TW201213885A - Light-diffusing polarization plate and liquid-crystal display device - Google Patents

Light-diffusing polarization plate and liquid-crystal display device Download PDF

Info

Publication number
TW201213885A
TW201213885A TW100121471A TW100121471A TW201213885A TW 201213885 A TW201213885 A TW 201213885A TW 100121471 A TW100121471 A TW 100121471A TW 100121471 A TW100121471 A TW 100121471A TW 201213885 A TW201213885 A TW 201213885A
Authority
TW
Taiwan
Prior art keywords
light
film
diffusing
resin
layer
Prior art date
Application number
TW100121471A
Other languages
Chinese (zh)
Inventor
Yasuhiro Haba
Seiji Muro
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW201213885A publication Critical patent/TW201213885A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0231Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having microprismatic or micropyramidal shape

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)
  • Planar Illumination Modules (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed is a new light-diffusing polarization plate that diffuses light sufficiently and also provides other good optical functionality. Also disclosed is a liquid-crystal display device (400) using said light-diffusing polarization plate. The light-diffusing polarization plate (100) is provided with: a polarizing film (101); a light-diffusing film (102) laminated onto the polarizing film (101); and a surface-treated film (103) laminated onto the light-diffusing film (102). The light-diffusing film (102) has a light-diffusing layer (106), and the centerline average roughness (Ra) of the surface of the light-diffusing layer (106) closer to the surface-treated film (103) is at least 0.1 μm and less than 1 μm. The surface-treated film (103) is formed from a transparent resin film (107), one surface of which is optically treated. The light-diffusion layer (106) and the surface-treated film (103) are bonded to each other by an adhesive or pressure-sensitive adhesive layer (104).

