JP5609442B2 - Radiators and electronic devices - Google Patents

Radiators and electronic devices Download PDF

Info

Publication number
JP5609442B2
JP5609442B2 JP2010196732A JP2010196732A JP5609442B2 JP 5609442 B2 JP5609442 B2 JP 5609442B2 JP 2010196732 A JP2010196732 A JP 2010196732A JP 2010196732 A JP2010196732 A JP 2010196732A JP 5609442 B2 JP5609442 B2 JP 5609442B2
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerant flow
core
radiator
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010196732A
Other languages
Japanese (ja)
Other versions
JP2012054455A (en
Inventor
賢二 勝又
賢二 勝又
鈴木 真純
真純 鈴木
亨匡 青木
亨匡 青木
洋介 角田
洋介 角田
優 杉江
優 杉江
信一郎 河野
信一郎 河野
博 武藤
博 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2010196732A priority Critical patent/JP5609442B2/en
Priority to US13/137,654 priority patent/US20120055654A1/en
Priority to TW100131275A priority patent/TW201220032A/en
Priority to CN2011102632801A priority patent/CN102385431A/en
Publication of JP2012054455A publication Critical patent/JP2012054455A/en
Application granted granted Critical
Publication of JP5609442B2 publication Critical patent/JP5609442B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0472Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0031Radiators for recooling a coolant of cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/02Heat exchange conduits with particular branching, e.g. fractal conduit arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2210/00Heat exchange conduits
    • F28F2210/10Particular layout, e.g. for uniform temperature distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、ラジエータ及び電子機器に関する。   The present invention relates to a radiator and an electronic device.

パーソナルコンピュータ、ワークステーションなどの電子機器は、中央演算処理装置(CPU:Central Processing Unit)などの熱を発する電子部品を備える。電子部品が発する熱を吸収するため、電子機器には冷却ユニットが設けられる。   Electronic devices such as personal computers and workstations include electronic components that generate heat, such as a central processing unit (CPU). In order to absorb the heat generated by the electronic component, the electronic device is provided with a cooling unit.

冷媒を循環させて電子部品が発した熱を吸収する冷却ユニットでは、熱を吸収して温度が上昇した冷媒は、ラジエータにより冷却される。例えば、一本の扁平チューブを一定の間隔を空けて平面内で渦巻状に形成し、中心部から外周に向けて冷媒が流れる熱交換器が知られている。   In the cooling unit that circulates the refrigerant and absorbs the heat generated by the electronic component, the refrigerant that has absorbed the heat and has risen in temperature is cooled by the radiator. For example, a heat exchanger is known in which a single flat tube is formed in a spiral shape within a plane with a certain interval, and a refrigerant flows from the center toward the outer periphery.

特開2005−214545号公報JP 2005-214545 A

ラジエータのコア部に隣接して設けられたファンが風を送ることにより、コア部を流れる冷媒を冷却する場合、風速分布は一様ではない。しかしながら、従来のラジエータでは、コア部に吹き込む風の風速分布が考慮されていないため、ファンによる冷却効率が必ずしも高くない。   When a fan provided adjacent to the core portion of the radiator sends wind to cool the refrigerant flowing through the core portion, the wind speed distribution is not uniform. However, since the conventional radiator does not consider the wind speed distribution of the wind blown into the core portion, the cooling efficiency by the fan is not necessarily high.

そこで、従来よりもラジエータの冷却効率を向上させることを目的とする。   Therefore, an object is to improve the cooling efficiency of the radiator as compared with the conventional art.

上記課題を解決するため、第1の観点では、冷媒が流入する流入口と、前記冷媒が流出する流出口と、前記冷媒が分岐する分岐点と、分岐した前記冷媒が合流する合流点と、を備える複数の冷媒流路であって、外側に位置する冷媒流路が内側に位置する冷媒流路を囲うように配置された複数の冷媒流路と、隣接する前記冷媒流路の間において、外側の冷媒流路の前記合流点と内側の冷媒流路の前記分岐点とを連結する連結路と、を備え、前記流入口は、前記複数の冷媒流路のうち最も外側に位置する冷媒流路の分岐点に連通しており、前記流出口は、前記複数の冷媒流路のうち最も内側に位置する冷媒流路の合流点に連通していることを特徴とするコア部を備えるラジエータが提供される。
また、第2の観点では、上記ラジエータを備える電子機器が提供される。
In order to solve the above-described problem, in a first aspect, an inflow port into which a refrigerant flows, an outflow port from which the refrigerant flows out, a branch point where the refrigerant branches, a merge point where the branched refrigerant merges, A plurality of refrigerant flow paths disposed outside the refrigerant flow path, and the adjacent refrigerant flow paths. A connecting path that connects the junction point of the outer refrigerant flow path and the branch point of the inner refrigerant flow path, and the inlet is the refrigerant flow located on the outermost side among the plurality of refrigerant flow paths A radiator having a core portion, wherein the radiator is in communication with a branch point of the path, and the outlet is in communication with a confluence point of an innermost refrigerant flow path among the plurality of refrigerant flow paths; Provided.
According to a second aspect, an electronic device including the radiator is provided.

開示のラジエータによれば、従来よりも冷却効率を向上させることができる。   According to the disclosed radiator, the cooling efficiency can be improved as compared with the conventional radiator.

第1の実施形態のパーソナルコンピュータの内部構造の一例を示す概略図である。It is the schematic which shows an example of the internal structure of the personal computer of 1st Embodiment. 第1の実施形態の液冷ユニットの一例を示す図である。It is a figure which shows an example of the liquid cooling unit of 1st Embodiment. 第1の実施形態のラジエータの一例を示す斜視図である。It is a perspective view which shows an example of the radiator of 1st Embodiment. 第1の実施形態の軸流ファンの一例を示す斜視図である。It is a perspective view showing an example of an axial flow fan of a 1st embodiment. 第1の実施形態のコア部の一例を示す平面図である。It is a top view which shows an example of the core part of 1st Embodiment. 変形例1のラジエータを示す斜視図である。It is a perspective view which shows the radiator of the modification 1. FIG. 変形例2のラジエータを示す斜視図である。FIG. 10 is a perspective view showing a radiator of a second modification. 変形例3のラジエータを示す斜視図である。FIG. 10 is a perspective view showing a radiator according to Modification 3. 第2の実施形態のコア部の一例を示す平面図である。It is a top view which shows an example of the core part of 2nd Embodiment.

