JP4888604B2 - Transparent conductive laminated film - Google Patents

Transparent conductive laminated film Download PDF

Info

Publication number
JP4888604B2
JP4888604B2 JP2010546985A JP2010546985A JP4888604B2 JP 4888604 B2 JP4888604 B2 JP 4888604B2 JP 2010546985 A JP2010546985 A JP 2010546985A JP 2010546985 A JP2010546985 A JP 2010546985A JP 4888604 B2 JP4888604 B2 JP 4888604B2
Authority
JP
Japan
Prior art keywords
transparent conductive
film
thin film
conductive thin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010546985A
Other languages
Japanese (ja)
Other versions
JPWO2011046094A1 (en
Inventor
英生 村上
央 多々見
寿幸 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2010546985A priority Critical patent/JP4888604B2/en
Application granted granted Critical
Publication of JP4888604B2 publication Critical patent/JP4888604B2/en
Publication of JPWO2011046094A1 publication Critical patent/JPWO2011046094A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0042Controlling partial pressure or flow rate of reactive or inert gases with feedback of measurements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact

Description

本発明は透明プラスチックフィルムからなる基材上の少なくとも一方の面に、少なくとも1層の誘電体層及び透明導電性薄膜層をこの順で積層した透明導電性フィルムに関するものである。特にペン摺動耐久性に優れ、かつ透明導電性薄膜をパターニングする際のエッチングインキとの相性に優れるため、加工工程の簡素化および環境負荷を低減できる透明導電性積層フィルムに関するものである。   The present invention relates to a transparent conductive film in which at least one dielectric layer and a transparent conductive thin film layer are laminated in this order on at least one surface of a substrate made of a transparent plastic film. In particular, the present invention relates to a transparent conductive laminated film that is excellent in pen sliding durability and excellent in compatibility with etching ink when patterning a transparent conductive thin film, so that the processing steps can be simplified and the environmental load can be reduced.

透明プラスチックフィルムからなる基材上に、透明でかつ抵抗が小さい薄膜を積層した透明導電性フィルムは、その導電性を利用した用途、例えば、液晶ディスプレイやエレクトロルミネッセンス(ELと略記される場合がある)ディスプレイなどのようなフラットパネルディスプレイや、抵抗膜式タッチパネルの透明電極など、電気、電子分野の用途に広く使用されている。   A transparent conductive film obtained by laminating a transparent thin film with low resistance on a substrate made of a transparent plastic film is used for applications utilizing the conductivity, for example, a liquid crystal display or electroluminescence (EL may be abbreviated as EL). ) Widely used in electrical and electronic fields such as flat panel displays such as displays and transparent electrodes of resistive touch panels.

近年、携帯情報端末やタッチパネル付きノートパソコンの普及により、最近では従来以上のペン摺動耐久性に優れたタッチパネルが要求されるようになってきた。タッチパネルにペン入力する際、固定電極側の透明導電性薄膜と可動電極(フィルム電極)側の透明導電性薄膜同士が接触するが、この際にペン荷重で透明導電性薄膜にクラック、剥離等の破壊が生じない、優れたペン摺動耐久性を有する透明導電性フィルムが要望されている。
ペン摺動耐久性を向上させる手段として、可動電極(フィルム電極)側の透明導電性薄膜を結晶質にする方法がある(特許文献1〜4)。
In recent years, with the widespread use of portable information terminals and notebook personal computers with touch panels, recently touch panels with superior pen sliding durability have been required. When a pen is input to the touch panel, the transparent conductive thin film on the fixed electrode side and the transparent conductive thin film on the movable electrode (film electrode) side come into contact with each other. At this time, the transparent conductive thin film is cracked or peeled off by the pen load. There is a demand for a transparent conductive film having excellent pen sliding durability that does not break.
As means for improving pen sliding durability, there is a method in which the transparent conductive thin film on the movable electrode (film electrode) side is made crystalline (Patent Documents 1 to 4).

またこのようなタッチパネルにおいては透明導電性薄膜層がパターニングされて使用される。
従来、透明導電性薄膜層のパターニングはフォトリソグラフィー法やレーザーエッチング法で行われていた。しかしながらフォトリソグラフィー法では透明導電性薄膜層を残す部分にフォトレジストの印刷、光照射、酸への浸漬、続いてアルカリ溶液に浸漬と工程数が多く大掛かりな装置が必要であった。さらに酸やアルカリなどの廃液処理は環境問題の観点から好ましくない。
一方、レーザーエッチング法では廃液処理の問題はないものの、設備が大掛かりであり、また加工速度が遅いため大面積の処理やパターニング数が多くなると実用上問題が生じていた。
上記問題を解決するためにエッチングインキが開発された(例えばMerck社製、isishape HiperEtch)。エッチングインキの特徴は簡素な工程(印刷、加熱、洗浄、乾燥)と環境負荷の低減である。
このためエッチングインキに対応できる透明導電性フィルムの開発が望まれている。
In such a touch panel, a transparent conductive thin film layer is used after being patterned.
Conventionally, patterning of a transparent conductive thin film layer has been performed by a photolithography method or a laser etching method. However, the photolithographic method requires a large-scale apparatus with a large number of steps, such as printing of photoresist on the portion where the transparent conductive thin film layer is left, light irradiation, immersion in acid, and subsequent immersion in an alkaline solution. Furthermore, waste liquid treatment such as acid and alkali is not preferable from the viewpoint of environmental problems.
On the other hand, although there is no problem of waste liquid treatment in the laser etching method, the equipment is large and the processing speed is slow, so that a large area treatment and a large number of patterning have caused practical problems.
Etching inks have been developed to solve the above problems (for example, ishipe HiperEch, manufactured by Merck). The characteristics of etching ink are simple processes (printing, heating, washing, drying) and reduction of environmental load.
Therefore, development of a transparent conductive film that can be used for etching ink is desired.

特開2000−144379号公報JP 2000-144379 A 特開2000−238178号公報JP 2000-238178 A 特開2004−71171号公報JP 2004-71171 A 国際公開WO2000/051139International Publication WO2000 / 051139

すなわち、本発明の目的は、上記の従来の問題点に鑑み、ペン摺動耐久性に優れ、かつエッチングインキとの相性に優れた透明導電性積層フィルムを提供することにある。   That is, an object of the present invention is to provide a transparent conductive laminated film excellent in pen sliding durability and excellent in compatibility with etching ink in view of the above-mentioned conventional problems.

本発明は、上記のような状況に鑑みなされたものであって、上記の課題を解決することができた透明導電性積層フィルムとは、以下の構成よりなる。
1.透明プラスチックフィルムからなる基材上の少なくとも一方の面に、少なくとも1層の誘電体層及び透明導電性薄膜層をこの順に積層した積層フィルムであって、誘電体層の膜厚が3〜100nmであり、透明プラスチックフィルム基材上の少なくとも一方の面に結晶質の酸化インジウムを主とした透明導電性薄膜層を成膜するに際し、スパッタリング時の成膜雰囲気の不活性ガスに対する水分圧の比を8.0×10 −4 〜3.0×10 −3 とし、かつ酸素分圧を8.0×10 −3 〜30×10 −3 Paとして、かつ成膜中はフィルム温度を80℃以下に保持して透明プラスチックフィルム上に透明導電性薄膜層が成膜されてなり、透明導電性薄膜の厚みが、10〜100nmであり、透明導電性薄膜層が酸化スズの含有率が0.5〜8質量%であるインジウム−スズ複合酸化物であり、平均結晶粒径が30〜1000nmであり、かつ透明導電性薄膜の結晶質部に対する非晶質部の比が0.00〜0.50であることを特徴とする透明導電性積層フィルム。
2.透明導電性薄膜層を製膜後に熱処理されていないことを特徴とする上記1に記載の透明導電性積層フィルム。
This invention is made | formed in view of the above situations, Comprising: The transparent conductive laminated film which was able to solve said subject consists of the following structures.
1. A laminated film in which at least one dielectric layer and a transparent conductive thin film layer are laminated in this order on at least one surface of a substrate made of a transparent plastic film, and the thickness of the dielectric layer is 3 to 100 nm . When forming a transparent conductive thin film layer mainly composed of crystalline indium oxide on at least one surface of a transparent plastic film substrate, the ratio of moisture pressure to inert gas in the film formation atmosphere during sputtering is 8.0 × 10 −4 to 3.0 × 10 −3 , oxygen partial pressure is set to 8.0 × 10 −3 to 30 × 10 −3 Pa, and the film temperature is set to 80 ° C. or less during film formation A transparent conductive thin film layer is formed on the transparent plastic film, the thickness of the transparent conductive thin film is 10 to 100 nm, and the transparent conductive thin film layer has a tin oxide content of 0.5 to 0.5. 8 quality % A is indium - a tin composite oxide, the average crystal grain diameter of 30 to 1000 nm, and the ratio of the amorphous portion to the crystalline portion of the transparent conductive thin film is 0.00 to 0.50 A transparent conductive laminated film characterized by
2. 2. The transparent conductive laminated film according to 1 above, wherein the transparent conductive thin film layer is not heat-treated after film formation.