Description

201213885 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種光擴散性偏光板及使用其之液晶顯示 裝置。 【先前技術】 近年來’液ΘΒ顯不裝置快速向手機、個人電腦用監視 器、電視、液晶投影器等之用途發展。通常,液晶顯示裝 置包含背光裝置與液晶面板,該液晶面板包含液晶單元、 配置於該液晶單元之背光側之背面側偏光板及配置於該液 晶單元之視認側之前面側偏光板。 先前,已指出液晶顯示裝置中存在如下等問題:於自斜 方向觀看顯示畫面之情形時,無法獲得較高之對比度,進 而,利用使圖像之明暗反轉之色調反轉現象等無法獲得良 好之顯示特性,即,視角狹窄。 作為用於解決如此之視角特性之問題的方法,先前已知 有賦予前面側偏光板光擴散功能之技術。例如,日本專利 特開2009-301014號公報(專利文獻υ中揭示有於液晶單元 之前面側(視認側)配置具有比較高的光擴散性之偏光板(專 利文獻1中稱為「第2光擴散層」該第2光擴散層包含例 如偏光板、與設置於該偏光板之前面側之含有比較多量之 填料(光擴散劑)之賦有光擴散功能的樹脂層(光擴散層)。 先前技術文獻 專利文獻 專利文獻1 :日本專利特開2009-301〇 14號公報 157021.doc 201213885 【發明内容】 發明所欲解決之問題 另-方面’以進-步改善液晶顯示裝置之視認性為目 的,有時於液晶顯示裝置之前面側《最表φ、即前面側偏 光板之最表面,實施用於防止或減少外光映入顯示面的防 眩處理、或用於防止或減少入射至顯示面之外光之反射的 抗反射處理等光學處理。為了使該等光學處理充分地表現 特定之功能,必需精密地控制實施光學處理之表面之形 狀。 然而,如上述專利文獻1中揭示之前面側偏光板所包含 之光擴散層般,含有比較多量之填料之光擴散層上形成有 極大之突起,於如此之情形時,有時於該光擴散層之表面 難以直接實施如上所述之光學處理,或者,即便能直接實 施光學處理,亦無法良好地表現防眩功能或抗反射功能等 特定之功能。 因此’本發明之目的在於提供一種具有充分之光擴散性 且亦進一步良好地表現出其他光學功能之新型光擴散性偏 光板及使用其之液晶顯示裝置。 解決問題之技術手段 本發明係提供一種光擴散性偏光板,其包含偏光膜、積 層於該偏光膜上之光擴散膜、及積層於該光擴散膜上之表 面處理膜’光擴散膜包含光擴散層,光擴散層之表面中的 靠近表面處理膜之表面之中心線平均粗縫度Ra為〇.1 pm以 上且未達1 μηϊ,表面處理膜包含一表面已實施光學處理之 157021.doc 201213885 透明树月日膜’光擴散層與表面處理膜經由黏著劑層或接著 劑層而相互貼合。 “本發明之光擴散性偏光板中,表面處理膜係具有未實施 光學處理之面’光擴散層與表面處理膜之未實施光學處理 之面經由黏著劑層或接著劑層而相互貼合,較佳為光擴散 層與表面處理膜貼合。 光學處理可為例如防眩處理或抗反射處理。 較佳為,光擴散膜係進而包含透明基材膜,於該透明基 材膜上積層有上述光擴散層,光擴散層包含透光性樹脂與 分散於透光性樹脂中之透光性微粒子。如此之光擴散膜之 光擴散層可藉#在透明基材膜上㈣錄有透純微粒子 之樹脂液而形成。又,光擴散層亦可藉由將分散有透光性 微粒子之樹脂液塗佈於透明基材膜上,並於由該樹脂液而 形成之層的表面上轉印模具之鏡面或凹凸面而形成。 又,本發明提供一種依如下順序包含背光裝置、光擴散 機構、背光側偏光板、液晶單元、及上述光擴散性偏光板 之液晶顯示裝置。本發明之液晶顯示裝置中,光擴散性偏 光板係以偏光膜較表面處理膜靠近液晶單元之方式而配 置。 本發明之液晶顯示裝置中’較佳為,來自光擴散機構之 出射光具有自液晶單元之光入射面之垂線方向傾斜7〇。之 方向之亮度相對於該垂線方向之亮度為20%以下的配光特 性,且,包含非平行光。 光擴散機構可自背光裝置側起依如下順序包含光擴散板 157021.doc 201213885 與光偏向板。作為液晶單元,可使用TN(Twisted Nematic ’扭曲向列)方式液晶單元、ips(In_plane Switching ’平面轉換)方式液晶單元或VA(Vertical Alignment ’垂直配向)方式液晶單元等。 發明之效果 根據本發明’可提供一種具有充分之光擴散性並且亦進 一步良好地表現出其他光學功能之光擴散性偏光板。 【實施方式】 <光擴散性偏光板> 圖1係表示本發明之光擴散性偏光板之較佳示例之概略 剖面圖。本發明之圖丨所示之光擴散性偏光板丨〇〇包含偏光 膜101、積層於偏光膜101上之光擴散膜1〇2、及積層於光 擴散膜102上之表面處理膜1〇3,光擴散膜1〇2包含光擴散 層106,表面處理膜1〇3包含一表面已實施光學處理之(具 體而言,賦有表面處理層1〇8之)透明樹脂膜1〇7,光擴散 膜102之光擴散層1〇6與表面處理膜1〇3經由黏著劑層或接 著劑層104而相互貼合。 圖1所示之光擴散性偏光板1〇〇中,光擴散膜1〇2係包含 透明基材膜105與積層於透明基材膜1〇5上之光擴散層1〇6 者’光擴散層106係包含透光性樹脂丨〇6a中分散有透光性 微粒子106b之樹脂層。光擴散膜1 〇2係以該透明基材膜1 〇5 側與偏光膜101相向之方式,即,以透明基材膜105較光擴 散層106靠近偏光膜101之方式積層於偏光膜1〇1上。光擴 散膜102中,該光擴散層106之表面中的靠近表面處理膜 157021.doc 201213885 103 之表面之根據 JIS(Japanese Industrial Standard,日本工 業標準)B 0601之中心線平均粗糙度Ra為o.i pm以上且未達 1 μπι。 表面處理膜103包含透明樹脂膜1 〇7與積層於透明樹脂膜 107之一表面上之表面處理層108。表面處理膜1〇3係以該 透明樹脂膜107之與表面處理層1〇8為相反側之面(表面處 理膜103之表面中未實施光學處理之面),經由黏著劑層或 接著劑層104而貼合於光擴散膜1〇2之光擴散層1〇6。 再者’保護膜109係用於保護偏光膜ιοί之另一表面之 膜’但未必需要,亦可省略。又,亦可貼合相位差膜(相 位差板)等光學補償膜等來代替保護膜109。 根據具有上述構成之本發明之光擴散性偏光板1〇〇,為 了將光擴散膜102之光擴散層106、與將表面處理層1〇8積 層於透明樹脂膜107上而形成之表面處理膜1 〇3經由黏著劑 層或接著劑層104而貼合,即便於光擴散層106之表面形成 有極大之突起之情形時,即,光擴散層1〇6之表面之中心 線平均粗縫度Ra為〇. 1 μηι以上之情形時,亦可使具有所需 之光學功能之表面處理膜1〇3確實地,而且,並且完全排 除光擴散層106之表面形狀對表面處理層ι〇8之結構、形狀 的影響而積層於光擴散層106上。因此,本發明之光擴散 性偏光板100良好地表現出光擴散功能與表面處理層之 特定之光學功能。 以下’就本發明之光擴散性偏光板進行更加詳細的說 明。 157021.doc 201213885 (偏光膜) 作為偏光膜101,例如可列舉於包含聚乙稀醇系樹脂、 聚乙酸乙烯酯樹脂、乙烯/乙酸乙烯酯(EVA,ethylene-vinyl acetate)樹脂 、聚醯胺樹脂 、聚醋系樹脂等之膜上吸 附配向二色性染料或蛾者;包含含有配向之聚乙烯醇之二 色性脫水產物(聚乙稀)之分子鏈之聚乙料/聚乙稀共聚物 且經分子配向之聚乙稀醇膜等。特別是於經單軸延伸之聚 乙稀醇系樹脂膜上吸附配向有二色性染料或碘者可較佳地 用作偏光膜。偏光膜101之厚度並無特別限制,但就光擴 散性偏光板之薄型化等觀點而言,較佳為1〇〇 μιη以下,更 佳為10〜50 μιη,進而較佳為25〜35 μιη。 (光擴散膜) 本發明中使用之光擴散膜102較佳為如圖1所示般,包含 透明基材膜105與積層於透明基材膜ι〇5上之光擴散層 1〇6 ’光擴散層106包含由透光性樹脂1〇6&與分散於透光性 樹脂106a中之透光性微粒子(光擴散劑)1〇6b而形成之樹脂 層。 作為透明基材膜105,只要光學上透明,則並無特別限 制’可使用例如玻璃或塑膠膜等。作為塑膠膜,較佳為具 有適度之透明性、機械強度者,具體可列舉: TAC(Triacetylcellulose ’三乙醯纖維素)等乙醯纖維素系樹 脂、丙烯酸系樹脂、聚碳酸酯樹脂、及聚對苯二甲酸乙二 酯等聚酯系樹脂等《透明基材膜105之厚度為例如10~5〇〇 μιη,較佳為 20〜300 μιη。 157021.doc 201213885 光擴散層106係將透光性樹脂i〇6a作為基材之層,透光 性樹脂106a中分散有透光性微粒子106b^作為透光性樹脂 106a,只要為具有透光性者’則並無特別限制,可使用例 如’紫外線固化型樹脂、電子束固化型樹脂等電離輻射線 固化型樹脂或熱固化型樹脂之固化物、熱塑性樹脂之固化 物、金屬烷氧化物之固化物等。其中,因可賦予較高之硬 度及耐磨性’故較佳為電離輻射線固化型樹脂。於使用電 離輻射線固化型樹脂、熱固化型樹脂或金屬烷氧化物之情 形時,藉由利用電離輻射線之照射或加熱而使該樹脂固 化,從而形成透光性樹脂1 〇6a » 作為電離輻射線固化型樹脂,可列舉:多元醇之丙稀酸 或甲基丙稀酸醋專多官能性之丙婦酸g旨;由二異氰酸醋、 與多元醇及丙烯酸或曱基丙烯酸之羥基酯等而合成之多官 能之丙婦酸胺基曱酸醋等。又,除其等之外,亦可使用具 有丙烯酸酯系之官能基之聚醚樹脂、聚酯樹脂、環氧樹 脂、醇酸樹脂、螺縮醛樹脂、聚丁二烯樹脂、聚硫醇多晞 樹脂等。 作為熱固化型樹脂,除由丙烯酸多元醇與異氰酸酯預聚 物而製備之熱固化型胺基甲酸酯樹脂之外,可列舉:酚樹 脂、尿素三聚氰胺樹脂、環氧樹脂、不飽和聚酯樹脂、聚 石夕氧樹脂。 作為熱塑性樹脂,可列舉:乙醯纖維素、硝化纖維素、 乙醯丁基(acetyl butyl)纖維素、乙基纖維素、甲基纖維素 等纖維素衍生物;乙酸乙烯酯及其共聚物、氯乙烯及其共 157021.doc 201213885 聚物、偏二氣乙烯及其共聚物等乙烯系樹脂;聚乙烯甲 酸、聚乙稀丁路等縮醛系樹脂;丙烯酸系樹脂及其共聚 物、甲基丙烯酸系樹脂及其共聚物等丙烯酸系樹脂,·聚苯 乙烯系樹脂;聚醯胺系樹脂;聚酯系樹脂;聚碳酸酯系樹 脂等。 作為金屬烷氧化物,可使用將矽烷氧化物系之材料作為 原料之氧化矽系基質等。具體而言,可為四尹氧基矽烷、 四乙氧基石炫等’且可藉由水解或脫水縮合而製成無機系 或有機無機複合系基質(透光性樹脂)^ 又,作為透光性微粒子106b,可使用由具有透光性之有 機微粒子或無機微粒子而形成之光擴散劑。可列舉由例 如’丙烯酸系樹脂、三聚氰胺樹脂、聚乙烯、聚苯乙歸、 有機聚矽氧樹脂、丙烯酸-苯乙烯共聚物等而形成之有機 微粒子,或由碳酸弼、氧切、氧化紹、碳酸鋇、硫酸 鋇、氧化鈦、玻璃等而形成之無機微粒子等。又,亦可使 用有機聚合物之内空球或中空玻璃珠。透光性微粒子贿 可包含1種微粒子,亦可包含2種以上之微粒子。透光性微 粒子祕之形狀可為球狀、扁平狀、板狀、針狀、不定形 狀等任一之形狀,較佳為球狀或大致球狀。 透光性微粒子106b之重量平均粒徑較佳為〇5〜i5 pm, 更佳為3〜8 μ.若透光性微粒子_之重量平均粒徑未達 〇.5 μιη,則光擴散膜102之光擴散性變得不充分,其结 果,於將光擴散性偏光板100應用於液晶顯示裝置時= 在無法獲得充分之寬視角性能之情形。又,若於重量平均 157021.doc •10- 201213885 粒徑超過15 μιη之情形時,則存在光擴散膜1〇2無法獲得充 分之光擴散性之情形。又,透光性微粒子1〇61)較佳為其粒 徑之標準偏差相對於重量平均粒徑之比(標準偏差/重量平 均粒徑)為0.5以下,更佳為〇 4以下。於該比超過〇 5之情 形時’則含有粒徑極大之透光性微粒子,其結果,有時, 光擴散層之中心線平均粗糙度Ra為1 μη1以上,或自較佳之 範圍脫離。再者,透光性微粒子1061?之重量平均粒徑及粒 徑之標準偏差係基於庫爾特原理(細孔電阻法),使用庫_ 特計數器(Beckman Coulter公司製造)而測量。 光擴散層106中之透光性微粒子106b之含量相對於透光 性樹脂106a之1 〇〇重量份較佳為2〇重量份以上1 〇〇重量份以 下。本發明中,於如此般使光擴散層106中含有比較多量 之透光性微粒子(光擴散劑)10613之情形時,亦藉由將表面 處理膜103經由黏著劑層或接著劑層1〇4而貼合於光擴散層 藉此’不會難以形成表面處理層1〇8,即,可將表面 處理層108確實且容易地賦予光擴散性偏光板1〇〇,而且無 損表面處理層1 〇8為表現特定之光學功能而必需之結構或 形狀。光擴散層106中之透光性微粒子i〇6b之含量係相對 於透光性樹脂l〇6a之100重量份,更佳為20重量份以上7〇 重量份以下,進而較佳為25重量份以上60重量份以下,尤 佳為30重量份以上55重量份以下。若透光性微粒子1〇6]3之 含量相對於透光性樹脂1〇〇重量份未達20重量份,則光擴 散膜102之光擴散性變得不充分,其結果,將光擴散性偏 光板應用於液晶顯示裝置時,難以獲得充分之寬視角性 157021.doc 201213885 能。又,若透光性微粒子l〇6b之含量相對於透光性樹脂 100重量份超過100重量份,則光擴散膜1〇2之霧度變得過 大’結果導致光擴散膜1〇2之透明性下降,且於將光擴散 性偏光板應用於液晶顯不裝置時,正面對比度下降。 透光性微粒子106b與透光性樹脂i〇6a之折射率差較佳為 0.04〜0.1 5之範圍《藉由使透光性微粒子丨〇6b與透光性樹脂 106a之折射率差處於上述範圍内,則由於透光性微粒子 10 6b與透光性樹脂i〇6a之折射率差而產生適度之内部散 射’可獲得光擴散性適度地較高之光擴散膜丨 又’光擴散層106之表面(與透明基材膜1〇5相反側之表 面’即’光擴散層106之表面中的靠近表面處理膜1〇3之表 面)較佳為僅由透光性樹脂1 〇6a而形成。即,透光性微粒 子106b較佳為未自光擴散層106之上述表面突出而完全地 埋沒於光擴散層106内。因此,光擴散層106之厚度較佳為 相對於透光性微粒子1 〇6b之重量平均粒徑為1倍以上3倍以 下。若光擴散層106之厚度為未達透光性微粒子106b之重 量平均粒徑之1倍之情形時’則於將光擴散性偏光板1〇〇應 用於液晶顯示裝置時,因光擴散層106之表面會變得過於 粗链’故存在當表面處理膜貼合時產生氣泡進入等不良狀 況。又,若光擴散層106之厚度超過透光性微粒子10613之 重量平均粒徑之3倍之情形時,則光擴散層1〇6之厚度變得 過大’隨之,光擴散膜102之光擴散性變得過強,其結 果’於將光擴散性偏光板1〇〇應用於液晶顯示裝置時,存 在正面對比度下降之情形。再者’本說明書中,所謂「光 J57021.doc 12 201213885 擴散層之厚度」,係指自光擴散層106之靠近透明基材膜 105之側之面起直至相反側之面為止的最大厚度。因此, 本發明之光擴散膜102中,相當於圖}所示之A之最厚之部 分為光擴散層106之厚度。自光擴散層1〇6之靠近透明基材 膜105之側之面起直至相反側之面為止的厚度不為最大之 部分(例如,具有凹凸之膜之凹部分)中,光擴散層1〇6之厚 度亦可不為透光性微粒子丨〇6b之重量平均粒徑之i倍以 上。 光擴散層106之厚度較佳為於1〜3〇 之範圍。於光擴散 層106之厚度未達! μιη之情形時,存在無法賦予配置於液 晶顯示裝置之視認侧表面之光擴散膜1〇2所要求的充分之 耐磨性之情形。又,於厚度超過3 〇 之情形時,製作之 光擴散旗102所產生之捲曲之量變大,且光擴散性偏光板 100之製造製程中之操作性變差。 光擴散層106之表面(與透明基材膜105相反側之表面, 即’光擴散層106之表面申的靠近表面處理膜1〇3之表面) 之根據JIS B 0601的中心線平均粗糙度Ra為〇1 μηι以上且 未達1 μιη ’較佳為〇·2 μηι以上且未達〇_5 μιη。於光擴散層 106表面之中心線平均粗糙度!^為1 μΓη以上之情形時,存 在當表面處理膜貼合時產生氣泡進入等不良狀況。根據本 發明,即便於光擴散層1〇6之表面形成有極大之突起之情 形時’即,中心線平均粗糙度Ra為01 μιη以上,進而為〇.2 μιη以上之情形時,亦可將表現出良好之光學功能之表面 處理層賦予光擴散性偏光板。所謂根據JIS β 0601之中心 157021.doc 13 201213885 • . 線平均粗链度Ra,係指自粗糙度曲線沿其中心線之方向, 僅選取基準長度1(L),將該選取部分之中心線之方向設為 X軸,縱倍率之方向設為y軸,粗糙度曲線以⑷表示 時’將藉由下述式(1): [數1]201213885 VI. Description of the Invention: The present invention relates to a light diffusing polarizing plate and a liquid crystal display device using the same. [Prior Art] In recent years, the liquid helium display device has been rapidly developed for use in mobile phones, personal computer monitors, televisions, and liquid crystal projectors. In general, the liquid crystal display device includes a backlight unit and a liquid crystal panel, and the liquid crystal panel includes a liquid crystal cell, a back side polarizing plate disposed on the backlight side of the liquid crystal cell, and a front side polarizing plate disposed on the viewing side of the liquid crystal cell. In the past, it has been pointed out that there is a problem in the liquid crystal display device that when the display screen is viewed from an oblique direction, a high contrast cannot be obtained, and further, the color inversion phenomenon of inverting the brightness of the image cannot be obtained well. The display characteristic, that is, the narrow viewing angle. As a method for solving the problem of such viewing angle characteristics, a technique of imparting a light diffusing function to the front side polarizing plate has been previously known. For example, a polarizing plate having a relatively high light diffusibility is disposed on the front side (viewing side) of the liquid crystal cell (Japanese Patent Laid-Open Publication No. 2009-301014). The second light-diffusing layer includes, for example, a polarizing plate and a resin layer (light-diffusing layer) having a light diffusing function containing a relatively large amount of a filler (light diffusing agent) provided on the front surface side of the polarizing plate. Patent Document 1: Patent Document 1: Japanese Patent Laid-Open No. 2009-301 No. 14 No. 157021.doc 201213885 SUMMARY OF THE INVENTION Problems to be Solved by the Invention Another aspect is to further improve the visibility of a liquid crystal display device. Sometimes, on the front side of the liquid crystal display device, the "most surface φ, that is, the outermost surface of the front side polarizing plate, anti-glare treatment for preventing or reducing external light from being incident on the display surface, or for preventing or reducing incidence on the display surface Optical processing such as anti-reflection treatment of external light reflection. In order for these optical processes to sufficiently express a specific function, it is necessary to precisely control the surface on which the optical treatment is performed. However, as disclosed in the above-mentioned Patent Document 1, as for the light diffusion layer included in the front side polarizing plate, a large number of protrusions are formed on the light diffusion layer containing a relatively large amount of filler, and in such a case, sometimes It is difficult to directly perform the optical processing as described above on the surface of the light-diffusing layer, or a specific function such as an anti-glare function or an anti-reflection function cannot be satisfactorily performed even if optical processing can be directly performed. Therefore, it is an object of the present invention to provide a A novel light diffusing polarizing plate having sufficient light diffusibility and further excellently exhibiting other optical functions and a liquid crystal display device using the same. Technical Solution to Problem The present invention provides a light diffusing polarizing plate comprising polarized light a film, a light diffusion film laminated on the polarizing film, and a surface treatment film laminated on the light diffusion film. The light diffusion film includes a light diffusion layer, and a center line of a surface of the light diffusion layer near the surface of the surface treatment film The average roughness Ra is 〇.1 pm or more and less than 1 μηϊ, and the surface treatment film contains a surface which has been optically treated. 157021.doc 201213885 The transparent tree moon-film "light-diffusion layer and surface-treatment film are bonded to each other via an adhesive layer or an adhesive layer." In the light diffusing polarizing plate of the present invention, the surface treatment film has no optical treatment. The surface of the light-diffusing layer and the surface-treated film that has not been subjected to optical treatment is bonded to each other via an adhesive layer or an adhesive layer, and preferably the light-diffusing layer is bonded to the surface-treated film. The optical treatment may be, for example, anti-glare. Preferably, the light diffusion film further comprises a transparent base film, and the light diffusion layer is laminated on the transparent base film, and the light diffusion layer comprises a light transmissive resin and is dispersed in the light transmissive resin. The light-transmitting fine particles in the light diffusing film can be formed by the resin liquid of the pure microparticles recorded on the transparent base film (4). Further, the light diffusion layer may be formed by applying a resin liquid in which the light-transmitting fine particles are dispersed to the transparent base film, and transferring the mirror surface or the uneven surface of the mold on the surface of the layer formed of the resin liquid. form. Moreover, the present invention provides a liquid crystal display device including a backlight device, a light diffusing mechanism, a backlight-side polarizing plate, a liquid crystal cell, and the above-described light diffusing polarizing plate in the following order. In the liquid crystal display device of the present invention, the light diffusing polarizing plate is disposed such that the polarizing film is closer to the liquid crystal cell than the surface treating film. In the liquid crystal display device of the present invention, it is preferable that the emitted light from the light diffusing means is inclined by 7 自 from the perpendicular direction of the light incident surface of the liquid crystal cell. The luminance in the direction is 20% or less with respect to the luminance in the vertical direction, and includes non-parallel light. The light diffusing mechanism may include a light diffusing plate 157021.doc 201213885 and a light deflecting plate from the side of the backlight device in the following order. As the liquid crystal cell, a TN (Twisted Nematic) liquid crystal cell, an ips (In_plane Switching) liquid crystal cell, a VA (Vertical Alignment) liquid crystal cell, or the like can be used. EFFECTS OF THE INVENTION According to the present invention, it is possible to provide a light diffusing polarizing plate which has sufficient light diffusibility and which further exhibits other optical functions. [Embodiment] <Light diffusing polarizing plate> Fig. 1 is a schematic cross-sectional view showing a preferred example of the light diffusing polarizing plate of the present invention. The light diffusing polarizing plate 丨 shown in the drawing of the present invention comprises a polarizing film 101, a light diffusing film 1〇2 laminated on the polarizing film 101, and a surface treating film 1〇3 laminated on the light diffusing film 102. The light diffusion film 1〇2 includes a light diffusion layer 106, and the surface treatment film 1〇3 includes a transparent resin film 1〇7 having a surface which has been optically treated (specifically, a surface treatment layer 1〇8), and light diffusion. The light diffusion layer 1〇6 of the film 102 and the surface treatment film 1〇3 are bonded to each other via the adhesive layer or the adhesive layer 104. In the light diffusing polarizing plate 1 shown in FIG. 1, the light diffusing film 1〇2 includes a transparent base film 105 and a light diffusing layer 1〇6 laminated on the transparent base film 1〇5. The layer 106 includes a resin layer in which the light-transmitting fine particles 106b are dispersed in the light-transmitting resin crucible 6a. The light-diffusing film 1 〇 2 is laminated on the polarizing film 1 so that the transparent substrate film 1 相 5 side faces the polarizing film 101, that is, the transparent substrate film 105 is closer to the polarizing film 101 than the light-diffusing layer 106. 1 on. In the light diffusion film 102, the surface roughness of the surface of the light diffusion layer 106 close to the surface treatment film 157021.doc 201213885 103 according to JIS (Japanese Industrial Standard) B 0601 is oi pm Above and less than 1 μπι. The surface treatment film 103 comprises a transparent resin film 1 〇 7 and a surface treatment layer 108 laminated on one surface of the transparent resin film 107. The surface treatment film 1〇3 is a surface on the opposite side to the surface treatment layer 1〇8 of the transparent resin film 107 (the surface on which the surface of the surface treatment film 103 is not subjected to optical treatment), via an adhesive layer or an adhesive layer. 104 is bonded to the light diffusion layer 1〇6 of the light diffusion film 1〇2. Further, the 'protective film 109 is a film for protecting the other surface of the polarizing film ιοί', but it is not necessarily required, and may be omitted. Further, instead of the protective film 109, an optical compensation film or the like such as a retardation film (phase difference plate) may be bonded. The light-diffusing polarizing plate 1 of the present invention having the above-described configuration is a surface-treated film formed by laminating the light-diffusing layer 106 of the light-diffusing film 102 and the surface-treated layer 1〇8 on the transparent resin film 107. 1 〇 3 is bonded via the adhesive layer or the adhesive layer 104, even when a large protrusion is formed on the surface of the light diffusion layer 106, that is, the center line average roughness of the surface of the light diffusion layer 1〇6 When Ra is 〇. 1 μηι or more, the surface treatment film having the desired optical function 1 〇 3 can also be surely, and the surface shape of the light diffusion layer 106 is completely excluded from the surface treatment layer ι 8 The light diffusion layer 106 is laminated on the influence of the structure and shape. Therefore, the light diffusing polarizing plate 100 of the present invention satisfactorily exhibits a specific optical function of the light diffusing function and the surface treating layer. The light diffusing polarizing plate of the present invention will be described in more detail below. 157021.doc 201213885 (polarizing film) The polarizing film 101 is exemplified by a polyethylene resin, a polyvinyl acetate resin, an ethylene-vinyl acetate resin (EVA) resin, and a polyamide resin. a dichroic dye or moth adsorbed on a film of a vinegar-based resin or the like; a polyethylene/polyethylene copolymer comprising a molecular chain of a dichromatic dehydrated product (polyethylene) containing an aligned polyvinyl alcohol And a molecularly aligned polyethylene film or the like. In particular, it is preferably used as a polarizing film for adsorbing and displacing a dichroic dye or iodine on a uniaxially stretched polyethylene resin film. The thickness of the polarizing film 101 is not particularly limited, but is preferably 1 μm or less, more preferably 10 to 50 μm, and still more preferably 25 to 35 μm from the viewpoint of thinning of the light diffusing polarizing plate. . (Light-diffusion film) The light-diffusion film 102 used in the present invention preferably comprises a transparent substrate film 105 and a light-diffusing layer 1 〇 6 ′′ laminated on the transparent substrate film 〇 5 as shown in FIG. 1 . The diffusion layer 106 includes a resin layer formed of a light-transmitting resin 1〇6& and a light-transmitting fine particle (light diffusing agent) 1〇6b dispersed in the light-transmitting resin 106a. The transparent base film 105 is not particularly limited as long as it is optically transparent. For example, a glass or a plastic film can be used. As the plastic film, it is preferable to have appropriate transparency and mechanical strength, and specific examples thereof include an acetonitrile cellulose resin such as TAC (Triacetyl cellulose 'triethyl fluorene cellulose), an acrylic resin, a polycarbonate resin, and a poly The thickness of the transparent base film 105 such as a polyester resin such as ethylene terephthalate is, for example, 10 to 5 μm, preferably 20 to 300 μm. 157021.doc 201213885 The light-diffusing layer 106 is a layer of a light-transmitting resin i〇6a as a base material, and the light-transmitting fine particles 106b are dispersed as a light-transmitting resin 106a in the light-transmitting resin 106a, as long as it is translucent. The present invention is not particularly limited, and for example, a cured product of an ionizing radiation curable resin such as an ultraviolet curable resin or an electron beam curable resin, a cured product of a thermosetting resin, a cured product of a thermoplastic resin, and a solidification of a metal alkoxide can be used. Things and so on. Among them, an ionizing radiation curable resin is preferred because it can impart high hardness and abrasion resistance. In the case of using an ionizing radiation-curable resin, a thermosetting resin or a metal alkoxide, the resin is cured by irradiation or heating with ionizing radiation to form a light-transmitting resin 1 〇 6a » as ionization The radiation-curable resin may, for example, be a polyacrylic acid or a methacrylic acid vinegar-specific polyglycolic acid; from a diisocyanate, a polyhydric alcohol, and an acrylic or methacrylic acid. A polyfunctional acetoacetic acid citrate or the like synthesized by a hydroxy ester or the like. Further, in addition to these, a polyether resin having an acrylate functional group, a polyester resin, an epoxy resin, an alkyd resin, a acetal resin, a polybutadiene resin, or a polythiol can also be used. Resin and the like. As the thermosetting resin, in addition to the thermosetting urethane resin prepared from the acrylic polyol and the isocyanate prepolymer, a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin may be mentioned. , Ju Shi Xi Oxygen Resin. Examples of the thermoplastic resin include cellulose derivatives such as acetam cellulose, nitrocellulose, acetyl butyl cellulose, ethyl cellulose, and methyl cellulose; vinyl acetate and copolymers thereof; Vinyl chloride and its vinyl resin such as 201213885 polymer, vinylidene dioxide and its copolymer; acetal resin such as polyvinyl formate or polyethylene butyl hydride; acrylic resin and its copolymer, methyl Acrylic resin such as acrylic resin and copolymer thereof, polystyrene resin, polyamine resin, polyester resin, polycarbonate resin, and the like. As the metal alkoxide, a cerium oxide-based substrate or the like which uses a decane oxide-based material as a raw material can be used. Specifically, it may be tetramethoxy decane, tetraethoxy fluorene, etc., and may be formed into an inorganic or organic-inorganic composite matrix (transparent resin) by hydrolysis or dehydration condensation. As the fine particle 106b, a light diffusing agent formed of light-transmitting organic fine particles or inorganic fine particles can be used. Examples thereof include organic fine particles formed of, for example, 'acrylic resin, melamine resin, polyethylene, polystyrene, organic polyoxyl resin, acrylic-styrene copolymer, or the like, or cesium carbonate, oxygen cut, and oxidized. Inorganic fine particles formed by barium carbonate, barium sulfate, titanium oxide, glass, or the like. Further, an inner hollow sphere or hollow glass beads of an organic polymer may also be used. The light-transmitting fine particles may contain one type of fine particles or may contain two or more kinds of fine particles. The shape of the light-transmitting microparticles may be any shape such as a spherical shape, a flat shape, a plate shape, a needle shape, or an amorphous shape, and is preferably spherical or substantially spherical. The weight average particle diameter of the light-transmitting fine particles 106b is preferably 〇5 to i5 pm, more preferably 3 to 8 μ. If the weight average particle diameter of the light-transmitting fine particles is less than 55 μιη, the light-diffusing film 102 The light diffusibility is insufficient, and as a result, when the light diffusing polarizing plate 100 is applied to a liquid crystal display device, a sufficient wide viewing angle performance cannot be obtained. Further, in the case where the weight average of 157021.doc •10-201213885 exceeds 15 μm, there is a case where the light diffusing film 1〇2 cannot obtain sufficient light diffusibility. Further, the light-transmitting fine particles 1〇61) are preferably a ratio (standard deviation/weight average particle diameter) of the standard deviation of the particle diameter to the weight average particle diameter of 0.5 or less, more preferably 〇4 or less. When the ratio exceeds 〇5, the light-transmitting fine particles having a large particle diameter are contained, and as a result, the center line average roughness Ra of the light-diffusing layer may be 1 μη1 or more, or may be deviated from a preferable range. In addition, the standard deviation of the weight average particle diameter and the particle diameter of the light-transmitting fine particles 1061 is measured by a Coulter principle (fine pore resistance method) using a library counter (manufactured by Beckman Coulter Co., Ltd.). The content of the light-transmitting fine particles 106b in the light-diffusing layer 106 is preferably 2 parts by weight or more and 1 part by weight or less based on 1 part by weight of the light-transmitting resin 106a. In the present invention, when the light-diffusing layer 106 is contained in a relatively large amount of the light-transmitting fine particles (light diffusing agent) 10613, the surface-treated film 103 is also passed through the adhesive layer or the adhesive layer 1〇4. By adhering to the light diffusion layer, it is not difficult to form the surface treatment layer 1〇8, that is, the surface treatment layer 108 can be surely and easily imparted to the light diffusing polarizing plate 1〇〇, and the surface treatment layer 1 is not damaged. 8 is the structure or shape necessary to represent a particular optical function. The content of the light-transmitting fine particles i 〇 6b in the light-diffusing layer 106 is preferably 20 parts by weight or more and 7 parts by weight or less, and more preferably 25 parts by weight, based on 100 parts by weight of the light-transmitting resin 100a. The above 60 parts by weight or less is particularly preferably 30 parts by weight or more and 55 parts by weight or less. When the content of the light-transmitting fine particles 1〇6]3 is less than 20 parts by weight based on 1 part by weight of the light-transmitting resin, the light diffusibility of the light-diffusing film 102 is insufficient, and as a result, light diffusibility is obtained. When the polarizing plate is applied to a liquid crystal display device, it is difficult to obtain a sufficient wide viewing angle. 157021.doc 201213885 can. In addition, when the content of the light-transmitting fine particles 16b exceeds 100 parts by weight based on 100 parts by weight of the light-transmitting resin, the haze of the light-diffusing film 1〇2 becomes excessively large, resulting in transparency of the light-diffusing film 1〇2. The property is lowered, and when the light diffusing polarizing plate is applied to the liquid crystal display device, the front contrast is lowered. The difference in refractive index between the light-transmitting fine particles 106b and the light-transmitting resin i〇6a is preferably in the range of 0.04 to 0.15. The difference in refractive index between the light-transmitting fine particles 丨〇6b and the light-transmitting resin 106a is in the above range. In the meantime, due to the difference in refractive index between the light-transmitting fine particles 106b and the light-transmitting resin i〇6a, moderate internal scattering is generated, and a light diffusing film having a moderately high light diffusibility and a surface of the light diffusing layer 106 can be obtained ( The surface on the side opposite to the transparent substrate film 1〇5, that is, the surface of the surface of the light diffusion layer 106 which is close to the surface treatment film 1〇3, is preferably formed only of the light-transmitting resin 1〇6a. That is, it is preferable that the light-transmitting fine particles 106b are not protruded from the surface of the light-diffusing layer 106 and are completely buried in the light-diffusing layer 106. Therefore, the thickness of the light-diffusing layer 106 is preferably 1 time or more and 3 times or less with respect to the weight average particle diameter of the light-transmitting fine particles 1 〇 6b. When the thickness of the light-diffusing layer 106 is less than one time the weight average particle diameter of the light-transmitting fine particles 106b, the light-diffusing polarizing plate 1 is applied to a liquid crystal display device because of the light-diffusing layer 106. The surface becomes too thick, so there is a problem that bubbles enter when the surface treatment film is bonded. Further, when the thickness of the light diffusion layer 106 exceeds three times the weight average particle diameter of the light-transmitting fine particles 10613, the thickness of the light diffusion layer 1〇6 becomes excessively large, and the light diffusion of the light diffusion film 102 follows. The result is too strong, and as a result, when the light diffusing polarizing plate 1 is applied to a liquid crystal display device, there is a case where the front contrast is lowered. In the present specification, the term "light J57021.doc 12 201213885 The thickness of the diffusion layer" means the maximum thickness from the surface of the light diffusion layer 106 on the side close to the transparent base film 105 to the surface on the opposite side. Therefore, in the light-diffusing film 102 of the present invention, the thickest portion corresponding to A shown in Fig.} is divided into the thickness of the light-diffusing layer 106. In the portion from the side of the light-diffusing layer 1 to 6 adjacent to the side of the transparent substrate film 105 from the side up to the opposite side, the thickness is not the largest (for example, the concave portion of the film having the unevenness), the light-diffusing layer 1〇 The thickness of 6 may not be more than one time the weight average particle diameter of the light-transmitting fine particles 丨〇6b. The thickness of the light diffusion layer 106 is preferably in the range of 1 to 3 Å. The thickness of the light diffusion layer 106 is not reached! In the case of μιη, there is a case where sufficient abrasion resistance required for the light diffusion film 1〇2 disposed on the viewing side surface of the liquid crystal display device cannot be imparted. In addition, when the thickness exceeds 3 〇, the amount of curl generated by the light diffusion flag 102 is increased, and the operability in the manufacturing process of the light diffusing polarizing plate 100 is deteriorated. The surface of the light diffusion layer 106 (the surface on the opposite side to the transparent substrate film 105, that is, the surface of the surface of the light diffusion layer 106 which is close to the surface of the surface treatment film 1〇3) has a center line average roughness Ra according to JIS B 0601. It is 〇1 μηι or more and less than 1 μιη′, preferably 〇·2 μηι or more and less than 〇5 μιη. The average roughness of the center line of the surface of the light diffusion layer 106! When it is 1 μΓη or more, there is a problem that bubbles enter when the surface treatment film is bonded. According to the present invention, even when a large number of protrusions are formed on the surface of the light diffusion layer 1〇6, that is, when the center line average roughness Ra is 01 μm or more, and further, it is 〇.2 μιη or more, A surface treatment layer exhibiting a good optical function imparts a light diffusing polarizing plate. According to the center of JIS β 0601 157021.doc 13 201213885 • . The line average thick chain degree Ra refers to the direction of the roughness curve along its center line, only the reference length 1 (L) is selected, and the center line of the selected part is selected. The direction is set to the X axis, the direction of the vertical magnification is set to the y axis, and the roughness curve is represented by (4)' will be represented by the following formula (1): [Number 1]