<第1の実施形態>
まず、図1を参照して、電子機器の一例であるパーソナルコンピュータ100について、実施形態に基づいて説明する。図1は、本実施形態のパーソナルコンピュータ100の内部構造の一例を示す概略図である。図1に示されるように、パーソナルコンピュータ100は、電子部品110と、液冷ユニット120と、を含む。
<First Embodiment>
First, with reference to FIG. 1, a personal computer 100 which is an example of an electronic device will be described based on an embodiment. FIG. 1 is a schematic diagram illustrating an example of an internal structure of a personal computer 100 according to the present embodiment. As shown in FIG. 1, the personal computer 100 includes an electronic component 110 and a liquid cooling unit 120.

電子部品110は、例えば、LSI回路(Large Scale Integration:大規模集積回路)である。LSI回路などの電子部品110には、例えば、CPU(Central Processing Unit)チップが実装されている。CPUチップは、OS(オペレーティングシステム)やアプリケーションプログラムの実行に伴い、所定の演算処理を実行する。CPUチップが演算処理を実行すると、LSI回路などの電子部品110は、熱を発する。
電子部品110が発する熱を吸収するため、パーソナルコンピュータ100には液冷ユニット120が取り付けられている。
The electronic component 110 is, for example, an LSI circuit (Large Scale Integration). For example, a CPU (Central Processing Unit) chip is mounted on the electronic component 110 such as an LSI circuit. The CPU chip executes predetermined arithmetic processing in accordance with execution of an OS (Operating System) and application programs. When the CPU chip executes arithmetic processing, the electronic component 110 such as an LSI circuit generates heat.
A liquid cooling unit 120 is attached to the personal computer 100 to absorb heat generated by the electronic component 110.

電子部品110や液冷ユニット120の他、パーソナルコンピュータ100は、更に、ハードディスク駆動装置、DVD(Digital Versatile Disk)駆動装置、カードユニットなどを適宜含む。ハードディスク駆動装置は、例えば、上述したOSやアプリケーションソフトウェアを格納する。DVD駆動装置は、DVDなどの記録媒体からのデータの読み出しや、DVDなどの記録媒体へのデータの書き込みを行う。カードユニットには、例えば、メモリカードやLAN(Local Area Network)カードが差し込まれる。   In addition to the electronic component 110 and the liquid cooling unit 120, the personal computer 100 further includes a hard disk drive, a DVD (Digital Versatile Disk) drive, a card unit, and the like as appropriate. The hard disk drive stores, for example, the OS and application software described above. The DVD drive device reads data from a recording medium such as a DVD and writes data to a recording medium such as a DVD. For example, a memory card or a LAN (Local Area Network) card is inserted into the card unit.

ここで、図2を参照して、本実施形態の液冷ユニット120について説明する。図2は、本実施形態の液冷ユニット120の一例を示す図である。図2に示されるように、本実施形態の液冷ユニット120は、ポンプ122と、受熱器124と、ラジエータ130と、を備える。液冷ユニット120を構成する各部材は、複数のホース126によって接続され、循環経路が形成される。この循環経路を流れる冷媒により、電子部品110により発せられた熱はパーソナルコンピュータ100の外部へ放出される。冷媒は、例えば、プロピレングリコール系の不凍液が用いられる。   Here, with reference to FIG. 2, the liquid cooling unit 120 of this embodiment is demonstrated. FIG. 2 is a diagram illustrating an example of the liquid cooling unit 120 of the present embodiment. As shown in FIG. 2, the liquid cooling unit 120 of this embodiment includes a pump 122, a heat receiver 124, and a radiator 130. Each member constituting the liquid cooling unit 120 is connected by a plurality of hoses 126 to form a circulation path. The heat generated by the electronic component 110 is released to the outside of the personal computer 100 by the refrigerant flowing through the circulation path. As the refrigerant, for example, a propylene glycol antifreeze is used.

ポンプ122は、ラジエータ130の下流側に設けられる。ポンプ122は、冷媒を吐出し、循環経路を流れる冷媒の流れを生成する。具体的には、ポンプ122は、図2に矢印で示される方向に、冷媒の流れを生成する。ポンプ122は、例えば、圧電式ポンプである。
受熱器124は、ポンプ122の下流側に設けられる。図1に示されるように、受熱器124は、熱を発する電子部品110の上に設けられる。受熱器124は、電子部品110が発する熱を吸収する。
The pump 122 is provided on the downstream side of the radiator 130. The pump 122 discharges the refrigerant and generates a flow of the refrigerant flowing through the circulation path. Specifically, the pump 122 generates a refrigerant flow in a direction indicated by an arrow in FIG. The pump 122 is, for example, a piezoelectric pump.
The heat receiver 124 is provided on the downstream side of the pump 122. As shown in FIG. 1, the heat receiver 124 is provided on the electronic component 110 that generates heat. The heat receiver 124 absorbs heat generated by the electronic component 110.

ラジエータ130は、受熱器124の下流側に設けられる。ラジエータ130は、ラジエータ130に流入する冷媒から熱を奪う。ラジエータ130は、パーソナルコンピュータ100の筐体の側面に形成された排気口(不図示)の近傍に設けられる。ラジエータ130は、軸流ファン140と、コア部150と、を備える。軸流ファン140は、排気口の外側へ向かう気流を生成する。そのため、ラジエータ130が冷媒から奪った熱は、排気口を通ってパーソナルコンピュータ100の外部へ放出される。図2に示される例では、2つの軸流ファン140と2つのコア部150とが示されている。ラジエータ130の詳細な構成は、後述する。
液冷ユニット120には、以上説明したような循環経路が形成される。
The radiator 130 is provided on the downstream side of the heat receiver 124. The radiator 130 takes heat from the refrigerant flowing into the radiator 130. The radiator 130 is provided in the vicinity of an exhaust port (not shown) formed on the side surface of the housing of the personal computer 100. The radiator 130 includes an axial fan 140 and a core unit 150. The axial fan 140 generates an airflow that goes to the outside of the exhaust port. Therefore, the heat taken away from the refrigerant by the radiator 130 is released to the outside of the personal computer 100 through the exhaust port. In the example shown in FIG. 2, two axial fans 140 and two core parts 150 are shown. The detailed configuration of the radiator 130 will be described later.
In the liquid cooling unit 120, the circulation path as described above is formed.

