TW201120485A - Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device - Google Patents

Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device Download PDF

Info

Publication number
TW201120485A
TW201120485A TW99129721A TW99129721A TW201120485A TW 201120485 A TW201120485 A TW 201120485A TW 99129721 A TW99129721 A TW 99129721A TW 99129721 A TW99129721 A TW 99129721A TW 201120485 A TW201120485 A TW 201120485A
Authority
TW
Taiwan
Prior art keywords
light
film
diffusing
layer
polarizing plate
Prior art date
Application number
TW99129721A
Other languages
Chinese (zh)
Inventor
Yasuhiro Haba
Tomonori Miyamoto
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW201120485A publication Critical patent/TW201120485A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

Provided is a light-diffusing film that is laminated on a substrate film and has a light-diffusing layer in which light-transmitting microparticles are diffused. Also provided are a method for manufacturing said light-diffusing film and a light-diffusing polarizing plate and liquid-crystal display device using said light-diffusing film. The ratio of the intensity of laser light transmitted from the light-diffusing layer side, in a direction 40 DEG off the normal direction, to the intensity of laser light incident upon the light-diffusing film from the substrate film side in the normal direction, said laser light having a wavelength of 543.5, is between 0.0002% and 0.001%. The transmission sharpness, summed over four optical combs, is between 70% and 180%. The total haze and internal haze levels are between 40% and 70%. The surface haze level due to the surface geometry of the light-diffusing layer is less than 2%. The centerline average roughness of the surface of the light-diffusing layer is no greater than 0.2 μ m.

Description

201120485 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種光擴散膜及其製造方法。又,本發明 係關於一種使用該光擴散膜之光擴散性偏光板及液晶顯示 * 裝置。 【先前技術】 近年來,液晶顯示裝置之用途迅速向行動電話、個人電 腦用顯示器、電視、液晶投影儀等方面擴展。一般而言, 液日日顯示裝置係以TN(Twisted Nematic,扭轉向列)模式、 VA(VertiCal Alignment,垂直配向)模式、Ips(In_piane Switching,橫向電場切換)模式等顯示模式使液晶運作, 對通過該液晶之光進行電氣控制’將明暗差異表現於畫面 上,而顯示文字或圖像。 先前,液晶顯示裝置被指出存在如下問題:於自斜向觀 察顯示畫面之情形時,無法獲得較高之對比度,進而因圖 像之明暗發生逆轉之灰階反轉現象等而無法獲得良好之顯 示特性等問題,即視角狹窄之問題。 作為用以解決上述問題之方法,先前已知有於液晶顯示 . 裝置之視覺確認側表面設置光擴散膜之技術。例如於 , JP2007-94369_A&amp;JP2002-107512-A中揭示有藉由將含有微 粒子之塗佈液塗佈於基材上而形成的具有高霧度之光擴散 層的光擴散膜(光擴散片材)。藉由將如此之光擴散膜配置 於液晶顯示裝置之視覺確認側表面,可利用自斜向觀察液 晶顯示裝置之顯不晝面時的圓像對比度之降低或灰階反轉 150611.doc 201120485 現象之改善而拓寬視角。 然而,對於先前之光擴散膜,若為了獲得廣視角而賦予 充分之光擴散性,則存在顯示圖像之透射清晰度降低,产 之顯示圖像之正面對比度降低’並且因光擴散層之表面: 反射,而產生感覺畫面整體發白之所謂泛白的問題。又, 反之若設法賦予充分之透射清晰度,則光擴散性變得不充 分,無法獲得廣視角。 本發明係為了解決上述課題而完成者,纟目的在於提供 -種同時實現充分之光擴散性與充分之透射清晰度,從: 在應用於液晶顯示裝置時,視角較廣,且顯示圖像之正面 對比度較高,亦不產生由表面漫反射引起之泛白的光擴散 膜及其製造方法。又,本發明之另一目的在於提供一種使 用β光擴散膜之光擴散性偏光板及液晶顯示裝置。 【發明内容】 本發明包括如下内容。 &lt;ι&gt; 一種光擴散膜,其係具有基材膜、與積層於上述基 材膜上且分散有透光性微粒子之光擴散層者, 向自上述光擴散層側之上述法線方向傾斜40。之方向透 射的雷射光之強度L2相對於自上述基材膜側向光擴散膜之 法線方向入射的波長543.5 nm之雷射光之強度1^的比L2/L, 為0.0002%以上、〇_〇〇1%以下, 通過0.125 mm、0.5 mm、1.0 mm及2.0 mm之光梳所得之 透射清晰度之和為70%以上、1 80°/。以下, 總霧度為40%以上、70%以下,内部霧度為40%以上、 150611.doc 201120485 70%以下,且由上述光擴散層之表面形狀引起之表面霧度 未達2%, 上述光擴散層之表面之中心線平均粗糙度Ra為〇.2 μιηΗ 下。 &lt;2&gt;如&lt;1&gt;之光擴散膜,其中上述透射清晰度之和為7〇0/〇 _ 以上、150%以下。 &lt;3&gt;如&lt;1&gt;或&lt;2&gt;之光擴散膜,其中上述表面霧度為1%以 下。 &lt;4&gt;如&lt;1&gt;至&lt;3&gt;中任一項之光擴散膜,其中上述中心線 平均粗糙度Ra為0.1 μηι下。 &lt;5&gt;如&lt;1&gt;至&lt;4&gt;中任一項之光擴散膜’其中上述光擴散 層之層厚相對於上述透光性微粒子之重量平均粒徑而為1 倍以上、3倍以下。 &lt;6&gt;如&lt;1&gt;至&lt;5&gt;中任一項之光擴散膜,其進而具備積層 於上述光擴散層上之抗反射層。 一種光擴散膜之製造方法,其係如 &lt;卜之光擴散膜之 製造方法,包括如下步驟: 於上述基材膜上塗佈分散有上述透光性微粒子之樹脂 ' '夜’以及於° 3上述Μ脂液之層之表面轉印模具之鏡面或 凹凸面。 &lt;8&gt;-種光擴散性偏光板’其具備:至少具有偏光膜之 偏光板、及以上述基材膜側與上述偏光板相對向之方式積 層於上述偏光板上的如少至&lt;6&gt;中任一項之光擴散膜。 9々8之光擴散性偏光板,其係經由接著劑層貼合上 15061I.doc 201120485 述偏光膜與上述光擴散膜而成。 &lt;ιο&gt;—種液晶顯示裝置,其依序具備背光裝置' 光偏向 機構、背光側偏光板、液晶單元、及如&lt;8&gt;或&lt;9&gt;之光擴散 性偏光板。 &lt;11&gt;如&lt;10&gt;之液晶顯示裝置,其中上述光偏向機構於與 上述背光側偏光板相對向之表面具有2片具有複數個線狀 稜鏡之稜鏡膜, 其中一個稜鏡膜係以其線狀棱鏡之稜線方向大致與上述 背光側偏光板之透射軸平行的方式進行配置,另一個稜鏡 膜係以其線狀稜鏡之稜線方向大致與上述光擴散性偏光板 之透射軸平行的方式進行配置。 &lt;12&gt;如&lt;1〇&gt;或&lt;11&gt;之液晶顯示裝置,其中於上述背光 裝置與上述光偏向機構之間進而具備光擴散機構。 根據本發明’可提供一種同時實現充分之光擴散性與優 異之透射清晰度的光擴散膜及光擴散性偏光板。應用上述 具有優異光學特性之光擴散膜或光擴散性偏光板的液晶顯 示裝置’顯示出較廣之視角與較高之正面對比度,並且亦 可防止由表面漫反射引起之泛白。 【實施方式】 &lt;光擴散膜&gt; 圖1及圖2係分別表示本發明之光擴散膜之較佳例的概略 剖面圖。本發明之圖1及圖2所示之光擴散膜1〇〇、2〇〇具備 基材膜101、及積層於基材膜1〇1上之光擴散層102。光擴 散層102係將透光性樹脂1〇3作為基材之層,且係於透光性 150611.doc 201120485 树月曰103中分散透光性微粒子丨〇4而成。本發明之光擴散膜 可如圖1所示之例般,光擴散層102之表面由平坦面所構 成,或者亦可如圖2所示之例般,只要下述中心線平均粗 糙度Ra為0.2 μηι以下,則光擴散層1〇2之表面亦可由凹凸 面所構成。以下,對本發明之光擴散膜進行更加詳細之說 明。 [光擴散膜之光學特性] (1)相對散射光強度 於本發明之光擴散膜中,向自光擴散層102側之法線方 向傾斜40。之方向透射的雷射光之強度^相對於自基材膜 1 〇 1側向光擴散膜之法線方向入射的波長5 43 · 5 nm之雷射 光之強度L!的比Ls/L〗(相對散射光強度)在〇 〇〇〇2%以上、 0.001%以下之範圍内。即,參照圖3,自光散射膜之基材 膜101侧向光擴散膜之法線A1方向入射波長為543 5 ^^^且 強度為L!之雷射光(He-Ne雷射之平行光),測定向自光擴 政層1 02側之法線A2方向傾斜4〇。之方向A3透射的雷射光 之透射散射光強度L2,使藉此所得之相對散射光強度l2/Li 在0.0002%以上、0·001%以下之範圍内。透射散射光強度 之測定方向、即自光擴散層1 〇2側之法線A2方向傾斜40。之 方向A3係包括光擴散膜之法線(法線A1及A2)方向之平面 内的一個方向。 於相對散射光強度I^/L!未達0.0002%之情形時,光散射 性不充分,視角變窄。又,於超出〇 〇〇丨%之情形時,光散 射過強,故而於將該光擴散膜應用於液晶顯示裝置時,例 150611.doc 201120485 如於黑色顯示中,會因如下原因而導致正面對比度降低, 顯示品質變差:相對於液晶顯示裝置之正面方向而傾斜漏 出之光因光擴散層而向正面方向散射等。相對散射光強度 L2/L丨較佳為0.0003%以上、0.0008%以下。 相對政射光強度La/L〗之測定係對使用光學透明之黏著 劑,將光擴散膜以其基材膜101側貼合於玻璃基板而成之 測定用樣品進行測定。藉此,可防止測定時膜之翹曲,提 高測定再現性。 自该測定用樣品之玻璃基板面側向光擴散膜之法線方向 入射He-Ne雷射之平行光(波長543.5 nm),測定向自光擴散 層10 2側之法線方向傾斜4 〇。之方向a 3透射的雷射光之強 度。透射散射光之強度除以光源之光強度所得之值為相對 散射光強度I^/L〗。於測定相對散射光強度時,使用光功率 計(例如橫河電機股份有限公司製造之「3292 03 Optical Power Sensor」及同一公司製造之 r 3292 〇ptical p〇wer Meter」)〇 (2)透射清晰度 於本發明之光擴散膜中,通過0.125 mm、0.5 mm、1. 〇 mm及2.0 mm之光梳所得之透射清晰度之和(以下,簡稱為 「透射清晰度」)為70%以上、1 80%以下。所謂「通過 0.125 mm、0.5 mm、1.0 mm及2.0 mm之光梳所得之透射清 晰度之和」’係指依據JIS K 7105,使用暗部與明部之寬度 比為1 : 1,其寬度為0.125 mm、0_5 mm、1.0 mm及 2.0 mm 之4種光梳所測得之透射清晰度(像清晰度)的和。因此,此 150611.doc 201120485 處所謂「透射清晰度」之最大值為400%。 於光擴散膜之透射清晰度未達70%之情形時,光散射過 強,故而於將該光擴散膜應用於液晶顯示裝置時,例如= 白色顯示中,會因如下原因導致正面對比度降低,顯示品 質變差:&amp;晶顯示I置之正面方向之光因光擴散層而過度 散射等。又,於透射清晰度超出180%之情形時,會因液 晶顯不裝置之背光側之稜鏡膜的表面凹凸結構、與液晶單 元之彩色濾光片所具有之規則的基質結構之干擾而產生透 射光之疊紋。光擴散膜之透射清晰度較佳為7〇%以上、 150%以下’更佳為90%以上、140%以下。 透射清晰度之測定,係與相對散射光強度之測定同樣 地,對使用光學透明之黏著劑將光擴散膜以其基材膜工〇工 側貼合於玻璃基板而成的測定用樣品進行測定。藉此,可 防止測定時膜之翹曲,提高測定再現性。作為測定裝置, 可使用依據JIS K 7 1 05之圖像清晰度測定器(例如,Suga Test Instruments股份有限公司製造之rICM_1Dp」 (3)霧度 於本發明之光擴散膜中’總霧度為40%以上、70%以 下,且内部霧度為40%以上、70%以下。又,由光擴散層 102之表面形狀引起之表面霧度設為未達2%。此處,所謂 「總霧度」’係由表示對光擴散膜照射光而透射之光線之 總®的總光線透射率(Tt) '與被光擴散膜擴散而透射之擴 散光線透射率(Td)的比’根據下式(丨)求出: 總霧度(%) = (Td/Tt)x 100 (η 150611.doc 201120485 總光線透射率(Tt)係與入射光同軸之狀態下透射之平行 光線透射率(τΡ)與擴散光線透射率(Td)之和。總光線透射 率(Tt)及擴散光線透射率(Td)係依據JIS κ 7361所測得之 值。 又,所謂光擴散膜之「内部霧度」,係指總霧度中,由 光擴散層102之表面形狀引起之霧度(表面霧度)以外之霧 度。 於總霧度及/或内部霧度未達4〇%之情形時,光散射性不 充刀視角變乍。又,於總霧度及/或内部霧度超出7〇%之 情形時,光散射過強’ i欠而於將該光擴散膜應用於液晶顯 不裝置時’例如於黑色顯示中,t因如下原因導致正面對 比度降低’顯示品質變差:相對於液晶顯示裝置之正面方 向而彳員斜漏出之光因光擴散層而向正面方向散射等。又, 於總霧度及/或内部霧度超出7G%之情形時,有光擴散膜之 透明性受損之傾卜總霧度及内部霧度分別較佳為5〇%以 上、6 5 %以下。 又’於自光擴散層1〇2之表面形狀引起之表自霧度超出 2%之情形時,會因表面漫反射而產生泛白。為了更有效 地防止'乏白,表面霧度較佳為1 %以下。 具體而s,光擴散膜之總霧度、内部霧度及表面霧度係 以如下方式進行測H首先’為了防止膜之翹曲而使 用先學透明之黏著劑,針對光擴㈣,以光擴散層1〇2成 為,面之方式將基材膜1G1側貼合於玻璃基板上,而製作 測定用樣品,並對該測定用樣品測定總霧度 '總霧度係使 150611.doc 201120485 用依據JIS Κ 7136之霧度透射率計(例如村上色彩技術研办 所股份有限公司製造之霧度計「购5。」),測定 透射率(Tt)及擴散光線透射率(Td),並藉由上述式(1)而算 出。 繼而,使用甘油,於光擴散層102之表面貼合霧度大致 為〇%之三乙醯纖維素膜,與上述總霧度之測定同樣地測 定霧度。由光擴散層丨02之表面形狀引起之表面霧度被所 貼合之三乙醯纖維素膜大致消除,故而該霧度可視作光擴 散膜之「内部霧度」。因此’光擴散膜之「表面霧度」可 由下述式(2)求出: 表面霧度(%) =總霧度(%) —内部霧度(%) (2) [光擴散膜之表面形狀] 於本發明之光擴散膜中,光擴散層1〇2表面(與基材膜 101相反側之表面)之依據JIS B 0601的中心線平均粗糙度201120485 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a light diffusion film and a method of manufacturing the same. Further, the present invention relates to a light diffusing polarizing plate and a liquid crystal display device using the light diffusing film. [Prior Art] In recent years, the use of liquid crystal display devices has rapidly expanded to mobile phones, personal computer displays, televisions, and liquid crystal projectors. In general, the liquid day display device operates the liquid crystal in a display mode such as a TN (Twisted Nematic) mode, a VA (VertiCal Alignment) mode, or an Ips (In_piane Switching) mode. Electrical control by the light of the liquid crystal 'displays the difference between light and dark on the screen to display text or images. In the past, the liquid crystal display device has been pointed out that there is a problem in that when the display screen is observed obliquely, a high contrast cannot be obtained, and a gray scale inversion phenomenon in which the brightness of the image is reversed is not obtained, and a good display cannot be obtained. Problems such as characteristics, that is, the problem of narrow viewing angle. As a method for solving the above problems, a technique of providing a light diffusing film on the visual confirmation side surface of the liquid crystal display has been previously known. A light diffusing film (light-diffusing sheet) having a high haze light-diffusing layer formed by coating a coating liquid containing fine particles on a substrate is disclosed in, for example, JP 2007-94369-A & JP 2002-107512-A. ). By arranging such a light-diffusing film on the visual confirmation side surface of the liquid crystal display device, it is possible to observe the decrease in the round image contrast or the gray-scale inversion when the liquid crystal display device is displayed in a diagonal direction from the oblique direction 150611.doc 201120485 phenomenon Improve and broaden the perspective. However, in the case of the conventional light-diffusing film, if sufficient light diffusibility is imparted in order to obtain a wide viewing angle, there is a decrease in the transmission resolution of the display image, and the front contrast of the produced image is lowered 'and the surface of the light-diffusing layer : Reflection, which causes the so-called whitening of the overall sensation of the picture. On the other hand, if a sufficient transmission resolution is sought, the light diffusibility becomes insufficient, and a wide viewing angle cannot be obtained. The present invention has been made to solve the above problems, and an object of the present invention is to provide a light diffusing property and a sufficient transmission sharpness at the same time, from the viewpoint of wide viewing angle and display image when applied to a liquid crystal display device. A light diffusing film having a high front contrast and no whitening caused by diffuse reflection of the surface and a method of manufacturing the same. Further, another object of the present invention is to provide a light diffusing polarizing plate and a liquid crystal display device using a β light diffusing film. SUMMARY OF THE INVENTION The present invention includes the following. &lt;1&gt; A light-diffusing film having a base film and a light-diffusing layer laminated on the base film and having light-transmitting fine particles dispersed thereon, inclined to the normal direction from the side of the light-diffusing layer 40. The intensity L2 of the laser light transmitted in the direction is greater than the ratio L2/L of the intensity of the laser light incident at a wavelength of 543.5 nm from the side of the base film toward the normal direction of the light diffusing film, which is 0.0002% or more, 〇_ 〇〇 1% or less, the sum of the transmission sharpness obtained by the combs of 0.125 mm, 0.5 mm, 1.0 mm, and 2.0 mm is 70% or more and 180 °/. Hereinafter, the total haze is 40% or more and 70% or less, the internal haze is 40% or more, 150611.doc 201120485 70% or less, and the surface haze caused by the surface shape of the light diffusion layer is less than 2%, The center line average roughness Ra of the surface of the light diffusion layer is 〇.2 μιηΗ. &lt;2&gt; The light diffusing film of &lt;1&gt;, wherein the sum of the transmission clarity is 7 〇 0 / 〇 _ or more and 150% or less. &lt;3&gt; The light diffusing film of &lt;1&gt; or &lt;2&gt; wherein the surface haze is 1% or less. The light diffusing film according to any one of <1> to <3>, wherein the center line average roughness Ra is 0.1 μηι. The light-diffusion film of any one of the above-mentioned light-diffusion layers is 1 or more times and 3 times with respect to the weight average particle diameter of the above-mentioned light-transmitting fine particles, in the light-diffusion film of any one of the above-mentioned. the following. The light-diffusing film of any one of <1> to <5>, further comprising an anti-reflection layer laminated on the light-diffusing layer. A method for producing a light-diffusing film, which is a method for producing a light-diffusing film according to the present invention, comprising the steps of: coating a resin in which the light-transmitting fine particles are dispersed on the base film; The surface of the layer of the blush liquid transfers the mirror or the surface of the mold. &lt;8&gt; - A light diffusing polarizing plate comprising: a polarizing plate having at least a polarizing film; and a layer which is laminated on the polarizing plate so that the base film side faces the polarizing plate so far as to &lt;6&gt; Any of the light diffusing films. A light diffusing polarizing plate of 9 to 8 is obtained by laminating a polarizing film of the above-mentioned 15061I.doc 201120485 and the above-mentioned light diffusing film via an adhesive layer. &lt;ιο&gt; A liquid crystal display device comprising, in order, a backlight device, a light deflecting mechanism, a backlight-side polarizing plate, a liquid crystal cell, and a light diffusing polarizing plate of &lt;8&gt; or &lt;9&gt;. &lt;11&gt; The liquid crystal display device of <10>, wherein the light deflecting means has two enamel films having a plurality of linear turns on a surface opposite to the backlight-side polarizing plate, wherein one of the ruthenium films The ridge line direction of the linear prism is substantially parallel to the transmission axis of the backlight-side polarizing plate, and the other ruthenium film is substantially transmissive to the light-diffusing polarizing plate by the ridge line direction of the linear ridge. The axes are configured in parallel. <12> The liquid crystal display device of <1> or <11>, further comprising a light diffusing means between the backlight device and the light deflecting means. According to the present invention, it is possible to provide a light-diffusing film and a light-diffusing polarizing plate which simultaneously achieve sufficient light diffusibility and excellent transmission clarity. The liquid crystal display device which employs the above-described light diffusing film or light diffusing polarizing plate having excellent optical characteristics exhibits a wide viewing angle and a high front contrast, and also prevents whitening caused by surface diffuse reflection. [Embodiment] &lt;Light Diffusion Film&gt; Figs. 1 and 2 are schematic cross-sectional views showing preferred examples of the light diffusion film of the present invention. The light diffusion films 1A and 2B shown in Figs. 1 and 2 of the present invention include a base film 101 and a light diffusion layer 102 laminated on the base film 1〇1. The light-diffusing layer 102 is formed by dispersing the light-transmitting fine particles 丨〇4 in the light-transmissive layer 150611.doc 201120485. The light diffusing film of the present invention may be formed by a flat surface as shown in FIG. 1, or may be formed as shown in FIG. 2 as long as the following center line average roughness Ra is When the thickness is 0.2 μηι or less, the surface of the light diffusion layer 1〇2 may be composed of a concave-convex surface. Hereinafter, the light-diffusing film of the present invention will be described in more detail. [Optical Characteristics of Light-Diffusing Film] (1) Relative Scattering Light Intensity In the light-diffusing film of the present invention, the light is diffused by 40 from the normal direction of the light-diffusing layer 102 side. The intensity of the laser light transmitted in the direction of the laser light is relative to the intensity L!/L of the laser light incident from the base film 1 〇1 side toward the normal direction of the light diffusing film at a wavelength of 5 43 · 5 nm (relative Ls/L) The scattered light intensity is in the range of 〇〇〇〇2% or more and 0.001% or less. That is, referring to Fig. 3, a laser beam having a wavelength of 543 5 ^^^ and an intensity of L! from the side of the base film 101 of the light-scattering film toward the normal line A1 of the light-diffusing film (He-Ne laser parallel light) The measurement is inclined 4 向 in the direction of the normal line A2 from the side of the optical expansion layer 102. The transmitted scattered light intensity L2 of the laser light transmitted in the direction A3 is such that the relative scattered light intensity l2/Li thus obtained is in the range of 0.0002% or more and 0.001% or less. The measurement direction of the transmitted scattered light intensity is inclined 40 by the direction from the normal line A2 side of the light diffusion layer 1 〇 2 side. The direction A3 is one direction including the plane of the normal of the light diffusion film (normal lines A1 and A2). When the relative scattered light intensity I^/L! is less than 0.0002%, the light scattering property is insufficient and the viewing angle is narrowed. Further, when the amount exceeds 〇〇〇丨%, the light scattering is too strong. Therefore, when the light diffusion film is applied to a liquid crystal display device, the example 150611.doc 201120485, as shown in the black display, may cause a front side due to the following reasons. The contrast is lowered, and the display quality is deteriorated: light that is obliquely leaked with respect to the front direction of the liquid crystal display device is scattered in the front direction by the light diffusion layer. The relative scattered light intensity L2/L丨 is preferably 0.0003% or more and 0.0008% or less. The measurement of the relative light intensity La/L was carried out by measuring a sample in which a light-diffusing film was bonded to a glass substrate on the side of the base film 101 by using an optically transparent adhesive. Thereby, warpage of the film at the time of measurement can be prevented, and measurement reproducibility can be improved. The He-Ne laser parallel light (wavelength 543.5 nm) was incident on the glass substrate surface side of the sample for measurement from the normal direction of the light diffusion film, and the measurement was inclined by 4 向 in the normal direction from the light diffusion layer 10 2 side. The intensity of the transmitted laser light in the direction a 3 . The value obtained by dividing the intensity of the transmitted scattered light by the light intensity of the light source is the relative scattered light intensity I^/L. For measuring the relative scattered light intensity, an optical power meter (for example, "3292 03 Optical Power Sensor" manufactured by Yokogawa Electric Co., Ltd. and r 3292 〇ptical p〇wer Meter manufactured by the same company) is used. (2) Transmission is clear. In the light-diffusing film of the present invention, the sum of transmission sharpness (hereinafter, simply referred to as "transmission clarity") obtained by optical combing of 0.125 mm, 0.5 mm, 1. 〇mm, and 2.0 mm is 70% or more. 1 80% or less. The so-called "the sum of the transmission resolutions obtained by passing the optical combs of 0.125 mm, 0.5 mm, 1.0 mm and 2.0 mm" means that the width ratio of the dark portion to the bright portion is 1:1 and the width is 0.125 according to JIS K 7105. The sum of transmission resolution (image resolution) measured by four types of combs of mm, 0_5 mm, 1.0 mm, and 2.0 mm. Therefore, the maximum value of "transmission resolution" at this 150611.doc 201120485 is 400%. When the transmission resolution of the light diffusion film is less than 70%, the light scattering is too strong. Therefore, when the light diffusion film is applied to a liquid crystal display device, for example, in a white display, the front contrast is lowered due to the following reasons. Display quality deterioration: & crystal display I is placed in the front direction of the light due to excessive scattering of the light diffusion layer. Moreover, when the transmission resolution exceeds 180%, the surface uneven structure of the ruthenium film on the backlight side of the liquid crystal display device and the regular matrix structure of the color filter of the liquid crystal cell are generated. The superposition of transmitted light. The transmission clarity of the light-diffusing film is preferably 7% by mass or more and 150% or less by more preferably 90% or more and 140% or less. The measurement of the transmission clarity is carried out by measuring a sample for measurement in which a light-diffusing film is bonded to a glass substrate by a base film work side using an optically transparent adhesive, similarly to the measurement of the intensity of the scattered light. . Thereby, warpage of the film at the time of measurement can be prevented, and measurement reproducibility can be improved. As the measuring device, an image sharpness measuring device according to JIS K 7 05 (for example, rICM_1Dp manufactured by Suga Test Instruments Co., Ltd.) can be used. (3) Haze in the light diffusing film of the present invention, the total haze is 40% or more and 70% or less, and the internal haze is 40% or more and 70% or less. Further, the surface haze caused by the surface shape of the light diffusion layer 102 is set to be less than 2%. Here, the "total mist" "degree" is the ratio of the total light transmittance (Tt) of the light transmitted by the light diffusing film to the light diffused film and the diffused light transmittance (Td) transmitted by the light diffusing film. (丨) Find: Total haze (%) = (Td/Tt) x 100 (η 150611.doc 201120485 Total light transmittance (Tt) is the parallel light transmission (τΡ) transmitted in a state coaxial with the incident light. The sum of the diffused light transmittance (Td), the total light transmittance (Tt) and the diffused light transmittance (Td) are measured according to JIS κ 7361. The so-called "internal haze" of the light diffusing film, Means the haze caused by the surface shape of the light diffusion layer 102 in the total haze (surface haze) Other than haze. When the total haze and / or internal haze is less than 4%, the light scattering is not filled with the angle of view. Also, the total haze and / or internal haze exceeds 7〇%. In the case where the light scattering is too strong, and the light diffusing film is applied to the liquid crystal display device, for example, in the black display, t causes a decrease in front contrast due to the following reasons: deterioration in display quality: relative to the liquid crystal display In the front direction of the device, the light leaking from the employee is scattered in the front direction by the light diffusion layer, etc. Further, when the total haze and/or the internal haze exceeds 7 G%, the transparency of the light diffusion film is impaired. The total haze and the internal haze are preferably 5% or more and 65 % or less, respectively. Further, when the surface shape from the light diffusion layer 1 〇 2 is more than 2% from the haze, It will be whitened due to diffuse reflection on the surface. In order to prevent 'whiteness more effectively, the surface haze is preferably less than 1%. Specifically, the total haze, internal haze and surface haze of the light diffusing film are Perform H measurement as follows: First, in order to prevent warpage of the film, use the first transparent adhesive. In the light-diffusing layer (4), the base film 1G1 side is bonded to the glass substrate so that the light-diffusion layer 1〇2 is formed as a surface, and a sample for measurement is prepared, and the total haze 'total mist is measured for the sample for measurement. The degree of transmission (Tt) and diffused light are measured by a haze transmittance meter according to JIS Κ 7136 (for example, a haze meter manufactured by Murakami Color Technology Co., Ltd.). The transmittance (Td) is calculated by the above formula (1). Then, using glycerin, a triacetyl cellulose film having a haze of approximately 〇% is bonded to the surface of the light diffusion layer 102, and the total haze is as described above. The measurement was carried out in the same manner as the haze. The surface haze caused by the surface shape of the light-diffusing layer 丨02 is substantially eliminated by the bonded triacetyl cellulose film, and the haze can be regarded as the "internal haze" of the light-diffusing film. Therefore, the "surface haze" of the light diffusing film can be obtained by the following formula (2): Surface haze (%) = total haze (%) - internal haze (%) (2) [The surface of the light diffusing film Shape] In the light-diffusing film of the present invention, the surface roughness average of JIS B 0601 is based on the surface of the light-diffusing layer 1〇2 (the surface opposite to the substrate film 101).