本発明の透明導電性積層フィルムは、透明プラスチックフィルムからなる基材上の少なくとも一方の面に、少なくとも1層以上の誘電体層及び透明導電性薄膜層の順に積層した構成を有し、ペン摺動耐久性に優れるとともに、エッチングインキで容易に透明導電性薄膜層をパターニングできる。   The transparent conductive laminated film of the present invention has a structure in which at least one dielectric layer and a transparent conductive thin film layer are laminated in this order on at least one surface on a substrate made of a transparent plastic film. In addition to excellent dynamic durability, the transparent conductive thin film layer can be easily patterned with etching ink.

本発明の透明導電性積層フィルムの説明図である。It is explanatory drawing of the transparent conductive laminated film of this invention.

<透明導電性薄膜層の酸化インジウムの結晶形態及び特性>
本発明の透明導電性積層フィルムは、透明プラスチックフィルム基材上の少なくとも一方の面に、少なくとも1層以上の誘電体層及び結晶質の酸化インジウムを主とした透明導電性薄膜層が積層された透明導電性積層フィルムであって、透明導電性薄膜層の酸化インジウムの平均結晶粒径が30〜1000nmであり、かつ透明導電性薄膜層の結晶質部に対する非晶質部の比が0.00〜0.50である。
<Crystal morphology and characteristics of indium oxide in transparent conductive thin film layer>
In the transparent conductive laminated film of the present invention, at least one dielectric layer and a transparent conductive thin film layer mainly composed of crystalline indium oxide are laminated on at least one surface on a transparent plastic film substrate. A transparent conductive laminated film, wherein the transparent conductive thin film layer has an indium oxide average crystal grain size of 30 to 1000 nm, and the ratio of the amorphous part to the crystalline part of the transparent conductive thin film layer is 0.00 ~ 0.50.

ここで結晶質の酸化インジウム、および透明導電性薄膜の酸化インジウムの平均結晶粒径の定義は次の通りである。
透過型電子顕微鏡下で透明導電性薄膜層を観察したときに、多角形状の領域を持つものを結晶質の酸化インジウムと定義する。また、その多角形状の領域を酸化インジウムの結晶粒とし、すべての結晶粒の面積を出す。結晶粒の面積を円周率πで割った値の平方根を2倍した値を結晶粒径とする。すべての結晶粒の結晶粒径から平均結晶粒径を計算する。
また、透明導電性薄膜層の酸化インジウムの結晶質部に対する非晶質部の比は、透過型電子顕微鏡下で観察したときの結晶質部と非晶質部の面積比から算出する。なお、透明導電性薄膜層の酸化インジウムの結晶質部は透過型電子顕微鏡下で透明導電性薄膜層を観察したときに、多角形状の領域を持つものを結晶質部の酸化インジウムと定義し、残りの部分を非晶質部と定義する。
Here, the definition of the average crystal grain size of crystalline indium oxide and indium oxide of the transparent conductive thin film is as follows.
When the transparent conductive thin film layer is observed under a transmission electron microscope, the one having a polygonal region is defined as crystalline indium oxide. Further, the polygonal region is made of indium oxide crystal grains, and the area of all crystal grains is obtained. The value obtained by doubling the square root of the value obtained by dividing the area of the crystal grain by the circumference ratio π is defined as the crystal grain size. The average grain size is calculated from the grain size of all the grains.
The ratio of the amorphous part to the crystalline part of indium oxide in the transparent conductive thin film layer is calculated from the area ratio of the crystalline part and the amorphous part when observed under a transmission electron microscope. In addition, when the transparent conductive thin film layer is observed under a transmission electron microscope, the crystalline portion of indium oxide of the transparent conductive thin film layer is defined as a crystalline portion of indium oxide having a polygonal region, The remaining part is defined as an amorphous part.

本発明における透明導電性薄膜層の酸化インジウムの平均結晶粒径は30〜1000nmである。特に好ましくは35〜800nmである。平均結晶粒径が30nmより小さいときは結晶粒同士の結合力が弱いためペン摺動耐久性が悪化する。逆に、平均結晶粒径が1000nmを超えると耐屈曲性が悪化するため、可撓性が低下しプラスチックフィルム基材に透明導電性薄膜層を形成する意味を著しく逸する。   The average crystal grain size of indium oxide in the transparent conductive thin film layer in the present invention is 30 to 1000 nm. Especially preferably, it is 35-800 nm. When the average crystal grain size is smaller than 30 nm, the pen sliding durability is deteriorated because the bonding force between the crystal grains is weak. On the contrary, when the average crystal grain size exceeds 1000 nm, the bending resistance deteriorates, so that the flexibility is lowered and the meaning of forming the transparent conductive thin film layer on the plastic film substrate is remarkably lost.

本発明における透明導電性薄膜層における酸化インジウムの結晶質部に対する非晶質部の比は、0.00〜0.50であり、好ましくは0.00〜0.45である。前記の比が0.50より大きいと、結晶粒が非晶部の中に島状に浮いているような状態をとる。このような状態では、ペン摺動耐久試験を行った際に、非晶部分がまず剥離し、その部分をきっかけにして結晶粒も剥離し、透明導電性薄膜層が破壊されてしまう。
前記の比が0.50以下であれば、結晶粒が非晶部の中に島状に浮いているような状態はとらず、結晶粒同士がすべてつながっている状態をとる。このような状態であれば、ペン摺動耐久試験を行っても、結晶粒同士でお互いを支えあうので、ペン摺動耐久性が非常に高いものが得られる。
The ratio of the amorphous part to the crystalline part of indium oxide in the transparent conductive thin film layer in the present invention is 0.00 to 0.50, preferably 0.00 to 0.45. When the ratio is larger than 0.50, the crystal grains are in an island shape in the amorphous part. In such a state, when the pen sliding durability test is performed, the amorphous part is first peeled off, and the crystal grain is also peeled off using the part as a trigger, and the transparent conductive thin film layer is destroyed.
If the ratio is 0.50 or less, the crystal grains are not floating in the form of islands in the amorphous part, and the crystal grains are all connected. In such a state, even if the pen sliding durability test is performed, the crystal grains support each other, so that a pen sliding durability is extremely high.

さらに、本発明における透明導電性積層フィルムは、上記透明導電性薄膜層と透明プラスチックフィルムからなる基材の間に少なくとも1層以上の誘電体層を有するため、エッチングインキと透明プラスチックフィルム基材が直接接することがないため、洗浄工程で容易にエッチングインキを除去できる。   Furthermore, since the transparent conductive laminated film according to the present invention has at least one dielectric layer between the transparent conductive thin film layer and the base made of the transparent plastic film, the etching ink and the transparent plastic film base are Since there is no direct contact, the etching ink can be easily removed in the cleaning process.

<透明導電性薄膜層の成膜方法>
本発明の透明導電性積層フィルムにおいて透明導電性薄膜層を成膜する方法としては、以下の方法〔1〕、〔2〕が望ましい。
〔1〕透明プラスチックフィルム基材上の少なくとも一方の面に結晶質の酸化インジウムを主とした透明導電性薄膜層を成膜する方法において、スパッタリング時の成膜雰囲気の不活性ガスに対する水分圧の比が8.0×10−4〜3.0×10−3とし、かつ酸素分圧は8.0×10−3〜30×10−3Paとして、かつ成膜中はフィルム温度を80℃以下に保持して透明プラスチックフィルム上に透明導電性薄膜層を成膜することが望ましい。
<Method for forming transparent conductive thin film layer>
As a method for forming a transparent conductive thin film layer in the transparent conductive laminated film of the present invention, the following methods [1] and [2] are desirable.
[1] In a method of forming a transparent conductive thin film layer mainly composed of crystalline indium oxide on at least one surface on a transparent plastic film substrate, The ratio is 8.0 × 10 −4 to 3.0 × 10 −3 , the oxygen partial pressure is 8.0 × 10 −3 to 30 × 10 −3 Pa, and the film temperature is 80 ° C. during film formation. It is desirable to form a transparent conductive thin film layer on the transparent plastic film while maintaining the following.