次に、図3、図4、図5を参照して、本実施形態のラジエータ130の構造を詳細に説明する。なお、図2においては2つの軸流ファン140と2つのコア部150とが示されているが、図3から図5においては、1つの軸流ファン140と1つのコア部150について説明する。図3は、本実施形態のラジエータ130の一例を示す斜視図である。図3では、軸流ファン140は簡略化され、破線で示されている。図4は、軸流ファン140の一例を示す斜視図である。図5は、コア部150の一例を示す平面図である。図5に示される矢印は、冷媒の流れを示す。   Next, the structure of the radiator 130 of this embodiment will be described in detail with reference to FIGS. 3, 4, and 5. In FIG. 2, two axial fans 140 and two core parts 150 are shown. However, in FIGS. 3 to 5, only one axial fan 140 and one core part 150 will be described. FIG. 3 is a perspective view showing an example of the radiator 130 of the present embodiment. In FIG. 3, the axial fan 140 is simplified and shown in broken lines. FIG. 4 is a perspective view showing an example of the axial flow fan 140. FIG. 5 is a plan view showing an example of the core unit 150. The arrows shown in FIG. 5 indicate the flow of the refrigerant.

まず、図4を参照して、本実施形態の軸流ファン140の構造を説明する。図4に示されるように、軸流ファン140は複数の羽根142を備える。複数の羽根142は、回転軸144の周りを回転する。複数の羽根142が回転軸144の周りを回転することにより、軸流ファン140の後方から前方に向かって流れる風が生じる。   First, the structure of the axial fan 140 of this embodiment will be described with reference to FIG. As shown in FIG. 4, the axial fan 140 includes a plurality of blades 142. The plurality of blades 142 rotate around the rotation shaft 144. As the plurality of blades 142 rotate around the rotation shaft 144, wind flowing from the rear to the front of the axial fan 140 is generated.

軸流ファン140の回転軸144に近い部分には羽根142が存在しないため、羽根142が回転しても風が生じにくい。また、軸流ファン140の羽根142が配置されている領域において、羽根142が回転することにより生じる風速分布は一般に一様ではない。具体的には、回転軸144から羽根142の延伸方向に沿って離れるにつれて、風速は速くなる。   Since the blades 142 are not present in the portion of the axial fan 140 close to the rotating shaft 144, even if the blades 142 rotate, it is difficult for wind to be generated. Moreover, in the area | region where the blade | wing 142 of the axial flow fan 140 is arrange | positioned, generally the wind speed distribution which arises when the blade | wing 142 rotates is not uniform. Specifically, the wind speed increases as the distance from the rotating shaft 144 along the extending direction of the blade 142 increases.

次に、図5を参照して、本実施形態のコア部150の構造を説明する。図5に示されるように、コア部150は、流入口152と、流出口154と、複数の冷媒流路156と、連結路162と、複数の放熱フィン164と、を備える。図5に示される例のコア部150は、5つの冷媒流路156を備える。複数の冷媒流路156は、外側に位置する冷媒流路156が内側に位置する冷媒流路156を囲うように配置されている。
冷媒は、流入口152を通ってコア部150に流入する。図5に示される例では、紙面に垂直な方向(例えば、手前から奥)に冷媒が流入口152に流入する。また、冷媒は、流出口154を通ってコア部150から流出する。図5に示される例では、紙面に垂直な方向(例えば、奥から手前)に冷媒が流出口154から流出する。
Next, the structure of the core part 150 of this embodiment is demonstrated with reference to FIG. As shown in FIG. 5, the core unit 150 includes an inflow port 152, an outflow port 154, a plurality of refrigerant flow paths 156, a connection path 162, and a plurality of heat radiation fins 164. The core part 150 in the example shown in FIG. 5 includes five refrigerant channels 156. The plurality of refrigerant channels 156 are arranged so that the refrigerant channel 156 located on the outside surrounds the refrigerant channel 156 located on the inside.
The refrigerant flows into the core unit 150 through the inflow port 152. In the example shown in FIG. 5, the refrigerant flows into the inflow port 152 in a direction perpendicular to the paper surface (for example, from the front to the back). Further, the refrigerant flows out of the core part 150 through the outlet 154. In the example shown in FIG. 5, the refrigerant flows out from the outflow port 154 in a direction perpendicular to the paper surface (for example, from the back to the front).

冷媒流路156は、冷媒がコア部150を周回することができるように形成された形状である。冷媒流路156の形状は、例えば、矩形である。しかし、冷媒がコア部150を周回することができるように形成された形状であれば、冷媒流路156の形状は特に限定されるものではない。例えば、冷媒流路156は円形でもよい。
また、冷媒流路156は、分岐点158と、合流点160と、を備える。分岐点158に流れ込んだ冷媒は、分岐点158において分岐した後、冷媒流路156を互いに異なる方向に周回する。互いに異なる方向に周回した冷媒は、合流点160において合流する。図5に示される例では、分岐点158、合流点160は、矩形の冷媒流路156の対角線上の頂点に位置する。
The refrigerant flow path 156 has a shape formed so that the refrigerant can circulate around the core portion 150. The shape of the coolant channel 156 is, for example, a rectangle. However, the shape of the coolant channel 156 is not particularly limited as long as the coolant is formed so as to be able to go around the core portion 150. For example, the coolant channel 156 may be circular.
In addition, the refrigerant flow path 156 includes a branch point 158 and a junction point 160. The refrigerant flowing into the branch point 158 branches at the branch point 158 and then circulates in the refrigerant flow paths 156 in different directions. Refrigerants that have circulated in different directions merge at a junction 160. In the example shown in FIG. 5, the branch point 158 and the junction point 160 are located at the vertices on the diagonal line of the rectangular refrigerant flow path 156.

