparent conductive laminated film according to Comparative Examples 1 to 4 in which the high refractive index layer and the low refractive index layer are not properly arranged or the film thickness is not appropriate is a portion that is not a patterned portion. Visibility was inferior because it was visible.
本発明の透明導電性積層フィルムは、透明導電性薄膜層のパターニング部と非パターニング部の光学特性の差が小さく、液晶ディスプレイ等の表示体の前面に配置した際、視認性に優れるため、静電容量式のタッチパネル用の電極フィルムとして特に好適である。 The transparent conductive laminated film of the present invention has a small difference in optical properties between the patterned portion and the non-patterned portion of the transparent conductive thin film layer, and has excellent visibility when placed on the front surface of a display body such as a liquid crystal display. It is particularly suitable as an electrode film for a capacitive touch panel.
10:透明導電性積層フィルム
11:透明プラスチックフィルム(基材)
12:硬化物層
13:高屈折率層
14:低屈折率層
15:透明導電性薄膜層
20:誘電体層
10: Transparent conductive laminated film 11: Transparent plastic film (base material)
12: Cured material layer 13: High refractive index layer 14: Low refractive index layer 15: Transparent conductive thin film layer 20: Dielectric layer
Claims (6)
0.125mm幅くしの値/2mm幅くしの値≧0.7 (1) Image clarity of transmission method using 0.125mm optical comb specified by JIS K7105 (1999 edition) of transparent conductive laminated film and transmission method image clarity using 2.0mm optical comb The transparent conductive laminated film according to claim 1, wherein the degree ratio satisfies the following formula (1).
0.125 mm width comb value / 2 mm width comb value ≧ 0.7 (1)
0≦|T1−T0|≦1.0 (2)
0≦|b1−b0|≦1.0 (3)
(T1:透明導電性薄膜層を有する部分のフィルムの全光線透過率、
b1:透明導電性薄膜層を有する部分のフィルムのカラーb値、
T0:透明導電性薄膜層を有しない部分のフィルムの全光線透過率、
b0:透明導電性薄膜層を有しない部分のフィルムのカラーb値) The transparent characteristic difference of the optical characteristic of the part which has the transparent conductive thin film layer by patterning of the transparent conductive laminated film of Claim 5, and the part which does not have satisfy | fills following (2) Formula and (3) Formula, Conductive laminated film.
0 ≦ | T1-T0 | ≦ 1.0 (2)
0 ≦ | b1-b0 | ≦ 1.0 (3)
(T1: Total light transmittance of the film of the part having the transparent conductive thin film layer,
b1: Color b value of a film having a transparent conductive thin film layer,
T0: total light transmittance of a film of a portion not having the transparent conductive thin film layer,
b0: Color b value of the film of the portion not having the transparent conductive thin film layer)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008175497A JP2010015861A (en) | 2008-07-04 | 2008-07-04 | Transparent conductive laminate film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008175497A JP2010015861A (en) | 2008-07-04 | 2008-07-04 | Transparent conductive laminate film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010015861A true JP2010015861A (en) | 2010-01-21 |
Family
ID=41701786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008175497A Pending JP2010015861A (en) | 2008-07-04 | 2008-07-04 | Transparent conductive laminate film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010015861A (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011060617A (en) * | 2009-09-11 | 2011-03-24 | Toppan Printing Co Ltd | Transparent conductive laminate, method of manufacturing the same, and capacitance touch panel |
JP2011175900A (en) * | 2010-02-25 | 2011-09-08 | Toppan Printing Co Ltd | Transparent conductive laminate and method of manufacturing the same |
JP2011194679A (en) * | 2010-03-18 | 2011-10-06 | Toppan Printing Co Ltd | Transparent and conductive laminate, method for manufacturing same, and touch panel |