Ra = }{ {f(x)}dx ⑴ 而獲得之值以微米(㈣單位而表示者。中心線平均粗链度 Ra可使用以JIS B 〇6〇1為依據之共焦干涉顯微鏡(例如, Optical Solutions股份有限公司製造之「pLp3〇〇」),根 據上述計算式(1),藉由可計算Ra之程式軟體而算出。 再者,本發明之光擴散性偏光板1〇〇中,光擴散層1〇6之 表面中,靠近表面處理膜103之表面之中心線平均粗糙度 Ra為0.1 μιη以上且未達! μ〇1即可,光擴散層1〇6亦可不含 有透光性樹脂1 〇6b或透光性微粒子106a。 光擴散膜102較佳為全霧度為30%以上7〇%以下,且内部 霧度為30%以上70%以下。所謂「全霧度」,係根據表示對 光擴散膜102照射光後透過之光線之總量的總透光率(Tt) ' 與藉由光擴散膜102而擴散後所透過的擴散光線透射率 (Td)之比,藉由下式: 全霧度(°/D)=(Td/Tt)xl〇〇 (2) 而獲得。 總透光率(Tt)係在與入射光同軸之狀態下透過之平行光 線透射率(Tp)與擴散光線透射率(Td)之和。總透光率(Tt) 157021.doc •14- 201213885 及擴散光線透射率(Td)係以JIS κ 7361為依 值。 ·•盅&lt; 又,所謂光擴散膜102之「内部霧度」,係全霧度中,除 因光擴散層106之表面中的光出射面側之面之表面形狀而 產生之霧度(表面霧度)以外之霧度。 若全霧度及/或内部霧度未達30%之情形時,則光散射性 不充分,且難以獲得充分之寬視角性能。又,若全霧度及/ 或内部霧度超過70%之情形時,則光散射變強,且於將光 擴散性偏光板100應用於液晶顯示裝置時,存在正面對比 度下降之情形。又,若全霧度及/或内部霧度超過之情 形時’則有光擴散膜102之透明性受損之傾向。更佳為全 霧度及内部霧度分別為35%以上65%以下。 光擴散膜102之全霧度、内部霧度及表面霧度具體而言 係以如下方式測量。即,首先’為了防止膜之翹曲,使用 光學上透明之黏著劑’以光擴散層106為表面之方式,將 光擴散膜102之透明基材膜105側之面貼合於玻璃基板而製 作測量用樣本’對該測量用樣本測量全霧值。全霧值係使 用以JIS K 7136為依據之霧度透射率計(例如,村上色彩技 術研究所股份有限公司製造之霧度計「HM-15 0」),測量 總透光率(Tt)及擴散光線透射率(Td),藉由上述式(2)而算 出。 接著,於光擴散層106之表面,使用甘油貼合霧度大約 為0%之三乙醯纖維素膜’以與上述全霧度之測量相同之 方式而測量霧度。關於該霧度,因由光擴散層106之表面 157021.doc • 15- 201213885 中的光出射面側之面之表面形狀所致之表面霧度藉由貼合 之三乙醯纖維素膜而大致抵消,故可視為光擴散膜102之 「内部霧度」。因此,光擴散膜1〇2之「表面霧度」藉由下 述式(3): 表面霧度(%) =全霧度(%)-内部霧度(%) (3) 而獲得。 再者,光擴散膜102中,亦可於透明基材膜1〇5與光擴散 層106之間含有其他層(包含接著劑層)。 其次’就用於製造光擴散膜1〇2之方法進行說明。光擴 散膜102可藉由包含於透明基材膜ι〇5上塗佈分散有透光性 微粒子106b之樹脂液之步驟的方法而形成。 上述樹脂液包含透光性微粒子106b、構成光擴散層1〇6 之透光性樹脂106a或形成其之樹脂(例如,電離輻射線固 化型樹脂、熱固化型樹脂、熱塑性樹脂或金屬烷氧化 物)、及根據需要添加之溶劑等其他成分。於使用紫外線 固化型树fla作為形成透光性樹脂1 〇6a之樹脂之情形時,上 述樹脂液包含光聚合起始劑(自由基聚合起始劑)。作為光 聚合起始劑,使用例如,苯乙酮系光聚合起始劑、安息香 系光聚合起始劑 '二苯曱酮系光聚合起始劑、9_氧硫p山口星 系光聚合起始劑、三啩系光聚合起始劑、噚二唑系光聚合 起始劑等。又’作為光聚合起始劑,亦可使用例如, 2,4,6-二曱基苯曱醯基二苯基氧化膦、2,2,_雙(鄰氣苯基)_ 4,4',5,5’-四苯基-1,2’-雙咪唑、1〇_ 丁基·2氣吖啶酮、2_乙 基蒽醌、二苯基乙二酮、9,1〇_菲醌、樟腦醌、苯乙醛酸甲 157021.doc -16 - 201213885 醋、二茂鈦化合物等。 通常,光聚合起始劑之使用i係相肖於拣m液中含有之 樹脂100重量份為0,5〜2〇重量份,較佳為^重量份。再 者,為了使光擴散膜102之光學特性及表面形狀為均質 者,較佳為樹脂溶液中之透光性微粒子1〇訃之分散為各向 同性分散。 於透明基材膜105上塗佈上述樹脂液時可藉由例如凹版 印刷塗佈法、微壓花輥筒式塗佈法、棒式塗佈法、刮塗 法、氣刀塗佈法、吻合塗佈法、模塗法等而進行。於樹脂 液之塗佈時,較佳為如上所述,以光擴散層1〇6之厚度相 對於透光性微粒子l〇6b之重量平均粒徑為i倍以上3倍以下 之方式調整塗佈膜厚。 以樹脂液之塗佈性之改良或與光擴散層1〇6之接著性之 改良為目的,可於透明基材膜1〇5之表面(光擴散層1〇6側 之表面)實施各種表面處理β作為表面處理,可列舉電暈 放電處理、輝光放電處理、酸表面處理、鹼表面處理、紫 外線照射處理等。又,亦可於透明基材膜i 〇5上,形成有 例如底塗層(易接著層)等其他層,於該其他層上,塗佈樹 脂液》 又’為了提高透明基材膜105與偏光膜ιοί之接著性,較 佳為於透明基材膜105之與光擴散層ι〇6側之表面相反側之 表面上’實施如上述之表面處理。 光擴散膜102亦可藉由包含如下步驟之方法而形成:於 透明基材膜105上,塗佈分散有透光性微粒子丨〇6b之樹脂 157021.doc •17- 201213885 液;於由樹脂液形成之層之表面上,轉印模具之鏡面或凹 凸面。即’具有上述中心線平均粗糖度Ra之光擴散層1 〇6 可藉由塗佈上述樹脂液,且根據需要使具有鏡面之模具 (鏡面模具)之該鏡面或具有凹凸面之模具(壓花加工用模 具)之該凹凸面密接於由該樹脂液而形成之層之表面,並 轉印鏡面或凹凸面而形成。鏡面模具亦可為鏡面金屬製 報,又’壓花加工用模具亦可為壓花加工用金屬製輥。 作為形成透光性樹脂106a之樹脂,當使用電離輻射線固 化型樹脂、熱固化型樹脂、熱塑性樹脂或金屬烷氧化物之 情形時’形成由上述樹脂液形成之層,根據需要進行乾燥 G谷劑之除去)’並根據需要在使模具之鏡面或凹凸面密接 於由該樹脂液形成之層之表面的狀態下或使之密接之後, 藉由電離輻射線之照射(使用電離輻射線固化型樹脂之情 形時)、加熱(使用熱固化型樹脂或金屬烷氧化物之情形時) 或冷卻(使用熱塑性樹脂之情形時)而使由樹脂液形成之層 固化。作為電離輻射線’可根據樹脂液中包含之樹脂之種 類’而自紫外線、電子束、近紫外線、可視光線、近紅外 線 '紅外線、X射線等中適當地選擇,其等之中較佳為紫 外線、電子束,且因操作簡便且可獲得較高能量,故尤佳 為紫外線》 作為紫外線之光源,可使用例如低壓水銀燈、中壓水銀 燈、咼壓水銀燈、超高壓水銀燈、碳弧燈、金屬齒化物 燈、氙氣燈等。又,亦可使用ArF準分子雷射、KrF準分子 雷射、準分子燈或同步加速器輻射光等。其等之中,較佳 157021.doc -18- 201213885 為使用超高麼水銀燈、高壓水銀燈、低壓水銀燈、氣氣 燈、金屬齒化物燈。 又’作為電子束,可列舉自考克饒夫瓦耳頓(c〇ckr〇ft· Walton)型、範德格拉夫(van de Graaff)型、諧振變壓型、 絕緣芯變壓型、直線型、高頻高壓(Dynamitr〇n)型、高頻 型等各種電子束加速器釋出之具有50M 〇〇〇 keV、較佳為 100-300 keV之能量之電子束。 其次,就用於製造光擴散膜1〇2之較佳之實施形態進行 說明。該較佳之實施形態之製造方法係包含如下步驟:為 了連續地製造光擴散膜102,而將捲成輥狀之透明基材膜 105連續地送出;塗佈分散有透光性微粒子1〇6b之樹脂 液’並根據需要使其乾燥;使由樹脂液形成之層固化;及 捲取獲得之光擴散膜102。該製造方法可使用例如圖2所示 之製造裝置而實施。 首先’藉由捲出裝置301而連續地捲出透明基材膜1〇5。 接著,於捲出之透明基材膜105上,使用塗敷裝置302及與 其相向之支承輥303,塗敷分散有透光性微粒子l〇6b之樹 脂液。其次,於樹脂液中含有溶劑之情形時,藉由使塗敷 有樹脂液之透明基材膜105通過乾燥機304而乾燥。接著, 設置有由樹脂液形成之層之透明基材膜105係向鏡面金屬 製輥或壓花加工用金屬製輥305與夾輥306之間,以由該樹 脂液形成之層與鏡面金屬製輥或壓花加工用金屬製輥305 密接之方式而捲出。藉此,於由樹脂液形成之層之表面, 轉印有鏡面金屬製輥之鏡面或壓花加工用金屬製輥之凹凸 157021.doc -19· 201213885 面。接著,於透明基材膜105上之由樹脂液形成之層與鏡 面金屬製輥或壓花加工用金屬製輥305密接之狀態下,藉 由穿過透明基材膜105,自紫外線照射裝置308照射紫外 線’而使由樹脂液形成之層固化,從而形成光擴散層 106。因藉由紫外線照射而使照射面變成高溫,故鏡面金 屬製輥或壓花加工用金屬製輥305較佳為内部設置有用於 將其表面溫度調整為室溫〜80。〇左右之冷卻裝置。又,紫 外線照射裝置308可使用1台、或者複數台。形成有光擴散 層106之透明基材膜1〇5(光擴散膜1〇2)係藉由剝離輥307而 自鏡面金屬製輥或壓花加工用金屬製輥3〇5而剝離。以如 上方法所製造之光擴散膜102係向捲取裝置3〇9捲取《此 時’以保護光擴散層106為目的,亦可於光擴散層1〇6表 面’經由具有再剝離性之黏著劑層一面貼合由聚對苯二甲 酸乙二醋或聚乙烯等而形成之表面保護膜,一面捲取光擴 散膜102。 再者’藉由剝離輥307而自鏡面金屬製輥或壓花加工用 金屬製軺· 305剝離後,亦可進行追加之紫外線照射。又, 亦可並非在鏡面金屬製輥或壓花加工用金屬製輥3〇5與由 樹月曰液形成之層密接之狀態下進行紫外線照射,而是將形 成有由未固化之樹脂液形成之層之透明基材膜105自鏡面 金屬製輥或壓花加工用金屬製輥3〇5剝離後,照射紫外 線,從而使由樹脂液形成之層固化。 光擴散膜102與偏光膜1〇1係藉由接著劑層等而相互貼 。。光擴散膜102亦作為偏光膜1〇1之保護膜發揮作用,如 157021.doc •20· 201213885 此之構成係對光擴散性偏光板1〇〇之薄膜化有利。光擴散 膜102與偏光膜lOi之使用接著劑之貼合可使用與就表面處 理膜103與光擴散膜1〇2之貼合而於下文敍述者相同之接著 劑藉由相同之方法而進行。 (表面處理膜) 表面處理膜103係於透明樹脂膜107之一面上已實施光學 處理之膜,具體而言,可為於透明樹脂膜1〇7之一面上形 成具有所需之光學功能的表面處理層1〇8之膜。作為透明 樹脂膜107,可使用包含例如TAC(三乙醯纖維素)等乙醯纖 維素系樹脂、聚甲基丙烯酸曱酯等丙烯酸系樹脂、聚碳酸 酯樹脂、及聚對苯二曱酸乙二酯等聚酯系樹脂等之樹脂 膜。透明樹脂膜107之厚度為例如10〜500 μιη,較佳為 20〜300 μηι 〇 作為表面處理膜103,可列舉例如’表面處理層1 〇8為表 面上具有凹凸之防眩層,利用表面上之上述凹凸之漫反射 來降低或防止映入至顯示畫面之外光之(即,上述光學處 理為防眩處理)防眩膜;或表面處理層108為抗反射層,藉 由降低或防止入射至顯示晝面之外光之反射,來降低或防 止映入至顯示晝面之外光之(即,上述光學處理為抗反射 處理)抗反射膜。 作為防眩膜’可使用例如,於透明樹脂膜丨〇7上塗敷含 有或不含有微粒子之紫外線固化型樹脂組合物,一面將具 有特定之表面凹凸形狀之模具之該凹凸面擠壓於所形成之 紫外線固化型樹脂漘上,一面使紫外線固化型樹脂層固 15702l.doc -21- 201213885 化,藉此而形成之包含賦有特定之表面凹凸的防眩層者; 或於透明樹脂膜107上塗敷含有微粒子之紫外線固化型樹 脂組合物,不使用模具,而使塗敷之紫外線固化型樹脂層 固化,藉此而形成之包含賦有由於微粒子而5|起之特定之 表面凹凸的防眩層者等。作為防眩膜亦可使用市售之防 眩膜。 作為抗反射膜,可列舉❹,將包含由具有較光擴散層 106之折射率低之折射率之材料所構成之低折射率層作為 抗反射層者、或包含將由具有較光擴散層1〇6之折射率高 之折射率之材料所構成之高折射率層與由具有較該高折射 率層之折射率低之折射率之材料所構成之低折射率層積層 而成者作為抗反射層者等^低折射率層 -,.(UF ^MgF ^ 3Na,A1F . A1t ^ia3AlF6等)'内部具有空隙之微粒子(中空氧化硬微粒子 等)' 含氟聚合物等低折射率材料、及黏合劑樹脂者。黏 合劑樹脂可為先前公知者’亦可為聚矽氧烷樹脂、矽烷氧 化物之水解物 '光或熱固化性多支鏈化合物(樹枝狀聚合 =或超支化聚合物等)、其他光或熱固化性樹脂。透明樹 月曰膜107與低折射率層或高折射率層之間亦可介有硬塗層 或抗靜電層等1種或2錄17 μ -V ·«* 飞2種以上之其他層。作為抗反射膜,亦 可使用市售之抗反射膜。 (黏著劑層、接著劑層) 本發明之光擴散性偏光板⑽中,通常,表面處理膜Κ 係以該透明樹脂膜1G7之與靠近表面處理層⑽之側相反4 157021.doc -22· 201213885 之面(表面處理膜103之未實施光學處理之面),經由黏著劑 層或接著劑層104而貼合於光擴散膜1〇2之光擴散層1〇6。 作為形成黏著劑層1 〇4之黏著劑,可使用先前公知者, 可列舉例如丙烯酸系黏著劑、胺基甲酸酯系黏著劑、聚矽 氧系黏著劑等《其中,就透明性、黏著力、可靠性、二次 加工性等觀點而言,較佳為使用丙烯酸系黏著劑。作為黏 著劑層1 04,可利用例如有機溶劑溶液作為此種黏著劑, 且將其藉由狹縫擠壓式塗佈法或凹版印刷塗佈法等塗佈於 光擴散層106或透明樹脂膜107上並使其乾燥之方法而設 置,除此之外,亦可利用將形成於已實施脫模處理之塑膠 膜(稱為隔離膜)上之片狀黏著劑轉印於光擴散層1〇6或透明 樹脂膜107上之方法而設置。黏著劑層之厚度通常為於 2〜40 μηι之範圍内。 又,作為形成接著劑層104之接著劑,可將表面處理膜 ⑻與光擴散膜1()2以較高之接著強度接著,而不會對光擴 :性偏光板100之外觀帶來不良影響,故較佳可使用包含 含有環氧樹脂之固化性樹脂組合物等之活性能量射線或熱 固化性樹脂組合物之接著劑、或含有聚乙烯醇系樹脂或胺 基甲酸Sa Μ &amp;作為接著劑成分之水系接著劑等。其中,因 不需要乾❹驟等而可謀求生產效率之提高,且可獲得良 好之接著強度’故更佳為使用包含含有環氧樹脂之固化性 樹脂組合物之接著劑。 使用包含含有環氡樹脂之固化性樹脂組合物之接著劑的 表面處理膜103與光擴散膜1〇2之貼合中,可將該接著劑塗 157021.doc -23- 201213885 敷於光擴散層106或透明樹脂膜107上,經由未固化之接著 劑層而積層兩膜後,藉由照射活性能量射線、或進行加 熱,且使未固化之接著劑層固化而進行。接著劑之塗敷方 法並無特別限定,可使用例如,刮刀法、線棒塗佈法、狹 縫擠壓式塗佈法、刮刀式塗佈法、凹版印刷塗佈法等各種 塗敷方式。因各塗敷方式均有各自最適合之黏度範圍,故 亦可使用有機溶劑來調整接著劑之黏度。固化後之接著劑 層之厚度係通常為0.1〜2〇 μιη,較佳為〇·2〜1〇 μΓη,進而較 佳為 0.5~5 μπι。 於透明樹脂膜107及/或光擴散層1〇6之貼合面上,在利 用黏著劑或接著劑之貼合之前,亦可實施電暈放電處理、 底層處理(底塗層之形成)等易接著處理。 (保護膜) 如圖1所示,本發明之光擴散性偏光板亦可於偏光膜1〇1 之與光擴散膜102相反之側經由接著劑層等而設置積層之 保護膜109。保護膜1 〇9較佳為具有低雙折射性、且包含透 明性或機械強度、熱穩定性或防水性等優異之聚合物之 膜。作為如此之膜,可列舉包含例如TAC(三乙醯纖維素) 等乙醯纖維素系樹脂、丙烯酸系樹脂、如四氟乙烯/六氟 丙稀系共聚物之氟系樹脂、聚碳酸酯樹脂、聚對苯二曱酸 乙二酯等聚酯系樹脂、聚醯亞胺系樹脂、聚砜系樹脂、聚 醚砜系樹脂、聚苯乙烯系樹脂、聚乙烯醇系樹脂、聚氣乙 烯系樹脂、聚烯烴系樹脂或者聚醯胺系樹脂等之樹脂膜。 其等之中,就偏光特性或耐久性等方面而言,較佳為使用 157021.doc •24· 201213885 三乙醯纖維素膜或、降孩稀系熱塑性樹脂膜。降福稀系熱 塑性樹脂膜因耐濕、熱性較高,故可大幅度提高偏光板之耐 久性’並且因吸濕性較差,故尺寸穩定性較高,故尤佳。 對上述樹脂之膜之成形加工可使用鑄造法、軋光法、擠出 法等先前公知之方法,保護膜1〇9之厚度並無限定,但就 偏光板之薄膜化等觀點而言,較佳為5〇〇 以下更佳為 5〜300 μΐη之範圍,進而較佳為5〜15〇μβι之範圍。 關於使用偏光膜101與保護膜1〇9之接著劑之貼合,可使 用就表面處理膜103與光擴散膜1〇2之貼合與上述者相同之 接著劑,藉由相同之方法而進行。 再者,於偏光膜101上,亦可貼合相位差膜(相位差板) 等光學補償膜等代替保護膜丨〇9。 具有以上構成之光擴散性偏光板100典型的是,當應用 於液晶顯示裝置之情形時’以表面處理膜1〇3較偏光膜ι〇ι 更成為視認侧之方式,經由黏著劑層等而貼合於液晶單元 之玻璃基板且組裝至液晶顯示裝置。 〈液晶顯示裝置&gt; 其次,就本發明之液晶顯示裝置進行說明。本發明之液 晶顯不裝置中依如下之順序包含背光裝置、光擴散機構、 月光側偏光板、液晶單元、及上述本發明之光擴散性偏光 板。圖3係表示本發明之液晶顯示裝置之較佳之一例的概 略剖面圖。圓3之液晶顯示裝置400係常白模式之TN方式 之液晶顯示裝置,其中依如下之順序配置有背光裝置 4〇2、光擴散機構403、背光側偏光板4〇4、及作為視認側 157021.doc •25· 201213885 偏光板之本發明之光擴散性偏光板4〇5,液晶單元401包含 液晶層412、及配置於液晶層412之兩面之一對透明基板 411a、411b。背光側偏光板4〇4與光擴散性偏光板4〇5係以 其等之透射軸成為正交偏光之關係之方式而配置。 背光裝置402係包含前面開口之六面體形狀之箱體42 1、 及並列配置於箱體42 1内之複數個作為線狀光源之冷陰極 管422的直下型背光裝置。又,光擴散機構4〇3包含配置於 背光裝置402之前面之光擴散板4〇3a、及設置於光擴散板 403a之前面側(光擴散板4〇3a與背光側偏光板404之間)之光 偏向板(稜鏡片)403b » 於具有如此構成之液晶顯示裝置4〇〇中,自背光裝置402 放射之光藉由光擴散機構403之光擴散板403a而擴散後, 藉由光偏向板403b而賦予對液晶單元401之光入射面之垂 線方向(z轴方向)之特定之指向性。對該垂線方向之指向性 係設定為尚於先前之裝置。而且,賦有特定之指向性之光 係藉由背光側偏光板404而作為偏光入射至液晶單元4〇 1。 入射至液晶單元401之光係藉由液晶層412而控制偏光狀 態’自液晶單元401出射。而且,自液晶單元4〇 1出射之光 藉由光擴散性偏光板405而擴散。 如此’本發明之液晶顯示裝置中,使光擴散機構4〇3中 之入射至液晶單元401之光中的、對液晶單元4〇丨之光入射 面之垂線方向(z轴方向)的指向性高於先前,即,使液晶單 元401之入射光成為較先前聚光者,並藉由光擴散性偏光 板405使其進一步擴散《藉此’與先前之裝置相比,可獲 157021.doc -26 · 201213885 得色再現性等優異之圖像品質。應用本發明之光擴散性偏 光板405的本發明之液晶顯示裝置4〇〇係具有較高之視角特 性,並且兼備賦予光擴散性偏光板4〇5之光擴散功能以外 之光學功能,且視認性優異。 以下,就構成本發明之液晶顯示裝置4〇〇之構成構件進 行更加詳細的說明。 (液晶單元) 液晶單元401包含一對透明基板4Ua、4111)與液晶層 412,一對透明基板411a、41 lb係藉由間隔件而隔著特定 距離相向配置’液晶層412包含封入至一對透明基板 411a、411b之間的液晶。一對透明基板411a、4111)上,分 別積層形成有透明電極或配向膜,藉由向透明電極間施加 基於顯示資料之電壓而將液晶配向。液晶單元4〇1之顯示 方式係上述例中之TN方式’亦可採用ips方式、VA方式等 顯示方式。 (背光裝置) 背光裝置402包含前面開口之六面體形狀之箱體421、及 並列配置於箱體421之複數個作為線狀光源之冷陰極管 422。箱體421係由樹脂材料或金屬材料而成形,就使自冷 陰極管422放射之光於箱體421内周面反射之觀點而言,較 理想的是至少箱體421内周面為白色或銀色。作為光源, 除冷陰極管之外,亦可使用線狀形狀等各種形狀之LED (Light Emitting Diode,發光二極體)等。於使用線狀光源 之情形時,配置之線狀光源之個數並無特別限定,但就抑 157021.doc -27- 201213885 制發光面之亮度不均等觀點而言,較佳為鄰接之線狀光源 之中心間距離為1 5 mm〜150 mm之範圍。再者,本發明中 使用之背光裝置402並不限定於圖3所示之直下型者,亦可 使用於導光板之側面配置線狀光源或點狀光源之側光型、 或者平面狀光源型等各種類型。 [光擴散機構] 光擴散機構403較佳為如圖4所示,包含配置於背光裝置 402之前面之光擴散板403a、及設置於光擴散板4 〇3 a之前 面側(光擴散板403a與背光側偏光板404之間)之光偏向板 (稜鏡片)403b。光擴散板403a可如圖4所示,例如為於基材 430中分散混合有光擴散劑440而成之膜或片。作為基材 4 3 0 ’可使用聚碳酸醋系樹脂;甲基丙稀酸系樹脂;甲基 丙烯酸曱酯-苯乙烯共聚物樹脂;丙烯腈-苯乙烯共聚物樹 脂;甲基丙烯酸-苯乙烯共聚物樹脂;聚苯乙烯系樹脂; 聚氣乙烯系樹脂;聚丙烯或聚甲基戊烯等聚烯烴系樹脂; 環狀聚烯烴系樹脂;聚對苯二甲酸乙二酯或聚對苯二甲酸 丁二酯、聚萘二甲酸乙二酯等聚酯系樹脂;聚醯胺系樹 脂;聚芳酯系樹脂;聚醯亞胺系樹脂等。 又’混合分散於基材430中之光擴散劑440只要為由與基 材430之材料之折射率不同的材料而形成之微粒子,則並 無特別限制’可列舉例如’由與基材43〇之材料不同種類 之丙烯酸系樹脂、三聚氰胺樹脂、聚乙烯樹脂、聚苯乙稀 樹脂、有機聚矽氧樹脂、丙烯酸-苯乙烯共聚物樹脂等而 形成之有機微粒子,及由碳酸鈣、氧化矽、氧化鋁、碳酸 157021 .doc -28- 201213885 鎖硫酉夂韻、氧化鈦、玻璃等而形成之無機微粒子。使用 之光擴散劑440可僅為丨種,亦可併用2種以上。又,有機 聚合物之内空球或中空玻璃珠亦可作為光擴散劑44〇而使 用。光擴散劑440之重量平均粒徑較佳為〇5〜3〇 μιη之範 圍。又,光擴散劑440之形狀可為球形、扁平、板狀、針 狀等,但較佳為球形。 另方面,光偏向板(稜鏡片)403b,係於光入射面側(背 光裝置402側、圖4所示之z軸之負方向側)之面為平坦面, 且於光出射側(圖4所示之z軸之正方向側)之面(與背光側偏 光板404相向之表面),平行地形成有複數個剖面為前端細 之多角形狀、較佳為三角形狀之線狀稜鏡45〇。作為光偏 向板403b之材料,可列舉例如,聚碳酸酯系樹脂、abs樹 脂、甲基丙烯酸樹脂、甲基丙烯酸曱酯_苯乙烯共聚物樹 脂、聚苯乙烯系樹脂、丙烯腈_苯乙烯共聚物樹脂、聚乙 烯或聚丙烯等聚晞烴系樹脂等。作為光偏向板4〇3b之製作 方法,可使用通常之熱塑性樹脂之成形法,可列舉例如, 使用模具之熱壓成形、或擠出成形等。光偏向板4〇3b之厚 度通常為0,1〜15 mm,較佳為〇 5〜10 mm。再者,本說明書 中’所謂「光偏向板之厚度」,係指自光偏向板4〇3b之靠 近光擴散板403a之側的面起直至線狀稜鏡450之頂角之前 端為止的最大厚度。因此,相當於圖4所示之B之最厚之部 分為光偏向板403b之厚度。於自光偏向板4〇3b之靠近光擴 散板403a之側的面起直至線狀稜鏡&quot;ο之頂角之前端為止 的厚度不為最大之部分(例如,線狀稜鏡45〇之谷之部分), 157021.doc .29- 201213885 光偏向板403b之厚度亦可不在上述範圍内。 光擴散板403a與光偏向板403b可一體成形,亦可分別製 作後再進行接合。又,於分別製作並進行接合之情形時, 於光擴散板403 a與光偏向板403 b之間亦可藉由空氣層而接 觸。又’光擴散板403a與光偏向板403b亦可相隔而配置β 光擴散機構403亦可如圖5所示,係於發揮光偏向功能之 光偏向板403b中分散混合有光擴散劑440,並賦予光擴散 功能者。 進而’光擴散機構403亦可如圖6所示,係包含配置於光 擴散板403a之前面側之2牧之光偏向板(稜鏡片)4〇3b、 403b’者。於該情形時,較佳為,參照圖6,配置於靠近光 擴散板403a之側之光偏向板4〇3b以該線狀稜鏡450之脊線 45 1之方向與背光側偏光板404之透射軸方向(y轴方向)實質 上平行之方式而配置,配置於光偏向板4〇3b之前面側之光 偏向板403b’以該線狀稜鏡45〇,之脊線45丨,之方向與光擴散 性偏光板405之透射軸方向(χ轴方向)實質上平行之方式而 配置。藉由如此之構成,可進一步提高液晶顯示裝置之正 面方向之亮度。但是,亦可以光偏向板4〇3b,之線狀稜鏡 450’之脊線451·之方向與背光側偏光板4〇4之透射軸方向&amp; 軸方向)實質上平行之方式而配置’且以光偏向板雜之 線狀稜鏡450之脊線451之方向與光擴散性偏光板彻之透 射轴方向(χ轴方向)實質上平行之方式而配置。 穿過光擴散機構403之光之配光特性較佳為,自液晶單 元401之光入射面之垂線方向(圖3所示之z軸方向)傾斜7〇。 157021.doc 201213885 之方向的亮度值相對於正面亮度值,即液晶單元4〇1之光 入射面之垂線方向之亮度值的2〇%以下,且,自光擴散機 構403之出射光包含非平行光。更佳之配光特性係在相對 於液晶單兀401之光入射面之垂線超過6〇。之方向上無射出 之光。通常,如圖3所示,因光擴散機構4〇3之背面(光入 射面)與液晶單元401之光入射面係平行地配置,故所謂相 對於液晶單元401之光入射面之垂線成7〇。方向之亮度值例 如係如圖7所示,當以光擴散機構403之長度方向為乂方 向,以平行於光擴散機構403之背面(光入射面)之面為”面 時,相對於與該Xy面垂直之2軸成7〇。方向之亮度值,較佳 為XZ面上與z轴所成之角為70。之方向之亮度值。為了實現 如此之配光特性,例如,調整光偏向板403b之剖面三角形 狀之線狀稜鏡450(及/或線狀稜鏡450,)之形狀即可。線狀 稜鏡450、450’之頂角θ(參照圖4及圖5)較佳為60〜120。之範 圍’更佳為90〜110。。該三角形之形狀可任意地為等邊或 不等邊’但欲於液晶單元401之垂線方向(液晶顯示裝置之 正面方向,即,ζ軸方向)聚光之情形時,較佳為等腰三角 形。又,包含線狀稜鏡之稜鏡面之構造較佳為,以與三角 形之頂角相對之底邊相互鄰接之方式而依序配置,且以複 數個線狀稜鏡相互大致平行之方式而排列。於該情形時, 只要聚光能力不顯著減退’則藉由線狀稜鏡之頂點及鄰接 之線狀棱鏡而形成之V字狀溝槽亦可為曲線形狀。線狀稜 鏡之脊線間之距離(圖4及圖5所示之距離d)通常為1 〇 μιη〜500 μηι之範圍,較佳為30 μιη〜200 μπι之範圍。 157021.doc •31- 201213885 所4非平行光係具有如下出射特性之光,如目8所示, 將自光擴散機構403之出射面中之直徑1 cm之圓内射出之 光投影至距離該出射面之垂線方向i m之平行於該出射面 之觀察©上,觀察其投影料,該投料之面内亮度分佈 之最小半寬值為30 cm以上。 (背光側偏光板) 作為背光側偏光板404,通常可使用於偏光膜之單面或 雙面貼合有保護膜者。作為偏光膜及保護膜,可使用上文 中關於光擴散性偏光板100所述者。 (相位差板) 本發明之液晶顯示裝置係如圖9所示,可包含相位差板 406。圖9所示之液晶顯示裝置4〇〇•中,相位差板4〇6係配置 於背光側偏光板4〇4與液晶單元4〇1之間。該相位差板4〇6 係相對於液晶單元401之表面垂直之方向(z軸方向)上之相 位差大約為0者,且自正前方不起任何光學作用而於自 斜觀察時出現相位差,補償液晶單元4〇1所產生之相位 差。藉此,以更宽之視角,可獲得更優異之顯示品質及色 再現性。相位差板406可配置於背光側偏光板4〇4與液晶單 元401之間、及、光擴散性偏光板4〇5與液晶單元4〇1之間 中的一方或兩方。相位差板406亦可積層於背光側偏光板 4〇4之保護膜上,或者亦可兼具保護膜之功能,而直接積 層於背光側偏光板404之偏光膜上。就於光擴散性偏光板 4〇5與液晶單元401之間配置相位差板之情形而言,亦相 同。 157021.doc •32· 201213885 作為相位差板406,可列舉例如,將聚碳酸酯樹脂或環 狀烯煙系聚合物樹脂作為膜、進而將該膜雙抽延伸者,或 將液晶性單體塗佈於膜上、藉由光聚合反應而將該分子排 列固定化者等《相位差板406係於光學上補償液晶之排列 者’故使用折射率特性與液晶排列相反者。具體而言, TN模式之液晶單元中較佳可使用例如「wv FILM」(富士 film股份有限公司製造);sTN(Super Twisted Nematic,超 扭曲向列相)模式之液晶顯示單元中較佳可使用例如「LC FILM」(新日本石油股份有限公司製造);Ips模式之液晶 顯不單元中較佳可使用例如二軸性相位差膜;VA模式之 液晶顯示單元中較佳可使用例如組合有A板-及c板之相位 差板或二軸性相位差膜;„單元模式之液晶顯示單元中較 佳可使用例如「OCB用WV膜」(富士行^股份有限公司製 造)等。 實施例 以下,舉出實施例來對本發明進行更加詳細的說明,但 本發明並不限疋於該等實施例。再者,以下之例中之光擴 散膜之霧度及表面之中心線平均粗糙度Ra、光擴散層之厚 度及使用之透光性微粒子之重量平均粒徑的測量方法如下 所述。 (a)霧度 使用光學上透明之黏著劑,將光擴散膜之透明基材膜側 貼合於玻璃基板而製作成測量用樣本,使用該測量用樣本 進行測量。全霧值及内部霧度之測量係使用以JIS κ 7136 157021.doc -33- 201213885 為依據之霧度透射率計(村上色彩技術研究所股份有限公 司製造之霧度計「HM-150」)。根據其結果,藉由上述式 (3)而算出表面霧度。 (b) 中心線平均粗糙度Ra 使用以JIS B 0601為依據之共焦干涉顯微鏡(例如, Optical solutions股份有限公司製造之r PL|a23〇〇」)而進行 測量,根據上述式(1)而算出。 (c) 光擴散層之厚度 使用NIKON公司製造之DIGIMICRO MH-15(本體)及2(:_ 1 01 (S十數器)而測量光擴散膜之厚度’藉由自測量層厚減去 基材厚度80 μιη而測量光擴散層之厚度。 (d) 透光性微粒子之重量平均粒徑及粒徑之標準偏差 根據庫爾特原理(細孔電阻法),使用庫爾特計數器 (Beckman Coulter公司製造)而測量。 [金屬製壓紋輥之製作] 準備於直徑200 mm之鐵輥(根據jIS之STKM13A)之表面 已實施巴拉德(Ballard)鍍銅者。巴拉德鍍鋼係由鍍銅層/較 薄之鐘銀層/表面鍍銅層而形成者,鍍層整體之厚度為約 200 μπι。對該鍵銅表面進行鏡面研磨,進而於該研磨面 上,使用喷射裝置(不二製作所(股)製造),以喷射壓力 0.05 MPa(計示壓力,以下相同)、微粒子使用量16 g/cm (輥之單位表面積1 cm2之使用量,以下相同)喷射氧 化鍅珠TZ-B125(Tosoh(股)製造、平均粒徑:125 μ⑷於 表面形成凹凸。於該凹凸面上,使用噴射裝置(不二製作 157021.doc •34· 201213885 所W製造),以喷射壓力ο」MPa、微粒子使用量4 g/cm2 喷射氧化銼珠TZ-SX-17(T〇s〇h(股)製造、平均粒徑:2〇 μπ〇,對表面凹凸進行微調整。對所獲得之帶有凹凸之鍍 有銅鐵之輥,使用氣化銅液進行蝕刻處理(蝕刻量:3 μ^。其後,進行鍍鉻加工(鍍鉻之厚度:4 μιη),從而製 作金屬製壓紋輥。所獲得之金屬製壓紋輥之鍍鉻面之維氏 硬度為1000。維氏硬度係使用超音波硬度計 MJCKHKrautkramer公司製造),以JIS ζ 2244為依據而測 量〇 [表面處理膜之製作] (製造例1 :防眩膜之製作) 將季戊四醇三丙烯酸醋60重量份、及多官能胺基甲酸西旨 化丙烯酸酯(六亞曱基二異氰酸酯與季戊四醇三丙烯酸酯 之反應產物)40重量份混合於丙二醇單曱醚溶液中,並進 行調整以使固形物成分濃度成為6〇重量%,從而獲得紫外 線固化性樹脂組合物。 其次,相對於上述紫外線固化性樹脂組合物之固形物成 分100重量份,添加5重量份作為光聚合起始劑之「Lucirin TPO」(BASF公司製造,化學名:2,4,6-三曱基苯曱醯基二 苯基氧化膦)’並使用丙二醇單曱醚進行稀釋,以使固形 物成分濃度成為60重量%,從而製備塗佈液。 將該塗佈液塗佈於厚度80 μιη之作為三乙醯纖維素(TAC) 膜的透明樹脂膜上,並使其於設定為8〇。(:之乾燥機中乾燥 1分鐘。對於乾燥後之透明樹脂膜,以紫外線固化性樹脂 157021.doc •35- 201213885 組合物層成為較側之方式使用橡膠輥進行擠壓並使其密接 於上述金屬製壓紋親之凹凸面。於該狀態下,自透明樹脂 膜側,由強度20 mW/cm2之高壓水銀燈以3〇〇 mj/cm2之h線 換算光量照射光,並使紫外線固化性樹脂組合物層固化, 從而獲得於透明樹脂膜上形成有防眩層之防眩膜。 (製造例2 :抗反射膜之製作) 將一季戍四醇二丙稀酸醋10重量份、季戍四醇四丙稀酸 酯10重量份、丙烯酸胺基甲酸酯(共榮社化學股份有限公 司製造「UA-306T」)30重量份、作為光聚合起始劑之 「Irgacurel84」Ciba Japan股份有限公司製造)2.5重量份、 作為溶劑之甲基乙基酮5 0重量份、乙酸丁酯5 〇重量份進行 混合,從而製備作為紫外線固化性樹脂組合物之硬塗層形 成用塗佈液。將該塗佈液藉由線棒塗佈機而塗佈於厚度8〇 μιη之作為TAC膜的透明樹脂膜(折射率1.49)上,並使其於 設定為80°C之乾燥機中乾燥1分鐘。對乾燥後之透明樹脂 膜,使用金屬齒化物燈以120 W之功率自20 cm之距離進行 1 〇秒鐘紫外線照射’藉此形成硬塗層《所獲得之硬塗層之 厚度為5 μιη,折射率為1.52。 其次,藉由在四乙氧基矽烷中添加異丙醇、〇1 酸,並使其水解’從而獲得包含低聚物之四乙氧基矽烷之 聚合物的溶液。藉由在該溶液中混合一次粒徑為8 nm之摻 銻二氧化錫(antimony doped tin oxide,ΑΤΟ)微粒子,並添 加異丙醇,從而獲得含有四乙氧基矽烷之聚合物2 5重量 %、摻銻二氧化錫微粒子2.5重量%之抗靜電層形成用塗佈 157021.doc -36- 201213885 液。另一方面,使形成有硬塗層之TAc膜於50〇c之丨5 N_ NaOH水溶液中浸潰2分鐘進行鹼化處理,水洗後,使其於 0.5重量%之HJO4水溶液中且於室溫下浸潰3〇秒藉此進行 中和,進而進行水洗,並進行乾燥處理。藉由將上述抗靜 電層形成用塗佈液藉由線棒塗佈機而塗佈於經驗化處理之 硬塗層上,並使其於設定為120〇c之乾燥機中乾燥1分鐘, 從而形成抗靜電層。所獲得之抗靜電層之厚度為163 nm, 折射率為1.53,光學膜厚為250 nm。 其次,藉由在四乙氧基矽烷與出,111,211,211-全氟辛基三 甲氧基矽烷之95:5(莫耳比)混合物中添加異丙醇、〇1 1^鹽 酸,並使其水解,從而獲得含有低聚物之有機梦化合物之 聚合物的溶液。藉由在該溶液中混合内部具有空隙之低折 射率氧化矽微粒子並添加異丙醇,從而獲得含有有機石夕化 合物2重量%、低折射率氧化矽微粒子2重量%之低折射率 層形成用塗佈液❶將所獲得之低折射率層形成用塗佈液藉 由線棒塗佈機而塗佈於抗靜電層上,並使其於設定為 120C之乾燥機中乾燥1分鐘,從而形成低折射率層。所獲 知之低折射率層之厚度為91 nm,折射率為137,光學膜 厚為125 nm。藉由以上處理,製作出透明樹脂膜上包含硬 塗層、抗靜電層、及低折射率層之抗反射膜。 [光擴散膜之製作] (製造例3 :光擴散膜A之製作) 將季戊四醇三丙烯酸酯60重量份、及多官能胺基甲酸酯 化丙稀酸酯(六亞曱基二異氣酸酯與季戊四醇三丙烯酸酯 157021.doc •37· 201213885 之反應產物)40重量份混合於丙二醇單甲醚溶液中,並進 行調整以使固形物成分濃度成為6〇重量%,從而獲得紫外 線固化性樹脂組合物。再者,自該組合物除去丙二醇單甲 醚,經紫外線固化後之固化物之折射率為〗53。 其次,相對於上述紫外線固化性樹脂組合物之固形物成 分100重量份,添加作為第1透光性微粒子之重量平均粒徑 為3.0 μΐΏ、標準偏差為0.39 μιη之聚苯乙烯系粒子1〇重量 份、作為第2透光性微粒子之重量平均粒徑為72 μηι、標 準偏差為0.73 μιη之聚苯乙烯系粒子30重量份、及作為光 聚合起始劑之「Lucirin TPO」(BASF公司製造、化學名: 2,4,6-三曱基苯甲醯基二苯基氧化膦)5重量份,並使用丙 二醇單曱醚進行稀釋以使固形物成分率成為6〇重量%,從 而製備塗佈液。 將該塗佈液塗佈於厚度80 μηι之TAC膜(透明基材膜)上, 並使其於δ又疋為80C之乾餘機中乾燥1分鐘後,自透明基 材膜側,由強度20 mW/cm2之高壓水銀燈以3〇〇 mj/cm2之h 線換算光量照射光並使紫外線固化性樹脂組合物層固化, 從而獲得包含光擴散層與透明基材膜之光擴散膜A。 所獲得之光擴散膜A之全霧度、内部霧度、表面霧度分 別為65.8%' 48.2%、17.6%。又,表面之中心線平均粗链 度Ra為0.42 μιη,光擴散層之厚度為1〇.9 μιη。 〈實施例1 &gt; 於製造例3中所獲得之光擴散膜Α之透明基材膜表面實施 電暈處理後,於電暈處理面以厚度4 μιη塗敷包含紫外線固 157021.doc -38- 201213885 化性環氧樹脂與光陽離子聚合起始劑之紫外線固化性接著 劑。另一方面,於作為保護膜之TAC膜(厚度80 μιη)之單面 上實施電暈處理後,於電暈處理面上以厚度4 μηι塗敷與上 述相同之紫外線固化性接著劑。接著,於藉由使經單軸延 伸之聚乙烯醇系樹脂膜上吸附配向碘而形成的偏光膜之一 面上,經由該接著劑層而積層上述光擴散膜A,並且於另 一面上經由該接著劑層而積層上述保護膜,使用一對夾輥 進行夾壓。其後’自保護膜側照射紫外線,並使兩方之接 著劑層固化從而獲得光擴散性偏光板。 其次’於上述光擴散性偏光板中之光擴散膜A之光擴散 層上’經由通用之丙烯酸系透明黏著劑,以該透明樹脂膜 側成為貼合面之方式,積層製造例1中所獲得之防眩膜, 從而獲得實施防眩處理之光擴散性偏光板。 〈實施例2&gt; 除代替防眩膜而使用製造例2中所獲得之抗反射膜以 外,以與實施例1相同之方式,獲得實施抗反射處理之光 擴散性偏光板。 &lt;比較例1&gt; 代替經由黏著劑層而積層有光擴散膜A與防眩膜之上述 積層體(實施例1中使用者),而使用利用橡膠輥使光擴散膜 A之光擴散層表面擠壓於上述金屬製壓紋親之凹凸面,藉 此於光擴散層實施防眩處理之膜,除此以外,以與實施例 1相同之方式而獲得實施防眩處理之光擴散性偏光板。 &lt;比較例2&gt; 157021.doc •39· 201213885 代替經由黏著劑層而積層有光擴散膜A與抗反射膜之上 述積層體(實施例2中使用者),而使用在光擴散膜A之光擴 散層表面根據上述製造例2中記載之方法而依序形成抗靜 電層、低折射率層,藉此於光擴散層實施抗反射處理之 膜’除此以外,以與實施例2相同之方式而獲得實施抗反 射處理之光擴散性偏光板。 (光擴散性偏光板之表面處理特性之評估) (1) 防眩性之評估 對於經防眩處理之實施例1及比較例1之光擴散性偏光 板,進行防眩性之評估。具體而言,於打開螢光燈之明亮 之至内,自凹凸面(防眩層表面)側用肉眼觀察光擴散性偏 光板,確認有無螢光燈之映入。將遍及膜之整個面上未看 到螢光燈之映入者視為A,將膜面之至少一部分確認到螢 光燈之映入者視為B。將結果示於表1中。 (2) 色斑之評估 對於經抗反射處理之實施例2及比較例2之光擴散性偏光 板,進行色斑之評估。具體而言,對於保護膜表面藉由黑 色消光喷塗法而著色成黑色的光擴散性偏光板,於打開螢 光燈之明冗之至内自低折射率層表面側用肉眼觀察,確認 色斑之有無。將遍及膜之整個面上未看到色斑者視為A, 將膜面之至少一部分確認到色斑者視為B。將結果示於表1 中。色斑係起因於抗反射處理面中之面内不均一性,於上 述用肉眼觀察時將面内看成虹色之現象,當產生如此之色 斑之情形時判斷為抗反射功能不良。 157021.doc -40- 201213885 [表1]Ra = }{ {f(x)}dx (1) and the value obtained is expressed in micrometers ((iv) units. The centerline average thick chain Ra can be used with a confocal interference microscope based on JIS B 〇6〇1 (for example) The "pLp3" manufactured by Optical Solutions Co., Ltd.) is calculated by calculating the program software of Ra according to the above formula (1). Further, in the light diffusing polarizing plate of the present invention, Among the surfaces of the light diffusion layer 1〇6, the center line average roughness Ra of the surface close to the surface treatment film 103 is 0.1 μm or more and is not up to μ〇1, and the light diffusion layer 1〇6 may not contain light transmittance. The resin 1 〇 6b or the light-transmitting fine particles 106 a. The light-diffusion film 102 preferably has a full haze of 30% or more and 7 % by weight or less, and an internal haze of 30% or more and 70% or less. By the ratio of the total light transmittance (Tt)′ indicating the total amount of light transmitted through the light diffusing film 102 to the light diffusing film 102 and the diffused light transmittance (Td) transmitted by the light diffusing film 102, The following formula: Total haze (°/D) = (Td/Tt) xl 〇〇 (2) is obtained. The total light transmittance (Tt) is the same as the incident light. The sum of the parallel light transmittance (Tp) and the diffused light transmittance (Td) transmitted through the state. The total light transmittance (Tt) 157021.doc •14-201213885 and the diffuse light transmittance (Td) are JIS κ 7361 For the value. ·•盅 &lt; Further, the "internal haze" of the light-diffusing film 102 is a haze generated by the surface shape of the surface on the light-emitting surface side of the surface of the light-diffusing layer 106 in the full haze (surface haze) Outside the haze. If the full haze and/or internal haze is less than 30%, the light scattering property is insufficient, and it is difficult to obtain sufficient wide viewing angle performance. In addition, when the full haze and/or the internal haze exceeds 70%, the light scattering becomes strong, and when the light diffusing polarizing plate 100 is applied to a liquid crystal display device, there is a case where the front contrast is lowered. Further, if the full haze and/or the internal haze exceeds the case, the transparency of the light diffusion film 102 tends to be impaired. More preferably, the full haze and the internal haze are 35% or more and 65% or less, respectively. The full haze, internal haze and surface haze of the light diffusing film 102 are specifically measured in the following manner. In other words, first, in order to prevent warpage of the film, the surface of the transparent substrate film 105 on the side of the light-diffusing film 102 is bonded to the glass substrate by using the optically transparent adhesive as the surface of the light-diffusing layer 106. The sample for measurement 'measures the full fog value for the sample for measurement. The total fog value is measured by using a haze transmittance meter (for example, a haze meter "HM-15 0" manufactured by Murakami Color Technology Research Co., Ltd.) based on JIS K 7136, and measuring the total light transmittance (Tt) and The diffused light transmittance (Td) is calculated by the above formula (2). Next, on the surface of the light-diffusing layer 106, the haze was measured in the same manner as the above measurement of the full haze using a glycerin-bonded triacetone cellulose film having a haze of about 0%. Regarding the haze, the surface of the light diffusion layer 106 is 157021. Doc • The surface haze caused by the surface shape of the surface on the light exit side in 2012-13885 is substantially offset by the bonded triethylene cellulose film, so it can be regarded as the “internal haze” of the light diffusing film 102. . Therefore, the "surface haze" of the light-diffusing film 1 〇 2 is obtained by the following formula (3): surface haze (%) = full haze (%) - internal haze (%) (3). Further, in the light diffusion film 102, another layer (including an adhesive layer) may be contained between the transparent base film 1〇5 and the light diffusion layer 106. Next, a method for manufacturing the light diffusion film 1〇2 will be described. The light diffusion film 102 can be formed by a method of coating a resin liquid in which the light-transmitting fine particles 106b are dispersed on the transparent substrate film ι 5 . The resin liquid contains the light-transmitting fine particles 106b, the light-transmitting resin 106a constituting the light-diffusing layer 1〇6, or a resin forming the same (for example, an ionizing radiation-curable resin, a thermosetting resin, a thermoplastic resin, or a metal alkoxide). ), and other ingredients such as solvents added as needed. When the ultraviolet curable tree fla is used as the resin for forming the light-transmitting resin 1 〇 6a, the resin liquid contains a photopolymerization initiator (radical polymerization initiator). As a photopolymerization initiator, for example, an acetophenone-based photopolymerization initiator, a benzoin-based photopolymerization initiator, a benzophenone-based photopolymerization initiator, and a photopolymerization start of a 9-oxo-sulfur-p Yamaguchi galaxy are used. A reagent, a triterpene photopolymerization initiator, an oxadiazole photopolymerization initiator, and the like. Further, as a photopolymerization initiator, for example, 2,4,6-dimercaptophenylphosphonium diphenylphosphine oxide, 2,2,_bis(o-phenyl)-4,4' can also be used. ,5,5'-tetraphenyl-1,2'-bisimidazole, 1 〇 butyl 2 gas acridone, 2_ethyl hydrazine, diphenylethylenedione, 9,1 〇 phenanthrene醌, camphor 醌, phenylglyoxylate 157021. Doc -16 - 201213885 Vinegar, titanium pentoxide compound, etc. Usually, the photopolymerization initiator is used in an amount of 0, 5 to 2 parts by weight, preferably 2 parts by weight, based on 100 parts by weight of the resin contained in the liquid. Further, in order to make the optical characteristics and surface shape of the light-diffusing film 102 uniform, it is preferred that the dispersion of the light-transmitting fine particles in the resin solution be isotropically dispersed. When the resin liquid is applied onto the transparent substrate film 105, for example, a gravure coating method, a micro embossing roll coating method, a bar coating method, a knife coating method, an air knife coating method, or an anastomosis can be used. It is carried out by a coating method, a die coating method, or the like. In the coating of the resin liquid, it is preferable to adjust the coating so that the thickness of the light-diffusing layer 1〇6 is i times or more and 3 times or less the weight average particle diameter of the light-transmitting fine particles 16b as described above. Film thickness. Various surfaces can be applied to the surface of the transparent base film 1〇5 (the surface of the light diffusion layer 1〇6 side) for the purpose of improving the coating property of the resin liquid or improving the adhesion to the light diffusion layer 1〇6. The treatment of β as a surface treatment includes corona discharge treatment, glow discharge treatment, acid surface treatment, alkali surface treatment, ultraviolet irradiation treatment, and the like. Further, another layer such as an undercoat layer (easily adhesive layer) may be formed on the transparent substrate film i 〇 5, and a resin liquid may be applied to the other layer, and the transparent substrate film 105 may be formed. The adhesion of the polarizing film ιοί is preferably performed on the surface of the transparent substrate film 105 on the side opposite to the surface on the side of the light-diffusing layer ι 6 to perform the surface treatment as described above. The light diffusion film 102 can also be formed by a method comprising the steps of: coating a resin on which the light-transmitting fine particles 丨〇6b are dispersed on the transparent substrate film 105. Doc •17- 201213885 Liquid; the mirror or concave convex surface of the transfer mold on the surface of the layer formed by the resin liquid. That is, the light diffusion layer 1 〇 6 having the above-mentioned center line average coarse sugar Ra can be coated with the above resin liquid, and the mirror surface having the mirror surface (mirror mold) or the mold having the uneven surface (embossing) can be used as needed. The uneven surface of the processing die is formed by adhering to the surface of the layer formed of the resin liquid, and transferring the mirror surface or the uneven surface. The mirror mold can also be mirror metal, and the embossing mold can also be a metal roller for embossing. As the resin forming the light-transmitting resin 106a, when an ionizing radiation-curable resin, a thermosetting resin, a thermoplastic resin or a metal alkoxide is used, 'the layer formed of the above-mentioned resin liquid is formed, and the G valley is dried as needed. (Removal of the agent)', and if necessary, after the mirror surface or the uneven surface of the mold is adhered to or adhered to the surface of the layer formed of the resin liquid, irradiation by ionizing radiation (using ionizing radiation curing type) In the case of a resin, heating (when a thermosetting resin or a metal alkoxide is used) or cooling (in the case of using a thermoplastic resin), a layer formed of a resin liquid is cured. The ionizing radiation ray 'is appropriately selected from the group consisting of ultraviolet rays, electron beams, near ultraviolet rays, visible light, near infrared rays, infrared rays, X-rays, etc., depending on the kind of the resin contained in the resin liquid, and among them, ultraviolet rays are preferable. , electron beam, and because of easy operation and high energy, it is especially suitable for ultraviolet light. As a light source of ultraviolet light, for example, low-pressure mercury lamp, medium-pressure mercury lamp, pressurized mercury lamp, ultra-high pressure mercury lamp, carbon arc lamp, metal tooth can be used. Chemical lamps, xenon lamps, etc. Further, an ArF excimer laser, a KrF excimer laser, an excimer lamp, or a synchrotron radiation may be used. Among them, preferably 157021. Doc -18- 201213885 To use ultra-high mercury lamps, high-pressure mercury lamps, low-pressure mercury lamps, gas lamps, and metal tooth lamps. 