隣接する冷媒流路156の間において、連結路162は、外側の冷媒流路156の合流点160と内側の冷媒流路156の分岐点158とを連結する。図5に示されるコア部150は、4つの連結路162を備える。外側の冷媒流路156の合流点160で合流した冷媒は、連結路162を通り、内側の冷媒流路156の分岐点158において分岐する。   Between the adjacent refrigerant flow paths 156, the connection path 162 connects the junction 160 of the outer refrigerant flow path 156 and the branch point 158 of the inner refrigerant flow path 156. The core unit 150 illustrated in FIG. 5 includes four connection paths 162. The refrigerant merged at the merge point 160 of the outer refrigerant flow path 156 passes through the connection path 162 and branches at the branch point 158 of the inner refrigerant flow path 156.

また、複数の放熱フィン164は、隣接する冷媒流路156の間に配置されている。放熱フィン164は、軸流ファン140の回転軸144と平行な方向に沿って延びている。電子部品110が発した熱は、冷媒流路158を流れる冷媒により吸収された後、放熱フィン164に伝わり、軸流ファン140によって生じる風によりパーソナルコンピュータ100の外部へ排気される。   Further, the plurality of heat radiating fins 164 are disposed between the adjacent refrigerant flow paths 156. The heat radiating fins 164 extend along a direction parallel to the rotating shaft 144 of the axial fan 140. The heat generated by the electronic component 110 is absorbed by the refrigerant flowing through the refrigerant flow path 158, then transmitted to the heat radiating fins 164, and exhausted to the outside of the personal computer 100 by the wind generated by the axial fan 140.

図5に示されるように、流入口152は、複数の冷媒流路156のうち最も外側に位置する冷媒流路156の分岐点158に連通している。また、流出口154は、複数の冷媒流路156のうち最も内側に位置する冷媒流路156の合流点160に連通している。
そのため、流入口152からコア部150に流入した冷媒は、最も外側に位置する冷媒流路156の分岐点158において分岐した後、最も外側に位置する冷媒流路156を互いに異なる方向に周回する。互いに異なる方向に周回した冷媒は、最も外側に位置する冷媒流路156の合流点160において合流する。最も外側に位置する冷媒流路156の合流点160において合流した冷媒は、連結器162を通り、一つ内側の冷媒流路156の分岐点において分岐した後、冷媒流路156を互いに異なる方向に周回する。以後、合流点160における冷媒の合流と、分岐点158における冷媒の分岐とを繰り返し、最も内側に位置する冷媒流路156の合流点160から流出口154を通ってコア部150から流出する。
As shown in FIG. 5, the inflow port 152 communicates with a branch point 158 of the refrigerant channel 156 located on the outermost side among the plurality of refrigerant channels 156. Further, the outlet 154 communicates with a junction 160 of the refrigerant flow channel 156 located on the innermost side among the plurality of refrigerant flow channels 156.
Therefore, the refrigerant that has flowed into the core portion 150 from the inflow port 152 branches at the branch point 158 of the outermost refrigerant flow path 156, and then circulates in the outermost refrigerant flow path 156 in different directions. Refrigerants that have circulated in different directions merge at the junction 160 of the refrigerant flow channel 156 located on the outermost side. The refrigerant merged at the junction 160 of the outermost refrigerant flow path 156 passes through the coupler 162 and branches at the branch point of the one inner refrigerant flow path 156, and then flows through the refrigerant flow paths 156 in different directions. Go around. Thereafter, the joining of the refrigerant at the joining point 160 and the branching of the refrigerant at the branching point 158 are repeated, and the refrigerant flows out from the core part 150 through the outlet 154 from the joining point 160 of the coolant channel 156 located on the innermost side.

以上説明した軸流ファン140とコア部150とは、図3に示されるように、コア部150の中心領域に軸流ファン140の回転軸144が位置するように配置される。ここで、最も内側に位置する冷媒流路156より内側の領域をコア部150の中心領域と定義する。本実施形態のラジエータ130では、回転軸144から羽根142の延伸方向に沿って離れた風速が速い領域から回転軸144に近い風速が遅い領域へ冷媒が流れるように、冷媒流路156がコア部150に形成されている。そのため、電子部品110の熱を吸収して温度が上昇した冷媒が、まず、回転軸144から羽根142の延伸方向に沿って離れた風速が速い領域であるコア部150の外側の冷媒流路156を流れるため、冷媒の冷却効率を向上させることができる。   As described in FIG. 3, the axial fan 140 and the core unit 150 described above are arranged so that the rotation shaft 144 of the axial fan 140 is located in the central region of the core unit 150. Here, a region inside the coolant channel 156 located on the innermost side is defined as a central region of the core portion 150. In the radiator 130 of the present embodiment, the refrigerant flow path 156 has a core portion so that the refrigerant flows from a region where the wind speed away from the rotation shaft 144 along the extending direction of the blades 142 is high to a region where the wind speed near the rotation shaft 144 is low. 150. Therefore, the refrigerant whose temperature has increased by absorbing the heat of the electronic component 110 is first, the refrigerant flow path 156 outside the core portion 150, which is a region where the wind speed is high, away from the rotating shaft 144 along the extending direction of the blades 142. Therefore, the cooling efficiency of the refrigerant can be improved.

(変形例1)
図6を参照して、変形例1のラジエータ130について説明する。図6は、変形例1のラジエータ130を示す斜視図である。図6に示されるラジエータ130は、2つのコア部150と、2つの軸流ファン140と、を備える。2つのコア部150は、並列に配置されている。また、2つの軸流ファン140は、2つのコア部150の各々を空冷するように並列に配置されている。各コア部150や各軸流ファン140の構成は、上述した第1の実施形態と同様である。
なお、ラジエータ130が3つ以上のコア部150と、3つ以上の軸流ファン140と、を備えてもよい。
(Modification 1)
With reference to FIG. 6, the radiator 130 of the modification 1 is demonstrated. FIG. 6 is a perspective view showing the radiator 130 of the first modification. The radiator 130 shown in FIG. 6 includes two core parts 150 and two axial fans 140. The two core parts 150 are arranged in parallel. The two axial fans 140 are arranged in parallel so that each of the two core parts 150 is air-cooled. The configurations of the core units 150 and the axial fans 140 are the same as those in the first embodiment described above.
The radiator 130 may include three or more core parts 150 and three or more axial fans 140.