Ra為〇_2 _以下,較佳為u _以下。於光擴散層1〇2表 面之中心線平均粗糙度以超出〇 2 μηι之情形時,泛白變得 明顯。所謂依據JIS Β 0601之中心線平均粗縫度以,係指 當自粗糙度曲線於其平均線方向僅截取基準長度1,於該 截取部分之平均線方向取χ軸,於縱倍率方向取^軸而以 何⑻表料财曲線時,將藉由下述式(3)求出之值以微 米(μιη)單位而表示者:Ra is 〇_2 _ or less, preferably u _ or less. When the average roughness of the center line of the surface of the light diffusion layer 1 〇 2 exceeds 〇 2 μηι, whitening becomes apparent. The average thick seam degree of the center line according to JIS Β 0601 means that when the self-roughness curve only intercepts the reference length 1 in the average line direction, the 线 axis is taken in the average line direction of the cut portion, and is taken in the direction of the longitudinal magnification. When the axis is used to indicate the financial curve, the value obtained by the following formula (3) is expressed in units of micrometers (μιη):

Ra = J jo {f(x)}dx (3) 中心線平均粗链度Ra可使用依據JIS B 〇6〇1之共焦干擾 150611.doc 201120485 顯微鏡(例如Optical Solution股份有限公司製造之 「Ρίμ2300」),藉由可根據上述計算式(3)計算出&amp;之程 式軟體而算出。 其次,對具有如上所述之光學特性及表面形狀的本發明 之光擴散膜之構成進行更加具體之說明。 [基材膜] 作為本發明中所使用之基材膜101,只要為透光性者即 可,例如可使用玻璃或塑膠膜等。作為塑膠膜,只要具有 適當之透明性及機械強度即可。具體而言,例如可列舉: TAC(三乙醯纖維素).等纖維素乙酸酯系樹脂,丙烯酸系樹 脂,聚碳酸酯樹脂、聚對苯二甲酸乙二酯等聚酯系樹脂, 聚乙烯、聚丙烯等聚烯烴系樹脂等。基材膜1〇1之層厚例 如為10〜500 μηι,較佳為20〜300 μιη ° [光擴散層] 本發明之光擴散膜具備積層於基材膜1〇1上之光擴散層 102。光擴散層102係將透光性樹脂ι〇3作為基材之層,且 係於透光性樹脂1 〇3中分散透光性微粒子丨〇4而成。如上所 述,光擴散層102表面(與基材膜1〇1相反側之表面)之依據 JIS Β 0601的中心線平均粗糙度Ra設為〇 2 μπι以下,較佳 為〇·1 μηι以下。再者,於基材膜1〇1與光擴散層1〇2之間亦 可具備其他層(包括接著劑層)。 作為透光性樹脂103,只要為具有透光性者,則並無特 別限定’例如可使用紫外線硬化型樹脂、電子束硬化型樹 脂等電離放射線硬化型樹脂或熱硬化型樹脂之硬化物,熱 150611.doc -12· 201120485 塑性樹脂、金屬烷氧化物之硬化物等。其中,適宜為電離 放射線硬化型樹脂,原因在於其具有較高之硬度,作為設 置於液晶顯示裝置表面之光擴散膜可賦予較高之耐磨性。 於使用電離放射線硬化型樹脂、熱硬化型樹脂或金屬院氧 化物之情形時,藉由照射電離放射線或進行加熱使該樹脂 硬化,藉此形成透光性樹脂103。 作為電離放射線硬化型樹脂,可列舉··多元醇之丙稀酸 酯或曱基丙稀酸酯之類的多官能性丙烯酸酯;由二異氰酸 S旨、與多元醇及丙烯酸或甲基丙烯酸之羥基酷等合成之多 官能丙烯酸胺基曱酸酯等。又,除該等以外,亦可使用具 有丙烯酸酯系官能基之聚醚樹脂、聚酯樹脂、環氧樹脂、 醇酸樹脂、螺縮醛樹脂、聚丁二烯樹脂、多硫醇多烯樹脂 (polythiol polyene resin)等。 作為熱硬化型樹脂,可列舉包含丙稀酸多元醇與異氰酸 S曰預I物之熱硬化型胺基甲酸酯樹脂,此外亦可列舉紛樹 脂、脲二聚氰胺樹脂、環氧樹脂、不飽和聚酯樹脂、聚石夕 氧樹脂。 作為熱塑性樹脂,可列舉:乙醯基纖維素、硝基纖維 素、乙醯丁基纖維素、乙基纖維素、曱基纖維素等纖維素 衍生物,乙酸乙烯酯及其共聚物、氯乙烯及其共聚物 '偏 二氯乙烯及其共聚物等乙烯系樹脂;聚乙烯甲縮醛、聚乙 烯丁縮醛等縮醛系樹脂;丙烯酸系樹脂及其共聚物、曱基 丙烯酸系樹脂及其共聚物等丙烯酸系樹脂;聚苯乙烯系樹 脂,聚醯胺系樹脂;聚酯系樹脂;聚碳酸酯系樹脂等。 150611.doc 201120485 作為金屬烧氧化物,可使用將錢氧化物系材料作為原 料之氧切系基質等。具體為四甲氧基魏、日乙氧基石夕 烧等,可藉由水解或脫水縮合㈣成無㈣或有機無機複 合系基質(透光性樹脂)。 又,作為本發明中所使用之透光性微粒子1〇4,可使用 具有透光性之有機微粒子或無機微粒子。例如可列舉包括 丙烯酸系樹脂、三聚氰胺樹脂1乙烯、聚苯乙烯、有機 聚矽氧樹脂、丙烯酸-苯乙烯共聚物等之有機微粒子,或 者包括碳酸鈣、二氧化矽、氧化鋁、碳酸鋇、硫酸鋇、氧 化鈦、玻璃等之無機微粒子等。x,亦可使用有機聚合物 之球狀物或玻璃中空珠粒。透光性微粒子1〇4可由丨種微粒 子構成,亦可含有2種以上微粒子。透光性微粒子1〇4之形 狀可為球狀、扁平狀、板狀、針狀、不定形狀等之任一 者,較佳為球狀或近球狀。 此處,透光性微粒子1〇4之重量平均粒徑較佳為〇5 μιη 8 μιη以下。若透光 μπι,則存在如下情 nm之可見光充分散 ’相對散射光強度 以上、1 5 μηι以下,更佳為4 μπι以上、 性微粒子1 04之重量平均粒徑未達〇 5 形:無法使波長區域為380 nm至800 射’光擴散膜之光擴散性變得不充分 I^/Li未達到0.0002%以上,結果無法獲得廣視角。又於 重1平均粒徑超出15 μηι時,若將透射清晰度調整至7〇0/。 以上、1 80%以下,則存在如下情形:光散射變得過弱’ 故而無法獲得充分之光散射性,同樣地相對散射光強度 L2/L|未達到0.0002%以上。 150611.doc 14 201120485 關於透光性微粒子104,其粒徑之標準偏差與重量平均 粒徑之比(標準偏差/重量平均粒徑)較佳為〇 5以下更佳 為〇.4以下。於該比超出〇.5時’存在如下情形:透光性微 粒子包含粒徑極其大者,於光擴散層之表面經常產生突起 狀缺陷,光擴散膜之表面霧度及/或中心線平均粗糙度以 脫離上述特定範圍。再者,透光性微粒子1〇4之重量平均 粒徑及粒徑之標準偏差係使用利用庫爾特原理(細孔電阻 法)之庫爾特粒子計數器(貝克曼庫爾特公司製造)進行測 定。 光擴散層102中之透光性微粒子1〇4之含量,相對於透光 性樹脂103之1〇〇重量份,較佳為25重量份以上、6〇重量份 以下’更佳為30重#份以上、5G重量份以下。若透光性微 粒子104之含量相對於透光性樹脂1〇〇重量份而未達25重量 份,則存在如下情形:光擴散膜之光擴散性變得不充分, 相對散射光強度LVL未達到0.0002%以上,結果無法獲得 廣視角,又,透射清晰度超出i 8〇%,結果產生疊紋。 又,若透光性微粒子104之含量相對於透光性樹脂1〇〇重量 份而超出60重量份,則存在如下情形:相對散射光強度 k/L〗超出0.001%,或者總霧度及/或内部霧度超出, 結果正面對比度降低或光擴散膜之透明性降低。 透光性微粒子104之折射率較佳為大於透光性樹脂1〇3之 折射率,其差值較佳為〇 〇4至〇15之範圍。藉由將透光性 微粒子104與透光性樹脂103之折射率差設於上述範圍内, 會因透光性微粒子104與透光性樹脂103之折射率差而產生 150611.doc 15 201120485 適當之内部散射,容易 制在上述特定範圍内, 其控制在上述特定範圍 將光擴政膜之總霧度及内部霧度控 並且容易適當抑制透射清晰度,將 内。 又 尤獷散屬之表面(與基材膜101相反側之表面)較佳 為僅由透光性樹脂1G3所形成1,較佳為透光性微粒子 ⑽不自光擴散㈣2表面突起,完全掩埋於光擴散層ι〇2 内因此,光擴散層102之層厚較佳為相對於透光性微粒 子1〇4之重量平均粒徑而為1倍以上、3倍以下。於光擴散 層1〇2之層厚未達透光性微粒子1()4之重量平均粒徑之w 時三存在如下情形:難以將光擴散膜之表面霧度控制在上 述範圍内,由此產生泛白。又,於光擴散層102之層厚超 出透光性微粒子丨04之重量平均粒徑之3倍時,存在如下情 形:光擴散層H)2之膜厚變得過厚,@之光擴散膜之光擴 散性變得過強,故而相對散射光強度。/^超出〇 〇〇ι% , 結果正面對比度降低。 光擴政層102之層厚較佳為1〜3〇 μιη之範圍。於光擴散層 102之層厚未達i μπι時,存在如下情形:無法賦予配置於 液晶顯示裝置之視覺確認側表面的光擴散膜所要求之充分 之耐磨性。又,於層厚超出3 〇 pm之情形時所製作之光 擴散膜之捲曲量增大,貼合於其他膜或基板上等之操作性 變差。 再者’本發明之光擴散膜亦可如圖4所示之光擴散膜3〇〇 般’為具有積層於光擴散層102上之包含透光性樹脂之樹 脂層105者。於該情形時,樹脂層ι〇5之表面之中心線平均 150611.doc •16· 201120485 粗趟度Ra係設為0.2 μπι以下。 又,本發明之光擴散膜亦可進而具備積層於光擴散層 102上(與基材膜101相反側之面)之抗反射層。抗反射層可 直接形成於擴散膜上,亦可另外準備於透明膜上形成有抗 反射層之抗反射膜,使用黏著劑或接著劑將其積層於擴散 膜上抗反射層係為了無限降低反射率而設置者,藉由形 成抗反射層,可防止映入至顯示晝面中。作為抗反射層, 可列舉:由折射率低於光擴散層102之材料所構成之低折 射率層;以及由折射率高於光擴散層102之材料所構成之 高折射率層、與由折射率低於該高折射率層之材料所構成 之低折射率層的積層結構#。於使用黏著劑或接著劑將抗 反射膜積層於擴散膜上之情形日夺,可使用冑售之抗反射 膜。 又/、要光擴散層102表面之中心線平均粗糙度以為〇 2 μιη以下’則本發明之光擴散膜亦可進而具備積層於光擴 散層102上(與基材膜101相反側之面)之具有表面凹凸之 層。具有表面凹凸之層可直接形成於擴散膜上,亦可另外 準備於透明膜上形成有具有表面凹凸之層的具有表面凹凸 之膜,使用黏著劑或接著劑將其積層於擴散膜上。 作為具有表面凹凸之層,例如可列舉防眩層。防眩層係 為了利用表面之漫反射來降低對顯示畫面之映入而設置。 於光擴散層102上設置防眩層之情形時,可使用公知之方 法,例如可藉由在光擴散層102上塗敷含有透光性微粒子 之紫外線硬化型樹脂組合物,並進行硬化而獲得防眩層。 15061 l.doc 17 201120485 於使用黏著劑或接著劑將防眩膜積層於擴散膜之情形時, 可使用市售之防眩膜,亦可依據上述方法,製作於透明膜 上形成有防眩層者。 [光擴散膜之製造方法] 其次,對用以製造本發明之光擴散膜之方法進行說明。 本發明之光擴散膜較佳為藉由包括如下步驟(A)及(B)之方 法而製造。 (A) 於基材膜ιοί上塗佈分散有透光性微粒子ι〇4之樹脂 液的步驟,以及 (B) 於包含上述樹脂液之層之表面轉印模具之鏡面或凹 凸面的步驟。 上述步驟(A)中所使用之樹脂液含有透光性微粒子丨〇4、 構成光擴散層102之透光性樹脂1〇3或形成其之樹脂(例如 電離放射線硬化型樹脂、熱硬化型樹脂或金屬烷氧化 物)及視而要之〉谷劑等其他成分。於使用紫外線硬化型 樹脂作為形成透光性樹脂1〇3之樹脂時,上述樹脂液含有 光聚合起始劑(自由基聚合起始劑)。作為光聚合起始劑, 例如可使用.苯乙酮系光聚合起始劑、安息香系光聚合起 始劑、二苯甲酮系光聚合起始劑' 9_氧硫咄p星系光聚合起 始劑、二畊系光聚合起始劑、嘮二唑系光聚合起始劑等。 又’作為光聚合起始劑,例如亦可使用2,4,6_三甲基苯甲 醯基二苯基氧化膦、2,2,_雙(鄰氯苯基)·4,4,,5,5,_四苯基_ 1,2 -聯咪唑、1〇_ 丁基_2_氣吖啶酮、2_乙基蒽醌、苯偶 醯、9,10-菲醌、樟腦醌、苯基乙醛酸甲酯、二茂鈦化合物 150611.doc 201120485 等°光聚合起始劑之使用量相對於樹脂液中含有之樹脂 100重量份通常為0.5〜20重量份,較佳為1〜5重量份。再 者’為了使光擴散膜之光學特性及表面形狀成為均質者, 樹脂溶液中之透光性微粒子104之分散較佳為等向分散。 上述樹脂液於基材膜上之塗佈例如可藉由凹板印刷塗佈 法、微壓花輥筒式塗佈法、棒式塗佈法、到刀塗佈法、氣 刀塗佈法、接觸式塗佈法、模塗法等進行。於塗佈樹脂液 時,較佳為如上所述般,以光擴散層1〇2之膜厚相對於透 光性微粒子104之重量平均粒徑而為}倍以上、3倍以下之 方式調整塗佈膜厚。 為了改良樹脂液之塗佈性或與光擴散層1〇2之接著性, 亦可對基材膜101之表面(光擴散層側表面)實施各種表面處 理。作為表面處理,可列舉:電暈放電處理、輝光放電處 理、酸表面處理、鹼表面處理、紫外線照射處理等。又, 亦可於基材膜上形成例如底塗層等其他層,於該其他層上 塗佈樹脂液。 又,於將本發明之光擴散膜用作下述偏光膜之保護膜之 情形時,為了提高基材膜101與偏光膜之接著性較佳為 藉由各種表面處理預先將基材膜101之表面(與光擴散層相 反側之表面)親水化。 上述步驟(B)係於包含上述樹脂液之層之表面轉印模呈 之鏡面或…。具體而言’為了獲得具有如圖i所示: 平坦表面之光擴散層,於包含上述樹脂液之層之表面穷著 具有鏡面之模具(鏡面模具)之該鏡面,而轉印鏡面。:, 150611.doc 201120485 為了獲得具有如圖)张-^ 力如圆2所不之凹凸表面形狀之光擴散層,於 包含上述樹脂液之芦 —^ θ之表面岔者具有凹凸面之模具(壓紋 加工用模具)之該 凹凸面,而轉印凹凸面。鏡面模具可為 鏡面金屬製觀,又,厭上 Μ紋加工用模具可為壓紋加工用金屬 裝輥:¾此&amp; ’藉由將模具之鏡面或凹凸面轉印於光擴散 層102之表面’可切實地防止透光性微粒子突起至光擴散 層表面’而可形成具有所需表面形狀之光擴散層。 &quot;於使用電離放射線硬化型樹脂、熱硬化型樹脂或金屬烷 氧化物作為形成透光性樹脂丨〇3之樹脂之情形時係形成 包含上述樹脂液之層,視需要進行乾燥(去除溶劑),於對 該包含樹脂液之層之表面密著模具之鏡面或凹凸面之狀態 下,或於密著後,藉由照射電離放射線(使用電離放射線 硬化型樹脂之情形)或加熱(使用熱硬化型樹脂或金屬烷氧 化物之情形)’使包含樹脂液之層硬化。作為電離放射 線,可根據樹脂液中所含之樹脂之種類,自紫外線、電子 束近备、外線、可見光、近紅外線、紅外線、X射線等中 適當選擇,該等中較佳為紫外線、電子束,尤佳為紫外 線,原因在於操作簡便且可獲得高能量。 作為紫外線之光源,例如可使用低壓水銀燈、中壓水銀 燈、尚麼水銀燈、超高壓水銀燈、碳弧燈、金屬齒素燈、 氙氣燈等。又,亦可使用ArF準分子雷射、KrF準分子雷 射、準分子燈或同步加速器放射光等。該等中,較佳為使 用超高壓水銀燈、高壓水銀燈、低壓水銀燈、氣弧、金屬 鹵素燈》 15061 丨.doc *20- 201120485 又’作為電子束,可列舉自Cockcroft-Walton型、Van De Graaff型、共振變壓型、絕緣芯變壓型、直線型、高頻 而壓加速器型(dynamitron type)、高頻型等之各種電子束 加速器釋放之具有50〜1〇〇〇 keV、較佳為100-300 keV之能 量的電子束。 其次’對用以製造本發明之光擴散膜之較佳實施形態進 行說明。該較佳實施形態之製造方法包括如下步驟:為了 連續製造本發明之光擴散膜而連續送出捲成輥狀之基材膜 1 〇 1,塗佈分散有透光性微粒子i 04之樹脂液,視需要加以 乾燥,使包含樹脂液之層硬化;以及捲取所得之光擴散 膜。該製造方法例如可使用圖5所示之製造裝置來實施。 以下,一面參照圖5,一面對該較佳實施形態之製造方法 進行說明。 首先,藉由捲出裝置501連續捲出基材膜1〇1。其次,使 用塗敷裝置502及與其相對向之支承輥5〇3,於捲出之基材 膜101上塗敷分散有透光性微粒子1〇4之樹脂液。繼而,於 樹脂液中含有溶劑之情形時,藉由使之通過乾燥機504進 行乾燥。繼而,將設置有包含樹脂液之層之基材膜⑻以 該包含樹脂液之層肖鏡面金屬製報或壓紋加工用金屬製輕 505密著之方式捲在鏡面金屬製輥或壓紋加工用金屬製輥 5〇5與夾輥506之間。藉此,於包含樹脂液之層之表面轉印 鏡面金屬製輥之鏡面或壓紋加工用金屬製輥之凹凸面。铁 後,於基材膜101捲在鏡面金屬锣 虫喝展輥或壓紋加工用金屬製 輥505上之狀態下’通過基材 联1 υ 1 ,由紫外線照射裝置 150611.doc •21 · 201120485 508照射紫外線,藉此使包含樹脂液之層硬化。照射面因 紫外線照射而變成高溫,故而鏡面金屬製輥或壓紋加工用 金屬製輥505較佳為於其内部包含用以將其表面溫度調整 為室溫〜80。(:左右的冷卻裝置。又,紫外線照射裝置5〇8可 使用1個機器或複數個機器。形成有光擴散層1〇2之基材膜 1〇1(光擴散膜)藉由剝離輥507而自鏡面金屬製輥或壓紋加 工用金屬製輥505剝離。以上述方式製作之光擴散膜係捲 取至捲取裝置509。此時’為了保護光擴散層1〇2,亦可經 由具有再剝離性之黏著劑層面於光擴散層iG2表面貼 附包含聚對苯二甲酸乙二酯或聚乙烯等之保護膜,一面進 行捲取。 再者,亦可於藉由剝離㈣7而自鏡面金屬製親或壓紋 加工用金屬製輥剝離後,追加照射紫外線。又,亦可於將 形成有包含未硬化之樹脂液之層的基材膜igi自鏡面金屬 製輥或麼紋加工用金屬製輥5〇5剝離後,照射紫外線使其 硬化,來代替於捲在鏡面金屬製輥或壓紋加工用金屬製輥 505上之狀態下照射紫外線。 於製造本發明之光擴散膜時,為了使光擴散膜之各物, 在本發明中規定之範圍内’例如可使用下述方法。 首先,任意選擇上述基材膜、透光性微粒子、透光性] 脂或形成透光性樹脂之樹脂,藉由上述方法穿〗造 膜,敎所得光擴散膜之錢性(L2/Li、透射清晰度、; 霧度、内部霧度、中心線平均粗縫度Ra、表面霧度等) 並且’將該值與作為目標之值或值之範圍進行比較,於; 150611.doc •22· 201120485 離目標之情形時,根據各物性,依據下述基準,例 如對透光性微粒子與透光性樹脂之折射率差透光性微粒 子之含量、光擴散層之厚度、透光性微粒子之重量平均粒 裎、光擴散層之表面粗糙度之任一條件或其2種以上之條 件進行調整,再次製造光擴散膜,測定其各物性。重複該 該操作,直至所得之光擴散膜表現出目標之各物性為止, 藉此可製成目標之光擴散膜。 (1) 若增加透光性微粒子與透光性樹脂之折射率差則 LVL】之值傾向於增大,總霧度之值傾向於增大。相反地, 若減少透光性微粒子與透光性樹脂之折射率差,則L2/Li2 值傾向於減小,總霧度之值傾向於減小。再者,透光性微 粒子與透光性樹脂之折射率差之調整可藉由改變所使用之 透光性微粒子種類及/或透光性樹脂種類而進行。 (2) 若增加透光性微粒子之含量,則L2/Li之值傾向於增 大,透射清晰度之值傾向於減小,總霧度之值傾向於增 大’中心線平均粗糙度以之值傾向於增大。相反地,若減 少透光性微粒子之含量,則1^/1^之值傾向於減小,透射清 晰度之值傾向於增大,總霧度之值傾向於減小,中心線平 均粗輪度Ra之值傾向於減小。 (3) 若增加光擴散層之厚度,則L2/Ll之值傾向於增大, 透射清晰度之值傾向於減小,總霧度之值傾向於增大’内 部霧度之值傾向於增大,中心線平均粗糙度Ra之值傾向於 減小。相反地,若減少光擴散層之厚度,則L2/Lii值傾向 於減小,透射清晰度之值傾向於增大,總霧度之值傾向於 150611.doc •23· 201120485 減小,内部霧度之值傾向於減小,中心線平均粗糙度Ra之 值傾向於增大。 (4) 若增加透光性微粒子之重量平均粒徑,則内部霧度 之值傾向於減小,中心線平均粗縫度Ra之值傾向於增大。 相反地,若減少透光性微粒子之重量平均粒徑,則内部霧 度之值傾向於增大,中心線平均粗糙度Ra之值傾向於減 /J\ 〇 (5) 若減少總霧度之值與内部霧度之值之差,則表面霧 度之值減小’相反地,若增加總霧度之值與内部霧度之值 之差’則表面霧度之值變大。 &lt;光擴散性偏光板&gt; 上述本發明之光擴散膜可藉由與偏光板進行組合而形成 光擴散性偏光板。光擴散性偏光板係具有偏光功能與防眩 (光擴散)功能之多功能膜。本發明之光擴散性偏光板係具 備至少具有偏光膜之偏光板、及經由黏著劑層或接著劑層 以基材膜側與該偏光板相對向之方式積層於該偏光板上的 上述本發明之光擴散膜者。偏光板可為先前公知之構成, 例如通常為於偏光膜之單面或兩面具有保護膜者。又,偏 光板亦可為偏光膜本身.圖6係表示本發明之光擴散性偏 光板之較佳一例的概略剖面圖。圖6所示之光擴散性偏光 板600具備偏光膜6〇1、貼附於偏光膜6〇ι之一面之保護膜 602 '及貼附於另一面之光擴散膜⑽。光擴散膜100係以 其基材膜HH側與偏光板之偏光膜6G1相對向之方式進行貼 附。光擴散膜⑽及保護⑽2經由未圖示之接著劑層㈣ 1506】丨.doc -24- 201120485 附於偏光膜601上。此種經由接著劑層使偏光膜與光擴散 膜貼附之構成,即使用光擴散膜作為偏光膜之保護膜之構 成,有利於光擴散性偏光板之薄膜化。 作為偏光膜601,例如可列舉:於包含聚乙烯醇系樹 月曰、聚乙酸乙烯酯樹脂、乙烯/乙酸乙烯酯(EVA)樹脂、聚 醯胺樹脂 '聚酯系樹脂等之膜上吸附配向二色性染料或碘 而成者;於經分子配向之聚乙烯醇膜中,含有聚乙烯醇之 一色性脫水產物(聚伸乙烯)之經配向之分子鏈的聚乙烯醇/ 聚伸乙烯共聚物等。尤其是,於聚乙烯醇系樹脂膜上吸附 配向一色性染料或碘而成者適宜用作偏光膜。偏光膜之厚 度並無特別限定,通常就偏光板之薄型化等觀點而言,較 佳為100 μπι以下,更佳為1〇〜5〇 4爪之範圍更佳為25〜35 μηι之範圍。 作為偏光膜601之保護膜602,較佳為包含雙折射性較低 且透明性或機械強度、熱穩定性或防水性等優異之聚合物 的膜。作為上述膜,例如可列舉將如下樹脂成形加工成膜 狀而成者_ TAC(三乙醯纖維素)等纖維素乙酸酯系樹脂; 丙烯酸系樹脂;四氟乙烯/六氟丙烯系共聚物之類之氟系 樹脂;聚碳酸㈣脂;聚對苯:甲酸乙二@旨等聚醋系樹 脂;聚醯亞胺系樹脂;聚砜系樹脂;聚醚砜系樹脂;聚苯 乙烯系祕月曰,《乙烯醇系樹脂;聚氣乙烯系樹脂;聚烯烴 ,或聚酿胺系樹脂等。該等中,就偏光特性或财久性 等方面而。’較佳為使用以驗等對表面進行專化處理之三 醯、截、准素膜、或降冰片烯系熱塑性樹脂膜。降冰片稀系 150611.doc -25· 201120485 熱塑性樹脂膜由於耐濕熱性較高,故而可大幅度提高偏光 板之耐久性’並且由於吸濕性較小,故而尺寸穩定性較 回因而特別適宜。成形為膜之加工可使用丨堯鑄法、壓光 法、擠出法之先前公知方法。保護膜之厚度並無特別限 定,就偏光板之薄臈化等觀點而言,較佳為500 μιη以下, 更佳為5〜3〇〇 μΠ1之範圍,更佳為5〜150 μιη之範圍。 關於如上構成之光擴散性偏光板,典型的是,於安裝於 液晶顯不裝置時,以光擴散膜成為光出射側(視覺確認側) 之方式’經由黏著劑層等’貼附於液晶面板之玻璃基板上 而組入至液晶顯示裝置中。 再者’光擴政性偏光板亦可進而具備積層於光擴散層上 之抗反射層。作為具備抗反射層之光擴散性偏光板,例如 可列舉:於包含平坦面之光擴散層1〇2之表面,直接積層 杬反射層106之光擴散性偏光板(參照圖丨丨經由接著劑層 或黏著劑層108 ’於包含平坦面之光擴散層ι〇2之表面,積 層包含透明膜107與抗反射層1〇6之積層體之抗反射膜的光 擴散性偏光板(參照圖12);於具有凹凸之光擴散層1 〇2之表 面’直接積層抗反射層1 〇6之光擴散性偏光板(參照圖丨3); 經由接著劑層或黏著劑層1 〇8 ’於具有凹凸之光擴散層1 〇2 之表面,積層包含透明膜107與抗反射層ι〇6之積層體的抗 反射膜的光擴散性偏光板(參照圖14);於積層於具有凹凸 之光擴散層102之表面的包含透光性樹脂之樹脂層ι〇5之表 面’直接積層抗反射層106的光擴散性偏光板(參照圖丨5); 經由接著劑層或黏著劑層108,於積層於具有凹凸之光擴 150611.doc -26· 201120485 散層1〇2之表面的包含透光性樹脂之樹脂層105之表面,積 層包含透明膜與抗反射層⑽之積層體的抗反射膜的光 擴散性偏光板(參照圖16)等。 又,光擴散性偏光板亦可進而具備積層於 防眩層等具有表面凹凸之層。料具有表面凹凸之光擴散 性偏光板’例如可列舉:於包含平坦面之光擴散層ι〇2之 表面,直接積層具有表面凹凸之層8〇1的光擴散性偏光板 (參照圖17);經由接著劑層或黏著劑層1〇8,於包含平坦面 之光擴散層102之表面,積層包含透明膜1〇7與具有表面凹 凸之層801之積層體的膜的光擴散性偏光板(參照圖18”於 具有凹凸之光擴散層102之表面,直接積層具有表面凹&amp; 之層801的光擴散性偏光板(參照圖19);經由接著劑層或黏 著劑層108,於具有凹凸之光擴散層1〇2之表面,積層包含 透明膜107與具有表面凹凸之層8〇1之積層體的膜的光擴散 性偏光板(參照圖20);於積層於具有凹凸之光擴散層} 〇2之 表面的包含透光性樹脂之樹脂層1〇5之表面,直接積層具 有表面凹凸之層801的光擴散性偏光板(參照圖21);經由接 著劑層或黏著劑層1 08 ’於積層於具有凹凸之光擴散層1 〇2 之表面的包含透光性樹脂之樹脂層1〇5之表面,積層包含 透明膜107與具有表面凹凸之層8〇1之積層體的膜的光擴散 性偏光板(參照圖22)等。 &lt;液晶顯示裝置&gt; 其次,對本發明之液晶顯示裝置進行說明。本發明之液 晶顯示裝置係依序具備背光裝置、光偏向機構、背光側偏 150611.doc 27· 201120485 光板、液晶單元、及上述本發明之光擴散性偏光板者。圖 7係表示本發明之液晶顯示裝置之較佳一例的概略剖面 圖。圖7之液晶顯示裝置係正常顯白模式之TN方式之液晶 顯不裝置,且係依序配置背光裝置7〇2、光擴散板7〇3、作 為光偏向機構之2片稜鏡膜704a、704b、背光側偏光板 705、於一對透明基板711a、71 lb之間設置液晶層712而成 之液晶單7L 701、及由視覺確認側偏光板7〇6與本發明之光 擴散膜707構成之光擴散性偏光板而成。 如圖8所示,背光側偏光板7〇5與視覺確認側偏光板7〇6 係以該等之透射軸成為正交偏光之關係的方式進行配置。 又,2片稜鏡膜704a、704b之各自光入射側(背光裝置側)之 面為平坦面,且於光出射側(視覺確認側)之面(與背光側偏 光板705相對向之表面)平行地形成有複數個線狀稜鏡 74〗a、741b。並且,稜鏡膜7043係以其線狀稜鏡74u之稜 線742a之方向實質上與背光側偏光板7〇5之透射軸方向平 行的方式進行配置,稜鏡膜7〇4b係以其線狀稜鏡74ib之稜 線742b之方向實質上與構成光擴散性偏光板之視覺確認側 偏光板706之透射軸方向平行的方式進行配置。其中,亦 可以線狀稜鏡741 b之稜線742b之方向實質上與背光側偏光 板705之透射軸方向平行的方式配置稜鏡膜7〇仆,以線狀 棱鏡74 la之稜線742a之方向實質上與構成光擴散性偏光板 之視覺確認側偏光板706之透射軸方向平行的方式配置棱 鏡膜704a ^以下’對構成本發明之液晶顯示裝置之構成構 件進行更加詳細之說明。 I50611.doc • 28 · 201120485 [液晶早元] 液晶單元701具備藉由間隔件隔開特定距離而對向配置 之一對透明基板711a、711b、及於該一對透明基板71U、 711 b之間封入液晶而成之液晶層7 12。於一對透明基板 711a、711b中分別積層形成透明電極及配向膜,藉由對透 明電極間施加基於顯示資料之電壓而使液晶配向。關於液 晶單元701之顯示方式,於上述例中為TN方式,亦可使用 IPS方式、VA方式等顯示方式。 [背光裝置] 背光裝置702具備上面開口之長方體形狀之外殼72 1、及 於外殼721内並列配置之複數根作為線狀光源之冷陰極管 722。外级721係由樹脂材料或金屬材料成形而成,就於外 殼内周面反射自冷陰極管722放射之光的觀點而言,較理 想為至少外殼内周面為白色或銀色。作為光源,除了冷陰 極官以外,亦可使用線狀等各種形狀之LED(Light Emitting Diode,發光二極體)等。於使用線狀光源之情形 時,所配置之線狀光源之根數並無特別限定,就抑制發光 面之亮度不均等之觀點而言,較佳為鄰接之線狀光源之中 心間距離為1 5 〇1111至150 mm之範圍。再者,本發明中所使 用之背光裝置702並不限定於圖7所示之直下型者,可使用 於導光板之側面配置有線狀光源或點狀光源之側光型、或 平面狀光源型等各種者。 [光擴散機構] 本發明之液晶顯示裝置可具備配置於背光裝置7〇2與光 150611.doc -29- 201120485 偏向機構之間的作為光擴散機構之光擴散板703。光擴散 板7〇3係於基材中分散混合擴散劑而成之膜或片材。作為 該基材,可使用:聚碳酸酯樹脂、甲基丙烯酸系樹脂、曱 基丙烯酸曱酯與苯乙烯之共聚物樹脂、丙烯腈與苯乙烯之 共聚物樹脂、甲基丙烯酸與苯乙烯之共聚物樹脂、聚苯乙 烯樹月曰、聚氣乙稀樹脂、聚丙烯或聚甲基戊烯等聚烯烴樹 脂、環狀聚烯烴樹脂、聚對苯二曱酸乙二酯或聚萘二曱酸 乙二酯等聚酯樹脂、聚醯胺系樹脂、聚芳酯樹脂、聚醯亞 知系樹月曰等。再者,光擴散機構亦可為併用光擴散板與光 擴散膜者。 又,作為混合分散於基材中之擴散劑,可列舉:與基材 之材料不同種類之包含丙烯酸系樹脂、三聚氰胺樹脂、聚 乙烯樹脂、聚苯乙烯樹脂、有機聚矽氧樹脂、丙烯酸與苯 乙烯之共聚物等之有機微粒子,及包含碳酸舞、二氧化 矽、氧化鋁、碳酸鋇、硫酸鋇、氧化鈦、玻璃等之無機微 粒子等。所使用之擴散劑之種類可為1種或2種以上。又, 有機聚合物之球狀物或玻璃中空珠粒亦可用作擴散劑。擴 散劑之重量平均粒徑較佳為0.5〜30 μιη之範圍。又,擴散 劑之形狀可為球形、扁平、板狀、針狀等,較佳為球形。 [稜鏡膜(光偏向機構)] 於稜鏡膜704a、704b中,光入射面側(背光裝置側)為平 坦面,於光出射側之面(與背光側偏光板7〇5相對向之表面) 平行地形成有複數個剖面為前端較細之多角形狀,較佳為 三角形狀之線狀稜鏡741a、741b。作為稜鏡膜7〇4a、7〇仆 150611.doc •30- 201120485 之材料,例如可列舉:聚碳酸酯樹脂、ABs(Acryi〇nit^e Butadiene Styrene,丙烯腈_苯乙烯_ 丁二烯)樹脂、甲基丙 稀酸系樹脂、曱基丙稀酸甲醋與苯乙稀之共聚物樹脂、聚 $乙烯樹脂、丙烯腈與笨乙烯之共聚物樹脂、聚乙烯或聚 . @料聚稀炫樹脂等、或紫外線硬化型樹脂、電子束硬化 型樹脂等電離放射線硬化型樹脂。作為稜鏡膜之製作方 法’可利用異形擠出法、壓出成形法、射出成形法、輥轉 印法、雷射剝钱法、機械切割法、機械研削法、感光聚合 物製程法等公知方法來製造。該等方法可分別單獨使用, 或者亦可組合2種以上之方法。稜鏡膜7〇钝、7〇仆之厚度 通常為0.1〜15mm,較佳為〇.5〜1〇mm。 當與線狀稜鏡741a、741b之稜線742a、742b正交之垂直 剖面的剖面形狀例如為三角形時,該三角形之頂點中,形 成稜線之頂點之頂角θ(參照圖8)較佳為9〇〜u〇。之範圍。 又,該三角形可為各邊為等邊、不等邊之任一者,於欲向 正面方向(液晶顯示裝置之顯示面之法線方向)聚光之情形 時,較佳為光出射側之兩邊相等之等腰三角形。線狀稜鏡 之剖面形狀亦可根據來自面光源之出射光之特性而設定, ' 可形成具有曲線等之三角形以外之形狀。 • 上述稜鏡膜704a、70仆例如較佳為具有如下結構:具有 三角形狀之剖面之複數個線狀稜鏡741a、741b以與三角形 之頂角Θ相對之底邊互相鄰接之方式依序配置,且以複數 個線狀稜鏡741a、741b之稜線742a、742b互相大致平行之 方式排列。於該情形時,只要聚光能力不明顯減退,則線 150611.doc -31 · 201120485 狀棱鏡741a、7411)之剖面形狀之三角形中,其各頂點亦可 成為曲線形狀。各稜線間之距離通常為1〇〜5〇〇 μηι之範 圍,較佳為30〜200 μπι之範圍。 [偏光板] 構成光擴散性偏光板之背光側偏光板7〇5可使用上述 者。又’作為視覺確認側偏光板706,可使用先前公知 者。 [相位差膜] 本發明之液晶顯示裝置可如圖9所示,具備相位差板 708。於圖9中,相位差板7〇8係配置於背光側偏光板7〇5與 液晶單元701之間。該相位差板7〇8係於與液晶單元7〇1之 表面垂直之方向上相位差大致為零者,且係自正前方不產 生任何光學作用,自斜向觀察時表現出相位差,於補償液 曰曰單兀701中產生之相位差者。藉此,可獲得更廣之視 角,可獲得更加優異之顯示品質及色再現性。相位差板 708可配置於背光側偏光板7〇5與液晶單元7〇1之間、及視 覺確認側偏光板706與液晶單元7〇1之間之一者、或兩者。 作為相位差板708,例如可列舉:將聚碳酸酯樹脂或環 狀烯烴系聚合物樹脂形成膜,進而對該膜進行雙軸延伸而 成者;以及將液晶性單體塗佈於膜上,藉由光聚合反應固 疋其分子排列而成者等。相位差板7〇8係光學地補償液晶 排列者,ϋ而使用折射率特性與液晶排列相反者^具體而 吕,ΤΝ模式之液晶單元例如可較佳地使用「wv膜」(Fuji Film股份有限公司製造),STN模式之液晶顯示料例如可 I50611.doc •32· 201120485 卓乂么地使用「LC膜」(新日本石油股份有限公司製造), IPS模式之液晶顯示單元例如可較佳地使用雙軸性相位差 膜,VA模式之液晶顯示單元例如可較佳地使用組合△板及 c板之相位差板或雙軸性相位差膜,π單元模式之液晶顯示 單元例如可較佳地使用「⑽用卿膜」(叫nim股份有 限公司製造)等。 於如上構成之液晶顯示裝置中,參照圖7,自背光裝置 7〇2放射之光藉由光擴散板7〇3而擴散後,入射至稜鏡骐 704a ^於與背光側偏光板7〇5之透射軸方向正交之垂直叫 面中,相對於種鏡膜704a之下面而斜向入射之光改變前進 方向而向正面方向出射 '繼而,於稜鏡膜7⑽中,於與視 覺碎認側偏光板706之透射軸方向正交之剖面中,相對於 禮鏡膜觸之下面而斜向入射之光與上述同樣地’改變前 進方向而向正面方南m it 勹出射。因此,通過2片稜鏡膜7〇4a、 观之光成為於任_垂直剖面中均向正面方向聚光者, 故而正面方向之亮度提高。 繼而,向正面方向賦予指向性之光藉由背光側偏光板 7〇5形成偏光,併入射至液晶單元7〇ι。入射至液晶單元 7〇1之先,利用由電場控制之液晶層712之配向,對每個像 素控制偏光面而自液晶單元7〇1出射。並且,自液晶單元 7〇1出射之光通過視覺確認側偏光板706,進而通過光擴散 膜707而出射至顯示面側。 如此般,若# 9 μ &amp; Μ 右使用2片稜鏡膜704a、704b作為光偏向機 構’則可進一步接古λ , /扣阿入射至液晶單元701之光於正面方向 I50611.doc •33· 201120485 上之指向性,藉此可進一步提高正面方向之亮度。又,由 於使用本發明之光擴散膜,故而不會導致正面對比度降 低,而可獲得優異之光擴散性與較高之透射清晰度。 實施例 以下,列舉實施例,對本發明進行更加詳細之說明,但 本發明並不限定於該等實施例。再者,以下例中之光擴散 膜之光學特性及表面形狀、光擴散層之層厚以及所使用之 透光性微粒子之重量平均粒徑之測定方法如下所述。 (a)相對散射光強度 利用光學透明之黏著劑’將光擴散膜以其基材膜側貼合 於玻璃基板上而製成測定用樣品,使用該樣品進行測定。 自測定用樣品之玻璃基板面側向光擴散膜之法線方向入射 He-Ne雷射之平行光(波長543.5 nm),測定向自光擴散層側 之法線方向傾斜40。之方向A3透射的雷射光之強度L2,算 出將透射散射光之強度L2除以光源之光強度Ll之值作為相 對散射光強度I^/L!。測定係使用橫河電機股份有限公司製 造之「3292 03 Optical Power Sensor」及同一公司製造之 「3292 Optical Power Meter」。 進行該測定時’照射He-Ne雷射之光源係配置於與上述 玻璃基板相距43 0 mm之位置。作為受光器之上述功率計係 配置於與雷射光之出射點相距280 mm之位置,移動該功率 計以使其成為上述特定角度,測定出射之雷射光之強度。 又,照射至光擴散層之雷射光之強度,即自上述光源照 射之雷射光之強度係藉由測定不設置貼合有光擴散層之玻 150611.doc • 34· 201120485 璃基板而自上述光源直接入射至上述功率計時之光的強度 而求出。再者’該強度之測定係於與上述光源相距71〇 mm(=430 mm+ 280 mm)之位置配置上述功率計而進行。 (b) 透射清晰度 利用光學透明之黏著劑,將光擴散膜以其基材膜側貼合 於玻璃基板上而製成測定用樣品,使用該樣品進行測定。 測定係使用依據JIS K 7105之圖像清晰度測定器(Suga TestRa = J jo {f(x)}dx (3) The centerline average thick chain Ra can be used with the confocal interference according to JIS B 〇6〇1 150611.doc 201120485 microscope (for example, Ρίμ2300 manufactured by Optical Solution Co., Ltd.) ")) is calculated by calculating the software of &amp; according to the above formula (3). Next, the configuration of the light-diffusing film of the present invention having the optical characteristics and surface shape as described above will be more specifically described. [Base film] The base film 101 used in the present invention may be, for example, a glass or a plastic film, as long as it is translucent. As the plastic film, it is sufficient to have appropriate transparency and mechanical strength. Specifically, for example, a cellulose acetate resin such as TAC (triacetyl cellulose), an acrylic resin, a polyester resin such as a polycarbonate resin or polyethylene terephthalate, or the like, A polyolefin resin such as ethylene or polypropylene. The layer thickness of the base film 1〇1 is, for example, 10 to 500 μm, preferably 20 to 300 μm [Light diffusion layer] The light diffusion film of the present invention has the light diffusion layer 102 laminated on the base film 1〇1. . The light-diffusing layer 102 is obtained by dispersing the light-transmitting fine particles 丨〇4 in the light-transmitting resin 1 〇3. As described above, the center line average roughness Ra of the surface of the light-diffusing layer 102 (the surface opposite to the base film 1〇1) is set to 〇 2 μm or less, preferably 〇·1 μηι or less, in accordance with JIS Β 0601. Further, another layer (including an adhesive layer) may be provided between the base film 1〇1 and the light diffusion layer 1〇2. The translucent resin 103 is not particularly limited as long as it is translucent. For example, an ionizing radiation curable resin such as an ultraviolet curable resin or an electron beam curable resin or a cured product of a thermosetting resin can be used. 150611.doc -12· 201120485 Plastic resin, hardened metal alkoxide, etc. Among them, the ionizing radiation hardening type resin is suitable because it has a high hardness, and the light diffusion film provided on the surface of the liquid crystal display device can impart high abrasion resistance. When an ionizing radiation-curable resin, a thermosetting resin, or a metal oxide is used, the resin is cured by irradiation with ionizing radiation or heating, whereby the light-transmitting resin 103 is formed. Examples of the ionizing radiation curable resin include polyfunctional acrylates such as acrylates or mercapto acrylates of polyhydric alcohols; and diisocyanate S, and polyhydric alcohols and acrylic or methyl groups. A polyfunctional acrylamide decanoate synthesized by the hydroxy group of acrylic acid or the like. Further, in addition to these, a polyether resin having an acrylate functional group, a polyester resin, an epoxy resin, an alkyd resin, a acetal resin, a polybutadiene resin, or a polythiol polyene resin can also be used. (polythiol polyene resin) and the like. Examples of the thermosetting resin include a thermosetting urethane resin containing an acrylic acid polyol and an isocyanuric acid sulfonate, and a resin, a urea melamine resin, and an epoxy resin. Resin, unsaturated polyester resin, polyoxin. Examples of the thermoplastic resin include cellulose derivatives such as acetamino cellulose, nitrocellulose, acetyl butyl cellulose, ethyl cellulose, and decyl cellulose, vinyl acetate and copolymers thereof, and vinyl chloride. And copolymers thereof: vinyl resins such as vinylidene chloride and copolymers thereof; acetal resins such as polyvinylformal and polyvinyl butyral; acrylic resins and copolymers thereof, fluorenyl acrylic resins and Acrylic resin such as copolymer; polystyrene resin, polyamine resin; polyester resin; polycarbonate resin. 150611.doc 201120485 As the metal oxide oxide, an oxygen-cut substrate or the like which uses a money oxide material as a raw material can be used. Specifically, it is a tetramethoxy-wet, a Japanese ethoxylate, or the like, and may be hydrolyzed or dehydrated to form a tetra- or organic-inorganic composite matrix (transparent resin). Further, as the light-transmitting fine particles 1〇4 used in the present invention, organic fine particles or inorganic fine particles having light transmissivity can be used. For example, organic fine particles including an acrylic resin, a melamine resin 1 ethylene, a polystyrene, an organic polyoxynoxy resin, an acrylic-styrene copolymer, or the like may be mentioned, or include calcium carbonate, cerium oxide, aluminum oxide, cerium carbonate, sulfuric acid. Inorganic fine particles such as bismuth, titanium oxide, and glass. x, an organic polymer sphere or a glass hollow bead may also be used. The light-transmitting fine particles 1〇4 may be composed of fine particles or two or more kinds of fine particles. The shape of the light-transmitting fine particles 1〇4 may be any of a spherical shape, a flat shape, a plate shape, a needle shape, and an indefinite shape, and is preferably spherical or nearly spherical. Here, the weight average particle diameter of the light-transmitting fine particles 1〇4 is preferably 〇5 μm 8 μm or less. If the light transmission is μπι, there is a case where the visible light of the nm is sufficiently dispersed, the relative scattered light intensity is equal to or greater than 15 μηι, more preferably 4 μπι or more, and the weight average particle diameter of the fine particles 104 is less than 〇5 shape: In the wavelength region of 380 nm to 800, the light diffusing property of the light diffusing film becomes insufficient, and I^/Li does not reach 0.0002% or more, and as a result, a wide viewing angle cannot be obtained. When the average particle size of the weight 1 exceeds 15 μηι, the transmission resolution is adjusted to 7〇0/. When the amount is less than or equal to or less than 80%, the light scattering is too weak. Therefore, sufficient light scattering properties cannot be obtained, and similarly, the relative scattered light intensity L2/L| is not more than 0.0002%. 