JP2012058956A (en) * | 2010-09-08 | 2012-03-22 | Sony Corp | Electrode film and coordinate detector |
JP2012103968A (en) * | 2010-11-11 | 2012-05-31 | Okura Ind Co Ltd | Transparent conductive film, base film for transparent conductive film and touch panel |
JP2012101544A (en) * | 2010-11-12 | 2012-05-31 | Bmc Co Ltd | Transparent conductive layered film, method for producing the same, and touch panel including the same |
JP2012103958A (en) * | 2010-11-11 | 2012-05-31 | Kitagawa Ind Co Ltd | Transparent conductive film |
JP2012118936A (en) * | 2010-12-03 | 2012-06-21 | Dainippon Printing Co Ltd | Touch panel sensor with transparent sheet |
JP2012146211A (en) * | 2011-01-13 | 2012-08-02 | Dainippon Printing Co Ltd | Touch panel sensor with transparent sheet |
WO2012108068A1 (en) | 2011-02-07 | 2012-08-16 | ソニー株式会社 | Transparent conductive element, input device, electronic device, and master board for producing transparent conductive element |
WO2013069162A1 (en) | 2011-11-11 | 2013-05-16 | 株式会社カネカ | Substrate with transparent electrode, method for producing same, and touch panel |
KR20130062880A (en) | 2011-12-05 | 2013-06-13 | 닛토덴코 가부시키가이샤 | Pressure-sensitive adhesive layer for transparent conductive film, transparent conductive film with pressure-sensitive adhesive layer, transparent conductive laminate, and touch panel |
CN103262013A (en) * | 2010-12-15 | 2013-08-21 | 日东电工株式会社 | Transparent electroconductive film with pressure-ensitive adhesive layer, process for producing same, and touch panel |
US8568603B2 (en) | 2011-08-24 | 2013-10-29 | Nitto Denko Corporation | Method of manufacturing transparent conductive film |
KR20140045934A (en) | 2011-08-11 | 2014-04-17 | 도레이 카부시키가이샤 | Laminate, transparent conductive laminate, touch panel, and method for producing laminate |
WO2014167835A1 (en) * | 2013-04-08 | 2014-10-16 | コニカミノルタ株式会社 | Translucent conductor |
KR20150013638A (en) | 2012-05-17 | 2015-02-05 | 가부시키가이샤 가네카 | Substrate with transparent electrode, method for manufacturing same, and touch panel |
KR20150022765A (en) | 2012-06-06 | 2015-03-04 | 도레이 카부시키가이샤 | Laminated body, conductive laminated body, touch panel, coating composition, and method for manufacturing laminated body that uses said coating composition |
US20150169110A1 (en) * | 2013-12-18 | 2015-06-18 | Lg Innotek Co., Ltd. | Touch window |
JP5745037B2 (en) * | 2011-04-20 | 2015-07-08 | 積水ナノコートテクノロジー株式会社 | Optical adjustment film and transparent conductive film using the same |
JP2016153963A (en) * | 2015-02-20 | 2016-08-25 | 大日本印刷株式会社 | Touch panel |
KR20160137976A (en) | 2014-03-25 | 2016-12-02 | 도레이 카부시키가이샤 | Laminate, transparent conductive laminate, and touch panel |
US9513747B2 (en) | 2010-11-04 | 2016-12-06 | Nitto Denko Corporation | Transparent conductive film and touch panel |
US9588606B2 (en) | 2011-08-24 | 2017-03-07 | Nitto Denko Corporation | Transparent conductive film and manufacturing method therefor |
CN109387966A (en) * | 2017-08-14 | 2019-02-26 | 株式会社凸版巴川光学薄膜 | Transparent conductive film, the touch panel including the transparent conductive film |
KR20200035350A (en) | 2018-09-26 | 2020-04-03 | 아라까와 가가꾸 고교 가부시끼가이샤 | Active energy ray-curable resin composition, cured product and laminate |
KR20220033454A (en) | 2020-09-09 | 2022-03-16 | 산요 시키소 가부시키가이샤 | Metal oxide fine particle dispersion and curable composition including the same |
-
2008
- 2008-07-04 JP JP2008175497A patent/JP2010015861A/en active Pending