ラジエータ130を設けることができる面積が比較的大きい場合に、本変形例を好適に適用することができる。本変形例によれば、受熱器124が吸収した熱により温度が上昇した冷媒が複数のコア部150を流れるため、冷媒の冷却効率をさらに向上させることができる。   This modification can be suitably applied when the area where the radiator 130 can be provided is relatively large. According to this modification, since the refrigerant whose temperature has been increased by the heat absorbed by the heat receiver 124 flows through the plurality of core parts 150, the cooling efficiency of the refrigerant can be further improved.

(変形例2)
図7を参照して、変形例2のラジエータ130について説明する。図7は、変形例2のラジエータ130を示す斜視図である。図7に示されるラジエータ130は、2つのコア部150と、1つの軸流ファン140と、を備える。2つのコア部150は、軸流ファン140によって生成される風が流れる方向に沿って配置されている。2つのコア部150の各流入口152は、互いに連通している。また、2つのコア部150の各流出口154は、互いに連通している。各コア部150や各軸流ファン140の構成は、上述した第1の実施形態と同様である。
なお、ラジエータ130が3つ以上のコア部150を備えてもよい。
(Modification 2)
With reference to FIG. 7, the radiator 130 of the modification 2 is demonstrated. FIG. 7 is a perspective view showing the radiator 130 of the second modification. The radiator 130 shown in FIG. 7 includes two core parts 150 and one axial fan 140. The two core parts 150 are arranged along the direction in which the wind generated by the axial fan 140 flows. The inflow ports 152 of the two core parts 150 communicate with each other. Further, the outlets 154 of the two core portions 150 communicate with each other. The configurations of the core units 150 and the axial fans 140 are the same as those in the first embodiment described above.
Note that the radiator 130 may include three or more core portions 150.

ラジエータ130を設けることができる面積が比較的小さい場合に、本変形例を好適に適用することができる。本変形例によれば、受熱器124が吸収した熱により温度が上昇した冷媒が、軸流ファン140によって生成される風が流れる方向に沿って配置される複数のコア部150を流れるため、ラジエータ130を設けることができる面積が小さい場合にも冷媒の冷却効率を向上させることができる。   This modification can be suitably applied when the area where the radiator 130 can be provided is relatively small. According to the present modification, the refrigerant whose temperature has risen due to the heat absorbed by the heat receiver 124 flows through the plurality of core portions 150 arranged along the direction in which the wind generated by the axial fan 140 flows. Even when the area where 130 can be provided is small, the cooling efficiency of the refrigerant can be improved.

(変形例3)
図8を参照して、変形例3のラジエータ130について説明する。図8は、変形例3のラジエータ130を示す斜視図である。図8に示されるラジエータ130は、2つのコア部150と、1つの軸流ファン140と、を備える。2つのコア部150は、軸流ファン140によって生成される風が流れる方向に沿って、軸流ファン140を挟んで配置されている。2つのコア部150の各流入口152は、互いに連通している。また、2つのコア部150の各流出口154は、互いに連通している。各コア部150や各軸流ファン140の構成は、上述した第1の実施形態と同様である。
なお、ラジエータ130が3つ以上のコア部150を備えてもよい。
(Modification 3)
With reference to FIG. 8, the radiator 130 of the modification 3 is demonstrated. FIG. 8 is a perspective view showing the radiator 130 of the third modification. The radiator 130 shown in FIG. 8 includes two core parts 150 and one axial fan 140. The two core portions 150 are arranged with the axial fan 140 interposed therebetween in the direction in which the wind generated by the axial fan 140 flows. The inflow ports 152 of the two core parts 150 communicate with each other. Further, the outlets 154 of the two core portions 150 communicate with each other. The configurations of the core units 150 and the axial fans 140 are the same as those in the first embodiment described above.
Note that the radiator 130 may include three or more core portions 150.

変形例2と同様、本変形例においても、受熱器124が吸収した熱により温度が上昇した冷媒が、軸流ファン140によって生成される風が流れる方向に沿って配置される複数のコア部150を流れるため、ラジエータ130を設けることができる面積が小さい場合にも冷媒の冷却効率を向上させることができる。   Similar to the second modification, also in the second modification, the plurality of core parts 150 are arranged along the direction in which the refrigerant whose temperature is increased by the heat absorbed by the heat receiver 124 flows through the wind generated by the axial fan 140. Therefore, the cooling efficiency of the refrigerant can be improved even when the area where the radiator 130 can be provided is small.

<第2の実施形態>
次に、第2の実施形態のラジエータ130について説明する。第2の実施形態のラジエータ130は、コア部150の構成が第1の実施形態と異なる。その他の構成は、第1の実施形態と同様である。以下、図9を参照して、本実施形態のコア部150について説明する。図9は、本実施形態のコア部150の一例を示す平面図である。図9に示される矢印は、冷媒の流れを示す。
<Second Embodiment>
Next, the radiator 130 of 2nd Embodiment is demonstrated. A radiator 130 according to the second embodiment is different from the first embodiment in the configuration of the core unit 150. Other configurations are the same as those of the first embodiment. Hereinafter, the core unit 150 of the present embodiment will be described with reference to FIG. FIG. 9 is a plan view showing an example of the core unit 150 of the present embodiment. The arrows shown in FIG. 9 indicate the flow of the refrigerant.

図9に示されるように、本実施形態のコア部150は、流入口152と、流出口154と、冷媒流路156と、を備える。冷媒は、流入口152を通ってコア部150に流入する。図9に示される例では、紙面に垂直な方向(例えば、手前から奥)に冷媒が流入口152に流入する。また、冷媒は、流出口154を通ってコア部150から流出する。図9に示される例では、紙面に垂直な方向(例えば、奥から手前)に冷媒が流出口154から流出する。   As shown in FIG. 9, the core portion 150 of the present embodiment includes an inflow port 152, an outflow port 154, and a refrigerant channel 156. The refrigerant flows into the core unit 150 through the inflow port 152. In the example shown in FIG. 9, the refrigerant flows into the inflow port 152 in a direction perpendicular to the paper surface (for example, from the front to the back). Further, the refrigerant flows out of the core part 150 through the outlet 154. In the example shown in FIG. 9, the refrigerant flows out from the outflow port 154 in a direction perpendicular to the paper surface (for example, from the back to the front).

