TW201220032A - Radiator and electronic apparatus having coolant pathway - Google Patents

Radiator and electronic apparatus having coolant pathway Download PDF

Info

Publication number
TW201220032A
TW201220032A TW100131275A TW100131275A TW201220032A TW 201220032 A TW201220032 A TW 201220032A TW 100131275 A TW100131275 A TW 100131275A TW 100131275 A TW100131275 A TW 100131275A TW 201220032 A TW201220032 A TW 201220032A
Authority
TW
Taiwan
Prior art keywords
coolant
core
path
unit
heat sink
Prior art date
Application number
TW100131275A
Other languages
Chinese (zh)
Inventor
Kenji Katsumata
Masumi Suzuki
Michimasa Aoki
Yosuke Tsunoda
Masaru Sugie
Shinichirou Kouno
Hiroshi Muto
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of TW201220032A publication Critical patent/TW201220032A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0472Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0031Radiators for recooling a coolant of cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/02Heat exchange conduits with particular branching, e.g. fractal conduit arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/10Particular layout, e.g. for uniform temperature distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A radiator includes a core unit, which includes a flow inlet which coolant enters, a flow outlet from which the coolant exits, a plurality of coolant pathways including at least an outer coolant pathway, an inner coolant pathway, a branching point, and a merging point, the outer coolant pathway being disposed to surround the inner coolant pathway, the coolant being divided at the branching point and merging at the merging point, and a connecting pathway to connect between the merging point of the outer coolant pathway and the branching point of the inner coolant pathway, wherein the flow inlet is in communication with a branching point of an outermost one of the plurality of coolant pathways, and the flow output is in communication with a merging point of an innermost one of the plurality of coolant pathways.

