TW201219846A - Light-diffusing polarization plate and liquid-crystal display device - Google Patents

Light-diffusing polarization plate and liquid-crystal display device Download PDF

Info

Publication number
TW201219846A
TW201219846A TW100121472A TW100121472A TW201219846A TW 201219846 A TW201219846 A TW 201219846A TW 100121472 A TW100121472 A TW 100121472A TW 100121472 A TW100121472 A TW 100121472A TW 201219846 A TW201219846 A TW 201219846A
Authority
TW
Taiwan
Prior art keywords
light
film
diffusing
resin
layer
Prior art date
Application number
TW100121472A
Other languages
Chinese (zh)
Inventor
Yasuhiro Haba
Seiji Muro
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW201219846A publication Critical patent/TW201219846A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

Disclosed is a new light-diffusing polarization plate that diffuses light sufficiently and also provides other good optical functionality. Also disclosed is a liquid-crystal display device (400) using said light-diffusing polarization plate. The light-diffusing polarization plate (100) is provided with: a polarizing film (101); a light-diffusing film (102) laminated onto the polarizing film (101); and a surface-treated film (103) laminated onto the light-diffusing film (102). The light-diffusing film (102) has a light-diffusing layer (106) that contains: a light-transmitting resin (106a); and between 20 and 100 weight parts of light-transmitting microparticles (106b), dispersed in the light-transmitting resin (106a), per 100 weight parts of the light-transmitting resin (106a). The surface-treated film (103) is formed from a transparent resin film (107), one surface of which is optically treated. The light-diffusion layer (106) and the surface-treated film (103) are bonded to each other by an adhesive or pressure-sensitive adhesive layer (104).

Description

201219846 六、發明說明: 【發明所屬之技術領域】 本發明關於一種光擴散性偏光板及使用該偏光板之液晶 顯示裝置。 【先前技術】 近年來,液晶顯示裝置向行動電話、個人電腦用監視 器、電視、液晶投影器等之用途正急遽展開。一般而言, 液晶顯示裝置包含背光裝置及液晶面板,該液晶面板包含 液晶單元、配置於該液晶單元之背光側之背面側偏光板、 及配置於該液晶單元之目視側之正面側偏光板。 先前,於液晶顯示裝置中,於自斜方向觀察顯示晝面之 情形時’被指出有因無法獲得高對比度,進而因圖像之明 暗逆轉之灰階反轉現象等而無法獲得良好之顯示特性等問 題即視野角狹窄之問題。 作為用以解決該視野角特性之問題之方法,先前眾所周 知有對正面側偏光板賦予光擴散功能之技術。例如,於日 本專利特開2009-301014號公報(專利文獻1)中,揭示有於 液晶單元之正面側(目視側)配置具有比較高之光擴散性之 偏光板(於專利文獻1中表示為「第2光擴散層」)。該第2光 擴散層包含例如偏光板及設置於該偏光板之正面側、含有 里比較大之填料(光擴散劑)且被賦予有光擴散功能之樹脂 層(光擴散層)。 先前技術文獻 專利文獻 I56990.doc 201219846 專利文獻1 .日本專利特開2009-301〇 14號公報 【發明内容】 發明所欲解決之問題 另一方面,以進一步改善液晶顯示裝置之目視性為目 的,對液晶顯不裝f之正面侧之最表面即正面側偏光板之 最表面實施用以防止或降低外部光映入顯示面之防眩處 理’或用以防止或降低入射至顯示面之外部光之反射之抗 反射處S等光學處理。為使!亥等光學處理充分表現特定功 能而需要精密地控制實施光學處理之表面之形狀。 而如上述專利文獻1中記載之正面側偏光板所具有 之光擴散層般含有量比較大之填料之光擴散層有時未必能 充分控制其表面形狀,該情形時,有時難以直接對該光擴 散層之表面實施上述光學處理,或者即便本身可直接實施 光學處理,亦無法良好地表現防眩功能或抗反射功能等特 定功能。 由此,本發明之目的在於提供一種新型光擴散性偏光板 及使用有該偏光板之液晶顯示裝置,該光擴散性偏光板係 具有充分之光擴散性之偏光板,進而亦良好地表現其他光 學功能。 解決問題之技術手段 本發明提供一種光擴散性偏光板,其包括:偏光膜;光 擴政膜#積層於该偏光膜上;及表面處理膜,其積層於 該光擴散膜上;光擴散膜具有光擴散層,該光擴散層包含 透光f生树月曰及透光性微粒子,該透光性微粒子分散於該透 156990.doc 201219846 光性樹脂中,且相對於該透光性樹脂之i 〇〇重量份而為2〇 重量份以上且100重量份以下,表面處理膜由對一表面實 施了光學處理之透明樹脂膜形成,光擴散層及表面處理膜 經由黏著劑層或接著劑層而相互貼合。 於本發明之光擴散性偏光板中,較佳為表面處理膜具有 未實施光學處理之面,使光擴散層與表面處理膜之未實施 光學處理之面經由黏著劑層或接著劑層相互貼合而使光擴 散層與表面處理膜貼合。 光學處理可為例如防眩處理或抗反射處理。 較佳為光擴散膜係包含透明基材膜及積層於該透明基材 膜上之上述光擴散層者。該光擴散膜之光擴散層可藉由於 透明基材膜上塗佈分散有透光性微粒子之樹脂液而形成。 又’光擴散層亦可藉由將分散有透光性微粒子之樹脂液塗 佈於透明基材膜上,且於由該樹脂液所形成之層之表面轉 印模具之鏡面或凹凸面而形成。 又本發明提供一種液晶顯示裝置,其依序包括背光裝 置光擴政機構、背光側偏光板、液晶單元、及上述光擴 放性偏光板。於本發明之液晶顯示裝置中,光擴散性偏光 板以偏光膜較表面處理膜更接近於液晶單元之方式配置。 於本發明之液晶顯示裝置中,較佳為來自光擴散機構之 出射光係具有自液晶單元之光入射面之垂線方向傾斜7〇。 之方向的92度相對於该垂線方向之亮度而為以下之配 光特性且包含非平行光者。 光擴散機構可係'自背光裝置侧:起依序包含光擴散板及光 I56990.doc 201219846 偏向板者°作為液晶單元可使用TN(Twisted Nematic,扭 轉向列)型液晶單元、IPS(in_piane Switching,橫向電場切 換)型液晶單元或VA( Vertical Alignment,垂直排列)型液 晶單元等。 發明之效果 根據本發明,可提供一種具有充分之光擴散性,且進而 亦良好地表現其他光學功能之光擴散性偏光板。 【實施方式】 <光擴散性偏光板> 圖1及圖2係分別表示本發明之光擴散性偏光板之較佳例 之概略剖面圖。本發明之圖丨及圖2中所示之光擴散性偏光 板100、200包括··偏光膜101,·光擴散膜1〇2,其積層於偏 光膜101上;及表面處理膜103,其積層於光擴散膜1〇2 上;光擴散膜102具有光擴散層1〇6,表面處理膜1〇3由對 一表面實施了光學處理(具體而言賦予有表面處理層1〇8)之 透明樹脂膜107形成,光擴散膜1〇2之光擴散層106及表面 處理膜103經由黏著劑層或接著劑層1〇4而相互貼合。 於圖1及圖2中所示之光擴散性偏光板丨0〇、2〇〇中,光擴 散膜102係包含透明基材膜1 〇5及積層於透明基材膜1 〇5上 之光擴散層106者,光擴散層1〇6包含透光性樹脂i〇6a中分 散有透光性微粒子106b之樹脂層。光擴散膜1 〇2以其透明 基材膜105側對向於偏光膜1〇1之方式,即以透明基材膜 105較光擴散層106更接近於偏光膜i〇i之方式積層於偏光 膜101上。本發明之光擴散膜102既可如圖1所示之例般光 J56990.doc 201219846 擴散層106之表面包含平坦面,或者亦可如圖2所示之例般 光擴散層106之表面包含凹凸面。 表面處理膜103包含透明樹脂膜1〇7及積層於透明樹脂膜 1〇7之一表面上之表面處理層108。表面處理膜1〇3於該透 明樹脂膜107之與表面處理層1〇8為相反側之面(表面處理 膜103之表面中未實施光學處理之面),經由黏著劑層或接 著劑層104而貼合於光擴散膜1〇2之光擴散層1〇6。 再者’保護膜1 09係用以保護偏光膜1 〇 1之另一表面之 膜’但並非為必需而亦可省略。又,亦可代替保護膜1 〇9 而貼合相位差膜(相位差板)等光學補償膜等。 根據具有上述構成之本發明之光擴散性偏光板丨〇〇、 200 ’因將光擴散膜1 〇2之光擴散層1 〇6、及於透明樹脂膜 107上積層表面處理層1〇8而形成之表面處理膜ι〇3經由黏 著劑層或接著劑層104進行貼合,故不管光擴散層1 〇6之表 面形狀之控制精度均可於光擴散層106上確實地且一面完 全排除光擴散層106之表面形狀對表面處理層log之構造、 形狀之影響一面積層具有所需之光學功能之表面處理膜 103。因此’本發明之光擴散性偏光板100、2〇〇良好地表 現光擴散功能及由表面處理層108實現之特定光學功能。 以下’對本發明之光擴散性偏光板進而詳細地進行說 明。 (偏光膜) 作為偏光膜101可舉出例如於包含聚乙烯醇系樹脂、聚 乙酸乙烯酯樹脂、乙烯/乙酸乙烯酯(EVA(Electrically 156990.doc 201219846201219846 VI. [Technical Field] The present invention relates to a light diffusing polarizing plate and a liquid crystal display device using the same. [Prior Art] In recent years, the use of liquid crystal display devices for mobile phones, personal computer monitors, televisions, and liquid crystal projectors is rapidly expanding. In general, a liquid crystal display device includes a backlight unit and a liquid crystal panel, and the liquid crystal panel includes a liquid crystal cell, a back side polarizing plate disposed on a backlight side of the liquid crystal cell, and a front side polarizing plate disposed on a visual side of the liquid crystal cell. In the liquid crystal display device, when the display of the pupil surface is observed from the oblique direction, it is pointed out that it is impossible to obtain a high contrast ratio, and the gray scale inversion phenomenon of the image is reversed, and the display property cannot be obtained. The problem is that the angle of view is narrow. As a method for solving the problem of the viewing angle characteristic, a technique of imparting a light diffusing function to the front side polarizing plate has been known. For example, Japanese Patent Laid-Open Publication No. 2009-301014 (Patent Document 1) discloses a polarizing plate having a relatively high light diffusibility on the front side (visual side) of the liquid crystal cell (referred to as "the first in Patent Document 1". 2 light diffusion layer"). The second light-diffusing layer includes, for example, a polarizing plate and a resin layer (light-diffusing layer) provided with a relatively large filler (light diffusing agent) and provided with a light diffusing function on the front side of the polarizing plate. [Problems to be Solved by the Invention] On the other hand, for the purpose of further improving the visibility of the liquid crystal display device, The outermost surface of the front side of the liquid crystal display f, that is, the outermost surface of the front side polarizing plate is subjected to an anti-glare treatment for preventing or reducing external light from being incident on the display surface or to prevent or reduce external light incident on the display surface. The anti-reflection of the reflection is treated by optical processing such as S. To make! Optical processing such as hai is sufficient to express a specific function and it is necessary to precisely control the shape of the surface on which the optical treatment is performed. However, the light diffusion layer of the filler having a relatively large content in the light diffusion layer of the front side polarizing plate described in the above-mentioned Patent Document 1 may not be able to sufficiently control the surface shape thereof. In this case, it may be difficult to directly The surface of the light-diffusing layer is subjected to the above-described optical treatment, or a specific function such as an anti-glare function or an anti-reflection function cannot be satisfactorily exhibited even if optical processing can be directly performed by itself. Accordingly, an object of the present invention is to provide a novel light diffusing polarizing plate and a liquid crystal display device using the polarizing plate, which has a light diffusing plate having sufficient light diffusibility, and further satisfactorily exhibits other Optical function. Means for Solving the Problems The present invention provides a light diffusing polarizing plate comprising: a polarizing film; a light diffusing film # laminated on the polarizing film; and a surface treating film laminated on the light diffusing film; a light diffusing film a light-diffusing layer comprising light-transmissive saplings and light-transmissive fine particles dispersed in the 156990.doc 201219846 optical resin and relative to the light-transmitting resin i 〇〇 parts by weight and 2 parts by weight or more and 100 parts by weight or less, the surface treatment film is formed of a transparent resin film which is optically treated on one surface, and the light diffusion layer and the surface treatment film are passed through an adhesive layer or an adhesive layer And fit each other. In the light diffusing polarizing plate of the present invention, it is preferred that the surface treatment film has a surface that is not subjected to optical treatment, and that the surface of the light diffusion layer and the surface treatment film that is not subjected to optical treatment is attached to each other via an adhesive layer or an adhesive layer. The light diffusion layer is bonded to the surface treatment film. The optical treatment can be, for example, an anti-glare treatment or an anti-reflection treatment. Preferably, the light diffusion film comprises a transparent substrate film and the light diffusion layer laminated on the transparent substrate film. The light-diffusing layer of the light-diffusing film can be formed by coating a resin liquid in which light-transmitting fine particles are dispersed on a transparent substrate film. Further, the light diffusion layer may be formed by applying a resin liquid in which the light-transmitting fine particles are dispersed to the transparent base film, and transferring the mirror surface or the uneven surface of the mold on the surface of the layer formed of the resin liquid. . Further, the present invention provides a liquid crystal display device comprising, in order, a backlight device light expansion mechanism, a backlight side polarizing plate, a liquid crystal cell, and the above-described light-expanding polarizing plate. In the liquid crystal display device of the present invention, the light diffusing polarizing plate is disposed such that the polarizing film is closer to the liquid crystal cell than the surface treating film. In the liquid crystal display device of the present invention, it is preferable that the light emitted from the light diffusing means is inclined by 7 Å from the direction perpendicular to the light incident surface of the liquid crystal cell. The direction of 92 degrees with respect to the brightness in the vertical direction is the following light distribution characteristic and includes non-parallel light. The light diffusing mechanism can be 'from the backlight side: from the side of the light diffusing plate and the light I56990.doc 201219846 deflector plate as a liquid crystal cell can use TN (Twisted Nematic) type liquid crystal cell, IPS (in_piane Switching , transverse electric field switching) liquid crystal cell or VA (Vertical Alignment) type liquid crystal cell. Advantageous Effects of Invention According to the present invention, it is possible to provide a light diffusing polarizing plate which has sufficient light diffusibility and which exhibits other optical functions well. [Embodiment] <Light diffusing polarizing plate> Fig. 1 and Fig. 2 are schematic cross-sectional views showing preferred examples of the light diffusing polarizing plate of the present invention. The light diffusing polarizing plate 100 and 200 shown in FIG. 2 and the light diffusing polarizing plate 100 and 200 include a polarizing film 101, a light diffusing film 1〇2 laminated on the polarizing film 101, and a surface treating film 103. Laminated on the light diffusion film 1〇2; the light diffusion film 102 has a light diffusion layer 1〇6, and the surface treatment film 1〇3 is optically treated (specifically, the surface treatment layer 1〇8 is applied) The transparent resin film 107 is formed, and the light diffusion layer 106 and the surface treatment film 103 of the light diffusion film 1〇2 are bonded to each other via the adhesive layer or the adhesive layer 1〇4. In the light diffusing polarizing plates 丨0〇, 2〇〇 shown in FIG. 1 and FIG. 2, the light diffusing film 102 includes a transparent base film 1 〇 5 and light laminated on the transparent base film 1 〇 5 . In the diffusion layer 106, the light diffusion layer 1〇6 includes a resin layer in which the light-transmitting fine particles 106b are dispersed in the light-transmitting resin i〇6a. The light-diffusing film 1 〇2 is laminated on the transparent substrate film 105 side so as to face the polarizing film 1〇1, that is, the transparent substrate film 105 is closer to the polarizing film i〇i than the light-diffusing layer 106. On the film 101. The light diffusing film 102 of the present invention may have a flat surface as shown in FIG. 1 . The surface of the diffusion layer 106 may include a flat surface, or the surface of the light diffusion layer 106 may include a bump as shown in FIG. 2 . surface. The surface treatment film 103 comprises a transparent resin film 1〇7 and a surface treatment layer 108 laminated on one surface of the transparent resin film 1〇7. The surface treatment film 1〇3 is on the opposite side of the surface of the transparent resin film 107 from the surface treatment layer 1〇8 (the surface on which the surface of the surface treatment film 103 is not subjected to optical treatment), via the adhesive layer or the adhesive layer 104. The light diffusion layer 1〇6 is bonded to the light diffusion film 1〇2. Further, the 'protective film 119 is used to protect the film on the other surface of the polarizing film 1 〇 1 'but it is not essential and may be omitted. Further, an optical compensation film such as a retardation film (phase difference plate) may be bonded to the protective film 1 〇9. According to the light diffusing polarizing plate 丨〇〇, 200' of the present invention having the above configuration, the light diffusion layer 1 〇 6 of the light diffusion film 1 〇 2 and the surface treatment layer 1 〇 8 are laminated on the transparent resin film 107. The formed surface treatment film ι 3 is bonded via the adhesive layer or the adhesive layer 104, so that the control precision of the surface shape of the light diffusion layer 1 〇6 can be completely and completely excluded from the light diffusion layer 106. The surface shape of the diffusion layer 106 affects the structure and shape of the surface treatment layer log. The surface treatment film 103 having a desired optical function in one area layer. Therefore, the light diffusing polarizing plates 100, 2 of the present invention exhibit a good light diffusing function and a specific optical function realized by the surface treating layer 108. Hereinafter, the light diffusing polarizing plate of the present invention will be described in detail. (Polarizing film) The polarizing film 101 may, for example, be a polyvinyl alcohol-based resin, a polyvinyl acetate resin, or an ethylene/vinyl acetate (EVA (Electrically 156990.doc 201219846).