本実施形態の冷媒流路156は、螺旋形状である。図9に示されるように、流入口152は、冷媒流路156の最も外側の端に連通している。また、流出口154は、冷媒流路156の最も内側の端に連通している。
そのため、流入口152からコア部150に流入した冷媒は、冷媒流路156の最も外側の端から流入し、螺旋形状の冷媒流路156を内側に向かって流れ、冷媒流路156の最も内側の端から流出口154を通ってコア部150から流出する。
The refrigerant channel 156 of this embodiment has a spiral shape. As shown in FIG. 9, the inflow port 152 communicates with the outermost end of the coolant channel 156. Further, the outlet 154 communicates with the innermost end of the refrigerant flow path 156.
Therefore, the refrigerant that has flowed into the core portion 150 from the inlet 152 flows in from the outermost end of the refrigerant flow path 156, flows inward through the helical refrigerant flow path 156, and is located on the innermost side of the refrigerant flow path 156. It flows out from the core part 150 through the outflow port 154 from the end.

第1実施形態と同様、軸流ファン140とコア部150とは、コア部150の中心領域に軸流ファン140の回転軸144が位置するように配置される。本実施形態のラジエータ130においても、回転軸144から羽根142の延伸方向に沿って離れた風速が速い領域から回転軸144に近い風速が遅い領域へ冷媒が流れるように、冷媒流路156が螺旋形状にコア部150に形成されている。そのため、電子部品110の熱を吸収して温度が上昇した冷媒が、まず、回転軸144から羽根142の延伸方向に沿って離れた風速が速い領域に位置する、コア部150の外側の冷媒流路156を流れるため、冷媒の冷却効率を向上させることができる。   As in the first embodiment, the axial fan 140 and the core unit 150 are arranged such that the rotation shaft 144 of the axial fan 140 is located in the central region of the core unit 150. Also in the radiator 130 of the present embodiment, the refrigerant flow path 156 is spiral so that the refrigerant flows from a region where the wind speed away from the rotation shaft 144 along the extending direction of the blade 142 is high to a region where the wind speed near the rotation shaft 144 is low. The core part 150 is formed in a shape. Therefore, the refrigerant whose temperature has increased by absorbing the heat of the electronic component 110 is first located in a region where the wind speed is high, away from the rotating shaft 144 along the extending direction of the blade 142, and the refrigerant flow outside the core portion 150. Since it flows through the path 156, the cooling efficiency of the refrigerant can be improved.

以上、本発明のラジエータ、及び、電子機器について詳細に説明したが、本発明は上記実施形態に限定されるものではない。また、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。   As mentioned above, although the radiator and electronic device of this invention were demonstrated in detail, this invention is not limited to the said embodiment. It goes without saying that various improvements and modifications may be made without departing from the spirit of the present invention.

(付記)
なお、本発明は、以下の付記に記載されるように構成することができる。
(Appendix)
The present invention can be configured as described in the following supplementary notes.

(付記1)
冷媒が流入する流入口と、
前記冷媒が流出する流出口と、
前記冷媒が分岐する分岐点と、分岐した前記冷媒が合流する合流点と、を備える複数の冷媒流路であって、外側に位置する冷媒流路が内側に位置する冷媒流路を囲うように配置された複数の冷媒流路と、
隣接する前記冷媒流路の間において、外側の冷媒流路の前記合流点と内側の冷媒流路の前記分岐点とを連結する連結路と、を備え、
前記流入口は、前記複数の冷媒流路のうち最も外側に位置する冷媒流路の分岐点に連通しており、
前記流出口は、前記複数の冷媒流路のうち最も内側に位置する冷媒流路の合流点に連通していること
を特徴とするコア部を備えるラジエータ。
(Appendix 1)
An inlet into which refrigerant flows,
An outlet through which the refrigerant flows out;
A plurality of refrigerant flow paths comprising a branch point where the refrigerant branches and a merge point where the branched refrigerant merges, such that the refrigerant flow path located outside surrounds the refrigerant flow path located inside. A plurality of arranged refrigerant flow paths;
A connecting path that connects the junction point of the outer refrigerant flow path and the branch point of the inner refrigerant flow path between the adjacent refrigerant flow paths;
The inflow port communicates with a branch point of the refrigerant channel located on the outermost side among the plurality of refrigerant channels,
The radiator including a core portion, wherein the outlet port communicates with a confluence of refrigerant channels located on the innermost side among the plurality of refrigerant channels.

(付記2)
前記冷媒流路は矩形であり、
前記分岐点と前記合流点は、前記冷媒流路の頂点に位置する、付記1に記載のラジエータ。
(Appendix 2)
The refrigerant flow path is rectangular,
The radiator according to appendix 1, wherein the branch point and the junction point are located at the apex of the refrigerant flow path.

(付記3)
隣接する前記冷媒流路の間に、放熱フィンを備える、付記1又は2に記載のラジエータ。
(Appendix 3)
The radiator according to appendix 1 or 2, comprising a heat radiation fin between the adjacent refrigerant flow paths.

(付記4)
前記コア部の中心領域に回転軸が位置する軸流ファンを備える、付記1乃至3のいずれかに記載のラジエータ。
(Appendix 4)
The radiator according to any one of appendices 1 to 3, further comprising an axial fan in which a rotation shaft is located in a central region of the core portion.

(付記5)
並列に配置された複数の前記コア部と、
複数の前記コア部の各々を空冷するように並列に配置された複数の前記軸流ファンと、
を備える、付記4に記載のラジエータ。
(Appendix 5)
A plurality of the core parts arranged in parallel;
A plurality of axial fans arranged in parallel so as to air-cool each of the plurality of core portions;
A radiator according to appendix 4, comprising:

(付記6)
前記軸流ファンによって生成される風が流れる方向に沿って配置された複数の前記コア部を備える、付記4に記載のラジエータ。
(Appendix 6)
The radiator according to appendix 4, comprising a plurality of the core portions arranged along a direction in which wind generated by the axial flow fan flows.