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011060617A (en) * | 2009-09-11 | 2011-03-24 | Toppan Printing Co Ltd | Transparent conductive laminate, method of manufacturing the same, and capacitance touch panel |
JP2011175900A (en) * | 2010-02-25 | 2011-09-08 | Toppan Printing Co Ltd | Transparent conductive laminate and method of manufacturing the same |
JP2011194679A (en) * | 2010-03-18 | 2011-10-06 | Toppan Printing Co Ltd | Transparent and conductive laminate, method for manufacturing same, and touch panel |
JP2012058956A (en) * | 2010-09-08 | 2012-03-22 | Sony Corp | Electrode film and coordinate detector |
CN102446577A (en) * | 2010-09-08 | 2012-05-09 | 索尼公司 | Electrode film and coordinate detecting apparatus |
US9513747B2 (en) | 2010-11-04 | 2016-12-06 | Nitto Denko Corporation | Transparent conductive film and touch panel |
JP2012103968A (en) * | 2010-11-11 | 2012-05-31 | Okura Ind Co Ltd | Transparent conductive film, base film for transparent conductive film and touch panel |
JP2012103958A (en) * | 2010-11-11 | 2012-05-31 | Kitagawa Ind Co Ltd | Transparent conductive film |
JP2012101544A (en) * | 2010-11-12 | 2012-05-31 | Bmc Co Ltd | Transparent conductive layered film, method for producing the same, and touch panel including the same |
JP2012118936A (en) * | 2010-12-03 | 2012-06-21 | Dainippon Printing Co Ltd | Touch panel sensor with transparent sheet |
CN103262013A (en) * | 2010-12-15 | 2013-08-21 | 日东电工株式会社 | Transparent electroconductive film with pressure-ensitive adhesive layer, process for producing same, and touch panel |
JP2012146211A (en) * | 2011-01-13 | 2012-08-02 | Dainippon Printing Co Ltd | Touch panel sensor with transparent sheet |
US8741424B2 (en) | 2011-02-07 | 2014-06-03 | Dexerials Corporation | Transparent conductive element, input device, electronic device, and master for fabrication of transparent conductive element |
WO2012108068A1 (en) | 2011-02-07 | 2012-08-16 | ソニー株式会社 | Transparent conductive element, input device, electronic device, and master board for producing transparent conductive element |
US9119305B2 (en) | 2011-02-07 | 2015-08-25 | Dexerials Corporation | Transparent conductive element, input device, electronic device, and master for fabrication of transparent conductive element |
JP5745037B2 (en) * | 2011-04-20 | 2015-07-08 | 積水ナノコートテクノロジー株式会社 | Optical adjustment film and transparent conductive film using the same |
KR20140045934A (en) | 2011-08-11 | 2014-04-17 | 도레이 카부시키가이샤 | Laminate, transparent conductive laminate, touch panel, and method for producing laminate |
US9588606B2 (en) | 2011-08-24 | 2017-03-07 | Nitto Denko Corporation | Transparent conductive film and manufacturing method therefor |
US8568603B2 (en) | 2011-08-24 | 2013-10-29 | Nitto Denko Corporation | Method of manufacturing transparent conductive film |
US9406415B2 (en) | 2011-08-24 | 2016-08-02 | Nitto Denko Corporation | Method of manufacturing transparent conductive film |
US9198287B2 (en) | 2011-11-11 | 2015-11-24 | Kaneka Corporation | Substrate with transparent electrode, method for manufacturing thereof, and touch panel |
WO2013069162A1 (en) | 2011-11-11 | 2013-05-16 | 株式会社カネカ | Substrate with transparent electrode, method for producing same, and touch panel |
US9527944B2 (en) | 2011-12-05 | 2016-12-27 | Nitto Denko Corporation | Pressure-sensitive adhesive layer for transparent conductive film, transparent conductive film with pressure-sensitive adhesive layer, transparent conductive laminate, and touch panel |
KR20130062880A (en) | 2011-12-05 | 2013-06-13 | 닛토덴코 가부시키가이샤 | Pressure-sensitive adhesive layer for transparent conductive film, transparent conductive film with pressure-sensitive adhesive layer, transparent conductive laminate, and touch panel |