Tilted Vertical Alignment,電傾斜垂直配向))樹脂、聚醯 胺樹脂 '聚酯樹脂等之膜中吸附配向有二色性染料或硖 者、具有含有經配向之聚乙烯醇之二色性脫水產物(聚次 亞乙浠)之分子鏈之聚乙浠醇/聚次亞乙稀共聚物之經分子 性地配向之聚乙烯醇膜等。尤其,於經單軸延伸之聚乙烯 醇系樹脂膜中吸附配向有二色性染料或碘者可較佳地用作 偏光膜。對偏光膜10 1之厚度並無特別限制,但就光擴散 I1生偏光板之薄型化等之觀點而言’較佳為1 〇〇 以下,更 佳為10〜50 μιη,進而佳為25〜35 μηι。 (光擴散膜) 本發明中所使用之光擴散膜102較佳為如圖1及圖2所示 包含透明基材膜105及積層於透明基材膜1〇5上之光擴散層 ’且光擴散層1〇6係包含由透光性樹脂1〇6a及分散於透 光性樹脂106a中之透光性微粒子(光擴散劑)1〇61)所形成之 樹脂層者。 作為透明基材膜105,只要於光學上為透明則並無特別 限制,例如可使用玻璃或塑膠膜等。作為塑膠膜較佳為具 有適度之透明性、機械強度者,具體而言,可舉出 TAC(Triacetyl cellulose ’三醋酸纖維素)等醋酸纖維素系 樹脂、丙烯系樹脂、聚碳酸酯樹脂及聚對苯二甲酸乙二醋 等聚酿樹脂等。透明基材膜1〇5之厚度例如為1〇〜5〇〇 pm, 車父佳為20〜300 μηι。 光擴散層106係將透光性樹脂i〇6a作為基材之層,且於 透光性樹脂106a中分散有透光性微粒子i〇6b。作為透光性 156990.doc 201219846 樹脂106a,若為具有透光性者則無特別限制,可使用例如 紫外線固化型樹脂、電子束固化型樹脂等電離輻射線固化 型樹脂或熱固化型樹脂之固化物、熱塑性樹脂之固化物、 金屬烷氧化物之固化物等。其中就可職予較高硬度及耐擦 傷性而言,較佳為電離輻射線固化型樹脂。於使用電離輻 射線固化型樹脂、熱固化型樹脂或金屬烷氧化物之情形 時,藉由電離輻射線之照射或加熱使該樹脂固化而形成透 光性樹脂l〇6a。 作為電離輻射線固化型樹脂’可舉出:如多元醇之丙稀 酸或異丁烯酸酯般之多官能性之丙烯酸酯;及如由二異氣 酸酯、多元醇及丙烯酸或異丁烯酸之羥酯等所合成般之多 官能之丙烯酸胺基曱酸酯等。又,該等之外,亦可使用具 有丙烯ί久自曰系之聚謎樹脂、聚酯樹脂、環氧樹脂、醇酸樹 脂、螺縮醛樹脂、聚丁二烯樹脂、聚硫醇多烯樹脂等。 作為熱固化型樹脂,除自丙烯酸多元醇及異氰酸酯預聚 物所製備之熱固化型胺酯樹脂之外,可舉出酚醛樹脂、尿 素三聚氰胺樹脂、環氧樹脂、不飽和聚酯樹脂、矽樹脂。 作為熱塑性樹脂’可舉出:醋酸纖維素、硝化纖維素、 乙醯丁基纖維素、乙基纖維素、曱基纖維素等纖維素衍生 物,乙酸乙烯酯及其共聚物、氯乙烯及其共聚物、氣亞乙 烯及其共聚物等乙烯系樹脂;聚乙烯甲搭、聚乙稀丁搭等 縮醛系樹脂;丙烯樹脂及其共聚物、甲基丙烯樹脂及其共 聚物等丙烯系樹脂;聚苯乙烯系樹脂;聚醯胺系樹脂;聚 醋糸樹脂;及聚碳酸酯系樹脂。 156990.doc 201219846 作為金屬烷氧化物,可使用將矽烷氧化物系材料作為原 料之氧化矽系基質等。具體而言為四甲氧基矽烷、四乙氧 基矽烷等,可藉由水解或脫水縮合而形成無機系或有機無 機複合系基質(透光性樹脂)。 .又,作為透光性微粒子106b,可使用由具有透光性之有 機微粒子或無機微粒子所形成之光擴散劑。例如,可舉出 由丙烯酸系樹脂、三聚氰胺樹脂、聚乙烯、聚苯乙烯、有 機矽酮樹脂、丙烯酸-苯乙烯共聚物等所形成之有機微粒 子、或由碳酸鈣、氧化矽、氧化鋁、碳酸鋇、硫酸鋇、氧 化欽、玻璃等所形成之無機微粒子等。又,亦可使用有機 聚合物之内空球或玻璃中空珠粒。透光性微粒子1〇讣亦可 由一種微粒子構成,亦可包含2種以上之微粒子。透光性 微粒子106b之形狀亦可為球狀、扁平狀、板狀、針狀、不 定形狀等任一形狀,但較佳為球狀或大致球狀。 透光性微粒子l〇6b之重量平均粒徑較佳為〇 5〜15 μιη , 更佳為3〜8 μιη。若透光性微粒子1〇6b之重量平均粒徑未達 〇·5 μηι,則光擴散膜1〇2之光擴散性變為不充分,其結 果’於液晶顯示器中應用光擴.散性偏光板1〇〇、2〇〇時,存 在無法獲得充分之寬視野角性能之情形。又,於重量平均 粒徑超過15 μηι之情形時,光擴散膜1〇2存在無法獲得充分 之光擴散性之情形。又,透光性微粒子丨〇6b之粒徑之標準 偏差相對於重量平均粒徑之比(標準偏差/重量平均粒徑)為 〇·5以下為佳,更佳為〇·4以下。於該比超過〇 5之情形時, 含有粒徑極端大之透光性微粒子,其結果,因光擴散膜之 156990.doc 201219846 表面霧度變得過大而存在於表面膜貼合時產生氣泡咬入等 不良情況之情形。再者,透光性微粒子1061)之重量平均粒 徑及粒徑之標準偏差係基於庫爾特原理(微孔電阻法),使 用庫爾特粒子計數器(貝克曼庫爾特公司製造)進行測定。 光擴散層106之透光性微粒子1 〇 gb之含量相對於透光性 樹脂106a之100重量份而為20重量份以上且1〇〇重量份以 下 '於本發明中,如此般於光擴散層1〇6中含有量比較大 之透光性微粒子(光擴散劑)l〇6b,但藉由將表面處理膜1〇3 經由黏著劑層或接著劑層1〇4貼合於光擴散層1〇6而易於形 成表面處理層108。即,可確實且容易地、又不會損害表 面處理層108為表現特定之光學功能而必需之構造或形狀 地將表面處理層108賦予給光擴散性偏光板100、2〇〇。光 擴散層106之透光性微粒子i〇6b之含量相對於透光性樹脂 106a之100重量份而較佳為2〇重量份以上且70重量份以 下’更佳為25重量份以上且60重量份以下,進而佳為3〇重 量份以上且55重量份以下。若透光性微粒子l〇6b之含量相 對於透光性樹脂之100重量份未達20重量份,則光擴散膜 102之光擴散性變為不充分,其結果,於液晶顯示器中應 用光擴散性偏光板100、200時,難以獲得充分之寬視野角 性能。又若透光性微粒子1 〇6b之含量相對於透光性樹脂之 100重量份超過1〇〇重量份,則光擴散膜102之霧度變得過 大,其結果,光擴散膜102之透明性下降,於液晶顯示器 中應用光擴散性偏光板100、200時,導致正面對比度下 降0 156990.doc 201219846 透光性微粒子106b與透光性樹脂106a之折射率差較佳為 0.04至0.15之範圍。藉由將透光性微粒子1〇讣與透光性樹 脂106a之折射率差設為上述範圍,而產生因透光性微粒子 106b與透光性樹脂106a之折射率差所引起之適當之内部散 射,從而可獲得光擴散性適度高之光擴散膜1〇2。 又,光擴散層106之表面(與透明基材膜1〇5為相反側之 表面,即光擴散層106之表面中自透明基材膜1〇5較遠側之 表面),較佳為僅由透光性樹脂丨06a形成。即,透光性微 粒子106b較佳為不自光擴散層1〇6之上述表面突出而完全 地埋沒於光擴散層1〇6内。因此,光擴散層1〇6之厚度相對 於透光性微粒子l〇6b之重量平均粒徑較佳為!倍以上且3倍 以下。於光擴散層106之厚度未達透光性微粒子1〇6b之重 蛋:平均粒徑之1倍之情形時’於液晶顯示器中應用光擴散 性偏光板100、200時,因光擴散層ι〇6之表面變得過大, 故存在於表面膜貼合時產生氣泡咬入等不良情況之情形。 又’於光擴散層106之厚度超過透光性微粒子1〇6b之重量 平均粒徑之3倍之情形時,光擴散層ι〇6之厚度變得過大, 光擴散膜102之光擴散性隨之變得過強,故其結果於液晶 顯不器中應用光擴散性偏光板丨〇〇、2〇〇時,存在正面對比 度下降之情形。再者,於本說明書中,所謂「光擴散層之 厚度」係指自光擴散層1 〇6之接近於透明基材膜1 〇5之側之 面至相反側之面為止的最大厚度。因此,於本發明之光擴 政膜102中光擴散層ι〇6具有凹凸之情形時,相當於圖2所 不之A之最厚部分成為光擴散層ι〇6之厚度。於自光擴散層 156990.doc 201219846 106之接近於透明基材膜1 〇5之側之面至相反側之面為止之 厚度並非為最大之部分中,光擴散層1〇6之厚度亦可不為 透光性微粒子106b之重量平均粒徑之1倍以上。 光擴散層106之厚度較佳為卜儿μηι之範圍。於光擴散層 106之厚度未達1 μιη之情形時,存在未對配置於液晶顯示 裝置之目視侧之光擴散膜1〇2賦予所需要之充分之时擦傷 性之清形。又’於厚度超過30 μηι之情形時,於製作之光 擴散膜102產生之捲縮量變得過大,光擴散性偏光板丨〇〇、 200之製造過程之操作性變差。 光擴散層106之表面形狀如圖1或圖2所示亦可包含平坦 面,或者亦可包含凹凸面,但凹凸之程度(表面凹凸之粗 度)較佳為可藉由黏著劑層或接著劑層而填埋其凹凸之 程度。 較佳為光擴散膜102之總霧度為3〇%以上且70%以下,且 内部霧度為30。/。以上且70%以下。所謂「總霧度」係根據 表示將光照射至光擴散膜1 〇2而透過之光線之總量的總光 線透過率(Tt)與藉由光擴散膜102而擴散且透過之擴散光線 透過率(Td)之比,並藉由下式〇): 總霧度(%)=(Td/Tt)x 1 〇〇 (!) 而求得。 總光線透過率(Tt)係保持與入射光為同軸之狀態而透過 之平行光線透過率(Tp)與擴散光線透過率(Td)之和。總光 線透過率(Tt)及擴散光線透過率(Td)係依據JIS K .7361而測 定之值。 156990.doc -13· 201219846 又,所謂光擴散膜102之「内部霧度」係指總霧度中起 因於光擴散層106之表面中光出射面側之面的表面形狀之 霧度(表面霧度)以外的霧度。 於總霧度及/或内部霧度未達30%之情形時,光散射性不 充分,無法獲得充分之寬視野角性能。又,於總霧度及/ 或内部霧度超過70%之情形時,光散射性變強,於液晶顯 示器中應用光擴散性偏光板100、200時,存在正面對比度 下降之情形。又,於總霧度及/或内部霧度超過7〇%之情形 時,存在光擴散性膜102之透明性受損之傾向。更佳為總 霧度及内部霧度分別為35%以上且65%以下。 光擴散性膜102之總霧度、内部霧度及表面霧度具體而 言以如下方式測定《即,首先為防止膜之翹曲而使用光學 上為透明之黏著劑,對光擴散膜102以光擴散層1〇6成為表 面之方式將透明基材膜105側之面貼合於玻璃基板上而製 作測定用樣品,對該測定用樣品測定總霧度值。總霧度值 係使用依據JIS K 7136之霧度透過率計(例如,股份公司村 上色彩技術研究所製造之霧度計「HM_丨5 〇」),測定總光 線透過率(Tt)及擴散光線透過率(Td),並藉由上述式(1)而 算出。 繼而,於光擴散層1〇6之表面,使用甘油貼合霧度幾乎 為〇%之三醋酸纖維素膜,並以與上述之總霧度之測定相 同地測定霧度。因起因於光擴散層1〇6之表面中光出射面 側之面的表面形狀之表面霧度幾乎被貼合之三醋酸纖維素 膜抵消,故該霧度可視為光擴散膜1〇2之「内部霧度」。 156990.doc -14· 201219846 因此’光擴散膜102之「表面霧度」藉由下述式(2): 表面霧度(%)=總霧度(%)-内部霧度(%) (2) 而求得。 再者,光擴散膜102亦可於透明基材膜105與光擴散層 10 6之間具有其他層(包含接著劑層)。 其次,對用以製造光擴散膜102之方法進行說明,光擴 散膜102係可藉由包含於透明基材膜1〇5上塗佈分散有透光 性微粒子106b之樹脂液之步驟之方法而形成。 上述樹脂液包含透光性微粒子l〇6b、構成光擴散層1〇6 之透光性樹脂1 〇6a或形成此之樹脂(例如電離輻射線固化 型樹脂、熱固化型樹脂、熱塑性樹脂或金屬烷氧化物)、 及可視需要包含溶劑等其他成分。於使用紫外線固化型樹 脂作為形成透光性樹脂1 〇6a之樹脂之情形時,上述樹脂液 包含光聚合起始劑(自由基聚合起始劑作為光聚合起始 劑,可使用例如苯乙酮系光聚合起始劑、安息香系光聚合 起始劑、二笨基酮系光聚合起始劑、硫雜蒽酮系光重合開 始剤、二嗪系光聚合起始劑、惡二唑系光聚合起始劑等。 又’作為光聚合起始劑,亦可使用例如2,4,6_三甲基笨曱 硫基二苯基氧化膦、2,2,_雙(〇_氯苯基)_4,4,,5,5,_四苯基-I,2’-咪唑、1〇_丁基_2·氯吖啶酮、2_2_乙基蒽醌、二苯乙二 嗣、9,1 0-菲醌、樟腦醌、苯甘胺醛酸甲酯、二茂鈦化合物 等。 光聚合起始劑之使用量通常相對於樹脂液中所含有之樹 脂100重量份而為0.5〜20重量份,較佳為1〜5重量份。再 I56990.doc -15- 201219846 者’為將光擴散膜102之光學特性及表面形狀設為均質 者’較佳為樹脂溶液中之透光性微粒子丨〇6b之分散為等向 分散。 向透明基材膜105上塗佈上述樹脂液,可藉由例如凹版 印刷塗佈法、微壓花輥筒式塗佈法、棒式塗佈法 '刀式塗 佈法、氣刀式塗佈法、吻合塗佈法、模塗佈法等而進行。 關於樹脂液之塗佈如上所述,較佳為以光擴散層1〇6之厚 度相對於透光性微粒子106b之重量平均粒徑而為i倍以上 且3倍以下之方式調整塗佈膜厚。 亦可以改善樹脂液之塗佈性或改善與光擴散層1〇6之接 著性為目的,對透明基材膜1〇5之表面(光擴散層1〇6側之 表面)實施各種表面處理。作為表面處理可舉出電暈放電 處理、輝光放電處理、酸表面處理、鹼表面處理、紫外線 照射處理等。又,亦可於透明基材膜1〇5之表面上形成例 如電漿層(易接著層)等其他層,並於該其他層上塗佈樹脂 液。 又,為提高透明基材膜1〇5與偏光膜1〇1之接著性,而較 佳為=透明基材膜1G5之光擴散層1G6側之表面之相反側的 表面實施上述表面處理。 光擴散膜102亦可藉由包含如下步驟之方法而形成, 即:於透明基材膜1G5上塗佈分散有透光性微粒子祕之 樹脂液之步驟、及於由樹脂液所形成之層之表面轉印模具 之鏡面或凹凸面之步驟。例如,具有如圖!所示之平坦之 表面之光擴散層·,可藉由使具有鏡面之模具(鏡面模具) 156990.doc -16- 201219846 之該鏡面密接於由上述樹脂液所形成之層之表面而轉印鏡 面所形成。又,如圖2所示之具有凹凸表面形狀之光擴散 層丨〇6,可藉由使具有凹凸面之模具(壓紋加工用模具)之該 凹凸面密接於由上述樹脂液所形成之層之表面而轉印凹凸 面所形成。鏡面模具亦可為鏡面金屬製輥,又,壓紋加工 用模具亦可為壓紋加工用金屬製輥。 於使用電離輻射線固化型樹脂、熱固化型樹脂、熱塑性 樹脂或金屬烷氧化物作為形成透光性樹脂1〇6a之樹脂之情 开/時,形成包含上述樹脂液之層,根據需要而進行乾燥 (除去溶劑),且可視需要於使模具之鏡面或凹凸面密接於 匕3 〇亥樹月日液之層之表面之狀態下或使之密接之後,藉由 電離輻射線之照射(使用電離輻射線固化型樹脂之情形)、 加熱(使用熱固化型樹脂或金屬烷氧化物之情形)或冷卻(使 用熱塑性樹脂之情形)而使包含樹脂液之層固化。作為電 離輕射線,可根據樹脂液中所含之樹脂之種類而自紫外 線、電子束、近紫外線、可見光線、近紅外線、紅外線、 X射線等中適當選擇,但該等中較佳為紫外線、電子束, 就操作簡單且可獲得高能量而言尤其佳為紫外線。 作為表外線之光源’可使用例如低壓水銀燈、中壓水銀 燈、高壓水銀燈、超高壓水銀燈、碳弧燈、金屬齒化物 燈、氙氣燈等。又,亦可使用ArF準分子雷射、KrF準分子 雷射、準分子燈或同步加速器輻射光等。該等中較佳為使 用超高壓水銀燈、高壓水銀燈、低壓水銀燈、氙氣燈、金 屬鹵化物燈。 156990.doc •17- 201219846 又’作為電子束可舉出自柯克勞夫-沃耳吞型、凡德格 拉夫型、共振變壓型、絕緣心變壓器型、直線型、高頻高 壓加速器型、高頻型等之各種電子束加速器所放射之具有 50〜1000 keV、較佳為1〇〇〜300 keV的能量之電子束。 其次,對用以製造光擴散膜102之較佳實施形態進行說 明’該較佳實施形態之製造方法包括如下步驟:連續地送 出捲繞成輥狀之透明基材膜105以連續地製造光擴散膜 102 ;塗佈分散有透光性微粒子丨06b之樹脂液,且可視需 要而進行乾燥;使由樹脂液所形成之層固化;及捲取所獲 得之光擴散膜102之步驟。該製造方法可使用例如圖3所示 之製造裝置而實施。 首先,藉由捲出裝置301而連續地捲出透明基材膜1〇5。 繼而’於所捲出之透明基材膜1〇5上’使用塗佈裝置3〇2及 與其對向之支承輥303塗佈分散有透光性微粒子1 〇6b之樹 脂液。其次,於樹脂液中含有溶劑之情形時,藉由使塗佈 有樹脂液之透明基材膜105通過乾燥機304而進行乾燥。然 後’設置有由樹脂液所形成之層之透明基材膜丨〇5以使由 s玄樹脂液所形成之層與鏡面金屬製輥或壓紋加工用金屬製 輥305密接之方式向鏡面金屬製輥或壓紋加工用金屬製輥 305與夾棍306之間捲出。藉此,於由樹脂液所形成之層之 表面轉印鏡面金屬製輥之鏡面或壓紋加工用金屬製輥之凹 凸面。繼而,於透明基材膜105上之由樹脂液所形成之層 密接於鏡面金屬製輥或壓紋加工用金屬製輥3〇5之狀態 下’通過透明基材膜105而自紫外線照射裝置3〇8照射紫外 156990.doc • 18 · 201219846 線,藉此使由樹脂液所形成之層固化而形成光擴散層 ^6。因藉由紫外線照射而導致照射面成為高溫,故鏡面 金屬製輥或壓紋加工用金屬製輥305較佳為於其内部具有 用以將其表面溫度調整至室溫〜8(TC左右之冷卻裝置。 又,紫外線照射裝置308可使用1台或複數台。形成有光擴 散層106之透明基材膜1〇5(光擴散膜1〇2)藉由剝離輥3〇7而 被自鏡面金屬製輥或壓紋加工用金屬製輥3 05剝離。以上 述方式製造之光擴散膜102向捲取裝置3〇9捲取。此時,為 保護光擴散層106,亦可一面於光擴散層1〇6表面經由具有 再剝離性之黏著劑層而貼附由聚對笨二甲酸乙二酯或聚乙 婦等所形成之表面膜,一面捲取光擴散膜1〇2。 再者,亦可於藉由剝離輥307而自鏡面金屬製輥或壓紋 加工用金屬製輥305剝離之後,追加進行紫外線照射。 又’亦可代替於鏡面金屬製輥或壓紋加工用金屬製輥3〇5 與由樹脂液所形成之層密接之狀態下進行紫外線照射,而 於將开> 成有由未固化之樹脂液所形成之層之透明基材膜 1(>5自鏡面金屬製輥或壓紋加工用金屬製輥3〇5剝離之後, 照射紫外線而使由樹脂液所形成之層固化。. 光擴散膜102與偏光膜1〇1經由接著劑層等而相互貼合。 光擴散膜102亦作為偏光膜1〇1之保護膜發揮作用,此構成 有利於光擴散性偏光板1〇〇、200之薄膜化。光擴散膜1〇2 與偏光膜101之使用接著劑之貼合,可使用與關於表面處 膜103與光擴散膜1 〇2之貼合而後述者相同之接著劑並藉 由相同之方法而進行。 156990.doc 19 201219846 (表面處理膜) 表面處理膜103為對透明樹脂膜之一方之面實施了光 學處理之膜,具體而言可為於透明樹脂膜1〇7之一方之面 形成有具有所需之光學功能之表面處理層之膜。作為 透明樹脂膜107可使用包含例如TAC(三醋酸纖維素)等醋酸 纖維素系樹脂、聚曱基丙烯酸甲酯等丙烯系樹脂、聚碳酸 醋樹脂、及聚對苯二甲酸乙二醋等聚醋系樹脂等之樹脂 膜。透明樹脂膜1〇7之厚度例如為1〇〜5〇〇 μβι ,較佳為 20〜300 μπι。 作為表面處理膜103可舉出例如:防眩膜,其表面處^ 層108為於表面具有凹凸之防眩層,且利用表面上之上劫 凹凸所引起之漫反射而降低或防止外部光向顯示畫面映入 (即’上述光學處理為防眩處理)之;或抗反射膜,其表面 處理層108為抗反射層’藉由降低或防止入射至顯示畫面 之外部光之反射而降低或防止外部光向顯示畫面映入 (即,上述光學處理為抗反射處理)。 作為防眩膜可❹例如下者等,即··藉由於4明樹脂膜 107上塗佈合有或不含有微粒子之紫外線固化型樹脂組成 物,且-面將具有特定之表面凹凸形狀之模具之該凹凸面 ㈣於所形成之紫外線固化型樹脂層,_面使紫外線固化 型樹脂層固化㈣成之^有特定之表面凹凸之且有防眩 層者;或藉由於透明樹脂膜m上塗佈含有微粒子之紫外 線固化型樹脂組成物’不使用模具地使塗佈之紫外線固化 型樹脂層固化而形成之賦+古 ’、,.固化 成之賦予有微粒子所形成之特定之表面 156990.doc •20· 201219846 凹凸之具有防眩層者。亦可使用市售之防眩膜作為防眩 膜。 作為抗反㈣可舉㈣如:具有包含折射率較光擴散層 106之折射率低之材料之低折射率層作為抗反射層者,·或 具有包含折射率較光擴散層1〇6之折射率高之材料之高折 射率層〃包3折射率較該高折射率之折射率低之材料之 低折射率層的積層體作為抗反射層者等。低折射率層可為 含有例如石夕土、金屬貌化物微粒子⑽、MgF、 3祕讀、籍'叫肅6等)、於内部具有空隙之微粒子 (中空矽土微粒子等)、含氟聚合物等低折射率材料、及黏 合樹脂者。黏合樹脂為先前眾所周知者即可,可為聚石夕氧 烧樹脂、石夕炫氧化物之水解物、光或熱固化性多分支化合 物(樹枝狀聚合物或超支化聚合物、其他光或_純 樹脂。於透明樹脂膜107與低折射率層或高折射率層之 間,亦可插入硬塗層或帶電防止層等其他層之!種或2種以 上。亦可使用市售之抗反射膜作為抗反射膜。 (黏著劑層、接著劑層) 於本發明之光擴散性偏光板1〇〇、2〇〇中,表面處理膜 ⑻通常於其透明樹賴1G7之接近於表面處理層⑽之側 之相反側之面(未實施表面處理膜1〇3之光學處理之面卜經 由黏著劑層或接著劑層104而貼合於光擴散則 勒 層106。 领双 作為形成黏著劑層104之黏著劑可使用先前眾所周知 者’可舉出例如丙烯系黏著劑、聚氨酯系黏著劑、聚矽氧 156990.doc •21 · 201219846 隸著劑等。其中,就透明性、點著力、可靠性、返工性 等之觀點而言,較佳為使用丙烯系黏著劑。黏著劑層104 除可藉由將此種黏著劑作為例如有機溶劑溶液,利用模塗 佈機或凹板印刷塗佈機將其塗佈於光擴散層ι〇6或透明樹 脂膜H)7上並使之乾燥之方法而設置之外,亦可藉由將形 成於實施了脫模處理之塑膠膜(稱為隔離膜)上之片狀黏著 ㈣印於光擴散層106或透明樹脂膜1〇7之方法而設置。黏 著劑層之厚度通常為2〜40 μηι之範圍内。 又,作為形成接著劑層104之接著劑,京尤不會對光擴散 性偏光板100、200之外觀造成不良影響,且可以較高接著 強度接著表面處理膜1〇3及光擴散膜1〇2而言,可較佳地使 用包含含有環氧樹脂之固化性樹脂組成物等之活性能量線 或熱固化性樹脂組成物之接著劑,或作為接著劑成分而含 有聚乙烯醇系樹脂或胺酯樹脂之水系接著劑等。其中,就 可實現無需乾燥步驟等之生產效率之提高,且可獲得良好 之接著強度而言,更佳為使用包含含有環氧樹脂之固化性 樹脂組成物之接著劑。 使用包含含有環氧樹脂之固化性樹脂組成物之接著劑之 表面處理膜103與光擴散膜102之貼合可藉由如下方式而進 行’即於光擴散層106或透明樹脂膜1〇7上塗佈該接著劑, 且經由未固化之接著劑層而積層兩膜之後,照射活性能量 線或進行加熱’藉此使未固化之接著劑層固化。對接著劑 之塗佈方法並無特別之限定,可利用例如刮板、線棒、模 塗佈機、刮刀式塗佈機、凹板印刷塗佈機等各種塗佈方 156990.doc •22· 201219846 式因於各塗佈方式中存在各自最佳之黏度範圍,故亦可 使用有機溶劑進行接著劑之黏度調整。固化後之接著劑層 之厚度通常為0.1〜20 μιΏ,較佳為〇 2〜1〇 μπι,更佳為〇 5〜5 μηι。 於透明樹脂膜107及/或光擴散層ι〇6之貼合面’亦可於 利用黏著劑或接著劑進行貼合之前,實施電暈放電處理、 電漿處理(電漿層之形成)等易接著處理。 (保護膜) 如圖1及圖2所示,本發明之光擴散性偏光板亦可包含於 偏光膜101之與光擴散膜1〇2為相反之側經由接著劑層所積 層之保護膜109。保護膜109較佳為包含低雙折射性且透明 性或機械強度、熱穩定性或防水性等優異之聚合物之膜。 作為該種膜可舉出包含例如T A c (三醋酸纖維素)等醋酸纖 維素系樹脂、丙烯系樹脂、如四氟化乙烯/六氟化丙烯系 共聚物氟系樹脂、聚碳酸酯樹脂、聚對苯二甲酸乙二酯等 聚酯系樹脂、聚醯亞胺系樹脂、聚砜系樹脂、聚醚颯系樹 脂、聚苯乙烯系樹脂、聚乙烯醇系樹脂、聚氯乙烯系樹 脂、聚烯烴系樹脂或聚醯胺系樹脂等之樹脂膜。該等中, 就偏光性或耐久性等方面而言,亦可較佳地使用三醋酸纖 維素膜、或降冰片烯系熱可塑性樹脂膜。降冰片烯系熱可 塑性樹脂膜因耐濕熱性較高,故可大幅度地提高偏光板之 耐久性,並且因吸濕性較少,故而尺寸穩定性較高而卢 佳。對上述樹脂膜之成形加工可使用澆鑄法、壓光法、擠 出法等先前眾所周知之方法,保護膜丨〇9之厚度 ^ *、、、限 156990.doc -23- 201219846 定,就偏光板之薄膜化等之觀點而言,較佳為5〇〇 μΐΏ以 下,更佳為5〜300 μηι之範圍,進而佳為5〜15()μηΐ2範圍。 偏光膜101與保護膜109之使用接著劑之貼合可使用與關 於表面處理膜103與光擴散膜1〇2的貼合而上述者相同之接 著劑,並藉由相同之方法而進行。 再者,於偏光膜101上,亦可代替保護膜1〇9而貼合相位 差膜(相位差板)等光學補償膜等。 以上構成之光擴散性偏光板100、200,典型的是於應用 於液晶顯不裝置之情形時,以表面處理膜103較偏光膜101 更接近目視側之方式,經由接著劑層等貼附於液晶單元之 玻璃基板上而組裝入液晶顯示裝置。 <液晶顯示裝置> 其次,對本發明之液晶顯示裝置進行說明。本發明之液 晶顯不裝置係依序包括背光裝置、光擴散機構、背光側偏 光板、液晶單元、及上述本發明之光擴散性偏光板者。圖 4係表示本發明之液晶顯示裝置之較佳的一例之概略剖面 圖。圖4之液晶顯示裝置400係常時亮態模式之τν型之液 晶顯示裝置,且依序配置有背光裝置4〇2、光擴散機構 403、背光側偏光板404、及作為目視側偏光板之本發明之 光擴散性偏光板405,液晶單元401包含液晶層412、及配 置於液晶層412之兩表面之一對透明基板4Ua、4iib。背 光側偏光板404與光擴散性偏光板4〇5以該等之透射軸成為 正交偏光之關係之方式配置。 背光裝置402係包含正面開口之六面體形狀之箱體卜 156990.doc -24- 201219846 及於箱體421内並列配置有複數根之作為線狀光源之冷陰 極管422之直下型背光裝置。又’光擴散機構403包含配置 於背光裝置402正面之光擴散板403a、及設置於光擴散板 403a正面侧(光擴散板403a與背光側偏光板404之間)之光偏 向板(稜鏡片)403b。 於此種構成之液晶顯示裝置400中,自背光裝置402放射 之光藉由光擴散機構403之光擴散板403a而擴散之後,藉 由光偏向板403b而賦予向液晶單元401之光入射面之垂線 方向(z軸方向)之特定的指向性。向該垂線方向之指向性較 先前之裝置而設定得較高。而且,賦予有特定指向性之光 藉由背光側偏光板404而偏光並入射至液晶單元4〇 1。入射 至液晶單元401之光藉由液晶層412而控制偏光狀態並自液 晶單元401出射。然後,自液晶單元4〇1出射之光藉由光擴 散性偏光板405而擴散。 如此,於本發明之液晶顯示裝置中,光擴散機構4〇3中 之入射至液晶單元401之光之向液晶單元4〇1之光入射面的 垂線方向(z軸方向)之指向性設為高於先前,即設為向液晶 單元401之入射光車义先刖聚光者,且藉由光擴散性偏光板 405而進一步擴散此光。藉此,可獲得與先前之裝置相比 色再現性等優異之圖像品質。應用本發明之光擴散性偏光 板405之本發明的液晶顯示裝置4〇〇具有較高之視野角特 性,並且兼具對光擴散性偏光板4〇5所賦予之光擴散功能 以外之光學功能’且目視性優異。 以下對構成本發明之液晶顯示裝置4〇〇之構成部件進 156990.doc 25- 201219846 行更加詳細地說明。 (液晶早元) 液晶單元401包含一對透明基板4 11 a、4 11 b及液晶層 412,一對透明基板4 11 a、411 b藉由間隔件隔開特定距離 而對向配置,液晶層412包含封入至一對透明基板411 a、 411 b之間之液晶。於一對透明基板411 a、411 b分別積層形 成有透明電極或配向膜,藉由對透明電極間施加基於顯示 資料之電壓而使液晶配向。液晶單元401之顯示方式於上 述例中為TN型,但亦可採用IPS型、VA型等顯示方式。 (背光裝置) 背光裝置402包含正面開口之六面體形狀之箱體421、及 於箱體421内並列配置有複數根之作為線狀光源之冷陰極 管422。箱體421由樹脂材料或金屬材料形成,就使自冷陰 極官422放射之光於箱體421内周面上反射之觀點而言,較 為理想的是至少箱體421内周面為白色或銀色。作為光 源,除冷陰極管之外,亦可使用線狀形狀等各種形狀之 LED等。於使用線狀光源之情形時,對配置之線狀光源之 根數並無特別限定,就發光面之亮斑之抑制等觀點而言, 較佳為鄰接之線狀光源之中心間距離為丨5瓜爪至丨5〇爪爪之 範圍。再者’於本發明使用之背光裝置4〇2並不限定於如 圖4所示之直下型者,可使用於導光板之側面配置有線狀 光源或點狀光源之侧光型、或者平面狀光源型等各種者。 [光擴散機構] 光擴散機構403如圖5所示,較佳為包含配置於背光裝置 156990.doc •26· 201219846 402正面之光擴散板403a、及設置於光擴散板403a正面側 (光擴散板403a與背光側偏光板404之間)之光偏向板(稜鏡 片)403b。光擴散板403a例如圖5所示,可為於基材430上 分散溫合有光擴散劑440而形成之膜或片。作為基材430可 使用聚碳酸酯系樹脂、甲基丙稀酸系樹脂 '甲基丙浠酸甲 醋-苯乙烯共聚物樹脂、丙烯腈-苯乙烯共聚物樹脂、甲基 丙烯酸-苯乙烯共聚物樹脂、聚苯乙烯系樹脂、聚氯乙烯 系樹脂、聚丙二醇或聚甲基戊烯等之聚烯烴系樹脂、環狀 聚烯烴系樹脂、聚對苯二甲酸乙二醇酯、聚對苯二甲酸丁 二醇酯或聚萘二曱酸乙二醇酯等之聚酯系樹脂、聚醯胺系 樹脂、聚芳酯系樹脂、聚醯亞胺系樹脂等。 又’混合分散於基材430中之光擴散劑440,只要為由與 基材430之材料之折射率不同之材料所形成之微粒子則無 特別限制,可舉出例如:由與基材43〇之材料之種類不同 之丙烯酸系樹脂、三聚氰胺樹脂、聚乙烯樹脂、聚苯乙烯 樹脂、有機矽酮樹脂、丙烯酸..苯乙烯共聚物樹脂等所形 成之有機微粒子;及由碳酸鈣、氧化矽、氧化鋁 '碳酸 鋇、硫酸鋇、氧化鈦、玻璃等所形成之無機微粒子。使用 之光擴散劑440亦可僅為一種,亦可併用2種以上。又,亦 可使用有機聚合物之内空球或玻璃中空珠粒作為光擴散劑 44〇。光擴散劑440之重量平均粒徑較佳為〇 5〜3〇 之範 圍。又,光擴散劑440之形狀雖亦可為球狀、扁平狀、板 狀 '針狀等’但較佳為球狀。 另一方面,光偏向板(稜鏡片)403b係光入射面側(背光裝 156990.doc -27- 201219846 置402側,如圖5所示之z軸之負方向側)之面為平坦面,且 於光出射側(如05所示之z軸之正方向側)之面(與背光側偏 光板404對向之表面)平行地形成有複數個剖面為前端變細 之多邊形狀,較佳為三角形狀之線狀稜鏡45〇者。作為光 偏向板403b之材料,可舉出例如聚碳酸酯系樹脂、 ABs(Acryl〇nitrile butadiene styrene,丙烯腈_丁二烯苯乙 稀)樹脂、甲基丙烯樹脂、甲基丙烯酸甲t苯乙稀共聚物 樹脂、聚苯乙稀系樹脂、丙稀猜_苯乙稀共聚物樹脂、聚 乙烯或聚丙二醇等樹脂聚烯烴系樹脂等。作為光偏向板 4〇3b之製作方法通常可使用熱塑性樹脂之成形法,可舉出 例如使用模具之熱壓成形、或押出成形等。光偏向板 之厚度通常為0.1〜15 mm,較佳為〇_5〜1〇 mm。再者,本說 明書中’所謂「光偏向板之厚度」係指自光偏向板斗㈣之 接近於光擴散板403a之側之面至線狀稜鏡45〇之頂角前端 為止的最大厚度者。因此,相當於如圖5所示之B之最厚部 分成為光偏向板403b之厚度。於自光偏向板4〇31?之接近於 光擴散板403a之側之面至線狀稜鏡45〇之頂角之前端為止 的厚度並非為最大之部分(例如線狀稜鏡45〇之谷部分),光 偏向板403b之厚度亦可不為上述範圍。 光擴散板403a與光偏向板4〇3b亦可一體地成形,亦可分 別製作後進行接合。又,於分別製作並接合之情形時,亦 可於光擴散板403a與光偏向板4〇3b之間隔著空氣層而進行 接觸。又,光擴散板4〇3a與光偏向板4〇3b亦可分開配置。 光擴散機構403如圖6所示,亦可為於發揮光偏向功能之 156990.doc •28- 201219846 偏向板403b中分散混合光擴散劑440而賦予光擴散功能 者。 進而,光擴散機構403如圖7所示,亦可為具有配置於光 擴散板403a正面側之2塊光偏向板(稜鏡片)4〇3b、403b, 者。該情形時,參照圖7,較佳為配置於接近光擴散板 403a之側之光偏向板403b,以其線狀稜鏡450之稜線451之 方向與背光側偏光板404之透過轴方向(y軸方向)實質性地 成為平行之方式而配置,配置於光偏向板403b正面側之光 偏向板403b' ’以其線狀稜鏡430'之稜線45 1 ’之方向與光擴 散性偏光板405之透過軸方向(X軸方向)實質性地成為平行 之方式而配置。藉由此種構成’可進一步提高液晶顯示裝 置之正面方向之亮度。亦可以光偏向板4〇313,之線狀棱鏡 450之稜線45 Γ之方向與背光側偏光板4〇4之透過軸方向(y 軸方向)實質性地成為平行之方式而配置,以光偏向板 403b之線狀稜鏡450之稜線451之方向與光擴散性偏光板 405之透過軸方向(X軸方向)實質性地成為平行之方式而配 置。 通過光擴散機構403之光之配光特性,較佳為自液晶單 元401之光入射面之垂線方向(圖4所示之z軸方向)傾斜7〇。 之方向之亮度值’相對於正面亮度值即液晶單元4〇1之光 入射面之垂線方向之受度值而為鳩以下,且來自光擴散 機構彻之出射光係包含非平行光者。更佳之配光特性係 不存在相對於液晶單元401之光入射面之垂線而向超過6〇。 之方向出射之光。通常,如圖4所示,因光擴散機構4〇3之 156990.doc •29· 201219846 背面(光入射面)與液晶單元401之光入射面平行地配置,所 。月相對於液晶單元401之光入射面之垂線而為7〇。之方向之 亮度值,例如圖8所示,於將光擴散機構4〇3之長度方向設 為X方向,且將與光擴散機構403之背面(光入射面)平行之 面設為xy面時,為與相對於該”面之垂線即z軸而成7〇。之 方向之凴度值,較佳為於xz面上與2軸所成之角成為7〇。之 方向之7C度值。為設為此種配光特性,例如調整光偏向板 4〇3b之剖面三角形狀之線狀稜鏡45〇(及/或線狀稜鏡 之形狀即可。線狀稜鏡45〇 ' 45〇,之頂角θ(參照圖$及圖6) 較佳為60〜120。之範圍,更佳為9〇〜u〇。。該三角形之形狀 為等邊、不等邊均可,但於向液晶單元4〇1之垂線方向(液 晶顯不裝置之正面方向,即z軸方向)聚光之情形時,較佳 為等腰—角升v又,包含線狀棱鏡之稜鏡面較佳為設為與 三角形之頂角相對之底邊以相互鄰接之方式依序配置,且 複數個線狀棱鏡以成為相互大致平行之方式排列之結構。 該情形時’只要聚光能力不顯著減退,藉由線狀棱鏡之頂 點及鄰接之線狀稜鏡㈣成之v字狀溝亦可成為曲線形 狀。線狀棱鏡之稜線間之距離(圖5及圖6所示之距離句通常 為10 μηι〜500 μιη之範圍,較佳為3〇 μιη〜2〇〇卜爪之範圍。 所謂非平行光係指如圖9所示將自光擴散機構4〇3之出射 面之直徑1 cm之圓内出射之光作為於該出射面之垂線方向 離開1m之與該出射面平行的觀察面之投影像而觀察時, 具有該投影像之面内亮度分佈之最小半寬值為3〇 cm以上 之出射特性之光。 156990.doc -30- 201219846 (背光側偏光板) 作為背光側偏光板404通常可使用於偏光膜之單面或兩 表面貼合有保護膜者^作為偏光膜及保護膜可使用關於光 擴散性偏光板100、200而上述者。 (相位差板) 本發明之液晶顯示裝置如圖10所示可包含相位差板 406。圖1〇所示之液晶顯示裝置4〇〇,之相位差板4〇6配置於 背光側偏光板404與液晶單元4〇1之間。該相位差板4〇6係 相對於液晶單元401表面而垂直之方向(z軸方向)之相位差 幾乎為零者,且係自正前方不發揮任何光學作用,而自斜 方觀察時表現相位差,且補償於液晶單元4〇1產生之相位 差者。藉此,可於更寬之視野角獲得更優異之顯示品質及 色再現性。相位差板406可配置於背光側偏光板4〇4與液晶 單元401之間、及光擴散性偏光板4〇5與液晶單元4〇ι之間 之一方或兩方。相位差板406亦可積層於背光側偏光板4〇4 之保護膜上,或者亦可兼具保護膜之功能而直接積層於背 光側偏光板404之偏光膜上。關於在光擴散性偏光板4〇5與 液晶單元之間配置相位差板之情形亦為相同。 作為相位差板406可舉出例如將聚碳酸酯樹脂或環烯系 聚合物樹脂形成膜,進而對該膜進行雙軸延伸而成者;戋 將液晶性單體塗佈於膜上,並藉由光聚合反應而使其分子 排列固定化而成者等。相位差板406因係光學性地補償液 晶之排列者,故使用與液晶排列相反之折射率特性者。具 體而言,於TN模式之液晶單元中,可較佳地使用例如 156990.doc •31 - 201219846 WV(wide viewing,寬視野角)膜」(富士膠捲股份公司製 造);於STN(Super Twisted Nematic,超扭轉向列)模气之 液晶單元中,可較佳地使用例如r LC(Liquid Crysta丨,液 晶)膜」(新日本石油股份公司製造);於zps模式之液曰單 元中’可較佳地使用例如雙軸性相位差膜;於VA模式之 液晶單兀中,可較佳地使用例如組合有A板及〇板之相位 差板或雙軸性相位差膜;於71單元模式之液晶單元中,可 較佳地使用例如「〇CB(0pticaUy compensated ,光 學補償彎曲)用WV膜」(富士膠捲股份公司製造)等。 實施例 以下,舉出實施例進一步詳細說明本發明,但本發明並 不限定於該等實施例。再者’以下例之光擴散膜之霧度、 光擴散層之厚度及使用之透光性微粒子之重量平均粒徑之 測定方法為如下所述。 (a) 霧度 使用採用光學上透明之黏著劑將透明基材膜側貼合於玻 璃基板而製作之測定用樣品對光擴散膜進行測定。於總霧 度值及内部霧度之測定十,使用依據JIS K 7136之霧度透 過率計(股份公特上色彩技術研究所製造之霧度計「ΗΜ· 15〇」)。根據其結果,藉由上述式⑺而算出表面霧度。 (b) 光擴散層之厚度 使用尼康公司製造DIGIMICR〇 MH15(本體)及zc_ 1 〇 1 (4數器)測定光擴散膜之厚度,且藉由自測定層厚度減 去基材厚度80 μιη而測定光擴散層之厚度。 156990.doc -32- 201219846 (C)透光性微粒子之重量平均粒徑及粒徑之標準偏差 根據庫爾特原理(微孔電阻法)’使用庫爾特粒子計數器 (貝克曼庫爾特公司製造)進行測定。 [金屬製輥之製作] (金屬製鏡面輥之製作) 對直徑200 mm之鐵輥(依據JIS之STKM13A)之表面進行 工業用錢鉻加工,繼而對表面進行鏡面研磨而製作鏡面金 屬製輥。所獲得之鏡面金屬製輥之鐘鉻面之維氏硬度為 1000 °維氏硬度係使用超音波硬度計MIC10(Krautkramer 公司製造),依據JIS z 2244而测定。 (金屬製壓紋輥之製作) 準備對直徑200 mm之鐵輥(JIS之STKM13A)之表面實施 了鍍銅ballard者。鍍銅ballard係由鍍銅層/較薄之鍍銀層/ 表面錢銅層所形成者’鍍敷層整體之厚度約為2〇〇 μιη。對 该鐘銅表面進行鏡面研磨,進而於其研磨面上使用喷射裝 置((股份)不二製作所製造)以喷射壓力〇 〇5 MPa(表面壓 力’以下相同)、微粒子使用量16 g/cm2(輥之每1 cm2表面 積之使用量,以下相同)之方式,喷射氧化锆珠TZ_B丨25 (東梭(股份)製造’平均粒徑:125 pm),而於表面上形成 凹凸。於其凹凸面上,使用噴射裝置((股份)不二製作所製 造),以喷射壓力0.1 MPa(表面壓力,以下相同)、微粒子 使用量4 g/cm2之方式,喷射氧化鍅珠Tz_sx_17(東梭股份 公司製造,平均粒徑:20 μιη)而對表面凹凸進行微調。對 所獲得之具有凹凸之鍍銅鐵輥,以氣化銅液進行蝕刻處理 156990.doc •33- 201219846 (蝕刻量:3 μιη)。其後,進行鍍鉻加工(鍍鉻之厚度:4 μπ〇,製作成金屬製壓紋輥。所獲得之金屬製壓紋輥之鑛 鉻面之維氏硬度為1000(維氏硬度之測定法與上述相同)。 [表面處理膜之製作] (製造例1 :防眩膜之製作) 將季戊四醇三丙烯酸酯60重量份及多官能胺基曱酸乙酯 化丙烯酸醋(六亞曱基二異氰酸酯與季戊四醇三丙烯酸酯 之反應產物)40重量份於丙二醇單曱醚溶液中混合,以固 體成分濃度為60重量。/。之方式進行調整而獲得紫外線固化 性樹脂組成物。 其次’相對於上述紫外線固化性樹脂組成物之固體成分 100重量份’添加作為光聚合起始劑之r]Lucirill ΤΡΟ」(巴 斯夫公司製造’化學名:2,4,6-三甲基苯曱硫基二苯基氧 化膦)5重量份’以固體成分濃度為6〇重量%之方式以丙二 醇單甲醚稀釋而製備塗佈液。 將該塗佈液塗佈於厚度8〇 pm之三醋酸纖維素(TAc)膜即 透明樹脂膜上,且於設定為80»c之乾燥機中乾燥一分鐘。 將乾燥後之透明樹脂膜以紫外線固化性樹脂組成物層成為 輥側之方式以橡膠輥擠壓而使之密接於上述金屬製壓紋輥 之凹凸面。於該狀態下自透明樹脂膜侧,以h射線換算光 量計為300 mj/cm2之方式照射來自強度2〇 mW/cm2之高壓 水銀燈之光,使紫外線固化性樹脂組成物層固化而獲得於 透明樹脂膜上形成有防眩層之防眩膜。 (製造例2 ··抗反射膜之製作) 156990.doc • 34 · 201219846 將二季戊四醇三丙烯酸酯ίο重量份、季戊四醇四丙稀酸 酯10重量份、丙烯酸胺基甲酸酯(共榮社化學股份公司製 造「UA-306T」)30重量份、作為光聚合起始劑之 「Irgacurel84」(Ciba Japan股份公司製造)2 5重量份、作 為溶劑之曱基乙基酮50重量份、曱基乙基酮5〇重量份進行 混合,製備作為紫外線固化性樹脂組成物之硬塗層形成用 途布液。將該塗佈液藉由線棒塗佈機而塗佈於作為厚度8〇 μηι之TAC膜之透明樹脂膜(折射率149)上,且於設定為 8〇 C之乾燥機中乾燥一分鐘。相對於乾燥後之透明樹脂 膜,使用金屬_化物燈以120 W之輸出自20 cm之距離進行 10秒鐘之糸外線照射,藉此形成硬塗層。所獲得之硬塗層 之厚度為5 μιη,折射率為1.52。 其次,於四乙氧基矽烷中加入異丙醇、〇1 Ν鹽酸,並 進行水解,藉此獲得包含低聚物之四乙氧基矽烷之聚合物 之溶液。於溶液中混合一次粒子徑為8 nm之摻銻氧化錫 (ΑΤΟ)微粒子,並加入異丙醇,藉此獲得包含四乙氧基矽 烷之聚合物2.5重量%、摻銻氧化錫微粒子2·5重量%之帶電 防止層形成用塗佈液。另一方面,將形成有硬塗層之TAC 膜於50t之1.5 N-NaOH水溶液中浸潰2分鐘而進行鹼處 理水洗後於0.5重量%之H2S〇4水溶液中於室溫浸潰3〇秒 而進行中和,進而進行水洗並進行乾燥。將上述帶電防止 層形成用塗佈液藉由線棒塗佈機而塗佈於經鹼處理之硬塗 層上’於設定為12〇t《乾燥機中乾燥-分#童,藉此形成 帶電防止層。所獲得之帶電防止層之厚度為163 nm,折射 156990.doc •35- 201219846 率為1.53’光學膜厚為25〇 nm 其次’於四乙氧基矽烷與^丨^^^^^全氟辛基三甲氧 基碎炫之95:5(莫耳比)混合物_加入異丙醇、〇」n鹽酸, 且進行水解’藉此獲得包含低聚物之有機矽化物之聚合 物。於該溶液中混合於内部具有空隙之低折射率之矽土微 粒子,並加入異丙醇,藉此獲得包含有機矽化物2重量 %、低折射率矽土微粒子2重量%之低折射率層形成用塗佈 液。將所獲得之低折射率層形成用塗佈液藉由線棒塗佈機 而塗佈於帶電防止層上,且於設定為12〇t之乾燥機中乾 燥一分鐘而形成低折射率層。所獲得之低折射率層之厚度 為91 nm,折射率為丨.”,光學膜厚為125 nme藉由以上 方式而製作出於透明樹脂膜上包含硬塗層、帶電防止層、 及低折射率層之抗反射膜。 [光擴散膜之製作] (製造例3 :光擴散膜a之製作) 將季戊四醇三丙烯酸0旨6〇重量份及多官能胺基f酸乙醋 化丙烯酸自日(,、亞f基二異氰酸酯與季戊四醇三丙烯酸酯 之反應產物)40重量份於丙二醇單曱醚溶液中混合,以固 體成分濃度為60重量%之方式進行調整而獲得紫外線固化 性樹脂組成物。再者,自該組成物中除去丙二醇單甲鍵並 進行紫外線固化之後之固化物之折射率為153。 其次,相對於上述紫外線固化性樹脂組成物之固體成分 100重量份’添加35重量份之作為透光性微粒子且重量平 均粒徑為6.0叫、標準偏差為2.19_之聚笨乙稀系粒子、 156990.doc -36- 201219846 及5重里份之作為光聚合起始劑之「Lucirin τρ〇」(巴斯夫 Α司製造,化學名:2,4,6_三甲基苯甲硫基二苯基氧化 膦)’以固體成分濃度為60重量%之方式以丙二醇單甲醚稀 釋而製備塗佈液。 將該塗佈液塗佈於厚度80 μπι之TAC膜(透明樹脂膜)上, 於設定為80°C之乾燥機中乾燥一分鐘。將乾燥後之透明樹 脂膜以紫外線固化性樹脂組成物層成為輥侧之方式以橡膠 親進行擠壓而使之密接於上述金屬製鏡面輥之鏡面。於該 狀態下自透明樹脂膜側,以h射線換算光量記為3〇〇 mJ/cm2之方式照射來自強度20 mW/cm2之高壓水銀燈之 光’使紫外線固化性樹脂組成物層固化而獲得具有平坦表 面之包含光擴散層與透明基材膜之光擴散膜A。 (製造例4:光擴散膜B之製作) 除使乾燥後之透明基材膜之紫外線固化性樹脂組成物層 不密接於金屬製鏡面輥之鏡面地固化以外,與上述製造例 3同樣地製作光擴散膜B。 將光擴散膜A及B之霧度、光擴散層之厚度等歸納於表1 中。 156990.doc •37· 201219846 [表1] -----___ 透光性微粒子 ------- 重量平均粒彳 a(i-im) 光擴散膜A 光擴散膜B 6.0 6.0 標準偏差^ b(nm) 2.19 2.19 b/a 0.37 0.37 調配量υ (重量份) 35 35 尤獷散層之厚度 ----(_ 13.5 14.3 —^霧度(%) 60.3 55.1 霧度(%) 59.9 37.0 ----^霧度(°/〇) 0.4 18.1 Ό為相對於紫外線固化性樹脂組成物之固體成分丨⑼重 量份之值。 <實施例1> 對製造例3中所獲得之光擴散膜八之透明基材膜表面實施 電暈處理後’於電暈處理面上以厚度4叫塗佈包含紫外線 固化性%氧樹脂與光陽離子聚合起始劑之紫外線固化性接 著知丨另一方面,對作為保護膜之TAC膜(厚度80 μιη)單面 實施電暈處理之後’於電$處理面上以厚度4 μπι塗佈與上 述相同之紫外線固化性接著劑、繼而,藉由使峨吸附配向 於經單袖延伸之聚乙烯醇系樹脂財,而於形成之偏光膜 之一方之面上經由其接著劑層積層上述光擴散膜Α,並且 於另方之面上經由其接著劑層積層上述保護膜,且使用 一對夾棍進行夾壓。其後,自保護膜側照射紫外線使兩方 之接著劑層固化而獲得光擴散性偏光板。 156990.doc •38- 201219846 其次,於上述光擴散性偏光板之光擴散膜A之光擴散層 上,將製造例1中所得之防眩膜以其透明樹脂膜側成為貼 合面之方式經由通用之丙稀系透明黏著劑進行積層,與得 實施了防眩處理之光擴散性偏光板。 <實施例2>Tilted Vertical Alignment)) A film of a resin, a polyamide resin, a polyester resin, or the like, which has a dichroic dye or an anthracene, and has a disaccharide dehydration product containing an aligned polyvinyl alcohol ( A molecularly aligned polyvinyl alcohol film of a poly(ethylene glycol)/polyethyleneethylene copolymer of a molecular chain of poly(ethylene). In particular, a dichroic dye or iodine is preferably used as a polarizing film in a uniaxially stretched polyvinyl alcohol resin film. The thickness of the polarizing film 10 1 is not particularly limited, but is preferably 1 〇〇 or less, more preferably 10 to 50 μmη, and more preferably 25 〜 from the viewpoint of thinning of the light-diffusing I1-based polarizing plate. 35 μηι. (Light-diffusing film) The light-diffusion film 102 used in the present invention preferably includes a transparent base film 105 and a light-diffusing layer ' laminated on the transparent base film 1〇5' as shown in FIGS. 1 and 2 The diffusion layer 1〇6 includes a resin layer formed of the light-transmitting resin 1〇6a and the light-transmitting fine particles (light diffusing agent) 1〇61) dispersed in the light-transmitting resin 106a. The transparent base film 105 is not particularly limited as long as it is optically transparent, and for example, a glass or a plastic film can be used. The plastic film preferably has a moderate transparency and mechanical strength, and specifically, a cellulose acetate resin such as TAC (Triacetyl cellulose 'triacetate cellulose), a propylene resin, a polycarbonate resin, and a poly Polystyrene resin such as ethylene terephthalate. The thickness of the transparent substrate film 1〇5 is, for example, 1 〇 to 5 〇〇 pm, and the weight of the car is 20 to 300 μη. The light-diffusing layer 106 is a layer of the light-transmitting resin i〇6a as a base material, and the light-transmitting fine particles i〇6b are dispersed in the light-transmitting resin 106a. The light-transmissive 156990.doc 201219846 resin 106a is not particularly limited as long as it has light transmittance, and for example, curing of an ionizing radiation curable resin such as an ultraviolet curable resin or an electron beam curable resin or a thermosetting resin can be used. A cured product of a thermoplastic resin, a cured metal alkoxide, or the like. Among them, ionizing radiation curable resins are preferred in terms of higher hardness and scratch resistance. In the case of using an ionizing radiation-curable resin, a thermosetting resin or a metal alkoxide, the resin is cured by irradiation or heating of ionizing radiation to form a light-transmitting resin 100a. Examples of the ionizing radiation-curable resin include: an acrylic acid such as a polyacrylic acid or a methacrylate; and a hydroxyl group such as a diisocyanate, a polyhydric alcohol, and an acrylic acid or methacrylic acid. A polyfunctional amide phthalic acid ester or the like synthesized by an ester or the like. Further, in addition to these, it is also possible to use an acrylic resin, a polyester resin, an epoxy resin, an alkyd resin, a acetal resin, a polybutadiene resin, a polythiol polyene having an acrylic resin. Resin, etc. Examples of the thermosetting resin include a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, and an anthracene resin, in addition to the thermosetting amine ester resin prepared from the acrylic polyol and the isocyanate prepolymer. . Examples of the thermoplastic resin include cellulose derivatives such as cellulose acetate, nitrocellulose, acetyl butyl cellulose, ethyl cellulose, and decyl cellulose, vinyl acetate and copolymers thereof, and vinyl chloride and the like. Vinyl resins such as copolymers, vinylene and copolymers thereof; acetal resins such as polyethylene and polyethylene, and propylene resins such as propylene resin and copolymer, methacryl resin and copolymers thereof Polystyrene resin; polyamine resin; polyacetal resin; and polycarbonate resin. 156990.doc 201219846 As the metal alkoxide, a cerium oxide-based substrate or the like having a decane oxide-based material as a raw material can be used. Specifically, it is tetramethoxy decane, tetraethoxy decane or the like, and an inorganic or organic inorganic composite matrix (translucent resin) can be formed by hydrolysis or dehydration condensation. Further, as the light-transmitting fine particles 106b, a light diffusing agent formed of organic fine particles or inorganic fine particles having light transmissivity can be used. For example, organic fine particles formed of an acrylic resin, a melamine resin, polyethylene, polystyrene, an organic fluorenone resin, an acrylic-styrene copolymer, or the like, or calcium carbonate, cerium oxide, aluminum oxide, or carbonic acid may be mentioned. Inorganic fine particles formed by ruthenium, barium sulfate, oxidized chin, glass, and the like. Further, an inner hollow sphere or a hollow glass bead of an organic polymer may also be used. The light-transmitting fine particles may be composed of one type of fine particles or may contain two or more kinds of fine particles. The shape of the light-transmitting fine particles 106b may be any shape such as a spherical shape, a flat shape, a plate shape, a needle shape, or an irregular shape, but is preferably spherical or substantially spherical. The weight average particle diameter of the light-transmitting fine particles 16b is preferably 〇 5 to 15 μηη, more preferably 3 to 8 μηη. When the weight average particle diameter of the light-transmitting fine particles 1〇6b is less than 〇·5 μηι, the light diffusibility of the light-diffusing film 1〇2 is insufficient, and as a result, the light diffusing and diverging polarization is applied to the liquid crystal display. When the board is 1 〇〇 or 2 ,, there is a case where a sufficient wide viewing angle performance cannot be obtained. Further, when the weight average particle diameter exceeds 15 μη, the light diffusion film 1〇2 may not have sufficient light diffusibility. Further, the ratio of the standard deviation of the particle diameter of the light-transmitting fine particles b6b to the weight average particle diameter (standard deviation/weight average particle diameter) is preferably 〇·5 or less, more preferably 〇·4 or less. When the ratio exceeds 〇5, the light-transmitting fine particles having an extremely large particle diameter are contained, and as a result, the surface haze of the light-diffusing film becomes excessively large, and the surface film is bonded to cause a bubble bite. In case of bad conditions. In addition, the standard deviation of the weight average particle diameter and the particle diameter of the light-transmitting fine particles 1061) is based on the Coulter principle (microporous resistance method), and is measured using a Coulter particle counter (manufactured by Beckman Coulter Co., Ltd.). . The content of the light-transmitting fine particles 1 〇gb of the light-diffusing layer 106 is 20 parts by weight or more and 1 part by weight or less with respect to 100 parts by weight of the light-transmitting resin 106a. In the present invention, the light-diffusing layer is thus 1〇6 contains a relatively large amount of light-transmitting fine particles (light diffusing agent) l〇6b, but the surface treated film 1〇3 is bonded to the light diffusing layer 1 via an adhesive layer or an adhesive layer 1〇4. The surface treatment layer 108 is easily formed by the crucible 6. That is, the surface treatment layer 108 can be surely and easily applied to the light diffusing polarizing plates 100 and 2 without impairing the structure or shape necessary for the surface treatment layer 108 to exhibit a specific optical function. The content of the light-transmitting fine particles i 〇 6b of the light-diffusing layer 106 is preferably 2 parts by weight or more and 70 parts by weight or less, more preferably 25 parts by weight or more and 60 parts by weight based on 100 parts by weight of the light-transmitting resin 106a. In parts below, it is preferably 3 parts by weight or more and 55 parts by weight or less. When the content of the light-transmitting fine particles 16b is less than 20 parts by weight based on 100 parts by weight of the light-transmitting resin, the light diffusibility of the light-diffusing film 102 becomes insufficient, and as a result, light diffusion is applied to the liquid crystal display. In the case of the polarizing plates 100 and 200, it is difficult to obtain a sufficient wide viewing angle performance. When the content of the light-transmitting fine particles 1 〇 6b exceeds 100 parts by weight based on 100 parts by weight of the light-transmitting resin, the haze of the light-diffusing film 102 becomes excessively large, and as a result, the transparency of the light-diffusing film 102 is improved. When the light diffusing polarizing plates 100 and 200 are applied to the liquid crystal display, the front contrast is lowered. 0 156990.doc 201219846 The refractive index difference between the light transmitting fine particles 106b and the light transmitting resin 106a is preferably in the range of 0.04 to 0.15. When the difference in refractive index between the light-transmitting fine particles 1〇讣 and the light-transmitting resin 106a is within the above range, appropriate internal scattering due to the difference in refractive index between the light-transmitting fine particles 106b and the light-transmitting resin 106a occurs. Thus, a light diffusing film 1〇2 having a moderately high light diffusibility can be obtained. Further, the surface of the light-diffusing layer 106 (the surface opposite to the transparent substrate film 1〇5, that is, the surface on the surface of the light-diffusing layer 106 from the far side of the transparent substrate film 1〇5) is preferably only It is formed of the translucent resin crucible 06a. In other words, it is preferable that the light-transmitting fine particles 106b are not protruded from the surface of the light-diffusing layer 1〇6 and are completely buried in the light-diffusing layer 1〇6. Therefore, the thickness of the light-diffusing layer 1〇6 is preferably a weight average particle diameter of the light-transmitting fine particles 16b; More than 3 times and less than 3 times. When the thickness of the light diffusion layer 106 is less than the weight of the light-transmitting fine particles 1〇6b: when the average particle diameter is 1 times, when the light diffusing polarizing plates 100 and 200 are applied to the liquid crystal display, the light diffusion layer is Since the surface of the crucible 6 is too large, there is a case where a problem such as a bubble bite occurs when the surface film is bonded. Further, when the thickness of the light diffusion layer 106 exceeds three times the weight average particle diameter of the light-transmitting fine particles 1〇6b, the thickness of the light diffusion layer ι 6 becomes excessively large, and the light diffusibility of the light diffusion film 102 follows. As a result, when the light diffusing polarizing plate 丨〇〇 and 2 应用 are applied to the liquid crystal display, the front contrast is lowered. In the present specification, the "thickness of the light-diffusing layer" means the maximum thickness from the surface of the light-diffusing layer 1 〇6 close to the side of the transparent base film 1 〇5 to the surface on the opposite side. Therefore, in the case where the light-diffusing layer ι 6 has irregularities in the light-diffusing film 102 of the present invention, the thickest portion corresponding to A which is not shown in Fig. 2 becomes the thickness of the light-diffusing layer ι 6 . In the portion from the side of the light-diffusing layer 156990.doc 201219846 106 which is close to the side of the transparent substrate film 1 〇5 to the opposite side, the thickness of the light-diffusing layer 1〇6 may not be The light-transmitting fine particles 106b have a weight average particle diameter of at least one time. The thickness of the light diffusion layer 106 is preferably in the range of μμηι. When the thickness of the light-diffusing layer 106 is less than 1 μm, the light-diffusing film 1〇2 disposed on the visual side of the liquid crystal display device is not provided with a sufficient level of scratch resistance. In the case where the thickness exceeds 30 μm, the amount of curl generated in the produced light-diffusing film 102 becomes excessively large, and the workability in the manufacturing process of the light-diffusing polarizing plate 丨〇〇, 200 is deteriorated. The surface shape of the light diffusion layer 106 may also include a flat surface as shown in FIG. 1 or FIG. 2, or may include a concave-convex surface, but the degree of the unevenness (the roughness of the surface unevenness) is preferably by an adhesive layer or The layer of the agent fills the unevenness of the layer. The total haze of the light-diffusing film 102 is preferably 3% or more and 70% or less, and the internal haze is 30. /. Above and above 70%. The "total haze" is a total light transmittance (Tt) indicating the total amount of light transmitted through the light diffusion film 1 〇 2 and diffused light transmittance which is diffused and transmitted by the light diffusion film 102. The ratio of (Td) is obtained by the following formula: Total haze (%) = (Td/Tt) x 1 〇〇 (!). The total light transmittance (Tt) is the sum of the parallel light transmittance (Tp) and the diffused light transmittance (Td) transmitted while being in a state of being coaxial with the incident light. The total light transmittance (Tt) and the diffused light transmittance (Td) are values measured in accordance with JIS K.7361. 156990.doc -13·201219846 The "internal haze" of the light-diffusing film 102 refers to the haze of the surface shape of the surface on the light-emitting surface side of the surface of the light-diffusing layer 106 in the total haze (surface fog) Haze outside the degree). When the total haze and/or internal haze is less than 30%, the light scattering property is insufficient, and sufficient wide viewing angle performance cannot be obtained. Further, when the total haze and/or the internal haze exceeds 70%, the light scattering property is enhanced, and when the light diffusing polarizing plates 100 and 200 are applied to the liquid crystal display, the front contrast is lowered. Further, when the total haze and/or the internal haze exceeds 7 %, the transparency of the light diffusing film 102 tends to be impaired. More preferably, the total haze and the internal haze are 35% or more and 65% or less, respectively. The total haze, internal haze, and surface haze of the light diffusing film 102 are specifically measured as follows. That is, first, an optically transparent adhesive is used to prevent warpage of the film, and the light diffusing film 102 is used for the light diffusing film 102. The surface on the side of the transparent base film 105 was bonded to a glass substrate so that the light-diffusion layer 1〇6 became a surface, and a sample for measurement was produced, and the total haze value was measured for the sample for measurement. The total haze value is determined by using a haze transmittance meter according to JIS K 7136 (for example, a haze meter "HM_丨5 制造" manufactured by the Murakami Color Technology Research Institute of the company) to measure the total light transmittance (Tt) and diffusion. The light transmittance (Td) is calculated by the above formula (1). Then, on the surface of the light-diffusing layer 1〇6, a cellulose triacetate film having a haze of almost 〇% was applied thereto using glycerin, and the haze was measured in the same manner as in the measurement of the total haze described above. Since the surface haze caused by the surface shape of the surface on the light exit surface side of the surface of the light diffusion layer 1〇6 is almost canceled by the bonded cellulose triacetate film, the haze can be regarded as the light diffusion film 1〇2. "Internal haze". 156990.doc -14· 201219846 Therefore, the "surface haze" of the light diffusing film 102 is represented by the following formula (2): Surface haze (%) = total haze (%) - internal haze (%) (2) ) and seek. Further, the light diffusion film 102 may have another layer (including an adhesive layer) between the transparent substrate film 105 and the light diffusion layer 106. Next, a method for manufacturing the light-diffusing film 102, which is a method of coating a resin liquid in which the light-transmitting fine particles 106b are dispersed, on the transparent base film 1B can be described. form. The resin liquid contains the light-transmitting fine particles 16b, the light-transmitting resin 1〇6a constituting the light-diffusing layer 1〇6, or a resin forming the same (for example, an ionizing radiation-curable resin, a thermosetting resin, a thermoplastic resin or a metal) Alkoxides, and other components such as solvents may be included as needed. In the case where an ultraviolet curable resin is used as the resin for forming the light-transmitting resin 1 〇 6a, the above resin liquid contains a photopolymerization initiator (a radical polymerization initiator as a photopolymerization initiator, and for example, acetophenone can be used. Photopolymerization initiator, benzoin photopolymerization initiator, dimercapto ketone photopolymerization initiator, thioxanthone photoreduction starting oxime, diazine photopolymerization initiator, oxadiazole light a polymerization initiator, etc. Further, as a photopolymerization initiator, for example, 2,4,6-trimethyl adenylthiodiphenylphosphine oxide, 2,2,_bis (〇-chlorophenyl) can also be used. )_4,4,,5,5,_tetraphenyl-I,2'-imidazole, 1〇-butyl-2·chloroacridone, 2_2_ethylhydrazine, diphenylethylenediazine, 9, 1 0-phenanthrenequinone, camphorquinone, methyl phenylglycolate, titanocene compound, etc. The amount of the photopolymerization initiator to be used is usually 0.5 to 20 by weight based on 100 parts by weight of the resin contained in the resin liquid. Preferably, it is 1 to 5 parts by weight. Further, I56990.doc -15-201219846 'In order to make the optical characteristics and surface shape of the light-diffusing film 102 homogenized' is preferably in a resin solution. The dispersion of the photofine particles 6b is dispersed in an isotropic manner. The resin liquid is applied onto the transparent substrate film 105 by, for example, a gravure coating method, a micro embossing roll coating method, or a bar coating method. The method is applied by a knife coating method, an air knife coating method, an anastomosis coating method, a die coating method, etc. The coating of the resin liquid is preferably a thickness of the light diffusion layer 1〇6 as described above. The coating film thickness is adjusted so that the weight average particle diameter of the light-transmitting fine particles 106b is i times or more and three times or less. The coating property of the resin liquid can be improved or the adhesion to the light diffusion layer 1〇6 can be improved. For the purpose, various surface treatments are applied to the surface of the transparent base film 1〇5 (the surface on the side of the light diffusion layer 1〇6). Examples of the surface treatment include corona discharge treatment, glow discharge treatment, acid surface treatment, and alkali surface treatment. The treatment, the ultraviolet irradiation treatment, etc. Further, another layer such as a plasma layer (easily adhesive layer) may be formed on the surface of the transparent base film 1〇5, and a resin liquid may be applied to the other layer. Increasing the adhesion of the transparent substrate film 1〇5 to the polarizing film 1〇1, and Preferably, the surface treatment is performed on the surface on the opposite side of the surface of the light diffusion layer 1G6 side of the transparent substrate film 1G5. The light diffusion film 102 can also be formed by a method comprising the following steps, namely, on the transparent substrate film 1G5. a step of applying a resin liquid in which the light-transmitting fine particles are dispersed, and a step of transferring the mirror surface or the uneven surface of the mold to the surface of the layer formed of the resin liquid. For example, having a flat surface as shown in FIG. The light diffusing layer can be formed by attaching the mirror surface of the mirror-shaped mold (mirror mold) 156990.doc -16-201219846 to the surface of the layer formed by the resin liquid. The light-diffusing layer 6 having a concave-convex surface shape as shown in FIG. 2 can be adhered to the surface of the layer formed of the resin liquid by the uneven surface of the mold having an uneven surface (die for embossing) The transfer concave and convex surface is formed. The mirror mold can also be a mirror metal roll, and the embossing mold can also be a metal roll for embossing. When an ionizing radiation curable resin, a thermosetting resin, a thermoplastic resin or a metal alkoxide is used as the resin for forming the light-transmitting resin 1〇6a, a layer containing the above resin liquid is formed, and if necessary, it is carried out. Drying (removing the solvent), and if necessary, by irradiating the surface or the uneven surface of the mold to the surface of the layer of the layer of the 匕3 〇 树 树 ,, by the ionizing radiation (using ionization) The layer containing the resin liquid is cured by heating (in the case of using a thermosetting resin or a metal alkoxide) or cooling (in the case of using a thermoplastic resin). The ionizing light ray may be appropriately selected from ultraviolet rays, electron beams, near ultraviolet rays, visible rays, near infrared rays, infrared rays, X rays, etc. depending on the kind of the resin contained in the resin liquid, but these are preferably ultraviolet rays. The electron beam is particularly preferably ultraviolet light in terms of simple operation and high energy. As the light source of the off-line, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal toothed lamp, a xenon lamp, or the like can be used. Further, an ArF excimer laser, a KrF excimer laser, an excimer lamp, or a synchrotron radiation may be used. Preferably, ultrahigh pressure mercury lamps, high pressure mercury lamps, low pressure mercury lamps, xenon lamps, and metal halide lamps are used. 156990.doc •17- 201219846 Also, as electron beam, it can be cited from Kirklaw-Walton, Van de Graaff, resonant transformer, insulator, linear, high-frequency high-pressure accelerator. An electron beam having an energy of 50 to 1000 keV, preferably 1 to 300 keV, emitted by various electron beam accelerators such as a high frequency type. Next, a preferred embodiment for producing the light-diffusing film 102 will be described. The manufacturing method of the preferred embodiment includes the steps of continuously feeding a transparent substrate film 105 wound into a roll shape to continuously produce light diffusion. The film 102 is coated with a resin liquid in which the light-transmitting fine particles 丨06b is dispersed, and dried as needed; the layer formed of the resin liquid is cured; and the obtained light-diffusing film 102 is taken up. This manufacturing method can be carried out using, for example, the manufacturing apparatus shown in Fig. 3. First, the transparent substrate film 1〇5 is continuously wound up by the unwinding device 301. Then, the resin liquid in which the light-transmitting fine particles 1 〇 6b are dispersed is applied by using the coating device 3〇2 and the supporting roller 303 opposed thereto on the transparent base film 1〇5 which is wound up. Next, when the solvent is contained in the resin liquid, the transparent substrate film 105 coated with the resin liquid is dried by passing through the dryer 304. Then, the transparent base film 5 is provided with a layer formed of a resin liquid so that the layer formed of the smear resin liquid is in close contact with the mirror metal roll or the metal roll 305 for embossing to the mirror metal. The metal roll 305 for roll or embossing is wound up between the pin 306 and the pinch 306. Thereby, the mirror surface of the mirror metal roll or the concave surface of the metal roll for embossing is transferred onto the surface of the layer formed of the resin liquid. Then, the layer formed of the resin liquid on the transparent base film 105 is in close contact with the mirror metal roll or the embossing metal roll 3〇5, and passes through the transparent substrate film 105 from the ultraviolet irradiation device 3. 〇8 irradiates the ultraviolet 156990.doc • 18 · 201219846 line, whereby the layer formed of the resin liquid is solidified to form the light diffusion layer 6 . Since the irradiated surface is heated to a high temperature by ultraviolet irradiation, the mirror metal roll or the metal roll 305 for embossing preferably has a surface for adjusting the surface temperature to room temperature to 8 (about TC). Further, one or a plurality of ultraviolet irradiation devices 308 may be used. The transparent substrate film 1〇5 (light diffusion film 1〇2) on which the light diffusion layer 106 is formed is self-mirror metal by the peeling roller 3〇7. The roll or embossing process is performed by a metal roll 305. The light diffusion film 102 manufactured as described above is taken up by the winding device 3〇9. In this case, the light diffusion layer 106 may be protected from the light diffusion layer. The surface of the 1〇6 surface is attached to the surface film formed of polyethylene terephthalate or polyethylene by a re-peelable adhesive layer, and the light diffusion film 1〇2 is wound up. After being peeled off from the mirror metal roll or the metal roll 305 for embossing by the peeling roller 307, ultraviolet irradiation may be additionally performed. Further, it may be replaced by a metal roll for mirror metal or a metal roll for embossing. 5 UV is carried out in close contact with the layer formed by the resin liquid After the irradiation, the transparent base film 1 having a layer formed of the uncured resin liquid (> 5 is peeled off from the mirror metal roll or the metal roll 3〇5 for embossing), and then irradiated The layer formed of the resin liquid is cured by the ultraviolet ray. The light-diffusion film 102 and the polarizing film 1〇1 are bonded to each other via an adhesive layer, etc. The light-diffusion film 102 also functions as a protective film of the polarizing film 1〇1. This configuration is advantageous for thinning of the light diffusing polarizing plates 1 and 200. The bonding of the light diffusing film 1〇2 and the polarizing film 101 with an adhesive can be used with the film 103 and the light diffusing film 1 at the surface. The bonding agent of 2 and the same adhesive as described later is carried out by the same method. 156990.doc 19 201219846 (surface treatment film) The surface treatment film 103 is a film which is optically treated on one side of the transparent resin film. Specifically, a film having a surface treatment layer having a desired optical function may be formed on one of the faces of the transparent resin film 1 to 7. As the transparent resin film 107, an acetate fiber containing, for example, TAC (cellulose triacetate) may be used. Prime resin, polyacrylic acid a resin film such as a propylene resin such as an ester, a polycarbonate resin, or a polyester resin such as polyethylene terephthalate. The thickness of the transparent resin film 1〇7 is, for example, 1 〇 to 5 μμβ, preferably. The surface treatment film 103 may, for example, be an anti-glare film whose surface layer 108 is an anti-glare layer having irregularities on the surface, and utilizes diffuse reflection caused by the unevenness on the surface. Reducing or preventing external light from being reflected into the display screen (ie, 'the above optical processing is anti-glare treatment); or an anti-reflection film whose surface treatment layer 108 is an anti-reflection layer' by reducing or preventing external light incident on the display screen The reflection reduces or prevents external light from being reflected into the display screen (i.e., the optical processing described above is an anti-reflection process). The anti-glare film may be, for example, a mold which has an ultraviolet curable resin composition with or without fine particles coated on the resin film 107, and a mold having a specific surface uneven shape. The uneven surface (4) is formed on the ultraviolet curable resin layer formed, and the ultraviolet curable resin layer is cured (4) to have a specific surface unevenness and an antiglare layer; or by coating the transparent resin film m The ultraviolet curable resin composition containing fine particles of the cloth is formed by solidifying the applied ultraviolet curable resin layer without using a mold, and is solidified to give a specific surface formed by the fine particles 156990.doc •20· 201219846 The anti-glare layer of the bump. A commercially available anti-glare film can also be used as the anti-glare film. As the anti-reverse (four), for example, a low refractive index layer having a material having a refractive index lower than that of the light diffusion layer 106 as an antireflection layer, or having a refractive index higher than that of the light diffusion layer 1〇6 A laminate of a low refractive index layer of a material having a high refractive index of a material having a high refractive index and a refractive index lower than a refractive index of the high refractive index is used as an antireflection layer. The low refractive index layer may be a microparticle (hollow alumina microparticles, etc.) containing a void such as a shovel, a metallographic microparticle (10), a MgF, a 3 esthetic, a sputum, etc., a fluoropolymer. Such as low refractive index materials, and adhesive resin. The adhesive resin may be as previously known, and may be a polysulfide resin, a hydrolyzate of a shixixuan oxide, a light or thermosetting multi-branched compound (dendrimer or hyperbranched polymer, other light or _ A pure resin may be inserted between the transparent resin film 107 and the low refractive index layer or the high refractive index layer, or other types such as a hard coat layer or a charge prevention layer may be inserted. Commercially available antireflection may also be used. The film is used as an antireflection film. (Adhesive layer, adhesive layer) In the light diffusing polarizing plate 1〇〇, 2〇〇 of the present invention, the surface treated film (8) is usually close to the surface treated layer of the transparent tree 1G7. The surface on the opposite side of the side of (10) (the surface of the optical treatment which is not subjected to the surface treatment film 1〇3 is bonded to the light diffusion layer 106 via the adhesive layer or the adhesive layer 104. The collar is formed as an adhesive layer. The adhesive of 104 can be used, for example, a propylene-based adhesive, a urethane-based adhesive, a polyoxyl 156990.doc • 21 · 201219846, etc. Among them, transparency, stress, reliability Rework, etc. Preferably, a propylene-based adhesive is preferably used. The adhesive layer 104 can be applied to light by a die coater or a gravure coater by using such an adhesive as, for example, an organic solvent solution. In addition to the method of dissolving and diffusing the diffusion layer 〇6 or the transparent resin film H)7, it is also possible to bond the sheet formed on the plastic film (referred to as a separator) subjected to the release treatment. (4) It is provided by the method of printing on the light diffusion layer 106 or the transparent resin film 1 to 7. The thickness of the adhesive layer is usually in the range of 2 to 40 μm. Further, as an adhesive for forming the adhesive layer 104, Jingyu does not The appearance of the light diffusing polarizing plates 100 and 200 is adversely affected, and the higher the subsequent strength, the surface treated film 1〇3 and the light diffusing film 1〇2, can be preferably used. An active energy ray such as a resin composition or an adhesive for a thermosetting resin composition, or a water-based adhesive containing a polyvinyl alcohol-based resin or an urethane resin as an adhesive component, etc., wherein a drying step can be achieved. Production efficiency It is more preferable to use an adhesive containing a curable resin composition containing an epoxy resin in order to obtain a good adhesive strength. A surface treatment film using an adhesive containing a curable resin composition containing an epoxy resin is used. The bonding of the 103 to the light diffusion film 102 can be performed by coating the adhesive on the light diffusion layer 106 or the transparent resin film 1〇7, and laminating the two films via the uncured adhesive layer. The active energy ray is irradiated or heated to thereby cure the uncured adhesive layer. The method of applying the adhesive is not particularly limited, and for example, a squeegee, a wire bar, a die coater, or a doctor blade can be used. Various coating methods such as cloth machine and gravure coating machine 156990.doc •22· 201219846 Since the optimum viscosity range exists in each coating method, the viscosity of the adhesive can also be adjusted using an organic solvent. The thickness of the adhesive layer after curing is usually from 0.1 to 20 μm, preferably from 2 to 1 μm, more preferably from 5 to 5 μη. The bonding surface of the transparent resin film 107 and/or the light diffusion layer ι 6 may be subjected to corona discharge treatment or plasma treatment (formation of a plasma layer) before bonding with an adhesive or an adhesive. Easy to proceed. (Protective film) As shown in FIG. 1 and FIG. 2, the light diffusing polarizing plate of the present invention may be included in the protective film 109 which is laminated on the side opposite to the light diffusing film 1〇2 of the polarizing film 101 via the adhesive layer. . The protective film 109 is preferably a film of a polymer which is excellent in low birefringence and transparency or mechanical strength, thermal stability or water repellency. Examples of such a film include a cellulose acetate resin such as TA c (triacetate cellulose), a propylene resin, a tetrafluoroethylene/hexafluoropropylene copolymer fluorine resin, and a polycarbonate resin. Polyester resin such as polyethylene terephthalate, polyimide resin, polysulfone resin, polyether oxime resin, polystyrene resin, polyvinyl alcohol resin, polyvinyl chloride resin, A resin film such as a polyolefin resin or a polyamide resin. Among these, a triacetate cellulose film or a norbornene-based thermoplastic resin film can be preferably used in terms of polarizability, durability, and the like. Since the norbornene-based thermoplastic resin film has high heat-and-moisture resistance, the durability of the polarizing plate can be greatly improved, and the dimensional stability is high because of its low hygroscopicity. For the forming of the above resin film, a previously known method such as a casting method, a calendering method, or an extrusion method may be used, and the thickness of the protective film 9 is determined, and the limit is 156990.doc -23-201219846, and the polarizing plate is used. From the viewpoint of film formation and the like, it is preferably 5 μμ or less, more preferably 5 to 300 μηι, and further preferably 5 to 15 () μηΐ2. The bonding of the polarizing film 101 and the protective film 109 using an adhesive can be carried out by the same method as the above-mentioned bonding agent with respect to the bonding of the surface treatment film 103 and the light diffusion film 1〇2. Further, an optical compensation film such as a retardation film (phase difference plate) may be attached to the polarizing film 101 instead of the protective film 1〇9. The light diffusing polarizing plates 100 and 200 having the above configuration are typically applied to the liquid crystal display device in such a manner that the surface treatment film 103 is attached to the surface of the polarizing film 101 closer to the visual side than the polarizing film 101. The liquid crystal display device is assembled on the glass substrate of the liquid crystal cell. <Liquid Crystal Display Device> Next, a liquid crystal display device of the present invention will be described. The liquid crystal display device of the present invention includes, in order, a backlight device, a light diffusing mechanism, a backlight side polarizing plate, a liquid crystal cell, and the above-described light diffusing polarizing plate of the present invention. Fig. 4 is a schematic cross-sectional view showing a preferred example of the liquid crystal display device of the present invention. The liquid crystal display device 400 of FIG. 4 is a τν-type liquid crystal display device in a normally-on-state mode, and is provided with a backlight device 4〇2, a light diffusing mechanism 403, a backlight-side polarizing plate 404, and a photo-based polarizing plate. In the light diffusing polarizing plate 405 of the invention, the liquid crystal cell 401 includes a liquid crystal layer 412 and one pair of transparent substrates 4Ua and 4iib disposed on both surfaces of the liquid crystal layer 412. The backlight-side polarizing plate 404 and the light-diffusing polarizing plate 4〇5 are disposed such that the transmission axes thereof are orthogonally polarized. The backlight unit 402 includes a box body having a hexahedron shape with a front opening, 156990.doc -24-201219846, and a direct type backlight device in which a plurality of cold cathode tubes 422 as linear light sources are arranged side by side in the casing 421. Further, the light diffusing means 403 includes a light diffusing plate 403a disposed on the front surface of the backlight device 402, and a light deflecting plate (strip) disposed on the front side of the light diffusing plate 403a (between the light diffusing plate 403a and the backlight side polarizing plate 404). 403b. In the liquid crystal display device 400 of such a configuration, the light emitted from the backlight device 402 is diffused by the light diffusing plate 403a of the light diffusing mechanism 403, and is then applied to the light incident surface of the liquid crystal cell 401 by the light deflecting plate 403b. Specific directivity in the vertical direction (z-axis direction). The directivity to the vertical direction is set higher than the previous device. Further, the light imparted with specific directivity is polarized by the backlight-side polarizing plate 404 and incident on the liquid crystal cell 4?1. The light incident on the liquid crystal cell 401 is controlled by the liquid crystal layer 412 to be in a polarized state and emitted from the liquid crystal cell 401. Then, the light emitted from the liquid crystal cell 4〇1 is diffused by the light-diffusing polarizing plate 405. As described above, in the liquid crystal display device of the present invention, the directivity of the light incident on the light incident surface of the liquid crystal cell 4〇1 (the z-axis direction) of the light incident on the liquid crystal cell 401 in the light diffusing mechanism 4〇3 is set to Higher than the previous one, the incident light is focused on the liquid crystal cell 401, and the light is further diffused by the light diffusing polarizing plate 405. Thereby, image quality excellent in color reproducibility and the like can be obtained as compared with the prior art. The liquid crystal display device 4 of the present invention to which the light diffusing polarizing plate 405 of the present invention is applied has a high viewing angle characteristic and has optical functions other than the light diffusing function imparted to the light diffusing polarizing plate 4〇5. 'And excellent visibility. The constituent parts constituting the liquid crystal display device 4 of the present invention will be described in more detail below in 156990.doc 25-201219846. (Liquid crystal early) The liquid crystal cell 401 includes a pair of transparent substrates 4 11 a, 4 11 b and a liquid crystal layer 412, and the pair of transparent substrates 4 11 a, 411 b are disposed opposite each other by a spacer separated by a specific distance, the liquid crystal layer 412 includes a liquid crystal enclosed between a pair of transparent substrates 411a, 411b. A transparent electrode or an alignment film is laminated on each of the pair of transparent substrates 411a and 411b, and the liquid crystal is aligned by applying a voltage based on the display data between the transparent electrodes. The display mode of the liquid crystal cell 401 is TN type in the above example, but a display mode such as an IPS type or a VA type may be employed. (Backlight Device) The backlight device 402 includes a box body 421 having a hexahedron shape that is open at the front, and a cold cathode tube 422 that is a plurality of linear light sources arranged in parallel in the case 421. The case 421 is formed of a resin material or a metal material, and it is preferable that at least the inner peripheral surface of the case 421 is white or silver from the viewpoint of reflecting light emitted from the cold cathode 422 on the inner peripheral surface of the case 421. . As the light source, in addition to the cold cathode tube, LEDs of various shapes such as a linear shape can be used. In the case of using a linear light source, the number of the linear light sources to be arranged is not particularly limited, and from the viewpoint of suppressing the bright spots of the light-emitting surface, it is preferable that the distance between the centers of the adjacent linear light sources is 丨5 range from 5 claws to 5 claws. Furthermore, the backlight device 4〇2 used in the present invention is not limited to the direct type shown in FIG. 4, and the side surface of the light guide plate may be arranged in a side light type or a planar shape of a linear light source or a point light source. Various types such as light source type. [Light-diffusing mechanism] As shown in FIG. 5, the light-diffusing mechanism 403 preferably includes a light diffusing plate 403a disposed on the front surface of the backlight device 156990.doc • 26·201219846 402, and a light diffusing plate 403a disposed on the front side of the light diffusing plate 403a (light diffusion) The light between the plate 403a and the backlight-side polarizing plate 404 is biased toward the plate (the cymbal) 403b. For example, as shown in Fig. 5, the light diffusing plate 403a may be a film or sheet formed by dispersing a light diffusing agent 440 on the substrate 430. As the substrate 430, a polycarbonate resin, a methyl acrylate resin, a methyl propyl acetonate-styrene copolymer resin, an acrylonitrile-styrene copolymer resin, a methacrylic acid-styrene copolymer can be used. Polyolefin resin such as resin, polystyrene resin, polyvinyl chloride resin, polypropylene glycol or polymethylpentene, cyclic polyolefin resin, polyethylene terephthalate, polyparaphenylene A polyester resin such as butylene glycol dicarboxylate or polyethylene naphthalate, a polyamine resin, a polyarylate resin, or a polyimide resin. Further, the light diffusing agent 440 which is mixed and dispersed in the substrate 430 is not particularly limited as long as it is a material formed of a material having a refractive index different from that of the material of the substrate 430, and may be, for example, a substrate 43 Organic microparticles formed by acrylic resin, melamine resin, polyethylene resin, polystyrene resin, organic fluorenone resin, acrylic acid styrene copolymer resin, etc.; and calcium carbonate, strontium oxide, Inorganic fine particles formed of alumina 'carbonate, barium sulfate, titanium oxide, glass, and the like. The light diffusing agent 440 to be used may be used alone or in combination of two or more. Further, an inner hollow sphere or a glass hollow bead of an organic polymer may be used as the light diffusing agent 44. The weight average particle diameter of the light diffusing agent 440 is preferably in the range of 〇 5 to 3 Å. Further, the shape of the light diffusing agent 440 may be a spherical shape, a flat shape, a plate shape, or the like, but is preferably spherical. On the other hand, the surface of the light deflecting plate (the cymbal) 403b on the light incident surface side (the side of the backlight 156990.doc -27-201219846 is placed on the side of the 402 side, and the side of the negative side of the z-axis shown in Fig. 5) is a flat surface. Further, in a plane on the light exit side (the side opposite to the positive side of the z-axis shown by 05) (the surface facing the backlight-side polarizing plate 404), a plurality of polygonal cross-sections having a tapered end are formed in parallel, preferably The shape of the triangle is 45. The material of the light deflecting plate 403b may, for example, be a polycarbonate resin, ABs (Acryl〇nitrile butadiene styrene) resin, methacryl resin, and methyl phenyl methacrylate. A resin resin such as a dilute copolymer resin, a polystyrene resin, a propylene glycol copolymer resin, or a polyolefin resin such as polyethylene or polypropylene glycol. As a method of producing the optical deflecting plate 4〇3b, a molding method of a thermoplastic resin can be usually used, and for example, hot press forming using a die or extrusion molding can be mentioned. The thickness of the light deflecting plate is usually 0.1 to 15 mm, preferably 〇5 to 1 mm. In the present specification, the term "the thickness of the light deflecting plate" means the maximum thickness from the side of the light deflecting plate hopper (4) close to the side of the light diffusing plate 403a to the tip end of the apex angle of the linear 稜鏡45〇. . Therefore, the thickest portion corresponding to B as shown in Fig. 5 becomes the thickness of the light deflecting plate 403b. The thickness from the side of the light deflecting plate 4 〇 31 Å close to the side of the light diffusing plate 403 a to the front end of the apex angle of the linear 稜鏡 45 并非 is not the largest part (for example, the valley of the line 稜鏡 45〇) In part, the thickness of the light deflecting plate 403b may not be in the above range. The light diffusing plate 403a and the light deflecting plate 4〇3b may be integrally formed, or may be joined after being separately produced. Further, in the case of separately forming and joining, the air diffusion plate 403a and the light deflecting plate 4〇3b may be in contact with each other with an air layer interposed therebetween. Further, the light diffusing plate 4〇3a and the light deflecting plate 4〇3b may be disposed separately. As shown in Fig. 6, the light diffusing means 403 may be provided with a light diffusing function by dispersing and mixing the light diffusing agent 440 in the deflecting plate 403b which functions as a light deflecting function. Further, as shown in Fig. 7, the light diffusing means 403 may have two light deflecting plates (strips) 4, 3b, and 403b disposed on the front side of the light diffusing plate 403a. In this case, referring to Fig. 7, it is preferable that the light deflecting plate 403b disposed on the side close to the light diffusing plate 403a has the direction of the ridge line 451 of the linear ridge 450 and the transmission axis direction of the backlight side polarizing plate 404 (y The axial direction is substantially parallel, and the light deflecting plate 403 b ′′ disposed on the front side of the light deflecting plate 403 b is in the direction of the ridge line 45 1 ′ of the linear 稜鏡 430 ′ and the light diffusing polarizing plate 405 . The transmission axis direction (X-axis direction) is substantially parallel. With such a configuration, the brightness in the front direction of the liquid crystal display device can be further improved. Alternatively, the light deflecting plate 4〇313 may be disposed such that the direction of the ridge line 45Γ of the linear prism 450 is substantially parallel to the transmission axis direction (y-axis direction) of the backlight-side polarizing plate 4〇4, and the light is deflected. The direction of the ridge line 451 of the linear ridge 450 of the plate 403b is substantially parallel to the transmission axis direction (X-axis direction) of the light diffusing polarizing plate 405. The light distribution characteristic of the light by the light diffusing means 403 is preferably inclined by 7 自 from the perpendicular direction (the z-axis direction shown in Fig. 4) of the light incident surface of the liquid crystal cell 401. The luminance value in the direction is equal to or less than the front luminance value, that is, the reception value in the direction perpendicular to the light incident surface of the liquid crystal cell 4〇1, and the light emitted from the light diffusion mechanism includes non-parallel light. More preferably, the light distribution characteristics are not more than 6 turns with respect to the perpendicular to the light incident surface of the liquid crystal cell 401. The light that emerges in the direction. Generally, as shown in Fig. 4, the back surface (light incident surface) of the light diffusing means 4?3 is arranged in parallel with the light incident surface of the liquid crystal cell 401. The month is 7 相对 with respect to the perpendicular line of the light incident surface of the liquid crystal cell 401. The luminance value in the direction is, for example, as shown in FIG. 8 , when the longitudinal direction of the light diffusing means 4 〇 3 is set to the X direction, and the surface parallel to the back surface (light incident surface) of the light diffusing means 403 is xy plane. The value of the enthalpy in the direction which is 7 而成 with respect to the z-axis perpendicular to the "surface" is preferably a value of 7 C degrees in the direction formed by the x-axis and the two-axis. In order to set such a light distribution characteristic, for example, the linear shape of the cross-sectional triangular shape of the light deflecting plate 4〇3b can be adjusted (and/or the shape of the linear shape can be adjusted. Linear shape 45〇' 45〇 The apex angle θ (refer to FIG. $ and FIG. 6) is preferably in the range of 60 to 120. More preferably, it is 9 〇 to u 〇. The shape of the triangle is equilateral or unequal, but In the case where the vertical direction of the liquid crystal cell 4〇1 (the front direction of the liquid crystal display device, that is, the z-axis direction) is concentrated, it is preferable that the isosceles-angular rise v and the top surface including the linear prism is preferably provided. The bottom edges which are opposite to the apex angles of the triangles are arranged in order to be adjacent to each other, and the plurality of linear prisms are arranged in such a manner as to be substantially parallel to each other. In this case, as long as the condensing ability does not significantly decrease, the apex of the linear prism and the adjacent linear 稜鏡 (4) can be curved, and the distance between the ridges of the linear prism (Fig. 5) And the distance sentence shown in FIG. 6 is usually in the range of 10 μηι to 500 μηη, preferably in the range of 3〇μιη~2〇〇. The so-called non-parallel light system refers to the self-light diffusing mechanism 4 as shown in FIG. The light emitted from the circle having a diameter of 1 cm on the exit surface of the 〇3 is observed as a projection image of the observation surface parallel to the exit surface 1 m away from the perpendicular direction of the exit surface, and has an in-plane luminance distribution of the projected image. The light having the minimum half width value of 3 〇cm or more is emitted. 156990.doc -30-201219846 (Backlight side polarizing plate) As the backlight side polarizing plate 404, one or both surfaces of the polarizing film can be generally bonded. As the polarizing film and the protective film, the light diffusing polarizing plates 100 and 200 can be used as described above. (Phase plate) The liquid crystal display device of the present invention can include the phase difference plate 406 as shown in Fig. 10. Fig. 1液晶The liquid crystal display device 4〇〇, The difference plate 4〇6 is disposed between the backlight-side polarizing plate 404 and the liquid crystal cell 4〇1. The phase difference plate 4〇6 is substantially perpendicular to the surface of the liquid crystal cell 401 (z-axis direction). Zero, and does not exert any optical effect from the front, and exhibits a phase difference when viewed from the oblique direction, and compensates for the phase difference generated by the liquid crystal cell 4〇1. Thereby, the wider viewing angle can be obtained. Excellent display quality and color reproducibility. The phase difference plate 406 can be disposed between the backlight-side polarizing plate 4〇4 and the liquid crystal cell 401, and between the light-diffusing polarizing plate 4〇5 and the liquid crystal cell 4〇 or The retardation plate 406 may be laminated on the protective film of the backlight-side polarizing plate 4〇4 or may be laminated on the polarizing film of the backlight-side polarizing plate 404 as a function of the protective film. The same applies to the case where the phase difference plate is disposed between the light diffusing polarizing plate 4〇5 and the liquid crystal cell. The phase difference plate 406 is formed by, for example, forming a film of a polycarbonate resin or a cycloolefin-based polymer resin, and further biaxially stretching the film; and applying a liquid crystal monomer to the film, and borrowing It is obtained by photopolymerization and immobilization of molecular alignment. Since the phase difference plate 406 optically compensates the arrangement of the liquid crystals, the refractive index characteristics opposite to the liquid crystal alignment are used. Specifically, in the liquid crystal cell of the TN mode, for example, 156990.doc • 31 - 201219846 WV (wide viewing) film (manufactured by Fujifilm Co., Ltd.); and STN (Super Twisted Nematic) can be preferably used. In the liquid crystal cell of the super-twisted nematic gas, it is preferable to use, for example, an r LC (Liquid Crysta®, liquid crystal) film (manufactured by Nippon Oil Corporation); in the liquid helium unit of the zps mode, For example, a biaxial retardation film is preferably used; in a liquid crystal cell of the VA mode, for example, a phase difference plate or a biaxial retardation film in which an A plate and a slab are combined; in a 71-unit mode, In the liquid crystal cell, for example, "WB film for 〇CB (0ptica Uy compensated)" (manufactured by Fujifilm Co., Ltd.) or the like can be preferably used. EXAMPLES Hereinafter, the present invention will be described in further detail with reference to examples but the present invention is not limited to the examples. Further, the method of measuring the haze of the light-diffusing film, the thickness of the light-diffusing layer, and the weight-average particle diameter of the light-transmitting fine particles used in the following examples is as follows. (a) Haze The measurement film prepared by bonding the transparent substrate film side to the glass substrate using an optically transparent adhesive was used to measure the light diffusion film. For the measurement of the total haze value and the internal haze, a haze permeation meter according to JIS K 7136 (a haze meter "ΗΜ·15〇" manufactured by the Institute of Color Technology, Inc.) was used. From the results, the surface haze was calculated by the above formula (7). (b) Thickness of the light-diffusing layer The thickness of the light-diffusing film was measured using a DIGIMICR(R) MH15 (body) manufactured by Nikon Corporation and a zc_1 〇1 (four-digit device), and the thickness of the substrate was subtracted from the thickness of the measured layer by 80 μm. The thickness of the light diffusion layer was measured. 156990.doc -32- 201219846 (C) The standard deviation of the weight average particle size and particle size of the light-transmitting fine particles according to the Coulter principle (microporous resistance method)' using the Coulter particle counter (Beckman Coulter) Manufactured). [Production of metal roll] (Production of metal mirror roll) Industrial surface chrome processing was performed on the surface of a 200 mm diameter iron roll (STKM13A according to JIS), and then the surface was mirror-polished to produce a mirror-finished roll. The Vickers hardness of the chrome surface of the mirror-finished metal roll obtained was 1000 ° Vickers hardness measured using an ultrasonic hardness meter MIC10 (manufactured by Krautkramer Co., Ltd.) in accordance with JIS z 2244. (Production of metal embossing roll) A copper-plated ballard was prepared for the surface of an iron roll (JIS STKM13A) having a diameter of 200 mm. The copper-plated ballard is formed of a copper-plated layer/thinner silver-plated layer/surface copper layer. The thickness of the plating layer as a whole is about 2 μm. The surface of the copper was mirror-polished, and the spraying surface was used on the polishing surface (manufactured by the company) to have a jet pressure of 5 MPa (the surface pressure 'below the same), and the amount of fine particles used was 16 g/cm 2 ( The zirconia beads TZ_B丨25 (average particle diameter: 125 pm) was produced by spraying the zirconia beads TZ_B丨25 (the average particle diameter: 125 pm) in the same manner as the surface area per 1 cm2 of the rolls, and irregularities were formed on the surface. On the uneven surface, the oxidized beryllium Tz_sx_17 (East Shuttle) was sprayed at a spray pressure of 0.1 MPa (surface pressure, the same applies hereinafter) and the amount of fine particles used was 4 g/cm 2 on the uneven surface. Made by the company, the average particle size: 20 μηη) and fine-tuned the surface roughness. The obtained copper-plated iron roll having irregularities was etched with vaporized copper liquid 156990.doc •33-201219846 (etching amount: 3 μιη). Thereafter, chrome plating (chromium plating thickness: 4 μπ〇 was used to prepare a metal embossing roll. The obtained chrome surface of the metal embossing roll had a Vickers hardness of 1000 (Vickers hardness measurement method and the above) [Same]) [Production of surface treatment film] (Production Example 1: Preparation of antiglare film) 60 parts by weight of pentaerythritol triacrylate and polyfunctional amino phthalate ethyl acrylate (hexamethylene diisocyanate and pentaerythritol) 40 parts by weight of a reaction product of a triacrylate was mixed with a propylene glycol monoterpene ether solution, and adjusted to have a solid content concentration of 60% by weight to obtain an ultraviolet curable resin composition. Next, 'relative to the above ultraviolet curing property 100 parts by weight of the solid content of the resin composition 'added as a photopolymerization initiator r] Lucirill® (manufactured by BASF Chemical name: 2,4,6-trimethylphenylsulfonyldiphenylphosphine oxide) 5 parts by weight of 'coating liquid was prepared by diluting with propylene glycol monomethyl ether so as to have a solid concentration of 6 〇 by weight. The coating liquid was applied to a cellulose triacetate (TAc) film having a thickness of 8 pm. On the bright resin film, it was dried in a dryer set to 80»c for one minute. The dried transparent resin film was pressed by a rubber roller so that the ultraviolet curable resin composition layer became the roll side, and was adhered thereto. In this state, the surface of the embossing roll of the metal is irradiated with light of a high-pressure mercury lamp having a strength of 2 〇 mW/cm 2 from the side of the transparent resin film by an amount of 300 mj/cm 2 in an x-ray conversion light meter. The anti-glare film is formed on the transparent resin film by curing the resin composition layer. (Production Example 2 • Preparation of anti-reflection film) 156990.doc • 34 · 201219846 Dipentaerythritol triacrylate 10 parts by weight of pentaerythritol tetraacrylate, 30 parts by weight of urethane urethane ("UA-306T" manufactured by Kyoeisha Chemical Co., Ltd.), "Irgacurel 84" as a photopolymerization initiator (Ciba Japan shares) 25 parts by weight of the product, 50 parts by weight of mercaptoethyl ketone as a solvent, and 5 parts by weight of mercaptoethyl ketone are mixed to prepare a hard coat layer as a composition of an ultraviolet curable resin. The coating liquid was applied onto a transparent resin film (refractive index 149) of a TAC film having a thickness of 8 μm by a bar coater, and dried in a dryer set to 8 ° C. One minute. With respect to the dried transparent resin film, a metal-based lamp was irradiated with a 120 W output from a distance of 20 cm for 10 seconds, thereby forming a hard coat layer. The thickness is 5 μηη, and the refractive index is 1.52. Next, isopropanol, hydrazine 1 hydrazine hydrochloric acid is added to tetraethoxy decane, and hydrolysis is carried out, thereby obtaining a polymer of tetraethoxy decane containing an oligomer. Solution. The cerium-doped tin oxide (yttrium) fine particles having a primary particle diameter of 8 nm were mixed in the solution, and isopropyl alcohol was added thereto, thereby obtaining 2.5% by weight of the polymer containing tetraethoxy decane and cerium-doped tin oxide fine particles 2. 5 The coating liquid for forming a charging prevention layer of % by weight. On the other hand, the TAC film formed with the hard coat layer was immersed in a 50 t 1.5 N-NaOH aqueous solution for 2 minutes, subjected to alkali treatment, washed with water, and then immersed in a 0.5 wt% H 2 S 4 aqueous solution at room temperature for 3 sec. Neutralization is carried out, followed by washing with water and drying. The coating liquid for forming a charging prevention layer is applied onto an alkali-treated hard coat layer by a wire bar coater, and is set to 12 〇t "drying in a dryer - a child, thereby forming a charged Prevent layers. The obtained charge-preventing layer has a thickness of 163 nm, a refractive index of 156990.doc • 35-201219846, a rate of 1.53', and an optical film thickness of 25 〇 nm, followed by 'tetraethoxy decane and ^丨^^^^^ perfluorooctyl A mixture of 95:5 (mole ratio) of trimethyl methoxy hydrazide _ isopropyl alcohol, hydrazine n-hydrochloric acid was added, and hydrolysis was carried out to thereby obtain a polymer of an organic hydrazine compound containing an oligomer. In this solution, a low refractive index alumina particle having a void therein is mixed, and isopropyl alcohol is added, thereby obtaining a low refractive index layer containing 2% by weight of the organic telluride and 2% by weight of the low refractive index alumina fine particles. Use a coating solution. The obtained coating liquid for forming a low refractive index layer was applied onto a charging prevention layer by a wire bar coater, and dried in a dryer set to 12 Torr to form a low refractive index layer. The obtained low refractive index layer has a thickness of 91 nm, a refractive index of 丨.", and an optical film thickness of 125 nme is produced by the above method. The transparent resin film contains a hard coat layer, a charge prevention layer, and low refraction. Anti-reflection film of the rate layer. [Production of Light-Diffusing Film] (Production Example 3: Preparation of Light-Diffusing Film a) Pentaerythritol triacrylate 0 to 6 parts by weight and polyfunctional amine-based acid acetated acrylic acid (from 40 parts by weight of a reaction product of a sub-f-diisocyanate and a pentaerythritol triacrylate) was mixed with a propylene glycol monoterpene ether solution, and adjusted to have a solid content concentration of 60% by weight to obtain an ultraviolet curable resin composition. The refractive index of the cured product after removing the propylene glycol monomethyl bond from the composition and ultraviolet curing is 153. Next, 35 parts by weight of the solid component of the ultraviolet curable resin composition is added as 35 parts by weight. Light-transmitting microparticles having a weight average particle diameter of 6.0, a standard deviation of 2.19_, a polystyrene-based particle, 156990.doc-36-201219846, and a 5-fold aliquot as a photopolymerization initiator "Lucirin τρ〇" (manufactured by BASF Corporation, chemical name: 2,4,6_trimethylbenzylthiodiphenylphosphine oxide)' diluted with propylene glycol monomethyl ether in a solid concentration of 60% by weight A coating liquid was prepared. This coating liquid was applied onto a TAC film (transparent resin film) having a thickness of 80 μm, and dried in a dryer set at 80 ° C for one minute. The dried transparent resin film is pressed by a rubber member so that the ultraviolet curable resin composition layer is on the roll side, and is adhered to the mirror surface of the metal mirror roll. In this state, the light from the high-pressure mercury lamp having a strength of 20 mW/cm 2 is irradiated from the transparent resin film side in the amount of 3 〇〇 mJ/cm 2 in terms of the amount of the h-ray, and the ultraviolet curable resin composition layer is cured to obtain A light diffusion film A comprising a light diffusion layer and a transparent substrate film on a flat surface. (Production Example 4: Production of Light-Diffusing Film B) The same procedure as in Production Example 3 was carried out except that the ultraviolet-curable resin composition layer of the transparent base film after drying was not adhered to the mirror surface of the metal mirror roll. Light diffusion film B. The haze of the light-diffusing films A and B, the thickness of the light-diffusing layer, and the like are summarized in Table 1. 156990.doc •37· 201219846 [Table 1] -----___ Translucent microparticles ------- Weight average particle size a (i-im) Light diffusion film A Light diffusion film B 6.0 6.0 Standard deviation ^ b(nm) 2.19 2.19 b/a 0.37 0.37 Formulation amount 重量 (parts by weight) 35 35 Thickness of the 犷 犷 layer----(_ 13.5 14.3 —^ Haze (%) 60.3 55.1 Haze (%) 59.9 37.0 ----^ Haze (°/〇) 0.4 18.1 Ό is a value of 固体(9) parts by weight relative to the solid content of the ultraviolet curable resin composition. <Example 1> After the surface of the transparent substrate film of the light-diffusing film obtained in Production Example 3 was subjected to corona treatment, 'the ultraviolet curable % oxygen resin was coated on the corona-treated surface with a thickness of 4 The ultraviolet curability of the photocationic polymerization initiator is as follows. On the other hand, the TAC film (thickness 80 μm) as a protective film is subjected to corona treatment on one side, and then coated on a power-treated surface at a thickness of 4 μm. The same ultraviolet curable adhesive agent, and then the ruthenium is adsorbed to the polyvinyl alcohol-based resin which is stretched by the single sleeve, and the light diffusion is layered on one of the surface of the formed polarizing film via the adhesive layer. The film was laminated, and the above protective film was laminated on the other side via its adhesive, and sandwiched using a pair of nippers. Thereafter, ultraviolet rays were irradiated from the protective film side to cure the two adhesive layers to obtain a light diffusing polarizing plate. 156990.doc •38-201219846 Next, the anti-glare film obtained in Production Example 1 is passed through the transparent resin film side as a bonding surface on the light-diffusing layer of the light-diffusing film A of the light-diffusing polarizing plate. A general-purpose acrylic transparent adhesive is laminated, and a light diffusing polarizing plate which is subjected to an anti-glare treatment is used. <Example 2>

除代替光擴散膜A而使用製造例4中所獲得之光擴散膜B 以外’與實施例1同樣地獲得實施了防眩處理之光擴散性 偏光板。 <實施例3> 除代替防眩膜而使用製造例2中所獲得之抗反射膜以 外,與實施例1同樣地獲得實施了抗反射處理之光擴散性 偏光板8 <實施例4> 除代替光擴散膜A而使用製造例4中所獲得之光擴散膜 B,且代替防眩膜而使用製造例2中所獲得之抗反射膜以 外’與實施例1同樣地獲得實施了抗反射處理之光擴散性 偏光板。 <比較例1> 除代替將光擴散膜Α與防眩膜經由黏著劑層進行積層而 得之上述積層體,使用藉由將光擴散膜A之光擴散層表面 以橡膠輥擠壓於上述金屬製壓紋輥之凹凸面而對光擴散層 實施了防眩處理之膜以外,與實施例1同樣地獲得實施了 防眩處理之光擴散性偏光板。 <比較例2> 156990.doc -39- 201219846 除代替光擴散膜A而使用製造例4中所獲得之光擴散膜B 以外,與比較例1同樣地獲得實施了防眩處理之光擴散性 偏光板。 <比較例3 > 除代替將光擴散膜A與抗反射膜經由黏著劑層進行積層 而得之上述積層體,使用依照上述製造例2中記載之方法 藉由於光擴散膜A之光擴散層表面上依序形成防靜電層、 低折射率層而對光擴散層實施了抗反射處理之膜以外,與 實施例3同樣地獲得實施了抗反射處理之光擴散性偏光 板。 <比較例4> 除代替光擴散膜A而使用製造例4中所獲得之光擴散膜b 以外,與比較例3同樣地獲得實施了抗反射處理之光擴散 性偏光板。 (光擴散性偏光板之表面處理特性之評價) (1) 防眩性之評價 對實施了防眩處理之實施例1〜2及比較例1〜2之光擴散性 偏光板進行防眩性之評價。具體而言,將光擴散性偏光板 於點亮有螢光燈之明亮室内自凹凸面(防眩層表面)側進行 目視觀察’確認有無螢光燈之映入。將於整個膜面上觀察 不到螢光燈之映入者設為A,將於膜面之至少一部分確認 出螢光燈之映入者設為B。於表2中表示結果。 (2) 色斑之評價 對實施了抗反射處理之實施例3〜4及比較例3〜4之光擴散 156990.doc -40· 201219846 性偏光板進行色斑之評價。具體而言,將保護膜表面進行 了黑色消光且藉由噴射而著色為黑色之光擴散性偏光板, 於點亮有螢光燈之明亮室内自低折射率表面側進行目視觀 察,確認出無色斑。將於整個膜面上觀察不到發光燈之映 入者設為A,將於臈面之至少—部分確認出螢光燈之映入 者叹為B。於表2’表示結果。色斑起因於抗反射處理面之 面内不均勾性’且係於上述目視觀察中面内可看到虹色之 現象,於產生此種多士 楂色斑之情形時,判斷為抗反射功能不 良。 [表2]A light diffusing polarizing plate subjected to an antiglare treatment was obtained in the same manner as in Example 1 except that the light diffusing film B obtained in Production Example 4 was used instead of the light diffusing film A. <Example 3> A light diffusing polarizing plate 8 which was subjected to antireflection treatment was obtained in the same manner as in Example 1 except that the antireflection film obtained in Production Example 2 was used instead of the antiglare film. In the same manner as in Example 1, except that the light-diffusing film B obtained in Production Example 4 was used instead of the light-diffusing film A, and the anti-reflection film obtained in Production Example 2 was used instead of the anti-glare film, antireflection was obtained in the same manner as in Example 1. Processed light diffusing polarizer. <Comparative Example 1> The above-mentioned laminated body obtained by laminating the light-diffusing film Α and the anti-glare film via the adhesive layer is used, and the surface of the light-diffusing layer of the light-diffusion film A is pressed by the rubber roller. A light-diffusing polarizing plate subjected to an anti-glare treatment was obtained in the same manner as in Example 1 except that the light-diffusing layer was subjected to an anti-glare treatment on the uneven surface of the metal embossing roll. <Comparative Example 2> 156990.doc -39-201219846 The light diffusing property of the antiglare treatment was obtained in the same manner as in Comparative Example 1, except that the light diffusing film B obtained in Production Example 4 was used instead of the light diffusing film A. Polarizer. <Comparative Example 3 > In addition to the above-described laminated body obtained by laminating the light-diffusing film A and the anti-reflection film via the adhesive layer, light diffusion by the light-diffusion film A was used according to the method described in the above Production Example 2 A light-diffusing polarizing plate subjected to anti-reflection treatment was obtained in the same manner as in Example 3 except that an antistatic layer and a low refractive index layer were sequentially formed on the surface of the layer and the light-diffusing layer was subjected to antireflection treatment. <Comparative Example 4> A light diffusing polarizing plate subjected to antireflection treatment was obtained in the same manner as in Comparative Example 3, except that the light diffusing film b obtained in Production Example 4 was used instead of the light diffusing film A. (Evaluation of Surface Treatment Characteristics of Light-Diffusing Polarizing Plate) (1) Evaluation of Anti-glare Property The light-diffusing polarizing plates of Examples 1 to 2 and Comparative Examples 1 and 2 subjected to anti-glare treatment were subjected to anti-glare properties. Evaluation. Specifically, the light-diffusing polarizing plate was visually observed from the side of the uneven surface (the surface of the anti-glare layer) in a bright room in which the fluorescent lamp was turned on, and it was confirmed whether or not the fluorescent lamp was reflected. The person who observed the fluorescent lamp on the entire film surface was set to A, and it was confirmed that at least a part of the film surface was set to B. The results are shown in Table 2. (2) Evaluation of color spots The light-diffusing 156990.doc -40·201219846 polarizing plates of Examples 3 to 4 and Comparative Examples 3 to 4 subjected to anti-reflection treatment were evaluated for color spots. Specifically, the surface of the protective film was black-dotted, and the light-diffusing polarizing plate colored in black by spraying was visually observed from the side of the low refractive index surface in the bright room in which the fluorescent lamp was lit, and it was confirmed that there was no Spot. The illuminator will not be observed on the entire film surface and will be set to A. At least part of the enamel surface will be confirmed. The results are shown in Table 2'. The color plaque is caused by the unevenness in the surface of the anti-reflection treatment surface and is visible in the above-mentioned visual observation. The phenomenon of iridescence can be seen in the surface of the anti-reflection treatment. Dysfunction. [Table 2]

如表2所示,—依據本發明之光擴散性偏光板得知,即便 對於難以直接貫施表面處理之光㈣膜亦可賦予優異之表 面處理特性。 【圖式簡單說明1 圖ί係表示本發明之光擔勒卜4 & 擴散!生偏光板之較佳的一例之概 略剖面圖。 圖2係表示本發明之光讲 九擴政性偏光板之另一較佳的一例 之概略剖面圖。 156990.doc -41- 201219846 圖3係表示用以製造光擴散膜之裝置之一例之概略圖。 圖4係表示本發明之液晶顯示裝置之較佳的一例之概略 剖面圖。 圖5係表示光擴散機構之一例之概略剖面圖。 圖6係表示光擴散機構之另一例之概略剖面圖。 圖7係用以說明2片光偏向板(稜鏡片)所具有之線狀稜鏡 之棱線方向、與偏光板之透射軸方向之關係之概略立體 圖0 圖8係表示針對光擴散機構測定與液晶單元之光入射面 之垂線成70。之方向之亮度值之方法之—例之圖。 圖9係說明非平行光之定義之圖。 圖10係表示本發明之液晶顯示裝置之另一較佳的一例之 概略剖面圖。 【主要元件符號說明】 100 光擴散性偏光板 101 偏光膜 102 光擴散膜 103 表面處理膜 104 黏著劑層或接著劑層 105 透明基材膜 106 光擴散層 106a 透光性樹脂 106b 透光性微粒子 107 透明樹脂膜 156990.doc -42- 201219846 108 109 200 301 302 303 304 305 306 307 308 309 400 400' 401 402 403 403a 403b 403b 丨 404 405 406 411a 表面處理層 保護膜 光擴散性偏光板 捲出裝置 塗佈裝置 支承輕 乾燥機 鏡面金屬製輥或壓紋加工用金屬製輥 夾棍 剝離輥 紫外線照射裝置 捲取裝置 液晶顯示裝置 液晶顯不裝置 液晶早元 背光裝置 光擴散機構 光擴散板 光偏向板 光偏向板 背光側偏光板 光擴散性偏光板 相位差板 透明基板 156990.doc • 43· 201219846 411b 透明基板 412 液晶層 421 箱體 422 冷陰極管 430 基材 440 光擴散劑 450 線狀稜鏡 450, 線狀稜鏡 451 線狀稜鏡之稜線 451' 線狀稜鏡之稜線 156990.doc - 44 -As shown in Table 2, the light diffusing polarizing plate according to the present invention has been found to provide excellent surface treatment characteristics even for a light (four) film which is difficult to directly apply surface treatment. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing a preferred example of a light-transmitting polarizing plate of the present invention. Fig. 2 is a schematic cross-sectional view showing another preferred example of the light-emitting nine-polarized polarizing plate of the present invention. 156990.doc -41-201219846 Fig. 3 is a schematic view showing an example of an apparatus for manufacturing a light-diffusing film. Fig. 4 is a schematic cross-sectional view showing a preferred example of the liquid crystal display device of the present invention. Fig. 5 is a schematic cross-sectional view showing an example of a light diffusing mechanism. Fig. 6 is a schematic cross-sectional view showing another example of the light diffusing means. Fig. 7 is a schematic perspective view for explaining the relationship between the ridgeline direction of the linear ridges of the two light deflecting plates (the cymbal) and the transmission axis direction of the polarizing plate. Fig. 8 is a view showing the measurement and the light diffusing mechanism. The vertical line of the light incident surface of the liquid crystal cell is 70. A method of the method of brightness value in the direction. Figure 9 is a diagram illustrating the definition of non-parallel light. Fig. 10 is a schematic cross-sectional view showing another preferred example of the liquid crystal display device of the present invention. [Description of main components] 100 light diffusing polarizing plate 101 polarizing film 102 light diffusing film 103 surface treating film 104 adhesive layer or adhesive layer 105 transparent base film 106 light diffusing layer 106a light transmitting resin 106b light transmitting fine particles 107 transparent resin film 156990.doc -42- 201219846 108 109 200 301 302 303 304 305 306 308 308 309 400 400' 401 402 403 403a 403b 403b 丨404 405 406 411a surface treatment layer protective film light diffusing polarizing plate unwinding device Coating device supporting light dryer mirror metal roll or embossing metal roll clamp stripping roller UV irradiation device winding device liquid crystal display device liquid crystal display device liquid crystal early backlight device light diffusing mechanism light diffusing plate light deflecting plate light Bias plate backlight side polarizing plate light diffusing polarizing plate phase difference plate transparent substrate 156990.doc • 43· 201219846 411b transparent substrate 412 liquid crystal layer 421 box 422 cold cathode tube 430 substrate 440 light diffusing agent 450 linear 稜鏡 450, Linear 稜鏡451 线线线线线451' Linear ridgeline 156990.doc - 44 -

Claims (1)

201219846 七、申請專利範圍: 1. 一種光擴散性偏光板,其包括: 偏光膜; 光擴散膜,其積層於上述偏光膜上;及 表面處理膜,其積層於上述光擴散膜上; 上述光擴散膜具有光擴散層; 上述光擴散層包含透光性樹脂及透光性微粒子,該透 光性微粒子分散於上述透光性樹脂中,且相對於上述透 光性樹脂100重量份而為20重量份以上且1〇〇重量份以 下; 上述表面處理膜由對一表面實施了光學處理之透明樹 脂膜所形成; 上述光擴散層及上述表面處理膜經由黏著劑層或接著 劑層而相互貼合。 2. 如請求項1之光擴散性偏光板,其中上述表面處理膜具 有未實施光學處理之面; 上述光擴散層及上述表面處理膜之未實施光學處理之 面經由黏著劑層或接著劑層相互貼合; 上述光擴散層與上述表面處理膜貼合。 3. 如請求項1或2之光擴散性偏光板,其中上述光學處理係 防眩處理或抗反射處理。 4. 如唄求項1至3中任一項之光擴散性偏光板,其中上述光 擴政膜包3透明基材冑、及積層於上述透明基材膜上之 上述光擴散層》 156990.doc 201219846 5. 6. 7. 8. 9. 10 如請求項4之光擴散性偏光板,其中上述光擴散層係於 上述透明基材膜上塗佈分散有上述透光性微粒子之樹脂 液而形成。 如請求項4之光擴散性偏光板,其中上述光擴散層係將 分散有上述透光性微粒子之樹脂液塗佈於上述透明基材 膜上’且於由上述樹脂液所形成之層之表面轉印模具之 鏡面或凹凸面而形成。 一種液晶顯示裝置’其依序包括背光裝置、光擴散機 構、背光側偏光板、液晶單元、及如請求項1至6中任一 項之光擴散性偏光板; 上述光擴散性偏光板以上述偏光膜較上述表面處理膜 更接近於上述液晶單元之方式配置。 如請求項7之液晶顯示裝置,其中來自上述光擴散機構 之出射光具有自上述液晶單元之光入射面之垂線方向傾 斜7〇°之方向之亮度相對於上述垂線方向之亮度而為2〇% 以下之配光特性,且包含非平行光。 如明求項7或8之液晶顯示裝置,其中上述光擴散機構自 上述a光裝置側起依序包含光擴散板及光偏向板。 :請求項7至9中任一項之液晶顯示裝置,其中上述液晶 單兀係TN型液晶單元' Ips型液晶單元或¥八型液晶單 元0 156990.doc201219846 VII. Patent application scope: 1. A light diffusing polarizing plate comprising: a polarizing film; a light diffusing film laminated on the polarizing film; and a surface treating film laminated on the light diffusing film; The diffusing film has a light-diffusing layer, and the light-diffusing layer contains a light-transmitting resin and a light-transmitting fine particle. The light-transmitting fine particles are dispersed in the light-transmitting resin and are 20 parts by weight based on 100 parts by weight of the light-transmitting resin. The surface treatment film is formed of a transparent resin film that has been optically treated on one surface; the light diffusion layer and the surface treatment film are attached to each other via an adhesive layer or an adhesive layer. Hehe. 2. The light diffusing polarizing plate of claim 1, wherein the surface treatment film has a surface that is not subjected to optical treatment; and the surface of the light diffusion layer and the surface treatment film that is not subjected to optical treatment passes through an adhesive layer or an adhesive layer The light diffusion layer is bonded to the surface treatment film. 3. The light diffusing polarizing plate of claim 1 or 2, wherein the optical processing is an anti-glare treatment or an anti-reflection treatment. 4. The light diffusing polarizing plate according to any one of claims 1 to 3, wherein the light diffusing film package 3 is transparent substrate 胄, and the light diffusing layer laminated on the transparent substrate film 156990. Doc 201219846 5. 6. 7. 8. 9. 10. The light diffusing polarizing plate of claim 4, wherein the light diffusing layer is coated on the transparent substrate film with a resin liquid in which the light transmitting fine particles are dispersed. form. The light diffusing polarizing plate of claim 4, wherein the light diffusing layer coats a resin liquid in which the light transmitting fine particles are dispersed on the transparent base film, and is on a surface of a layer formed of the resin liquid The mirror surface or the uneven surface of the transfer mold is formed. A liquid crystal display device, which includes a backlight device, a light diffusing mechanism, a backlight-side polarizing plate, a liquid crystal cell, and a light diffusing polarizing plate according to any one of claims 1 to 6, wherein the light diffusing polarizing plate is as described above The polarizing film is disposed closer to the liquid crystal cell than the surface treatment film. The liquid crystal display device of claim 7, wherein the emitted light from the light diffusing means has a brightness which is inclined by 7 〇 from a direction perpendicular to a light incident surface of the liquid crystal cell with respect to a luminance of the perpendicular direction of 2%. The following light distribution characteristics include non-parallel light. The liquid crystal display device according to claim 7 or 8, wherein the light diffusing means includes the light diffusing plate and the light deflecting plate in this order from the side of the a light device. The liquid crystal display device according to any one of claims 7 to 9, wherein the liquid crystal unit is a TN type liquid crystal unit 'Ips type liquid crystal unit or ¥8 type liquid crystal unit 0 156990.doc
TW100121472A 2010-06-24 2011-06-20 Light-diffusing polarization plate and liquid-crystal display device TW201219846A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010143960 2010-06-24