Description

201220032 六、發明說明: 【智^明戶斤屬之^ 】 發明領域 本文揭露内容係有關於一種散熱器以及一種電子裝 置。 乂 t先前技術;3 發明背景 諸如個人電腦與工作站之電子裝置係包括諸如一中央 處理器(亦即CPU)等發熱之電子組件。電子裝置係設置一冷 卻單元,用以吸收由於該等電子組件所產生之熱量。 在一循環冷卻劑用以吸收由於電子組件所產生之熱量 的冷卻單元中,由於吸收熱量而使溫度升高之冷卻劑係藉 著一散熱器加以冷卻。例如,一熱交換器能夠包括一扁平 管’其具有一平面螺旋形狀,以致於使鄰接之管段隔開— 段固定距離,且其冷卻劑則由中心向周圍流動。 一風扇能夠設置在散熱器之芯段,並產生一空氣流, 用以冷卻流經該芯段之冷卻劑。在此一案例中,空氣流動 速率之分佈並不均勻。當朝向該芯段流動之空氣流的速率 分佈不列入考量時,則一風扇之冷卻效率並不夠高。 [相關技術文件] [專利文件] [專利文件1]曰本早期專利公開案第2005-214545號 【發明内容】 發明概要 201220032 本發明之一目的係在於改良一散熱器之冷卻效率。 根據實施例之一觀點,一散熱器包括一芯材單元,其 包括一冷卻劑進入之流入口、一冷卻劑離開之流出口、多 個冷卻劑路徑,其包括至少一外部冷卻劑路徑、一内部冷 卻劑路徑、一分支點、一會合點,該外部冷卻劑路徑係配 置成圍繞該内部冷卻劑路徑,冷卻劑係在分支點處分開, 且在會合點處會合、以及一連接路徑,以便使外部冷卻劑 路徑的會合點與内部冷卻劑路徑的分支點之間產生連接, 其中該流入口係與該等多個冷卻劑路徑其中一最外圍者之 一分支點相連接,且該流出口則與該等多個冷卻劑路徑其 中一最内部者相連接。 根據該實施例之另一觀點,一散熱器包括一芯材單 元,其包括一冷卻劑進入之流入口、一冷卻劑離開之流出 口、以及一冷卻劑流經之螺旋形冷卻劑路徑,其中該流入 口係與該冷卻劑路徑之一外側尾端相連接,且該流入口係。 與冷卻劑路徑的一内側尾端相連接。 圖式簡單說明 第1圖係為顯示根據一第一實施例的一個人電腦之内 部構造的圖式; 第2圖係為顯示根據該第一實施例之一流體冷卻單元 的構造之範例的圖式; 第3圖係為根據該第一實施例之一散熱器的範例之一 立體圖; 第4圖係為根據該第一實施例之一軸流式風扇的一範 201220032 例之一立體圖; 第5圖係為根據該第一實施例之一芯材單元的一範例 之一平面圖; 第6圖係為散熱器之第一變化形式的一立體圖; 第7圖係為散熱器之第二變化形式的一立體圖; 第8圖係為散熱器之第三變化形式的一立體圖; 第9圖係為根據第二實施例之一芯材單元的一範例之 一平面圖。 I:實施方式3 較佳實施例之詳細說明 [第一實施例] 參考第1圖,首先將說明一個人電腦100,以其作為一 電子裝置之一範例。第1圖係為顯示該根據本實施例之個人 電腦100的内部構造之一圖式。如第1圖中所示,該個人電 腦100包括一電子組件110以及一流體冷卻單元120。 電子組件110可為例如一大規模整合(LSI)電路。該諸如 一LSI電路之電子組件110具有一中央處理單元(CPU)晶片 植入其中。該CPU晶片藉著執行一作業系統(OS)以及應用 程式而實行預定的運算。當該晶片實行運算時,諸如一LSI 電路之電子組件110便會產生熱量。 個人電腦100係設置流體冷卻單元120,用以吸收藉由 該電子組件110所產生的熱量。 除了電子組件110以及流體冷卻單元120之外,個人電 腦100亦包括一硬碟裝置、一數位多用途光碟(DVD)裝置、 201220032 一讀卡單元、以及其他類似裝置。硬碟裝置儲存例如上述 之作業系統(OS)以及應用程式。DVD裝置從諸如一DVD之 一記錄媒介物讀取資料,以及將資料寫入到諸如一DVD之 一記錄媒介物。讀卡單元接受一記憶卡、一區域網路(LAN) 卡’或者是其他插入其中裝置。 現在將藉著參考第2圖,說明本實施例之流體冷卻單元 120。第2圖係為顯示該流體冷卻單元120之一範例的一圖 式。如第2圖中所示,流體冷卻單元120包括一泵122、一熱 接收單元124 '以及一散熱器130。該等構成流體冷卻單元 120之構件係透過多個管件126加以連接,以形成一循環路 徑°流經此循環路徑之冷卻劑將藉由電子組件11〇所產生的 熱量釋放到個人電腦1〇〇外部。冷卻劑可為例如丙二醇 (propylene glycol)系列之防凍流體。 泵122係位在相對於散熱器130之下游處》泵122運送冷 卻劑’以便在循環路徑内部產生冷卻劑流。具體而言,泵 122以第2圖中之箭號所示的方向產生一冷卻劑流。栗122可 為一壓電式泵。 熱接受單元124係位在相對於泵122之下游處。如第1圖 中所示,該熱接受單元124係配置在產生熱量之電子組件 110上。熱接受單元124吸收藉由該電子組件110所產生之熱 量。 散熱器130係位在相對於熱接受單元124的下游處。散 熱器130自流入該散熱器130之冷卻劑取出熱量。散熱器no 係位於一排熱開口之鄰近處,該排熱開口係形成在個人電 201220032 fel〇〇之外罩的—橫向側處。散熱器13G包括-軸流式風扇 140以及_芯材單元⑼。軸流式風扇_產生一通過該排熱 ,丨達外。卩的空氣流。以此佈置,散熱器130自冷卻劑取 得之熱里便能夠透過該排熱開口釋放到個人電腦丨〇〇外 °P在第2圖中所示之範例中’其具有兩個軸流式風扇14〇 、及兩個心材單元i5G。補後將說明散熱器i3G之詳細構造。 如先刖所述之該循環路徑係形成在流體冷卻單元12〇 中。 以下將參考第3圖、第4圖、以及第5圖,說明本實施例 之政熱ϋ 13G的構造。在第2圖中顯示兩個軸流式風扇 140以 及兩個忠材單元15〇。然而,在第3圖到第5圖中係顯示一個 軸机式風扇14〇以及一個芯材單元15〇。第3圖係為根據本實 施例之β玄散熱器13〇的一範例之一立體圖。在第3圖中,軸 "•I·式風扇140係經過簡化,並以點線型式加以顯示。第4圖 係為《亥軸流式風扇14〇之一範例的一立體圖。第5圖係為該 心材單元150之一範例的一平面圖。第5圖中所示之箭號指 示冷卻劑流向。 首先將藉由參考第4圖,描述本實施例之該軸流式風扇 140的構造。如第4圖中所示,軸流式風扇14〇包括多個葉片 142 ’該等多個葉片142繞著一旋轉軸144轉動,以便產生一 從該軸流式風扇之後側流動到其前側的空氣流。 在軸流式風扇140之旋轉軸144的鄰近處並無葉片142 存在’以致於不會產生空氣流。此外’一般而言,藉著葉 片142之轉動所產生的空氣流速度在該軸流式風扇14〇的葉 201220032 片142所在之處並不均勻。具體而言,空氣流之速度係由該 轉動軸朝向葉片之尖端逐漸增加。 接著將參考第5圖,描述本實施例之該芯材單元150的 構造。如第5圖中所示,芯材單元150包括一流入口 152、一 流出口 154、多個冷卻劑路徑156、連接路徑162、以及多個 散熱鰭片164。第5圖中所示之該芯材單元150包括五個冷卻 劑路徑156。該等冷卻劑路徑156係以一種方式加以佈置, 以便使一外側冷卻劑路徑圍繞一内部冷卻劑路徑。 冷卻劑透過流入口 152流動進入該芯材單元150。在第5 圖中所示的範例中,冷卻劑係以一垂直於圖紙(例如向下) 之方向流動,以便進入流入口 152,冷卻劑透過流出口 154 流出芯材單元150。在第5圖中所示的範例中,自流出口 154 離開之後,冷卻劑隨即係以一垂直於圖紙(例如向上)之方向 流動。 冷卻劑路徑156係配置成使冷卻劑能夠在芯材單元150 内部循環。冷卻劑路徑156之形狀可為例如矩形,冷卻劑路 徑156之形狀並非限定於一特定形狀,且可為任何形狀,只 要該形狀能夠使冷卻劑在芯材單元150内部循環即可。例 如,冷卻劑路徑156之形狀可為圓形。 散熱器150包括一分支點158以及一會合點160。流入分 支點158之冷卻劑係在該分支點158處分開,以不同方向流 過該冷卻劑路徑156。以不同方向流動之冷卻劑會在會合點 160處會合。在第5圖中所示的範例中,分支點158與會合點 160係分別位於一矩形冷卻劑路徑156之對角相反角落。 201220032 在兩個相鄰的冷卻劑路徑156之間,一連接路徑162連 接一外側冷卻劑路徑156之會合點160以及一内側冷卻劑路 徑156的分支點158之間。第5圖中所顯示之芯材單元15〇包 括四個連接路徑16 2。在一外側冷卻劑路徑〗5 6之會合點丨6 〇 處完成會合的冷卻劑會流過該連結路經162,且接著係在一 内側冷卻劑路徑156的分支點158處分開。 散熱鰭片164係配置在相鄰的冷卻劑路徑156之間,該 等散熱鰭片164以一平行於軸流式風扇14〇之旋轉轴丨44的 方向延伸。藉由電子組件110所產生以及藉由冷卻劑所吸收 之熱量係從流過該冷卻劑路徑15 6的冷卻劑傳遞到該散熱 鰭片164。此熱量接著係藉著由於該軸流式風扇14〇所產生 之空氣流加以釋放到個人電腦100外部。 如第5圖中所示,流入口 152係與多個冷卻劑路徑156其 中最外側之冷卻劑路徑156的分支點158相連接。此外,流 出口 154則與多個冷卻劑路徑156其中最内侧之冷卻劑路徑 156的會合點160相連接。 藉由以上所述之佈置,在流入口丨52處流入該芯材單元 150之冷卻劑係在最外側的冷卻劑路徑156處分開,以便以 不同方向流過該最外側冷卻劑路徑156。以不同方向流動之 該冷卻劑會在最外側冷卻劑路徑156的會合點160處會合在 一起。於最外側冷卻劑路徑156之會合點160處完成會合的 冷卻劑會流過連接路徑162 ’且接著會在下個内部冷卻劑路 担之分支點15 6處为開,以便以不同的方向流過此下個内部 冷卻劑路徑156。完成之後,在會合點16〇會合冷卻劑以及 201220032 在分支點158分開冷卻劑的步驟係加以重複,直到冷卻劑運 行通過最内側冷卻劑路徑156之會合點160以後,透過該流 出口 154流出離開該芯材單元150為止。 迄今所描述之軸流式風扇14 0以及芯材單元15 〇係加以 配置,以致於使該軸流式風扇140之旋轉轴144係與芯材單 元150的中心區域對齊,如第3圖中所示。芯材單元150之中 心區域係指位於最内側冷卻劑路徑156之一區域。在本實施 例之散熱器130中’該等冷卻劑路徑156係配置在芯材單元 150中,以便使冷卻劑從其中空氣流速度較快之外部區域流 動到其中空氣流速度較慢的内部區域。該外部區域係位於 與旋轉軸144徑向相隔一段距離之處,且内部區域則位於該 旋轉軸144的鄰近處。以此佈置,首先流過配置在芯材單元 150其中空氣流速度較快之外部區域的冷卻劑路徑156之冷 卻劑藉著吸收由電子組件11 〇所產生的熱量而使其溫度上 升。如此能夠改良冷卻劑之冷卻效率。[第一變化形式] 接著將藉由參考第6圖,說明散熱器130之一第一變化 形式。第6圖係為散熱器130之一第一變化形式的一立體 圖。第6圖中所示之散熱器130包括兩個芯材單元150以及兩 個軸流式風扇140。該兩個芯材單元150係以並排方式加以 佈置,該等軸流式風扇140同樣係以並排方式加以佈置,以 便以氣冷方式冷卻個別的芯材單元150。芯材單元150以及 軸流式風扇140之構造係相同或類似於第一實施例中所使 用的構造。 散熱器130能夠包括三個或更多的芯材單元150以及三 10 201220032 個或更多的軸流式風扇14〇。 當散熱器130能夠利用的一區域相對較大時,此變化形 式便能夠適用。根據此變化形式,流過多個芯材單元150之 冷卻劑由於藉著熱接受單元124所吸收的熱量而使其溫度 上升,如此進一步改良冷卻劑之冷卻效率。 [第二變化形式] 接著將藉由參考第7圖,說明散熱器130之一第二變化 形式。第7圖係為散熱器130之一第二變化形式的一立體 圖。第7圖中所示之散熱器Π0包括兩個芯材單元150以及兩 個軸流式風扇140。該兩個芯材單元150係以藉由軸流式風 扇140所產生之空氣流的方向佈置成串(亦即,一者排在另 一者之後)。該兩個芯材單元150之流入口 152係彼此相連 接。此外’該兩個芯材單元150的流出口 154係彼此相連接。 芯材單元150以及軸流式風扇14〇之構造係相同或類似於第 一實施例中所使用的構造。 散熱器130能夠包括三個或更多的芯材單元15〇。 當散熱器130能夠利用的一區域相對較小時,此變化形 式便能夠適用。根據此變化形式,流過以藉由軸流式風扇 140所產生之空氣流的方向佈置成串之芯材單元15〇的冷卻 劑由於藉著熱接受單元124所吸收的熱量而使其溫度上 升。因此’即使對於散熱器130而言僅能利用一相對小的區 域時’其仍然能夠改良冷卻劑之冷卻效率。[第三變化形式] 接著將藉由參考第8圖,說明散熱器13〇之一第三變化 形式。第8圖係為散熱器130之一第三變化形式的一立體 11 201220032 圖第圖中所不之散熱器130包括兩個忠材單元15〇以乃 個軸流式風扇14〇。該兩個糾單切㈣以藉叫^ 扇140所產生之空氣流的方向佈置成串(亦即,—者排1 二者之後),但其中穿插該等軸流式風H該兩個^ 皁元150之流入口152係彼此相連接,該兩個站材單元⑼的 流出口 154係彼此相連接。芯材單元⑼以及軸流式風扇⑽ 之構造制目同絲似於第—實關巾所使用的構造。 散熱器130能夠包括三個或更多的芯材單元15〇。 與第二變化形式相同,根據此變化形式,流過該等以 藉由軸流式風扇14G所產生之空氣流方向成串佈置的芯材 單元150之冷卻劑係由於藉著熱接受單元124所吸收之熱量 而使其溫度上彳。因此’即使對於散熱器而言僅能利用一 相對小的區域時,其仍然能夠改良冷卻劑之冷卻效率。 [第一貫施例] 以下將描述散熱器130之一第二實施例。第二實施例之 散熱器130就芯材單元150之構造而言係不同於第一實施例 的散熱器130,其餘構造則相同或類似於第一實施例的構 迨。