成膜雰囲気に水が含まれると、透明導電性薄膜層の結晶質化を阻害することが知られている。そのため、成膜雰囲気中の水分量は重要な因子である。プラスチックフィルムに成膜する時の水分量の制御には、実際に成膜時の水分量を観測することが望ましい。成膜雰囲気中の水分量の制御に到達真空度を使うのは以下の2点の通り不適である。
まず1点目として、スパッタリングで、プラスチックフィルムに成膜をすると、フィルムが加熱され成膜雰囲気中の水分量が増加してしまい、到達真空度を測定したときの水分量より増加する。
It is known that when water is contained in the film formation atmosphere, the transparent conductive thin film layer is inhibited from being crystallized. Therefore, the amount of moisture in the film formation atmosphere is an important factor. In order to control the amount of water when forming a film on a plastic film, it is desirable to actually observe the amount of water during film formation. Using the ultimate vacuum to control the amount of water in the film formation atmosphere is inappropriate as described below.
First, when a film is formed on a plastic film by sputtering, the film is heated and the amount of water in the film forming atmosphere increases, which is higher than the amount of water when the ultimate vacuum is measured.

2点目は、大量に透明プラスチックフィルムを投入する装置での場合である。このような装置ではフィルムをロールで投入する。フィルムをロールにして真空槽に投入するとロールの巻き外部分は水が抜けやすいが、ロールの巻き内部分は水が抜けにくい。到達真空度を測定するとき、フィルムロールは停止しているが、成膜時にはフィルムロールが走行するため、水を多く含むロールの巻き内部分が巻き出されてくるため、成膜雰囲気中の水分量が増加し、到達真空度を測定したときの水分量より増加する。本発明においては成膜雰囲気中の水分量の制御に当たって、スパッタリング時の成膜雰囲気の不活性ガスに対する水分圧の比を観測することで対応する。   The second point is the case of an apparatus that puts a large amount of transparent plastic film. In such an apparatus, the film is loaded by a roll. When a film is rolled and put into a vacuum chamber, water easily escapes from the outside of the roll, but water does not easily escape from the inside of the roll. When the ultimate vacuum is measured, the film roll is stopped, but the film roll travels during film formation, so that the inner part of the roll containing a lot of water is unwound, so moisture in the film formation atmosphere The amount increases and exceeds the amount of water when the ultimate vacuum is measured. In the present invention, in controlling the amount of moisture in the film forming atmosphere, the ratio of the water pressure to the inert gas in the film forming atmosphere during sputtering is measured.

スパッタリング時の成膜雰囲気の不活性ガスに対する水分圧の比はなるべく低い方が望ましいが、成膜室内に大量に透明プラスチックフィルムを投入する装置では特許文献11に記載があるような不活性ガスに対する水分圧の比を2.5×10−6〜7.0×10−4にするためには長時間の真空引きを実施するか、もしくは非常に能力の高い真空ポンプが必要であり、経済的な実施が難しくなる。The ratio of the moisture pressure to the inert gas in the film formation atmosphere during sputtering is desirably as low as possible. However, in an apparatus in which a large amount of transparent plastic film is introduced into the film formation chamber, the ratio to the inert gas as described in Patent Document 11 is used. In order to make the water pressure ratio 2.5 × 10 −6 to 7.0 × 10 −4 , it is necessary to carry out a vacuum for a long time or a highly efficient vacuum pump is required, which is economical. Implementation becomes difficult.

本発明は成膜室内に大量に透明プラスチックフィルムを投入する装置においても容易に実現可能な不活性ガスに対する水分圧の比においても結晶質部を有し、非常に優れたペン摺動耐久性を持つ製造方法を見出した。不活性ガスに対する水分圧の比として8.0×10−4〜3.0×10−3は容易に実現可能な値である。この状態において酸素分圧を8.0×10−3〜30×10−3Paにして成膜を行うと結晶質部を有する透明導電性薄膜層ができ、非常に優れたペン摺動耐久性を持つ透明導電性積層フィルムを得る事ができる。The present invention has a crystalline part in the ratio of moisture pressure to inert gas that can be easily realized even in an apparatus that puts a large amount of transparent plastic film into a film forming chamber, and has excellent pen sliding durability. I found a manufacturing method. The ratio of the moisture pressure to the inert gas is 8.0 × 10 −4 to 3.0 × 10 −3 that can be easily realized. In this state, when a film is formed with an oxygen partial pressure of 8.0 × 10 −3 to 30 × 10 −3 Pa, a transparent conductive thin film layer having a crystalline portion can be formed, and extremely excellent pen sliding durability A transparent conductive laminated film having the above can be obtained.

前記の酸素分圧の範囲は、大変特異である。一般的には抵抗値が一番低くなる酸素分圧で透明導電性薄膜層を作製するが、本発明においては抵抗値が一番低くなるところよりも高い酸素分圧で成膜することを特徴としている。
酸素分圧を高い値にする意図は次の通りである。酸素分圧を高い状態で成膜すると、酸化インジウムの酸素欠損部分が補われるために、非常にエネルギー的に安定した結晶構造を持つ膜が得られることになる。
その結果、透明プラスチック基材上で結晶粒の発生確率が増大し、さらには結晶成長が容易になるために、非常に優れたペン摺動耐久性を発現することになる。ただし、酸素分圧を30×10−3Paより大きくすると表面抵抗が実用的な水準を超えてしまうので望ましくない。ここで表面抵抗の実用的な水準は、50〜1000Ω/□程度である。
The range of the oxygen partial pressure is very unique. In general, a transparent conductive thin film layer is produced at an oxygen partial pressure at which the resistance value is lowest, but in the present invention, the film is formed at an oxygen partial pressure higher than that at which the resistance value is lowest. It is said.
The intention of increasing the oxygen partial pressure is as follows. When the film is formed with a high oxygen partial pressure, the oxygen deficient portion of indium oxide is compensated, so that a film having a crystal structure that is very energetically stable can be obtained.
As a result, the probability of generation of crystal grains on the transparent plastic substrate is increased, and further, crystal growth is facilitated, so that very excellent pen sliding durability is exhibited. However, if the oxygen partial pressure is higher than 30 × 10 −3 Pa, the surface resistance exceeds a practical level, which is not desirable. Here, a practical level of surface resistance is about 50 to 1000 Ω / □.

また、成膜中は基板温度を80℃以下に保持して基板上に透明導電性薄膜層を形成することが望ましい。80℃以上にするとフィルムからの水、有機ガス等の不純物ガスが大量に発生するため結晶質部を有する透明導電性薄膜層の成膜、すなわちペン摺動耐久性が優れた透明導電性薄膜層の成膜を阻害する。   Further, it is desirable to form the transparent conductive thin film layer on the substrate while keeping the substrate temperature at 80 ° C. or lower during the film formation. When the temperature is higher than 80 ° C., a large amount of impurity gas such as water and organic gas is generated from the film. Therefore, the transparent conductive thin film layer having a crystalline part, that is, a transparent conductive thin film layer having excellent pen sliding durability Hinders film formation.

〔2〕透明プラスチックフィルム基材上の少なくとも一方の面に結晶質の酸化インジウムを主とした透明導電性薄膜層を成膜するには、イオンアシスト法やイオンプレーティング法等の活性化支援法やハイパワーインパルスマグネトロンスパッタリング法を用いてフィルムへ透明導電性薄膜層を成膜することが望ましい。結晶粒を形成するためには、蒸発原子の持つエネルギーが必要である。 [2] In order to form a transparent conductive thin film layer mainly composed of crystalline indium oxide on at least one surface on a transparent plastic film substrate, an activation support method such as an ion assist method or an ion plating method is used. It is desirable to form a transparent conductive thin film layer on the film using a high power impulse magnetron sputtering method. In order to form crystal grains, the energy of evaporated atoms is necessary.

