WO2007013220A1 - Transparent electrically conductive film, transparent electrically conductive sheet, and touch panel - Google Patents

Transparent electrically conductive film, transparent electrically conductive sheet, and touch panel Download PDF

Info

Publication number
WO2007013220A1
WO2007013220A1 PCT/JP2006/310847 JP2006310847W WO2007013220A1 WO 2007013220 A1 WO2007013220 A1 WO 2007013220A1 JP 2006310847 W JP2006310847 W JP 2006310847W WO 2007013220 A1 WO2007013220 A1 WO 2007013220A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
film
thin film
conductive thin
electrically conductive
Prior art date
Application number
PCT/JP2006/310847
Other languages
French (fr)
Japanese (ja)
Inventor
Hideo Murakami
Toshiyuki Oya
Chikao Morishige
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Publication of WO2007013220A1 publication Critical patent/WO2007013220A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides

Definitions

  • Transparent conductive film Transparent conductive sheet, and touch panel
  • the present invention relates to a transparent conductive film, a transparent conductive sheet, and a touch panel in which a transparent conductive thin film is laminated on a base material having a transparent plastic film force via a cured product layer, and particularly in the vicinity of a frame of the touch panel.
  • the present invention relates to a transparent conductive film, a transparent conductive sheet, and a touch panel excellent in pen sliding durability.
  • a transparent conductive film in which a transparent thin film with low resistance is laminated on a substrate that also has a transparent plastic film force is used for applications that use the conductivity, such as a liquid crystal display or an electoluminescence (EL) display. It is widely used in electrical and electronic fields such as flat panel displays and transparent electrodes for touch panels.
  • EL electoluminescence
  • the transparent conductive thin film on the fixed electrode side and the transparent conductive thin film on the movable electrode (film electrode) side come into contact with each other, but in particular near the frame, the transparent conductive thin film on the movable electrode side
  • a strong bending stress due to a pen load is applied to the thin film. Therefore, even if strong bending stress due to pen load is applied, the transparent conductive thin film does not break, such as cracking or peeling! / !, Transparent conductive film with excellent pen sliding durability near the frame is desired It has been.
  • the conventional transparent conductive film has the following problems.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2-66809
  • Patent Document 2 JP-A-60-131711
  • Patent Document 3 Japanese Patent Application Laid-Open No. 61-79647
  • Patent Document 4 Japanese Patent Laid-Open No. 61-183809
  • Patent Document 5 Japanese Patent Laid-Open No. 2-194943
  • Patent Document 6 Japanese Patent Laid-Open No. 2-276630
  • Patent Document 7 JP-A-8-64034
  • a transparent conductive film has been proposed in which an amorphous transparent conductive thin film is provided on a base material having a transparent plastic film force via a cured product layer (see, for example, Patent Document 8). ).
  • a touch panel using a transparent conductive film produced by surface-treating the cured product layer with an acid or alkaline aqueous solution is used at the center of the touch panel. The pen writing characteristics were improved, but the pen sliding characteristics near the frame were insufficient.
  • Patent Document 8 Japanese Patent Laid-Open No. 11-224539
  • the object of the present invention is excellent in pen sliding durability (edge durability) in the vicinity of the frame when used in a touch panel, and in particular, a polyacetal pen is used.
  • the object is to provide a transparent conductive film, a transparent conductive sheet, and a touch panel in which the transparent conductive thin film is not destroyed even after 10,000 sliding tests at a load of 2.5 N in the vicinity of the frame of the touch panel. .
  • the present invention has been made in view of the situation as described above, and the transparent conductive film, the transparent conductive sheet, and the touch panel that have solved the above-described problems are as follows. is there.
  • the first invention in the present invention is a transparent conductive film in which a transparent conductive thin film containing a metal oxide as a constituent component is laminated on a base material having a transparent plastic film force via a cured product layer.
  • the transparent conductive thin film is amorphous, and the carbon concentration contained in the transparent conductive thin film is 1 ⁇ 10 2G to 1 ⁇ 10 22 (atoms / cm 3 ). It is a transparent conductive film.
  • a second invention is characterized in that the metal oxide is an indium tin oxide complex, and the ratio of the content of tin to indium is 15 to 60% by mass. It is a transparent conductive film as described in this invention.
  • a third invention is characterized in that at least two layers having different refractive indexes are provided between the transparent conductive thin film and the cured product layer, and the transparent conductive film according to the first invention is provided. It is a sex film.
  • the fourth invention is characterized in that the cured product layer contains particles, and the center line average roughness (Ra) of the transparent conductive thin film surface is 0.1 to 0.5 m.
  • a fifth invention is the transparent conductive film according to the first invention, characterized in that a hard coat layer is laminated on the surface opposite to the transparent conductive thin film surface.
  • a sixth invention is the transparent conductive film according to the fifth invention, wherein the hard coat layer has an antiglare property.
  • a seventh invention is characterized in that the hard coat layer is subjected to a low reflection treatment. It is a transparent conductive film described in the light.
  • the eighth invention is characterized in that a transparent resin sheet is bonded to the surface of the transparent conductive film described in the first invention opposite to the transparent conductive thin film surface via an adhesive. It is a transparent conductive sheet.
  • a ninth invention is a touch panel in which a pair of panel plates having the transparent conductive thin film are arranged via a spacer so that the transparent conductive thin film faces each other, and at least one of the panel plates is the first one.
  • a touch panel comprising the transparent conductive film or the transparent conductive sheet according to the first aspect of the invention.
  • the transparent conductive film of the present invention has a configuration in which a transparent conductive thin film containing a metal oxide as a main constituent component is laminated on a base material having a transparent plastic film force via a cured product layer.
  • a transparent conductive thin film that is amorphous and has a carbon concentration of 1 ⁇ 10 2G to 1 ⁇ 10 22 (atoms / cm 3 ) contained in the transparent conductive thin film as the transparent conductive thin film By using a transparent conductive thin film that is amorphous and has a carbon concentration of 1 ⁇ 10 2G to 1 ⁇ 10 22 (atoms / cm 3 ) contained in the transparent conductive thin film as the transparent conductive thin film, The adhesive strength with the base material, which is a plastic film, is improved, and the mechanical strength against bending can be improved. For this reason, when a pen sliding test is performed in the vicinity of the touch panel frame, the transparent conductive thin film is less likely to be peeled off and cracked, and the pen sliding durability in the vicinity of the frame can
  • the ratio of tin content to indium in the transparent conductive thin film is 15 to 60% by mass, when the pen sliding test is performed on the transparent conductive thin film, the resistance of the transparent conductive thin film is reduced. Sharpness can be improved. Therefore, pen sliding durability at the center of the touch panel can be improved.
  • the center line average roughness (Ra) of the transparent conductive thin film surface is set to 0.1 to 0.5 m, pen sliding durability and prevention of the generation of a single-ton ring when a touch panel is made. Both can be achieved.
  • FIG. 1 is an explanatory view of a touch panel using the transparent conductive film of the present invention.
  • FIG. 2 is an explanatory diagram of a touch panel using the transparent conductive film of the present invention and not using a glass substrate.
  • the substrate having a transparent plastic film force used in the present invention is obtained by subjecting an organic polymer to melt extrusion or solution extrusion and, if necessary, stretching, cooling, and heat setting in the longitudinal direction and the Z or width direction. It is a film that has been applied.
  • Organic polymers include polyethylene, polypropylene, polyethylene terephthalate, polyethylene 2,6 naphthalate, polypropylene terephthalate, nylon 6, nylon 4, nylon 66, nylon 12, polyimide, polyamideimide, polyethersulfan, polyetheretherketone, Examples include polycarbonate, polyarylate, cellulose propionate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyetherimide, polyphenylene sulfide, polyphenylene oxide, polystyrene, syndiotactic polystyrene, and norbornene polymers. It is
  • organic polymers polyethylene terephthalate, polypropylene terephthalate, polyethylene 2,6 naphthalate, syndiotactic polystyrene, nonolebornene-based polymer, polycarbonate, polyarylate and the like are preferable. These organic polymers may be copolymerized with a small amount of other organic polymer monomers, or may be blended with other organic polymers.
  • the thickness of the transparent plastic film used in the present invention is preferably in the range of more than 10 ⁇ m and 300 ⁇ m or less.
  • the upper limit is 260 ⁇ m, and the lower limit is 70 ⁇ m. m It is particularly preferable.
  • the thickness of the plastic film is 10 m or less, the mechanical strength is insufficient, especially when it is used for a touch panel, the deformation tends to increase with respect to pen input, and the durability tends to be insufficient.
  • the thickness exceeds 300 m it is necessary to increase the pen load for deforming the film when used for touch panels. Therefore, the load applied to the transparent conductive thin film inevitably increases, which is not preferable from the viewpoint of durability of the transparent conductive thin film.
  • the substrate having a transparent plastic film force used in the present invention has a corona discharge treatment, a glow discharge treatment, a flame treatment, an ultraviolet irradiation treatment, and an electron beam irradiation treatment as long as the object of the present invention is not impaired. Further, surface activation treatment such as ozone treatment may be performed.
  • a cured product layer mainly composed of curable resin may be provided.
  • the curable resin is not particularly limited as long as it is cured by application of energy such as heating, ultraviolet irradiation, electron beam irradiation, etc.
  • Examples of such ultraviolet curable resin include polyfunctional acrylate resin, diisocyanate, polyalcohol such as polyhydric alcohol acrylic acid or methacrylic acid ester, and acrylic acid or methacrylic acid.
  • Examples thereof include polyfunctional urethane acrylate glycols synthesized from hydroxyalkyl esters of acids. If necessary, a monofunctional monomer such as vinyl pyrrolidone, methyl metatalylate, or styrene can be copolymerized with these polyfunctional resins.
  • the ultraviolet curable resin is usually used by adding a photopolymerization initiator.
  • the photopolymerization initiator known compounds that absorb ultraviolet rays to generate radicals can be used without any particular limitation.
  • photopolymerization initiators examples include various benzoins and phenyl ketones. And benzophenones.
  • the addition amount of the photopolymerization initiator is preferably 1 to 5 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
  • the concentration of the resin component in the coating solution can be appropriately selected in consideration of the viscosity according to the coating method.
  • the proportion of the total amount of UV curable resin and photopolymerization initiator in the coating solution is usually 20 to 80% by mass.
  • other known additives such as leveling agents such as silicone surfactants and fluorine surfactants may be added to the coating solution as necessary.
  • the prepared coating solution is coated on a substrate such as a transparent plastic film cover.
  • a method known in the art such as a bar coating method, a gravure coating method, and a reverse coating method, which are not particularly limited, can be used.
  • the thickness of the cured product layer is preferably in the range of 0.1 to 15 ⁇ m.
  • the lower limit of the thickness of the cured product layer is more preferably 0.5 m, particularly preferably 1 ⁇ m.
  • the upper limit value of the thickness of the cured product layer is more preferably 10 / z m, and particularly preferably 8 m.
  • the thickness of the cured product layer is less than 0.1 m, it is difficult to form a sufficiently cross-linked structure, so pen input durability tends to decrease chemical resistance, and due to low molecular weight such as oligomers. Decrease in adhesion is also likely to occur.
  • productivity tends to decrease.
  • the metal oxide constituting the transparent conductive thin film is not particularly limited as long as it is a material having both transparency and conductivity, but indium oxide, tin oxide, zinc oxide. , Indium-tin complex oxide, tin-antimony complex oxide, zinc-aluminum complex oxide, indium zinc complex oxide, silver or silver alloy, copper or copper alloy, gold, etc. Is mentioned. Of these, indium-tin composite oxide is preferred from the viewpoints of environmental stability and circuit processability.
  • the transparent conductive thin film used in the present invention contains a metal oxide as a main component, but contains carbon in a concentration of 1 X 10 2 to 1 X 10 22 (atomsZcm 3 ) as other components. . Moreover, as long as the effect of the present invention is not impaired. In addition, components other than metal oxide and carbon are contained in an amount of 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 1% by mass or less.
  • the layer structure of the transparent conductive thin film may be a single layer structure or a laminated structure of two or more layers.
  • the metal oxides constituting each layer may be the same or different.
  • the film thickness of the transparent conductive thin film is preferably in the range of 4 to: LOOnm, particularly preferably the lower limit is 5 nm and the upper limit is 50 nm.
  • LOOnm particularly preferably the lower limit is 5 nm and the upper limit is 50 nm.
  • the film thickness of the transparent conductive thin film is less than nm, it is difficult to obtain a good conductivity that is difficult to form a continuous thin film.
  • the film thickness of the transparent conductive thin film is thicker than SlOOnm, the transparency tends to decrease and it becomes difficult to obtain a film having mechanical strength that can withstand bending stress near the frame of the touch panel. .
  • a vacuum deposition method As a method for forming a transparent conductive thin film in the present invention, a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a spray method, and the like are known, and depending on the required film thickness, The above methods can be used as appropriate.
  • a normal sputtering method using an oxide target, a reactive sputtering method using a metal target, or the like is used.
  • oxygen, nitrogen, or the like may be introduced as a reactive gas, or means such as ozone addition, plasma irradiation, or ion resist may be used in combination.
  • a bias such as direct current, alternating current, and high frequency may be applied to the substrate as long as the object of the present invention is not impaired.
  • the purpose of using a film having an amorphous force as the transparent conductive thin film is to prevent stress from concentrating on a local area such as a crystal, an amorphous interface, or a crystal interface of the transparent conductive thin film. This is to suppress the occurrence of cracks in the conductive film due to bending stress in the sliding test.
  • the temperature at which the transparent conductive thin film is formed on the transparent plastic film as the substrate is preferably -20 to 30 ° C.
  • the temperature at the time of film formation exceeds 30 ° C, it becomes easy to form crystals in the transparent conductive thin film.
  • the temperature is lower than -20 ° C, the transparent plastic film becomes brittle.
  • a water channel is provided in the roll, and a temperature-adjusted heat medium may flow through the water channel.
  • the heating medium is not particularly limited, but simple substances such as water, oil, ethylene glycol, propylene glycol, and mixtures thereof are suitable.
  • the amount of dopant such as tin is reduced with respect to indium. It is also an effective method to form a crystal structure by increasing it.
  • Specific dopants include Sn, Si, Ti, W, Zr, Hf, and Zn.
  • tin is preferably used from the viewpoint of improving conductivity and film hardness.
  • dopant amount of tin to indium is preferably 15 to 60 mass 0/0. 15 mass 0/0 improvement of film hardness of an amorphous state if less than is insufficient, pen sliding durability in Tatsuchipaneru central portion in Tatsuchipaneru using such transparent conductive films It becomes insufficient, and the transparent conductive thin film is scraped after the pen sliding test. Also, if it exceeds 60% by mass, the conductivity will be insufficient, and if you try to maintain conductivity that can be used as a touch panel, The film thickness of the transparent conductive thin film must be increased. Therefore, the transparency of the transparent conductive film tends to be lowered. When a touch panel is manufactured using such a transparent conductive film inferior in transparency, the visibility of the touch panel is lowered.
  • the purpose of setting the carbon concentration in the transparent conductive thin film to 1 X 10 2 to 1 X 10 22 (at oms / cm 3 ) In order to obtain a transparent conductive thin film that is less susceptible to peeling and cracking against bending stress near the frame of the touch panel. If the carbon concentration in the transparent conductive thin film is less than 1 ⁇ 10 2 ° (at O msZcm 3 ), the effect of improving the adhesion between the transparent conductive thin film and the substrate is insufficient. On the other hand, it is technically difficult to obtain a transparent conductive thin film exceeding l X 10 22 (at O msZcm 3 ).
  • the film formation atmosphere when depositing transparent conductive thin film It is important to introduce a gas component containing carbon with moisture removed as much as possible.
  • gas component containing carbon examples include carbon monoxide, carbon dioxide, carbon tetrachloride, and methane. Of these, gases containing only carbon and oxygen such as carbon monoxide and carbon dioxide are preferred.
  • an inert gas such as Ar, oxygen, and nitrogen are used. It is preferable to perform sputtering by introducing a reactive gas containing carbon such as acid carbon into a vacuum chamber, generating discharge in a pressure range of 0.01 to 10 Pa. The same applies to other methods such as vapor deposition and CVD.
  • a transparent conductive film in which a transparent conductive thin film having a low carbon concentration in such a transparent conductive thin film is laminated has insufficient adhesion between the transparent conductive thin film and the substrate.
  • peeling or cracking occurs in the transparent conductive thin film after a linear sliding test of 10,000 times at a load of 2.5 N in the vicinity of the frame.
  • the carbon concentration in the thickness direction of the transparent conductive thin film may be lowered as it goes toward the inside of the transparent conductive thin film, as long as the conductivity of the transparent conductive thin film is not deteriorated. preferable. More preferably, carbon atoms are localized only within 5 nm from the film substrate. By localizing the carbon concentration in the thickness direction of the transparent conductive thin film in this way, the adhesion between the transparent conductive thin film and the base material is improved, and the same conductivity as when no carbon atom is contained is obtained. A transparent conductive thin film can be obtained.
  • the carbon concentration is controlled by adjusting the flow rate of the gas containing carbon supplied as the reactive gas during film formation. Is possible.
  • the transparent conductive film For the purpose of changing the transmittance, color, and reflectance of the transparent conductive film, it is preferable to provide at least two layers having different refractive indexes between the transparent conductive thin film and the cured product layer. For example, when two layers with different refractive indexes are provided, a layer with a refractive index of 1.60 or more and 2.50 or less and a layer with a refractive index of 1.30 or more and 1.60 or less are laminated from the transparent plastic film side. It is preferable to do.
  • a layer having a refractive index of 1.60 or more and 2.50 or less is a layer made of an inorganic substance, a mixture of an organic substance and an inorganic substance.
  • Inorganic, transparent metal oxides such as In O, TiO, and Nb O are common.
  • the layer composed of a mixture of an organic substance and an inorganic substance includes a cured resin and metal oxide by ionizing radiation, and has a refractive index in the range of 1.60 to L80 (hereinafter, this layer is referred to as a high refractive layer). Called).
  • a refractive index of the layer is less than 1.60, a transparent conductive film excellent in antireflection performance can be obtained. If the refractive index of the layer exceeds 1.80, it becomes difficult to form the layer.
  • the preferred refractive index has a lower limit of 1.70 and an upper limit of 1.80.
  • the metal oxide is not particularly limited as long as a layer having a refractive index of 1.60 to L 80 is obtained, but the transmittance of the transparent conductive film is further improved. Therefore, it is preferable to have excellent adhesion with a layer provided thereon. From this point of view, the metal oxide is not particularly limited as long as it satisfies the above conditions.
  • the low refractive index layer is a siloxane polymer
  • antimony monophosphate (tin ( ATO), acid tin and the like can be preferably mentioned.
  • tin ( ATO) antimony monophosphate
  • One of these metal oxides can be used alone, or two or more can be used in combination.
  • the layer having a refractive index of 1.30 or more and 1.60 or less is also composed of an organic substance, an inorganic substance, or a mixture of an organic substance and an inorganic substance.
  • inorganic materials are SiO
  • the organic substance includes at least one of a siloxane-based polymer, polyurethane, polyester, and acrylic, and has a refractive index of 1.30 to : L55 is preferable.
  • L55 refractive index
  • the center line average roughness (Ra) is in the range of 0.1 to 0.5 m. It is preferably contained.
  • Ra is less than 0.1, it is difficult to prevent the occurrence of Newton rings.
  • Ra exceeds 0.5 m, the surface of the transparent conductive thin film becomes too rough, and the pen sliding durability tends to deteriorate.