KR20150013638A (en) | 2012-05-17 | 2015-02-05 | 가부시키가이샤 가네카 | Substrate with transparent electrode, method for manufacturing same, and touch panel |
US9696751B2 (en) | 2012-05-17 | 2017-07-04 | Kaneka Corporation | Substrate with transparent electrode, method for manufacturing same, and touch panel |
US20150145816A1 (en) * | 2012-05-17 | 2015-05-28 | Kaneka Corporation | Substrate with transparent electrode, method for manufacturing same, and touch panel |
US9200174B2 (en) | 2012-06-06 | 2015-12-01 | Toray Industries, Inc. | Laminated body, conductive laminated body, touch panel, coating composition and method of manufacturing laminated body that uses the coating |
KR20150022765A (en) | 2012-06-06 | 2015-03-04 | 도레이 카부시키가이샤 | Laminated body, conductive laminated body, touch panel, coating composition, and method for manufacturing laminated body that uses said coating composition |
JPWO2014167835A1 (en) * | 2013-04-08 | 2017-02-16 | コニカミノルタ株式会社 | Transparent conductor |
WO2014167835A1 (en) * | 2013-04-08 | 2014-10-16 | コニカミノルタ株式会社 | Translucent conductor |
US9823793B2 (en) * | 2013-12-18 | 2017-11-21 | Lg Innotek Co., Ltd. | Touch window |
US20150169110A1 (en) * | 2013-12-18 | 2015-06-18 | Lg Innotek Co., Ltd. | Touch window |
KR20160137976A (en) | 2014-03-25 | 2016-12-02 | 도레이 카부시키가이샤 | Laminate, transparent conductive laminate, and touch panel |
JP2016153963A (en) * | 2015-02-20 | 2016-08-25 | 大日本印刷株式会社 | Touch panel |
CN109387966A (en) * | 2017-08-14 | 2019-02-26 | 株式会社凸版巴川光学薄膜 | Transparent conductive film, the touch panel including the transparent conductive film |
KR20200035350A (en) | 2018-09-26 | 2020-04-03 | 아라까와 가가꾸 고교 가부시끼가이샤 | Active energy ray-curable resin composition, cured product and laminate |
KR20220033454A (en) | 2020-09-09 | 2022-03-16 | 산요 시키소 가부시키가이샤 | Metal oxide fine particle dispersion and curable composition including the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4844692B2 (en) | Transparent conductive laminated film | |
JP2010015861A (en) | Transparent conductive laminate film | |
JP4661995B2 (en) | Transparent conductive laminated film | |
JP5287201B2 (en) | Transparent conductive laminated film | |
JP4775728B2 (en) | Production apparatus and production method for transparent conductive film | |
JP4640535B1 (en) | Transparent conductive film and touch panel using the same | |
JP5556436B2 (en) | Transparent conductive laminated film, transparent conductive laminated sheet, and touch panel | |
JP5229108B2 (en) | Transparent conductive laminated film, transparent conductive laminated sheet, and touch panel | |
JP4888604B2 (en) | Transparent conductive laminated film | |
JPWO2013081106A1 (en) | Transparent conductive film | |
JP4697450B2 (en) | Transparent conductive film or transparent conductive sheet, and touch panel using the same | |
JP5481992B2 (en) | Transparent conductive film | |
JP2023038265A (en) | Transparent electroconductive film | |
TWI397926B (en) | Transparent electrically conductive film and touch panel using the same | |
WO2007013220A1 (en) | Transparent electrically conductive film, transparent electrically conductive sheet, and touch panel | |
JP2009283348A (en) | Transparent conductive film, and touch panel using the same | |
WO2022049898A1 (en) | Transparent conductive film | |
JP5509683B2 (en) | Transparent conductive film | |
TW201114602A (en) | Transparent electrically conductive laminated film | |
JP2001273817A (en) | Transparent conductive film, transparent conductive sheet and touch panel |