(付記7)
前記軸流ファンによって生成される風が流れる方向に沿って、前記軸流ファンを挟んで配置された複数の前記コア部を備える、付記4に記載のラジエータ。
(Appendix 7)
The radiator according to appendix 4, comprising a plurality of the core portions arranged with the axial flow fan sandwiched along a direction in which wind generated by the axial flow fan flows.

(付記8)
熱を発する電子部品と、
付記1乃至7のいずれかに記載のラジエータと、
を備える電子機器。
(Appendix 8)
Electronic components that emit heat,
The radiator according to any one of appendices 1 to 7,
Electronic equipment comprising.

(付記9)
冷媒が流入する流入口と、
前記冷媒が流出する流出口と、
前記冷媒が流れる螺旋形状の冷媒流路と、を備え、
前記流入口は、前記冷媒流路の最も外側の端に連通しており、前記流出口は、前記冷媒流路の最も内側の端に連通していることを特徴とするコア部を備えるラジエータ。
(Appendix 9)
An inlet into which refrigerant flows,
An outlet through which the refrigerant flows out;
A spiral refrigerant flow path through which the refrigerant flows,
The radiator including a core part, wherein the inflow port communicates with an outermost end of the refrigerant flow path, and the outflow port communicates with an innermost end of the refrigerant flow path.

100 パーソナルコンピュータ
110 電子部品
120 冷却ユニット
122 ポンプ
124 受熱器
126 ホース
130 ラジエータ
140 軸流ファン
142 羽根
144 回転軸
150 コア部
152 流入口
154 流出口
156 冷媒流路
158 分岐点
160 合流点
162 連結路
164 放熱フィン

DESCRIPTION OF SYMBOLS 100 Personal computer 110 Electronic component 120 Cooling unit 122 Pump 124 Heat receiver 126 Hose 130 Radiator 140 Axial fan 142 Blade 144 Rotating shaft 150 Core part 152 Inlet 154 Outlet 156 Refrigerant channel 158 Branching point 160 Junction point 162 Connecting channel 164 Heat dissipation fin

Claims (7)

冷媒が流入する流入口と、
前記冷媒が流出する流出口と、
前記冷媒が分岐する分岐点と、分岐した前記冷媒が合流する合流点と、を備える複数の冷媒流路であって、外側に位置する冷媒流路が内側に位置する冷媒流路を囲うように配置された複数の冷媒流路と、
隣接する前記冷媒流路の間において、外側の冷媒流路の前記合流点と内側の冷媒流路の前記分岐点とを連結する連結路と、を備え、
前記流入口は、前記複数の冷媒流路のうち最も外側に位置する冷媒流路の分岐点に連通しており、
前記流出口は、前記複数の冷媒流路のうち最も内側に位置する冷媒流路の合流点に連通していることを特徴とするコア部と、
前記コア部の中心領域に回転軸が位置する軸流ファンであって、当該軸流ファンは複数の羽根を有し、当該軸流ファンが回転したときに、前記各羽根の先端部が前記コア部の流入口近傍を通過し、前記各羽根の付け根部が前記コア部の流出口近傍を通過するように配置された軸流ファンと
を備えたことを特徴とするラジエータ。
An inlet into which refrigerant flows,
An outlet through which the refrigerant flows out;
A plurality of refrigerant flow paths comprising a branch point where the refrigerant branches and a merge point where the branched refrigerant merges, such that the refrigerant flow path located outside surrounds the refrigerant flow path located inside. A plurality of arranged refrigerant flow paths;
A connecting path that connects the junction point of the outer refrigerant flow path and the branch point of the inner refrigerant flow path between the adjacent refrigerant flow paths;
The inflow port communicates with a branch point of the refrigerant channel located on the outermost side among the plurality of refrigerant channels,
The outlet port communicates with a confluence of refrigerant flow channels located on the innermost side among the plurality of refrigerant flow channels ; and
An axial fan in which a rotation shaft is located in a central region of the core portion, the axial fan having a plurality of blades, and when the axial fan rotates, a tip portion of each blade is the core. An axial flow fan disposed so as to pass through the vicinity of the inlet of the core, and so that the root of each blade passes through the vicinity of the outlet of the core
A radiator characterized by comprising
前記冷媒流路は矩形であり、
前記分岐点と前記合流点は、前記冷媒流路の頂点に位置する、請求項1に記載のラジエータ。
The refrigerant flow path is rectangular,
The radiator according to claim 1, wherein the branch point and the junction point are located at a vertex of the refrigerant flow path.
隣接する前記冷媒流路の間に、放熱フィンを備える、請求項1又は2に記載のラジエータ。   The radiator according to claim 1, further comprising a heat radiating fin between the adjacent refrigerant flow paths. 並列に配置された複数の前記コア部と、
複数の前記コア部の各々を空冷するように並列に配置された複数の前記軸流ファンと、
を備える、請求項1乃至3のいずれかに記載のラジエータ。
A plurality of the core parts arranged in parallel;
A plurality of axial fans arranged in parallel so as to air-cool each of the plurality of core portions;
Comprising a radiator according to any one of claims 1 to 3.
前記軸流ファンによって生成される風が流れる方向に沿って配置された複数の前記コア部を備える、請求項1乃至3のいずれかに記載のラジエータ。 The radiator according to any one of claims 1 to 3 , comprising a plurality of the core portions arranged along a direction in which wind generated by the axial flow fan flows. 前記軸流ファンによって生成される風が流れる方向に沿って、前記軸流ファンを挟んで配置された複数の前記コア部を備える、請求項1乃至3のいずれかに記載のラジエータ。 The radiator according to any one of claims 1 to 3 , comprising a plurality of the core portions arranged with the axial flow fan sandwiched along a direction in which wind generated by the axial flow fan flows. 熱を発する電子部品と、
請求項1乃至のいずれかに記載のラジエータと、
を備える電子機器。
Electronic components that emit heat,
The radiator according to any one of claims 1 to 6 ,
Electronic equipment comprising.
JP2010196732A 2010-09-02 2010-09-02 Radiators and electronic devices Expired - Fee Related JP5609442B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010196732A JP5609442B2 (en) 2010-09-02 2010-09-02 Radiators and electronic devices
US13/137,654 US20120055654A1 (en) 2010-09-02 2011-08-31 Radiator and electronic apparatus having coolant pathway
TW100131275A TW201220032A (en) 2010-09-02 2011-08-31 Radiator and electronic apparatus having coolant pathway
CN2011102632801A CN102385431A (en) 2010-09-02 2011-09-02 Radiator and electronic apparatus having coolant pathway