'As an electron beam, it can be listed as c〇ckr〇ft·Walton type, van de Graaff type, resonant transformer type, insulated core transformer type, linear type An electron beam having an energy of 50 M 〇〇〇 keV, preferably 100-300 keV, which is emitted by various electron beam accelerators such as a high-frequency high-voltage type and a high-frequency type. Next, a description will be given of a preferred embodiment for producing the light-diffusing film 1〇2. The manufacturing method of the preferred embodiment includes the steps of continuously feeding the transparent substrate film 105 rolled into a roll shape in order to continuously manufacture the light diffusion film 102, and coating and dispersing the light-transmitting fine particles 1〇6b. The resin liquid 'is dried as needed; the layer formed of the resin liquid is solidified; and the obtained light diffusion film 102 is taken up. This manufacturing method can be carried out using, for example, the manufacturing apparatus shown in Fig. 2 . First, the transparent substrate film 1〇5 is continuously wound up by the unwinding device 301. Next, on the rolled transparent base film 105, the coating device 302 and the supporting roller 303 opposed thereto are used to apply the resin liquid in which the light-transmitting fine particles 16b are dispersed. Next, when the solvent is contained in the resin liquid, the transparent substrate film 105 coated with the resin liquid is dried by the dryer 304. Next, the transparent base film 105 provided with the layer formed of the resin liquid is applied between the mirror metal roll or the metal roll 305 for embossing and the nip roll 306, and the layer formed of the resin liquid and the mirror metal are used. The roll or embossing metal roll 305 is wound up in close contact with each other. Thereby, on the surface of the layer formed of the resin liquid, the mirror surface of the mirror metal roll or the metal roll for embossing is transferred 157021. Doc -19· 201213885 face. Then, in a state in which the layer formed of the resin liquid on the transparent base film 105 is in close contact with the mirror metal roll or the metal roll 305 for embossing, the transparent substrate film 105 is passed through the ultraviolet irradiation device 308. The layer formed of the resin liquid is cured by irradiation of ultraviolet rays to form the light diffusion layer 106. Since the irradiated surface is heated to a high temperature by ultraviolet irradiation, the mirror metal roll or the metal roll 305 for embossing is preferably provided internally for adjusting the surface temperature to room temperature to 80.冷却The left and right cooling devices. Further, the ultraviolet irradiation device 308 can be used in one or a plurality of units. The transparent base film 1〇5 (light diffusion film 1〇2) on which the light-diffusing layer 106 is formed is peeled off from the mirror metal roll or the metal roll 3〇5 for embossing by the peeling roll 307. The light-diffusing film 102 manufactured by the above method is wound toward the winding device 3〇9 for the purpose of protecting the light-diffusing layer 106 at this time, and may also have re-peelability on the surface of the light-diffusing layer 1〇6. The surface of the adhesive layer is bonded to the surface protective film formed of polyethylene terephthalate or polyethylene, and the light diffusion film 102 is wound up. Further, after the peeling roller 307 is peeled off from the mirror metal roll or the embossing metal 轺·305, additional ultraviolet ray irradiation can be performed. In addition, ultraviolet irradiation may be performed in a state where the mirror metal roll or the metal roll 3〇5 for embossing is in close contact with the layer formed of the tree sap, but the uncured resin liquid may be formed. The transparent base film 105 of the layer is peeled off from the mirror metal roll or the metal roll 3〇5 for embossing, and then irradiated with ultraviolet rays to cure the layer formed of the resin liquid. The light-diffusing film 102 and the polarizing film 1〇1 are attached to each other by an adhesive layer or the like. . The light diffusion film 102 also functions as a protective film of the polarizing film 1〇1, such as 157021. Doc •20· 201213885 This configuration is advantageous for the thin film formation of the light diffusing polarizing plate. The bonding of the light-diffusing film 102 and the adhesive film using the polarizing film 10i can be carried out by the same method as the bonding agent of the surface treating film 103 and the light-diffusing film 1〇2, which will be described later. (Surface Treatment Film) The surface treatment film 103 is a film which has been subjected to optical treatment on one surface of the transparent resin film 107, and specifically, a surface having a desired optical function can be formed on one surface of the transparent resin film 1〇7. The film of layer 1〇8 was treated. As the transparent resin film 107, an acrylic resin such as Ethyl cellulose-based resin such as TAC (triethylene glycol), an acrylic resin such as polymethyl methacrylate, a polycarbonate resin, and a polyethylene terephthalate B can be used. A resin film such as a polyester resin such as a diester. The thickness of the transparent resin film 107 is, for example, 10 to 500 μm, preferably 20 to 300 μm, as the surface treatment film 103, and for example, the surface treatment layer 1 〇 8 is an anti-glare layer having irregularities on the surface, and the surface is used. The above-mentioned diffuse reflection of the concavities and convexities reduces or prevents the anti-glare film from being reflected outside the display screen (ie, the above-described optical treatment is an anti-glare treatment); or the surface treatment layer 108 is an anti-reflection layer by reducing or preventing incidence To reflect the reflection of light outside the pupil plane, to reduce or prevent the anti-reflection film from being reflected to the outside of the display pupil (ie, the optical treatment described above is an anti-reflection treatment). As the anti-glare film, for example, an ultraviolet curable resin composition containing or not containing fine particles is applied onto the transparent resin film 7 to press the uneven surface of the mold having a specific surface uneven shape. UV-curable resin enamel, on one side of the UV-curable resin layer solid 15702l. Doc -21 - 201213885, whereby an anti-glare layer containing a specific surface unevenness is formed; or an ultraviolet curable resin composition containing fine particles is applied onto the transparent resin film 107, and the coating is applied without using a mold The ultraviolet curable resin layer is cured, and the antiglare layer containing the specific surface unevenness due to the fine particles is formed. A commercially available anti-glare film can also be used as the anti-glare film. As the antireflection film, ruthenium, a low refractive index layer composed of a material having a refractive index lower than that of the light diffusion layer 106 as an antireflection layer, or a light diffusion layer 1 may be included. a high refractive index layer composed of a material having a refractive index of 6 having a high refractive index and a low refractive index laminated layer composed of a material having a refractive index lower than that of the high refractive index layer as an antireflection layer Such as ^ low refractive index layer -,. (UF ^MgF ^ 3Na, A1F .  A1t ^ ia3AlF6, etc.) 'There are fine particles (hollow oxidized hard particles, etc.) having a void inside, 'a low refractive index material such as a fluoropolymer, and a binder resin. The binder resin may be a previously known 'either a polyoxyalkylene resin, a hydrolyzate of a decane oxide, a light or thermosetting multi-branched compound (dendritic polymerization = or hyperbranched polymer, etc.), other light or Thermosetting resin. Transparent Tree The meniscus film 107 and the low refractive index layer or the high refractive index layer may have one or two layers of a hard coat layer or an antistatic layer, or two other layers of 17 μ -V · «* fly. As the antireflection film, a commercially available antireflection film can also be used. (Adhesive Layer, Adhesive Layer) In the light diffusing polarizing plate (10) of the present invention, generally, the surface treated film is the opposite of the side of the transparent resin film 1G7 which is adjacent to the surface treated layer (10). The surface of doc -22·201213885 (the surface of the surface treatment film 103 which is not subjected to optical treatment) is bonded to the light diffusion layer 1〇6 of the light diffusion film 1〇2 via the adhesive layer or the adhesive layer 104. As the adhesive for forming the adhesive layer 1 to 4, a conventionally known one may be used, and examples thereof include an acrylic adhesive, an urethane-based adhesive, and a polyoxygen-based adhesive. Among them, transparency and adhesion are mentioned. From the viewpoints of force, reliability, secondary workability and the like, an acrylic adhesive is preferably used. As the adhesive layer 104, for example, an organic solvent solution can be used as the adhesive, and it can be applied to the light diffusion layer 106 or the transparent resin film by a slit extrusion coating method, a gravure coating method, or the like. In addition, the sheet-like adhesive formed on the plastic film (referred to as a separator) which has been subjected to the mold release treatment can be transferred to the light diffusion layer 1 by using a method of drying and drying it. 6 or a method of setting on the transparent resin film 107. The thickness of the adhesive layer is usually in the range of 2 to 40 μm. Further, as the adhesive for forming the adhesive layer 104, the surface treatment film (8) and the light diffusion film 1 (2) can be followed by a higher bonding strength without causing deterioration of the appearance of the light-polarizing polarizing plate 100. Therefore, it is preferable to use an adhesive agent containing an active energy ray or a thermosetting resin composition containing an epoxy resin-containing curable resin composition, or a polyvinyl alcohol-based resin or a urethane urethane. A water-based adhesive or the like of the subsequent component. In particular, it is preferable to use an adhesive containing a curable resin composition containing an epoxy resin because it is possible to improve the production efficiency without requiring a drying step or the like. In the bonding of the surface treatment film 103 containing the adhesive containing the curable resin composition containing the cyclic oxime resin to the light diffusion film 1〇2, the adhesive can be applied 157021. Doc -23- 201213885 is applied to the light diffusion layer 106 or the transparent resin film 107, and after laminating two films via the uncured adhesive layer, the active energy ray is irradiated or heated, and the uncured adhesive layer is applied. Curing is carried out. The coating method of the adhesive is not particularly limited, and various coating methods such as a doctor blade method, a bar coating method, a slit extrusion coating method, a knife coating method, and a gravure coating method can be used. Since each coating method has its most suitable viscosity range, an organic solvent can also be used to adjust the viscosity of the adhesive. The thickness of the adhesive layer after curing is usually 0. 1~2〇 μιη, preferably 〇·2~1〇 μΓη, and more preferably 0. 5~5 μπι. The surface of the transparent resin film 107 and/or the light-diffusion layer 1〇6 may be subjected to corona discharge treatment or underlayer treatment (formation of an undercoat layer) before bonding with an adhesive or an adhesive. Easy to proceed. (Protective film) As shown in Fig. 1, the light-diffusing polarizing plate of the present invention may be provided with a protective film 109 laminated on the side opposite to the light-diffusing film 102 of the polarizing film 1〇1 via an adhesive layer or the like. The protective film 1 〇 9 is preferably a film having a low birefringence and containing a polymer excellent in transparency, mechanical strength, thermal stability or water repellency. Examples of such a film include an acetyl cellulose resin such as TAC (triethylene fluorene cellulose), an acrylic resin, a fluorine resin such as a tetrafluoroethylene/hexafluoropropylene copolymer, and a polycarbonate resin. Polyester resin such as polyethylene terephthalate, polyamidene resin, polysulfone resin, polyether sulfone resin, polystyrene resin, polyvinyl alcohol resin, and polyethylene gas A resin film such as a resin, a polyolefin resin, or a polyamide resin. Among them, in terms of polarization characteristics or durability, it is preferred to use 157021. Doc •24· 201213885 Triethylene cellulose film or a thin thermoplastic resin film. Since the thin-film thermoplastic resin film has high moisture resistance and heat resistance, the durability of the polarizing plate can be greatly improved, and since the moisture absorption property is poor, dimensional stability is high, which is particularly preferable. A conventionally known method such as a casting method, a calendering method, or an extrusion method can be used for the forming of the film of the above resin. The thickness of the protective film 1〇9 is not limited, but in terms of thinning of the polarizing plate, etc. Preferably, it is 5 Å or less, more preferably 5 to 300 μΐη, and further preferably 5 to 15 〇μβι. The bonding using the adhesive film 101 and the adhesive of the protective film 1〇9 can be carried out by the same method as the bonding agent of the surface treatment film 103 and the light diffusion film 1〇2, which is the same as the above. . In addition, an optical compensation film such as a retardation film (phase difference plate) may be attached to the polarizing film 101 instead of the protective film 9 . The light-diffusing polarizing plate 100 having the above-described configuration is typically used in the case of a liquid crystal display device, in which the surface treatment film 1〇3 is more visible than the polarizing film ι〇ι, via an adhesive layer or the like. The glass substrate of the liquid crystal cell is bonded to the liquid crystal display device. <Liquid Crystal Display Device> Next, a liquid crystal display device of the present invention will be described. The liquid crystal display device of the present invention comprises a backlight device, a light diffusing mechanism, a moonlight side polarizing plate, a liquid crystal cell, and the above-described light diffusing polarizing plate of the present invention in the following order. Fig. 3 is a schematic cross-sectional view showing a preferred example of the liquid crystal display device of the present invention. The liquid crystal display device 400 of the circle 3 is a TN liquid crystal display device of a normally white mode, in which the backlight device 4〇2, the light diffusing mechanism 403, the backlight side polarizing plate 4〇4, and the viewing side 157021 are arranged in the following order. . Doc • 25·201213885 Polarizing plate The light diffusing polarizing plate 4〇5 of the present invention comprises a liquid crystal layer 412 and one pair of transparent substrates 411a and 411b disposed on both surfaces of the liquid crystal layer 412. The backlight-side polarizing plate 4〇4 and the light-diffusing polarizing plate 4〇5 are disposed such that their transmission axes are orthogonally polarized. The backlight device 402 is a direct type backlight device including a hexahedron-shaped case 42 1 having an open front surface and a plurality of cold cathode tubes 422 as linear light sources arranged in parallel in the case 42 1 . Further, the light diffusing means 4A3 includes a light diffusing plate 4?3a disposed on the front surface of the backlight device 402, and a front surface side (between the light diffusing plate 4?3a and the backlight side polarizing plate 404) provided on the light diffusing plate 403a. In the liquid crystal display device 4B having the above configuration, the light radiated from the backlight device 402 is diffused by the light diffusing plate 403a of the light diffusing mechanism 403, and the light deflecting plate is used. 403b gives a specific directivity to the perpendicular direction (z-axis direction) of the light incident surface of the liquid crystal cell 401. The directivity of the vertical direction is set to be the same as the previous device. Further, light having a specific directivity is incident on the liquid crystal cell 4?1 as polarized light by the backlight side polarizing plate 404. The light incident on the liquid crystal cell 401 is controlled by the liquid crystal layer 412 to be emitted from the liquid crystal cell 401. Further, the light emitted from the liquid crystal cell 4〇 1 is diffused by the light diffusing polarizing plate 405. In the liquid crystal display device of the present invention, the directivity of the light incident surface of the liquid crystal cell 4 (the z-axis direction) in the light incident on the liquid crystal cell 401 in the light diffusing means 4? Higher than before, that is, the incident light of the liquid crystal cell 401 becomes the former concentrator, and is further diffused by the light diffusing polarizing plate 405, thereby obtaining 157021 compared with the previous device. Doc -26 · 201213885 Excellent image quality such as color reproducibility. The liquid crystal display device 4 of the present invention to which the light diffusing polarizing plate 405 of the present invention is applied has high viewing angle characteristics, and has an optical function other than the light diffusing function imparted to the light diffusing polarizing plate 4〇5, and is visually recognized. Excellent sex. Hereinafter, the constituent members constituting the liquid crystal display device 4 of the present invention will be described in more detail. (Liquid Crystal Cell) The liquid crystal cell 401 includes a pair of transparent substrates 4Ua and 4111) and a liquid crystal layer 412. The pair of transparent substrates 411a and 41bb are arranged to face each other with a spacer at a predetermined distance. The liquid crystal layer 412 is enclosed in a pair. Liquid crystal between the transparent substrates 411a and 411b. On the pair of transparent substrates 411a and 4111), transparent electrodes or alignment films are formed in layers, and liquid crystal is aligned by applying a voltage based on display data between the transparent electrodes. The display mode of the liquid crystal cell 4〇1 is the TN mode in the above example, and the display mode such as the ips mode or the VA mode can also be used. (Backlight Device) The backlight device 402 includes a box body 421 having a hexahedron shape opened in the front side, and a plurality of cold cathode tubes 422 arranged in a line 421 in parallel as a linear light source. The case 421 is formed of a resin material or a metal material, and it is preferable that at least the inner peripheral surface of the case 421 is white or from the viewpoint of reflecting light emitted from the cold cathode tube 422 on the inner peripheral surface of the case 421. Silver. As the light source, in addition to the cold cathode tube, an LED (Light Emitting Diode) of various shapes such as a linear shape may be used. In the case of using a linear light source, the number of linear light sources to be arranged is not particularly limited, but it is 157021. Doc -27- 201213885 From the viewpoint of uneven brightness of the light-emitting surface, it is preferable that the distance between the centers of the adjacent linear light sources is in the range of 15 mm to 150 mm. Furthermore, the backlight device 402 used in the present invention is not limited to the direct type shown in FIG. 3, and may be used on the side of the light guide plate to arrange a side light type of a linear light source or a point light source, or a planar light source type. And so on. [Light-diffusing mechanism] The light-diffusing mechanism 403 preferably includes a light-diffusing plate 403a disposed on the front surface of the backlight device 402 and a front surface side (light-diffusing plate 403a) disposed on the front surface of the light-diffusing plate 4 〇3 a as shown in FIG. 4 . The light between the backlight side polarizing plate 404 and the backlight side polarizing plate 404 is deflected toward the plate (the slab) 403b. As shown in Fig. 4, the light diffusing plate 403a may be, for example, a film or sheet in which a light diffusing agent 440 is dispersed and mixed in a substrate 430. As the substrate 4 3 0 ', a polycarbonate resin; a methyl acrylate resin; a methacrylate-styrene copolymer resin; an acrylonitrile-styrene copolymer resin; methacrylic acid-styrene can be used. Copolymer resin; polystyrene resin; polystyrene resin; polyolefin resin such as polypropylene or polymethylpentene; cyclic polyolefin resin; polyethylene terephthalate or polyparaphenylene A polyester resin such as butylenedicarboxylate or polyethylene naphthalate; a polyamine resin; a polyarylate resin; a polyimide resin. Further, the light diffusing agent 440 which is mixed and dispersed in the substrate 430 is not particularly limited as long as it is a fine particle formed of a material different from the refractive index of the material of the substrate 430. Organic microparticles formed by different types of acrylic resin, melamine resin, polyethylene resin, polystyrene resin, organic polyoxyn resin, acrylic-styrene copolymer resin, etc., and calcium carbonate, strontium oxide, Alumina, carbonic acid 157021. Doc -28- 201213885 Inorganic fine particles formed by locking sulfur, titanium oxide, glass, etc. The light diffusing agent 440 to be used may be used alone or in combination of two or more. Further, the inner hollow sphere or the hollow glass bead of the organic polymer can also be used as the light diffusing agent 44. The weight average particle diameter of the light diffusing agent 440 is preferably in the range of 〇5 to 3 〇 μιη. Further, the light diffusing agent 440 may have a spherical shape, a flat shape, a plate shape, a needle shape or the like, but is preferably spherical. On the other hand, the light deflecting plate (strip) 403b is a flat surface on the light incident surface side (the side of the backlight device 402 and the negative side of the z-axis shown in FIG. 4), and is on the light exit side (Fig. 4). The surface on the positive side of the z-axis (the surface facing the backlight-side polarizing plate 404) is formed in parallel with a plurality of polygonal shapes having a tapered shape at the front end, preferably a triangular shape. . Examples of the material of the light deflecting plate 403b include a polycarbonate resin, an abs resin, a methacrylic resin, a methacrylate styrene copolymer resin, a polystyrene resin, and an acrylonitrile-styrene copolymer. Polyether hydrocarbon resin such as resin, polyethylene or polypropylene. As a method of producing the optical deflecting plate 4〇3b, a molding method of a usual thermoplastic resin can be used, and examples thereof include hot press forming using a die, extrusion molding, and the like. The thickness of the light deflecting plate 4〇3b is usually 0, 1 to 15 mm, preferably 〇 5 to 10 mm. In the present specification, the term "the thickness of the light deflecting plate" means the maximum from the surface of the light deflecting plate 4〇3b on the side close to the light diffusing plate 403a to the front end of the apex angle of the linear flaw 450. thickness. Therefore, the thickest portion corresponding to B shown in Fig. 4 is divided into the thickness of the light deflecting plate 403b. The thickness from the surface of the light deflecting plate 4〇3b on the side close to the light diffusing plate 403a to the front end of the apex angle of the linear 稜鏡&quot; is not the largest (for example, linear 稜鏡45〇) Part of the Valley), 157021. Doc . 29- 201213885 The thickness of the light deflecting plate 403b may not be within the above range. The light diffusing plate 403a and the light deflecting plate 403b may be integrally formed, or may be separately joined and then joined. Further, in the case where the joining is performed separately, the light diffusing plate 403a and the light deflecting plate 403b may be contacted by the air layer. Further, the light diffusing plate 403a and the light deflecting plate 403b may be disposed apart from each other, and the β light diffusing mechanism 403 may be disposed. As shown in FIG. 5, the light diffusing agent 440 may be dispersed and mixed in the light deflecting plate 403b functioning as a light deflecting function. Give light diffusion function. Further, as shown in Fig. 6, the light diffusing means 403 may include two light deflecting plates (clams) 4〇3b and 403b' disposed on the front side of the light diffusing plate 403a. In this case, preferably, referring to FIG. 6, the light deflecting plate 4〇3b disposed on the side close to the light diffusing plate 403a is in the direction of the ridge line 45 1 of the linear ridge 450 and the backlight side polarizing plate 404. The transmission axis direction (y-axis direction) is substantially parallel, and the light deflecting plate 403b' disposed on the front side of the light deflecting plate 4〇3b has the linear shape 45稜鏡, and the ridge line 45丨, the direction It is disposed so as to be substantially parallel to the transmission axis direction (the y-axis direction) of the light diffusing polarizing plate 405. With such a configuration, the brightness in the front direction of the liquid crystal display device can be further improved. However, the light may be deflected toward the plate 4〇3b such that the direction of the ridge line 451· of the linear ridge 450' is substantially parallel to the transmission axis direction & the axial direction of the backlight-side polarizing plate 4〇4. Further, the direction of the ridge line 451 of the linear ridge 450 of the light-biased plate is arranged substantially parallel to the transmission axis direction (the y-axis direction) of the light-diffusing polarizing plate. The light distribution characteristic of the light passing through the light diffusing means 403 is preferably inclined by 7 自 from the perpendicular direction (the z-axis direction shown in Fig. 3) of the light incident surface of the liquid crystal cell 401. 157021. The luminance value in the direction of doc 201213885 is equal to or less than 2% by weight of the luminance value in the direction perpendicular to the light incident surface of the liquid crystal cell 4〇1, and the light emitted from the light diffusing mechanism 403 includes non-parallel light. More preferably, the light distribution characteristics are more than 6 Å perpendicular to the light incident surface of the liquid crystal cell 401. There is no light coming out in the direction. Generally, as shown in FIG. 3, since the back surface (light incident surface) of the light diffusing means 4?3 is arranged in parallel with the light incident surface of the liquid crystal cell 401, the vertical line with respect to the light incident surface of the liquid crystal cell 401 is 7 Hey. The luminance value of the direction is, for example, as shown in FIG. 7 , when the length direction of the light diffusing mechanism 403 is the 乂 direction and the surface parallel to the back surface (light incident surface) of the light diffusing mechanism 403 is the "face", The X axis is perpendicular to the two axes of 7 〇. The brightness value of the direction is preferably the brightness value of the direction formed by the angle between the XZ plane and the z axis of 70. In order to achieve such a light distribution characteristic, for example, adjusting the light deviation The shape of the linear shape 稜鏡450 (and/or the linear 稜鏡450) of the triangular shape of the plate 403b may be sufficient. The apex angle θ of the linear 稜鏡450, 450' (refer to FIGS. 4 and 5) is preferred. The range of 60 to 120 is more preferably 90 to 110. The shape of the triangle may be arbitrarily equilateral or unequal, but is intended to be in the direction perpendicular to the liquid crystal cell 401 (the front direction of the liquid crystal display device, that is, In the case of concentrating light, it is preferably an isosceles triangle. Further, the structure including the side surface of the linear ridge is preferably arranged in such a manner that the bottom edges opposite to the apex angle of the triangle are adjacent to each other. Arranged and arranged in a manner that a plurality of linear lines are substantially parallel to each other. As long as the concentrating ability does not decrease significantly, the V-shaped groove formed by the apex of the linear ridge and the adjacent linear prism may also have a curved shape. The distance between the ridge lines of the linear ridge (Figure 4 and the distance d) shown in Fig. 5 is usually in the range of 1 〇μιη to 500 μηι, preferably in the range of 30 μm to 200 μπι. Doc •31-201213885 The 4 non-parallel light system has light having the following emission characteristics, and as shown in FIG. 8, the light emitted from a circle having a diameter of 1 cm out of the exit surface of the light diffusing mechanism 403 is projected to the exit surface. The direction perpendicular to the perpendicular direction im is parallel to the observation of the exit surface, and the projection material is observed. The minimum half width of the in-plane luminance distribution of the feed is 30 cm or more. (Backlight Side Polarizing Plate) As the backlight side polarizing plate 404, a protective film can be usually applied to one surface or both surfaces of the polarizing film. As the polarizing film and the protective film, those described above with respect to the light diffusing polarizing plate 100 can be used. (Phase Difference Plate) The liquid crystal display device of the present invention, as shown in Fig. 9, may include a phase difference plate 406. In the liquid crystal display device 4 shown in Fig. 9, the phase difference plate 4〇6 is disposed between the backlight-side polarizing plate 4〇4 and the liquid crystal cell 4〇1. The phase difference plate 4〇6 has a phase difference of about 0 with respect to the direction perpendicular to the surface of the liquid crystal cell 401 (z-axis direction), and does not have any optical effect from the front side and a phase difference when observed from the oblique direction. The phase difference generated by the liquid crystal cell 4〇1 is compensated. Thereby, more excellent display quality and color reproducibility can be obtained from a wider viewing angle. The phase difference plate 406 can be disposed between the backlight-side polarizing plate 4〇4 and the liquid crystal cell 401, and between the light-diffusing polarizing plate 4〇5 and the liquid crystal cell 4〇1. The phase difference plate 406 may be laminated on the protective film of the backlight-side polarizing plate 4〇4, or may have a function as a protective film, and may be directly laminated on the polarizing film of the backlight-side polarizing plate 404. The same applies to the case where the phase difference plate is disposed between the light diffusing polarizing plate 4〇5 and the liquid crystal cell 401. 157021. Doc • 32·201213885 As the retardation film 406, for example, a polycarbonate resin or a cyclic olefin-based polymer resin is used as a film, and the film is double-extracted or a liquid crystalline monomer is applied thereto. In the film, the phase difference plate 406 is optically compensated for the alignment of the liquid crystal by a photopolymerization reaction, and the refractive index characteristics are opposite to those of the liquid crystal alignment. Specifically, in the liquid crystal cell of the TN mode, for example, "wv FILM" (manufactured by Fujifilm Co., Ltd.) or sTN (Super Twisted Nematic) liquid crystal display unit can be preferably used. For example, "LC FILM" (manufactured by Nippon Oil Co., Ltd.); for example, a biaxial retardation film can be preferably used in the liquid crystal display unit of the Ips mode; for example, a combination of A can be used for the liquid crystal display unit of the VA mode. For the liquid crystal display unit of the unit mode, for example, "WV film for OCB" (manufactured by Fujisei Co., Ltd.) or the like can be preferably used. EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the invention should not be construed as limited. Further, the haze of the light diffusion film and the center line average roughness Ra of the surface, the thickness of the light diffusion layer, and the weight average particle diameter of the light-transmitting fine particles used in the following examples are measured as follows. (a) Haze An optically transparent adhesive was used, and the transparent substrate film side of the light-diffusing film was bonded to a glass substrate to prepare a sample for measurement, and the measurement sample was used for measurement. The measurement of full fog value and internal haze is performed using JIS κ 7136 157021. Doc -33- 201213885 Based on haze transmittance meter (haze meter "HM-150" manufactured by Murakami Color Technology Research Co., Ltd.). Based on the results, the surface haze was calculated by the above formula (3). (b) Center line average roughness Ra is measured using a confocal interference microscope (for example, r PL|a23〇〇 manufactured by Optical Solutions Co., Ltd.) based on JIS B 0601, according to the above formula (1) Calculated. (c) Thickness of the light diffusion layer The thickness of the light diffusion film was measured using DIGIMICRO MH-15 (body) manufactured by NIKON Co., Ltd. and 2 (: _ 1 01 (S odometer)' by subtracting the basis from the measured layer thickness The thickness of the light diffusion layer was measured at a thickness of 80 μm. (d) The weight average particle diameter of the light-transmitting fine particles and the standard deviation of the particle diameter According to the Coulter principle (fine pore resistance method), a Coulter counter (Beckman Coulter) was used. Measured by the company. [Production of metal embossing roll] Ballard copper plater has been applied to the surface of a 200 mm diameter iron roll (according to JIS STKM13A). The copper plating layer/thinner silver layer/surface copper plating layer is formed, and the thickness of the entire plating layer is about 200 μm. The copper surface of the key is mirror-polished, and on the polishing surface, a spraying device is used. Manufacturing (stock) manufacturing), with injection pressure 0. 05 MPa (measurement pressure, the same applies hereinafter), the amount of fine particles used is 16 g/cm (the amount of the unit surface area of the roll is 1 cm 2 , the same applies hereinafter). The oxidized bead TZ-B125 (made by Tosoh), average particle diameter: 125 μ (4) formed irregularities on the surface. On the uneven surface, a spraying device was used (not only made 157021. Doc •34·201213885 (manufactured by WJ), sprayed ruthenium oxide TZ-SX-17 (T〇s〇h (manufactured)) with injection pressure ο"MPa, microparticle usage 4 g/cm2, average particle size: 2〇 〇π〇, fine adjustment of surface unevenness. The obtained copper-iron-coated roll with irregularities was etched using vaporized copper solution (etching amount: 3 μ^. Thereafter, chrome plating (chrome plating) Thickness: 4 μm) to produce a metal embossing roll. The obtained chrome surface of the metal embossing roll has a Vickers hardness of 1000. The Vickers hardness is made by an ultrasonic hardness meter MJCKHKrautkramer, JIS ζ 2244 〇 制作 制作 制作 制作 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面 表面40 parts by weight of the reaction product with pentaerythritol triacrylate was mixed in a propylene glycol monoterpene ether solution, and adjusted so that the solid content concentration became 6 〇% by weight to obtain an ultraviolet curable resin composition. 100 parts by weight of the solid content component of the ultraviolet curable resin composition, and added 5 parts by weight of "Lucirin TPO" as a photopolymerization initiator (manufactured by BASF Corporation, chemical name: 2,4,6-trimercaptobenzoquinone) The diphenylphosphine oxide) was diluted with propylene glycol monoterpene ether to prepare a coating liquid at a concentration of the solid content of 60% by weight. The coating liquid was applied to a thickness of 80 μm as triethyl hydrazine. The transparent resin film of the cellulose (TAC) film was set to 8 〇. (: Drying in a dryer for 1 minute. For the transparent resin film after drying, UV curable resin 157021. Doc •35- 201213885 The composition layer is pressed on the side and is pressed with a rubber roller and adhered to the embossed surface of the metal embossing. In this state, the high-pressure mercury lamp having a strength of 20 mW/cm 2 is irradiated with light by a light amount of 3 〇〇mj/cm 2 from the transparent resin film side, and the ultraviolet curable resin composition layer is cured to obtain transparency. An anti-glare film having an anti-glare layer formed on the resin film. (Production Example 2: Preparation of Antireflection Film) 10 parts by weight of a quarter of tetradecyl diacetic acid vinegar, 10 parts by weight of quaternary tetral tetrapropyl acrylate, and urethane acrylate (Kyoeisha Chemical Co., Ltd.) Co., Ltd. manufactured "UA-306T") 30 parts by weight, "Irgacurel 84" as a photopolymerization initiator, manufactured by Ciba Japan Co., Ltd.) 2. 5 parts by weight, 50 parts by weight of methyl ethyl ketone as a solvent, and 5 parts by weight of butyl acetate were mixed to prepare a coating liquid for forming a hard coat layer as an ultraviolet curable resin composition. This coating liquid was applied to a transparent resin film as a TAC film having a thickness of 8 μm by a wire bar coater (refractive index of 1. 49) Top and dry in a dryer set at 80 ° C for 1 minute. For the dried transparent resin film, a metal toothed lamp is used to irradiate ultraviolet light at a power of 120 W from a distance of 20 cm for 1 〇 second to form a hard coat layer. The obtained hard coat layer has a thickness of 5 μm. The refractive index is 1. 52. Next, a solution of a polymer containing an oligomer of tetraethoxysilane is obtained by adding isopropanol, decanoic acid to tetraethoxy decane and hydrolyzing it. By mixing primary particles of antimony doped tin oxide (ΑΤΟ) fine particles having a particle diameter of 8 nm in the solution and adding isopropanol, 25 wt% of the polymer containing tetraethoxydecane is obtained. , doped with antimony tin dioxide particles 2. 5% by weight of antistatic layer forming coating 157021. Doc -36- 201213885 Liquid. On the other hand, the TAc film formed with the hard coat layer was immersed in a 50 〇c 丨 5 N_NaOH aqueous solution for 2 minutes for alkalization treatment, and washed with water to make it at 0. The mixture was neutralized by immersing in a 5% by weight aqueous solution of HJO4 at room temperature for 3 sec., and further washed with water and dried. The coating liquid for forming an antistatic layer is applied onto an empirically treated hard coat layer by a wire bar coater, and dried in a dryer set to 120 〇c for 1 minute. An antistatic layer is formed. The obtained antistatic layer has a thickness of 163 nm and a refractive index of 1. 53, the optical film thickness is 250 nm. Secondly, by adding isopropanol and hydrazine 1 1 hydrochloric acid to a mixture of tetraethoxy decane and 111,211,211-perfluorooctyltrimethoxydecane 95:5 (mole ratio), It is hydrolyzed to obtain a solution of a polymer of an organic compound containing an oligomer. By mixing the low refractive index cerium oxide microparticles having voids in the solution and adding isopropyl alcohol, a low refractive index layer containing 2% by weight of the organic cerium compound and 2% by weight of the low refractive index cerium oxide microparticles is obtained. Coating liquid ❶ The obtained coating liquid for forming a low refractive index layer was applied onto an antistatic layer by a wire bar coater, and dried in a dryer set to 120 C for 1 minute to form a coating liquid. Low refractive index layer. The obtained low refractive index layer has a thickness of 91 nm, a refractive index of 137, and an optical film thickness of 125 nm. By the above treatment, an antireflection film comprising a hard coat layer, an antistatic layer, and a low refractive index layer on the transparent resin film was produced. [Production of Light-Diffusing Film] (Production Example 3: Production of Light-Diffusing Film A) 60 parts by weight of pentaerythritol triacrylate and polyfunctional urethane-based acrylate (hexamethylene sulfonate) Ester and pentaerythritol triacrylate 157021. Doc • 37·201213885 Reaction product) 40 parts by weight was mixed in a propylene glycol monomethyl ether solution, and adjusted so that the solid content concentration was 6% by weight to obtain an ultraviolet curable resin composition. Further, the propylene glycol monomethyl ether was removed from the composition, and the cured product obtained by ultraviolet curing had a refractive index of 53. Then, the weight average particle diameter of the first light-transmitting fine particles added was set to 100 parts by weight based on 100 parts by weight of the solid content of the ultraviolet curable resin composition. 0 μΐΏ, standard deviation is 0. The weight fraction of the polystyrene particles of 39 μm is 1 part by weight, the weight average particle diameter of the second light-transmitting fine particles is 72 μηι, and the standard deviation is 0. 30 parts by weight of 73 μιη polystyrene particles and "Lucirin TPO" as a photopolymerization initiator (manufactured by BASF Corporation, chemical name: 2,4,6-trimercaptobenzylidene diphenylphosphine oxide 5 parts by weight and diluted with propylene glycol monoterpene ether to have a solid content ratio of 6% by weight to prepare a coating liquid. The coating liquid was applied onto a TAC film (transparent substrate film) having a thickness of 80 μm, and dried in a dry machine having a δ of 80 ° C for 1 minute, and then from the side of the transparent substrate film, the strength was obtained. The high-pressure mercury lamp of 20 mW/cm2 is irradiated with light by a light amount of 3 〇〇mj/cm2, and the ultraviolet curable resin composition layer is cured to obtain a light-diffusing film A including a light-diffusing layer and a transparent substrate film. The full haze, internal haze, and surface haze of the obtained light diffusing film A were 65. 8%' 48. 2%, 17. 6%. Moreover, the average center line roughness Ra of the surface is 0. 42 μιη, the thickness of the light diffusion layer is 1〇. 9 μιη. <Example 1> The surface of the transparent substrate film of the light-diffusion film obtained in Production Example 3 was subjected to corona treatment, and then coated on the corona-treated surface to have a UV-solidity at a thickness of 4 μm. Doc -38- 201213885 UV-curable adhesive for chemical epoxy resin and photocationic polymerization initiator. On the other hand, after performing corona treatment on one side of a TAC film (thickness 80 μm) as a protective film, the same ultraviolet curable adhesive as described above was applied to the corona-treated surface at a thickness of 4 μm. Then, the light diffusion film A is laminated on one surface of the polarizing film formed by adsorbing iodine on the uniaxially stretched polyvinyl alcohol resin film, and the light diffusion film A is laminated on the other surface. The protective film was laminated on the next layer, and was sandwiched by a pair of nip rolls. Thereafter, ultraviolet rays were irradiated from the side of the protective film, and the adhesive layers of both sides were cured to obtain a light diffusing polarizing plate. Then, 'on the light-diffusing layer of the light-diffusion film A in the light-diffusing polarizing plate', the transparent acrylic resin-based transparent adhesive was used, and the transparent resin film side was a bonding surface, and the laminated production method was obtained. The anti-glare film is used to obtain a light diffusing polarizing plate which is subjected to an anti-glare treatment. <Example 2> A light diffusing polarizing plate subjected to antireflection treatment was obtained in the same manner as in Example 1 except that the antireflection film obtained in Production Example 2 was used instead of the antiglare film. &lt;Comparative Example 1&gt; Instead of using the above-mentioned laminated body in which the light-diffusing film A and the anti-glare film are laminated via the adhesive layer (the user in the first embodiment), the surface of the light-diffusing layer of the light-diffusing film A is made of a rubber roller. A light diffusing polarizing plate subjected to anti-glare treatment was obtained in the same manner as in Example 1 except that the surface of the embossed surface of the metal embossing was pressed to form an anti-glare film. . &lt;Comparative Example 2&gt; 157021.doc •39·201213885 Instead of the laminate (the user in the second embodiment) in which the light diffusion film A and the antireflection film are laminated via the adhesive layer, the light diffusion film A is used. The surface of the light-diffusing layer was formed in the same manner as in Example 2 except that the anti-static layer and the low-refractive-index layer were sequentially formed in accordance with the method described in the above Production Example 2, and the film was subjected to anti-reflection treatment in the light-diffusing layer. A light diffusing polarizing plate subjected to antireflection treatment was obtained in a manner. (Evaluation of Surface Treatment Characteristics of Light-Diffusing Polarizing Plate) (1) Evaluation of Anti-glare Property The light-diffusing polarizing plates of Example 1 and Comparative Example 1 which were subjected to anti-glare treatment were evaluated for anti-glare properties. Specifically, the light diffusing polarizing plate was visually observed from the side of the uneven surface (the surface of the antiglare layer) after the brightness of the fluorescent lamp was turned on, and it was confirmed whether or not the fluorescent lamp was reflected. The person who does not see the fluorescent lamp over the entire surface of the film is regarded as A, and the person who confirms at least a part of the film surface to the fluorescent lamp is regarded as B. The results are shown in Table 1. (2) Evaluation of color spots The evaluation of the color spots was carried out on the light diffusing polarizing plates of Example 2 and Comparative Example 2 which were subjected to antireflection treatment. Specifically, the light-diffusing polarizing plate which is colored black by the black matte spray coating method on the surface of the protective film is visually observed from the surface of the low-refractive-index layer to the inside of the low-refractive-index layer. There are no spots. A person who does not see a stain on the entire surface of the film is regarded as A, and a person whose at least a part of the film surface is confirmed to have a stain is regarded as B. The results are shown in Table 1. The color plaque is caused by the in-plane heterogeneity in the anti-reflection treatment surface, and the inside surface is regarded as an iridescent color when observed by the naked eye, and when such a color plaque is generated, it is judged that the anti-reflection function is poor. 157021.doc -40- 201213885 [Table 1]

防眩性 色斑 貫施例1 A - 比較例1 B ---- 實施例2 - A 比較例2 ----— - ----- B 由表!所示可知,根據本發明之光擴散性偏光板,即便 十於難以直接實施表面處理之光擴散膜,亦可賦予優異之 表面處理特性。 【圖式簡單說明】 圖1係表示本發明之光擴散性#光板之較佳之一例的概 略剖面圖。 圖2係表示用於製造光擴散膜之裝置之一例的概略圖。 圓3係表不本發明之液晶顯示裝置之較佳之一例的概略 剖面圖。 圖4係表示光擴散機構之一例的概略剖面圖。 圖5係表示光擴散機構之另一例的概略剖面圖。 圖6係用於說明2枚光偏向板(稜鏡片)所具有之線狀稜鏡 之脊線方向與偏光板之透射軸方向之關係的概略立體圖。 “圖7係表示就光擴散機構而言,測量相對於液晶單元之 光入射面之垂線成7〇。之方向的亮度值之方法之一例的 圖。 圖8係說明非平行光之定義的圖。 圖9係表示本發明之液晶顯示裝置之較佳之另—例的概 157021.doc •41 · 201213885 略剖面圖。 【主要元件符號說明】 100 ' 405 光擴散性偏光板 101 偏光膜 102 光擴散膜 103 表面處理膜 104 黏著劑層或接著劑層 105 透明基材膜 106 光擴散層 106a 透光性樹脂 106b 透光性微粒子 107 透明樹脂膜 108 表面處理層 109 保護膜 301 捲出裝置 302 塗敷裝置 303 支承輥 304 乾燥機 305 鏡面金屬製輥或壓花加工用金屬製輥 306 夾輥 307 剝離輥 308 紫外線照射裝置 309 捲取裝置 400 ' 400' 液晶顯示裝置 157021.doc • 42· 201213885 401 液晶單元 402 背光裝置 403 光擴散機構 403a 光擴散板 403b ' 403b' 光偏向板 404 背光側偏光板 406 相位差板 411a 、 411b 透明基板 412 液晶層 421 箱體 422 冷陰極管 430 基材 440 光擴散劑 450 ' 450' 線狀稜鏡 451 &gt; 451' 線狀稜鏡之脊線 157021.doc 43-Anti-glare stains Example 1 A - Comparative Example 1 B - Example 2 - A Comparative Example 2 ----- - ----- B From the table! As can be seen from the above, the light-diffusing polarizing plate of the present invention can provide excellent surface treatment characteristics even in the case of a light-diffusing film which is difficult to directly perform surface treatment. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic cross-sectional view showing an example of a preferred light diffusing light plate of the present invention. Fig. 2 is a schematic view showing an example of an apparatus for producing a light-diffusing film. The circle 3 is a schematic cross-sectional view showing a preferred example of the liquid crystal display device of the present invention. Fig. 4 is a schematic cross-sectional view showing an example of a light diffusing mechanism. Fig. 5 is a schematic cross-sectional view showing another example of the light diffusing means. Fig. 6 is a schematic perspective view for explaining the relationship between the ridge line direction of the linear ridges of the two light deflecting plates (the cymbals) and the transmission axis direction of the polarizing plate. Fig. 7 is a view showing an example of a method of measuring the luminance value in the direction of the vertical line of the light incident surface of the liquid crystal cell with respect to the light diffusing mechanism. Fig. 8 is a view for explaining the definition of non-parallel light. Fig. 9 is a cross-sectional view showing a preferred embodiment of the liquid crystal display device of the present invention. 157021.doc • 41 · 201213885. [Description of main components] 100 ' 405 light diffusing polarizing plate 101 polarizing film 102 light diffusion Film 103 Surface treatment film 104 Adhesive layer or adhesive layer 105 Transparent substrate film 106 Light diffusion layer 106a Translucent resin 106b Translucent fine particles 107 Transparent resin film 108 Surface treatment layer 109 Protective film 301 Winding device 302 Coating Device 303 Support Roller 304 Dryer 305 Mirror Metal Roller or Metal Roller for Embossing 306 Roller Roller 307 Stripping Roller 308 Ultraviolet Irradiation Device 309 Winding Device 400 '400' Liquid Crystal Display Device 157021.doc • 42· 201213885 401 LCD Unit 402 backlight 403 light diffusing mechanism 403a light diffusing plate 403b' 403b' light deflecting plate 404 backlight side polarizing plate 406 phase Plates 411a, 411b of the transparent substrate 412 of the liquid crystal layer 421 housing the cold cathode tube 430 of the substrate 422 of the light diffusing agent 440 450 '450' linear Prism 451 &gt; 451 'of the ridge line Prism 157021.doc 43-

Claims (1)

201213885 七、申請專利範圍: 1· 一種光擴散性偏光板,其包含: 偏光膜; 積層於上述偏光膜上之光擴散膜;及 積層於上述光擴散膜上之表面處理膜; 上述光擴散膜包含光擴散層; 上述光擴散層之表面中的靠近上述表面處理膜之表面 之中心線平均粗糙度Ra為〇. 1 pm以上且未達1 ; 上述表面處理膜由一表面上已實施光學處理之透明樹 脂膜所形成; 上述光擴散層與上述表面處理膜經由黏著劑層或接著 劑層而相互貼合。 2·如請求項1之光擴散性偏光板,其中上述表面處理膜具 有未實施光學處理之面; 上述光擴散層與上述表面處理膜之未實施光學處理之 面經由黏著劑層或接著劑層而相互貼合; 上述光擴散層與上述表面處理膜貼合。 3.如請求項1或2之光擴散性偏光板,其中上述光學處理為 防眩處理或抗反射處理。 4·如請求項1至3中任一項之光擴散性偏光板,其中上述光 擴散膜進而包含透明基材膜; 上述透明基材膜上積層有上述光擴散層; 上述光擴散層含有透光性樹脂與分散於上述透光性;^ 脂中之透光性微粒子。 157021.doc 201213885 5.如請求項4之光擴散性偏光板,其中上述光擴散層係於 上述透明基材膜上塗佈分散有上述透光性微粒子之樹脂 液而形成》 6-如請求項4之光擴散性偏光板,其中上述光擴散層係將 分散有上述透光性微粒子之樹脂液塗佈於上述透明基材 膜上’並於由上述樹脂液而形成之層之表面上轉印模具 之鏡面或凹凸面而形成。 7. 一種液晶顯示裝置’其依序包含背光裝置、光擴散機 構 邊光側偏光板、液晶单元、及如請求項1至6中任一 項之光擴散性偏光板; 上述光擴散性偏光板係以上述偏光膜較上述表面處理 膜靠近上述液晶單元之方式而配置。 8. 如請求項7之液晶顯示裝置,其中來自上述光擴散機構 之出射光具有自上述液晶單元之光入射面之垂線方向傾 斜7 〇。之方向之亮度相對於上述垂線方向之亮度為2 〇 %以 下的配光特性,且包含非平行光。 9. 如請求項7或8之液晶顯示裝置,其中上述光擴散機構係 自上述背光裝置側起依序包含光擴散板與光偏向板。 10. 如請求項7至9中任一項之液晶顯示裝置,其中上邊液晶 早几為™型液晶單元、IPS型液晶單元或则液晶單 元0 157021.doc201213885 VII. Patent application scope: 1. A light diffusing polarizing plate comprising: a polarizing film; a light diffusing film laminated on the polarizing film; and a surface treating film laminated on the light diffusing film; the light diffusing film a light diffusion layer is included; a center line average roughness Ra of the surface of the light diffusion layer adjacent to the surface treatment film is 〇.1 pm or more and less than 1; the surface treatment film is optically processed on a surface The transparent resin film is formed; and the light diffusion layer and the surface treatment film are bonded to each other via an adhesive layer or an adhesive layer. 2. The light diffusing polarizing plate of claim 1, wherein the surface treatment film has a surface that is not subjected to optical treatment; and the surface of the light diffusion layer and the surface treatment film that is not subjected to optical treatment passes through an adhesive layer or an adhesive layer And bonding to each other; the light diffusion layer is bonded to the surface treatment film. 3. The light diffusing polarizing plate of claim 1 or 2, wherein the optical treatment is an anti-glare treatment or an anti-reflection treatment. The light diffusing polarizing plate according to any one of claims 1 to 3, wherein the light diffusing film further comprises a transparent base film; the light diffusing layer is laminated on the transparent base film; and the light diffusing layer is transparent The light-sensitive resin and the light-transmitting fine particles dispersed in the above-mentioned light-transmitting resin. 5. The light-diffusing polarizing plate of claim 4, wherein the light-diffusing layer is formed by coating a resin liquid in which the light-transmitting fine particles are dispersed on the transparent base film. a light diffusing polarizing plate according to claim 4, wherein said light diffusing layer applies a resin liquid in which said light transmitting fine particles are dispersed to said transparent base film, and is transferred onto a surface of said layer formed of said resin liquid. Formed by the mirror or uneven surface of the mold. 7. A liquid crystal display device comprising a backlight device, a light diffusing mechanism side light side polarizing plate, a liquid crystal cell, and a light diffusing polarizing plate according to any one of claims 1 to 6; the light diffusing polarizing plate The polarizing film is disposed closer to the liquid crystal cell than the surface treatment film. 8. The liquid crystal display device of claim 7, wherein the emitted light from the light diffusing means has an inclination of 7 自 from a perpendicular direction of a light incident surface of the liquid crystal cell. The luminance in the direction is a light distribution characteristic of 2 〇 % or less with respect to the vertical direction, and includes non-parallel light. 9. The liquid crystal display device of claim 7 or 8, wherein the light diffusing means sequentially includes a light diffusing plate and a light deflecting plate from the side of the backlight device. 10. The liquid crystal display device according to any one of claims 7 to 9, wherein the upper liquid crystal is a TM liquid crystal cell, an IPS liquid crystal cell or a liquid crystal cell 0 157021.doc
TW100121471A 2010-06-24 2011-06-20 Light-diffusing polarization plate and liquid-crystal display device TW201213885A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010143961 2010-06-24