前記の手法は、通常の成膜手法よりも蒸発原子の持つエネルギーが大きいため、結晶粒の発生確率の増加及び、結晶成長が容易になるために、非常に優れたペン摺動耐久性を発現する。成膜条件は、酸素を4.0×10−3〜6.0×10−2Pa導入した後、アルゴンガスを導入して成膜圧力を0.15Paにしてから、放電電圧80V、ハース電位+40V、放電電流120Aでアーク放電を行うことが望ましい。In the above method, the energy of the evaporated atom is larger than that of the normal film formation method, so the probability of crystal grain generation and the crystal growth are facilitated. To do. The film formation conditions were as follows: oxygen was introduced at 4.0 × 10 −3 to 6.0 × 10 −2 Pa, argon gas was introduced to bring the film formation pressure to 0.15 Pa, discharge voltage 80 V, Hearth potential It is desirable to perform arc discharge at + 40V and a discharge current of 120A.

本発明の透明導電性積層フィルムの製造方法[1]、[2]において、平均結晶粒径の大きさを制御するために透明導電性薄膜層を積層後に、酸素を含む雰囲気下で、80〜200℃、0.1〜12時間加熱処理の加熱処理を行ってもよい。加熱温度及び時間を増加させると結晶粒が成長する。80℃より低い温度では結晶粒が成長しないため、ペン摺動耐久性向上には寄与しない。200℃より高い温度では透明プラスチックフィルムの平面性の維持をするのが難しくなり、さらに結晶粒が成長し過ぎることにより結晶粒子間に大きな応力が発生するためにペン摺動耐久性が悪化する。   In the production method [1], [2] of the transparent conductive laminated film of the present invention, after laminating the transparent conductive thin film layer in order to control the size of the average crystal grain size, in an atmosphere containing oxygen, 80 to You may perform the heat processing of 200 degreeC and 0.1-12 hours heat processing. When the heating temperature and time are increased, crystal grains grow. Since the crystal grains do not grow at a temperature lower than 80 ° C., it does not contribute to improvement of pen sliding durability. If the temperature is higher than 200 ° C., it becomes difficult to maintain the flatness of the transparent plastic film, and further, the crystal grains grow too much, and a large stress is generated between the crystal grains, so that the pen sliding durability is deteriorated.

本発明の透明導電性薄膜層は、酸化インジウムを主とし、酸化スズを0.5〜8質量%含むことが望ましい。酸化インジウムに対して酸化スズは不純物添加に相当する。酸化スズの不純物添加により、酸化スズが入った酸化インジウムは融点が増大する。すなわち、酸化スズの不純物添加は結晶化を阻害する方向に働く。酸化スズは0.5〜8質量%を含むことが望ましい。酸化スズが0.5%未満では結晶化はするが、全光線透過率は実用的な水準より低く、表面抵抗は実用的な水準より高くなるので望ましくない。酸化スズが8質量%より大きい場合は結晶化が困難となりペン摺動耐久性が悪くなる。
なお、本発明の透明導電性積層フィルムの全光線透過率は70〜95%が好ましく、表面抵抗は50〜1000Ω/□が好ましい。
The transparent conductive thin film layer of the present invention is mainly composed of indium oxide and desirably contains 0.5 to 8% by mass of tin oxide. Tin oxide is equivalent to impurity addition to indium oxide. Due to the addition of tin oxide impurities, the melting point of indium oxide containing tin oxide increases. That is, the addition of tin oxide impurities acts in the direction of inhibiting crystallization. As for tin oxide, it is desirable to contain 0.5-8 mass%. When tin oxide is less than 0.5%, crystallization occurs, but the total light transmittance is lower than a practical level, and the surface resistance is higher than a practical level, which is not desirable. When tin oxide is larger than 8% by mass, crystallization is difficult and pen sliding durability is deteriorated.
The total light transmittance of the transparent conductive laminated film of the present invention is preferably 70 to 95%, and the surface resistance is preferably 50 to 1000 Ω / □.

本発明において透明導電性薄膜層の厚みは、10〜100nmであることが望ましい。透明導電性薄膜層の厚みが10nm未満になると膜が不均一になってしまうためペン摺動耐久性が弱くなる。また、透明導電性薄膜層の厚みが100nmより厚くなると全光線透過率が実用的な水準より低くなるので望ましくない。   In the present invention, the thickness of the transparent conductive thin film layer is preferably 10 to 100 nm. When the thickness of the transparent conductive thin film layer is less than 10 nm, the film becomes non-uniform, and the pen sliding durability becomes weak. Moreover, since the total light transmittance will become lower than a practical level when the thickness of a transparent conductive thin film layer becomes thicker than 100 nm, it is not desirable.

以下、各層別に詳細に説明する。
(透明プラスチックフィルムからなる基材)
本発明で用いる透明プラスチックフィルムからなる基材とは、有機高分子をフィルム状に溶融押出し又は溶液押出しをしてフィルム状に成形し、必要に応じ、長手方向及び/又は幅方向に延伸、熱固定、熱弛緩処理を施したフィルムである。有機高分子としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリプロピレンテレフタレート、ナイロン6、ナイロン4、ナイロン66、ナイロン12、ポリイミド、ポリアミドイミド、ポリエーテルサルファン、ポリエーテルエーテルケトン、ポリカーボネート、ポリアリレート、セルロースプロピオネート、ポリ塩化ビニール、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエーテルイミド、ポリフェニレンスルフィド、ポリフェニレンオキサイド、ポリスチレン、シンジオタクチックポリスチレン、ノルボルネン系ポリマーなどが挙げられる。
Hereinafter, each layer will be described in detail.
(Base material made of transparent plastic film)
The substrate made of a transparent plastic film used in the present invention is formed by forming an organic polymer into a film by melt extrusion or solution extrusion into a film, and if necessary, stretching in the longitudinal direction and / or the width direction, A film that has been fixed and heat-relaxed. Organic polymers include polyethylene, polypropylene, polyethylene terephthalate, polyethylene-2,6-naphthalate, polypropylene terephthalate, nylon 6, nylon 4, nylon 66, nylon 12, polyimide, polyamideimide, polyethersulfan, polyetheretherketone , Polycarbonate, polyarylate, cellulose propionate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyether imide, polyphenylene sulfide, polyphenylene oxide, polystyrene, syndiotactic polystyrene, norbornene-based polymer, and the like.

これらの有機高分子のなかで、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリエチレン−2,6−ナフタレート、シンジオタクチックポリスチレン、ノルボルネン系ポリマー、ポリカーボネート、ポリアリレートなどが好適である。また、これらの有機高分子は他の有機重合体の単量体を少量共重合してもよいし、他の有機高分子をブレンドしてもよい。   Among these organic polymers, polyethylene terephthalate, polypropylene terephthalate, polyethylene-2,6-naphthalate, syndiotactic polystyrene, norbornene polymer, polycarbonate, polyarylate and the like are preferable. These organic polymers may be copolymerized with a small amount of other organic polymer monomers, or may be blended with other organic polymers.

本発明で用いる透明プラスチックフィルムからなる基材の厚みは、10〜300μmであることが好ましく、より好ましくは20〜250μmである。プラスチックフィルムの厚みが10μm未満では機械的強度が不足し、透明導電性薄膜層のパターン形成工程でのハンドリングが難しくなるため好ましくない。一方、厚みが300μmを越えると、タッチパネルの厚みが厚くなりすぎるため、モバイル機器などには適さない。   It is preferable that the thickness of the base material which consists of a transparent plastic film used by this invention is 10-300 micrometers, More preferably, it is 20-250 micrometers. If the thickness of the plastic film is less than 10 μm, the mechanical strength is insufficient, and handling in the pattern forming process of the transparent conductive thin film layer becomes difficult, which is not preferable. On the other hand, if the thickness exceeds 300 μm, the thickness of the touch panel becomes too thick, which is not suitable for mobile devices.

本発明で用いる透明プラスチックフィルムからなる基材は、本発明の目的を損なわない範囲で、前記フィルムをコロナ放電処理、グロー放電処理、火炎処理、紫外線照射処理、電子線照射処理、オゾン処理などの表面活性化処理を施してもよい。   The substrate made of a transparent plastic film used in the present invention is a range that does not impair the purpose of the present invention, such as corona discharge treatment, glow discharge treatment, flame treatment, ultraviolet irradiation treatment, electron beam irradiation treatment, ozone treatment, etc. A surface activation treatment may be performed.

また、本発明で用いる透明プラスチックフィルムからなる基材には、高屈折率層との密着性向上、耐薬品性の付与、オリゴマーなどの低分子量物の析出防止を目的として、硬化型樹脂を主たる構成成分とする硬化物層を設けてもよい。   In addition, the base material made of the transparent plastic film used in the present invention mainly includes a curable resin for the purpose of improving adhesion with a high refractive index layer, imparting chemical resistance, and preventing precipitation of low molecular weight substances such as oligomers. You may provide the hardened | cured material layer made into a structural component.

前記の硬化型樹脂は、加熱、紫外線照射、電子線照射などのエネルギー印加により硬化する樹脂であれば特に限定されなく、シリコーン樹脂、アクリル樹脂、メタクリル樹脂、エポキシ樹脂、メラミン樹脂、ポリエステル樹脂、ウレタン樹脂などが挙げられる。生産性の観点からは、紫外線硬化型樹脂を主成分とする硬化型樹脂が好ましい。   The curable resin is not particularly limited as long as it is a resin that is cured by application of energy such as heating, ultraviolet irradiation, electron beam irradiation, etc., and silicone resin, acrylic resin, methacrylic resin, epoxy resin, melamine resin, polyester resin, urethane Resin etc. are mentioned. From the viewpoint of productivity, a curable resin containing an ultraviolet curable resin as a main component is preferable.

このような紫外線硬化型樹脂としては、例えば、多価アルコールのアクリル酸又はメタクリル酸エステルのような多官能性のアクリレート樹脂、ジイソシアネート、多価アルコール及びアクリル酸又はメタクリル酸のヒドロキシアルキルエステルなどから合成されるような多官能性のウレタンアクリレート樹脂などを挙げることができる。必要に応じて、これらの多官能性の樹脂に単官能性の単量体、例えば、ビニルピロリドン、メチルメタクリレート、スチレンなどを加えて共重合させることができる。   Examples of such ultraviolet curable resins are synthesized from polyfunctional acrylate resins such as acrylic acid or methacrylic acid ester of polyhydric alcohol, diisocyanate, polyhydric alcohol and hydroxyalkyl ester of acrylic acid or methacrylic acid. Such polyfunctional urethane acrylate resins can be mentioned. If necessary, a monofunctional monomer such as vinyl pyrrolidone, methyl methacrylate, or styrene can be added to these polyfunctional resins for copolymerization.

また、誘電体層と硬化物層との付着力を向上するために、硬化物層を更に表面処理することが有効である。具体的な方法としては、グロー放電又はコロナ放電を照射する放電処理法を用いて、カルボニル基、カルボキシル基、水酸基を増加させる方法、酸又はアルカリで処理する化学薬品処理法を用いて、アミノ基、水酸基、カルボニル基などの極性基を増加させる方法、などが挙げられる。   In order to improve the adhesion between the dielectric layer and the cured product layer, it is effective to further treat the cured product surface. Specific methods include a discharge treatment method that irradiates glow discharge or corona discharge, a method of increasing carbonyl group, carboxyl group, hydroxyl group, a chemical treatment method of treating with acid or alkali, and an amino group. And a method of increasing polar groups such as a hydroxyl group and a carbonyl group.

紫外線硬化型樹脂は、通常、光重合開始剤を添加して使用される。光重合開始剤としては、紫外線を吸収してラジカルを発生する公知の化合物を特に限定なく使用することができ、このような光重合開始剤としては、例えば、各種ベンゾイン類、フェニルケトン類、ベンゾフェノン類などを挙げることができる。光重合開始剤の添加量は、紫外線硬化型樹脂100質量部に対して、1〜5質量部とすることが好ましい。   The ultraviolet curable resin is usually used by adding a photopolymerization initiator. As the photopolymerization initiator, known compounds that absorb ultraviolet rays and generate radicals can be used without any particular limitation. Examples of such photopolymerization initiators include various benzoins, phenyl ketones, and benzophenones. And the like. The addition amount of the photopolymerization initiator is preferably 1 to 5 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.

塗布液中の樹脂成分の濃度は、コーティング法に応じた粘度などを考慮して適切に選択することができる。例えば、塗布液中に紫外線硬化型樹脂、光重合開始剤の合計量が占める割合は、通常は20〜80質量%である。また、この塗布液には、必要に応じて、その他の公知の添加剤、例えば、シリコーン系界面活性剤、フッ素系界面活性剤などのレベリング剤などを添加してもよい。   The concentration of the resin component in the coating solution can be appropriately selected in consideration of the viscosity according to the coating method. For example, the proportion of the total amount of the ultraviolet curable resin and the photopolymerization initiator in the coating solution is usually 20 to 80% by mass. Moreover, you may add other well-known additives, for example, leveling agents, such as a silicone type surfactant and a fluorine type surfactant, to this coating liquid as needed.

本発明において、調製された塗布液は透明プラスチックフィルムからなる基材上にコーティングされる。コーティング法には特に限定されなく、バーコート法、グラビアコート法、リバースコート法などの従来から知られている方法を使用することができる。   In the present invention, the prepared coating solution is coated on a substrate made of a transparent plastic film. The coating method is not particularly limited, and conventionally known methods such as a bar coating method, a gravure coating method, and a reverse coating method can be used.

また、硬化物層の厚みは0.1〜15μmの範囲であることが好ましく、より好ましくは0.5〜10μm、特に好ましくは1〜8μmである。硬化物層の厚みが0.1μm未満の場合には、十分に架橋した構造が形成されにくくなるため、耐薬品性が低下しやすくなり、オリゴマーなどの低分子量による密着性の低下もおこりやすくなる。一方、硬化物層の厚みが15μmを超える場合には、生産性が低下する傾向がある。   Moreover, it is preferable that the thickness of a hardened | cured material layer is the range of 0.1-15 micrometers, More preferably, it is 0.5-10 micrometers, Most preferably, it is 1-8 micrometers. When the thickness of the cured product layer is less than 0.1 μm, it becomes difficult to form a sufficiently cross-linked structure, so that chemical resistance is likely to be lowered, and adhesion due to low molecular weight such as oligomer is also liable to occur. . On the other hand, when the thickness of the cured product layer exceeds 15 μm, the productivity tends to decrease.

(誘電体層)
本発明で用いることのできる誘電体層としては、SiO、Al、TiO、Nb、ZrO、Ta、SiO等およびこれらの複合酸化物が挙げられる。これらのなかでも屈折率の低いSiO、Alなどの透明金属酸化物及びSiO−Al等の複合金属酸化物が好ましい。
(Dielectric layer)
Examples of the dielectric layer that can be used in the present invention include SiO 2 , Al 2 O 3 , TiO 2 , Nb 2 O 5 , ZrO 2 , Ta 2 O 5 , SiO 2, and complex oxides thereof. Among these, transparent metal oxides such as SiO 2 and Al 2 O 3 having a low refractive index and composite metal oxides such as SiO 2 —Al 2 O 3 are preferable.

誘電体層の膜厚は、3〜100nmであり、好ましくは、5〜70nmである。特に好ましくは透明導電性積層フィルムの透過率の向上または透明導電性薄膜層のパターニングの見えづらくする目的で10〜60nmである。膜厚が3nm未満の場合、不連続な膜となり、エッチングインキが透明プラスチックフィルム基材または硬化物層と反応してしまい洗浄時に除去できなくなってしまう。一方、膜厚が100nmを超える場合、誘電体層の応力が大きくなり、パターニング後の透明導電性薄膜層にクラックが入りやすくなる。   The film thickness of the dielectric layer is 3 to 100 nm, preferably 5 to 70 nm. Particularly preferably, the thickness is 10 to 60 nm for the purpose of improving the transmittance of the transparent conductive laminated film or making the patterning of the transparent conductive thin film layer difficult to see. When the film thickness is less than 3 nm, it becomes a discontinuous film, and the etching ink reacts with the transparent plastic film substrate or the cured product layer and cannot be removed during cleaning. On the other hand, when the film thickness exceeds 100 nm, the stress of the dielectric layer increases, and cracks are likely to occur in the transparent conductive thin film layer after patterning.

本発明における誘電体層の成膜方法としては、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法などが知られており、必要とする膜厚に応じて、前記の方法を適宜用いることができるが、膜厚のバラツキを低減するという観点からスパッタリング法が好ましい。一般的にスパッタリングで形成する場合は反応性DC又はACスパッタリング法が用いられる。成膜速度を向上するためにDC又はAC電源の電圧値を一定に保つように反応性ガス流量を制御するインピーダンス制御又は特定元素のプラズマ中での発光強度を一定に保つように反応性ガス流量を制御するプラズマエミッション法が用いられる。   As a method for forming a dielectric layer in the present invention, a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a spray method, and the like are known, and the above-described method is performed according to a required film thickness. Although it can be used as appropriate, the sputtering method is preferable from the viewpoint of reducing variations in film thickness. In general, when forming by sputtering, a reactive DC or AC sputtering method is used. Impedance control for controlling the reactive gas flow rate so as to keep the voltage value of the DC or AC power source constant in order to improve the deposition rate, or the reactive gas flow rate so as to keep the emission intensity in the plasma of a specific element constant. A plasma emission method for controlling the pressure is used.

以下に実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。なお、実施例における各種測定評価は下記の方法により行った。
(1)全光線透過率
JIS−K7105に準拠し、日本電色工業(株)製NDH−1001DPを用いて、全光線透過率を測定した。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples. In addition, various measurement evaluation in an Example was performed with the following method.
(1) Total light transmittance Based on JIS-K7105, the total light transmittance was measured using NDH-1001DP by Nippon Denshoku Industries Co., Ltd.

(2)表面抵抗値
JIS−K7194に準拠し、4端子法にて測定した。測定機は、三菱油化(株)製 Lotest AMCP−T400を用いた。
(2) Surface resistance value Based on JIS-K7194, it measured by the 4-terminal method. As a measuring machine, Lotest AMCP-T400 manufactured by Mitsubishi Yuka Co., Ltd. was used.

(3)誘電体層、透明導電性薄膜層の膜厚
誘電体層、透明導電性薄膜層を積層したフィルム試料片を1mm×10mmの大きさに切り出し、電子顕微鏡用エポキシ樹脂に包埋した。これをウルトラミクロトームの試料ホルダに固定し、包埋した試料片の短辺に平行な断面薄切片を作製した。次いで、この切片の薄膜の著しい損傷がない部位において、透過型電子顕微鏡(JEOL社製、JEM−2010)を用い、加速電圧200kV、明視野で観察倍率1万倍にて写真撮影を行って得られた写真から膜厚を求めた。
(3) Film Thickness of Dielectric Layer and Transparent Conductive Thin Film Layer A film sample piece in which the dielectric layer and the transparent conductive thin film layer were laminated was cut into a size of 1 mm × 10 mm and embedded in an epoxy resin for an electron microscope. This was fixed to a sample holder of an ultramicrotome, and a cross-sectional thin section parallel to the short side of the embedded sample piece was produced. Next, in a section where the thin film of this section is not significantly damaged, a transmission electron microscope (manufactured by JEOL, JEM-2010) is used to obtain a photograph at an acceleration voltage of 200 kV and a bright field at an observation magnification of 10,000 times. The film thickness was determined from the photograph taken.

(4)平均結晶粒径
透明導電性薄膜層を積層したフィルム試料片を1mm×10mmの大きさに切り出し、導電性薄膜面を外向きにして適当な樹脂ブロックの上面に貼り付けた。これをトリミングしたのち、一般的なウルトラミクロトームの技法によってフィルム表面にほぼ平行な超薄切片を作製した。
この切片を透過型電子顕微鏡(JEOL社製、JEM−2010)で観察して著しい損傷がない導電性薄膜表面部分を選び、加速電圧200kV、直接倍率40000倍で写真撮影を行った。
透過型電子顕微鏡下で透明導電性薄膜層を観察したときに、多角形状の領域を持つものを結晶粒と定義し、結晶粒の面積を出す。結晶粒の面積を円周率πで割った値の平方根を2倍した値を結晶粒径とする。透過型電子顕微鏡下で透明導電性薄膜層に観察される酸化インジウムの結晶粒について、すべての結晶粒径を算出する。すべての結晶粒径の平均値を平均結晶粒径とする。
(4) Average crystal grain size A film sample piece on which a transparent conductive thin film layer was laminated was cut into a size of 1 mm × 10 mm, and attached to the upper surface of an appropriate resin block with the conductive thin film surface facing outward. After trimming this, an ultrathin section approximately parallel to the film surface was prepared by a general ultramicrotome technique.
This section was observed with a transmission electron microscope (JEOL, JEM-2010), a conductive thin film surface portion having no significant damage was selected, and a photograph was taken at an acceleration voltage of 200 kV and a direct magnification of 40000 times.
When a transparent conductive thin film layer is observed under a transmission electron microscope, a crystal grain is defined as one having a polygonal region, and the area of the crystal grain is obtained. The value obtained by doubling the square root of the value obtained by dividing the area of the crystal grain by the circumference ratio π is defined as the crystal grain size. For the crystal grains of indium oxide observed in the transparent conductive thin film layer under a transmission electron microscope, all crystal grain sizes are calculated. The average value of all crystal grain sizes is defined as the average crystal grain size.

(5)結晶質部に対する非晶部の割合
上記透過型電子顕微鏡下で透明導電性薄膜層に観察・写真撮影された酸化インジウムのすべての結晶粒について面積を出し、観察・写真撮影した面積との差を非晶質部の面積として、結晶質部に対する非晶質部の比を算出した。
(5) Ratio of amorphous part to crystalline part The area of all the crystal grains of indium oxide observed and photographed on the transparent conductive thin film layer under the above transmission electron microscope was taken out, and the area observed and photographed The ratio of the amorphous part with respect to the crystalline part was calculated with the difference in area as the area of the amorphous part.

(6)ペン摺動耐久性試験
透明導電性積層フィルムを一方のパネル板として用い、他方のパネル板として、ガラス基板上にプラズマCVD法で厚みが20nmのインジウム−スズ複合酸化物薄膜(酸化スズ含有量:10質量%)からなる透明導電性薄膜(日本曹達社製、S500)を用いた。この2枚のパネル板を透明導電性薄膜層が対向するように、直径30μmのエポキシビーズを介して、配置しタッチパネルを作製した。次にポリアセタール製のペン(先端の形状:0.8mmR)に5.0Nの荷重をかけ、30万回(往復15万回)の直線摺動試験をタッチパネルに行った。この時の摺動距離は30mm、摺動速度は60mm/秒とした。この摺動耐久性試験後に、まず、摺動部が白化しているかを目視によって観察した。さらに、ペン荷重0.5Nで摺動部を押さえた際の、ON抵抗(可動電極(フィルム電極)と固定電極とが接触した時の抵抗値)を測定した。ON抵抗は10kΩ以下であるのが望ましい。
(6) Pen sliding durability test A transparent conductive laminated film is used as one panel plate, and the other panel plate is an indium-tin composite oxide thin film (tin oxide) having a thickness of 20 nm by plasma CVD on a glass substrate. The transparent conductive thin film (Nippon Soda Co., Ltd. product, S500) which consists of 10 mass%) was used. The two panel plates were arranged via epoxy beads having a diameter of 30 μm so that the transparent conductive thin film layers were opposed to each other, thereby manufacturing a touch panel. Next, a 5.0 N load was applied to a polyacetal pen (tip shape: 0.8 mmR), and a linear sliding test was performed 300,000 times (150,000 reciprocations) on the touch panel. The sliding distance at this time was 30 mm, and the sliding speed was 60 mm / second. After this sliding durability test, first, it was visually observed whether the sliding portion was whitened. Furthermore, the ON resistance (resistance value when the movable electrode (film electrode) and the fixed electrode were in contact) when the sliding portion was pressed with a pen load of 0.5 N was measured. The ON resistance is desirably 10 kΩ or less.

(7)パターニング性
透明導電性薄膜層上にエッチングインキ(Merck社製isishape HiperEtch04S)をパターン状に塗布した。続いて150℃±2℃のオーブン中で20分加熱した。その後、水で洗浄および風乾し、エッチングインキの除去性を目視にて評価し、さらに透明導電性薄膜層の導通を確認した。
○ エッチングインキの残渣がなく、透明であり、導通が取れる。
× エッチングインキの残渣があり、透明でない、または透明であるが導通が得られない。
(7) Patterning property Etching ink (Issipe Hiper Etch 04S manufactured by Merck) was applied in a pattern on the transparent conductive thin film layer. Subsequently, it was heated in an oven at 150 ° C. ± 2 ° C. for 20 minutes. Then, it wash | cleaned with water and air-dried, the removability of etching ink was evaluated visually, and also conduction | electrical_connection of the transparent conductive thin film layer was confirmed.
○ There is no residue of etching ink, it is transparent, and conduction can be obtained.
X There is a residue of etching ink, which is not transparent or transparent but does not provide conduction.

実施例、比較例において使用した透明プラスチックフィルム基材は、両面に易接着層を有する二軸配向透明PETフィルム(東洋紡績社製、A4340、厚み188μm)である。硬化型樹脂層として、光重合開始剤含有アクリル系樹脂(大日精化工業社製、セイカビームEXF−01J)100質量部に、共重合ポリエステル樹脂(東洋紡績社製、バイロン200、重量平均分子量18,000)を3質量部配合し、溶剤としてトルエン/MEK(8/2:質量比)の混合溶媒を、固形分濃度が50質量%になるように加え、撹拌して均一に溶解し塗布液を調製した(この塗布液を以下塗布液Aと呼ぶ)。塗膜の厚みが5μmになるように、調製した塗布液をマイヤーバーを用いて塗布した。80℃で1分間乾燥を行った後、紫外線照射装置(アイグラフィックス社製、UB042−5AM−W型)を用いて紫外線を照射(光量:300mJ/cm)し、塗膜を硬化させた。The transparent plastic film substrate used in Examples and Comparative Examples is a biaxially oriented transparent PET film (A4340, thickness 188 μm) having easy-adhesion layers on both sides. As a curable resin layer, 100 parts by mass of a photopolymerization initiator-containing acrylic resin (Daiichi Seika Kogyo Co., Ltd., Seika Beam EXF-01J) and a copolymerized polyester resin (Toyobo Co., Ltd., Byron 200, weight average molecular weight 18, 000) 3 parts by mass, and a solvent mixture of toluene / MEK (8/2: mass ratio) as a solvent is added so that the solid content concentration is 50% by mass and stirred to dissolve uniformly. This coating solution was prepared (hereinafter referred to as coating solution A). The prepared coating solution was applied using a Mayer bar so that the thickness of the coating film was 5 μm. After drying at 80 ° C. for 1 minute, the coating film was cured by irradiating with ultraviolet rays (light quantity: 300 mJ / cm 2 ) using an ultraviolet ray irradiation device (UB042-5AM-W type, manufactured by Eye Graphics Co., Ltd.). .

(実施例1〜7)
透明導電性積層フィルムを得る手法は上記の〔1〕の方法を採用している。
これらの実施例は表1に示した条件のもと、以下の通り実施した。なお、表1に記載のITO膜は透明導電性薄膜層、SiO膜は誘電体層にそれぞれ対応している。
真空槽にフィルムを投入し、真空引きをした。真空引き時間が長いほどスパッタリング時の成膜中の水分圧が減少するので、スパッタリング時の成膜雰囲気の不活性ガスに対する水分圧の比は真空引き時間を変えることで制御した。
酸素導入後に不活性ガスとしてアルゴンを導入し全圧を0.5Paにした。
SiO薄膜を形成するため、シリコンをターゲットに用いて、直流マグネトロンスパッタリング法で行った。また、成膜中の電圧値を常時観測しながら、電圧値が一定となるように酸素ガスの流量計にフィートバックした。
続いて前記SiO薄膜上に酸化スズを含む酸化インジウム焼結ターゲット、あるいは酸化スズを含まない酸化インジウム焼結ターゲットに1W/cmの電力密度で電力を投入し、DCマグネトロンスパッタリング法により、透明導電性薄膜層を成膜した。膜厚についてはフィルムがターゲット上を通過するときの速度を変えて制御した。また、スパッタリング時の成膜雰囲気の不活性ガスに対する水分圧の比については、ガス分析装置(インフィコン社製、トランスペクターXPR3)を用いて測定した。
透明導電性薄膜層を成膜したフィルムは、熱処理した後、表1に記載の測定を実施した(ただし、熱処理しないで測定したものもある)。測定結果を表1に示した。
(Examples 1-7)
The method of [1] described above is employed as a method for obtaining a transparent conductive laminated film.
These examples were carried out under the conditions shown in Table 1 as follows. The ITO film shown in Table 1 corresponds to the transparent conductive thin film layer, and the SiO 2 film corresponds to the dielectric layer.
The film was put into a vacuum chamber and evacuated. The longer the evacuation time, the lower the water pressure during film formation during sputtering. Therefore, the ratio of the water pressure to the inert gas in the film formation atmosphere during sputtering was controlled by changing the evacuation time.
After introducing oxygen, argon was introduced as an inert gas to bring the total pressure to 0.5 Pa.
In order to form the SiO 2 thin film, the direct current magnetron sputtering method was performed using silicon as a target. Further, while constantly observing the voltage value during the film formation, the oxygen gas flow meter was footed back so that the voltage value was constant.
Subsequently, power is applied at a power density of 1 W / cm 2 to an indium oxide sintered target containing tin oxide or an indium oxide sintered target containing no tin oxide on the SiO 2 thin film, and transparent by a DC magnetron sputtering method. A conductive thin film layer was formed. The film thickness was controlled by changing the speed at which the film passed over the target. In addition, the ratio of the moisture pressure to the inert gas in the film formation atmosphere during sputtering was measured using a gas analyzer (manufactured by Inficon, Transpector XPR3).
The film on which the transparent conductive thin film layer was formed was subjected to the heat treatment and then subjected to the measurements shown in Table 1 (however, some were measured without the heat treatment). The measurement results are shown in Table 1.

(比較例1〜5)
表1に記載の条件で実施例1と同様に透明導電性積層フィルムを作製して評価した。測定結果を表1に示した。
(Comparative Examples 1-5)
A transparent conductive laminated film was prepared and evaluated in the same manner as in Example 1 under the conditions described in Table 1. The measurement results are shown in Table 1.

表1に記載のとおり、実施例1〜7記載の透明導電性積層フィルムは、エッチングインキを用いて透明導電性薄膜層をパターニングした場合、パターニング性に優れるとともに、ペン摺動耐久試験後も摺動部が透明で、ON抵抗も10kΩ以下であり、非常に優れたペン摺動耐久性が得られた。
一方、誘電体層の膜厚が所定の範囲外の比較例1〜2ではペン摺動耐久試験は優れているが、ITOパターニング後にエッチングインキが剥がれない(比較例1)、またはITO膜にクラックが発生していた(比較例2)。また、平均結晶粒径、結晶質部に対する非晶質部の比が適切でない比較例3〜5記載の透明導電性積層フィルムは、ペン摺動耐久性が優れなかった。
As shown in Table 1, the transparent conductive laminated films described in Examples 1 to 7 are excellent in patternability when the transparent conductive thin film layer is patterned using an etching ink, and are also slid after the pen sliding durability test. The moving part was transparent, the ON resistance was 10 kΩ or less, and very excellent pen sliding durability was obtained.
On the other hand, in Comparative Examples 1 and 2 where the film thickness of the dielectric layer is outside the predetermined range, the pen sliding durability test is excellent, but the etching ink does not peel off after the ITO patterning (Comparative Example 1), or the ITO film is cracked. (Comparative Example 2). Moreover, the transparent conductive laminated film described in Comparative Examples 3 to 5 in which the average crystal grain size and the ratio of the amorphous part to the crystalline part are not appropriate did not have excellent pen sliding durability.