本貫施例之芯材單元150將參考第9圖加以說明。第9圖 係為根據本實施例之芯材單元15〇的一範例之一平面圖。第 9圓中所不之箭號標不出冷卻劑流。 如第9圖中所示,本實施例之芯材單元15〇包括一流入 口 152、一流出口 154、以及一冷卻劑路徑156。冷卻劑透過 。玄留入口 152流入該芯材單元15〇。在第9圖中所示之範例 中,冷卻劑係以一垂直於圖紙(例如向下)之方向流動,以便 12 201220032 進入該流入口 I52。冷卻劑透過流出口 154流出該芯材單元 150。在第9圖中所之範例中,自流出口 154離開之後,冷卻 劑隨即係以一垂直於圖紙(例如向上)之方向流動。 本實施例之冷卻劑路徑156具有一螺旋形《如第9圖中 所示,流入口 152係與冷卻劑路徑156之一最外側尾端相連 接。此外,流出口 I54則與該冷卻劑路徑156的一最内側尾 端相連接。 以此佈置,經由流入口 I52進入芯材單元150之冷卻劑 會從冷卻劑路徑15 6的最外側尾端朝内側流動通過該螺旋 形冷卻劑路徑156。冷卻劑接著通過冷卻劑路徑156之最内 側尾端以及流出口 154,以便流出芯材單元150。 與第一實施例相似,軸流式風扇140與芯材單元150係 加以配置’以致於使軸流式風扇140之旋轉軸144係與芯材 單元150的中心區域相對齊。同樣的,在本實施例之散熱器 130中’冷卻劑路徑156係以螺旋形狀配置於該芯材單元15〇 中,以致於使冷卻劑從其中空氣流速度較快的外部區域流 動到其中空氣流速度較慢的内部區域。該外部區域係位於 與旋轉軸144徑向相隔一段距離之處,且内部區域則位於該 旋轉軸144的鄰近處。以此佈置,首先流過配置在芯材單元 150其中空氣流速度較快之外部區域的冷卻劑路徑156之冷 部劑藉著吸收由電子組件11〇所產纟的熱量而使其溫度上 升。如此能夠改良冷卻劑之冷卻效率。 根據所揭露之散熱器,其冷卻效率係得到改善。 文中所描述之所有範例與條件文句係作為教學目的, 13 201220032 以便協助讀者理解本發明,且發明者對於技術改良所貢獻 的觀念並非限定於說明書中有關展示本發明之優劣的此等 特別描述之範例。儘管已經詳細說明本發明之實施例,應 理解到的是,能夠對其進行各種不同的改變、替代、以及 變化,而不會脫離本發明之精神與範疇。 L圖式簡單說明3 第1圖係為顯示根據一第一實施例的一個人電腦之内 部構造的圖式; 第2圖係為顯示根據該第一實施例之一流體冷卻單元 的構造之範例的圖式; 第3圖係為根據該第一實施例之一散熱器的範例之一 立體圖; 第4圖係為根據該第一實施例之一軸流式風扇的一範 例之一立體圖; 第5圖係為根據該第一實施例之一芯材單元的一範例 之一平面圖; 第6圖係為散熱器之第一變化形式的一立體圖; 第7圖係為散熱器之第二變化形式的一立體圖; 第8圖係為散熱器之第三變化形式的一立體圖; 第9圖係為根據第二實施例之一芯材單元的一範例之 一平面圖。 【主要元件符號說明】 100.. .個人電腦 120…流體冷卻單元 110.. .電子組件 122...泵 14 201220032 124…熱接收單元 126.. .管件 130.. .散熱器 140…軸流式風扇 142.. .葉片 144.. .旋轉軸 150…散熱芯材 152…流入口 154.. .流出口 156…冷卻劑路徑 158.. .分支點 160.. .會合點 162…連接路徑 164.. .散熱鰭片 15201220032 VI. Description of the invention: [Intelligent ^Ming Huji's ^) Field of the Invention The disclosure of the present invention relates to a heat sink and an electronic device. BACKGROUND OF THE INVENTION Electronic devices such as personal computers and workstations include electronic components such as a central processing unit (i.e., CPU) that generate heat. The electronic device is provided with a cooling unit for absorbing heat generated by the electronic components. In a cooling unit for circulating a coolant for absorbing heat generated by an electronic component, the coolant whose temperature is raised by absorbing heat is cooled by a radiator. For example, a heat exchanger can include a flat tube 'having a planar spiral shape such that adjacent tube segments are spaced apart by a fixed distance and the coolant flows from the center to the periphery. A fan can be placed in the core section of the heat sink and create an air stream for cooling the coolant flowing through the core section. In this case, the distribution of air flow rates is not uniform. When the velocity distribution of the air flow flowing toward the core segment is not taken into consideration, the cooling efficiency of a fan is not high enough. [Related Patent Document] [Patent Document 1] [Patent Document 1] Japanese Patent Laid-Open Publication No. 2005-214545 SUMMARY OF INVENTION Summary of the Invention 201220032 One object of the present invention is to improve the cooling efficiency of a heat sink. According to one aspect of the embodiment, a heat sink includes a core unit including a coolant inlet, a coolant outlet, a plurality of coolant paths including at least one external coolant path, An internal coolant path, a branch point, a meeting point, the external coolant path is configured to surround the internal coolant path, the coolant is separated at the branch point, and meets at the meeting point, and a connecting path, so that A connection is made between a meeting point of the external coolant path and a branch point of the internal coolant path, wherein the inflow port is connected to one of the outermost ones of the plurality of coolant paths, and the outflow port Then connected to one of the plurality of coolant paths. According to another aspect of the embodiment, a heat sink includes a core unit including a coolant inlet, a coolant outlet, and a spiral coolant path through which the coolant flows, wherein The inflow port is connected to an outer end of one of the coolant paths, and the inflow port is. Connected to an inner tail end of the coolant path. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing an internal configuration of a personal computer according to a first embodiment; FIG. 2 is a diagram showing an example of a configuration of a fluid cooling unit according to the first embodiment. FIG. 3 is a perspective view showing an example of a heat sink according to the first embodiment; FIG. 4 is a perspective view of a model 201220032 of an axial flow fan according to the first embodiment; The figure is a plan view of an example of a core material unit according to the first embodiment; FIG. 6 is a perspective view of a first variation of the heat sink; and FIG. 7 is a second variation of the heat sink. A perspective view; Fig. 8 is a perspective view of a third variation of the heat sink; and Fig. 9 is a plan view showing an example of a core material unit according to the second embodiment. I: Embodiment 3 Detailed Description of Preferred Embodiments [First Embodiment] Referring to Fig. 1, a personal computer 100 will first be described as an example of an electronic device. Fig. 1 is a diagram showing the internal configuration of the personal computer 100 according to the present embodiment. As shown in Figure 1, the personal computer 100 includes an electronic component 110 and a fluid cooling unit 120. Electronic component 110 can be, for example, a large scale integrated (LSI) circuit. The electronic component 110, such as an LSI circuit, has a central processing unit (CPU) chip implanted therein. The CPU chip performs a predetermined operation by executing an operating system (OS) and an application program. When the wafer performs an operation, an electronic component 110 such as an LSI circuit generates heat. The personal