  • the particles to be contained in the cured product layer are not particularly limited, but inorganic particles (eg, silica, calcium carbonate, etc.), heat-resistant organic particles (eg, silicon particles, PTFE particles, polyimide particles, etc.) ), Crosslinked polymer particles (crosslinked PS particles, crosslinked acrylic particles, etc.).
  • the average particle size of these particles is preferably 0.5-5 / ⁇ ⁇ .
  • the content of the particles to be contained in the cured product layer is preferably 0.01 to LO mass%.
  • the surface opposite to the surface on which the transparent conductive thin film of the transparent plastic film is formed (the touch panel and It is preferable to provide a hard coat layer on the outermost pen input surface).
  • the hard coat layer preferably has a pencil hardness of 2 mm or more. When the hardness is less than 2 mm, it is insufficient as a hard coat layer for a transparent conductive film in terms of scratch resistance.
  • the thickness of the hard coat layer is preferably 0.5 to 10 ⁇ m. If the thickness is less than 0.5 ⁇ m, the scratch resistance becomes insufficient, and if it is immediately thicker than 10 m, it is not preferable from the viewpoint of productivity.
  • the curable resin composition used in the hard coat layer is preferably a resin having an acrylate functional group.
  • a resin having an acrylate functional group for example, a relatively low molecular weight polyester resin, a polyester resin, an acrylic resin Oligomers or prepolymers such as (meth) acreates of multifunctional compounds such as resin, epoxy resin, urethane resin, alkyd resin, spirocetal resin, polybutadiene resin, polythiolpolyene resin and polyhydric alcohol Etc.
  • the reactive diluents include monofunctional monomers such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-butylpyrrolidone, and many others.
  • Functional monomers such as trimethylol propane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate , Dipentaerythritol hexa (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, neopentyl alcohol di (meth) acrylate, etc. can be used
  • urethane atylate as the oligomer and dipentaerythritol hexa (meth) atallylate as the monomer.
  • the curable resin composition used for the hard coat layer a mixture of polyester phthalate and polyurethane acrylate is particularly preferable.
  • Polyester acrylate is very hard and suitable as a hard coat layer.
  • a coating film of polyester acrylate is low in impact resistance and easily brittle. Therefore, in order to give impact resistance and flexibility to the coating film, it is preferable to use polyurethane acrylate in combination. That is, by using the polyurethane acrylate in combination with the polyester acrylate, the coating film can have functions such as impact resistance and flexibility while maintaining the hardness as the hard coat layer.
  • the blending ratio of the two is preferably 30 parts by mass or less of the polyurethane acrylate resin per 100 parts by mass of the polyester acrylate resin.
  • the blending ratio of polyurethane acrylate resin exceeds 30 parts by mass, the coating film becomes too soft and the impact resistance tends to be insufficient.
  • a normal curing method that is, a method of curing by heating, electron beam or ultraviolet irradiation can be used.
  • electron beam curing it is emitted from various electron beam accelerators such as Cockloft Walton type, handigraph type, resonant transformer type, insulated core transformer type, linear type, dynamitron type, and high frequency type.
  • An electron beam having energy of ⁇ 1000 keV, preferably 100 to 300 keV is used.
  • ultraviolet curing ultraviolet rays that emit light, such as an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a carbon arc, a xenon arc, and a metal nitride lamp can be used.
  • a photopolymerization initiator or a photosensitizer is contained in the curable resin composition.
  • the photopolymerization initiator include acetophenones, benzophenones, Michler benzoyl benzoate, a-amixy oxime ester, tetramethylthiuram monosulfide, thixanthones, and the like.
  • the photosensitizer n-butylamine, triethylamine, tri-n-butylphosphine and the like are preferable.
  • Effective methods include dispersing the inorganic particles 3 or forming a concavo-convex shape on the surface of the hard coat layer.
  • a shaped film having a convex shape is laminated on the surface, and ultraviolet rays are irradiated on the shaped film. After curing the curable resin, it is obtained by peeling only the shaped film.
  • the shape-imparting film may be a film having a desired convex shape on a base film such as polyethylene terephthalate (hereinafter abbreviated as PET) having releasability, or a base film such as PET.
  • PET polyethylene terephthalate
  • a material having a delicate convex layer can be used.
  • the formation of the convex layer can be obtained, for example, by coating on a base film using a resin composition comprising inorganic particles and a binder resin.
  • Noinda resin for example, acrylic polyol cross-linked with polyisocyanate can be used, and as inorganic particles, CaCO, SiO, or the like can be used. Also this
  • a low reflection treatment may be performed on the hard coat layer.
  • This low reflection treatment A material having a refractive index different from the refractive index is preferably laminated in a single layer or two or more layers.
  • the layer adjacent to the hard coat layer is made of a material having a higher refractive index than that of the hard coat layer, and the upper layer has a lower refractive index.
  • the material constituting such a low reflection treatment is not particularly limited as long as the above refractive index relationship is satisfied, whether it is an organic material or an inorganic material.
  • a dielectric such as 0, CeO 2, ZnS, or In 2 O 3.
  • the low reflection treatment may be a dry coating process such as a vacuum deposition method, a sputtering method, a CVD method, or an ion plating method, or a wet coating process such as a gravure method, a reverse method, or a die method.
  • a transparent conductive thin film is formed, and then laminated with a transparent resin sheet via a surface and an adhesive, whereby the transparent conductive film used for the fixed electrode of the touch panel is used.
  • a laminated resin sheet is obtained.
  • the pressure-sensitive adhesive is not particularly limited as long as it has transparency.
  • an acrylic pressure-sensitive adhesive, a silicone pressure-sensitive adhesive, and a rubber pressure-sensitive adhesive are suitable.
  • the thickness of the pressure-sensitive adhesive is not particularly limited, but it is usually desirable to set it within a range of 1 to: LOO / zm. When the thickness of the pressure-sensitive adhesive is less than L m, it is difficult to obtain adhesiveness that is practically acceptable, and when it exceeds 100 ⁇ m, it is preferable from the viewpoint of productivity.
  • the transparent resin sheet to be bonded via the adhesive is used for imparting mechanical strength equivalent to that of glass, and the thickness is preferably in the range of 0.05 to 5 mm. If the thickness of the transparent resin sheet is less than 0.05 mm, the mechanical strength is insufficient compared to glass. one On the other hand, if the thickness exceeds 5 mm, it is too thick to be used for touch panels.
  • the material of the transparent resin sheet can be the same as that of the transparent plastic film.
  • FIG. 1 shows an example of a touch panel using the transparent conductive film of the present invention. This is because a pair of panel plates having a transparent conductive thin film is placed on a touch panel in which the transparent conductive thin film is disposed through a spacer so that the transparent conductive thin film faces each other. A bright conductive film is used.
  • This touch panel detects the position of the pen on the touch panel when the characters are input with the pen and the transparent conductive thin films facing each other come into contact with each other due to the pressing from the pen. can do. By detecting the pen position continuously and accurately, the pen trajectory can also recognize characters. At this time, when the movable electrode on the pen contact side uses the transparent conductive film of the present invention, since the pen sliding durability is excellent, a touch panel that is stable for a long time can be obtained.
  • Fig. 2 shows a cross-sectional view of a plastic touch panel obtained using the transparent conductive film and the transparent conductive sheet of the present invention without using a glass substrate.
  • This plastic touch panel does not use glass, so it is very lightweight and will not crack on impact.
  • the present invention will be described in further detail with reference to examples.
  • the present invention is not limited to these examples.
  • the performance of the transparent conductive film, the crystallinity of the transparent conductive thin film, and the pen sliding durability test of the touch panel were measured using the following methods.
  • color a and b values were measured with standard light CZ2 using a color difference meter (Nippon Denshoku Industries Co., Ltd., ZE-2000).
  • a transparent conductive film sample piece was cut into a 300 m ⁇ 300 m square and fixed to a sample holder of an ultramicrotome with the conductive thin film surface facing forward. Next, a knife was placed at an extremely acute angle with respect to the film surface so that a section having a target observation site of 1 m ⁇ 1 ⁇ m or more could be obtained, and cutting was performed at a set thickness of 70 nm.
  • a 40 ⁇ m thick ionomer film was laminated to a 75 m thick polyethylene terephthalate film using a polyester adhesive to produce a laminate for measuring adhesion.
  • the ionomer surface of this laminate for measuring adhesive force and the transparent conductive thin film surface of the transparent conductive film were opposed to each other and heat sealed at 130 ° C.
  • the laminate was peeled from the laminate for measuring adhesive force and the transparent conductive film by a 180 ° peeling method, and this peeling force was defined as the adhesive strength.
  • the peeling speed at this time was set to lOOOmmZ.
  • a 140 m X 224 m detection area was secured on the surface of the conductive thin film, and evaluation was performed with SIMS (PHI, 6650) using primary calo fast voltage lkV and Cs + primary ions.
  • the carbon content in the film was derived by determining the relative sensitivity coefficient with a standard sample ion-implanted with a known carbon concentration.
  • the hydrogen concentration in the transparent conductive thin film is also measured at the same time, and the depth at which the matrix effect (reduction in hydrogen concentration due to changes in the layer constituent materials) is defined is defined as the interface between the transparent conductive thin film and the substrate.
  • the carbon concentration at the depth on the surface side of the 2 nm transparent conductive thin film was defined as the carbon concentration in the transparent conductive thin film.
  • a sample is brought into close contact with a glass plate, and in accordance with JIS B0601, using a two-dimensional surface roughness measuring machine (manufactured by Tokyo Seimitsu Co., Ltd., Surfcom 300B), cut-off 0.8, measurement length 4mm, stylus load
  • the centerline average roughness (Ra) was measured under the conditions of 4 mN and stylus speed of 0.3 mmZ.
  • Photopolymerization initiator-containing acrylic resin manufactured by Dainichi Seika Kogyo Co., Ltd., Seika Beam EXF-01J
  • a solvent mixture of toluene ZMEK (80Z20: mass ratio) as a solvent and a solid content concentration of 50% by mass was stirred and dissolved uniformly to prepare a coating solution.
  • a film was formed using a sputtering method. However, in order to prevent arc discharge that occurs with normal DC, a 5 ⁇ s wide pulse was applied at a 50 kHz period using RPG-100 made by Nippon Yanai. The center roll temperature was 10 ° C. and sputtering was performed.
  • This transparent conductive film was used as one panel plate, and the other panel plate was an indium-tin composite oxide thin film (thin oxide content: 10% by mass) on a glass substrate with a thickness of 20 nm by plasma CVD.
  • Transparent conductive thin film (Nippon Soda Co., Ltd., S500) was used.
  • a touch panel was prepared by placing these two panel plates with 30 m diameter epoxy beads so that the transparent conductive thin film faces each other.
  • Example 2 In Example 1, a cryocoil (manufactured by Hakutosha Co., Ltd., polycold) is provided in the film forming chamber, and c
  • Example 2 Indium-tin composite as in Example 1 except that the O gas flow rate was 40 sccm.
  • Example 2 An oxide thin film was formed to produce a transparent conductive film. Further, using this transparent conductive film, a touch panel was produced in the same manner as in Example 1.
  • Example 1 a target composed of an indium-tin composite oxide having a tin oxide content of 20% by mass was used, and the amount of oxygen introduced was changed to an amount that minimizes the specific resistance value. A film was formed to produce a transparent conductive film. When this target was used, the content of tin oxide in the indium-tin composite oxide thin film was 19% by mass.
  • Example 1 a target composed of an indium-tin composite oxide having a tin oxide content of 60% by mass was used, and the amount of oxygen introduced was set to an amount that minimizes the specific resistance value. A film was formed to produce a transparent conductive film. When this target was used, the content of tin oxide in the indium-tin composite oxide thin film was 59% by mass.
  • Example 2 In the same manner as in Example 1, a laminate composed of a base Z cured material layer having a biaxially oriented transparent PET film force was produced. On the surface opposite to the cured product layer surface of this laminate, an ultraviolet curable resin (EXG, manufactured by Dainichi Seika Kogyo Co., Ltd.), which is a mixture of polyester acrylate and polyurethane acrylate, is used as a hard coat layer resin. It was applied by gravure reverse method so that the film thickness after drying was 5 ⁇ m, and the solvent was dried. Thereafter, it was passed under a 160 W ultraviolet irradiation device at a speed of 10 mZ to cure the ultraviolet curable resin, thereby forming a hard coat layer. Next, heat treatment was performed at 180 ° C for 1 minute to reduce volatile components.
  • EXG ultraviolet curable resin
  • the indium tin oxide composite oxide thin film is formed on the cured material layer of the laminate in the same manner as in Example 1. Then, a transparent conductive film was produced. Sarakuko, using this transparent conductive film, a touch panel was produced in the same manner as in Example 1.
  • the substrate was made of a Z-cured material layer having a biaxially oriented transparent PET film force.
  • a laminate was prepared.
  • UV curing type resin (EXG manufactured by Dainichi Seika Kogyo Co., Ltd.), which is a mixture of polyester acrylate and polyurethane acrylate, is dried as a resin for the hard coat layer.
  • the film was applied by the Daravia reverse method so that the subsequent film thickness was 5 ⁇ m, and the solvent was dried.
  • a mat-shaped film (X made by Torayen Earth Co., Ltd.) having a PET film with a fine convex shape formed on the surface was laminated so that the mat surface was in contact with the ultraviolet curable resin.
  • the surface shape of this mat shaped film is an average surface roughness of 0.40 ⁇ m, an average peak interval of 160 / ⁇ ⁇ , and a maximum surface roughness of 25 m.
  • the laminated film was passed under a 160 W ultraviolet irradiation device at a speed of 10 mZ to cure the ultraviolet curable resin.
  • the mat-shaped film was peeled off, and the surface was processed with a concave shape to form a hard coat layer having an antiglare effect.
  • heat treatment was performed at 180 ° C for 1 minute to reduce volatile components.
  • Example 5 In the same manner as in Example 5, a laminate comprising an antiglare node coat layer Z, a biaxially oriented transparent PET film, a substrate Z cured product layer, and a Z transparent conductive thin film layer was produced. Next, on this antiglare node coat layer, a TiO thin film layer (refractive index: 2.30, film thickness: 15 nm), SiO thin film successively.
  • SiO thin film layer (refractive index: 1.46, film thickness: 87nm) was laminated to form an antireflection treatment layer
  • TiO thin film layer use titanium as a target and a direct current magnetron spa.
  • the vacuum level is set to 0.27 Pa, Ar gas is 500 sccm, and O gas is 80 s.
  • the transparent plastic film was cooled by providing a cooling hole with a surface temperature of 0 ° C on the back of the substrate.
  • a silicon magnet is used as a target and a DC magnetron spas Tulling method, vacuum degree is 0.27Pa, Ar gas is 500sccm, O gas is 80sccm
  • the flow rate was. At this time, 7.8 WZcm 2 of power was supplied to the target, and the dynamic rate was 23 nm'mZ.
  • a 0 ° C cooling roll was provided on the back of the substrate to cool the transparent plastic film. Further, using this transparent conductive film as one panel plate, a touch panel was produced in the same manner as in Example 1.
  • the transparent conductive film produced in the same manner as in Example 1 was attached to a polycarbonate sheet having a thickness of 1. Omm through an acrylic adhesive to produce a transparent conductive laminate sheet.
  • a touch panel was produced in the same manner as in Example 1 using this transparent conductive laminated sheet as a fixed electrode and the transparent conductive film of Example 6 as a movable electrode.
  • a coating solution was prepared by diluting with a mixed solvent of methyl isobutyl ketone and isopropyl alcohol in a mass ratio of 1: 1 so that the amount was%.
  • the hard coating layer Z biaxially stretched PET film prepared in the same manner as in Example 4 Z cured product layer strength on the cured product layer of the laminate, the thickness after the coating solution was completely cured
  • the film was applied to a thickness of 70 nm and dried at 80 ° C for 1 minute. Further, ultraviolet rays were irradiated with a light amount of SOmjZcm 2 to be cured in a half-cured state to form a highly refractive layer.
  • a fluorine-containing siloxane coating agent manufactured by Shin-Etsu Chemical Co., Ltd., trade name "X-12-12138H", solid content concentration: 3% by mass
  • a photopolymerization initiator-containing acrylic resin Fat (Seika Beam EXF-01J, manufactured by Dainichi Seika Kogyo Co., Ltd.) was added so that the total solid content was 6% by mass.
  • This coating solution for forming a low refractive index layer was applied onto the high refractive index layer so that the thickness after the heat treatment was 20 nm, and dried at 80 ° C. for 1 minute.
  • a transparent conductive film was obtained in the same manner as in Example 8 except that the thicknesses of the high refractive layer and the low refractive layer were 90 nm and 45 nm, respectively. Further, using this transparent conductive film, a touch panel was produced in the same manner as in Example 1.
  • Example 1 when adjusting with a coating solution for forming a cured product layer, Tospearl 145 having an average particle size of 4.5 ⁇ m (manufactured by Toshiba Silicone) was 1 mass per 100 mass parts of acrylic resin. And particles were dispersed in the coating solution.
  • a transparent conductive film is produced in the same manner as in Example 1 except that this coating solution is used as a coating solution for forming a cured product layer, and the coating is applied using a Mayer bar so that the thickness force / zm of the coating film is obtained. did.
  • the center line average roughness (Ra) of the surface of the transparent conductive thin film of the obtained transparent conductive film was 0.24 ⁇ m.
  • Example 2 a touch panel was prepared in the same manner as in Example 1. In addition, the force to confirm the occurrence of a newton ring while pressing the film against the glass under a three-wavelength fluorescent lamp, no Newton ring was observed.
  • Example 1 a transparent conductive film was produced in the same manner as in Example 1 except that the volatile component reduction process by heat treatment at 180 ° C. for 1 minute and vacuum exposure treatment for 10 minutes was omitted. Further, using this transparent conductive film, a touch panel was prepared in the same manner as in Example 1.
  • a transparent conductive film was produced in the same manner as in Example 1 except that the rewinding time was 5 minutes in Example 1. Further, using this transparent conductive film, a touch panel was prepared in the same manner as in Example 1.
  • Example 2 On the cured product layer obtained in the same manner as in Example 1, a transparent conductive thin film made of indium tin composite oxide was formed. At this time, the pressure before sputtering is set to 0. A DC power of 2 W / cm 2 was applied using indium oxide containing 10% by mass of tin oxide (density: 7.lg / cm 3 ). In addition, Ar gas was flowed at 130 sccm, O gas was flowed at a flow rate of lOsccm, and DC magnetron sputtering was performed in an atmosphere of 0.4 Pa.
  • the film was formed by using the etching method. However, in order to prevent arc discharge that occurs with normal DC, a pulse of 5 ⁇ s width was applied at a 50 kHz period using RPG-100 manufactured by Nippon Yanai. The center roll temperature was 50 ° C. and sputtering was performed. The transparent conductive film thus obtained was further heated to 200 ° C. in an oven and held for 5 minutes. Further, using this transparent conductive film, a touch panel was produced in the same manner as in Example 1.
  • the touch panel using the transparent conductive film or the transparent conductive sheet described in Example 11 11 satisfying the scope of the present invention is placed near the frame to be polyacetal. Even after a sliding test of 10,000 times with a load of 2.5 N applied to a pen made (tip shape: 0.8 mmR), there was no abnormality in the ON resistance, which did not cause peeling or cracking.
  • the conductive films of Comparative Examples 1 and 2 in which the moisture in the film was not sufficiently removed are touch panels using these conductive films in which the carbon concentration in the transparent conductive thin film is low.
  • a polyacetal pen tip shape: 0.8 mmR
  • a load of 2.5 N was loaded with a load of 2.5 N, and after 10,000 sliding tests, an abnormality occurred in the ON resistance. Furthermore, when the pen sliding portion was evaluated with a microscope, peeling and cracking of the transparent conductive thin film were observed.
  • the conductive film of Comparative Example 3 in which the transparent conductive thin film was crystalline had cracks in the transparent conductive thin film after the pen sliding test near the frame of the touch panel, and the ON resistance was abnormal.
  • the transparent conductive film or transparent conductive sheet of the present invention has excellent pen sliding durability that does not cause peeling or cracking even near the frame of the touch panel when used in a touch panel for pen input. Because it has excellent position detection accuracy and display quality, it can handle the narrow frame of touch panels, miniaturize recording media used in personal digital assistants, digital video cameras, digital cameras, etc. and increase the display screen. It is particularly suitable as a touch panel that is strongly required.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Position Input By Displaying (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

[PROBLEMS] To provide a transparent electrically conductive film, which, when used in a touch panel, has excellent pen sliding durability near its frame and does not cause breaking of a transparent electrically conductive thin film particularly even after a sliding test under conditions of load 2.5 N and 10000 times with a polyacetal pen, and a transparent electrically conductive sheet and a touch panel using the same. [MEANS FOR SOLVING PROBLEMS] A transparent electrically conductive film comprising a transparent plastic film (a base material) and a transparent electrically conductive thin film comprising a metal oxide as a constituent stacked through a cured product layer onto the base material. The transparent electrically conductive film is characterized in that the transparent electrically conductive thin film is amorphous and the concentration of carbon in the transparent electrically conductive thin film is 1 × 1020 to 1 × 1022 (atoms/cm3). A transparent electrically conductive sheet comprising a transparent resin sheet applied through a pressure-sensitive adhesive to the transparent electrically conductive film on its side remote from the transparent electrically conductive thin film face. A touch panel comprising panel plates at least one of which is the transparent electrically conductive film or transparent electrically conductive sheet.

Description

明 細 書  Specification
透明導電性フィルム、透明導電性シート、及びタツチパネル  Transparent conductive film, transparent conductive sheet, and touch panel
技術分野  Technical field
[0001] 本発明は透明プラスチックフィルム力もなる基材上に硬化物層を介して透明導電性 薄膜を積層した透明導電性フィルム、透明導電性シート、及びタツチパネルに関する ものであり、特にタツチパネルの額縁近傍でのペン摺動耐久性に優れる透明導電性 フィルム、透明導電性シート、及びタツチパネルに関するものである。  [0001] The present invention relates to a transparent conductive film, a transparent conductive sheet, and a touch panel in which a transparent conductive thin film is laminated on a base material having a transparent plastic film force via a cured product layer, and particularly in the vicinity of a frame of the touch panel. The present invention relates to a transparent conductive film, a transparent conductive sheet, and a touch panel excellent in pen sliding durability.
背景技術  Background art
[0002] 透明プラスチックフィルム力もなる基材上に、透明でかつ抵抗が小さい薄膜を積層 した透明導電性フィルムは、その導電性を利用した用途、例えば、液晶ディスプレイ やエレクト口ルミネッセンス (EL)ディスプレイなどのようなフラットパネルディスプレイ や、タツチパネルの透明電極など、電気、電子分野の用途に広く使用されている。  A transparent conductive film in which a transparent thin film with low resistance is laminated on a substrate that also has a transparent plastic film force is used for applications that use the conductivity, such as a liquid crystal display or an electoluminescence (EL) display. It is widely used in electrical and electronic fields such as flat panel displays and transparent electrodes for touch panels.
[0003] 近年、携帯情報端末やデジタルビデオカメラ、デジタルカメラなどの小型化とともに 、操作キーを省くため表示ディスプレイにタツチパネルを搭載するケースが増えて ヽ る。し力しながら、これらの記録媒体は、小型化とともに、表示ディスプレイそのものは 大画面化が望まれている。そのため、表示ディスプレイを囲む筐体エリア(額縁)はよ り狭くなり、タツチパネルとしてもより狭い額縁ィ匕が望まれるようになってきた。さらに、 額縁近傍は筐体内に収まらず表示エリア上に存在する状態になってきている。  [0003] In recent years, with the miniaturization of portable information terminals, digital video cameras, digital cameras, etc., the number of cases in which a touch panel is mounted on a display in order to omit operation keys has increased. However, these recording media are desired to have a smaller screen and a larger display display. For this reason, the housing area (frame) surrounding the display is becoming narrower, and a narrower frame is required for a touch panel. Furthermore, the vicinity of the frame is not in the case and is on the display area.
[0004] タツチパネルをペン入力する際、固定電極側の透明導電性薄膜と可動電極 (フィル ム電極)側の透明導電性薄膜同士が接触するが、特に額縁近傍では、可動電極側 の透明導電性薄膜に、ペン荷重による強い曲げストレスがかかる。このため、ペン荷 重による強い曲げストレスが力かっても、透明導電性薄膜にクラック、剥離などの破壊 が生じな!/ヽ、額縁近傍でのペン摺動耐久性に優れる透明導電性フィルムが要望され ている。し力しながら、従来の透明導電性フィルムは、次のような問題を有していた。  [0004] When pen input is performed on the touch panel, the transparent conductive thin film on the fixed electrode side and the transparent conductive thin film on the movable electrode (film electrode) side come into contact with each other, but in particular near the frame, the transparent conductive thin film on the movable electrode side A strong bending stress due to a pen load is applied to the thin film. Therefore, even if strong bending stress due to pen load is applied, the transparent conductive thin film does not break, such as cracking or peeling! / !, Transparent conductive film with excellent pen sliding durability near the frame is desired It has been. However, the conventional transparent conductive film has the following problems.
[0005] 厚さが 120 μ m以下の透明プラスチックフィルム力 なる基材上に透明導電性薄膜 を形成し、粘着剤層で他の透明基体と貼りあわせた透明導電性フィルムが提案され ている(例えば、特許文献 1を参照)。このような粘着剤層を有する透明導電性フィル ムを用いたタツチパネルは、後述のタツチパネルの額縁近傍におけるペン摺動耐久 性を満足するものの、タツチパネルとして使用する際のペン入力荷重(以下、 ON荷 重とする)が重いため、ペン入力ができた力否かの認識がしづらい。さらに、該技術を 用いた場合、製造工程、特に、貼り合わせ工程において、異物が混入し製品の歩留 まりが低下し、製造コストが高くなる。そのため、前記のタツチパネルでは、近年のタツ チパネルの低コストィ匕と 、ぅ巿場要求を満足させることができな 、。 [0005] There has been proposed a transparent conductive film in which a transparent conductive thin film is formed on a substrate having a thickness of 120 μm or less and a transparent conductive film is bonded to another transparent substrate with an adhesive layer ( For example, see Patent Document 1). Transparent conductive film having such an adhesive layer Although the touch panel using a pad satisfies the pen sliding durability near the frame of the touch panel, which will be described later, the pen input load (hereinafter referred to as the ON load) when used as a touch panel is heavy, so pen input is possible. It is difficult to recognize whether or not you have power. Furthermore, when this technique is used, foreign matters are mixed in the manufacturing process, particularly the bonding process, and the yield of the product is reduced, resulting in an increase in manufacturing cost. For this reason, the touch panel described above cannot satisfy the low cost of touch panels in recent years and the requirements of the plant.
特許文献 1:特開平 2— 66809号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2-66809
[0006] また、透明プラスチックフィルム力もなる基材上に、有機ケィ素化合物の加水分解に より生成された下地層を設け、さらに、結晶質の透明導電性薄膜を積層した透明導 電性フィルムが提案されている(例えば、特許文献 2〜7を参照)。  [0006] Further, a transparent conductive film in which a base layer formed by hydrolysis of an organic silicon compound is provided on a substrate that also has a transparent plastic film force, and a crystalline transparent conductive thin film is further laminated. It has been proposed (see, for example, Patent Documents 2 to 7).
特許文献 2:特開昭 60— 131711号公報  Patent Document 2: JP-A-60-131711
特許文献 3:特開昭 61— 79647号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 61-79647
特許文献 4:特開昭 61 - 183809号公報  Patent Document 4: Japanese Patent Laid-Open No. 61-183809
特許文献 5 :特開平 2— 194943号公報  Patent Document 5: Japanese Patent Laid-Open No. 2-194943
特許文献 6:特開平 2— 276630号公報  Patent Document 6: Japanese Patent Laid-Open No. 2-276630
特許文献 7:特開平 8 - 64034号公報  Patent Document 7: JP-A-8-64034
[0007] し力しながら、これらの透明導電性フィルムは非常に脆ぐ後述のタツチパネル額縁 近傍でのペン摺動耐久性試験後には、透明導電性薄膜にクラックが発生するという 問題があった。  [0007] However, these transparent conductive films are very brittle. After the pen sliding durability test in the vicinity of the touch panel frame described later, there was a problem that cracks occurred in the transparent conductive thin film.
[0008] 一方、透明プラスチックフィルム力もなる基材上に、硬化物層を介して非晶質の透 明導電性薄膜を設けた透明導電性フィルムが提案されている (例えば、特許文献 8を 参照)。しかしながら、硬化物層と透明導電性薄膜の密着性を改善するために、硬化 物層を酸やアルカリ水溶液で表面処理して作製された透明導電性フィルムを用いた タツチパネルは、タツチパネルの中央部におけるペン筆記特性は改善されるもの、額 縁近傍でのペン摺動特性は不十分であった。  On the other hand, a transparent conductive film has been proposed in which an amorphous transparent conductive thin film is provided on a base material having a transparent plastic film force via a cured product layer (see, for example, Patent Document 8). ). However, in order to improve the adhesion between the cured product layer and the transparent conductive thin film, a touch panel using a transparent conductive film produced by surface-treating the cured product layer with an acid or alkaline aqueous solution is used at the center of the touch panel. The pen writing characteristics were improved, but the pen sliding characteristics near the frame were insufficient.
特許文献 8:特開平 11― 224539号公報  Patent Document 8: Japanese Patent Laid-Open No. 11-224539
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0009] すなわち、本発明の目的は、上記の従来の問題点に鑑み、タツチパネルに用いた 際の額縁近傍でのペン摺動耐久性 (エッジ耐久性)に優れ、特にポリアセタール製の ペンを使用し、タツチパネルの額縁近傍において、 2. 5Nの荷重で 1万回の摺動試 験後でも透明導電性薄膜が破壊されない、透明導電性フィルム、透明導電性シート 、及びタツチパネルを提供することにある。 Problems to be solved by the invention That is, in view of the above-described conventional problems, the object of the present invention is excellent in pen sliding durability (edge durability) in the vicinity of the frame when used in a touch panel, and in particular, a polyacetal pen is used. The object is to provide a transparent conductive film, a transparent conductive sheet, and a touch panel in which the transparent conductive thin film is not destroyed even after 10,000 sliding tests at a load of 2.5 N in the vicinity of the frame of the touch panel. .
課題を解決するための手段  Means for solving the problem
[0010] 本発明は、上記のような状況に鑑みなされたものであって、上記の課題を解決する ことができた透明導電性フィルム、透明導電性シート、及びタツチパネルとは、以下の 通りである。 [0010] The present invention has been made in view of the situation as described above, and the transparent conductive film, the transparent conductive sheet, and the touch panel that have solved the above-described problems are as follows. is there.
[0011] すなわち、本発明における第 1の発明は、透明プラスチックフィルム力もなる基材上 に、硬化物層を介して金属酸化物を構成成分とする透明導電性薄膜を積層した透 明導電性フィルムであって、前記透明導電性薄膜が非晶質であり、かつ透明導電性 薄膜中に含まれる炭素濃度が、 1 X 102G〜1 X 1022 (atoms/cm3)であることを特徴 とする透明導電性フィルムである。 [0011] That is, the first invention in the present invention is a transparent conductive film in which a transparent conductive thin film containing a metal oxide as a constituent component is laminated on a base material having a transparent plastic film force via a cured product layer. The transparent conductive thin film is amorphous, and the carbon concentration contained in the transparent conductive thin film is 1 × 10 2G to 1 × 10 22 (atoms / cm 3 ). It is a transparent conductive film.
[0012] 第 2の発明は、前記の金属酸ィ匕物がインジウムースズ複合酸ィ匕物であり、インジゥ ムに対するスズの含有量の比が 15〜60質量%であることを特徴とする第 1の発明に 記載の透明導電性フィルムである。  [0012] A second invention is characterized in that the metal oxide is an indium tin oxide complex, and the ratio of the content of tin to indium is 15 to 60% by mass. It is a transparent conductive film as described in this invention.
[0013] 第 3の発明は、前記透明導電性薄膜と硬化物層の間に、少なくとも 2層以上の屈折 率の異なる層を設けてなることを特徴とする第 1の発明に記載の透明導電性フィルム である。  [0013] A third invention is characterized in that at least two layers having different refractive indexes are provided between the transparent conductive thin film and the cured product layer, and the transparent conductive film according to the first invention is provided. It is a sex film.
[0014] 第 4の発明は、前記硬化物層が粒子を含有し、透明導電性薄膜面の中心線平均 粗さ (Ra)が 0. 1〜0. 5 mであることを特徴する第 1の発明に記載の透明導電性フ イルムである。  [0014] The fourth invention is characterized in that the cured product layer contains particles, and the center line average roughness (Ra) of the transparent conductive thin film surface is 0.1 to 0.5 m. The transparent conductive film described in the invention.
[0015] 第 5の発明は、前記透明導電性薄膜面とは反対面に、ハードコート層が積層されて いることを特徴とする第 1の発明に記載の透明導電性フィルムである。  [0015] A fifth invention is the transparent conductive film according to the first invention, characterized in that a hard coat layer is laminated on the surface opposite to the transparent conductive thin film surface.
[0016] 第 6の発明は、前記ハードコート層が防眩性を有することを特徴とする第 5の発明に 記載の透明導電性フィルムである。  [0016] A sixth invention is the transparent conductive film according to the fifth invention, wherein the hard coat layer has an antiglare property.
[0017] 第 7の発明は、前記ハードコート層が低反射処理を施したことを特徴とする第 5の発 明に記載の透明導電性フィルムである。 [0017] A seventh invention is characterized in that the hard coat layer is subjected to a low reflection treatment. It is a transparent conductive film described in the light.
[0018] 第 8の発明は、第 1の発明に記載の透明導電性フィルムの透明導電性薄膜面とは 反対面に、粘着剤を介して透明榭脂シートが貼り合わされていることを特徴とする透 明導電性シートである。  [0018] The eighth invention is characterized in that a transparent resin sheet is bonded to the surface of the transparent conductive film described in the first invention opposite to the transparent conductive thin film surface via an adhesive. It is a transparent conductive sheet.
[0019] 第 9の発明は、前記透明導電性薄膜を有する一対のパネル板を透明導電性薄膜 が対向するようにスぺーサーを介して配置してなるタツチパネルにおいて、少なくとも 一方のパネル板が第 1の発明に記載の透明導電性フィルムもしくは透明導電性シー トからなることを特徴とするタツチパネルである。  [0019] A ninth invention is a touch panel in which a pair of panel plates having the transparent conductive thin film are arranged via a spacer so that the transparent conductive thin film faces each other, and at least one of the panel plates is the first one. A touch panel comprising the transparent conductive film or the transparent conductive sheet according to the first aspect of the invention.
発明の効果  The invention's effect
[0020] 本発明の透明導電性フィルムは、透明プラスチックフィルム力もなる基材上に、硬化 物層を介して金属酸化物を主たる構成成分とする透明導電性薄膜を積層した構成 を有し、前記透明導電性薄膜として、非晶質で、かつ透明導電性薄膜中に含まれる 炭素濃度が 1 X 102G〜1 X 1022 (atoms/cm3)である透明導電性薄膜を用いること により、透明プラスチックフィルム力 なる基材との密着力が向上し、曲げに対する機 械強度を向上させることができる。そのため、タツチパネル額縁近傍においてペン摺 動試験を行った際に、透明導電性薄膜に剥離およびクラックが発生しにくくなり、額 縁近傍でのペン摺動耐久性を向上させることができるという利点がある。 [0020] The transparent conductive film of the present invention has a configuration in which a transparent conductive thin film containing a metal oxide as a main constituent component is laminated on a base material having a transparent plastic film force via a cured product layer. By using a transparent conductive thin film that is amorphous and has a carbon concentration of 1 × 10 2G to 1 × 10 22 (atoms / cm 3 ) contained in the transparent conductive thin film as the transparent conductive thin film, The adhesive strength with the base material, which is a plastic film, is improved, and the mechanical strength against bending can be improved. For this reason, when a pen sliding test is performed in the vicinity of the touch panel frame, the transparent conductive thin film is less likely to be peeled off and cracked, and the pen sliding durability in the vicinity of the frame can be improved. .
[0021] さらに、透明導電性薄膜のインジウムに対するスズの含有量の比を 15〜60質量% とすることにより、透明導電性薄膜にペン摺動試験を行った際に、透明導電性薄膜 の耐削れ性を向上させることができる。そのため、タツチパネルの中央部でのペン摺 動耐久性を向上させることができる。また、透明導電性薄膜面の中心線平均粗さ (Ra )を 0. 1〜0. 5 mとすることにより、タツチパネルとした際にペン摺動耐久性と-ュ 一トンリングの発生防止を両立させることができる。  Furthermore, by setting the ratio of tin content to indium in the transparent conductive thin film to 15 to 60% by mass, when the pen sliding test is performed on the transparent conductive thin film, the resistance of the transparent conductive thin film is reduced. Sharpness can be improved. Therefore, pen sliding durability at the center of the touch panel can be improved. In addition, by setting the center line average roughness (Ra) of the transparent conductive thin film surface to 0.1 to 0.5 m, pen sliding durability and prevention of the generation of a single-ton ring when a touch panel is made. Both can be achieved.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]本発明の透明導電性フィルムを用いた、タツチパネルの説明図である。 FIG. 1 is an explanatory view of a touch panel using the transparent conductive film of the present invention.
[図 2]本発明の透明導電性フィルムを用いた、ガラス基板を使用しないタツチパネル の説明図である。  FIG. 2 is an explanatory diagram of a touch panel using the transparent conductive film of the present invention and not using a glass substrate.
符号の説明 [0023] 10 :透明導電性フィルム Explanation of symbols [0023] 10: Transparent conductive film
11:透明プラスチックフィルム (基材)  11: Transparent plastic film (base material)
12 :硬化物層  12: Hardened product layer
13 :透明導電性薄膜  13: Transparent conductive thin film
14 :ノヽードコート層  14: Node coat layer
20 :ビーズ  20: Beads
30 :ガラス板  30: Glass plate
40 :透明導電性シート  40: Transparent conductive sheet
41 :粘着剤  41: Adhesive
42 :透明榭脂シート  42: Transparent resin sheet
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 本発明で用いる透明プラスチックフィルム力もなる基材とは、有機高分子を溶融押 出し又は溶液押出しをして、必要に応じ、長手方向及び Z又は幅方向に延伸、冷却 、熱固定を施したフィルムである。有機高分子としては、ポリエチレン、ポリプロピレン 、ポリエチレンテレフタレート、ポリエチレン 2, 6 ナフタレート、ポリプロピレンテレ フタレート、ナイロン 6、ナイロン 4、ナイロン 66、ナイロン 12、ポリイミド、ポリアミドイミド 、ポリエーテルサルファン、ポリエーテルエーテルケトン、ポリカーボネート、ポリアリレ ート、セルロースプロピオネート、ポリ塩化ビニール、ポリ塩化ビ-リデン、ポリビニル アルコール、ポリエーテルイミド、ポリフエ-レンスルフイド、ポリフエ-レンオキサイド、 ポリスチレン、シンジオタクチックポリスチレン、ノルボルネン系ポリマーなどが挙げら れる。 [0024] The substrate having a transparent plastic film force used in the present invention is obtained by subjecting an organic polymer to melt extrusion or solution extrusion and, if necessary, stretching, cooling, and heat setting in the longitudinal direction and the Z or width direction. It is a film that has been applied. Organic polymers include polyethylene, polypropylene, polyethylene terephthalate, polyethylene 2,6 naphthalate, polypropylene terephthalate, nylon 6, nylon 4, nylon 66, nylon 12, polyimide, polyamideimide, polyethersulfan, polyetheretherketone, Examples include polycarbonate, polyarylate, cellulose propionate, polyvinyl chloride, polyvinylidene chloride, polyvinyl alcohol, polyetherimide, polyphenylene sulfide, polyphenylene oxide, polystyrene, syndiotactic polystyrene, and norbornene polymers. It is
[0025] これらの有機高分子のなかで、ポリエチレンテレフタレート、ポリプロピレンテレフタ レート、ポリエチレン 2, 6 ナフタレート、シンジオタクチックポリスチレン、ノノレボノレ ネン系ポリマー、ポリカーボネート、ポリアリレートなどが好適である。また、これらの有 機高分子は他の有機重合体の単量体を少量共重合してもよ 、し、他の有機高分子 をブレンドしてもよい。  [0025] Among these organic polymers, polyethylene terephthalate, polypropylene terephthalate, polyethylene 2,6 naphthalate, syndiotactic polystyrene, nonolebornene-based polymer, polycarbonate, polyarylate and the like are preferable. These organic polymers may be copolymerized with a small amount of other organic polymer monomers, or may be blended with other organic polymers.
[0026] 本発明で用いる透明プラスチックフィルム力 なる基材の厚みは、 10 μ mを越え、 3 00 μ m以下の範囲であることが好ましぐ上限値は 260 μ m、下限値は 70 μ mであ ることが特に好ましい。プラスチックフィルムの厚みが 10 m以下では機械的強度が 不足し、特にタツチパネルに用いた際のペン入力に対する変形が大きくなる傾向が あり、耐久性が不十分となりやすい。一方、厚みが 300 mを越えると、タツチパネル に用いた際に、フィルムを変形させるためのペン荷重を大きくする必要がある。その ため、透明導電性薄膜に力かる荷重も必然と大きくなり、透明導電性薄膜の耐久性 の点で好ましくない。 [0026] The thickness of the transparent plastic film used in the present invention is preferably in the range of more than 10 μm and 300 μm or less. The upper limit is 260 μm, and the lower limit is 70 μm. m It is particularly preferable. When the thickness of the plastic film is 10 m or less, the mechanical strength is insufficient, especially when it is used for a touch panel, the deformation tends to increase with respect to pen input, and the durability tends to be insufficient. On the other hand, if the thickness exceeds 300 m, it is necessary to increase the pen load for deforming the film when used for touch panels. Therefore, the load applied to the transparent conductive thin film inevitably increases, which is not preferable from the viewpoint of durability of the transparent conductive thin film.
[0027] 本発明で用いる透明プラスチックフィルム力もなる基材は、本発明の目的を損なわ ない範囲で、前記フィルムをコロナ放電処理、グロ一放電処理、火炎処理、紫外線照 射処理、電子線照射処理、オゾン処理などの表面活性化処理を施してもよい。  [0027] The substrate having a transparent plastic film force used in the present invention has a corona discharge treatment, a glow discharge treatment, a flame treatment, an ultraviolet irradiation treatment, and an electron beam irradiation treatment as long as the object of the present invention is not impaired. Further, surface activation treatment such as ozone treatment may be performed.
[0028] また、本発明では、基材と透明導電層との密着性を向上させ、ペン入力耐久性、耐 薬品性の付与、オリゴマーなどの低分子量物の析出防止を目的として、基材と透明 導電性薄膜層の間に、硬化型榭脂を主たる構成成分とする硬化物層を設けてもよい  [0028] In the present invention, for the purpose of improving adhesion between the substrate and the transparent conductive layer, imparting pen input durability, chemical resistance, and preventing precipitation of low molecular weight substances such as oligomers, Between the transparent conductive thin film layers, a cured product layer mainly composed of curable resin may be provided.
[0029] 前記の硬化型榭脂は、加熱、紫外線照射、電子線照射などのエネルギー印加によ り硬化する榭脂であれば特に限定されなぐシリコーン榭脂、アクリル榭脂、メタクリル 榭脂、エポキシ榭脂、メラミン榭脂、ポリエステル榭脂、ウレタン榭脂などが挙げられる 。生産性の観点からは、紫外線硬化型榭脂を主成分とする硬化型榭脂が好ましい。 [0029] The curable resin is not particularly limited as long as it is cured by application of energy such as heating, ultraviolet irradiation, electron beam irradiation, etc. Silicone resin, acrylic resin, methacrylic resin, epoxy Examples include rosin, melamine, polyester and urethane. From the viewpoint of productivity, a curable resin having an ultraviolet curable resin as a main component is preferable.
[0030] このような紫外線硬化型榭脂としては、例えば、多価アルコールのアクリル酸又はメ タクリル酸エステルのような多官能性のアタリレート榭脂、ジイソシァネート、多価アル コール及びアクリル酸又はメタクリル酸のヒドロキシアルキルエステルなどから合成さ れるような多官能性のウレタンアタリレート榭脂などを挙げることができる。必要に応じ て、これらの多官能性の榭脂に単官能性の単量体、例えば、ビニルピロリドン、メチル メタタリレート、スチレンなどをカ卩えて共重合させることができる。  [0030] Examples of such ultraviolet curable resin include polyfunctional acrylate resin, diisocyanate, polyalcohol such as polyhydric alcohol acrylic acid or methacrylic acid ester, and acrylic acid or methacrylic acid. Examples thereof include polyfunctional urethane acrylate glycols synthesized from hydroxyalkyl esters of acids. If necessary, a monofunctional monomer such as vinyl pyrrolidone, methyl metatalylate, or styrene can be copolymerized with these polyfunctional resins.
[0031] また、透明導電性薄膜と硬化物層との付着力を向上するために、硬化物層を表面 処理することが有効である。具体的な方法としては、グロ一またはコロナ放電を照射 する放電処理法を用いて、カルボニル基、カルボキシル基、水酸基を増加させる方 法、酸またはアルカリで処理する化学薬品処理法を用いて、アミノ基、水酸基、カル ボニル基などの極性基を増カロさせる方法、などが挙げられる。 [0032] 紫外線硬化型榭脂は、通常、光重合開始剤を添加して使用される。光重合開始剤 としては、紫外線を吸収してラジカルを発生する公知の化合物を特に限定なく使用 することができ、このような光重合開始剤としては、例えば、各種べンゾイン類、フエ二 ルケトン類、ベンゾフエノン類などを挙げることができる。光重合開始剤の添加量は、 紫外線硬化型榭脂 100質量部に対して、 1〜5質量部とすることが好ましい。 [0031] In order to improve the adhesion between the transparent conductive thin film and the cured product layer, it is effective to surface-treat the cured product layer. Specific methods include a discharge treatment method that irradiates a glow or corona discharge, a method that increases carbonyl groups, carboxyl groups, and hydroxyl groups, and a chemical treatment method that uses acids or alkalis to treat amino acids. And a method of increasing the number of polar groups such as a group, a hydroxyl group and a carbonyl group. [0032] The ultraviolet curable resin is usually used by adding a photopolymerization initiator. As the photopolymerization initiator, known compounds that absorb ultraviolet rays to generate radicals can be used without any particular limitation. Examples of such photopolymerization initiators include various benzoins and phenyl ketones. And benzophenones. The addition amount of the photopolymerization initiator is preferably 1 to 5 parts by mass with respect to 100 parts by mass of the ultraviolet curable resin.
[0033] 塗布液中の榭脂成分の濃度は、コーティング法に応じた粘度などを考慮して適切 に選択することができる。例えば、塗布液中に紫外線硬化型榭脂、光重合開始剤の 合計量が占める割合は、通常は 20〜80質量%である。また、この塗布液には、必要 に応じて、その他の公知の添加剤、例えば、シリコーン系界面活性剤、フッ素系界面 活性剤などのレべリング剤などを添加してもよい。  [0033] The concentration of the resin component in the coating solution can be appropriately selected in consideration of the viscosity according to the coating method. For example, the proportion of the total amount of UV curable resin and photopolymerization initiator in the coating solution is usually 20 to 80% by mass. In addition, other known additives such as leveling agents such as silicone surfactants and fluorine surfactants may be added to the coating solution as necessary.
[0034] 本発明にお ヽて、調製された塗布液は透明プラスチックフィルムカゝらなる基材上に コーティングされる。コーティング法には特に限定されなぐバーコート法、グラビアコ ート法、リバースコート法などの従来力も知られている方法を使用することができる。  In the present invention, the prepared coating solution is coated on a substrate such as a transparent plastic film cover. As the coating method, a method known in the art such as a bar coating method, a gravure coating method, and a reverse coating method, which are not particularly limited, can be used.
[0035] また、硬化物層の厚みは 0. 1〜15 μ mの範囲であることが好ましい。硬化物層の 厚みの下限値は、 0. 5 mがより好ましぐ特に好ましくは 1 μ mである。また、硬化 物層の厚みの上限値は、 10 /z mがより好ましぐ特に好ましくは 8 mである。硬化物 層の厚みが 0. 1 m未満の場合には、十分に架橋した構造が形成されにくくなるた め、ペン入力耐久性ゃ耐薬品性が低下しやすくなり、オリゴマーなどの低分子量によ る密着性の低下もおこりやすくなる。一方、硬化物層の厚みが 15 mを超える場合 には、生産性が低下する傾向がある。  [0035] The thickness of the cured product layer is preferably in the range of 0.1 to 15 µm. The lower limit of the thickness of the cured product layer is more preferably 0.5 m, particularly preferably 1 μm. Further, the upper limit value of the thickness of the cured product layer is more preferably 10 / z m, and particularly preferably 8 m. When the thickness of the cured product layer is less than 0.1 m, it is difficult to form a sufficiently cross-linked structure, so pen input durability tends to decrease chemical resistance, and due to low molecular weight such as oligomers. Decrease in adhesion is also likely to occur. On the other hand, when the thickness of the cured product layer exceeds 15 m, productivity tends to decrease.
[0036] 本発明にお ヽて、透明導電性薄膜を構成する金属酸化物としては、透明性及び導 電性をあわせもつ材料であれば特に限定されないが、酸化インジウム、酸化スズ、酸 化亜鉛、インジウム—スズ複合酸ィ匕物、スズ—アンチモン複合酸ィ匕物、亜鉛—アルミ -ゥム複合酸化物、インジウム 亜鉛複合酸ィ匕物、銀または銀合金、銅または銅合 金、金などが挙げられる。これらのうち、環境安定性や回路加工性の観点から、イン ジゥム—スズ複合酸ィ匕物が好適である。また、本発明で用いる透明導電性薄膜は、 金属酸化物を主たる構成成分とするが、その他の成分として炭素が 1 X 102〜1 X 1 022 (atomsZcm3)の濃度で含まれている。また、本発明の効果を阻害しない範囲で 、金属酸化物や炭素以外の成分が 5質量%以下、より好ましくは 3質量%以下、特に 好ましくは 1質量%以下の範囲で含まれて 、てもよ!/、。 In the present invention, the metal oxide constituting the transparent conductive thin film is not particularly limited as long as it is a material having both transparency and conductivity, but indium oxide, tin oxide, zinc oxide. , Indium-tin complex oxide, tin-antimony complex oxide, zinc-aluminum complex oxide, indium zinc complex oxide, silver or silver alloy, copper or copper alloy, gold, etc. Is mentioned. Of these, indium-tin composite oxide is preferred from the viewpoints of environmental stability and circuit processability. The transparent conductive thin film used in the present invention contains a metal oxide as a main component, but contains carbon in a concentration of 1 X 10 2 to 1 X 10 22 (atomsZcm 3 ) as other components. . Moreover, as long as the effect of the present invention is not impaired. In addition, components other than metal oxide and carbon are contained in an amount of 5% by mass or less, more preferably 3% by mass or less, and particularly preferably 1% by mass or less.
[0037] 透明導電性薄膜の層構造は、単層構造でもよいし、 2層以上の積層構造でもよい。  [0037] The layer structure of the transparent conductive thin film may be a single layer structure or a laminated structure of two or more layers.
2層以上の積層構造を有する透明導電性薄膜の場合、各層を構成する前記の金属 酸ィ匕物は同一でもよいし、異なっていてもよい。  In the case of a transparent conductive thin film having a laminated structure of two or more layers, the metal oxides constituting each layer may be the same or different.
[0038] 透明導電性薄膜の膜厚は、 4〜: LOOnmの範囲が好ましぐ特に好ましくは下限が 5 nmで、上限が 50nmである。透明導電性薄膜の膜厚力 nm未満の場合、連続した 薄膜になりにくぐ良好な導電性が得られにくくなる。一方、透明導電性薄膜の膜厚 力 SlOOnmよりも厚い場合、透明性が低下しやすくなるとともに、タツチパネルの額縁 近傍での曲げストレスに耐えることができる機械強度を有する膜を得ることが困難に なる。  The film thickness of the transparent conductive thin film is preferably in the range of 4 to: LOOnm, particularly preferably the lower limit is 5 nm and the upper limit is 50 nm. When the film thickness of the transparent conductive thin film is less than nm, it is difficult to obtain a good conductivity that is difficult to form a continuous thin film. On the other hand, when the film thickness of the transparent conductive thin film is thicker than SlOOnm, the transparency tends to decrease and it becomes difficult to obtain a film having mechanical strength that can withstand bending stress near the frame of the touch panel. .
[0039] 本発明における透明導電性薄膜の成膜方法としては、真空蒸着法、スパッタリング 法、 CVD法、イオンプレーティング法、スプレー法などが知られており、必要とする膜 厚に応じて、前記の方法を適宜用いることができる。  [0039] As a method for forming a transparent conductive thin film in the present invention, a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, a spray method, and the like are known, and depending on the required film thickness, The above methods can be used as appropriate.
[0040] 例えば、スパッタリング法の場合、酸ィ匕物ターゲットを用いた通常のスパッタリング法 、あるいは、金属ターゲットを用いた反応性スパッタリング法等が用いられる。この時、 反応性ガスとして、酸素、窒素、等を導入したり、オゾン添加、プラズマ照射、イオンァ シスト等の手段を併用したりしてもよい。また、本発明の目的を損なわない範囲で、基 板に直流、交流、高周波などのバイアスを印加してもよい。  [0040] For example, in the case of a sputtering method, a normal sputtering method using an oxide target, a reactive sputtering method using a metal target, or the like is used. At this time, oxygen, nitrogen, or the like may be introduced as a reactive gas, or means such as ozone addition, plasma irradiation, or ion resist may be used in combination. In addition, a bias such as direct current, alternating current, and high frequency may be applied to the substrate as long as the object of the present invention is not impaired.
[0041] 本発明において、透明導電性薄膜として非晶質力もなる膜を用いる目的は、透明 導電性薄膜の結晶、非晶界面や結晶界面などの局部に応力が集中することを防止 し、ペン摺動試験における曲げストレスによる導電性膜のクラック発生を抑制するた めである。 [0041] In the present invention, the purpose of using a film having an amorphous force as the transparent conductive thin film is to prevent stress from concentrating on a local area such as a crystal, an amorphous interface, or a crystal interface of the transparent conductive thin film. This is to suppress the occurrence of cracks in the conductive film due to bending stress in the sliding test.
[0042] 非晶質な透明導電性薄膜を得るためには、次の 2つの方法が有効である。  [0042] In order to obtain an amorphous transparent conductive thin film, the following two methods are effective.
(1)成膜時の基板となるフィルムの温度を低くする方法  (1) Method of lowering the temperature of the film that becomes the substrate during film formation
(2)インジウムに対するスズなどのドーパント量を増加させることにより、結晶構造を形 成しにくくする方法  (2) Method to make it difficult to form a crystal structure by increasing the amount of tin and other dopants relative to indium
[0043] まず、上記の(1)の方法について説明する。 透明導電性薄膜の成膜を、水分や有機物の不純物をできる限り取り除いた成膜雰 囲気下では、蒸着粒子のエネルギーの低下が小さいため、基板 (フィルム)表面での マイグレーションが生じやすくなる。その結果、透明導電性薄膜中に結晶を含む、透 明導電性フィルムが生じやすくなる。このような成膜雰囲気下で、非晶質な透明導電 性薄膜を得るためには、基板となるフィルムの温度を低くするによって、蒸着粒子が 堆積する際に基板 (フィルム)表面でのマイグレーションを生じにくくする効果がある。 First, the above method (1) will be described. In a film-forming atmosphere in which moisture and organic impurities are removed as much as possible when the transparent conductive thin film is formed, migration on the substrate (film) surface is likely to occur because the energy drop of the deposited particles is small. As a result, a transparent conductive film containing crystals in the transparent conductive thin film tends to occur. In order to obtain an amorphous transparent conductive thin film in such a film-forming atmosphere, the temperature of the film as the substrate is lowered, and migration on the surface of the substrate (film) is performed when vapor deposition particles are deposited. There is an effect to make it difficult to occur.
[0044] 例えば、スパッタリング法により巻き取り式装置を用いて、透明導電性薄膜をフィル ム上に成膜する場合には、フィルム背面 (透明導電性薄膜形成面とは反対面)に接 触するロール温度を低くすることで、基板となるフィルムの温度を低くすることが可能 である。  [0044] For example, when a transparent conductive thin film is formed on a film using a roll-up type apparatus by sputtering, contact the back surface of the film (the surface opposite to the surface on which the transparent conductive thin film is formed). By lowering the roll temperature, it is possible to lower the temperature of the film serving as the substrate.
[0045] 基板となる透明プラスチックフィルムに透明導電性薄膜を成膜する際の温度は、 - 20〜30°Cとすることが好ましい。成膜時の温度が 30°Cを越えると、透明導電性薄膜 中に結晶が形成しやすくなる。また、—20°C未満の温度では透明プラスチックフィル ムが脆くなり好ましくない。  [0045] The temperature at which the transparent conductive thin film is formed on the transparent plastic film as the substrate is preferably -20 to 30 ° C. When the temperature at the time of film formation exceeds 30 ° C, it becomes easy to form crystals in the transparent conductive thin film. On the other hand, when the temperature is lower than -20 ° C, the transparent plastic film becomes brittle.
[0046] ロール温度を制御するには、ロール内に水路を設けて、この水路中に温度調整さ れた熱媒を流せばよい。この熱媒としては、特に限定はないが、水やオイル、ェチレ ングリコール、プロピレングリコールなどの単体およびこれらの混合物が好適である。  [0046] In order to control the roll temperature, a water channel is provided in the roll, and a temperature-adjusted heat medium may flow through the water channel. The heating medium is not particularly limited, but simple substances such as water, oil, ethylene glycol, propylene glycol, and mixtures thereof are suitable.
[0047] さらに、前記のような成膜雰囲気中の水分や有機物をできる限り取り除いた雰囲気 で、非晶質な透明導電性薄膜を得るためには、インジウムに対してスズなどのドーパ ント量を増加させることにより、結晶構造を形成しに《することも有効な方法である。 具体的なドーパントとしては Sn、 Si、 Ti、 W、 Zr、 Hf、 Znなどが挙げられる。これらの ドーパントの中でも導電性および膜硬度向上という観点から、スズをドーパントするこ とが好ましい。  [0047] Furthermore, in order to obtain an amorphous transparent conductive thin film in an atmosphere in which moisture and organic substances in the film forming atmosphere are removed as much as possible, the amount of dopant such as tin is reduced with respect to indium. It is also an effective method to form a crystal structure by increasing it. Specific dopants include Sn, Si, Ti, W, Zr, Hf, and Zn. Among these dopants, tin is preferably used from the viewpoint of improving conductivity and film hardness.
[0048] インジウムに対するスズのドーパント量は 15〜60質量0 /0が好ましい。 15質量0 /0未 満であれば非晶質な状態での膜硬度の向上が不十分であり、このような透明導電性 フィルムを用いたタツチパネルではタツチパネル中央部でのペン摺動耐久性が不十 分となり、ペン摺動試験後に透明導電性薄膜が削れてしまう。また、 60質量%を超え ると導電性が不十分となり、タツチパネルとして使用できる導電性を維持しょうとすると 透明導電性薄膜の膜厚が厚くせざるを得ない。そのため、透明導電性フィルムの透 明性が低下しやすくなる。このような透明性に劣る透明導電性フィルムを用いてタツ チパネルを製造すると、タツチパネルの視認性が低下する。 [0048] dopant amount of tin to indium is preferably 15 to 60 mass 0/0. 15 mass 0/0 improvement of film hardness of an amorphous state if less than is insufficient, pen sliding durability in Tatsuchipaneru central portion in Tatsuchipaneru using such transparent conductive films It becomes insufficient, and the transparent conductive thin film is scraped after the pen sliding test. Also, if it exceeds 60% by mass, the conductivity will be insufficient, and if you try to maintain conductivity that can be used as a touch panel, The film thickness of the transparent conductive thin film must be increased. Therefore, the transparency of the transparent conductive film tends to be lowered. When a touch panel is manufactured using such a transparent conductive film inferior in transparency, the visibility of the touch panel is lowered.
[0049] また、本発明において、透明導電性薄膜中の炭素濃度を、 1 X 102〜1 X 1022 (at oms/cm3)とする目的は、透明導電性薄膜とフィルム力 なる基材との密着力を向 上させ、タツチパネルの額縁近傍での曲げストレスに対して剥離およびクラックの発 生しにくい透明導電性薄膜を得るためである。透明導電性薄膜中の炭素濃度が 1 X 102° (atOmsZcm3)未満であると、透明導電性薄膜と基材との密着力の改善効果が 不十分となる。一方、 l X 1022 (atOmsZcm3)を超えるような透明導電性薄膜を得る ことは技術的に困難である。 [0049] In the present invention, the purpose of setting the carbon concentration in the transparent conductive thin film to 1 X 10 2 to 1 X 10 22 (at oms / cm 3 ) In order to obtain a transparent conductive thin film that is less susceptible to peeling and cracking against bending stress near the frame of the touch panel. If the carbon concentration in the transparent conductive thin film is less than 1 × 10 2 ° (at O msZcm 3 ), the effect of improving the adhesion between the transparent conductive thin film and the substrate is insufficient. On the other hand, it is technically difficult to obtain a transparent conductive thin film exceeding l X 10 22 (at O msZcm 3 ).
[0050] 透明導電性薄膜中の炭素濃度が l X 102 (atOmsZcm3)以上の透明導電性薄膜 を得るためには、透明導電性薄膜を成膜する際に成膜雰囲気中の水分をできるだけ 取り除いた状態で炭素を含有するガス成分を導入する方法が重要である。 [0050] For the carbon concentration of the transparent conductive thin film to obtain a l X 10 2 (a t O msZcm 3) or more transparent conductive thin film, the film formation atmosphere when depositing transparent conductive thin film It is important to introduce a gas component containing carbon with moisture removed as much as possible.
[0051] 炭素を含有するガス成分としては、一酸化炭素、二酸化炭素、四塩化炭素、メタン などが挙げられる。これらの中でも、一酸化炭素、二酸化炭素などの炭素と酸素のみ を含有するガスが好まし ヽ。  [0051] Examples of the gas component containing carbon include carbon monoxide, carbon dioxide, carbon tetrachloride, and methane. Of these, gases containing only carbon and oxygen such as carbon monoxide and carbon dioxide are preferred.
[0052] 例えば、スパッタリング法にて成膜する場合には、スパッタリングを行う前に真空チ ェンバー内の圧力を 0. OOOlPa以下の真空度まで排気した後に、 Arなどの不活性 ガスと酸素および二酸ィヒ炭素などの炭素を含有する反応性ガスを真空チェンバーに 導入し、 0. 01〜10Paの圧力範囲において放電を発生させ、スパッタリングを行うの が好ましい。また、蒸着法、 CVD法などの他の方法においても同様である。  [0052] For example, in the case of forming a film by sputtering, after evacuating the pressure in the vacuum chamber to a vacuum degree of 0. OOOlPa or less before performing sputtering, an inert gas such as Ar, oxygen, and nitrogen are used. It is preferable to perform sputtering by introducing a reactive gas containing carbon such as acid carbon into a vacuum chamber, generating discharge in a pressure range of 0.01 to 10 Pa. The same applies to other methods such as vapor deposition and CVD.
[0053] 成膜雰囲気中に水分が残留していると、透明導電性薄膜中に水素が取り込まれ、 透明導電性薄膜のネットワーク (例えば、 In— O—)の成長が停止する場合がある。 その場合、透明導電性薄膜中に炭素が取り込まれにくくなり、特定の炭素濃度を有 する透明導電性薄膜が得られに《なる。その結果、透明導電性薄膜とフィルムから なる基材との密着力が不十分となり、このような透明導電性フィルムを用いたタツチパ ネルは透明導電性フィルムの曲げストレスによる機械強度が低下し、額縁近傍での ペン摺動耐久性は低下しやすくなる。 [0054] このような透明導電性薄膜中の炭素濃度の低い透明導電性薄膜が積層された透 明導電性フィルムは、透明導電性薄膜と基材との密着力が不十分となる。このような 透明導電性フィルムをタツチパネルに用いると、額縁近傍において、 2. 5Nの荷重で 1万回の直線摺動試験を行った後に、透明導電性薄膜に剥離またはクラックが発生 しゃすくなる。 If moisture remains in the film forming atmosphere, hydrogen is taken into the transparent conductive thin film, and the growth of the network (for example, In—O—) of the transparent conductive thin film may stop. In that case, it becomes difficult for carbon to be taken into the transparent conductive thin film, and a transparent conductive thin film having a specific carbon concentration can be obtained. As a result, the adhesion between the transparent conductive thin film and the substrate made of the film becomes insufficient, and the touch panel using such a transparent conductive film decreases the mechanical strength due to the bending stress of the transparent conductive film, resulting in a frame. Pen sliding durability in the vicinity tends to decrease. [0054] A transparent conductive film in which a transparent conductive thin film having a low carbon concentration in such a transparent conductive thin film is laminated has insufficient adhesion between the transparent conductive thin film and the substrate. When such a transparent conductive film is used for a touch panel, peeling or cracking occurs in the transparent conductive thin film after a linear sliding test of 10,000 times at a load of 2.5 N in the vicinity of the frame.
[0055] また、成膜雰囲気中の水分を減少させるためには、スパッタリング等を行う真空チヱ ンバーの中でフィルムを真空暴露することで水分を減少させることが有効な方法であ る。真空暴露の際に、フィルムに接触するロール温度を高くする方法、あるいは赤外 線ヒーターによるフィルム加熱を併用する方法を用いることで、成膜雰囲気中の水分 や有機物などの不純物を、より減少させることが可能となる。このときの加熱処理温度 は 100〜200°Cの範囲が好ましい。 100°C未満では水分や有機物などの不純物を 減少させる効果が不十分となりやすぐ 200°Cを越える温度では、フィルムの平面性 を保つのが難しくなる傾向にある。  [0055] In order to reduce the moisture in the film formation atmosphere, it is an effective method to reduce the moisture by exposing the film to a vacuum in a vacuum chamber for performing sputtering or the like. Impurities such as moisture and organic substances in the film formation atmosphere can be further reduced by using a method that raises the temperature of the roll in contact with the film during vacuum exposure or a method that uses film heating with an infrared heater. It becomes possible. The heat treatment temperature at this time is preferably in the range of 100 to 200 ° C. Below 100 ° C, the effect of reducing impurities such as moisture and organic matter becomes insufficient, and at temperatures exceeding 200 ° C, it tends to be difficult to maintain the flatness of the film.
[0056] さらに、成膜雰囲気中の水分を除去するために、成膜室内にクライオコイルを設け ることも有効な方法である。  [0056] Furthermore, it is also an effective method to provide a cryocoil in the deposition chamber in order to remove moisture in the deposition atmosphere.
[0057] このように成膜雰囲気中の水分を可能な限り除去し、反応性ガスとして炭素を含有 する気体を導入することにより、非晶質でかつ、透明導電性薄膜中の炭素濃度が高 い透明導電性フィルムが得られる。そのため、この透明導電性薄膜をタツチパネルに 用いると、ポリアセタール製ペン (先端形状: 0. 8mmR)を用いて、額縁近傍で 2. 5 Nの荷重で 1万回の直線摺動試験を行った後でも、透明導電性薄膜の劣化が見られ ない。  [0057] In this way, by removing moisture in the film formation atmosphere as much as possible and introducing a gas containing carbon as a reactive gas, the carbon concentration in the amorphous conductive thin conductive film is high. A transparent conductive film is obtained. For this reason, when this transparent conductive thin film is used for a touch panel, after a linear sliding test is performed 10,000 times with a load of 2.5 N near the frame using a polyacetal pen (tip shape: 0.8 mmR). However, there is no deterioration of the transparent conductive thin film.
[0058] さらに、透明導電性薄膜の導電率が悪ィ匕しない範囲で、透明導電性薄膜の厚み方 向の炭素濃度を、フィルム基板側力 透明導電性薄膜内部に向かうにつれて低くす ることが好ましい。さらに好ましくは、フィルム基板から 5nm以内にのみ炭素原子を局 在化させる。このように透明導電性薄膜の厚み方向の炭素濃度を局在化させること によって、透明導電性薄膜と基材の密着性を向上し、かつ炭素原子を含有しない場 合と同程度の導電率を有する透明導電性薄膜を得ることができる。炭素濃度の制御 は、成膜時に反応性ガスとして供給する炭素を含有する気体の流量を調整すること により可能である。 [0058] Further, the carbon concentration in the thickness direction of the transparent conductive thin film may be lowered as it goes toward the inside of the transparent conductive thin film, as long as the conductivity of the transparent conductive thin film is not deteriorated. preferable. More preferably, carbon atoms are localized only within 5 nm from the film substrate. By localizing the carbon concentration in the thickness direction of the transparent conductive thin film in this way, the adhesion between the transparent conductive thin film and the base material is improved, and the same conductivity as when no carbon atom is contained is obtained. A transparent conductive thin film can be obtained. The carbon concentration is controlled by adjusting the flow rate of the gas containing carbon supplied as the reactive gas during film formation. Is possible.
[0059] また、透明導電性フィルムの透過率、カラー、反射率を変える目的で、透明導電性 薄膜と硬化物層の間に屈折率の異なる層を少なくとも 2層以上設けることが好ましい 。屈折率の異なる層として、例えば 2層を設ける場合には、透明プラスチックフィルム 側から屈折率が 1. 60以上 2. 50以下の層、屈折率が 1. 30以上 1. 60以下の層を 積層することが好ましい。  [0059] For the purpose of changing the transmittance, color, and reflectance of the transparent conductive film, it is preferable to provide at least two layers having different refractive indexes between the transparent conductive thin film and the cured product layer. For example, when two layers with different refractive indexes are provided, a layer with a refractive index of 1.60 or more and 2.50 or less and a layer with a refractive index of 1.30 or more and 1.60 or less are laminated from the transparent plastic film side. It is preferable to do.
[0060] 屈折率が 1. 60以上 2. 50以下の層は、無機物、有機物と無機物の混合物からな る層である。無機物としては、 In O、 TiO、 Nb Oなどの透明金属酸ィ匕物が一般的  [0060] A layer having a refractive index of 1.60 or more and 2.50 or less is a layer made of an inorganic substance, a mixture of an organic substance and an inorganic substance. Inorganic, transparent metal oxides such as In O, TiO, and Nb O are common.
2 3 2 2 5  2 3 2 2 5
に用いられる。  Used for.
[0061] 有機物と無機物の混合物からなる層としては、電離放射線による硬化樹脂と金属 酸化物を含み、屈折率が 1. 60〜: L 80の範囲にある(以下、この層を高屈折層と称 する)。前記の層の屈折率が 1. 60未満の場合、反射防止性能に優れる透明導電性 フィルムが得られに《なる。また、前記の層の屈折率が 1. 80を超える場合には、層 を形成することが難しくなる。好ましい屈折率は、下限が 1. 70であり、上限が 1. 80 である。  [0061] The layer composed of a mixture of an organic substance and an inorganic substance includes a cured resin and metal oxide by ionizing radiation, and has a refractive index in the range of 1.60 to L80 (hereinafter, this layer is referred to as a high refractive layer). Called). When the refractive index of the layer is less than 1.60, a transparent conductive film excellent in antireflection performance can be obtained. If the refractive index of the layer exceeds 1.80, it becomes difficult to form the layer. The preferred refractive index has a lower limit of 1.70 and an upper limit of 1.80.
[0062] 前記金属酸化物としては、屈折率が 1. 60〜: L 80の範囲にある層が得られるもの であればよぐ特に限定されないが、透明導電性フィルムの透過率をさらに、向上さ せるために、その上に設けられる層との密着性に優れることが好ましい。このような点 から、前記金属酸化物としては、上記条件を満たすものであればよぐ特に限定はな いが、例えば低屈折層がシロキサン系ポリマーの場合、アンチモンド一プ酸ィ匕錫 (A TO)、酸ィ匕錫などを好ましく挙げることができる。これらの金属酸ィ匕物は 1種を単独で 用いてもよ!、し、 2種以上を組み合わせて用いてもょ 、。  [0062] The metal oxide is not particularly limited as long as a layer having a refractive index of 1.60 to L 80 is obtained, but the transmittance of the transparent conductive film is further improved. Therefore, it is preferable to have excellent adhesion with a layer provided thereon. From this point of view, the metal oxide is not particularly limited as long as it satisfies the above conditions. For example, when the low refractive index layer is a siloxane polymer, antimony monophosphate (tin ( ATO), acid tin and the like can be preferably mentioned. One of these metal oxides can be used alone, or two or more can be used in combination.
[0063] 屈折率が 1. 30以上 1. 60以下の層も、有機物、無機物、または有機物と無機物の 混合物からなる。無機物としては一般に SiO  [0063] The layer having a refractive index of 1.30 or more and 1.60 or less is also composed of an organic substance, an inorganic substance, or a mixture of an organic substance and an inorganic substance. Generally, inorganic materials are SiO
2、 Al Oなどの透明金属酸ィ匕物が用い 2 3  2, Transparent metal oxides such as Al O are used 2 3
られる。  It is done.
[0064] 有機物としては、透明導電性薄膜との密着性と 、う観点から、シロキサン系ポリマー 、ポリウレタン、ポリエステル、アクリルのうち少なくとも 1種類を含むものであって、屈 折率が 1. 30〜: L 55の範囲にあるものが好ましい。前記の屈折率が範囲外となる場 合には、色表示性に優れる透明導電性フィルムが得られに《なる。 [0064] From the viewpoint of adhesion to the transparent conductive thin film, the organic substance includes at least one of a siloxane-based polymer, polyurethane, polyester, and acrylic, and has a refractive index of 1.30 to : L55 is preferable. When the refractive index is out of range In this case, a transparent conductive film excellent in color display is obtained.
[0065] また、タツチパネルとした際に-ユートンリングの発生を防止する目的で前記硬化物 層に中心線平均粗さ(Ra)が 0. 1〜0. 5 mの範囲になるように粒子を含有させるこ とが好ましい。 Raが 0. 1未満の場合には、ニュートンリングの発生を防止することが 難しくなる。一方、 Raが 0. 5 mを超える場合には、透明導電性薄膜表面が粗くなり すぎて、ペン摺動耐久性が悪くなる傾向がある。  [0065] Further, in the case of a touch panel, for the purpose of preventing the occurrence of Yuton ring, particles are added to the cured product layer so that the center line average roughness (Ra) is in the range of 0.1 to 0.5 m. It is preferably contained. When Ra is less than 0.1, it is difficult to prevent the occurrence of Newton rings. On the other hand, when Ra exceeds 0.5 m, the surface of the transparent conductive thin film becomes too rough, and the pen sliding durability tends to deteriorate.
[0066] 前記硬化物層に含有させる粒子としては特に限定はな 、が、無機粒子 (例えば、シ リカ、炭酸カルシウムなど)、耐熱性有機粒子 (例えば、シリコン粒子、 PTFE粒子、ポ リイミド粒子など)、架橋高分子粒子 (架橋 PS粒子、架橋アクリル系粒子など)が例示 される。これらの粒子の平均粒径 (電子顕微鏡法による)は、 0. 5〜5 /ζ πιであること が好ましい。また、硬化物層中に含有させる粒子の含有量は 0. 01〜: LO質量%とす ることが好ましい。  [0066] The particles to be contained in the cured product layer are not particularly limited, but inorganic particles (eg, silica, calcium carbonate, etc.), heat-resistant organic particles (eg, silicon particles, PTFE particles, polyimide particles, etc.) ), Crosslinked polymer particles (crosslinked PS particles, crosslinked acrylic particles, etc.). The average particle size of these particles (by electron microscopy) is preferably 0.5-5 / ζ πι. Further, the content of the particles to be contained in the cured product layer is preferably 0.01 to LO mass%.
[0067] また、タツチパネルとした際の最外層(ペン入力面)の耐擦傷性を、さらに改善させ るために、透明プラスチックフィルムの透明導電性薄膜を形成させた表面とは反対面 (タツチパネルとした際の最外層のペン入力面)に、ハードコート層を設けることが好 ましい。前記ハードコート層の硬度は、鉛筆硬度で 2Η以上であることが好ましい。 2 Η未満の硬度では、透明導電性フィルムのハードコート層としては耐擦傷性の点で 不十分である。  [0067] Further, in order to further improve the scratch resistance of the outermost layer (pen input surface) when the touch panel is formed, the surface opposite to the surface on which the transparent conductive thin film of the transparent plastic film is formed (the touch panel and It is preferable to provide a hard coat layer on the outermost pen input surface). The hard coat layer preferably has a pencil hardness of 2 mm or more. When the hardness is less than 2 mm, it is insufficient as a hard coat layer for a transparent conductive film in terms of scratch resistance.
[0068] 前記のハードコート層の厚みは 0. 5〜10 μ mであることが好ましい。厚みが 0. 5 μ m未満では、耐擦傷性が不十分となりやすぐ 10 mよりも厚い場合には生産性の 観点から好ましくない。  [0068] The thickness of the hard coat layer is preferably 0.5 to 10 µm. If the thickness is less than 0.5 μm, the scratch resistance becomes insufficient, and if it is immediately thicker than 10 m, it is not preferable from the viewpoint of productivity.
[0069] 前記のハードコート層に用いられる硬化型榭脂組成物は、アタリレート系の官能基 を有する榭脂が好ましぐ例えば、比較的低分子量のポリエステル榭脂、ポリエーテ ル榭脂、アクリル榭脂、エポキシ榭脂、ウレタン榭脂、アルキッド榭脂、スピロァセター ル榭脂、ポリブタジエン榭脂、ポリチオールポリェン榭脂、多価アルコール等の多官 能性化合物の (メタ)ァクリート等のオリゴマーまたはプレボリマーなどが挙げられる。  [0069] The curable resin composition used in the hard coat layer is preferably a resin having an acrylate functional group. For example, a relatively low molecular weight polyester resin, a polyester resin, an acrylic resin Oligomers or prepolymers such as (meth) acreates of multifunctional compounds such as resin, epoxy resin, urethane resin, alkyd resin, spirocetal resin, polybutadiene resin, polythiolpolyene resin and polyhydric alcohol Etc.
[0070] また、反応性希釈剤としては、ェチル (メタ)ァクリート、ェチルへキシル (メタ)アタリ レート、スチレン、メチルスチレン、 N—ビュルピロリドン等の単官能モノマー並びに多 官能モノマー、例えば、トリメチロールプロパントリ(メタ)アタリレート、へキサンジォー ル (メタ)アタリレート、トリプロピレングリコールジ (メタ)アタリレート、ジエチレングリコ ールジ (メタ)アタリレート、ペンタエリスリトールトリ(メタ)アタリレート、ジペンタエリスリ トールへキサ(メタ)アタリレート、 1, 6—へキサンジオールジ (メタ)アタリレート、ネオ ペンチルダリコールジ (メタ)アタリレート等を比較的多量に含有するものが使用できる [0070] The reactive diluents include monofunctional monomers such as ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-butylpyrrolidone, and many others. Functional monomers such as trimethylol propane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate , Dipentaerythritol hexa (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, neopentyl alcohol di (meth) acrylate, etc. can be used
[0071] 本発明では、オリゴマーとしてウレタンアタリレート、モノマーとしてジペンタエリスリト ールへキサ (メタ)アタリレート等を混合することが好まし 、。 [0071] In the present invention, it is preferable to mix urethane atylate as the oligomer and dipentaerythritol hexa (meth) atallylate as the monomer.
[0072] また、前記ハードコート層に用いられる硬化型榭脂組成物としては、ポリエステルァ タリレートとポリウレタンアタリレートとの混合物が特に好適である。ポリエステルアタリ レートは塗膜が非常に硬くてハードコート層として適している。し力しながら、ポリエス テルアタリレート単独の塗膜では耐衝撃性が低く脆くなりやすいという問題がある。そ こで、塗膜に耐衝撃性及び柔軟性を与えるために、ポリウレタンアタリレートを併用す ることが好ましい。すなわち、ポリエステルアタリレートにポリウレタンアタリレートを併用 することで、塗膜はハードコート層としての硬度を維持しながら、耐衝撃性及び柔軟 性と 、う機能を具備することができる。  [0072] Further, as the curable resin composition used for the hard coat layer, a mixture of polyester phthalate and polyurethane acrylate is particularly preferable. Polyester acrylate is very hard and suitable as a hard coat layer. However, there is a problem that a coating film of polyester acrylate is low in impact resistance and easily brittle. Therefore, in order to give impact resistance and flexibility to the coating film, it is preferable to use polyurethane acrylate in combination. That is, by using the polyurethane acrylate in combination with the polyester acrylate, the coating film can have functions such as impact resistance and flexibility while maintaining the hardness as the hard coat layer.
[0073] 両者の配合割合は、ポリエステルアタリレート榭脂 100質量部に対し、ポリウレタン アタリレート榭脂を 30質量部以下とするのが好ましい。ポリウレタンアタリレート榭脂の 配合割合が 30質量部を超えると、塗膜が柔らかくなりすぎて耐衝撃性が不十分とな る傾向がある。  [0073] The blending ratio of the two is preferably 30 parts by mass or less of the polyurethane acrylate resin per 100 parts by mass of the polyester acrylate resin. When the blending ratio of polyurethane acrylate resin exceeds 30 parts by mass, the coating film becomes too soft and the impact resistance tends to be insufficient.
[0074] 前記の硬化型榭脂糸且成物の硬化方法は、通常の硬化方法、すなわち、加熱、電子 線または紫外線の照射によって硬化する方法を用いることができる。例えば、電子線 硬化の場合は、コックロフトワルトン型、ハンデグラフ型、共振変圧型、絶縁コア変圧 器型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器カゝら放出される 50 〜1000keV、好ましくは 100〜300keVのエネルギーを有する電子線等が使用され る。また、紫外線硬化の場合には、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カー ボンアーク、キセノンアーク、メタルノヽイライドランプ等の光線力も発する紫外線等が 利用できる。 [0075] さらに、電離放射線硬化の場合には、前記の硬化型榭脂組成物中に光重合開始 剤や光増感剤を含有させることが好ましい。光重合開始剤としては、ァセトフエノン類 、ベンゾフエノン類、ミヒラーベンゾィルベンゾエート、 a—アミ口キシムエステル、テト ラメチルチウラムモノサルファイド、チォキサントン類などが挙げられる。また、光増感 剤としては、 n—ブチルァミン、トリェチルァミン、トリ— n—ブチルホスフィン等が好ま しい。 [0074] As a method for curing the curable rosin yarn and composition, a normal curing method, that is, a method of curing by heating, electron beam or ultraviolet irradiation can be used. For example, in the case of electron beam curing, it is emitted from various electron beam accelerators such as Cockloft Walton type, handigraph type, resonant transformer type, insulated core transformer type, linear type, dynamitron type, and high frequency type. An electron beam having energy of ˜1000 keV, preferably 100 to 300 keV is used. In the case of ultraviolet curing, ultraviolet rays that emit light, such as an ultra-high pressure mercury lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, a carbon arc, a xenon arc, and a metal nitride lamp can be used. [0075] Further, in the case of ionizing radiation curing, it is preferable that a photopolymerization initiator or a photosensitizer is contained in the curable resin composition. Examples of the photopolymerization initiator include acetophenones, benzophenones, Michler benzoyl benzoate, a-amixy oxime ester, tetramethylthiuram monosulfide, thixanthones, and the like. As the photosensitizer, n-butylamine, triethylamine, tri-n-butylphosphine and the like are preferable.
[0076] ハードコート層に防眩性を付与するためには、硬化型榭脂中に CaCOや SiOなど  [0076] In order to impart antiglare properties to the hard coat layer, CaCO, SiO, etc.
3 2 の無機粒子を分散させる方法、あるいはハードコート層の表面に凹凸形状を形成さ せる方法が有効である。例えば、凹凸を形成するためには、硬化型榭脂組成物を含 む塗液を塗工後、表面に凸形状を有する賦形フィルムをラミネートし、この賦形フィル ム上から紫外線を照射し硬化型榭脂を硬化させた後に、賦形フィルムのみを剥離す ることにより得られる。  Effective methods include dispersing the inorganic particles 3 or forming a concavo-convex shape on the surface of the hard coat layer. For example, in order to form irregularities, after applying a coating liquid containing a curable resin composition, a shaped film having a convex shape is laminated on the surface, and ultraviolet rays are irradiated on the shaped film. After curing the curable resin, it is obtained by peeling only the shaped film.
[0077] 前記の賦型フィルムには、離型性を有するポリエチレンテレフタレート(以後、 PET と略す)等の基材フィルム上に所望の凸形状を設けたもの、あるいは、 PET等の基材 フィルム上に繊細な凸層を形成したもの等を用 ヽることができる。その凸層の形成は 、例えば、無機粒子とバインダー榭脂からなる榭脂組成物を用いて基材フィルム上に 塗工すること〖こより得ることができる。  [0077] The shape-imparting film may be a film having a desired convex shape on a base film such as polyethylene terephthalate (hereinafter abbreviated as PET) having releasability, or a base film such as PET. A material having a delicate convex layer can be used. The formation of the convex layer can be obtained, for example, by coating on a base film using a resin composition comprising inorganic particles and a binder resin.
[0078] 前記ノインダー榭脂としては、例えば、ポリイソシァネートで架橋されたアクリルポリ オールを用い、無機粒子としては、 CaCOや SiOなどを用いることができる。また、こ  [0078] As the Noinda resin, for example, acrylic polyol cross-linked with polyisocyanate can be used, and as inorganic particles, CaCO, SiO, or the like can be used. Also this
3 2  3 2
の他に PET製造時に SiO等の無機粒子を練込んだマットタイプの PETも用いること  In addition, use mat-type PET with inorganic particles such as SiO incorporated during PET production.
2  2
ができる。  Can do.
[0079] この賦型フィルムを紫外線硬化型榭脂の塗膜にラミネートした後紫外線を照射して 塗膜を硬化する場合、賦型フィルムが PETを基材としたフィルムの場合、該フィルム に紫外線の短波長側が吸収され、紫外線硬化型榭脂の硬化が不足するという欠点 がある。したがって、紫外線硬化型榭脂の塗膜にラミネートする賦型フィルムの全光 線透過率が 20%以上のものを使用することが必要である。  [0079] When this shaped film is laminated on a coating film of ultraviolet curable resin and then the coating film is cured by irradiating with ultraviolet rays, when the shaped film is a PET-based film, The short wavelength side is absorbed, and the UV curable resin is insufficiently cured. Therefore, it is necessary to use a moldable film that is laminated on the UV curable resin coating film with a total light transmittance of 20% or more.
[0080] また、タツチパネルに用いた際に可視光線の透過率をさらに向上させるために、ハ ードコート層上に低反射処理を施してもよい。この低反射処理は、ハードコート層の 屈折率とは異なる屈折率を有する材料を単層もしくは 2層以上に積層することが好ま しい。 [0080] Further, in order to further improve the transmittance of visible light when used in a touch panel, a low reflection treatment may be performed on the hard coat layer. This low reflection treatment A material having a refractive index different from the refractive index is preferably laminated in a single layer or two or more layers.
[0081] 単層構造の場合、ハードコート層よりも小さな屈折率を有する材料を用いるのが好 ましい。また、 2層以上の多層構造とする場合は、ハードコート層と隣接する層は、ハ ードコート層よりも大きな屈折率を有する材料を用い、この上の層にはこれよりも小さ な屈折率を有する材料を選ぶのがよ ヽ。このような低反射処理を構成する材料として は、有機材料でも無機材料でも上記の屈折率の関係を満足すれば特に限定されな い。例えば、 CaF、 MgF 、NaAlF 、 SiO 、 ThF 、 ZrO 、 Nd O 、 SnO 、 Ti  [0081] In the case of a single-layer structure, it is preferable to use a material having a refractive index smaller than that of the hard coat layer. When a multilayer structure of two or more layers is used, the layer adjacent to the hard coat layer is made of a material having a higher refractive index than that of the hard coat layer, and the upper layer has a lower refractive index. Choose the material you have. The material constituting such a low reflection treatment is not particularly limited as long as the above refractive index relationship is satisfied, whether it is an organic material or an inorganic material. For example, CaF, MgF, NaAlF, SiO, ThF, ZrO, NdO, SnO, Ti
2 2 4 2 4 2 2 3 2 2 2 4 2 4 2 2 3 2
0、CeO 、ZnS、In O 、などの誘電体を用いるのが好ましい。 It is preferable to use a dielectric such as 0, CeO 2, ZnS, or In 2 O 3.
2 2 2 3  2 2 2 3
[0082] この低反射処理は、真空蒸着法、スパッタリング法、 CVD法、イオンプレーティング 法などのドライコーティングプロセスでも、グラビア方式、リバース方式、ダイ方式など のウエットコーティングプロセスでもよい。  [0082] The low reflection treatment may be a dry coating process such as a vacuum deposition method, a sputtering method, a CVD method, or an ion plating method, or a wet coating process such as a gravure method, a reverse method, or a die method.
[0083] さらに、この低反射処理層の積層に先立って、前処理として、コロナ放電処理、ブラ ズマ処理、スパッタエッチング処理、電子線照射処理、紫外線照射処理、プライマ処 理、易接着処理などの公知の表面処理をノヽードコート層に施してもょ 、。  [0083] Further, prior to the lamination of the low reflection treatment layer, as pretreatment, corona discharge treatment, plasma treatment, sputter etching treatment, electron beam irradiation treatment, ultraviolet ray irradiation treatment, primer treatment, easy adhesion treatment, etc. Apply a known surface treatment to the node coat layer.
[0084] 本発明の透明導電性フィルムを用い、透明導電性薄膜を形成して 、な 、面と粘着 剤を介して透明榭脂シートと積層することで、タツチパネルの固定電極に用いる透明 導電性積層榭脂シートが得られる。すなわち、タツチパネルの固定電極の基板をガラ スカも透明榭脂シートに変更することで、軽量かつ割れにくいタツチパネルを作製す ることがでさる。  [0084] Using the transparent conductive film of the present invention, a transparent conductive thin film is formed, and then laminated with a transparent resin sheet via a surface and an adhesive, whereby the transparent conductive film used for the fixed electrode of the touch panel is used. A laminated resin sheet is obtained. In other words, by changing the glass substrate to the transparent resin sheet as the substrate for the fixed electrode of the touch panel, it is possible to manufacture a touch panel that is light and difficult to break.
[0085] 前記の粘着剤は、透明性を有するものであれば特に限定はな 、が、例えばアクリル 系粘着剤、シリコーン系粘着剤、ゴム系粘着剤などが好適である。この粘着剤の厚さ は特に限定はないが、通常 1〜: LOO /z mの範囲に設定するのが望ましい。粘着剤の 厚みが: L m未満の厚さの場合、実用上問題のない接着性を得るのが難しぐ 100 μ mを越える厚さでは生産性の観点力 好ましくな 、。  [0085] The pressure-sensitive adhesive is not particularly limited as long as it has transparency. For example, an acrylic pressure-sensitive adhesive, a silicone pressure-sensitive adhesive, and a rubber pressure-sensitive adhesive are suitable. The thickness of the pressure-sensitive adhesive is not particularly limited, but it is usually desirable to set it within a range of 1 to: LOO / zm. When the thickness of the pressure-sensitive adhesive is less than L m, it is difficult to obtain adhesiveness that is practically acceptable, and when it exceeds 100 μm, it is preferable from the viewpoint of productivity.
[0086] この粘着剤を介して貼合わせる透明榭脂シートは、ガラスと同等の機械的強度を付 与するために使用するものであり、厚さは 0. 05〜5mmの範囲が好ましい。前記透明 榭脂シートの厚みが 0. 05mm未満では、機械的強度がガラスに比べ不足する。一 方、厚さが 5mmを越える場合には、厚すぎてタツチパネルに用いるには不適当であ る。また、この透明榭脂シートの材質は、前記の透明プラスチックフィルムと同様のも のを使用することができる。 [0086] The transparent resin sheet to be bonded via the adhesive is used for imparting mechanical strength equivalent to that of glass, and the thickness is preferably in the range of 0.05 to 5 mm. If the thickness of the transparent resin sheet is less than 0.05 mm, the mechanical strength is insufficient compared to glass. one On the other hand, if the thickness exceeds 5 mm, it is too thick to be used for touch panels. The material of the transparent resin sheet can be the same as that of the transparent plastic film.
[0087] 図 1に、本発明の透明導電性フィルムを用いた、タツチパネルの例を示す。これは、 透明導電性薄膜を有する一対のパネル板を、透明導電性薄膜が対向するようにスぺ 一サーを介して配置してなるタツチパネルにぉ 、て、一方のパネル板に本発明の透 明導電性フィルムを用いたものである。  FIG. 1 shows an example of a touch panel using the transparent conductive film of the present invention. This is because a pair of panel plates having a transparent conductive thin film is placed on a touch panel in which the transparent conductive thin film is disposed through a spacer so that the transparent conductive thin film faces each other. A bright conductive film is used.
[0088] このタツチパネルは、ペンにより文字を入力した時に、ペンからの押圧により、対向 した透明導電性薄膜同士が接触し、電気的に ONの状態になり、タツチパネル上で のペンの位置を検出することができる。このペン位置を連続的かつ正確に検出するこ とで、ペンの軌跡力も文字を認識することができる。この際、ペン接触側の可動電極 が本発明の透明導電性フィルムを用いると、ペン摺動耐久性に優れるため、長期に わたって安定なタツチパネルとすることができる。  [0088] This touch panel detects the position of the pen on the touch panel when the characters are input with the pen and the transparent conductive thin films facing each other come into contact with each other due to the pressing from the pen. can do. By detecting the pen position continuously and accurately, the pen trajectory can also recognize characters. At this time, when the movable electrode on the pen contact side uses the transparent conductive film of the present invention, since the pen sliding durability is excellent, a touch panel that is stable for a long time can be obtained.
[0089] なお、本発明の透明導電性フィルム及び透明導電性シートを使用して得た、ガラス 基板を用いな 、プラスチック製のタツチパネルの断面図を図 2に示した。このプラスチ ック製のタツチパネルは、ガラスを用いていないため、非常に軽量であり、かつ、衝撃 により割れたりすることがな 、。 [0089] Fig. 2 shows a cross-sectional view of a plastic touch panel obtained using the transparent conductive film and the transparent conductive sheet of the present invention without using a glass substrate. This plastic touch panel does not use glass, so it is very lightweight and will not crack on impact.
実施例  Example
[0090] 以下に実施例により本発明をさらに、詳細に説明する力 本発明はこれらの実施例 によりなんら限定されるものではない。なお、透明導電性フィルムの性能および透明 導電性薄膜の結晶性、タツチパネルのペン摺動耐久性試験は、下記の方法により測 し 7こ。  [0090] Hereinafter, the present invention will be described in further detail with reference to examples. The present invention is not limited to these examples. The performance of the transparent conductive film, the crystallinity of the transparent conductive thin film, and the pen sliding durability test of the touch panel were measured using the following methods.
[0091] (1)光線透過率及びヘイズ  [0091] (1) Light transmittance and haze
JIS— K7105に準拠し、 日本電色工業 (株)製 NDH— 1001DPを用いて、光線透 過率及びヘイズを測定した。  In accordance with JIS-K7105, light transmittance and haze were measured using NDH-1001DP manufactured by Nippon Denshoku Industries Co., Ltd.
[0092] (2)表面抵抗率 [0092] (2) Surface resistivity
JIS— K7194に準拠し、 4端子法にて測定した。測定機は、三菱油化 (株)製 Lot est AMCP— T400を用いた。 [0093] (3)カラー(a値、 b値) Measured by the 4-terminal method in accordance with JIS-K7194. As a measuring machine, Lot est AMCP-T400 manufactured by Mitsubishi Yuka Co., Ltd. was used. [0093] (3) Color (a value, b value)
JIS— K7105に準拠し、色差計(日本電色工業製、 ZE— 2000)を用いて、標準の 光 CZ2でカラー a、 b値を測定した。  In accordance with JIS-K7105, color a and b values were measured with standard light CZ2 using a color difference meter (Nippon Denshoku Industries Co., Ltd., ZE-2000).
[0094] (4)透明導電性薄膜の結晶性  [0094] (4) Crystallinity of transparent conductive thin film
透明導電性フィルム試料片を 300 m X 300 mの正方形に切り出し、ウルトラミク ロトームの試料ホルダに、導電性薄膜面を手前にして固定した。次いで、 1 m X 1 μ m以上の目的観察部位を持つ切片を得られる程度にナイフをフィルム面に対して 極めて鋭角に設置し、設定厚み 70nmで切削した。  A transparent conductive film sample piece was cut into a 300 m × 300 m square and fixed to a sample holder of an ultramicrotome with the conductive thin film surface facing forward. Next, a knife was placed at an extremely acute angle with respect to the film surface so that a section having a target observation site of 1 m × 1 μm or more could be obtained, and cutting was performed at a set thickness of 70 nm.
[0095] この切片の導電性薄膜表面側でかつ薄膜の著 、損傷がな 、部位にぉ 、て、 1 μ m X 1 mの観察視野を確保し、透過型電子顕微鏡 (JEOL社製、 JEM— 2010)を 用い、加速電圧 200kV、明視野で観察倍率 5万倍にて写真撮影を行った。視野内 にお ヽて電子密度の高!、領域として観察される直径 5nm以上の粒子を結晶粒子と してカウントし、 10視野における平均粒子数をもって金属酸ィ匕物カゝらなる結晶粒子の 個数 (個 Z m2)とした。 [0095] On the surface side of the conductive thin film of this section and the thin film was not significantly damaged, an observation field of 1 μm X 1 m was secured at the site, and a transmission electron microscope (manufactured by JEOL, JEM — 2010) and photographed at an acceleration voltage of 200 kV and a bright field at an observation magnification of 50,000 times. In the field of view, the electron density is high! Particles with a diameter of 5 nm or more observed as a region are counted as crystal particles, and the average number of particles in 10 fields of view is the number of crystal particles such as metal oxides. The number (number Z m 2 ) was used.
[0096] (5)額縁近傍でのペン摺動耐久性試験  [0096] (5) Pen sliding durability test near the frame
タツチパネルの貼合部の内側から 1. 5mm離れた位置をポリアセタール製のペン( 先端の形状: 0. 8mmR)に 2. 5Nの荷重をかけ、 1万回(往復 5000回)の直線摺動 試験をタツチパネルに行った。この時の摺動距離は 30mm、摺動速度は 60mmZ秒 とした。さらに、タツチパネルの上下基板のギャップは 150 /z mであった。この摺動耐 久性試験後に、まず、摺動部が白化しているかを目視によって観察した。また、摺動 部位近辺を顕微鏡にて観察し、クラックの発生がないか観察した。さらに、ペン荷重 1 . ONで摺動部を押さえた際の、 ON抵抗 (可動電極 (フィルム電極)と固定電極とが 接触した時の抵抗値)を測定した。  Apply a 2.5N load to a polyacetal pen (tip shape: 0.8mmR) at a position 1.5mm away from the inside of the bonding part of the touch panel. Went to the touch panel. The sliding distance at this time was 30 mm, and the sliding speed was 60 mmZ seconds. Furthermore, the gap between the upper and lower substrates of the touch panel was 150 / zm. After this sliding durability test, first, it was visually observed whether the sliding portion was whitened. In addition, the vicinity of the sliding part was observed with a microscope, and observed for occurrence of cracks. Furthermore, the ON resistance (resistance value when the movable electrode (film electrode) and the fixed electrode were in contact) when the sliding part was pressed with a pen load of 1. ON was measured.
[0097] (6)ペン摺動耐久性試験  [0097] (6) Pen sliding durability test
ポリアセタール製のペン(先端の形状: 0. 8mmR)〖こ 2. 5Nの荷重をかけ、 10万回 (往復 5万回)の直線摺動試験をタツチパネルに行った。この時の摺動距離は 30mm 、摺動速度は 60mmZ秒とした。この摺動耐久性試験後に、まず、摺動部が白化し ているかを目視によって観察した。さらに、ペン荷重 0. 5Nで上記の摺動部にかかる ように 20mm φの記号〇印を筆記し、タツチパネルがこれを正確に読みとれるかを評 価した。さらに、ペン荷重 0. 5Νで摺動部を押さえた際の、 ON抵抗 (可動電極 (フィ ルム電極)と固定電極とが接触した時の抵抗値)を測定した。 Polyacetal pen (tip shape: 0.8mmR) scissors 2.5 A load of 5N was applied, and a linear sliding test was performed 100,000 times (50,000 reciprocations) on the touch panel. The sliding distance at this time was 30 mm, and the sliding speed was 60 mmZ seconds. After this sliding durability test, first, it was visually observed whether the sliding portion was whitened. Furthermore, the above sliding part is applied with a pen load of 0.5 N. In this way, we wrote a 20mm φ symbol O and evaluated whether the touch panel could read it correctly. Furthermore, the ON resistance (resistance value when the movable electrode (film electrode) and the fixed electrode were in contact) when the sliding part was pressed with a pen load of 0.5 mm was measured.
[0098] (7)付着力測定 [0098] (7) Adhesive force measurement
40 μ m厚のアイオノマーフィルムを、ポリエステル系接着剤を用いて、厚さ 75 m のポリエチレンテレフタレートフィルムにラミネートし、付着力測定用積層体を作製し た。この付着力測定用積層体のアイオノマー面と透明導電性フィルムの透明導電性 薄膜面を対向させ、 130°Cでヒートシールした。この積層体を付着力測定用積層体と 透明導電性フィルムとを 180度剥離法で剥離し、この剥離力を付着力とした。この時 の剥離速度は lOOOmmZ分とした。  A 40 μm thick ionomer film was laminated to a 75 m thick polyethylene terephthalate film using a polyester adhesive to produce a laminate for measuring adhesion. The ionomer surface of this laminate for measuring adhesive force and the transparent conductive thin film surface of the transparent conductive film were opposed to each other and heat sealed at 130 ° C. The laminate was peeled from the laminate for measuring adhesive force and the transparent conductive film by a 180 ° peeling method, and this peeling force was defined as the adhesive strength. The peeling speed at this time was set to lOOOmmZ.
[0099] (8)透明導電性薄膜中の炭素濃度測定  [0099] (8) Measurement of carbon concentration in transparent conductive thin film
導電性薄膜表面側において、 140 m X 224 mの検出エリアを確保し、一次カロ 速電圧 lkV、 Cs+ 1次イオンを用いて SIMS (PHI社製、 6650)で評価した。膜中の 炭素の含有量は既知の炭素濃度をイオン注入した標準試料との相対感度係数を求 めて導きだした。さらに、透明導電性薄膜中の水素濃度についても同時に測定して いき、マトリック効果 (層構成材料が変わることによる水素濃度の減少)のみられる深さ を透明導電性薄膜と基材の界面として定義し、その界面カゝら 2nm透明導電性薄膜 面側の深さでの炭素濃度を透明導電性薄膜中の炭素濃度とした。  A 140 m X 224 m detection area was secured on the surface of the conductive thin film, and evaluation was performed with SIMS (PHI, 6650) using primary calo fast voltage lkV and Cs + primary ions. The carbon content in the film was derived by determining the relative sensitivity coefficient with a standard sample ion-implanted with a known carbon concentration. Furthermore, the hydrogen concentration in the transparent conductive thin film is also measured at the same time, and the depth at which the matrix effect (reduction in hydrogen concentration due to changes in the layer constituent materials) is defined is defined as the interface between the transparent conductive thin film and the substrate. The carbon concentration at the depth on the surface side of the 2 nm transparent conductive thin film was defined as the carbon concentration in the transparent conductive thin film.
[0100] (9)表面粗さ  [0100] (9) Surface roughness
ガラス板上にサンプルを密着させ、 JIS B0601に準拠し、二次元表面粗さ測定機 (東京精密株式会社製、サーフコム 300B)を用いて、カットオフ 0. 8、測定長 4mm、 触針の荷重 4mN、触針速度 0. 3mmZ分の条件で中心線平均粗さ (Ra)を測定し た。  A sample is brought into close contact with a glass plate, and in accordance with JIS B0601, using a two-dimensional surface roughness measuring machine (manufactured by Tokyo Seimitsu Co., Ltd., Surfcom 300B), cut-off 0.8, measurement length 4mm, stylus load The centerline average roughness (Ra) was measured under the conditions of 4 mN and stylus speed of 0.3 mmZ.
[0101] 実施例 1  [0101] Example 1
光重合開始剤含有アクリル系榭脂 (大日精化工業社製、セイカビーム EXF— 01J) 100質量部に、溶剤としてトルエン ZMEK(80Z20 :質量比)の混合溶媒を、固形 分濃度が 50質量%になるように加え、撹拌して均一に溶解し塗布液を調製した。  Photopolymerization initiator-containing acrylic resin (manufactured by Dainichi Seika Kogyo Co., Ltd., Seika Beam EXF-01J) A solvent mixture of toluene ZMEK (80Z20: mass ratio) as a solvent and a solid content concentration of 50% by mass The mixture was stirred and dissolved uniformly to prepare a coating solution.
[0102] 両面に易接着層を有する二軸配向透明 PETフィルム (東洋紡績社製、 A4340、厚 み: 188 m)に、塗膜の厚みが 5 μ mになるように、調製した塗布液を、マイヤーバ 一を用いて塗布した。 80°Cで 1分間乾燥を行った後、紫外線照射装置 (アイグラフィ ックス社製、 UB042— 5AM— W型)を用いて紫外線を照射(光量: 300mjZcm2) し、塗膜を硬化させた。次いで、 180°Cで 1分間の加熱処理を施して、揮発成分の低 減を行った。 [0102] Biaxially oriented transparent PET film with easy-adhesion layers on both sides (Toyobo Co., Ltd., A4340, thickness 188 m), the prepared coating solution was applied using a Mayer bar so that the coating thickness was 5 μm. After drying at 80 ° C. for 1 minute, the coating film was cured by irradiating with ultraviolet rays (light quantity: 300 mjZcm 2 ) using an ultraviolet irradiation device (UB042-5AM-W type, manufactured by I-Graphics). Next, heat treatment was performed at 180 ° C for 1 minute to reduce volatile components.
[0103] また、この硬化物層を積層した二軸配向透明 PETフィルムを真空暴露するために、 真空チェンバー中で巻き返し処理を行った。このときの圧力は 0. 002Paであり、暴 露時間は 20分とした。また、センターロールの温度は 40°Cとした。  [0103] Further, in order to expose the biaxially oriented transparent PET film on which the cured product layer was laminated in a vacuum, a rewinding treatment was performed in a vacuum chamber. The pressure at this time was 0.002 Pa, and the exposure time was 20 minutes. The center roll temperature was 40 ° C.
[0104] 次に、この硬化物層上に、インジウム—スズ複合酸ィ匕物力 なる透明導電性薄膜を 成膜した。このとき、スパッタリング前の圧力を 0. OOOlPaとし、ターゲットとして酸化 スズを 36質量%含有した酸化インジウム (住友金属鉱山社製、密度: 6. 9g/cm3) に用いて、 2WZcm2の DC電力を印加した。また、 Arガスを 130sccm、 Oガスを 20 Next, a transparent conductive thin film having an indium-tin composite oxide strength was formed on the cured product layer. At this time, the pressure before sputtering and 0. OOOlPa, indium oxide containing 36 wt% tin oxide as a target (Sumitomo Metal Mining Co., density: 6. 9g / cm 3) used to, DC power 2WZcm 2 Was applied. Ar gas 130sccm, O gas 20
2 sccm、 COガスを 20sccmの流速で流し、 0. 4Paの雰囲気下で DCマグネトロンスパ  2 sccm, CO gas at a flow rate of 20 sccm, DC magnetron spa in 0.4 Pa atmosphere
2  2
ッタリング法を用いて成膜した。ただし、通常の DCではなぐアーク放電を防止する ために、 日本ィーェヌアイ製 RPG— 100を用いて 5 μ s幅のパルスを 50kHz周期で 印加した。また、センターロール温度は 10°Cとして、スパッタリングを行った。  A film was formed using a sputtering method. However, in order to prevent arc discharge that occurs with normal DC, a 5 µs wide pulse was applied at a 50 kHz period using RPG-100 made by Nippon Yanai. The center roll temperature was 10 ° C. and sputtering was performed.
[0105] また、雰囲気の酸素分圧をスパッタプロセスモニター(LEYBOLD INFICON社 製、 XPR2)にて常時観測しながら、インジウムースズ複合酸ィ匕物薄膜中の酸ィ匕度が 一定になるように酸素ガスの流量計および DC電源にフィートバックした。以上のよう にして、厚さ 22nmのインジウム一スズ複合酸ィ匕物からなる透明導電性薄膜を堆積さ せ、透明導電性フィルムを作製した。  [0105] In addition, while constantly monitoring the oxygen partial pressure of the atmosphere with a sputtering process monitor (manufactured by LEYBOLD INFICON, XPR2), oxygen gas was used so that the acidity in the indium oxide composite oxide thin film was constant. Fed back to the flow meter and DC power supply. As described above, a transparent conductive thin film made of indium monotin complex oxide having a thickness of 22 nm was deposited to produce a transparent conductive film.
[0106] <タツチパネルの作製 >  [0106] <Production of touch panel>
この透明導電性フィルムを一方のパネル板として用い、他方のパネル板として、ガ ラス基板上にプラズマ CVD法で厚みが 20nmのインジウム—スズ複合酸ィ匕物薄膜( 酸化スズ含有量: 10質量%)からなる透明導電性薄膜(日本曹達社製、 S500)を用 いた。この 2枚のパネル板を透明導電性薄膜が対向するように、直径 30 mのェポ キシビーズを介して、配置しタツチパネルを作製した。  This transparent conductive film was used as one panel plate, and the other panel plate was an indium-tin composite oxide thin film (thin oxide content: 10% by mass) on a glass substrate with a thickness of 20 nm by plasma CVD. ) Transparent conductive thin film (Nippon Soda Co., Ltd., S500) was used. A touch panel was prepared by placing these two panel plates with 30 m diameter epoxy beads so that the transparent conductive thin film faces each other.
[0107] 実施例 2 実施例 1において、成膜室内にクライオコイル (伯東社製、ポリコールド)を設け、 c[0107] Example 2 In Example 1, a cryocoil (manufactured by Hakutosha Co., Ltd., polycold) is provided in the film forming chamber, and c
Oガスの流量を 40sccmとした以外は実施例 1と同様にして、インジウム—スズ複合Indium-tin composite as in Example 1 except that the O gas flow rate was 40 sccm.
2 2
酸化物薄膜を成膜し、透明導電性フィルムを作製した。さらに、この透明導電性フィ ルムを用いて、実施例 1と同様にしてタツチパネルを作製した。  An oxide thin film was formed to produce a transparent conductive film. Further, using this transparent conductive film, a touch panel was produced in the same manner as in Example 1.
[0108] 実施例 3 [0108] Example 3
実施例 1において、酸化スズの含有率が 20質量%であるインジウム—スズ複合酸 化物からなるターゲットを用い、酸素導入量を比抵抗値が最小となる量とした以外は 実施例 1と同様に成膜し、透明導電性フィルムを作製した。このターゲットを用いた際 のインジウム—スズ複合酸化物薄膜中の酸化スズの含有率は、 19質量%であった。  In Example 1, a target composed of an indium-tin composite oxide having a tin oxide content of 20% by mass was used, and the amount of oxygen introduced was changed to an amount that minimizes the specific resistance value. A film was formed to produce a transparent conductive film. When this target was used, the content of tin oxide in the indium-tin composite oxide thin film was 19% by mass.
[0109] 実施例 4 [0109] Example 4
実施例 1において、酸化スズの含有率が 60質量%であるインジウム—スズ複合酸 化物からなるターゲットを用い、酸素導入量を比抵抗値が最小となる量とした以外は 実施例 1と同様に成膜し、透明導電性フィルムを作製した。このターゲットを用いた際 のインジウム—スズ複合酸化物薄膜中の酸化スズの含有率は、 59質量%であった。  In Example 1, a target composed of an indium-tin composite oxide having a tin oxide content of 60% by mass was used, and the amount of oxygen introduced was set to an amount that minimizes the specific resistance value. A film was formed to produce a transparent conductive film. When this target was used, the content of tin oxide in the indium-tin composite oxide thin film was 59% by mass.
[0110] 実施例 5 [0110] Example 5
実施例 1と同様に、二軸配向透明 PETフィルム力もなる基材 Z硬化物層からなる積 層体を作製した。この積層体の硬化物層面とは反対面に、ハードコート層用榭脂とし てポリエステルアタリレートとポリウレタンアタリレートとの混合物力 なる紫外線硬化 型榭脂 (大日精化工業社製、 EXG)を、乾燥後の膜厚が 5 μ mになるようにグラビアリ バース法により塗布し、溶剤を乾燥させた。この後、 160Wの紫外線照射装置の下を 10mZ分の速度で通過させ、紫外線硬化型榭脂を硬化させ、ハードコート層を形成 させた。次いで、 180°Cで 1分間の加熱処理をおこない、揮発成分の低減を行った。  In the same manner as in Example 1, a laminate composed of a base Z cured material layer having a biaxially oriented transparent PET film force was produced. On the surface opposite to the cured product layer surface of this laminate, an ultraviolet curable resin (EXG, manufactured by Dainichi Seika Kogyo Co., Ltd.), which is a mixture of polyester acrylate and polyurethane acrylate, is used as a hard coat layer resin. It was applied by gravure reverse method so that the film thickness after drying was 5 μm, and the solvent was dried. Thereafter, it was passed under a 160 W ultraviolet irradiation device at a speed of 10 mZ to cure the ultraviolet curable resin, thereby forming a hard coat layer. Next, heat treatment was performed at 180 ° C for 1 minute to reduce volatile components.
[0111] このハードコート層 Z二軸配向透明 PETフィルム力 なる基材 Z硬化物層力 なる 積層体の硬化物層上に、実施例 1と同様にしてインジウムースズ複合酸ィ匕物薄膜を 成膜し、透明導電性フィルムを作製した。さら〖こ、この透明導電性フィルムを用いて、 実施例 1と同様にしてタツチパネルを作製した。  [0111] This hard coat layer Z Biaxially oriented transparent PET film force Base material Z Hardened material layer force The indium tin oxide composite oxide thin film is formed on the cured material layer of the laminate in the same manner as in Example 1. Then, a transparent conductive film was produced. Sarakuko, using this transparent conductive film, a touch panel was produced in the same manner as in Example 1.
[0112] 実施例 6  [0112] Example 6
実施例 1と同様にして、二軸配向透明 PETフィルム力もなる基材 Z硬化物層からな る積層体を作製した。この積層体の硬化物層面とは反対面に、ハードコート層用榭 脂としてポリエステルアタリレートとポリウレタンアタリレートとの混合物力 なる紫外線 硬化型榭脂 (大日精化工業社製、 EXG)を、乾燥後の膜厚が 5 μ mになるようにダラ ビアリバース法により塗布し、溶剤を乾燥した。その後、表面に微細な凸形状が形成 された PETフィルム力もなるマット賦形フィルム (東レネ土製、 X)を、マット面が紫外線 硬化型榭脂と接するようにラミネートした。このマット賦形フィルムの表面形状は、平 均表面粗さ 0. 40 ^ m,山の平均間隔 160 /ζ πι、最大表面粗さ 25 mである。 In the same manner as in Example 1, the substrate was made of a Z-cured material layer having a biaxially oriented transparent PET film force. A laminate was prepared. On the surface opposite to the cured product layer surface of this laminate, UV curing type resin (EXG manufactured by Dainichi Seika Kogyo Co., Ltd.), which is a mixture of polyester acrylate and polyurethane acrylate, is dried as a resin for the hard coat layer. The film was applied by the Daravia reverse method so that the subsequent film thickness was 5 μm, and the solvent was dried. After that, a mat-shaped film (X made by Torayen Earth Co., Ltd.) having a PET film with a fine convex shape formed on the surface was laminated so that the mat surface was in contact with the ultraviolet curable resin. The surface shape of this mat shaped film is an average surface roughness of 0.40 ^ m, an average peak interval of 160 / ζ πι, and a maximum surface roughness of 25 m.
[0113] このようにラミネートしたフィルムを、 160Wの紫外線照射装置の下を 10mZ分の速 度で通過させ、紫外線硬化型榭脂を硬化させた。次いで、マット賦形フィルムを剥離 して、表面に凹形状加工が施され、防眩効果を有するハードコート層を形成させた。 次いで、 180°Cで 1分間の加熱処理をおこない、揮発成分の低減を行った。  [0113] The laminated film was passed under a 160 W ultraviolet irradiation device at a speed of 10 mZ to cure the ultraviolet curable resin. Next, the mat-shaped film was peeled off, and the surface was processed with a concave shape to form a hard coat layer having an antiglare effect. Next, heat treatment was performed at 180 ° C for 1 minute to reduce volatile components.
[0114] この防眩性ノ、ードコート層 Z二軸配向透明 PETフィルム力 なる基材 Z硬化物層 力もなる積層体の硬化物層上に、実施例 1と同様にしてインジウム—スズ複合酸ィ匕物 薄膜を透明導電性薄膜として成膜し、透明導電性フィルムを作製した。さらに、この 透明導電性フィルムを一方のパネル板として用 ヽ、実施例 1と同様にしてタツチパネ ルを作製した。  [0114] This antiglare coating layer, coated layer Z biaxially oriented transparent PET film strength substrate Z cured product layer On the cured product layer of the laminate also having strength, indium-tin composite oxide A transparent thin film was formed as a transparent conductive thin film to produce a transparent conductive film. Further, this transparent conductive film was used as one panel plate, and a touch panel was produced in the same manner as in Example 1.
[0115] 実施例 7  [0115] Example 7
実施例 5と同様にして、防眩性ノヽードコート層 Z二軸配向透明 PETフィルム力もな る基材 Z硬化物層 Z透明導電性薄膜層からなる積層体を作製した。次いで、この防 眩性ノヽードコート層上に、順次 TiO薄膜層(屈折率: 2. 30、膜厚:15nm)、 SiO薄  In the same manner as in Example 5, a laminate comprising an antiglare node coat layer Z, a biaxially oriented transparent PET film, a substrate Z cured product layer, and a Z transparent conductive thin film layer was produced. Next, on this antiglare node coat layer, a TiO thin film layer (refractive index: 2.30, film thickness: 15 nm), SiO thin film successively.
2 2 膜層(屈折率: 1. 46、膜厚 : 29nm)、TiO薄膜層(屈折率: 2. 30、膜厚:109nm)  2 2 Film layer (refractive index: 1.46, film thickness: 29nm), TiO thin film layer (refractive index: 2.30, film thickness: 109nm)
2  2
、 SiO薄膜層(屈折率: 1. 46、膜厚: 87nm)を積層し、反射防止処理層を形成した , SiO thin film layer (refractive index: 1.46, film thickness: 87nm) was laminated to form an antireflection treatment layer
2 2
。 TiO薄膜層を形成するには、チタンをターゲットとして用い、直流マグネトロンスパ . To form a TiO thin film layer, use titanium as a target and a direct current magnetron spa.
2 2
ッタリング法で、真空度を 0. 27Paとし、ガスとして Arガスを 500sccm、 Oガスを 80s  The vacuum level is set to 0.27 Pa, Ar gas is 500 sccm, and O gas is 80 s.
2  2
ccmの流速で流した。この際、ターゲットには、 7. 8WZcm2の電力を供給し、ダイナ ミックレートを 23nm'mZ分とした。また、基板の背面には表面温度が 0°Cの冷却口 ールを設けて、透明プラスチックフィルムを冷却した。 Flowed at a flow rate of ccm. At this time, 7.8 WZcm 2 of power was supplied to the target, and the dynamic rate was 23 nm'mZ. In addition, the transparent plastic film was cooled by providing a cooling hole with a surface temperature of 0 ° C on the back of the substrate.
[0116] SiO薄膜を形成するには、シリコンをターゲットとして用い、直流マグネトロンスパッ タリング法で、真空度を 0. 27Pa、ガスとして Arガスを 500sccm、 Oガスを 80sccm [0116] To form a SiO thin film, a silicon magnet is used as a target and a DC magnetron spas Tulling method, vacuum degree is 0.27Pa, Ar gas is 500sccm, O gas is 80sccm
2  2
の流速で流した。この際、ターゲットには、 7. 8WZcm2の電力を供給し、ダイナミック レートを 23nm'mZ分とした。また、基板の背面には 0°Cの冷却ロールを設けて、透 明プラスチックフィルムを冷却した。さらに、この透明導電性フィルムを一方のパネル 板として用い、実施例 1と同様にしてタツチパネルを作製した。 The flow rate was. At this time, 7.8 WZcm 2 of power was supplied to the target, and the dynamic rate was 23 nm'mZ. In addition, a 0 ° C cooling roll was provided on the back of the substrate to cool the transparent plastic film. Further, using this transparent conductive film as one panel plate, a touch panel was produced in the same manner as in Example 1.
[0117] 実施例 8 [0117] Example 8
実施例 1と同様にして作製した透明導電性フィルムを、アクリル系粘着剤を介して、 厚みが 1. Ommのポリカーボネート製のシートに貼り付けて、透明導電性積層シート を作製した。この透明導電性積層シートを固定電極として用い、実施例 6の透明導電 性フィルムを可動電極に用 、て、実施例 1と同様にしてタツチパネルを作製した。  The transparent conductive film produced in the same manner as in Example 1 was attached to a polycarbonate sheet having a thickness of 1. Omm through an acrylic adhesive to produce a transparent conductive laminate sheet. A touch panel was produced in the same manner as in Example 1 using this transparent conductive laminated sheet as a fixed electrode and the transparent conductive film of Example 6 as a movable electrode.
[0118] 実施例 9 [0118] Example 9
TiO含有アクリル系ハードコート剤 QiSR (株)製、商品名「デソライト Z7252D」、固 TiO-containing acrylic hard coat agent QiSR, trade name `` Desolite Z7252D '', solid
2 2
形分濃度: 45質量%、 TiO :アクリル榭脂 = 75 : 25 (質量比) ]を、固形分濃度が 3質  Form concentration: 45 mass%, TiO: acrylic resin = 75:25 (mass ratio)], solid content concentration is 3 quality
2  2
量%になるように、メチルイソブチルケトンとイソプロピルアルコールとの質量比 1: 1の 混合溶媒で希釈して、コート液を調製した。次いで、実施例 4と同様な方法で作製し たハードコート層 Z二軸延伸 PETフィルム Z硬化物層力 なる積層体の硬化物層上 に、前記のコート液を、完全に硬化した後の厚さが 70nmになるように塗布し、 80°C で 1分間乾燥させた。さらに、紫外線を光量 SOmjZcm2で照射して、ハーフキュア状 態に硬化させ、高屈折層を形成した。 A coating solution was prepared by diluting with a mixed solvent of methyl isobutyl ketone and isopropyl alcohol in a mass ratio of 1: 1 so that the amount was%. Next, the hard coating layer Z biaxially stretched PET film prepared in the same manner as in Example 4 Z cured product layer strength on the cured product layer of the laminate, the thickness after the coating solution was completely cured The film was applied to a thickness of 70 nm and dried at 80 ° C for 1 minute. Further, ultraviolet rays were irradiated with a light amount of SOmjZcm 2 to be cured in a half-cured state to form a highly refractive layer.
[0119] さらに、フッ素含有シロキサン系コーティング剤 (信越ィ匕学工業 (株)製、商品名「X — 12— 2138H」、固形分濃度: 3質量%)に、光重合開始剤含有アクリル系榭脂 (大 日精化工業社製、セイカビーム EXF— 01J)を、全固形分濃度が 6質量%になるよう に添加した。この低屈折率層形成用塗布液を、加熱処理後の厚さが 20nmになるよう に、上記の高屈折率層上に塗布し、 80°Cで 1分間乾燥を行った。次いで、紫外線照 射装置 (アイグラフィックス社製、 UB042— 5AM— W型)を用いて紫外線を照射 (光 量: 300miZcm2)した。さらに、 150°Cで 1分間加熱処理して、屈折率 1. 48の低屈 折率層を形成した。次いで、実施例 1と同様の方法で透明導電性薄膜層を形成し、 透明導電性フィルムを得た。さら〖こ、この透明導電性フィルムを用いて、実施例 1と同 様にしてタツチパネルを作製した。 [0119] Further, a fluorine-containing siloxane coating agent (manufactured by Shin-Etsu Chemical Co., Ltd., trade name "X-12-12138H", solid content concentration: 3% by mass) with a photopolymerization initiator-containing acrylic resin Fat (Seika Beam EXF-01J, manufactured by Dainichi Seika Kogyo Co., Ltd.) was added so that the total solid content was 6% by mass. This coating solution for forming a low refractive index layer was applied onto the high refractive index layer so that the thickness after the heat treatment was 20 nm, and dried at 80 ° C. for 1 minute. Subsequently, ultraviolet rays were irradiated (light quantity: 300 miZcm 2 ) using an ultraviolet ray irradiation device (UB042-5AM-W type, manufactured by Eye Graphics Co., Ltd.). Furthermore, a low refractive index layer having a refractive index of 1.48 was formed by heat treatment at 150 ° C. for 1 minute. Next, a transparent conductive thin film layer was formed in the same manner as in Example 1 to obtain a transparent conductive film. Sarakuko, using this transparent conductive film, the same as Example 1. In this way, a touch panel was produced.
[0120] 実施例 10  [0120] Example 10
高屈折層と低屈折層の膜厚をそれぞれ 90nmと 45nmとする以外は、実施例 8と同 様な方法で透明導電性フィルムを得た。さらに、この透明導電性フィルムを用いて、 実施例 1と同様にしてタツチパネルを作製した。  A transparent conductive film was obtained in the same manner as in Example 8 except that the thicknesses of the high refractive layer and the low refractive layer were 90 nm and 45 nm, respectively. Further, using this transparent conductive film, a touch panel was produced in the same manner as in Example 1.
[0121] 実施例 11 [0121] Example 11
実施例 1において、硬化物層を形成させる塗布液と調整する際に、平均粒径が 4. 5 μ mのトスパール 145 (東芝シリコーン社製)をアクリル系榭脂 100質量部に対して 1質量部となるように添加し、塗布液中で粒子を分散させた。硬化物層を形成させる 塗布液として、この塗布液を用い、塗膜の厚み力 /z mとなるようにマイヤーバーを用 いて塗布する以外は、実施例 1と同様にして透明導電性フィルムを作製した。得られ た透明導電性フィルムの透明導電性薄膜の表面の中心線平均粗さ (Ra)は 0. 24 μ mであった。さらに、この透明導電性フィルムを用いて、実施例 1と同様にしてタツチ パネルを作製した。なお、 3波長の蛍光灯下でフィルムをガラスに押し付けながら-ュ 一トンリングの発生の有無を確認した力、ニュートンリングの発生は全く見られなかつ た。  In Example 1, when adjusting with a coating solution for forming a cured product layer, Tospearl 145 having an average particle size of 4.5 μm (manufactured by Toshiba Silicone) was 1 mass per 100 mass parts of acrylic resin. And particles were dispersed in the coating solution. A transparent conductive film is produced in the same manner as in Example 1 except that this coating solution is used as a coating solution for forming a cured product layer, and the coating is applied using a Mayer bar so that the thickness force / zm of the coating film is obtained. did. The center line average roughness (Ra) of the surface of the transparent conductive thin film of the obtained transparent conductive film was 0.24 μm. Further, using this transparent conductive film, a touch panel was prepared in the same manner as in Example 1. In addition, the force to confirm the occurrence of a newton ring while pressing the film against the glass under a three-wavelength fluorescent lamp, no Newton ring was observed.
[0122] 比較例 1  [0122] Comparative Example 1
実施例 1において、 180°Cで 1分間の加熱処理及び 10分間の真空暴露処理による 揮発成分低減プロセスを省略した以外は、実施例 1と同様にして透明導電性フィルム を作製した。さらに、この透明導電性フィルムを用いて、実施例 1と同様にしてタツチ パネルを作製した。  In Example 1, a transparent conductive film was produced in the same manner as in Example 1 except that the volatile component reduction process by heat treatment at 180 ° C. for 1 minute and vacuum exposure treatment for 10 minutes was omitted. Further, using this transparent conductive film, a touch panel was prepared in the same manner as in Example 1.
[0123] 比較例 2 [0123] Comparative Example 2
実施例 1において、巻き返し時間を 5分とする以外は実施例 1と同様にして、透明導 電性フィルムを作製した。さらに、この透明導電性フィルムを用いて、実施例 1と同様 にしてタツチパネルを作製した。  A transparent conductive film was produced in the same manner as in Example 1 except that the rewinding time was 5 minutes in Example 1. Further, using this transparent conductive film, a touch panel was prepared in the same manner as in Example 1.
[0124] 比較例 3 [0124] Comparative Example 3
実施例 1と同様にして得た硬化物層上にインジウム スズ複合酸化物からなる透明 導電性薄膜を成膜した。このとき、スパッタリング前の圧力を 0. OOOlPaとし、ターゲ ットとして酸化スズを 10質量%含有した酸化インジウム (住友金属鉱山社製、密度: 7 . lg/cm3)に用いて、 2W/cm2の DC電力を印加した。また、 Arガスを 130sccm、 Oガスを lOsccmの流速で流し、 0. 4Paの雰囲気下で DCマグネトロンスパッタリンOn the cured product layer obtained in the same manner as in Example 1, a transparent conductive thin film made of indium tin composite oxide was formed. At this time, the pressure before sputtering is set to 0. A DC power of 2 W / cm 2 was applied using indium oxide containing 10% by mass of tin oxide (density: 7.lg / cm 3 ). In addition, Ar gas was flowed at 130 sccm, O gas was flowed at a flow rate of lOsccm, and DC magnetron sputtering was performed in an atmosphere of 0.4 Pa.
2 2
グ法を用いて成膜した。ただし、通常の DCではなぐアーク放電を防止するために、 日本ィーェヌアイ製 RPG— 100を用いて 5 μ s幅のパルスを 50kHz周期で印加した 。また、センターロール温度は 50°Cとして、スパッタリングを行った。このようにして得 た透明導電性フィルムを、さらにオーブンで 200°Cに加熱し、 5分間保持した。さらに 、この透明導電性フィルムを用いて、実施例 1と同様にしてタツチパネルを作製した。  The film was formed by using the etching method. However, in order to prevent arc discharge that occurs with normal DC, a pulse of 5 μs width was applied at a 50 kHz period using RPG-100 manufactured by Nippon Yanai. The center roll temperature was 50 ° C. and sputtering was performed. The transparent conductive film thus obtained was further heated to 200 ° C. in an oven and held for 5 minutes. Further, using this transparent conductive film, a touch panel was produced in the same manner as in Example 1.
[0125] [表 1] [0125] [Table 1]
Figure imgf000026_0001
Figure imgf000026_0001
[0126] [表 2] [0126] [Table 2]
額縁近傍のペン摺動耐久性 ペン摺動耐久性 Pen sliding durability near the frame Pen sliding durability
a¾ i麦 初期 ON  a¾ i wheat initial ON
摺動部分の 摺動部分  Sliding part of sliding part
ON抵抗 抵抗  ON resistance Resistance
クラック の白化  Crack whitening
(k Q ) (k Q )  (k Q) (k Q)
実施例】 なし 2 2 なし 2 2 実施例 2 なし 2 2 なし 2 2 実施例 3 なし 2 2 なし 2 2 実施例 4 なし 2 2 なし 2 2 実施例 5 なし 2 2 なし 2 2 実施例 6 なし 2 2 なし 2 2 実施例 7 なし 2 2 なし 2 2 実施例 8 なし 2 2 なし 2 2 実施例 9 なし 2 2 なし 2 2 実施例 10 なし 2 2 なし 2 2 実施例 1 1 なし 2 2 なし 2 2 比較例 1 なし 2 100 なし 2 20 比較例 2 なし 2 30 なし 2 20 比較例 3 あり 2 > 1000 なし 2 2  Example] None 2 2 None 2 2 Example 2 None 2 2 None 2 2 Example 3 None 2 2 None 2 2 Example 4 None 2 2 None 2 2 Example 5 None 2 2 None 2 2 Example 6 None 2 2 None 2 2 Example 7 None 2 2 None 2 2 Example 8 None 2 2 None 2 2 Example 9 None 2 2 None 2 2 Example 10 None 2 2 None 2 2 Example 1 1 None 2 2 None 2 2 Comparative Example 1 None 2 100 None 2 20 Comparative Example 2 None 2 30 None 2 20 Comparative Example 3 With 2> 1000 None 2 2
[0127] 表 1 2の結果より、本願発明の範囲を満足する実施例 1 11記載の透明導電性フ イルムまた、は透明導電性シートを用いたタツチパネルは、額縁近傍にお寐^いてポリア セタール製ペン (先端形状: 0. 8mmR)に 2. 5Nの荷重をかけ 1万回の摺動試験を 行った後でも剥離やクラックの発生もなぐ ON抵抗にも異常がな力つた。 [0127] From the results shown in Table 12 above, the touch panel using the transparent conductive film or the transparent conductive sheet described in Example 11 11 satisfying the scope of the present invention is placed near the frame to be polyacetal. Even after a sliding test of 10,000 times with a load of 2.5 N applied to a pen made (tip shape: 0.8 mmR), there was no abnormality in the ON resistance, which did not cause peeling or cracking.
[0128] 一方、フィルム中の水分を十分に除去しなかった比較例 1のおよび 2の導電性フィ ルムは透明導電性薄膜中の炭素濃度が低ぐこれらの導電性フィルムを用いたタツ チパネルは額縁近傍でポリアセタール製ペン (先端形状: 0. 8mmR)に 2. 5Nの荷 重をかけ 1万回の摺動試験を行った後に ON抵抗に異常が生じた。さらに、顕微鏡で ペン摺動部分を評価すると、透明導電性薄膜の剥離やクラックがみられた。  [0128] On the other hand, the conductive films of Comparative Examples 1 and 2 in which the moisture in the film was not sufficiently removed are touch panels using these conductive films in which the carbon concentration in the transparent conductive thin film is low. In the vicinity of the frame, a polyacetal pen (tip shape: 0.8 mmR) was loaded with a load of 2.5 N, and after 10,000 sliding tests, an abnormality occurred in the ON resistance. Furthermore, when the pen sliding portion was evaluated with a microscope, peeling and cracking of the transparent conductive thin film were observed.
また、透明導電性薄膜が結晶質な比較例 3の導電性フィルムはタツチパネルの額 縁近傍でのペン摺動試験後に透明導電性薄膜にクラックが発生しており、 ON抵抗 に異常が生じた。  In addition, the conductive film of Comparative Example 3 in which the transparent conductive thin film was crystalline had cracks in the transparent conductive thin film after the pen sliding test near the frame of the touch panel, and the ON resistance was abnormal.
産業上の利用可能性 本発明の透明導電性フィルムまたは透明導電性シートは、ペン入力用タツチパネ ルに用いた際に、タツチパネルの額縁近傍でも剥離、クラック等を生じることがなぐ ペン摺動耐久性に優れており、かつ位置検出精度や表示品位にも優れているため、 タツチパネルの狭額縁ィ匕に対応でき、携帯情報端末やデジタルビデオカメラ、デジタ ルカメラなどに用いられる、記録媒体の小型化と表示ディスプレイの大画面化が強く 要求されるタツチパネルとして特に好適である。 Industrial applicability The transparent conductive film or transparent conductive sheet of the present invention has excellent pen sliding durability that does not cause peeling or cracking even near the frame of the touch panel when used in a touch panel for pen input. Because it has excellent position detection accuracy and display quality, it can handle the narrow frame of touch panels, miniaturize recording media used in personal digital assistants, digital video cameras, digital cameras, etc. and increase the display screen. It is particularly suitable as a touch panel that is strongly required.