150611.doc 14 201120485 The ratio of the standard deviation of the particle diameter to the weight average particle diameter (standard deviation/weight average particle diameter) of the light-transmitting fine particles 104 is preferably 〇 5 or less, more preferably 〇. When the ratio exceeds 〇.5, the following cases occur: the light-transmitting fine particles contain extremely large particle diameters, and protrusion-like defects are often generated on the surface of the light-diffusing layer, and the surface haze and/or the center line average roughness of the light-diffusing film To deviate from the above specific range. In addition, the standard deviation of the weight average particle diameter and the particle diameter of the light-transmitting fine particles 1〇4 is performed using a Coulter particle counter (manufactured by Beckman Coulter Co., Ltd.) using the Coulter principle (fine pore resistance method). Determination. The content of the light-transmitting fine particles 1〇4 in the light-diffusing layer 102 is preferably 25 parts by weight or more and 6 parts by weight or less with respect to 1 part by weight of the light-transmitting resin 103. More preferably 30 weights. More than 5 parts by weight or less. When the content of the light-transmitting fine particles 104 is less than 25 parts by weight based on 1 part by weight of the light-transmitting resin, there is a case where the light diffusing property of the light-diffusing film becomes insufficient, and the relative scattered light intensity LVL does not reach Above 0.0002%, the result is that a wide viewing angle cannot be obtained, and the transmission resolution exceeds i 8〇%, resulting in a double pattern. In addition, when the content of the light-transmitting fine particles 104 exceeds 60 parts by weight with respect to 1 part by weight of the light-transmitting resin, there is a case where the relative scattered light intensity k/L is more than 0.001%, or the total haze and/or Or the internal haze is exceeded, and as a result, the front contrast is lowered or the transparency of the light diffusion film is lowered. The refractive index of the light-transmitting fine particles 104 is preferably larger than the refractive index of the light-transmitting resin 1〇3, and the difference is preferably in the range of 〇4 to 〇15. When the refractive index difference between the translucent fine particles 104 and the translucent resin 103 is within the above range, the refractive index difference between the translucent fine particles 104 and the translucent resin 103 is 150611.doc 15 201120485 Internal scattering is easily produced within the above specific range, and it is controlled within the above specific range to control the total haze and internal haze of the light-expanding film and to appropriately suppress the transmission resolution. Further, the surface of the genus (the surface opposite to the base film 101) is preferably formed of only the light-transmitting resin 1G3, and preferably the light-transmitting fine particles (10) are not diffused from the light (4) 2 surface projections, completely buried. In the light-diffusion layer ι 2, the layer thickness of the light-diffusing layer 102 is preferably 1 time or more and 3 times or less with respect to the weight average particle diameter of the light-transmitting fine particles 1〇4. When the layer thickness of the light diffusion layer 1〇2 is less than the weight average particle diameter w of the light-transmitting fine particles 1() 4, there is a case where it is difficult to control the surface haze of the light diffusion film within the above range. Produce whitening. Further, when the layer thickness of the light-diffusing layer 102 exceeds three times the weight average particle diameter of the light-transmitting fine particles 丨04, there is a case where the film thickness of the light-diffusing layer H)2 becomes too thick, and the light diffusion film of @ The light diffusibility becomes too strong, so the relative light intensity is relatively. /^Beyond 〇 〇〇ι% , the resulting front contrast is reduced. The layer thickness of the light diffusion layer 102 is preferably in the range of 1 to 3 Å μιη. When the layer thickness of the light-diffusing layer 102 is less than i μm, there is a case where sufficient abrasion resistance required for the light-diffusing film disposed on the visual confirmation side surface of the liquid crystal display device cannot be imparted. In addition, when the layer thickness exceeds 3 〇 pm, the amount of curl of the light-diffusing film is increased, and workability such as bonding to another film or substrate is deteriorated. Further, the light-diffusing film of the present invention may be a light-diffusing film 3 as shown in Fig. 4 as a resin layer 105 containing a light-transmitting resin laminated on the light-diffusing layer 102. In this case, the center line of the surface of the resin layer ι 5 is an average of 150,611.doc •16·201120485 The roughness Ra is set to 0.2 μm or less. Further, the light-diffusing film of the present invention may further comprise an anti-reflection layer laminated on the light-diffusing layer 102 (surface opposite to the base film 101). The anti-reflection layer may be directly formed on the diffusion film, or may be separately prepared on the transparent film to form an anti-reflection film with an anti-reflection layer, and an anti-reflection layer is laminated on the diffusion film by using an adhesive or an adhesive to reduce the reflection indefinitely. By setting the anti-reflection layer, it is possible to prevent the image from being reflected into the display surface. Examples of the antireflection layer include a low refractive index layer composed of a material having a refractive index lower than that of the light diffusion layer 102, and a high refractive index layer composed of a material having a higher refractive index than the light diffusion layer 102, and refraction. The layer structure # is lower than the low refractive index layer composed of the material of the high refractive index layer. In the case where an anti-reflection film is laminated on the diffusion film by using an adhesive or an adhesive, a commercially available anti-reflection film can be used. In addition, the light-diffusion film of the present invention may further have a layer deposited on the light-diffusing layer 102 (the side opposite to the base film 101) when the center line average roughness of the surface of the light-diffusing layer 102 is 〇2 μm or less. It has a layer of surface relief. The layer having the surface unevenness may be formed directly on the diffusion film, or a film having surface unevenness on the transparent film formed with a layer having surface irregularities may be separately prepared, and laminated on the diffusion film using an adhesive or an adhesive. As a layer which has surface unevenness, an anti-glare layer is mentioned, for example. The anti-glare layer is provided to reduce the reflection of the display screen by using the diffuse reflection of the surface. In the case where the anti-glare layer is provided on the light-diffusing layer 102, a known method can be used. For example, the ultraviolet-curable resin composition containing the light-transmitting fine particles can be applied to the light-diffusing layer 102 and cured to obtain an anti-glare layer. Glare layer. 15061 l.doc 17 201120485 When an anti-glare film is laminated on a diffusion film using an adhesive or an adhesive, a commercially available anti-glare film may be used, and an anti-glare layer may be formed on the transparent film according to the above method. By. [Method for Producing Light-Diffusing Film] Next, a method for producing the light-diffusing film of the present invention will be described. The light-diffusing film of the present invention is preferably produced by a method comprising the following steps (A) and (B). (A) a step of coating a resin liquid in which the light-transmitting fine particles ι 4 is dispersed on the base film ιοί, and (B) a step of transferring the mirror surface or the concave convex surface of the surface of the layer containing the resin liquid. The resin liquid used in the above step (A) contains the light-transmitting fine particles 4, the light-transmitting resin 1〇3 constituting the light-diffusing layer 102, or a resin forming the same (for example, an ionizing radiation-curable resin or a thermosetting resin). Or metal alkoxides and other ingredients such as granules. When an ultraviolet curable resin is used as the resin for forming the light-transmitting resin 1〇3, the resin liquid contains a photopolymerization initiator (radical polymerization initiator). As a photopolymerization initiator, for example, an acetophenone-based photopolymerization initiator, a benzoin-based photopolymerization initiator, and a benzophenone-based photopolymerization initiator, 9-oxopurine p-galvanic photopolymerization can be used. A starter, a second-tillage photopolymerization initiator, an oxadiazole-based photopolymerization initiator, and the like. Further, as a photopolymerization initiator, for example, 2,4,6-trimethylbenzimidyldiphenylphosphine oxide, 2,2,_bis(o-chlorophenyl)·4,4, 5,5,_tetraphenyl _ 1,2-diimidazole, 1 〇 butyl -2- oxaacridone, 2_ethyl hydrazine, benzoin, 9,10-phenanthrenequinone, camphorquinone, The amount of the photopolymerization initiator to be used is usually 0.5 to 20 parts by weight, preferably 1 to 1 part by weight based on 100 parts by weight of the resin contained in the resin liquid, of the phenylglyoxylate methyl ester and the titanocene compound 150611.doc 201120485. 5 parts by weight. Further, in order to make the optical characteristics and surface shape of the light-diffusing film uniform, the dispersion of the light-transmitting fine particles 104 in the resin solution is preferably dispersed in an isotropic manner. The coating of the resin liquid on the substrate film can be performed, for example, by a gravure coating method, a micro embossing roll coating method, a bar coating method, a knife coating method, an air knife coating method, or the like. Contact coating method, die coating method, or the like. When the resin liquid is applied, it is preferable to adjust the coating so that the film thickness of the light-diffusing layer 1 2 is equal to or more than 3 times the weight average particle diameter of the light-transmitting fine particles 104 as described above. Film thickness. In order to improve the applicability of the resin liquid or the adhesion to the light-diffusing layer 1 2, various surface treatments may be applied to the surface (light-diffusion layer side surface) of the base film 101. Examples of the surface treatment include corona discharge treatment, glow discharge treatment, acid surface treatment, alkali surface treatment, and ultraviolet irradiation treatment. Further, another layer such as an undercoat layer may be formed on the substrate film, and a resin liquid may be applied to the other layer. Further, when the light-diffusing film of the present invention is used as a protective film for a polarizing film described below, in order to improve the adhesion between the base film 101 and the polarizing film, it is preferred that the substrate film 101 be previously prepared by various surface treatments. The surface (the surface on the opposite side to the light diffusion layer) is hydrophilized. The above step (B) is a mirror surface or a surface transfer mold comprising a layer of the above resin liquid. Specifically, in order to obtain a light-diffusing layer having a flat surface as shown in Fig. i, the mirror surface of the mirror-containing mold (mirror mold) is bored on the surface of the layer containing the above-mentioned resin liquid, and the mirror surface is transferred. :, 150611.doc 201120485 In order to obtain a light-diffusing layer having a concave-convex surface shape as shown in the figure, the surface of the reed-containing surface of the above-mentioned resin liquid is a mold having an uneven surface ( The uneven surface of the mold for embossing is transferred to the uneven surface. The mirror mold can be a mirror metal view, and the mold for the crepe processing can be a metal roll for embossing: 3⁄4 this &amp; 'by transferring the mirror or uneven surface of the mold to the light diffusion layer 102 The surface 'effectively prevents the light-transmitting fine particles from protruding to the surface of the light-diffusing layer' to form a light-diffusing layer having a desired surface shape. &quot; When an ionizing radiation-curable resin, a thermosetting resin, or a metal alkoxide is used as the resin forming the light-transmitting resin 丨〇3, a layer containing the above-mentioned resin liquid is formed, and drying is performed as needed (solvent removal) In the state in which the surface of the layer containing the resin liquid is adhered to the mirror surface or the uneven surface of the mold, or after being adhered, by irradiating ionizing radiation (in the case of using ionizing radiation-curable resin) or heating (using heat hardening) In the case of a resin or a metal alkoxide) 'hardens the layer containing the resin liquid. The ionizing radiation can be appropriately selected from the group consisting of ultraviolet rays, electron beam proximity, external rays, visible light, near infrared rays, infrared rays, X-rays, and the like, depending on the kind of the resin contained in the resin liquid. Among them, ultraviolet rays and electron beams are preferable. Ultraviolet light is preferred because of its ease of operation and high energy. As the light source of the ultraviolet light, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a mercury lamp, an ultra-high pressure mercury lamp, a carbon arc lamp, a metal tooth lamp, a xenon lamp, or the like can be used. Further, an ArF excimer laser, a KrF excimer laser, an excimer lamp, or a synchrotron radiation may be used. Among these, it is preferable to use ultra high pressure mercury lamp, high pressure mercury lamp, low pressure mercury lamp, gas arc, metal halide lamp 15061 丨.doc *20- 201120485 and 'as an electron beam, which can be cited from Cockcroft-Walton type, Van De Graaff. Various types of electron beam accelerators such as a type, a resonance transformer type, an insulating core transformer type, a linear type, a high frequency type, a dynamitron type, and a high frequency type have a release of 50 to 1 〇〇〇 keV, preferably An electron beam of energy of 100-300 keV. Next, a preferred embodiment for producing the light-diffusing film of the present invention will be described. The manufacturing method of the preferred embodiment includes the steps of continuously feeding the base film 1 〇1 wound into a roll in order to continuously produce the light-diffusing film of the present invention, and coating the resin liquid in which the light-transmitting fine particles i 04 are dispersed. Drying as needed to harden the layer containing the resin liquid; and winding up the resulting light-diffusing film. This manufacturing method can be implemented, for example, using the manufacturing apparatus shown in FIG. Hereinafter, a manufacturing method of the preferred embodiment will be described with reference to Fig. 5 . First, the substrate film 1〇1 is continuously wound up by the unwinding device 501. Then, the coating device 502 and the supporting roller 5〇3 are opposed thereto, and the resin liquid in which the light-transmitting fine particles 1〇4 are dispersed is applied onto the rolled base film 101. Then, when the solvent is contained in the resin liquid, it is dried by the dryer 504. Then, the base film (8) provided with the layer containing the resin liquid is wound on the mirror metal roll or embossed in such a manner that the layer containing the resin liquid is mirror-finished or the metal 305 is embossed. A metal roller 5〇5 and a nip roller 506 are used. Thereby, the mirror surface of the mirror metal roll or the uneven surface of the metal roll for embossing is transferred to the surface of the layer containing the resin liquid. After the iron film is wound on the mirror metal aphid drink roll or the metal roll 505 for embossing, the substrate film 101 is passed through the substrate 1 υ 1 by the ultraviolet irradiation device 150611.doc • 21 · 201120485 508 is irradiated with ultraviolet rays to thereby harden the layer containing the resin liquid. Since the irradiated surface is heated to a high temperature by ultraviolet irradiation, the mirror metal roll or the metal roll 505 for embossing is preferably included in the inside to adjust the surface temperature to room temperature to 80. (: left and right cooling device. Further, one or a plurality of machines may be used for the ultraviolet irradiation device 5〇8. The base film 1〇1 (light diffusion film) on which the light diffusion layer 1〇2 is formed is removed by the peeling roller 507. The metal diffusion roller or the embossing metal roller 505 is peeled off. The light diffusion film produced in the above manner is wound up to the winding device 509. At this time, in order to protect the light diffusion layer 1〇2, The re-peelable adhesive layer is attached to the surface of the light-diffusing layer iG2 by a protective film containing polyethylene terephthalate or polyethylene, and is wound up. Further, it can be self-mirror by peeling off (4) 7 After the metal or the embossing metal roll is peeled off, the ultraviolet ray is additionally irradiated, and the base film gi which is formed of the layer containing the uncured resin liquid may be used as a mirror metal roll or a ruling metal. After the roll 5〇5 is peeled off, it is irradiated with ultraviolet rays to be cured, and ultraviolet rays are irradiated instead of being wound on the mirror metal roll or the metal roll 505 for embossing. When manufacturing the light diffusing film of the present invention, Making the light diffusing film In the range specified in the invention, for example, the following method can be used. First, the base film, the light-transmitting fine particles, the light-transmitting resin, or the resin forming the light-transmitting resin can be arbitrarily selected, and the film can be formed by the above method. , the purity of the obtained light diffusing film (L2/Li, transmission clarity, haze, internal haze, centerline average roughness Ra, surface haze, etc.) and 'this value is the target value or In the case of the target, in the case of the objective, the refractive index difference between the light-transmitting fine particles and the light-transmitting resin is based on the following criteria, for example, the light-transmitting fine particles are The content, the thickness of the light-diffusing layer, the weight average particle diameter of the light-transmitting fine particles, and the surface roughness of the light-diffusing layer, or two or more conditions thereof were adjusted, and the light-diffusing film was again produced, and the physical properties thereof were measured. This operation is repeated until the obtained light-diffusing film exhibits the physical properties of the target, whereby the target light-diffusing film can be formed. (1) If the refractive index difference between the light-transmitting fine particles and the light-transmitting resin is increased, LVL 】 The value tends to increase, and the value of the total haze tends to increase. Conversely, if the difference in refractive index between the light-transmitting fine particles and the light-transmitting resin is reduced, the L2/Li2 value tends to decrease, and the value of the total haze Further, the adjustment of the difference in refractive index between the light-transmitting fine particles and the light-transmitting resin can be carried out by changing the type of the light-transmitting fine particles used and/or the type of the light-transmitting resin. When the content of the light-transmitting fine particles is increased, the value of L2/Li tends to increase, the value of the transmission sharpness tends to decrease, and the value of the total haze tends to increase 'the average roughness of the center line tends to increase. Conversely, if the content of the light-transmitting fine particles is reduced, the value of 1^/1^ tends to decrease, the value of the transmission sharpness tends to increase, and the value of the total haze tends to decrease, the center line average The value of the coarse rotation Ra tends to decrease. (3) If the thickness of the light diffusion layer is increased, the value of L2/Ll tends to increase, the value of transmission clarity tends to decrease, and the value of total haze tends to increase. The value of internal haze tends to increase. Large, the value of the center line average roughness Ra tends to decrease. Conversely, if the thickness of the light diffusion layer is reduced, the L2/Lii value tends to decrease, the value of the transmission sharpness tends to increase, and the value of the total haze tends to be 150611.doc •23·201120485 is reduced, the internal fog The value of the degree tends to decrease, and the value of the center line average roughness Ra tends to increase. (4) If the weight average particle diameter of the light-transmitting fine particles is increased, the value of the internal haze tends to decrease, and the value of the center line average roughness Ra tends to increase. Conversely, if the weight average particle diameter of the light-transmitting fine particles is reduced, the value of the internal haze tends to increase, and the value of the center line average roughness Ra tends to decrease by /J\ 〇 (5) if the total haze is reduced The difference between the value and the value of the internal haze reduces the value of the surface haze. Conversely, if the difference between the value of the total haze and the value of the internal haze is increased, the value of the surface haze becomes larger. &lt;Light diffusing polarizing plate&gt; The light diffusing film of the present invention described above can be combined with a polarizing plate to form a light diffusing polarizing plate. The light diffusing polarizing plate is a multifunctional film having a polarizing function and an anti-glare (light diffusing) function. The light diffusing polarizing plate of the present invention includes the polarizing plate having at least a polarizing film, and the above-described invention laminated on the polarizing plate so that the base film side faces the polarizing plate via the adhesive layer or the adhesive layer. Light diffusing film. The polarizing plate may be of a conventionally known configuration, and for example, it is usually one having a protective film on one side or both sides of the polarizing film. Further, the polarizing plate may be the polarizing film itself. Fig. 6 is a schematic cross-sectional view showing a preferred example of the light diffusing polarizing plate of the present invention. The light diffusing polarizing plate 600 shown in Fig. 6 includes a polarizing film 6〇1, a protective film 602' attached to one surface of the polarizing film 6〇, and a light diffusing film (10) attached to the other surface. The light-diffusing film 100 is attached so that the base film HH side faces the polarizing film 6G1 of the polarizing plate. The light-diffusing film (10) and the protective layer (10) 2 are attached to the polarizing film 601 via an adhesive layer (4) 1506 [丨] doc - 24 - 201120485 (not shown). Such a configuration in which the polarizing film and the light-diffusing film are attached via the adhesive layer, that is, the use of the light-diffusing film as a protective film of the polarizing film, contributes to thinning of the light-diffusing polarizing plate. The polarizing film 601 is, for example, adsorbed and aligned on a film containing polyvinyl alcohol-based laurel, polyvinyl acetate resin, ethylene/vinyl acetate (EVA) resin, or polyamide resin 'polyester resin. a dichroic dye or iodine; in a molecularly oriented polyvinyl alcohol film, a polyvinyl alcohol/polyethylene copolymer containing an aligned molecular chain of a color dehydration product of polyvinyl alcohol (polyethylene) Things and so on. In particular, it is suitable for use as a polarizing film by adsorbing a monochromatic dye or iodine on a polyvinyl alcohol-based resin film. The thickness of the polarizing film is not particularly limited, and is preferably 100 μm or less, more preferably 1 〇 to 5 〇, and the range of 4 claws is preferably 25 to 35 μηι from the viewpoint of thinning of the polarizing plate. The protective film 602 as the polarizing film 601 is preferably a film containing a polymer having low birefringence and excellent transparency, mechanical strength, thermal stability or water repellency. Examples of the film include a cellulose acetate-based resin such as TAC (triethyl fluorene cellulose) which is formed into a film shape, an acrylic resin, and a tetrafluoroethylene/hexafluoropropylene copolymer. Fluorine-based resin; poly (carbonate); poly-p-benzene: formic acid, ethylene, etc.; polyacetal resin; polysulfonate resin; polyethersulfone resin; polystyrene Lunar New Year, "vinyl alcohol resin; polystyrene resin; polyolefin, or polyamine resin." Among these, there are aspects such as polarization characteristics or longevity. It is preferable to use a triterpene, a cut-off, a quasi-primary film, or a norbornene-based thermoplastic resin film which is subjected to special treatment for the surface. Since the thermoplastic resin film has a high moisture-heat resistance, the durability of the polarizing plate can be greatly improved, and since the moisture absorption property is small, dimensional stability is particularly preferable. A conventionally known method of forming a film, a die casting method, a calendering method, or an extrusion method can be used. The thickness of the protective film is not particularly limited, and is preferably 500 μm or less, more preferably 5 to 3 μm μ1, and even more preferably 5 to 150 μm from the viewpoint of thinning of the polarizing plate. The light-diffusing polarizing plate having the above configuration is typically attached to the liquid crystal panel via the adhesive layer or the like so that the light-diffusing film is on the light-emitting side (visual confirmation side) when it is attached to the liquid crystal display device. The glass substrate is incorporated into the liquid crystal display device. Further, the light-expanding polarizing plate may further have an anti-reflection layer laminated on the light-diffusing layer. The light-diffusing polarizing plate having the anti-reflection layer is, for example, a light-diffusing polarizing plate in which the tantalum reflective layer 106 is directly laminated on the surface of the light-diffusing layer 1〇2 including the flat surface (see FIG. The layer or the adhesive layer 108' is on the surface of the light-diffusing layer ι2 including the flat surface, and a light-diffusing polarizing plate comprising an anti-reflection film of the laminate of the transparent film 107 and the anti-reflection layer 1〇6 is laminated (refer to FIG. 12). a light diffusing polarizing plate that directly laminates the antireflection layer 1 〇 6 on the surface of the light diffusing layer 1 〇 2 having irregularities (see FIG. 3); via the adhesive layer or the adhesive layer 1 〇 8 ' a light diffusing polarizing plate (see FIG. 14) in which an antireflection film including a laminate of the transparent film 107 and the antireflection layer ι 6 is laminated on the surface of the uneven light diffusion layer 1 〇 2 (see FIG. 14); a surface of the layer 102 comprising a light transmissive resin layer ι 〇 5 ' directly diffuses the light diffusing polarizing plate of the antireflection layer 106 (see FIG. 5); via an adhesive layer or an adhesive layer 108, laminated In the light with bumps and expands 150611.doc -26· 201120485 On the surface of the resin layer 105 containing the light-transmitting resin on the surface of the layer 1 2, a light-diffusing polarizing plate (see FIG. 16) including an anti-reflection film of a laminate of the transparent film and the anti-reflection layer (10) is laminated. The light-diffusing polarizing plate may further include a layer having surface irregularities such as an anti-glare layer. The light-diffusing polarizing plate having a surface unevenness may be, for example, a surface of a light-diffusing layer ι 2 including a flat surface. A light-diffusing polarizing plate having a layer 8凹凸1 having a surface unevenness is directly laminated (see FIG. 17); and a laminate is provided on the surface of the light-diffusing layer 102 including a flat surface via an adhesive layer or an adhesive layer 1〇8 A light-diffusing polarizing plate (see FIG. 18) of a film having a laminate of a layer 801 having a surface unevenness (see FIG. 18) is directly laminated on the surface of the light-diffusing layer 102 having irregularities, and directly diffuses light of the layer 801 having a surface concave &amp; a polarizing plate (refer to FIG. 19); on the surface of the light-diffusing layer 1〇2 having irregularities, via an adhesive layer or an adhesive layer 108, a laminated body comprising a transparent film 107 and a layer having a surface unevenness layer 8〇1 is laminated Film light diffusing polarizer Referring to FIG. 20), a light diffusing polarizing plate having a layer 801 having a surface unevenness is directly laminated on the surface of the resin layer 1〇5 containing a light-transmitting resin laminated on the surface of the light-diffusing layer 〇2 having irregularities (refer to Fig. 21); a layer comprising a transparent film 107 and a layer of a resin layer 1〇5 containing a light-transmitting resin laminated on the surface of the light-diffusing layer 1 〇2 having irregularities via an adhesive layer or an adhesive layer 108 A light diffusing polarizing plate (see FIG. 22) having a film of a layered body of the layer 8〇1 having a surface unevenness. &lt;Liquid Crystal Display Device&gt; Next, a liquid crystal display device of the present invention will be described. The liquid crystal display device of the present invention is provided with a backlight device, a light deflecting mechanism, a backlight side shift 150611.doc 27·201120485 light plate, a liquid crystal cell, and the above-described light diffusing polarizing plate of the present invention. Fig. 7 is a schematic cross-sectional view showing a preferred example of the liquid crystal display device of the present invention. The liquid crystal display device of FIG. 7 is a liquid crystal display device of the TN mode in the normal whitening mode, and the backlight device 7〇2, the light diffusing plate 7〇3, and the two film 704a as the light deflecting mechanism are sequentially disposed. 704b, a backlight-side polarizing plate 705, a liquid crystal cell 7L 701 in which a liquid crystal layer 712 is provided between a pair of transparent substrates 711a and 71b, and a light-recognizing-side polarizing plate 7〇6 and a light diffusing film 707 of the present invention. The light diffusing polarizing plate is formed. As shown in FIG. 8, the backlight-side polarizing plate 7〇5 and the visual confirmation-side polarizing plate 7〇6 are arranged such that the transmission axes are orthogonally polarized. Moreover, the surface on the light incident side (backlight side) of each of the two ruthenium films 704a and 704b is a flat surface, and the surface on the light emission side (visual confirmation side) (surface facing the backlight side polarizing plate 705) A plurality of linear turns 74A and 741b are formed in parallel. Further, the ruthenium film 7043 is disposed such that the direction of the ridgeline 742a of the linear ridge 74u is substantially parallel to the transmission axis direction of the backlight-side polarizing plate 7〇5, and the ruthenium film 7〇4b is linear. The direction of the ridge line 742b of the 稜鏡74ib is substantially parallel to the direction of the transmission axis of the visual recognition side polarizing plate 706 constituting the light diffusing polarizing plate. However, the direction of the ridge line 742b of the linear 稜鏡741b may be substantially parallel to the transmission axis direction of the backlight-side polarizing plate 705, and the ridge film 7 may be arranged in the direction of the ridgeline 742a of the linear prism 74la. The prism film 704a is disposed so as to be parallel to the transmission axis direction of the visual confirmation side polarizing plate 706 constituting the light diffusing polarizing plate. The components constituting the liquid crystal display device of the present invention will be described in more detail. I50611.doc • 28 · 201120485 [liquid crystal cell] The liquid crystal cell 701 is provided with a pair of transparent substrates 711a, 711b disposed opposite each other by a spacer separated by a specific distance, and between the pair of transparent substrates 71U, 711b A liquid crystal layer 7 12 made of a liquid crystal is sealed. A transparent electrode and an alignment film are laminated on each of the pair of transparent substrates 711a and 711b, and the liquid crystal is aligned by applying a voltage based on the display material between the transparent electrodes. The display mode of the liquid crystal cell 701 is TN mode in the above example, and a display mode such as an IPS method or a VA method can also be used. [Backlight device] The backlight device 702 includes a casing 72 1 having a rectangular parallelepiped shape having an open upper surface, and a plurality of cold cathode tubes 722 arranged in parallel in the casing 721 as a linear light source. The outer stage 721 is formed of a resin material or a metal material, and it is preferable that at least the inner peripheral surface of the outer casing is white or silver from the viewpoint of reflecting the light radiated from the cold cathode tube 722 on the inner peripheral surface of the outer casing. As the light source, in addition to the cold cathode, an LED (Light Emitting Diode) of various shapes such as a line shape can be used. In the case of using a linear light source, the number of linear light sources to be disposed is not particularly limited, and from the viewpoint of suppressing uneven brightness of the light-emitting surface, it is preferable that the distance between the centers of the adjacent linear light sources is 1 5 〇1111 to 150 mm range. Further, the backlight device 702 used in the present invention is not limited to the direct type shown in FIG. 7, and a side light type or a planar light source type in which a linear light source or a point light source is disposed on the side surface of the light guide plate can be used. And so on. [Light-diffusing mechanism] The liquid crystal display device of the present invention may include a light diffusing plate 703 as a light diffusing means disposed between the backlight device 7〇2 and the light 150611.doc -29-201120485 deflecting mechanism. The light diffusing plate 7〇3 is a film or sheet obtained by dispersing and mixing a diffusing agent in a substrate. As the substrate, a polycarbonate resin, a methacrylic resin, a copolymer resin of decyl acrylate and styrene, a copolymer resin of acrylonitrile and styrene, and a copolymerization of methacrylic acid and styrene can be used. Polyolefin resin such as resin, polystyrene tree, sulphuric acid resin, polypropylene or polymethylpentene, cyclic polyolefin resin, polyethylene terephthalate or polynaphthalene A polyester resin such as ethylene glycol ester, a polyamido resin, a polyarylate resin, or a polyterpenoid. Further, the light diffusing means may be a combination of a light diffusing plate and a light diffusing film. Further, examples of the diffusing agent mixed and dispersed in the substrate include acrylic resin, melamine resin, polyethylene resin, polystyrene resin, organic polyoxyn resin, acrylic acid and benzene, which are different from the material of the substrate. Organic fine particles such as ethylene copolymer, and inorganic fine particles including carbonated dance, cerium oxide, aluminum oxide, cesium carbonate, barium sulfate, titanium oxide, glass, and the like. The type of the diffusing agent to be used may be one type or two or more types. Further, a spherical or organic hollow bead of an organic polymer can also be used as a diffusing agent. The weight average particle diameter of the dispersing agent is preferably in the range of 0.5 to 30 μm. Further, the shape of the diffusing agent may be spherical, flat, plate-like, needle-like or the like, and is preferably spherical. [稜鏡 film (light deflection mechanism)] In the ruthenium films 704a and 704b, the light incident surface side (backlight device side) is a flat surface, and is on the light emission side surface (opposite the backlight side polarizing plate 7〇5). The surface is formed in parallel with a plurality of polygonal shapes having a narrow front end, and preferably triangular shapes 741a and 741b. As the material of the enamel film 7〇4a, 7〇150611.doc • 30-201120485, for example, polycarbonate resin, ABs (Acryi〇nit^e Butadiene Styrene, acrylonitrile styrene-butadiene) can be cited. Resin, methyl acrylate resin, copolymer resin of mercapto methacrylate and styrene, poly(ethylene resin), copolymer resin of acrylonitrile and stupid ethylene, polyethylene or poly. An ionizing radiation-curable resin such as a resin or an ultraviolet curable resin or an electron beam curable resin. As a method for producing a ruthenium film, a profile extrusion method, an extrusion molding method, an injection molding method, a roll transfer method, a laser stripping method, a mechanical cutting method, a mechanical grinding method, a photopolymer process method, and the like are known. Method to manufacture. These methods may be used alone or in combination of two or more. The thickness of the enamel film 7 is blunt, and the thickness of the lining is usually 0.1 to 15 mm, preferably 〇5 to 1 mm. When the cross-sectional shape of the vertical cross section orthogonal to the ridgelines 742a and 742b of the linear ridges 741a and 741b is, for example, a triangle, the apex angle θ (see FIG. 8) of the vertex of the ridge line in the apex of the triangle is preferably 9 〇~u〇. The scope. Further, the triangle may be any one of the equilateral side and the unequal side, and when it is intended to converge in the front direction (the normal direction of the display surface of the liquid crystal display device), it is preferably the light exit side. An isosceles triangle equal in both sides. The cross-sectional shape of the linear 稜鏡 can also be set according to the characteristics of the light emitted from the surface light source, and 'can form a shape other than a triangle having a curved line or the like. The above-mentioned ruthenium films 704a, 70 preferably have, for example, a structure in which a plurality of linear ridges 741a, 741b having a triangular cross section are arranged in such a manner that the base edges opposite to the apex angle 三角形 of the triangle are adjacent to each other. And the ridge lines 742a and 742b of the plurality of linear ridges 741a and 741b are arranged substantially parallel to each other. In this case, as long as the condensing ability does not significantly decrease, the vertices of the cross-sectional shape of the line 150611.doc -31 · 201120485 prism 741a, 7411) may have a curved shape. The distance between the ridge lines is usually in the range of 1 〇 to 5 〇〇 μηι, preferably in the range of 30 to 200 μπι. [Polarizing Plate] The backlight side polarizing plate 7〇5 constituting the light diffusing polarizing plate can be used as described above. Further, as the visual confirmation side polarizing plate 706, a conventionally known one can be used. [Retardation film] The liquid crystal display device of the present invention may include a phase difference plate 708 as shown in Fig. 9 . In Fig. 9, the phase difference plate 7〇8 is disposed between the backlight-side polarizing plate 7〇5 and the liquid crystal cell 701. The phase difference plate 7〇8 is formed such that the phase difference is substantially zero in a direction perpendicular to the surface of the liquid crystal cell 7〇1, and does not cause any optical effect from the front side, and exhibits a phase difference when viewed obliquely. The phase difference generated in the compensation liquid 曰曰 兀 701. Thereby, a wider viewing angle can be obtained, and more excellent display quality and color reproducibility can be obtained. The phase difference plate 708 can be disposed between the backlight side polarizing plate 7〇5 and the liquid crystal cell 7〇1, and between the visual confirmation side polarizing plate 706 and the liquid crystal cell 7〇1, or both. The phase difference plate 708 is, for example, a film obtained by forming a film of a polycarbonate resin or a cyclic olefin polymer resin, and further biaxially stretching the film; and applying a liquid crystal monomer to the film. It is obtained by solidifying its molecular arrangement by photopolymerization. The phase difference plate 7〇8 optically compensates the liquid crystal array, and the refractive index characteristics are opposite to those of the liquid crystal alignment. Specifically, the liquid crystal cell of the ΤΝ mode can preferably use a “wv film” (Fuji Film Co., Ltd.) The liquid crystal display material of the STN mode can be used, for example, I50611.doc •32·201120485. The liquid crystal display unit of the IPS mode can be preferably used, for example, using "LC film" (manufactured by Nippon Oil Co., Ltd.). For the biaxial retardation film, the VA mode liquid crystal display unit can preferably use, for example, a phase difference plate or a biaxial retardation film in which a Δ plate and a c plate are combined, and a liquid crystal display unit of a π unit mode can be preferably used, for example. "(10) Using a film" (made by Nim Co., Ltd.). In the liquid crystal display device having the above configuration, referring to FIG. 7, the light radiated from the backlight device 7A2 is diffused by the light diffusion plate 7〇3, and then incident on the 稜鏡骐704a and the backlight side polarizing plate 7〇5. In the vertical plane orthogonal to the direction of the transmission axis, the obliquely incident light with respect to the lower surface of the seed mirror film 704a changes the traveling direction and exits in the front direction. Then, in the enamel film 7 (10), on the visual recognition side In the cross section perpendicular to the transmission axis direction of the polarizing plate 706, the obliquely incident light with respect to the lower surface of the lens of the mirror is 'changed in the same direction as described above, and is emitted toward the front side. Therefore, the two pupil films 7〇4a and the light are collected in the front direction in the vertical cross section, and the luminance in the front direction is improved. Then, the light that imparts directivity to the front direction is polarized by the backlight-side polarizing plate 7〇5, and is incident on the liquid crystal cell 7〇. Before entering the liquid crystal cell 7〇1, the alignment of the liquid crystal layer 712 controlled by the electric field is used to control the polarizing surface for each pixel and to be emitted from the liquid crystal cell 7〇1. Then, the light emitted from the liquid crystal cell 7〇1 passes through the visual confirmation side polarizing plate 706, and is further emitted to the display surface side through the light diffusion film 707. In this way, if #9 μ &amp; 右 right using two enamel films 704a, 704b as the light deflecting mechanism', the λ can be further connected, and the light incident on the liquid crystal cell 701 is in the front direction I50611.doc • 33 · Directivity on 201120485, which further enhances the brightness in the front direction. Further, since the light-diffusing film of the present invention is used, excellent front light contrast is not caused, and excellent light diffusibility and high transmission sharpness can be obtained. EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the examples. Further, the optical characteristics and surface shape of the light-diffusing film in the following examples, the layer thickness of the light-diffusing layer, and the method for measuring the weight average particle diameter of the light-transmitting fine particles used are as follows. (a) Relative Scattering Light Intensity A light-diffusing film was bonded to a glass substrate with an optically transparent adhesive, and a sample for measurement was prepared by using the sample. The He-Ne laser parallel light (wavelength 543.5 nm) was incident on the glass substrate surface side of the sample for measurement from the normal direction of the light diffusion film, and the measurement was inclined 40 toward the normal direction from the light diffusion layer side. The intensity L2 of the laser light transmitted in the direction A3 is calculated by dividing the intensity L2 of the transmitted scattered light by the light intensity L1 of the light source as the relative scattered light intensity I^/L!. The measurement was carried out using "3292 03 Optical Power Sensor" manufactured by Yokogawa Electric Co., Ltd. and "3292 Optical Power Meter" manufactured by the same company. At the time of this measurement, the light source for irradiating the He-Ne laser was placed at a position of 43 mm from the glass substrate. The power meter as the light receiver is disposed at a position 280 mm away from the exit point of the laser light, and the power meter is moved to have the specific angle described above, and the intensity of the emitted laser light is measured. Further, the intensity of the laser light irradiated to the light diffusion layer, that is, the intensity of the laser light irradiated from the light source is determined from the light source by measuring the glass substrate to which the light diffusion layer is not attached. The intensity of light directly incident on the power clock is obtained. Further, the measurement of the intensity is performed by arranging the power meter at a position 71 μm (= 430 mm + 280 mm) from the light source. (b) Transmission clarity A light-diffusing film was bonded to a glass substrate on the substrate film side by an optically transparent adhesive to prepare a sample for measurement, and the sample was used for measurement. The measurement system uses the image sharpness tester according to JIS K 7105 (Suga Test)

Instruments股份有限公司製造之「κμ」dp」)。 (c) 霧度 利用光學透明之黏著劑,將光擴散膜以其基材膜側貼合 於玻璃基板上而製成測定用樣品’使用該樣品進行測定。 總霧度及内部霧度之測定係使用依據JIS κ 7136之霧度透 射率計(村上色彩技術研究所股份有限公司製造之霧度計 「ΗΜ-150」)。根據該結果,由上述式(2)算出表面霧度。 (d) 中心線平均粗糙度Ra 使用依據JIS B 0601之共焦干擾顯微鏡(例如〇ptical Solution股份有限公司製造之rPLp3〇〇」)進行測定。 (e) 光擴散層之層厚 使用NIKON公司製造之DIGIMICRO MH-15(本體)及ZC_ 1〇1(計數器)測定光擴散膜之層厚,自測定層厚減去基材厚 度80 μηι ’藉此測定光擴散層之層厚。 (f) 透光性微粒子之重量平均粒徑 使用利用庫爾特原理(細孔電阻法)之庫爾特粒子計數器 (貝克曼庫爾特公司製造)進行測定。 150611.doc -35· 201120485 &lt;實施例ι&gt; (1)鏡面金屬製報之製作 對直技200 mm之鐵輥(依據JIS stkm13A)之表面進行工 業用鍍鉻加工,繼而對表面進行鏡面研磨,製作鏡面金屬 製輥。所得鏡面金屬製輥之鍍鉻面之維氏硬度為1000。再 者’維氏硬度係使用超音波硬度計MIC1〇(Krautkramei^ 司製&amp; ) ’依據JIS Z 22料進行測定(以下之例中,維氏硬度 之測定法相同)。 (2)光擴散膜之製作 將季戊四醇二丙稀酸自旨⑼重量份、及多官能胺基甲酸醋 化丙烯I (_異氰酸!,6•己二g旨與季戊四醇三丙晞酸醋之 反應產物)4〇重量份混合於丙二醇單甲醚溶液中,將固形 成分濃度調整為60重量%,獲得紫外線硬化性樹脂組合 勿再者自及組合物中去除丙二醇單甲縫並進行紫外線 硬化後之硬化物之折射率為153。 塵而相對於上述紫外線硬化性樹脂組合物之固形成分 〇重®伤巾添加作為透光性微粒子的重量平均粒徑為 12.0 μηι 且標準偏差為 417 ./ μηι之聚本乙烯系粒子3 〇重量 份、及作為光聚合起始劑 ▲ 割的Lu⑽η ΤΡΟ」(BASr司製 k,化干名.2,4,6-三甲其贫田 ^ 基本甲醯基二笨基氧化膦)5重量 伤,以固形成分率成為6〇 里里Λ之方式利用丙二醇單甲醚 進行稀釋,而製備塗佈液。 將該塗佈液塗佈於厚声 _ , 又μΐΏ2三乙醯纖維素(TAC)膜 又定為8〇t之乾燥機中乾⑴分鐘。利用橡 150611.doc • 36 - 201120485 膠輥’將乾燥後之基材膜以紫外線硬化性樹脂組合物層成 為輥側之方式,擠壓密著於上述(1)中製作之鏡面金屬製輕 之鏡面。於該狀態下,自基材膜側照射以h射線換算光量 計為300 mj/cm2的來自強度20 mW/cm2之高壓水銀燈之 光’使紫外線硬化性樹脂組合物層硬化,而獲得包含具有 平坦表面之光擴散層與基材膜的圖1所示結構之光擴散 膜。 將所得光擴散膜之光散射角(經透射散射之雷射光之出 射方向相對於光擴散膜之法線的傾角)與相對散射光強度 之關係示於圖1 〇中。 &lt;實施例2&gt; 使用35重量份之重量平均粒徑為6 〇 且標準偏差為 2.1 9 μηι之聚苯乙烯系粒子作為透光性微粒子,除此以 外’與實施例1同樣地製作光擴散膜。 &lt;實施例3 &gt; (1)壓紋加工用金屬製輥之製作 準備對直徑2〇〇 mm之鐵輥(依據JIS之STKM13A)之表面 把加有銅Ballade鍍層者。銅BaUade鍍層係包含鍍銅層/較 薄之鍍銀層/表面鍍銅層者,鍍層整體之厚度約為2〇〇 吨,對„亥鑛銅表面進行鏡面研磨,進而使用喷射裝置(不 二製作所股份有限公司製造),於喷射壓力為〇〇5跑(錶 壓:以下相同)、微粒子使用量為16 g/cm2(輥之表面積每】 W之使用量’以下相同)之條件下,對該研磨面喷射氧化 錯珠TZ-Bl25(T〇s〇h股份有限公司製造,平均粒徑:125 150611.doc -37· 201120485 μιη) ’而於表面形成凹凸。使用喷射裝置(不二製作所股份 有限公司製造)’於喷射壓力為0·;[ MPa、微粒子使用量為 4 g/cm2之條件下,對該凹凸面喷射氧化鍅珠Tz_sx· l7(T〇s〇h股份有限公司製造,平均粒徑:2〇 μηι),而對表 面凹凸進行微調整。以氯化銅液對所得之附帶凹凸之鍍銅 鐵輥進行蝕刻處理。此時之蝕刻量設定為3 μιη。其後,進 行鍍鉻加工,製作壓紋加工用金屬製輥。此時,鍍鉻厚度 設定為4 μηι。所得壓紋加工用金屬製輥之鍍鉻面之維氏硬 度為1000。 (2)光擴散膜之製作 將季戊四醇三丙稀酸醋6〇重量份、及多官能胺基甲酸醋 化丙烯酸酯(二異氰酸丨,6_己二酯與季戊四醇三丙烯酸酯之 反應產物)40重量份混合於丙二醇單甲鍵溶液中,將固形 成分濃度調整為6〇重量%,獲得紫外線硬化性樹脂組合 再者自°亥組合物去除丙二醇單曱醚並進行紫外線硬 化後之硬化物之折射率為〗53。 繼而才目對於上述紫外線硬化性相ί脂組合物之固形成: 1〇0重量份’添加作為透光性微粒子的重量平均粒徑為7 叫且標準偏差為0.52 _的聚苯乙稀系粒子35重量份、/ 作為光聚合起始劑的「Lucirin τρ〇」(黯公司製造,^ 于名&quot;6 —曱基笨甲醯基二苯基氧化膦”重量份,上 固形成分率成為60重量%之方式利用丙二醇單甲鍵進行矛 釋,而製備塗佈液。 將該塗佈液塗佈於厚度8〇 μηι之三乙醯纖維素(TAC)膜 J50611.doc -38- 201120485 (基材膜)上,於設定為80t之乾燥機中乾燥1分鐘。利用橡 膠輥’將乾燥後之基材膜以紫外線硬化性樹脂組合物層成 為親側之方式,擠壓⑧、著於上述⑴中製作之壓紋加工用金 屬製輥之凹&amp;面於該狀態τ,自基材膜側照射以h射 線換算光里汁為300 mj/cm2的來自強度2〇 mW/cm2之高壓 水銀燈之光,使紫外線硬化性樹脂組合物層硬化,而獲得 包3表面具有凹凸之光擴散層與基材膜的圖2所示結構之 光擴散膜。 &lt;實施例4&gt; 使用3 0重里伤之重里平均粒徑為6 · 〇 且標準偏差為 2 · 1 9 μιη之聚苯乙烯系粒子作為透光性微粒子除此以 外’與實施例1同樣地製作光擴散膜。 〈比較例1 &gt; 使用ίο重量份之重量平均粒徑為6 〇 μιη且標準偏差為 2.19 μιη之聚苯乙烯系粒子作為透光性微粒子,除此以 外,與實施例1同樣地製作光擴散膜。 &lt;比較例2&gt; 使用70重量伤之重置平均粒徑為6_〇 且標準偏差為 2.1 9 μιη之聚笨乙稀系粒子作為透光性微粒子除此以 外,與實施例1同樣地製作光擴散膜。 〈比較例3 &gt; 使用20重量份之重量平均粒徑為7 2 μιη且標準偏差為 0.52 μιη之聚苯乙烯系粒子作為透光性微粒子,除此以 外,與實施例1同樣地製作光擴散膜。 150611.doc •39· 201120485 &lt;比較例4&gt; 使用40重量份之重量平均粒徑為7.2 μιη且標準偏差為 0_52 μιη之聚苯乙烯系粒子作為透光性微粒子,除此以 外,與實施例1同樣地製作光擴散膜。 &lt;比較例5 &gt; 使用60重量份之重量平均粒徑為7 2 μηι且標準偏差為 0.5 2 μιη之聚苯乙稀系粒子作為透光性微粒子,除此以 外,與實施例1同樣地製作光擴散膜。 〈比較例6&gt; 使乾燥後之基材膜之紫外線硬化性樹脂組合物層不密著 於鏡面金屬製輥之鏡面而進行硬化,除此以外,與實施例 2同樣地製作光擴散膜。 將所得光擴散膜之光學特性及表面形狀等匯總於表1 中〇 [表1] 實施 例1 實施 例2 實施 例3 實施 例4 比較 例1 比較 例2 比較 例3 比較 例4 比較 例5 比較 例6 透光 性微 粒子 重量平均粒徑a(pm) 12.0 6.0 7.2 6.0 6.0 6.0 7.2 7.2 7.2 6.0 標準偏差1)(μηι) 4.17 2.19 0.52 2.19 2.19 2.19 0.52 0.52 0.52 2.19 b/a 0.35 0.37 0.07 0.37 0.37 0.37 0.07 0.07 0.07 0.37 調配量n(重量份) 30 35 35 30 10 70 20 40 60 35 光擴散率之層厚(μηι) 24.8 13.5 12.8 11.3 13.8 13.3 13.9 13,6 13.4 14.3 總霧度(%) 57.4 60.3 60.1 45.4 28.9 85.9 49.9 69.6 81.1 55.1 内部霧度(%) 56.7 59.9 58.7 45.1 28.5 85.6 49.6 69.4 80.7 37.0 表面霧度(%) 0.7 0.4 1.4 0.3 0.4 0.3 0.3 0.2 0.4 18.1 相對散射光強度(1〇_3%) 0.612 0.672 0.553 0.450 0.175 1.377 0.423 0.781 1.270 0.405 透射清晰度(%) 127-2 98.6 128.5 156.4 256.7 14.8 275.1 223.8 180.7 13.7 中心線平均粗链度Ra(pm) 0.03 0.02 0.15 0.05 0.03 0.03 0.02 0.02 0.02 0.47 1)相對於紫外線硬化性樹脂組合物之固形成分1 〇〇重量份的值。 -40- 150611.doc 201120485 又,使用所得之光擴散膜製作液晶顯示裝置,評價正面 對比度、&amp;角、疊紋之程度及泛白之程度。首先,於㈣ 模式之Panasonic製造之32吋液晶電視r VIERA TH_ 32LZ85」之背光裝置上配置與法線方向呈7〇。方向之亮度 值為法線方向之亮度值之1〇%的光擴散板,並且使用2片 平行排列有複數個頂角為95。之線狀稜鏡的稜鏡膜,將該 等配置於光擴散板與背光側偏光板之間。此時,其中一個 稜鏡膜(靠近背光裝置之稜鏡膜)係以其線狀棱鏡之稜線方 向大致與背光側偏光板之穿透透射軸平行的方式進行配 置’另一個稜鏡膜(靠近背光側偏光板之稜鏡膜)係以其線 狀稜鏡之棱線方向大致與下述視覺確認側偏光板之透射軸 平行的方式進行配置。 又,剝離視覺確認側偏光板,以相對於背光側偏光板成 為正交偏光之方式貼合碘系偏光板(住友化學公司製造之 「TRW842AP7」),並且經由黏著劑層貼合實施例1〜4或比 較例1〜6中製作之光擴散膜,獲得液晶顯示裝置。 將正面對比度、視角、疊紋之程度及泛白之程度之評價 結果示於表2中。該等之測定方法及評價基準如下所述。 (a)正面對比度 於暗室内啟動所得之液晶顯示裝置,使用亮度計BM5 A 型(TopCon股份有限公司製造),測定黑色顯示狀態及白色 顯示狀態下之正面亮度,算出正面對比度。正面對比度係 白色顯示狀悲下之正面亮度相對於黑色顯示狀態下之正面 亮度的比。 150611.doc -41· 201120485 (b) 視角 自視角(與液晶顯示裝置之正面方向所成之角度)為4〇。、 50。及60。之方向評價所得液晶顯示裝置之顯示品質。評價 基準如下所述。 ◎,顯示品質完全未見異常。 0.顯示品質幾乎未見異常。 △:稍有確認到灰階失去或反轉。 X :確認到灰階失去或反轉。 (c) 疊紋 啟動所得之液晶顯示裝置 價基準如下所述。 ◎.完全未見疊紋。 〇 :可見少量疊紋。 x :明顯可見疊紋。 以目視評價疊紋之程度。評 (d)泛白 於點亮螢光燈之明亮之室内 ’以目視觀察所得之液晶"κμ"dp" manufactured by Instruments, Inc.). (c) Haze The light-diffusing film was bonded to a glass substrate with the substrate film side by an optically transparent adhesive to prepare a sample for measurement. The measurement of the total haze and the internal haze was carried out by using a haze transmittance meter according to JIS κ 7136 (a haze meter "ΗΜ-150" manufactured by Murakami Color Technology Research Institute Co., Ltd.). Based on the result, the surface haze was calculated from the above formula (2). (d) Center line average roughness Ra was measured using a confocal interference microscope (for example, rPLp3(R) manufactured by 〇ptical Solution Co., Ltd.) according to JIS B 0601. (e) Layer thickness of the light diffusion layer The layer thickness of the light diffusion film was measured using DIGIMICRO MH-15 (body) manufactured by NIKON Co., Ltd. and ZC_1〇1 (counter), and the thickness of the substrate was subtracted from the measured layer thickness by 80 μηι ' This measures the layer thickness of the light diffusion layer. (f) Weight average particle diameter of the light-transmitting fine particles The measurement was carried out using a Coulter counter (manufactured by Beckman Coulter Co., Ltd.) using the Coulter principle (fine pore resistance method). 150611.doc -35· 201120485 &lt;Example ι&gt; (1) Manufacture of mirror metal report The surface of the straight-through 200 mm iron roll (according to JIS stkm13A) was subjected to industrial chrome plating, and then the surface was mirror-polished. Make mirror metal rolls. The chrome surface of the obtained mirror metal roll had a Vickers hardness of 1,000. Further, the Vickers hardness was measured using an ultrasonic hardness meter MIC1 (Krautkramei Co., Ltd.) according to JIS Z 22 (in the following examples, the Vickers hardness measurement method was the same). (2) Preparation of light-diffusing film, pentaerythritol diacrylic acid from (9) parts by weight, and polyfunctional amino-formic acid propylene propylene I (-isocyanate!, 6 hexanol) and pentaerythritol tripropionate vinegar 4 parts by weight of the mixture was mixed in a propylene glycol monomethyl ether solution to adjust the solid content concentration to 60% by weight to obtain an ultraviolet curable resin combination, and the propylene glycol monomethyl sulphide was removed from the composition and cured by ultraviolet light. The cured product has a refractive index of 153. With respect to the solid content of the ultraviolet curable resin composition of the above-mentioned ultraviolet curable resin composition, the weight average particle diameter of the light-transmitting fine particles is 12.0 μηι and the standard deviation is 417. / μηι of the present vinyl-based particles 3 〇 weight. And as a photopolymerization initiator ▲ cut Lu (10) η ΤΡΟ ( (BASr system made k, dried name. 2,4,6-trimethylidene field ^ basic carbaryl diphenyl phosphine oxide) 5 weight injury, A coating liquid was prepared by diluting with propylene glycol monomethyl ether in such a manner that the solid content ratio became 6 mil. The coating liquid was applied to a dryer having a thick sound _ and a μΐΏ2 triacetyl cellulose (TAC) film and set to 8 Torr for (1) minutes. By using the rubber 150611.doc • 36 - 201120485 rubber roller', the base film after drying is pressed into the surface of the ultraviolet curable resin composition layer to be the roll side, and is pressed against the mirror metal made in the above (1). Mirror surface. In this state, the light from the high-pressure mercury lamp having a strength of 20 mW/cm 2 in an amount of 300 mj/cm 2 in an amount of 30 mj/cm 2 is irradiated from the base film side, and the ultraviolet curable resin composition layer is cured to obtain a flatness. A light diffusing film of the structure shown in FIG. 1 of the light diffusing layer of the surface and the substrate film. The relationship between the light scattering angle (the inclination angle of the transmission direction of the transmitted and scattered laser light with respect to the normal line of the light diffusion film) and the relative scattered light intensity of the obtained light-diffusing film is shown in Fig. 1 . &lt;Example 2&gt; Light diffusion was performed in the same manner as in Example 1 except that 35 parts by weight of polystyrene particles having a weight average particle diameter of 6 Å and a standard deviation of 2.1 9 μηι were used as the light-transmitting fine particles. membrane. &lt;Example 3&gt; (1) Preparation of metal roll for embossing The surface of an iron roll (according to JIS STKM13A) having a diameter of 2 mm was prepared by plating a copper Ballade. The copper BaUade coating consists of a copper plating layer/thin silver plating layer/surface copper plating layer. The thickness of the whole plating layer is about 2 tons. The surface of the copper surface is mirror-polished, and then the spraying device is used. Manufactured by Co., Ltd., under the conditions that the injection pressure is 〇〇5 (gauge: the same below), and the amount of fine particles used is 16 g/cm2 (the surface area of the roll is the same as the usage amount of W), The ground surface was sprayed with oxidized XY-Bl25 (manufactured by T〇s〇h Co., Ltd., average particle diameter: 125 150611.doc -37·201120485 μιη), and irregularities were formed on the surface. Co., Ltd. manufactures] 于 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射 喷射Particle size: 2〇μηι), and the surface unevenness was finely adjusted. The obtained copper-plated iron roll with irregularities was etched with a copper chloride solution. The etching amount was set to 3 μm. Thereafter, chrome plating was performed. Processing, making embossing At this time, the thickness of the chrome plating was set to 4 μηι. The Vickers hardness of the chrome-plated surface of the metal roll for embossing was 1000. (2) Preparation of the light-diffusing film The weight of pentaerythritol triacrylate vinegar 6 〇 And a polyfunctional urethane acrylate (a reaction product of bismuth diisocyanate, 6-hexane dicarboxylate and pentaerythritol triacrylate) 40 parts by weight mixed in a propylene glycol monomethyl bond solution to adjust the solid content concentration The amount of the ultraviolet curable resin is 6% by weight, and the refractive index of the cured product obtained by removing the propylene glycol monoterpene ether from the lyophilized composition and ultraviolet curing is </ br> 53. Solid content formation of the composition: 1 〇 0 parts by weight '35 parts by weight of polystyrene particles added as a light-transmitting fine particle having a weight average particle diameter of 7 and a standard deviation of 0.52 Å, / as a photopolymerization initiator "Lucirin τρ〇" (manufactured by 黯, & & 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6The coating liquid was prepared by applying the coating liquid to a thickness of 8 〇μηι of triethyl fluorene cellulose (TAC) film J50611.doc -38-201120485 (substrate film), and dried at 80 t. The machine was dried for 1 minute, and the substrate film after drying was pressed to the side of the ultraviolet curable resin composition layer by a rubber roller, and the metal roll for embossing produced in the above (1) was extruded. In the state τ, the surface of the high-pressure mercury lamp having a strength of 2 〇mW/cm 2 in which the light gravy is 300 mj/cm 2 is irradiated from the base film side, and the ultraviolet curable resin composition layer is cured. On the other hand, a light-diffusing film of the structure shown in Fig. 2 having the uneven light-diffusing layer and the substrate film on the surface of the package 3 was obtained. &lt;Example 4&gt; In the same manner as in Example 1, except that polystyrene particles having a weight average particle diameter of 6 · 〇 and a standard deviation of 2 · 1 9 μm were used as the light-transmitting fine particles. A light diffusion film was produced. <Comparative Example 1> Light diffusion was carried out in the same manner as in Example 1 except that the polystyrene particles having a weight average particle diameter of 6 〇μηη and a standard deviation of 2.19 μηη were used as the light-transmitting fine particles. membrane. &lt;Comparative Example 2&gt; A sample was produced in the same manner as in Example 1 except that the polystyrene-based particles having a 70-weight damage and a standard deviation of 6 〇 and a standard deviation of 2.19 μm were used as the light-transmitting fine particles. Light diffusing film. Comparative Example 3 &gt; Light diffusion was carried out in the same manner as in Example 1 except that 20 parts by weight of polystyrene particles having a weight average particle diameter of 7 2 μm and a standard deviation of 0.52 μm were used as the light-transmitting fine particles. membrane. 150611.doc •39·201120485 &lt;Comparative Example 4&gt; Other examples were made using 40 parts by weight of polystyrene particles having a weight average particle diameter of 7.2 μm and a standard deviation of 0 to 52 μm as the light-transmitting fine particles. 1 A light diffusion film was produced in the same manner. &lt;Comparative Example 5 &gt; In the same manner as in Example 1, except that 60 parts by weight of polystyrene-based particles having a weight average particle diameter of 7 2 μm and a standard deviation of 0.5 2 μm were used as the light-transmitting fine particles. A light diffusion film was produced. <Comparative Example 6> A light-diffusing film was produced in the same manner as in Example 2 except that the ultraviolet curable resin composition layer of the base film after drying was cured without being adhered to the mirror surface of the mirror-finished metal roll. The optical characteristics and surface shape of the obtained light-diffusing film are summarized in Table 1 [Table 1] Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparison Example 6 Light-weight fine particles Weight average particle size a (pm) 12.0 6.0 7.2 6.0 6.0 6.0 7.2 7.2 7.2 6.0 Standard deviation 1) (μηι) 4.17 2.19 0.52 2.19 2.19 2.19 0.52 0.52 0.52 2.19 b/a 0.35 0.37 0.07 0.37 0.37 0.37 0.07 0.07 0.07 0.37 Formulation amount n (parts by weight) 30 35 35 30 10 70 20 40 60 35 Layer thickness of light diffusivity (μηι) 24.8 13.5 12.8 11.3 13.8 13.3 13.9 13,6 13.4 14.3 Total haze (%) 57.4 60.3 60.1 45.4 28.9 85.9 49.9 69.6 81.1 55.1 Internal haze (%) 56.7 59.9 58.7 45.1 28.5 85.6 49.6 69.4 80.7 37.0 Surface haze (%) 0.7 0.4 1.4 0.3 0.4 0.3 0.3 0.2 0.4 18.1 Relative scattered light intensity (1〇_3% 0.612 0.672 0.553 0.450 0.175 1.377 0.423 0.781 1.270 0.405 Transmission clarity (%) 127-2 98.6 128.5 156.4 256.7 14.8 275.1 223.8 180.7 13.7 Center line average thick chain Ra(pm) 0.03 0.02 0.15 0.05 0.03 0.03 0.02 0.02 0.02 0.4 7 1) A value of 1 part by weight relative to the solid content of the ultraviolet curable resin composition. -40-150611.doc 201120485 Further, a liquid crystal display device was produced using the obtained light-diffusing film, and the degree of front contrast, &amp; angle, the degree of embossing, and the degree of whitening were evaluated. First, the backlight of the 32-inch LCD TV r VIERA TH_ 32LZ85 manufactured by Panasonic in (4) mode is 7 inches from the normal direction. The brightness of the direction is a light diffusing plate having a brightness value of 1% in the normal direction, and two vertices are arranged in parallel with a plurality of apex angles of 95. The tantalum film is disposed between the light diffusing plate and the backlight side polarizing plate. At this time, one of the ruthenium films (the ruthenium film close to the backlight device) is arranged such that the ridge line direction of the linear prism is substantially parallel to the transmission transmission axis of the backlight-side polarizing plate. The ruthenium film of the backlight-side polarizing plate is disposed such that the ridge line direction of the linear ridge is substantially parallel to the transmission axis of the visual confirmation-side polarizing plate described below. Further, the opaque polarizing plate was peeled off, and the iodine-based polarizing plate ("TRW842AP7" manufactured by Sumitomo Chemical Co., Ltd.) was bonded to the backlight-side polarizing plate so as to be orthogonally polarized, and the Example 1 was bonded via the adhesive layer. 4 or a light diffusing film produced in Comparative Examples 1 to 6, to obtain a liquid crystal display device. The evaluation results of the front contrast, the angle of view, the degree of the embossing, and the degree of whitening are shown in Table 2. These measurement methods and evaluation criteria are as follows. (a) Front contrast The liquid crystal display device that was activated in the dark room was measured using a luminance meter BM5 A type (manufactured by TopCon Co., Ltd.) to measure the front luminance in the black display state and the white display state, and to calculate the front contrast. The front contrast is the ratio of the front brightness of the white display to the front brightness of the black display. 150611.doc -41· 201120485 (b) Viewing angle The self-viewing angle (the angle from the front direction of the liquid crystal display device) is 4 inches. 50. And 60. The display quality of the obtained liquid crystal display device was evaluated in the direction. The evaluation criteria are as follows. ◎, the display quality is completely abnormal. 0. The display quality is almost abnormal. △: A slight confirmation that the gray scale is lost or reversed. X : Confirm that the gray scale is lost or reversed. (c) Moiré The liquid crystal display device obtained by starting up is as follows. ◎. No overlap at all. 〇 : A small amount of embossing can be seen. x : The overlay is clearly visible. The degree of the moiré was visually evaluated. Comment (d) Whitening in a bright room that illuminates fluorescent lights ‘Visually observed LCD