Publications (1)

Publication Number Publication Date
TW201219846A true TW201219846A (en) 2012-05-16

Family

ID=45371327

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100121472A TW201219846A (en) 2010-06-24 2011-06-20 Light-diffusing polarization plate and liquid-crystal display device

Country Status (3)

Country Link
JP (1) JP2012027460A (en)
TW (1) TW201219846A (en)
WO (1) WO2011162133A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896567A (en) * 2017-03-17 2017-06-27 京东方科技集团股份有限公司 A kind of polaroid and display device
CN113874761A (en) * 2019-03-28 2021-12-31 堺显示器制品株式会社 Light scattering film and liquid crystal display device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205688A (en) * 2012-03-29 2013-10-07 Nitto Denko Corp Liquid crystal display device
JP2016122181A (en) * 2014-12-24 2016-07-07 住友化学株式会社 Polarizing plate and liquid crystal display device
WO2020176466A1 (en) * 2019-02-25 2020-09-03 Visteon Global Technologies, Inc. System and method for adjusting light intensity in a display system
US11953778B2 (en) 2019-02-25 2024-04-09 Visteon Global Technologies, Inc. System and method for adjusting light intensity in a display system
WO2020176411A1 (en) 2019-02-25 2020-09-03 Visteon Global Technologies, Inc. Display system
US11808957B2 (en) 2019-02-25 2023-11-07 Visteon Global Technologies, Inc. System and method for adjusting light intensity in a display system
US11699403B2 (en) 2019-02-25 2023-07-11 Visteon Global Technologies, Inc. Display system
US11747672B2 (en) 2019-02-25 2023-09-05 Visteon Global Technologies, Inc. System and method for adjusting light intensity in a display system
US11698554B2 (en) 2019-02-25 2023-07-11 Visteon Global Technologies, Inc. Display system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007148415A (en) * 1997-09-25 2007-06-14 Dainippon Printing Co Ltd Light diffusing film, its manufacturing method, polarizing plate with light diffusing layer and liquid crystal display apparatus
JP2002090508A (en) * 2000-09-12 2002-03-27 Nitto Denko Corp Light diffusing sheet and optical element
JP2002323699A (en) * 2001-04-26 2002-11-08 Rohm Co Ltd Liquid crystal display device and method for manufacturing the same
JP3908934B2 (en) * 2001-10-23 2007-04-25 日東電工株式会社 Adhesive optical member and liquid crystal display device
JP2003302506A (en) * 2002-02-08 2003-10-24 Dainippon Printing Co Ltd Antiglare film and image display device
JP2008139736A (en) * 2006-12-05 2008-06-19 Sumitomo Chemical Co Ltd Light diffusing plate
JP2009210592A (en) * 2008-02-29 2009-09-17 Sumitomo Chemical Co Ltd Antiglare polarizing plate and image display using the same
WO2009123114A1 (en) * 2008-04-03 2009-10-08 住友化学株式会社 Liquid crystal display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106896567A (en) * 2017-03-17 2017-06-27 京东方科技集团股份有限公司 A kind of polaroid and display device
WO2018166182A1 (en) * 2017-03-17 2018-09-20 京东方科技集团股份有限公司 Polarizer and display device
US10983384B2 (en) 2017-03-17 2021-04-20 Boe Technology Group Co., Ltd. Polarizer and display device
CN113874761A (en) * 2019-03-28 2021-12-31 堺显示器制品株式会社 Light scattering film and liquid crystal display device
CN113874761B (en) * 2019-03-28 2024-03-19 堺显示器制品株式会社 Optical laminate and liquid crystal display device

Also Published As

Publication number Publication date
JP2012027460A (en) 2012-02-09
WO2011162133A1 (en) 2011-12-29

Similar Documents

Publication Publication Date Title
TW201219846A (en) Light-diffusing polarization plate and liquid-crystal display device
TW201120484A (en) Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device
WO2011027903A1 (en) Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device
JP5887080B2 (en) Light diffusing film and manufacturing method thereof, light diffusing polarizing plate, and liquid crystal display device
TWI468743B (en) A light diffusing element and a polarizing element with a light diffusing element
TWI507740B (en) A light diffusion film and a liquid crystal display device including the same
JP2009217065A (en) View control film for laser pointer, polarizer, image display device and laser pointer display method
TW200937045A (en) Anti-glare film, anti-glare polarizer and apparatus for displaying image
TW201213886A (en) Light-diffusing polarization plate and liquid-crystal display device
TW201222020A (en) Optical diffusion film and process therefor, optical diffusible polarizing plate, and liquid crystal display device
TW201227007A (en) Light-diffusing polarizing plate and liquid crystal display device
TW201042328A (en) Liquid crystal display device
TW201030367A (en) Optical film and liquid crystal display device containing the same
TW201226996A (en) Optical diffusing film and process for producing the same, optical diffusible polarizing plate, and liquid crystal display device
TWI519827B (en) A light diffusion film and a method for producing the same, a coating liquid for use, and a polarizing plate using the same, and a liquid crystal display device
JP5827811B2 (en) Liquid crystal display
TW201213885A (en) Light-diffusing polarization plate and liquid-crystal display device