Claims

請求の範囲 The scope of the claims
[1] 透明プラスチックフィルムカゝらなる基材上に、硬化物層を介して金属酸ィ匕物を構成 成分とする透明導電性薄膜を積層した透明導電性フィルムであって、前記透明導電 性薄膜が非晶質で、力 透明導電性薄膜中に含まれる炭素濃度が、 1 X ιο〜ι X 1022 (atoms/cm3)であることを特徴とする透明導電性フィルム。 [1] A transparent conductive film obtained by laminating a transparent conductive thin film containing a metal oxide as a constituent component on a substrate made of a transparent plastic film through a cured product layer, the transparent conductive film A transparent conductive film, wherein the thin film is amorphous, and the carbon concentration contained in the transparent conductive thin film is from 1 X ιο 2ΰ to ι X 10 22 (atoms / cm 3 ).
[2] 前記の金属酸ィ匕物がインジウム一スズ複合酸ィ匕物であり、インジウムに対するスズ の含有量の比が 15〜60質量%であることを特徴とする請求項 1記載の透明導電性 フイノレム。 [2] The transparent conductive material according to claim 1, wherein the metal oxide is an indium monotin composite oxide, and the ratio of the content of tin to indium is 15 to 60% by mass. Sex Huinolem.
[3] 前記透明導電性薄膜と硬化物層の間に、少なくとも 2層以上の屈折率の異なる層 を設けてなることを特徴とする請求項 1記載の透明導電性フィルム。  [3] The transparent conductive film according to [1], wherein at least two layers having different refractive indexes are provided between the transparent conductive thin film and the cured product layer.
[4] 前記硬化物層が粒子を含有し、透明導電性薄膜面の中心線平均粗さ (Ra)が 0. 1[4] The cured product layer contains particles, and the center line average roughness (Ra) of the transparent conductive thin film surface is 0.1.
〜0. 5 μ mであることを特徴する請求項 1記載の透明導電性フィルム。 The transparent conductive film according to claim 1, wherein the transparent conductive film has a thickness of ˜0.5 μm.
[5] 前記透明導電性薄膜面とは反対面に、ハードコート層が積層されていることを特徴 とする請求項 1記載の透明導電性フィルム。 5. The transparent conductive film according to claim 1, wherein a hard coat layer is laminated on the surface opposite to the transparent conductive thin film surface.
[6] 前記ハードコート層が防眩性を有することを特徴とする請求項 5記載の透明導電性 フイノレム。 6. The transparent conductive finolem according to claim 5, wherein the hard coat layer has an antiglare property.
[7] 前記ハードコート層が低反射処理を施したことを特徴とする請求項 5記載の透明導 電性フィルム。  7. The transparent conductive film according to claim 5, wherein the hard coat layer is subjected to a low reflection treatment.
[8] 請求項 1〜7のいずれかに記載の透明導電性フィルムの透明導電性薄膜面とは反 対面に、粘着剤を介して透明榭脂シートが貼り合わされていることを特徴とする透明 導電性シート。  [8] A transparent resin sheet, wherein a transparent resin sheet is bonded to the transparent conductive thin film surface of the transparent conductive film according to any one of claims 1 to 7 via an adhesive. Conductive sheet.
[9] 前記透明導電性薄膜を有する一対のパネル板を透明導電性薄膜が対向するよう にスぺーサーを介して配置してなるタツチパネルにぉ 、て、少なくとも一方のパネル 板が請求項 1記載の透明導電性フィルムもしくは透明導電性シートからなることを特 徴とするタツチパネル。  [9] The touch panel according to claim 1, wherein a pair of panel plates having the transparent conductive thin film are arranged via a spacer so that the transparent conductive thin film faces each other, and at least one of the panel plates is described in claim 1. A touch panel characterized by comprising a transparent conductive film or a transparent conductive sheet.
PCT/JP2006/310847 2005-07-29 2006-05-31 Transparent electrically conductive film, transparent electrically conductive sheet, and touch panel WO2007013220A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005221070 2005-07-29
JP2005-221070 2005-07-29
JP2005251795 2005-08-31
JP2005-251795 2005-08-31

Publications (1)

Publication Number Publication Date
WO2007013220A1 true WO2007013220A1 (en) 2007-02-01

Family

ID=37683125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310847 WO2007013220A1 (en) 2005-07-29 2006-05-31 Transparent electrically conductive film, transparent electrically conductive sheet, and touch panel

Country Status (2)

Country Link
TW (1) TWI327736B (en)
WO (1) WO2007013220A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018060276A (en) * 2016-10-03 2018-04-12 東洋アルミニウム株式会社 Conductive sheet for pattern less touch panel, and its manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5739742B2 (en) * 2010-11-04 2015-06-24 日東電工株式会社 Transparent conductive film and touch panel
TWI451157B (en) * 2011-07-11 2014-09-01 Hannstar Display Corp Touch panel module and manufacturing method thereof
JP6004874B2 (en) * 2011-12-16 2016-10-12 日東電工株式会社 Transparent conductive film
JP6103375B2 (en) * 2013-05-13 2017-03-29 大日本印刷株式会社 Laminated body and laminated body manufacturing method used for manufacturing electronic parts, touch panel device including film sensor and film sensor, and film forming method for forming concentration gradient type metal layer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237630A (en) * 1996-04-12 1998-09-08 Asahi Glass Co Ltd Oxide coating, laminated body and heir production
JP2001283643A (en) * 2000-03-31 2001-10-12 Toyobo Co Ltd Transparent conductive film, transparent conductive sheet and touch panel
WO2003020509A1 (en) * 2001-09-03 2003-03-13 Teijin Limited Transparent conductive laminate
JP2003316505A (en) * 2002-04-25 2003-11-07 Sumitomo Bakelite Co Ltd Substrate for touch panel and touch panel
JP2005174665A (en) * 2003-12-09 2005-06-30 Sony Corp Transparent conductive film and touch panel, and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10237630A (en) * 1996-04-12 1998-09-08 Asahi Glass Co Ltd Oxide coating, laminated body and heir production
JP2001283643A (en) * 2000-03-31 2001-10-12 Toyobo Co Ltd Transparent conductive film, transparent conductive sheet and touch panel
WO2003020509A1 (en) * 2001-09-03 2003-03-13 Teijin Limited Transparent conductive laminate
JP2003316505A (en) * 2002-04-25 2003-11-07 Sumitomo Bakelite Co Ltd Substrate for touch panel and touch panel
JP2005174665A (en) * 2003-12-09 2005-06-30 Sony Corp Transparent conductive film and touch panel, and manufacturing method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018060276A (en) * 2016-10-03 2018-04-12 東洋アルミニウム株式会社 Conductive sheet for pattern less touch panel, and its manufacturing method

Also Published As

Publication number Publication date
TW200715307A (en) 2007-04-16
TWI327736B (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4640535B1 (en) Transparent conductive film and touch panel using the same
JP5556436B2 (en) Transparent conductive laminated film, transparent conductive laminated sheet, and touch panel
EP1147882B1 (en) Transparent conductive film, transparent conductive sheet and touchpanel
JP4697450B2 (en) Transparent conductive film or transparent conductive sheet, and touch panel using the same
CN102448717B (en) Transparent conductive multilayer film
WO2010035598A1 (en) Transparent conductive film and touch panel
JP5481992B2 (en) Transparent conductive film
WO2011046094A1 (en) Transparent conductive laminate film
JP5374998B2 (en) Method for producing transparent conductive film
JP2023038265A (en) Transparent electroconductive film
WO2007013220A1 (en) Transparent electrically conductive film, transparent electrically conductive sheet, and touch panel
TW550598B (en) Transparent conductive films and method for produce the same, transparent conductive sheets, and touch panels
JP4888603B2 (en) Transparent conductive film
TWI397926B (en) Transparent electrically conductive film and touch panel using the same
JP4296462B2 (en) Transparent conductive film, transparent conductive sheet and touch panel
JP4517255B2 (en) Transparent conductive film for touch panel, transparent conductive sheet for touch panel, and touch panel
JP5509683B2 (en) Transparent conductive film
JP2009283348A (en) Transparent conductive film, and touch panel using the same
JP4935962B2 (en) Transparent conductive film and method for producing the same
JP2004197178A (en) Method of producing transparent electroconductive film and transparent electroconductive sheet, and touch panel
JP3627864B2 (en) Transparent conductive film, transparent conductive sheet and touch panel
JP3627865B2 (en) Transparent conductive film, transparent conductive sheet and touch panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756795

Country of ref document: EP

Kind code of ref document: A1