示裝置,評價泛白之程度 ◎.完全未見泛白。 °評價基準如下所述。 〇 :可見少量泛白。 X :明顯可見泛白。 1506ll.doc -42. 201120485The device was used to evaluate the degree of whitening. ◎. No whitening was observed at all. The evaluation criteria are as follows. 〇 : A small amount of whitening can be seen. X: It is clearly visible white. 1506ll.doc -42. 201120485

[表2] 實施例 1 實施例 2 實施例 3 實施例 4 比較例 1 比較例 2 比較例 3 比較例 4 比較例 5 比較例 6 正面對 比度 875 861 894 915 923 673 906 842 687 765 視 角 40° ◎ ◎ ◎ ◎ △ 〇 〇 〇 〇 0 50° ◎ ◎ ◎ ◎ X 〇 〇 〇 〇 Δ 60° ◎ ◎ ◎ ◎ X 〇 〇 〇 〇 Δ 疊紋 ◎ ◎ ◎ 〇 X ◎ X X X ◎ 泛白 ◎ ◎ 〇 ◎ ◎ ◎ ◎ ◎ ◎ X 如表2所示,使用實施例1〜4之光擴散膜之液晶顯示裝 置,具有較高之正面對比度,視角及疊紋消除性優異,亦 未產生泛白。 另一方面,使用比較例1之光擴散膜之液晶顯示裝置由 於透光性微粒子之調配量較少,故光擴散膜之光擴散性變 得不充分,結果視角狹窄,又,由於透射清晰度較高,故 疊紋消除性差。使用比較例2之光擴散膜之液晶顯示裝置 由於透光性微粒子之調配量較多,故光擴散膜之光擴散性 過南’結果正面對比度降低。使用比較例3〜5之光擴散膜 之液晶顯示裝置由於光擴散膜之透射清晰度較高,故疊紋 消除性差。使用比較例6之光擴散膜之液晶顯示裝置由於 光擴散膜之中心線平均粗糙度以較大,表面粗糙,故透射 /月晰度變低’結果正面對比度降低,泛白亦明顯。 &lt;實施例5&gt; (水溶性接著劑之製備) 相對於水1 〇〇份而溶解羧基改質聚乙烯醇[Kui股份有 150611.doc -43· 201120485 限公司製造之KL-3 1 8]3份,於該水溶液中添加作為水溶性 環氧化合物之聚醯胺環氧系添加劑[Sumika Chemtex股份 有限公司製造之Sumirez Resin 650(30),固形成分濃度為 3〇%之水溶液]1.5份,製成水溶性接著劑。 (丙烯酸系黏著劑之製備) 利用夾縫塗佈機’將於丙烯酸丁酯與丙烯酸之共聚物中 調配有丙烯酸胺基曱酸酯募聚物及異氰酸酯系交聯劑之有 機溶劑溶液,以乾燥後之厚度成為25 μπΐ2方式塗敷於經 脫模處理之厚度38 μπι之聚對苯二曱酸乙二酯膜(隔離層) 之脫模處理面,並將其乾燥,而製成丙烯酸系黏著劑(附 帶隔離膜)。 (偏光板之製造) 在聚乙烯醇膜上吸附配向有碘的偏光元件之一面上,貼 合經息化處理之實施例1中所製作之光擴散膜,於另一面 上貼合經皂化處理之厚度4〇 μιη之包含三乙醯纖維素之透 明保護膜[K〇nica Minolta Opto股份有限公司製造之 KC4UEW]來作為液晶側透明保護膜,而製作光擴散偏光 板。貼合時分別使用上述所製備之水溶性接著劑,貼合後 於8 0 C下乾燥5分鐘,藉此接著偏光元件與透明保護膜。 將上述所製備之丙烯酸系黏著劑(附帶隔離膜)以黏著劑 側貼。於该偏光板之40 ^爪厚透明保護膜側,製成附黏著 劑之偏光板。 &lt;實施例6&gt; (抗反射膜之製作) 150611.doc • 44· 201120485 將一季戊四醇二丙稀酸醋ι〇重董份、季戍四醇四丙稀酸 酿10重量份、丙烯酸胺基甲酸酯(共榮杜化學股份有限公 司製造「UA-306T」)30重量份、作為光聚合起始劑之 「Irgacure 184」(Ciba Japan股份有限公司製造)2 5重量 伤、作為溶劑之曱基乙基酮5 〇重量份、乙酸丁酯5 〇重量份 進行混合,而製備作為紫外線硬化性樹脂組合物之硬塗層 形成用塗佈液。藉由線棒塗佈機,將該塗佈液塗佈於厚度 80 μηι之作為TAC膜之透明樹脂膜(折射率為i 49)上,於設 定為80°C之乾燥機中乾燥1分鐘。使用金屬鹵素燈,以12〇 W之功率,自20 cm之距離對乾燥後之透明樹脂膜照射紫 外線ίο秒鐘,藉此形成硬塗層。所得硬塗層之厚度為5 μπι,折射率為1.52。 其次’於四乙氧基矽烷中添加異丙醇、〇」Ν鹽酸使 之水解,藉此獲得含有包含募聚物之四乙氧基矽烷之聚合 物的溶液。於該溶液中混合一次粒徑為8 nm之摻銻氧化錫 (ΑΤΟ)微粒子,添加異丙醇,藉此獲得含有四乙氧基矽烷 之聚合物2.5重量%、摻銻氧化錫微粒子2 5重量%的抗靜電 層形成用塗佈’液。另一方面’⑯形成有硬塗層me膜於 50°C之1.5 N之NaOH水溶液中浸潰2分鐘,進行鹼處理, 水洗後’藉由於室溫下於〇.5重量%之卿4水溶液中浸潰 30秒而進行巾&amp;,進而進行水洗,並進行錢處理。藉由 線棒塗佈機,將上述抗靜電層形成用塗佈液塗佈於經鹼處 理之硬塗層上,於設定為12Gt之乾燥機中乾⑸分鐘,藉 此形成抗靜電層。所得抗靜電層之厚度為163⑽,折射^ 150611.doc •45· 201120485 為1·53 ’光學膜厚為25〇 nm。 其次’於四乙氧基我WH,1H,2H,2H^WUM 土石夕院之混合比為95 : 5(莫耳比)混合物中添加異丙醇、 〇.1 N鹽酸’使之水解,藉此獲得含有包含寡聚物之有機 石夕化合物之聚合物的溶液。於該溶液中混合内部具有空隙 之低折射率二氧切微粒子,添加異丙醇,藉此獲得含有 有機夕化。物2重量%、低折射率二氧化矽微粒子2重量% 之低折射率層形成用塗佈液。藉由線棒塗佈機,將所得之 低折射率層形成用塗佈液塗佈於抗靜電層上,於設定為 120 C之乾燥機中乾燥丨分鐘,藉此形成低折射率層。所得 低折射率層之厚度為91 nm,折射率為137,光學膜厚為 125 nm。藉由上述方式,製作於透明樹脂膜上具備硬塗 層、抗靜電層、及低折射率層之抗反射膜。 (製作積層有抗反射膜之光擴散性偏光板) 經由通用之丙烯酸系透明黏著劑,於實施例5中製作之 附黏著劑之偏光板的光擴散膜側積層上述所製作之抗反射 膜,而獲得經抗反射處理之光擴散性偏光板。 又’使用所得之光擴散性偏光板製作液晶顯示裝置,評 價視角、疊紋之程度及泛白之程度。剝離視覺確認側偏光 板,以相對於背光側偏光板而成為正交偏光之方式貼合實 施例6、7中製作之光擴散性偏光板,除此以外,與上述評 價同樣地使用IPS模式之Panasonic製造之32 寸液晶電視 「VIERA TH-32LZ85」來獲得液晶顯示裝置。評價方法及 評價基準與上述評價相同。 150611.doc -46 - 201120485 程度之評價結果示於表3 將視角、疊紋之程度及泛白之 中 [表3] 實施例5 視角 40° ◎[Table 2] Example 1 Example 2 Example 3 Example 4 Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Front contrast ratio 875 861 894 915 923 673 906 842 687 765 Viewing angle 40° ◎ ◎ ◎ ◎ △ 〇〇〇〇 0 50° ◎ ◎ ◎ ◎ X 〇〇〇〇 Δ 60° ◎ ◎ ◎ ◎ X 〇〇〇〇 Δ 叠 ◎ ◎ ◎ 〇 X ◎ XXX ◎ White ◎ ◎ 〇 ◎ ◎ ◎ ◎ ◎ ◎ As shown in Table 2, the liquid crystal display devices using the light-diffusing films of Examples 1 to 4 have high front contrast, excellent viewing angle and moiré elimination, and no whitening. On the other hand, in the liquid crystal display device using the light-diffusing film of Comparative Example 1, since the amount of the light-transmitting fine particles is small, the light diffusibility of the light-diffusing film becomes insufficient, and as a result, the viewing angle is narrow, and, also, the transmission clarity Higher, so the moiré is poorly eliminated. In the liquid crystal display device using the light-diffusing film of Comparative Example 2, since the amount of the light-transmitting fine particles is large, the light diffusing property of the light-diffusing film is too south, and the front contrast is lowered. The liquid crystal display device using the light-diffusing film of Comparative Examples 3 to 5 had a high transparency of the light-diffusing film, so that the moiré removal property was poor. In the liquid crystal display device using the light-diffusing film of Comparative Example 6, since the center line average roughness of the light-diffusing film was large and the surface was rough, the transmission/month clarity became low. As a result, the front contrast was lowered and the whitening was also remarkable. &lt;Example 5&gt; (Preparation of water-soluble binder) Solvent-modified polyvinyl alcohol was dissolved in 1 part of water [Kui shares have 150611.doc -43·201120485 KL-3 manufactured by the company Limited] 3 parts, a polyamine amine epoxy-based additive as a water-soluble epoxy compound [Sumirez Resin 650 (30) manufactured by Sumika Chemtex Co., Ltd., an aqueous solution having a solid concentration of 3% by weight] of 1.5 parts was added to the aqueous solution. A water soluble adhesive is prepared. (Preparation of Acrylic Adhesive) An organic solvent solution of an amino acrylate phthalate acrylate and an isocyanate crosslinking agent is prepared by using a nip coater to copolymerize a copolymer of butyl acrylate and acrylic acid. The thickness is 25 μπΐ2 applied to a release-treated surface of a polyethylene terephthalate film (separation layer) having a thickness of 38 μm, which is subjected to release treatment, and dried to prepare an acrylic adhesive. (with separator). (Production of Polarizing Plate) The surface of one of the polarizing elements having iodine was adsorbed on the polyvinyl alcohol film, and the light-diffusing film prepared in Example 1 was subjected to the treatment, and the saponification treatment was applied to the other surface. A transparent protective film (KC4UEW manufactured by K〇nica Minolta Opto Co., Ltd.) containing a thickness of 4 Å μm was used as a liquid crystal side transparent protective film to prepare a light diffusing polarizing plate. The water-soluble adhesive prepared above was used for the lamination, and after lamination, it was dried at 80 ° C for 5 minutes, whereby the polarizing element and the transparent protective film were followed. The acrylic adhesive (with a separator attached) prepared above was applied sideways with an adhesive. A polarizing plate with an adhesive was prepared on the side of the 40 cm thick transparent protective film of the polarizing plate. &lt;Example 6&gt; (Preparation of antireflection film) 150611.doc • 44· 201120485 One pentaerythritol diacrylic acid vinegar 〇 董 Dong, quaternary tetraol tetrapropyl acid 10 parts by weight, acrylamide "Irgacure 184" (manufactured by Ciba Japan Co., Ltd.), 30 parts by weight of formic acid ester ("UA-306T" manufactured by Kyoei Chemical Co., Ltd.), was used as a photopolymerization initiator. A coating liquid for forming a hard coat layer as an ultraviolet curable resin composition was prepared by mixing 5 parts by weight of ethyl ethyl ketone and 5 parts by weight of butyl acetate. This coating liquid was applied onto a transparent resin film (refractive index i 49) of a TAC film having a thickness of 80 μm by a wire bar coater, and dried in a dryer set at 80 ° C for 1 minute. The dried transparent resin film was irradiated with ultraviolet rays for a second time at a distance of 20 cm using a metal halide lamp at a power of 12 Å to form a hard coat layer. The resulting hard coat layer had a thickness of 5 μm and a refractive index of 1.52. Next, isopropanol and hydrazine hydrochloride were added to tetraethoxy decane to hydrolyze it, thereby obtaining a solution containing a polymer of tetraethoxy decane containing a polymer. The cerium-doped tin oxide (yttrium) fine particles having a particle diameter of 8 nm were mixed in the solution, and isopropyl alcohol was added thereto, thereby obtaining 2.5% by weight of the polymer containing tetraethoxy decane and 25 parts by weight of the cerium-doped tin oxide fine particles. % of the coating liquid for forming an antistatic layer. On the other hand, the '16-formed hard-coating film was immersed in a 1.5 N aqueous solution of NaOH at 50 ° C for 2 minutes, and subjected to alkali treatment. After washing with water, it was taken at room temperature at 5% by weight. The towel was washed for 30 seconds, and then washed with water and subjected to money treatment. The coating liquid for forming an antistatic layer was applied onto an alkali-treated hard coat layer by a wire bar coater, and dried in a dryer set to 12 Gt for 5 minutes to form an antistatic layer. The obtained antistatic layer has a thickness of 163 (10) and a refractive index of 150611.doc • 45·201120485 of 1.53 ′ optical film thickness of 25 〇 nm. Secondly, in the mixture of tetraethoxy I WH, 1H, 2H, 2H^WUM earth stone courtyard, 95: 5 (mole ratio) mixture was added with isopropanol, 〇.1 N hydrochloric acid to hydrolyze, borrow This gave a solution containing a polymer of an organic stone compound containing an oligomer. In the solution, low-refractive-index diced microparticles having voids therein were mixed, and isopropyl alcohol was added thereto, whereby the organic cerium was obtained. A coating liquid for forming a low refractive index layer of 2% by weight of the material and 2% by weight of the low refractive index cerium oxide fine particles. The obtained coating liquid for forming a low refractive index layer was applied onto an antistatic layer by a wire bar coater, and dried in a dryer set to 120 C for a minute to form a low refractive index layer. The resulting low refractive index layer had a thickness of 91 nm, a refractive index of 137, and an optical film thickness of 125 nm. According to the above aspect, an antireflection film having a hard coat layer, an antistatic layer, and a low refractive index layer on the transparent resin film was produced. (Production of a light-diffusing polarizing plate in which an antireflection film is laminated) The anti-reflection film produced as described above is laminated on the light-diffusion film side of the polarizing plate with an adhesive prepared in Example 5 via a general-purpose acrylic transparent adhesive. A light diffusing polarizing plate subjected to antireflection treatment is obtained. Further, a liquid crystal display device was produced using the obtained light diffusing polarizing plate, and the degree of viewing angle, the degree of the moiré, and the degree of whitening were evaluated. The IPS mode was used in the same manner as the above evaluation, except that the light-diffusing polarizing plates produced in Examples 6 and 7 were bonded to each other in such a manner as to be orthogonally polarized with respect to the backlight-side polarizing plate. A 32-inch LCD TV "VIERA TH-32LZ85" made by Panasonic is used to obtain a liquid crystal display device. The evaluation method and evaluation criteria are the same as the above evaluation. 150611.doc -46 - 201120485 The evaluation results of the degree are shown in Table 3. The angle of view, the degree of overprinting and the whitening [Table 3] Example 5 Perspective 40° ◎

◎ ---- 50。 60° 疊紋 泛白 ◎ ◎ ◎ ◎ ◎ ---◎ —◎ 如表3所示,使用實施例5及6之 _ 之先擴散性偏光板之液晶 顯示裝置’具有與實施例1同後 _ … ^ U像之顯示特性,視角及疊紋 消除性優異,亦未產生泛白。 【圖式簡單說明】 圖1係表示本發明之光擴散膜之如社 ίΛ 4bh 狀肤义杈佳一例的概略剖面 圖 圖2係表示本赉明之光擴散膜之另—較佳例的概略剖面 圖。 圖3係模式地表示自基材膜側之法線方向入射雷射光, 並測配向自光擴散層側法線方向傾斜4〇。之方向透射之雷 射光的透射散射光強度時的雷射光之入射方向與透射散射 光強度測定方向的立體圖。 圖4係表示本發明之光擴散膜之又—較佳例的概略剖面 150611.doc -47- 201120485 圖。 圖5係表示用以製造本發明之光擴散臈之裝置之一例的 概略圖。 圖6係表示本發明之光擴散性偏光板之較佳一例的概略 剖面圖。 圖7係表示本發明之液晶顯示裝置之較佳一例的概略剖 面圖。 圖8係用以說明稜鏡膜所具有之線狀稜鏡之稜線方向與 偏光板之透射軸方向之關係的概略立體圖。 圖9係表示本發明之液晶顯示裝置之另一較佳例的概略 剖面圖。 圖1 〇係表示實施例1中製作之光擴散膜之光散射角(經透 射散射之雷射光之出射方向相對於光擴散膜之法線的傾 角)與相對散射光強度之關係的圖。 圖11係表示本發明之光擴散性偏光板之另一較佳例的概 略剖面圖。 圖12係表示本發明之光擴散性偏光板之另一較佳例的概 略剖面圖。 圖13係表示本發明之光擴散性偏光板之另一較佳例的概 略剖面圖。 圖14係表示本發明之光擴散性偏光板之另一較佳例的概 略剖面圓。 圖15係表示本發明之光擴散性偏光板之另—較佳例的概 略剖面圖。 150611.doc -48 - 201120485 圖16係表示本發明之光擴散性偏光板之另一較佳例的概 略剖面圖。 圖1 7係表示本發明之光擴散性偏光板之另一較佳例的概 略剖面圖。 &quot;系表示本發明之光擴散性偏光板之另一較佳例的概 &quot; 略剖面圖。 系表示本兔明之光擴散性偏光板之另一較佳例的概 略剖面圖。 圖2〇係表不本發明之光擴散性偏光板之另一較佳例的概 略剖面圖。 圖21係表示本發明之光擴散性偏光板之另一較佳例的概 略剖面圖。 圖22係表示本發明之光擴冑性偏光板之另-較佳例的概 略剖面圖。 【主要元件符號說明】 100 、 200 、 340 、 707 101 102 103 104 105 106 107 108 光擴散膜 基材膜 光擴散層 透光性樹脂 透光性微粒子 樹脂層 抗反射層 透明膜 接著劑層或黏著劑層 150611.doc -49- 201120485 501 502 503 504 505 506 507 508 509 600 601 602 701 702 703 704a ' 704b 705 706 708 711a &gt; 711b 712 721 722 捲出裝置 塗敷裝置 支承輥 乾燥機 鏡面金屬製輥或壓紋加工用金 屬製輥 夾輥 剝離輥 紫外線照射裝置 捲取裝置 光擴散性偏光板 偏光膜 保護膜 液晶早元 背光裝置 光擴散板 稜鏡膜 背光側偏光板 視覺確認側偏光板 相位差板 透明基板 液晶層 外殼 冷陰極管 15061I.doc •50· 201120485 741a、741b 742a、742b 801 線狀稜鏡 線狀棱鏡之稜線 具有表面凹凸之層 150611.doc -51 -◎ ---- 50. 60° Cladding white ◎ ◎ ◎ ◎ ◎ --- ◎ — ◎ As shown in Table 3, the liquid crystal display device ' using the first diffusing polarizing plate of Examples 5 and 6' has the same as Example 1 ... ^ U-picture display characteristics, excellent viewing angle and moiré elimination, and no whitening. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing an example of a light-diffusing film of the present invention, and FIG. 2 is a schematic cross-sectional view showing another preferred embodiment of the light-diffusing film of the present invention. Figure. Fig. 3 is a view schematically showing incident laser light from the normal direction of the substrate film side, and the measurement is inclined 4 向 from the normal direction of the light diffusion layer side. In the direction of transmission, the transmission direction of the scattered light and the perspective of the direction in which the transmitted light intensity is measured. Fig. 4 is a schematic cross-sectional view showing a further preferred embodiment of the light-diffusing film of the present invention 150611.doc-47-201120485. Fig. 5 is a schematic view showing an example of a device for producing the light-diffusing crucible of the present invention. Fig. 6 is a schematic cross-sectional view showing a preferred example of the light diffusing polarizing plate of the present invention. Fig. 7 is a schematic cross-sectional view showing a preferred example of the liquid crystal display device of the present invention. Fig. 8 is a schematic perspective view for explaining the relationship between the ridgeline direction of the linear flaw of the enamel film and the transmission axis direction of the polarizing plate. Fig. 9 is a schematic cross-sectional view showing another preferred embodiment of the liquid crystal display device of the present invention. Fig. 1 is a graph showing the relationship between the light scattering angle (inclination angle of the emission direction of the laser light transmitted through the scattering with respect to the normal line of the light diffusion film) and the relative scattered light intensity of the light-diffusing film produced in Example 1. Fig. 11 is a schematic cross-sectional view showing another preferred embodiment of the light diffusing polarizing plate of the present invention. Fig. 12 is a schematic cross-sectional view showing another preferred embodiment of the light diffusing polarizing plate of the present invention. Fig. 13 is a schematic cross-sectional view showing another preferred embodiment of the light diffusing polarizing plate of the present invention. Fig. 14 is a schematic cross-sectional circle showing another preferred embodiment of the light diffusing polarizing plate of the present invention. Fig. 15 is a schematic cross-sectional view showing another preferred embodiment of the light diffusing polarizing plate of the present invention. 150611.doc -48 - 201120485 Fig. 16 is a schematic cross-sectional view showing another preferred embodiment of the light diffusing polarizing plate of the present invention. Fig. 1 is a schematic cross-sectional view showing another preferred embodiment of the light diffusing polarizing plate of the present invention. &quot; is a schematic cross-sectional view showing another preferred embodiment of the light diffusing polarizing plate of the present invention. It is a schematic cross-sectional view showing another preferred example of the light diffusing polarizing plate of the present invention. Fig. 2 is a schematic cross-sectional view showing another preferred embodiment of the light diffusing polarizing plate of the present invention. Fig. 21 is a schematic cross-sectional view showing another preferred embodiment of the light diffusing polarizing plate of the present invention. Fig. 22 is a schematic cross-sectional view showing another preferred embodiment of the optical diffusing polarizing plate of the present invention. [Description of main component symbols] 100, 200, 340, 707 101 102 103 104 105 106 107 108 Light diffusion film substrate film Light diffusion layer Translucent resin Translucent fine particle resin layer Antireflection layer Transparent film adhesive layer or adhesion Agent layer 150611.doc -49- 201120485 501 502 503 504 505 506 507 508 509 600 601 602 701 702 703 704a ' 704b 705 706 708 711a &gt; 711b 712 721 722 Roll-out device coating device support roller dryer mirror metal Roller or embossing metal roll nip roll peeling roller UV irradiation device Winding device Light diffusing polarizing plate Polarizing film Protective film Liquid crystal Early backlight device Light diffusing plate 稜鏡 Film backlight side polarizing plate Visual confirmation side polarizing plate phase difference Plate transparent substrate liquid crystal layer casing cold cathode tube 15061I.doc • 50· 201120485 741a, 741b 742a, 742b 801 The ridge line of the linear 稜鏡 line prism has a layer of surface relief 150611.doc -51 -

Claims (1)

201120485 七、申請專利範圍: 1. 一種光擴散膜,其係具有基材膜、與積層於上述基材骐 上且分散有透光性微粒子之光擴散層者, 向自上述光擴散層侧之上述法線方向傾斜40°之方向 透射的雷射光之強度L2相對於自上述基材膜側向光擴散 膜之法線方向入射的波長543.5 nm之雷射光之強度1^的 比L2/L丨為0_0002%以上、0.001%以下, 通過0.125 mm、0.5 mm、1.0 mm及2.0 mm之光梳所得 之透射清晰度之和為70%以上、18〇%以下, 總霧度為40%以上、70%以下,内部霧度為40%以上、 70。/。以下,且由上述光擴散層之表面形狀引起之表面霧 度未達2%, 上述光擴散層之表面之中心線平均粗糙度以為〇 2 μηι 以下。 2. 如請求項1之光擴散膜,其中上述透射清晰度之和為7〇% 以上、150%以下。 3. 如請求項卜戈]之光擴散膜,其中上述表面霧度為1%以 下。 4. 如請求項丨之光擴散膜,其中上述中心線平均粗糙度“ 為〇· 1 μιη以下。 5. 如請求項1之光擴散膜,其中上述光擴散層之層厚相對 於上述透光性微粒子之重量平均粒徑而為丨倍以上、3倍 以下。 6·如請求項丨之光擴散膜,其進而具備積層於上述光擴散 150611.doc 201120485 層上之抗反射層。 7· 一種光擴散膜之製造方法,其係如請求項1之光擴散膜 之製造方法,包括如下步驟: 於上述基材膜上塗佈分散有上述透光性微粒子之樹脂 液; 於包含上述樹脂液之層之表面轉印模具之鏡面或凹凸 面。 8· 一種光擴散性偏光板,其具備: 至少含有偏光膜之偏光板,以及 以上述基材膜側與上述偏光板相對向之方式積層於上 述偏光板上的如請求項1至6中任一項之光擴散膜。 9.如請求項8之光擴散性偏光板,其係經由接著劑層貼合 上述偏光膜與上述光擴散膜而成。 10· —種液晶顯示裝置,其依序具備背光裝置、光偏向機 構、背光側偏光板、液晶單元、及如請求項8或9之光擴 散性偏光板。 11_如請求項1〇之液晶顯示裝置,其中上述光偏向機構於與 上述背光側偏光板相對向之表面具有2片具有複數個線 狀稜鏡之稜鏡膜, 其中一個棱鏡膜係以其線狀稜鏡之棱線方向大致與上 述背光側偏光板之透射軸平行的方式進行配置,另一個 稜鏡膜係以其線狀稜鏡之稜線方向大致與上述光擴散性 偏光板之透射軸平行的方式進行配置。 12.如請求項1〇或π之液晶顯示裝置,其中於上述背光裝置 與上述光偏向機構之間進而具備光擴散機構。 150611.doc201120485 VII. Patent application scope: 1. A light diffusion film having a substrate film and a light diffusion layer laminated on the substrate substrate and having light-transmitting fine particles dispersed thereon, from the side of the light diffusion layer The ratio L2/L of the intensity L2 of the laser light transmitted in the direction in which the normal direction is inclined by 40° with respect to the intensity of the laser light incident at a wavelength of 543.5 nm from the side of the base film toward the normal direction of the light diffusing film. 0 to 0002% or more and 0.001% or less, the sum of transmission sharpness obtained by optical combing of 0.125 mm, 0.5 mm, 1.0 mm, and 2.0 mm is 70% or more and 18% or less, and the total haze is 40% or more, 70 Below %, the internal haze is 40% or more and 70%. /. Hereinafter, the surface haze caused by the surface shape of the light diffusion layer is less than 2%, and the center line average roughness of the surface of the light diffusion layer is 〇 2 μη or less. 2. The light diffusing film of claim 1, wherein the sum of the transmission clarity is 7% or more and 150% or less. 3. The light diffusing film of claim 2, wherein the surface haze is 1% or less. 4. The light-diffusing film of claim 1, wherein the center line average roughness is 〇·1 μηη or less. 5. The light-diffusing film of claim 1, wherein the layer thickness of the light diffusion layer is relative to the light transmittance The weight average particle diameter of the fine particles is not less than or equal to or less than 3 times. 6. The light-diffusing film of claim 1 further comprising an anti-reflection layer laminated on the layer of light diffusion 150611.doc 201120485. The method for producing a diffusing film according to claim 1, comprising the steps of: coating a resin liquid in which the light-transmitting fine particles are dispersed on the base film; and forming a layer containing the resin liquid; A mirror-like or uneven surface of the surface transfer mold. The light-diffusing polarizing plate comprising: a polarizing plate including at least a polarizing film; and a layer of the polarizing plate facing the polarizing plate so as to be laminated on the polarizing plate A light-diffusing film according to any one of claims 1 to 6, wherein the light diffusing polarizing plate of claim 8 is bonded to the light diffusing film and the light diffusing film via an adhesive layer. A liquid crystal display device comprising a backlight device, a light deflecting mechanism, a backlight side polarizing plate, a liquid crystal cell, and a light diffusing polarizing plate according to claim 8 or 9 in sequence. 11_Request item 1 In the liquid crystal display device, the light deflecting mechanism has two ruthenium films having a plurality of linear ridges on a surface opposite to the backlight-side polarizing plate, wherein one of the prism films has a linear ridge The line direction is arranged substantially parallel to the transmission axis of the backlight-side polarizing plate, and the other film is disposed such that the ridge line direction of the linear line is substantially parallel to the transmission axis of the light-diffusing polarizing plate. 12. The liquid crystal display device of claim 1 or π, further comprising a light diffusing mechanism between the backlight device and the light deflecting mechanism. 150611.doc
TW99129721A 2009-09-04 2010-09-02 Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device TW201120485A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009204765 2009-09-04
JP2010050735 2010-03-08

Publications (1)

Publication Number Publication Date
TW201120485A true TW201120485A (en) 2011-06-16

Family

ID=43649436

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99129721A TW201120485A (en) 2009-09-04 2010-09-02 Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device

Country Status (5)

Country Link
JP (1) JP2011209675A (en)
KR (1) KR20120079074A (en)
CN (1) CN102576098A (en)
TW (1) TW201120485A (en)
WO (1) WO2011027903A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316986A (en) * 2014-10-26 2015-01-28 昆山乐凯锦富光电科技有限公司 Reflection polarization brightening diffusion composite film
TWI487952B (en) * 2009-09-04 2015-06-11 Sumitomo Chemical Co A light diffusion film, a method of manufacturing the same, a light diffusioning polarizing plate, and a liquid crystal display device
TWI617827B (en) * 2012-05-09 2018-03-11 大日本印刷股份有限公司 Optical film, polarizing plate, liquid crystal panel and image display device

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212122A (en) * 2011-03-18 2012-11-01 Sumitomo Chemical Co Ltd Polarizer protective film
WO2013031633A1 (en) * 2011-08-26 2013-03-07 日本カーバイド工業株式会社 Optical composite sheet
JP6048412B2 (en) * 2011-10-12 2016-12-21 大日本印刷株式会社 Anti-glare sheet for image display device
JP6045826B2 (en) * 2012-07-09 2016-12-14 住友化学株式会社 Manufacturing method of polarizing plate
JP2014132291A (en) * 2013-01-04 2014-07-17 Sumitomo Chemical Co Ltd Method for producing optical film, polarizing plate, and image display device
CN103345012B (en) * 2013-07-31 2015-07-22 宁波激智科技股份有限公司 Brightening diffusion film and preparation method thereof
JP2015169805A (en) * 2014-03-07 2015-09-28 大日本印刷株式会社 Natural lighting tool and panel with natural lighting window
KR102053703B1 (en) * 2014-03-28 2019-12-09 동우 화인켐 주식회사 Composition for Light Diffused Anti-Glare Film and Light Diffused Anti-Glare Film Using the Same
WO2016052626A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Backlight unit, liquid crystal display device and wavelength conversion member
JP2017143035A (en) * 2016-02-12 2017-08-17 Jsr株式会社 Composition for light guide plate and light guide plate
CN107436525A (en) * 2016-05-27 2017-12-05 上海蓝湖照明科技有限公司 Scattering device and its manufacture method and light-emitting device, optical projection system and illuminator
JP6938126B2 (en) * 2016-10-05 2021-09-22 住友化学株式会社 Liquid crystal display
CN106896567B (en) 2017-03-17 2019-06-14 京东方科技集团股份有限公司 A kind of polaroid and display device
JP7041542B2 (en) * 2018-02-16 2022-03-24 住友化学株式会社 Liquid crystal display device
CN108254825B (en) * 2018-03-21 2023-09-08 深圳市南极光电子科技有限公司 Backlight device based on coating ink and manufacturing method
CN110824599B (en) * 2018-08-14 2021-09-03 白金科技股份有限公司 Infrared band-pass filter
CN110858009A (en) * 2018-08-22 2020-03-03 白金科技股份有限公司 Diffusion sheet
KR102202745B1 (en) * 2018-10-31 2021-01-14 주식회사 서연이화 Car interior materials including Laser reaction layer
WO2020183561A1 (en) * 2019-03-11 2020-09-17 株式会社ダイセル Scattering film
WO2020194720A1 (en) * 2019-03-28 2020-10-01 堺ディスプレイプロダクト株式会社 Light-scattering film and liquid crystal display device
CN111435182B (en) * 2019-05-24 2022-10-04 宁波激智科技股份有限公司 Light filtering type dimming sheet and preparation method thereof
CN115668045A (en) * 2021-02-23 2023-01-31 京东方科技集团股份有限公司 Display device
CA3222032A1 (en) * 2021-06-09 2022-12-15 Luxcreo (Beijing) Inc. Additive manufacturing devices and methods
CN113946070A (en) * 2021-09-26 2022-01-18 深圳市三利谱光电科技股份有限公司 Phase delay polaroid, processing technology thereof and optical display device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4271462B2 (en) * 2002-03-26 2009-06-03 恵和株式会社 Light diffusion sheet and backlight unit using the same
WO2006006254A1 (en) * 2004-07-12 2006-01-19 Fujifilm Corporation Antireflection film, polarizing plate, and image display device using the same
JP4914603B2 (en) * 2004-12-10 2012-04-11 東洋インキScホールディングス株式会社 Composition for light scattering film and light scattering film using the same
JP2007264113A (en) * 2006-03-27 2007-10-11 Fujifilm Corp Optical film, polarizing plate, and image display device
JP2007322779A (en) * 2006-06-01 2007-12-13 Nitto Denko Corp Glare-proof hard coating film, polarizing plate and liquid display using them
JP4277931B2 (en) * 2007-03-15 2009-06-10 ソニー株式会社 Surface light emitting device, liquid crystal display device, and optical sheet combination
JP2009024068A (en) * 2007-07-18 2009-02-05 Nippon Shokubai Co Ltd Method for producing resin particles containing zirconium oxide nanoparticles and resin particles
JP2009122490A (en) * 2007-11-16 2009-06-04 Toppan Printing Co Ltd Anti-glare film
JP2009156938A (en) * 2007-12-25 2009-07-16 Sumitomo Chemical Co Ltd Antiglare film, antiglare polarizing plate and image display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487952B (en) * 2009-09-04 2015-06-11 Sumitomo Chemical Co A light diffusion film, a method of manufacturing the same, a light diffusioning polarizing plate, and a liquid crystal display device
TWI617827B (en) * 2012-05-09 2018-03-11 大日本印刷股份有限公司 Optical film, polarizing plate, liquid crystal panel and image display device
CN104316986A (en) * 2014-10-26 2015-01-28 昆山乐凯锦富光电科技有限公司 Reflection polarization brightening diffusion composite film

Also Published As

Publication number Publication date
JP2011209675A (en) 2011-10-20
CN102576098A (en) 2012-07-11
KR20120079074A (en) 2012-07-11
WO2011027903A1 (en) 2011-03-10

Similar Documents

Publication Publication Date Title
TW201120485A (en) Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device
TWI487952B (en) A light diffusion film, a method of manufacturing the same, a light diffusioning polarizing plate, and a liquid crystal display device
TWI550318B (en) A light diffusion film and a method for manufacturing the same, a light diffusing polarizing plate and a liquid crystal display device
TWI507740B (en) A light diffusion film and a liquid crystal display device including the same
TW201219846A (en) Light-diffusing polarization plate and liquid-crystal display device
WO2010073985A1 (en) Optical film and liquid crystal display device comprising same
TW201222020A (en) Optical diffusion film and process therefor, optical diffusible polarizing plate, and liquid crystal display device
WO2011162184A1 (en) Light-diffusing polarization plate and liquid-crystal display device
TW201227007A (en) Light-diffusing polarizing plate and liquid crystal display device
TWI618952B (en) Polarizing plate, optical member set and touch input type graphical display device
WO2010073997A1 (en) Optical film and liquid crystal display device comprising same
TW201107838A (en) Liquid crystal display device
TW201042328A (en) Liquid crystal display device
TW201247759A (en) Resin composition, optical film and liquid crystal display device
TWI519827B (en) A light diffusion film and a method for producing the same, a coating liquid for use, and a polarizing plate using the same, and a liquid crystal display device
WO2010131757A1 (en) Polarizing plate, and liquid crystal panel and liquid crystal display device using said polarizing plate
TW201211597A (en) Light-diffusing polarizing plate and liquid crystal display device
JP2010256890A (en) Liquid crystal display device
JP2010286701A (en) Liquid crystal display
JP5827811B2 (en) Liquid crystal display
TW201213885A (en) Light-diffusing polarization plate and liquid-crystal display device