computer 100 is provided with a fluid cooling unit 120 for absorbing heat generated by the electronic component 110. In addition to the electronic component 110 and the fluid cooling unit 120, the personal computer 100 also includes a hard disk device, a digital multi-purpose optical disk (DVD) device, a 201220032 card reader unit, and the like. The hard disk device stores, for example, the above-described operating system (OS) and an application. The DVD device reads data from a recording medium such as a DVD and writes the material to a recording medium such as a DVD. The card reading unit accepts a memory card, a local area network (LAN) card, or other device inserted therein. The fluid cooling unit 120 of the present embodiment will now be described with reference to Fig. 2. Figure 2 is a diagram showing an example of the fluid cooling unit 120. As shown in Fig. 2, the fluid cooling unit 120 includes a pump 122, a heat receiving unit 124', and a heat sink 130. The components constituting the fluid cooling unit 120 are connected through a plurality of tubes 126 to form a circulation path. The coolant flowing through the circulation path releases the heat generated by the electronic component 11 to the personal computer. external. The coolant may be, for example, an antifreeze fluid of the propylene glycol series. Pump 122 is tethered downstream of radiator 130 to "pump 122 deliver coolant" to create a coolant flow inside the circulation path. Specifically, the pump 122 generates a coolant flow in the direction indicated by the arrow in Fig. 2. The pump 122 can be a piezoelectric pump. The heat receiving unit 124 is tied downstream of the pump 122. As shown in Fig. 1, the heat receiving unit 124 is disposed on the electronic component 110 that generates heat. The heat receiving unit 124 absorbs the heat generated by the electronic component 110. The heat sink 130 is tied downstream of the heat receiving unit 124. The heat sink 130 extracts heat from the coolant flowing into the heat sink 130. The heat sink no is located adjacent to a row of thermal openings formed at the lateral side of the personal electrical enclosure 201220032 fel〇〇. The radiator 13G includes an axial fan 140 and a core unit (9). The axial flow fan _ generates a heat through the heat exhaust. Awkward air flow. With this arrangement, the heat sink 130 can be released from the heat-dissipating opening through the heat-dissipating opening to the outside of the personal computer. In the example shown in FIG. 2, it has two axial-flow fans. 14〇, and two heartwood units i5G. The detailed structure of the radiator i3G will be explained after the replacement. The circulation path is formed in the fluid cooling unit 12A as described above. The structure of the political enthalpy 13G of the present embodiment will be described below with reference to Figs. 3, 4, and 5. In the second figure, two axial fans 140 and two loyalty units 15A are shown. However, in Figs. 3 to 5, a shaft fan 14 〇 and a core unit 15 显示 are shown. Fig. 3 is a perspective view showing an example of the ?-shaped heat sink 13A according to the present embodiment. In Fig. 3, the shaft "I·fan 140 is simplified and displayed in a dotted line style. Figure 4 is a perspective view of one of the examples of the axial flow fan 14〇. Figure 5 is a plan view of an example of the heartwood unit 150. The arrows shown in Fig. 5 indicate the coolant flow direction. First, the configuration of the axial flow fan 140 of the present embodiment will be described by referring to Fig. 4. As shown in FIG. 4, the axial fan 14A includes a plurality of blades 142' that rotate about a rotating shaft 144 to generate a flow from the rear side of the axial fan to the front side thereof. Air flow. There is no vane 142 present adjacent the rotating shaft 144 of the axial fan 140 so that no air flow is generated. Further, in general, the velocity of the air flow generated by the rotation of the blade 142 is not uniform at the location of the leaf of the axial fan 14〇 201220032. Specifically, the velocity of the air flow is gradually increased from the rotational axis toward the tip end of the blade. Next, the configuration of the core unit 150 of the present embodiment will be described with reference to Fig. 5. As shown in Fig. 5, the core unit 150 includes a first-class inlet 152, an outlet 154, a plurality of coolant paths 156, a connection path 162, and a plurality of heat dissipation fins 164. The core unit 150 shown in Fig. 5 includes five coolant paths 156. The coolant paths 156 are arranged in a manner such that an outer coolant path surrounds an internal coolant path. The coolant flows into the core unit 150 through the inflow port 152. In the example shown in Fig. 5, the coolant flows in a direction perpendicular to the drawing (e.g., downward) to enter the inflow port 152, and the coolant flows out of the core unit 150 through the outflow port 154. In the example shown in Fig. 5, after the exit of the outlet 154, the coolant then flows in a direction perpendicular to the drawing (e.g., upward). The coolant path 156 is configured to enable coolant to circulate inside the core unit 150. The shape of the coolant path 156 may be, for example, a rectangle, and the shape of the coolant path 156 is not limited to a specific shape, and may be any shape as long as the shape enables the coolant to circulate inside the core unit 150. For example, the coolant path 156 can be circular in shape. The heat sink 150 includes a branch point 158 and a meeting point 160. The coolant flowing into the branch 158 is separated at the branch point 158 and flows through the coolant path 156 in different directions. Coolants flowing in different directions will meet at meeting point 160. In the example shown in Fig. 5, the branch point 158 and the meeting point 160 are respectively located at opposite diagonal corners of a rectangular coolant path 156. 201220032 Between two adjacent coolant paths 156, a connecting path 162 is connected between a meeting point 160 of an outer coolant path 156 and a branch point 158 of an inner coolant path 156. The core unit 15 shown in Fig. 5 includes four connection paths 16 2 . The coolant that completes the rendezvous at a meeting point 丨6 一 of an outside coolant path 56 6 will flow through the connecting passage 162 and then be separated at a branch point 158 of the inner coolant path 156. The heat dissipating fins 164 are disposed between adjacent coolant paths 156 which extend in a direction parallel to the axis of rotation 44 of the axial fan 14A. The heat generated by the electronic component 110 and absorbed by the coolant is transferred from the coolant flowing through the coolant path 15 6 to the heat sink fins 164. This heat is then released to the outside of the personal computer 100 by the flow of air generated by the axial fan 14〇. As shown in Fig. 5, the inflow port 152 is connected to a branch point 158 of the outermost coolant path 156 of the plurality of coolant paths 156. In addition, the flow outlet 154 is coupled to a meeting point 160 of the plurality of coolant paths 156, wherein the innermost coolant path 156 is located. With the arrangement described above, the coolant flowing into the core unit 150 at the inflow port 52 is separated at the outermost coolant path 156 to flow through the outermost coolant path 156 in different directions. The coolant flowing in different directions will meet together at the meeting point 160 of the outermost coolant path 156. The finished coolant at the meeting point 160 of the outermost coolant path 156 will flow through the connecting path 162' and then open at the branch point 16 of the next internal coolant path to flow in different directions. This next internal coolant path 156. After completion, the step of reclosing the coolant at the meeting point 16 and the step of separating the coolant at the branch point 158 at 201220032 is repeated until the coolant passes through the meeting point 160 of the innermost coolant path 156 and exits through the outflow port 154. The core unit 150 is up to now. The axial fan 140 and the core unit 15 described so far are configured such that the rotating shaft 144 of the axial fan 140 is aligned with the central region of the core unit 150, as shown in FIG. Show. The core region of the core unit 150 is referred to as being located in one of the innermost coolant paths 156. In the heat sink 130 of the present embodiment, the coolant paths 156 are disposed in the core material unit 150 to allow the coolant to flow from an outer region in which the air flow velocity is faster to an inner region in which the air flow velocity is slow. . The outer region is located at a distance radially from the axis of rotation 144 and the inner region is located adjacent the axis of rotation 144. With this arrangement, the coolant flowing first through the coolant path 156 disposed in the outer portion of the core unit 150 in which the air flow velocity is faster is caused to rise in temperature by absorbing the heat generated by the electronic component 11 。. This can improve the cooling efficiency of the coolant. [First Modification] Next, a first variation of one of the heat sinks 130 will be described by referring to Fig. 6. Figure 6 is a perspective view of a first variation of one of the heat sinks 130. The heat sink 130 shown in Fig. 6 includes two core units 150 and two axial fans 140. The two core units 150 are arranged side by side, and the axial fans 140 are also arranged side by side to cool the individual core units 150 in an air-cooled manner. The core unit 150 and the axial fan 140 are constructed identically or similarly to the configuration used in the first embodiment. The heat sink 130 can include three or more core units 150 and three 10 201220032 or more axial fans 14A. This variation can be applied when a region in which the heat sink 130 can be utilized is relatively large. According to this variation, the coolant flowing through the plurality of core material units 150 is heated by the heat absorbed by the heat receiving unit 124, so that the cooling efficiency of the coolant is further improved. [Second Variation] Next, a second variation of one of the heat sinks 130 will be described by referring to Fig. 7. Figure 7 is a perspective view of a second variation of one of the heat sinks 130. The heat sink Π0 shown in Fig. 7 includes two core unit 150 and two axial fans 140. The two core units 150 are arranged in a string in the direction of the air flow generated by the axial fan 140 (i.e., one after the other). The inlets 152 of the two core units 150 are connected to each other. Further, the outlets 154 of the two core unit 150 are connected to each other. The core unit 150 and the axial fan 14 are constructed identically or similarly to the configuration used in the first embodiment. The heat sink 130 can include three or more core units 15A. This variation can be applied when a region that the heat sink 130 can utilize is relatively small. According to this variation, the coolant flowing through the core unit 15A arranged in the direction of the air flow generated by the axial fan 140 is heated by the heat absorbed by the heat receiving unit 124. . Therefore, even if only a relatively small area can be utilized for the heat sink 130, it can still improve the cooling efficiency of the coolant. [Third Modification] Next, a third variation of the heat sink 13A will be described by referring to Fig. 8. Figure 8 is a perspective view of a third variation of the heat sink 130. 201220122 The heat sink 130 shown in the figure includes two loyalty units 15 〇 to be an axial fan 14 。. The two corrections are cut into four (4) by the direction of the air flow generated by the borrowing fan 140 (that is, after the row 1 is both), but the axial flow type H is interspersed with the two ^ The inlets 152 of the soap cells 150 are connected to each other, and the outlets 154 of the two station units (9) are connected to each other. The configuration of the core material unit (9) and the axial flow fan (10) is the same as that used for the first solid sealing towel. The heat sink 130 can include three or more core units 15A. In the same manner as the second variation, according to this variation, the coolant flowing through the core unit 150 arranged in series in the direction of the air flow generated by the axial fan 14G is due to the heat receiving unit 124 Absorbs the heat and causes it to rise in temperature. Therefore, even if only a relatively small area can be utilized for the heat sink, it can improve the cooling efficiency of the coolant. [First Embodiment] A second embodiment of one of the heat sinks 130 will be described below. The heat sink 130 of the second embodiment is different from the heat sink 130 of the first embodiment in terms of the configuration of the core unit 150, and the remaining configurations are the same or similar to those of the first embodiment. The core unit 150 of the present embodiment will be described with reference to Fig. 9. Fig. 9 is a plan view showing an example of the core unit 15A according to the present embodiment. The arrow in the ninth circle does not indicate the coolant flow. As shown in Fig. 9, the core unit 15A of the present embodiment includes an inflow port 152, a first-class outlet 154, and a coolant path 156. The coolant passes through. The mysterious inlet 152 flows into the core unit 15〇. In the example shown in Fig. 9, the coolant flows in a direction perpendicular to the drawing (e.g., downward) so that 12 201220032 enters the inflow port I52. The coolant flows out of the core unit 150 through the outflow port 154. In the example of Fig. 9, after exiting the outlet 154, the coolant then flows in a direction perpendicular to the drawing (e.g., upward). The coolant path 156 of the present embodiment has a spiral shape. As shown in Fig. 9, the inflow port 152 is connected to the outermost end of one of the coolant paths 156. Further, the outflow port I54 is connected to an innermost end of the coolant path 156. With this arrangement, the coolant entering the core unit 150 via the inflow port I52 flows through the spiral coolant path 156 from the outermost tail end of the coolant path 156 toward the inside. The coolant then passes through the innermost end of the coolant path 156 and the outflow 154 to flow out of the core unit 150. Similar to the first embodiment, the axial fan 140 is configured with the core unit 150 so that the rotating shaft 144 of the axial fan 140 is aligned with the central portion of the core unit 150. Similarly, in the heat sink 130 of the present embodiment, the 'coolant path 156 is disposed in a spiral shape in the core unit 15A so that the coolant flows from the outer region where the air flow speed is faster to the air therein. An internal area with a slower flow rate. The outer region is located at a distance radially from the axis of rotation 144 and the inner region is located adjacent the axis of rotation 144. With this arrangement, the cold agent which first flows through the coolant path 156 disposed in the outer portion of the core material unit 150 in which the air flow velocity is faster is caused to rise in temperature by absorbing the heat generated by the electronic component 11?. This can improve the cooling efficiency of the coolant. According to the disclosed heat sink, the cooling efficiency is improved. All of the examples and conditional sentences described herein are for educational purposes, 13 201220032 to assist the reader in understanding the present invention, and the concept of the inventor's contribution to the technical improvement is not limited to the specific description of the description of the advantages and disadvantages of the present invention. example. Having described the embodiments of the present invention in detail, it is understood that various modifications, changes, and changes may be made without departing from the spirit and scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing an internal configuration of a personal computer according to a first embodiment; FIG. 2 is a view showing an example of a configuration of a fluid cooling unit according to the first embodiment. FIG. 3 is a perspective view showing an example of a heat sink according to the first embodiment; FIG. 4 is a perspective view showing an example of an axial flow fan according to the first embodiment; The figure is a plan view of an example of a core material unit according to the first embodiment; FIG. 6 is a perspective view of a first variation of the heat sink; and FIG. 7 is a second variation of the heat sink. A perspective view; Fig. 8 is a perspective view of a third variation of the heat sink; and Fig. 9 is a plan view showing an example of a core material unit according to the second embodiment. [Main component symbol description] 100.. . Personal computer 120... Fluid cooling unit 110.. Electronic component 122... Pump 14 201220032 124... Heat receiving unit 126.. Pipe fitting 130.. Radiator 140...Axial flow Fan 142.. Blade 144.. Rotary shaft 150... Heat sink core 152... Inlet 154.. Outflow 156... Coolant path 158.. Branch point 160.. Meeting point 162... Connection path 164 .. . Heat sink fins 15

Claims (1)

201220032 七、申請專利範圍: 種匕3心材單元之散熱器,該芯材單元包含: —冷卻劑自其進入之流入口; v卻劑自其離開之流出口; 多個冷卻劑路徑,其包括至少—外部冷卻劑路徑、 ^冷部劑路徑、—分支點、以及-會合點,該外部 路瓜係配置成圍繞該内部路徑,冷卻劑在該分支點處分 開,且在該會合點處會合;及 …-連接路徑,以便將該外部冷㈣路徑_會合點 以及該内部冷㈣職的該分支狀間加以連接; 其中該流入口係與該等多個冷卻劑路徑之—最外 側路l的—分支點相連接,且該流出口係、與該等多個冷 部劑路徑之-最内側路徑的_會合點相連接。 2. /如申請專利難第1項之散熱器,其中各該等冷卻劑路 係為矩形’且—特定冷卻騎徑之—分支點與一會合 點係位於該特定冷卻劑路徑的角落處。 3. 如申請專利範圍第i項或第2項之散熱器,其中該站材軍 疋進一步包括配置在該外部冷卻劑路徑與該内部冷卻 劑路徑之間的散熱鰭片。 步包含 中心區域 4·如申請專利範圍第i項或第2項之散熱器,其進一 一軸流式風扇,其旋轉軸係與該芯材單元之 相對齊。 如申請專利範圍第4項之散熱器,其進一步包含: 一個或更多個騎單元,各㈣材單元係與該怎材 16 201220032 單元為完全相同者,該一個或更多個芯材單元係與該芯 材單元以並排方式加以佈置;及 一個或更多個軸流式風扇,各個軸流式風扇係與該 軸流式風扇為完全相同者,該一個或更多個軸流式風扇 係與該轴流式風扇以並排方式加以佈置,以便以氣冷方 式分別冷卻該一個或更多個芯材單元與該芯材單元。 6. 如申請專利範圍第4項之散熱器,其進一步包含一個或 更多個芯材單元,各個芯材單元係與該芯材單元為完全 相同者,該一個或更多個芯材單元與該芯材單元係以串 列方式沿著藉由該軸流式風扇所產生之空氣流的方向 加以佈置。 7. 如申請專利範圍第4項之散熱器,其進一步包含一個或 更多個芯材單元,各個芯材單元係與該芯材單元為完全 相同者,該一個或更多個芯材單元與該芯材單元係以串 列方式沿著藉由該軸流式風扇所產生之空氣流的方向 加以佈置,該軸流式風扇被配置在兩個相鄰的芯材單元 之間。 8. —種電子裝置,其包含: 一電子組件,用以產生熱量;及 如申請專利範圍第1項或第2項之散熱器。 9. 一種包含一芯材單元之散熱器,該芯材單元包含: 一冷卻劑自其進入之流入口; 一冷卻劑自其離開之流出口;及 一螺旋形冷卻劑路徑,冷卻劑流過該冷卻劑路徑; 17 201220032 其中該流入口係與該冷卻劑路徑之一外側尾端相 連接,且該流出口係與該冷卻劑路徑的一内部尾端相連 接。 18201220032 VII. Patent application scope: The radiator of the seedling unit 3, the core material unit comprises: - an inlet from which the coolant enters; v an outlet from which the agent leaves; a plurality of coolant paths, including At least - an external coolant path, a cold agent path, a branch point, and a meeting point, the external road is configured to surround the internal path, the coolant is separated at the branch point, and meets at the meeting point And a connection path for connecting the outer cold (four) path _ meeting point and the inner cold (four) position of the branch; wherein the stream inlet and the plurality of coolant paths - the outermost road The branch points are connected, and the outflow system is connected to the _ meeting point of the innermost path of the plurality of cold recipe paths. 2. / The heat sink of claim 1, wherein each of the coolant paths is rectangular' and - a particular cooling ride path - the branch point and a meeting point are located at the corners of the particular coolant path. 3. The heat sink of claim i or item 2, wherein the station material further comprises a heat sink fin disposed between the outer coolant path and the inner coolant path. The step includes a central area. 4. A heat sink according to item i or item 2 of the patent application, which is an axial flow fan whose axis of rotation is aligned with the core unit. The heat sink of claim 4, further comprising: one or more riding units, each (four) material unit being identical to the material 16 201220032 unit, the one or more core unit units Arranging with the core material unit in a side-by-side manner; and one or more axial flow fans, each of which is identical to the axial flow fan, the one or more axial flow fan systems The axial fans are arranged in a side-by-side manner to separately cool the one or more core units and the core unit in an air-cooled manner. 6. The heat sink of claim 4, further comprising one or more core unit, each core unit being identical to the core unit, the one or more core units being The core unit is arranged in a tandem manner along the direction of the air flow generated by the axial fan. 7. The heat sink of claim 4, further comprising one or more core unit, each core unit being identical to the core unit, the one or more core units being The core unit is arranged in a tandem manner along the direction of the air flow generated by the axial fan, the axial fan being disposed between two adjacent core units. 8. An electronic device comprising: an electronic component for generating heat; and a heat sink as claimed in claim 1 or 2. 9. A heat sink comprising a core material unit, the core material unit comprising: a flow inlet from which a coolant enters; a flow outlet from which the coolant exits; and a spiral coolant path through which the coolant flows The coolant path; 17 201220032 wherein the inflow port is connected to one of the outer tail ends of the coolant path, and the outflow port is connected to an inner tail end of the coolant path. 18
TW100131275A 2010-09-02 2011-08-31 Radiator and electronic apparatus having coolant pathway TW201220032A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010196732A JP5609442B2 (en) 2010-09-02 2010-09-02 Radiators and electronic devices