上記の通り、本発明によれば、透明プラスチックフィルム基材上の少なくとも一方の面に、少なくとも1層以上の誘電体層および透明導電性薄膜層し、透明導電性薄膜層の平均結晶粒径、及び結晶質部に対する非晶質部の比を上記記載の範囲に制御することによって、非常に優れたペン摺動耐久性を有するとともにエッチングインキでのパターニング性にも優れた透明導電性積層フィルムを作製できるので、ペン入力用タッチパネル等の用途に極めて有効である。   As described above, according to the present invention, at least one dielectric layer and a transparent conductive thin film layer are formed on at least one surface on a transparent plastic film substrate, and the average crystal grain size of the transparent conductive thin film layer is In addition, by controlling the ratio of the amorphous part to the crystalline part within the range described above, a transparent conductive laminated film having excellent pen sliding durability and excellent patterning property with etching ink is obtained. Since it can be produced, it is extremely effective for applications such as a touch panel for pen input.

10:透明導電性フィルム
11:透明プラスチックフィルム(基材)
12:硬化物層
13:誘電体層
14:透明導電性薄膜層
10: Transparent conductive film 11: Transparent plastic film (base material)
12: Cured material layer 13: Dielectric layer 14: Transparent conductive thin film layer

Claims (2)

透明プラスチックフィルムからなる基材上の少なくとも一方の面に、少なくとも1層の誘電体層及び透明導電性薄膜層をこの順に積層した積層フィルムであって、誘電体層の膜厚が3〜100nmであり、透明プラスチックフィルム基材上の少なくとも一方の面に結晶質の酸化インジウムを主とした透明導電性薄膜層を成膜するに際し、スパッタリング時の成膜雰囲気の不活性ガスに対する水分圧の比を8.0×10 −4 〜3.0×10 −3 とし、かつ酸素分圧を8.0×10 −3 〜30×10 −3 Paとして、かつ成膜中はフィルム温度を80℃以下に保持して透明プラスチックフィルム上に透明導電性薄膜層が成膜されてなり、透明導電性薄膜の厚みが、10〜100nmであり、透明導電性薄膜層が酸化スズの含有率が0.5〜8質量%であるインジウム−スズ複合酸化物であり、平均結晶粒径が30〜1000nmであり、かつ透明導電性薄膜の結晶質部に対する非晶質部の比が0.00〜0.50であることを特徴とする透明導電性積層フィルム。A laminated film in which at least one dielectric layer and a transparent conductive thin film layer are laminated in this order on at least one surface of a substrate made of a transparent plastic film, and the thickness of the dielectric layer is 3 to 100 nm . When forming a transparent conductive thin film layer mainly composed of crystalline indium oxide on at least one surface of a transparent plastic film substrate, the ratio of moisture pressure to inert gas in the film formation atmosphere during sputtering is 8.0 × 10 −4 to 3.0 × 10 −3 , oxygen partial pressure is set to 8.0 × 10 −3 to 30 × 10 −3 Pa, and the film temperature is set to 80 ° C. or less during film formation. A transparent conductive thin film layer is formed on the transparent plastic film, the thickness of the transparent conductive thin film is 10 to 100 nm, and the transparent conductive thin film layer has a tin oxide content of 0.5 to 0.5. 8 quality % A is indium - a tin composite oxide, the average crystal grain diameter of 30 to 1000 nm, and the ratio of the amorphous portion to the crystalline portion of the transparent conductive thin film is 0.00 to 0.50 A transparent conductive laminated film characterized by 透明導電性薄膜層を製膜後に熱処理されていないことを特徴とする請求項1に記載の透明導電性積層フィルム。The transparent conductive laminated film according to claim 1, wherein the transparent conductive thin film layer is not heat-treated after film formation.
JP2010546985A 2009-10-13 2010-10-12 Transparent conductive laminated film Active JP4888604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010546985A JP4888604B2 (en) 2009-10-13 2010-10-12 Transparent conductive laminated film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009235962 2009-10-13
JP2009235962 2009-10-13
PCT/JP2010/067827 WO2011046094A1 (en) 2009-10-13 2010-10-12 Transparent conductive laminate film
JP2010546985A JP4888604B2 (en) 2009-10-13 2010-10-12 Transparent conductive laminated film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011178366A Division JP2012021231A (en) 2009-10-13 2011-08-17 Method for production of transparent conductive laminate film

Publications (2)

Publication Number Publication Date
JP4888604B2 true JP4888604B2 (en) 2012-02-29
JPWO2011046094A1 JPWO2011046094A1 (en) 2013-03-07

Family

ID=43876144

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010546985A Active JP4888604B2 (en) 2009-10-13 2010-10-12 Transparent conductive laminated film
JP2011178366A Pending JP2012021231A (en) 2009-10-13 2011-08-17 Method for production of transparent conductive laminate film

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2011178366A Pending JP2012021231A (en) 2009-10-13 2011-08-17 Method for production of transparent conductive laminate film

Country Status (2)

Country Link
JP (2) JP4888604B2 (en)
WO (1) WO2011046094A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057450B2 (en) * 2012-05-24 2017-01-11 住友化学株式会社 Substrate with ITO transparent conductive film and method for producing the same
US20150086789A1 (en) * 2012-06-07 2015-03-26 Nitto Denko Corporation Transparent conductive film
JP5773292B2 (en) * 2012-07-20 2015-09-02 東洋紡株式会社 Conductive paste, conductive thin film and conductive laminate for laser etching
JP5620967B2 (en) * 2012-11-22 2014-11-05 日東電工株式会社 Transparent conductive film
JP2014225405A (en) * 2013-05-17 2014-12-04 東洋紡株式会社 Transparent conductive film and resistance film-type touch panel
WO2015060119A1 (en) * 2013-10-21 2015-04-30 東洋紡株式会社 Nickel-copper alloy thin layer laminate film
JP6713758B2 (en) * 2015-12-02 2020-06-24 日東電工株式会社 Conductive film and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184242A (en) * 2000-07-19 2002-06-28 Matsushita Electric Ind Co Ltd Substrate with electrode and method of manufacturing the substrate
JP2007133839A (en) * 2005-11-07 2007-05-31 Hs Planning:Kk Conductive film for touch panel and method for manufacturing conductive film for touch panel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864034A (en) * 1994-08-26 1996-03-08 Teijin Ltd Transparent conductive layered product
JPH10330916A (en) * 1997-06-03 1998-12-15 Mitsubishi Chem Corp Electrically conductive laminated body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184242A (en) * 2000-07-19 2002-06-28 Matsushita Electric Ind Co Ltd Substrate with electrode and method of manufacturing the substrate
JP2007133839A (en) * 2005-11-07 2007-05-31 Hs Planning:Kk Conductive film for touch panel and method for manufacturing conductive film for touch panel

Also Published As

Publication number Publication date
JP2012021231A (en) 2012-02-02
WO2011046094A1 (en) 2011-04-21
JPWO2011046094A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP4888604B2 (en) Transparent conductive laminated film
JP4661995B2 (en) Transparent conductive laminated film
JP5556436B2 (en) Transparent conductive laminated film, transparent conductive laminated sheet, and touch panel
WO2010035598A1 (en) Transparent conductive film and touch panel
JP2010015861A (en) Transparent conductive laminate film
JP4844692B2 (en) Transparent conductive laminated film
JP6769345B2 (en) Transparent conductive film
JP5374998B2 (en) Method for producing transparent conductive film
JP5481992B2 (en) Transparent conductive film
TWI813867B (en) Transparent Conductive Film
JP4888603B2 (en) Transparent conductive film
JP5196001B2 (en) Transparent conductive film and method for producing the same
JP5509683B2 (en) Transparent conductive film
JP4296462B2 (en) Transparent conductive film, transparent conductive sheet and touch panel
WO2007013220A1 (en) Transparent electrically conductive film, transparent electrically conductive sheet, and touch panel
JP4935962B2 (en) Transparent conductive film and method for producing the same
JP4517255B2 (en) Transparent conductive film for touch panel, transparent conductive sheet for touch panel, and touch panel
JP5397557B2 (en) Method for producing transparent conductive film
JP6137433B1 (en) Transparent conductive film
JP3627864B2 (en) Transparent conductive film, transparent conductive sheet and touch panel
JP5228721B2 (en) Method for producing transparent conductive film
JP7017187B1 (en) Transparent conductive film

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R151 Written notification of patent or utility model registration

Ref document number: 4888604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350