Publications (1)

Publication Number Publication Date
TW201213885A true TW201213885A (en) 2012-04-01

Family

ID=45371326

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100121471A TW201213885A (en) 2010-06-24 2011-06-20 Light-diffusing polarization plate and liquid-crystal display device

Country Status (3)

Country Link
JP (1) JP2012027461A (en)
TW (1) TW201213885A (en)
WO (1) WO2011162132A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6108104B2 (en) * 2013-06-26 2017-04-05 オムロン株式会社 Light deflection plate, surface light source device, and illumination switch

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007148415A (en) * 1997-09-25 2007-06-14 Dainippon Printing Co Ltd Light diffusing film, its manufacturing method, polarizing plate with light diffusing layer and liquid crystal display apparatus
JP2002090508A (en) * 2000-09-12 2002-03-27 Nitto Denko Corp Light diffusing sheet and optical element
JP2002323699A (en) * 2001-04-26 2002-11-08 Rohm Co Ltd Liquid crystal display device and method for manufacturing the same
JP3908934B2 (en) * 2001-10-23 2007-04-25 日東電工株式会社 Adhesive optical member and liquid crystal display device
JP2003302506A (en) * 2002-02-08 2003-10-24 Dainippon Printing Co Ltd Antiglare film and image display device
JP2008139736A (en) * 2006-12-05 2008-06-19 Sumitomo Chemical Co Ltd Light diffusing plate
JP2009210592A (en) * 2008-02-29 2009-09-17 Sumitomo Chemical Co Ltd Antiglare polarizing plate and image display using the same
CN101983352A (en) * 2008-04-03 2011-03-02 住友化学株式会社 Liquid crystal display device

Also Published As

Publication number Publication date
WO2011162132A1 (en) 2011-12-29
JP2012027461A (en) 2012-02-09

Similar Documents

Publication Publication Date Title
TWI550318B (en) A light diffusion film and a method for manufacturing the same, a light diffusing polarizing plate and a liquid crystal display device
TWI487952B (en) A light diffusion film, a method of manufacturing the same, a light diffusioning polarizing plate, and a liquid crystal display device
WO2011027903A1 (en) Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device
TW201219846A (en) Light-diffusing polarization plate and liquid-crystal display device
TW201213886A (en) Light-diffusing polarization plate and liquid-crystal display device
TW201227007A (en) Light-diffusing polarizing plate and liquid crystal display device
JP2008268940A (en) Reflection type polarizing plate and liquid crystal display device using same
WO2012046790A1 (en) Light diffusion film and process for production thereof, light-diffusing polarizing plate, and liquid crystal display device
TWI477827B (en) Polarizing plate, liquid crystal panel using such polarizing plate, and liquid crystal display device
TW201247759A (en) Resin composition, optical film and liquid crystal display device
TW201107838A (en) Liquid crystal display device
TW201226996A (en) Optical diffusing film and process for producing the same, optical diffusible polarizing plate, and liquid crystal display device
WO2011162188A1 (en) Light-diffusing polarizing plate and liquid crystal display device
TWI519827B (en) A light diffusion film and a method for producing the same, a coating liquid for use, and a polarizing plate using the same, and a liquid crystal display device
TW201107837A (en) Liquid crystal display device
TW201044075A (en) Liquid crystal display device
TW200932524A (en) A set ofpolarizer, and a liquidcrystal panel and anapparatus of liquid crystal display usedthereof
JP5827811B2 (en) Liquid crystal display
TW201213885A (en) Light-diffusing polarization plate and liquid-crystal display device
JP2010049063A (en) Polarizing plate