Publications (1)

Publication Number Publication Date
TW201220032A true TW201220032A (en) 2012-05-16

Family

ID=45769811

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100131275A TW201220032A (en) 2010-09-02 2011-08-31 Radiator and electronic apparatus having coolant pathway

Country Status (4)

Country Link
US (1) US20120055654A1 (en)
JP (1) JP5609442B2 (en)
CN (1) CN102385431A (en)
TW (1) TW201220032A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108966587B (en) * 2017-10-13 2019-06-21 邹昊雄 A kind of radiator
CN108414332B (en) * 2018-03-14 2020-12-29 福州迈新生物技术开发有限公司 Device for sample dyeing module
PL3792576T3 (en) * 2018-09-04 2023-02-20 Ovh Water block having a fluid conduit

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1621742A (en) * 1925-08-20 1927-03-22 Farrel Foundry And Machine Co Fluid-circulating plate
JPH024338Y2 (en) * 1984-12-04 1990-02-01
JPH01251646A (en) * 1988-03-31 1989-10-06 Nissan Motor Co Ltd Semiconductor structure
JPH10277678A (en) * 1997-04-03 1998-10-20 Matsukueito:Kk Heat exchanger
JP3107159B2 (en) * 1999-03-26 2000-11-06 木村工機株式会社 cooling tower
JP3725106B2 (en) * 2002-08-30 2005-12-07 株式会社東芝 Electronics
WO2004031588A1 (en) * 2002-09-28 2004-04-15 Ebm-Papst St. Georgen Gmbh & Co. Kg Arrangement and method for removing heat from a component which is to be cooled
JP2004139187A (en) * 2002-10-15 2004-05-13 Toshiba Corp Electronic device
WO2004042306A2 (en) * 2002-11-01 2004-05-21 Cooligy, Inc. Method and apparatus for achieving temperature uniformity and hot spot cooling in a heat producing device
JP2005024162A (en) * 2003-07-01 2005-01-27 Usui Kokusai Sangyo Kaisha Ltd Liquid fuel cooler for internal combustion engine
US20060067052A1 (en) * 2004-09-30 2006-03-30 Llapitan David J Liquid cooling system
TWM267437U (en) * 2004-11-23 2005-06-11 Forward Electronics Co Ltd Modular heat dissipation device
TWI262761B (en) * 2005-05-27 2006-09-21 Foxconn Tech Co Ltd Liquid cooling apparatus
JP2007103470A (en) * 2005-09-30 2007-04-19 Toshiba Corp Cooling device, electronic apparatus having the same, and pump
JP4781929B2 (en) * 2006-07-25 2011-09-28 富士通株式会社 Electronics
JP2008027374A (en) * 2006-07-25 2008-02-07 Fujitsu Ltd Heat receiver for liquid cooling unit, liquid cooling unit, and electronic device
US7466550B2 (en) * 2006-11-03 2008-12-16 Xigmatek Co., Ltd Integrated heat dissipating assembly
US20100038056A1 (en) * 2008-08-15 2010-02-18 Ellsworth Joseph R High performance compact heat exchanger
US8000101B2 (en) * 2009-07-23 2011-08-16 Hewlett-Packard Development Company, L.P. System and method for attaching liquid cooling apparatus to a chassis

Also Published As

Publication number Publication date
JP2012054455A (en) 2012-03-15
CN102385431A (en) 2012-03-21
JP5609442B2 (en) 2014-10-22
US20120055654A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
TWI636724B (en) Electronic equipment with heat-dissipating function and water-cooled radiator assembly thereof
US8881794B2 (en) Cooling device
TWI439609B (en) Centrifugal fan module, heat sink device having the same and electric device having the heat sink device
TWI487475B (en) Heat dissipation module
TWI414235B (en) Heat dissipating module
US6778392B2 (en) Heat dissipation device for electronic component
TW201031880A (en) Spiral heat exchanger
TWM309846U (en) Heat dissipation device
US6653755B2 (en) Radial air flow fan assembly having stator fins surrounding rotor blades
TWI304168B (en)
TWM426987U (en) Electronic apparatus with heat-dissipation structure
CN201628915U (en) Heat radiator, heat-radiating system including heat radiator and computer
US7430119B2 (en) Impeller and aligned cold plate
TW201220032A (en) Radiator and electronic apparatus having coolant pathway
US9826661B2 (en) Heat module
TW201231907A (en) Heat exchanger
TW201028638A (en) Heat sink module
CN209474657U (en) Portable ultrasonic device
JP2007281213A (en) Heat sink module and cooling apparatus having the same
US20080006396A1 (en) Multi-stage staggered radiator for high performance liquid cooling applications
US7933119B2 (en) Heat transfer systems and methods
TW201538062A (en) Heat dissipation device
JP2004218969A (en) Heat exchanger
TWI305574B (en) Fin assembly and heat dissipation device with such fin assembly
TWM460321U (en) Fan impeller, centrifugal axial fan, heat dissipating device and display card module