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010196732A JP5609442B2 (en) 2010-09-02 2010-09-02 Radiators and electronic devices

Publications (2)

Publication Number Publication Date
JP2012054455A JP2012054455A (en) 2012-03-15
JP5609442B2 true JP5609442B2 (en) 2014-10-22

Family

ID=45769811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010196732A Expired - Fee Related JP5609442B2 (en) 2010-09-02 2010-09-02 Radiators and electronic devices

Country Status (4)

Country Link
US (1) US20120055654A1 (en)
JP (1) JP5609442B2 (en)
CN (1) CN102385431A (en)
TW (1) TW201220032A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108966587B (en) * 2017-10-13 2019-06-21 邹昊雄 A kind of radiator
CN108414332B (en) * 2018-03-14 2020-12-29 福州迈新生物技术开发有限公司 Device for sample dyeing module
DK3620741T3 (en) * 2018-09-04 2021-03-01 Ovh THERMAL TRANSFER DEVICE WITH A FLUID LINE
US12013732B2 (en) * 2022-01-12 2024-06-18 Dell Products L.P. Insert to replace a fan in hybrid liquid cooling of an information handling system

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1621742A (en) * 1925-08-20 1927-03-22 Farrel Foundry And Machine Co Fluid-circulating plate
JPH024338Y2 (en) * 1984-12-04 1990-02-01
JPH01251646A (en) * 1988-03-31 1989-10-06 Nissan Motor Co Ltd Semiconductor structure
JPH10277678A (en) * 1997-04-03 1998-10-20 Matsukueito:Kk Heat exchanger
JP3107159B2 (en) * 1999-03-26 2000-11-06 木村工機株式会社 cooling tower
JP3725106B2 (en) * 2002-08-30 2005-12-07 株式会社東芝 Electronics
DE10344699B4 (en) * 2002-09-28 2016-06-09 Ebm-Papst St. Georgen Gmbh & Co. Kg Arrangement and method for heat removal from a component to be cooled
JP2004139187A (en) * 2002-10-15 2004-05-13 Toshiba Corp Electronic device
DE10393618T5 (en) * 2002-11-01 2005-11-17 Cooligy, Inc., Mountain View Method and apparatus for achieving temperature uniformity and for cooling overheat points in a heat generating device
JP2005024162A (en) * 2003-07-01 2005-01-27 Usui Kokusai Sangyo Kaisha Ltd Liquid fuel cooler for internal combustion engine
US20060067052A1 (en) * 2004-09-30 2006-03-30 Llapitan David J Liquid cooling system
TWM267437U (en) * 2004-11-23 2005-06-11 Forward Electronics Co Ltd Modular heat dissipation device
TWI262761B (en) * 2005-05-27 2006-09-21 Foxconn Tech Co Ltd Liquid cooling apparatus
JP2007103470A (en) * 2005-09-30 2007-04-19 Toshiba Corp Cooling device, electronic apparatus having the same, and pump
JP4781929B2 (en) * 2006-07-25 2011-09-28 富士通株式会社 Electronics
JP2008027374A (en) * 2006-07-25 2008-02-07 Fujitsu Ltd Heat receiver for liquid cooling unit, liquid cooling unit, and electronic device
US7466550B2 (en) * 2006-11-03 2008-12-16 Xigmatek Co., Ltd Integrated heat dissipating assembly
US20100038056A1 (en) * 2008-08-15 2010-02-18 Ellsworth Joseph R High performance compact heat exchanger
US8000101B2 (en) * 2009-07-23 2011-08-16 Hewlett-Packard Development Company, L.P. System and method for attaching liquid cooling apparatus to a chassis

Also Published As

Publication number Publication date
CN102385431A (en) 2012-03-21
TW201220032A (en) 2012-05-16
JP2012054455A (en) 2012-03-15
US20120055654A1 (en) 2012-03-08

Similar Documents

Publication Publication Date Title
TWI636724B (en) Electronic equipment with heat-dissipating function and water-cooled radiator assembly thereof
KR100892626B1 (en) Liquid cooling unit and electronic apparatus
JP3979143B2 (en) Cooling device for information processing equipment
KR100916569B1 (en) Electronic apparatus
JP3176492U (en) Electronic device having heat dissipation structure
KR100902323B1 (en) Electronic apparatus
JP5609442B2 (en) Radiators and electronic devices
US20080210409A1 (en) Liquid Cooling System Fan Assembly
TW201307689A (en) Centrifugal fan module, heat sink device having the same and electric device having the heat sink device
JP2012038010A (en) Heat receiver, liquid cooling unit and electronic device
TWI599753B (en) Liquid cooling system
JP7238400B2 (en) Cooling system
JP2017152614A (en) Liquid cooling type cooling device
JP2007281213A (en) Heat sink module and cooling apparatus having the same
US20210282298A1 (en) Cooling device
TWI421025B (en) Heat-dissipation device
US9826661B2 (en) Heat module
KR20080010330A (en) Heat exchanger for liquid cooling unit, liquid cooling unit and electronic apparatus
JP4742965B2 (en) Heat transfer device and liquid cooling system using it
JP2009295869A (en) Cooling device of electronic apparatus
TW201422135A (en) Electronic device
JP2020060360A (en) Cooling device
TWM460321U (en) Fan impeller, centrifugal axial fan, heat dissipating device and display card module
CN110621138A (en) Liquid cooling heat radiator and electronic device using same
CN110621137A (en) Liquid cooling heat sink and electronic device integrating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R150 Certificate of patent or registration of utility model

Ref document number: 5609442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees