WO2011162184A1 - Light-diffusing polarization plate and liquid-crystal display device - Google Patents

Light-diffusing polarization plate and liquid-crystal display device Download PDF

Info

Publication number
WO2011162184A1
WO2011162184A1 PCT/JP2011/063952 JP2011063952W WO2011162184A1 WO 2011162184 A1 WO2011162184 A1 WO 2011162184A1 JP 2011063952 W JP2011063952 W JP 2011063952W WO 2011162184 A1 WO2011162184 A1 WO 2011162184A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
film
light diffusing
polarizing plate
liquid crystal
Prior art date
Application number
PCT/JP2011/063952
Other languages
French (fr)
Japanese (ja)
Inventor
康弘 羽場
室 誠治
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2011162184A1 publication Critical patent/WO2011162184A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0247Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of voids or pores
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133562Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the viewer side

Definitions

  • the present invention relates to a light diffusing polarizing plate and a liquid crystal display device using the light diffusing polarizing plate.
  • a liquid crystal display device includes a backlight device, a liquid crystal panel including a liquid crystal cell, a back side polarizing plate disposed on the backlight side of the liquid crystal cell, and a front side polarizing plate disposed on the viewing side of the liquid crystal cell. , Including.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-94369
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-107512
  • a coating liquid containing fine particles is applied onto a substrate.
  • a light diffusion film (light diffusion sheet) having a high-haze light diffusion layer to be formed is disclosed.
  • Patent Document 3 a liquid crystal display provided with a glare-proof layer having a certain level of light diffusibility on the viewing side by dispersing and mixing minute fillers (light diffusing agents).
  • An apparatus is disclosed. By disposing such a light diffusing film or antiglare layer on the viewing side surface of the liquid crystal display device, when the display screen of the liquid crystal display device is observed from an oblique direction, image contrast deterioration and gradation inversion are improved. It is possible to widen the viewing angle.
  • the liquid crystal display device including the light diffusing layer imparted with the light diffusibility by the filler as described above, a wider viewing angle can be obtained by increasing the content of the filler in the light diffusing layer.
  • the light diffusion layer containing a large amount of filler has a high surface roughness. If such a light diffusing layer is disposed on the surface of the display, it is not preferable because the display quality is lowered such as whitening due to reflection of outside light. Note that “whitening” is a phenomenon in which the surface of the screen of the liquid crystal display device looks whitish, and is a phenomenon that is likely to occur particularly in a bright place.
  • an object of the present invention is a polarizing plate provided with a light diffusing function by providing a light diffusing layer, which has a sufficient mechanical strength and has a good image quality when incorporated in a liquid crystal display device. It is an object to provide a polarizing plate and a liquid crystal display device using the same.
  • the present invention is a light diffusing polarizing plate comprising a polarizing film (film), a light diffusing film, and a light diffusing pressure-sensitive adhesive layer, wherein the total haze of the light diffusing polarizing plate exceeds 40%. 85% or less, the internal haze of the light diffusable polarizing plate is more than 40% and 85% or less, and the total haze of the light diffusable pressure-sensitive adhesive layer is 10% or more and 80% or less.
  • a board a polarizing film (film), a light diffusing film, and a light diffusing pressure-sensitive adhesive layer, wherein the total haze of the light diffusing polarizing plate exceeds 40%. 85% or less, the internal haze of the light diffusable polarizing plate is more than 40% and 85% or less, and the total haze of the light diffusable pressure-sensitive adhesive layer is 10% or more and 80% or less.
  • the light diffusing pressure-sensitive adhesive layer further includes a pair of protective films laminated on both surfaces of the polarizing film, It is laminated on the surface opposite to the film side.
  • the light diffusing pressure-sensitive adhesive layer is laminated on one surface of the light diffusing film.
  • the light diffusing polarizing plate further includes a pair of protective films laminated on both surfaces of the polarizing film, one of the protective films, the polarizing film, the other protective film, and the light.
  • the diffusible pressure-sensitive adhesive layer and the light diffusion film are laminated in this order.
  • the laser light having a wavelength of 543.5 nm is incident on the light diffusing polarizing plate and is emitted after passing through the polarizing film and the light diffusing film in this order.
  • the ratio L 2 / L of the intensity L 2 of the laser light emitted in a direction inclined by 40 ° from the normal direction with respect to the intensity L 1 of the laser light incident in the normal direction of the light diffusing polarizing plate 1 is preferably 0.0002% or more and 0.01% or less.
  • a backlight device, a light diffusing means, a backlight side polarizing plate, a liquid crystal cell, and the light diffusing polarizing plate are arranged in this order, and are close to the liquid crystal cell.
  • a liquid crystal display device in which the light diffusing polarizing plate is arranged so that the polarizing film and the light diffusing film are located in this order from the side.
  • the light emitted from the light diffusing means has a luminance in a direction inclined by 70 ° from the normal direction of the light diffusing means with respect to the luminance in the normal direction of the light diffusing means. %, And the emitted light preferably includes non-parallel light.
  • the light diffusion means includes, for example, a light diffusion plate and a light deflection plate, and the light diffusion plate and the light deflection plate are arranged in this order from the backlight device side.
  • liquid crystal cell a TN (twisted nematic) liquid crystal cell, an IPS (in-plane switching) liquid crystal cell, a VA (vertical alignment) liquid crystal cell, or the like can be used.
  • TN twisted nematic
  • IPS in-plane switching
  • VA vertical alignment
  • a polarizing plate provided with a light diffusing function by providing a light diffusing layer has sufficient mechanical strength, and displays a good image quality when incorporated in a liquid crystal display device.
  • a polarizing plate can be provided.
  • the liquid crystal display device of the present invention to which the light diffusing polarizing plate is applied can display a good image quality.
  • the light diffusable polarizing plate according to the present invention includes a polarizing film, a light diffusing film, and a light diffusing pressure-sensitive adhesive layer.
  • the total haze of the light diffusable polarizing plate is more than 40% and 85% or less, and the internal haze of the light diffusing polarizing plate is more than 40% and 85% or less.
  • the light diffusable pressure-sensitive adhesive layer is laminated at any position of the polarizing plate.
  • the total haze of the light diffusable pressure-sensitive adhesive layer is 10% or more and 80% or less.
  • the light diffusable polarizing plate according to the present invention has one or a plurality of such light diffusable pressure-sensitive adhesive layers. ADVANTAGE OF THE INVENTION According to this invention, while having high light diffusibility, it can provide the light diffusable polarizing plate which is thin and easy to handle.
  • the liquid crystal display device of the present invention to which the light diffusing polarizing plate is applied can display a good image quality.
  • the total light transmittance (Tt) is the sum of the parallel light transmittance (Tp) and the diffuse light transmittance (Td) that are transmitted coaxially with the incident light.
  • the total light transmittance (Tt) and the diffused light transmittance (Td) are values measured in accordance with JIS K 7361.
  • the “internal haze” of the light diffusing polarizing plate is a haze other than the haze (surface haze) due to the surface shape of the light diffusing polarizing plate among all the hazes.
  • the total haze and / or internal haze When the total haze and / or internal haze is 40% or less, the light scattering property is insufficient and the viewing angle may be narrowed. Further, when the total haze and / or internal haze exceeds 85%, light scattering is too strong. Therefore, when the light diffusing polarizing plate is applied to a liquid crystal display device, for example, in the black display, the front direction of the liquid crystal display device However, the front contrast is lowered due to the fact that light leaking obliquely is scattered in the front direction and the display quality is deteriorated. Further, when the total haze and / or internal haze exceeds 85%, the transparency of the light diffusing polarizing plate tends to be impaired.
  • the total haze and internal haze are each preferably 50% or more and 85% or less, and more preferably 59% or more and 77% or less.
  • the total haze, internal haze, and surface haze of the light diffusing polarizing plate are specifically measured as follows.
  • the total haze is measured by using a haze transmittance meter in accordance with JIS K 7136 (for example, a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.) and total light transmittance (Tt) and diffuse light transmittance. (Td) is measured and calculated by the above formula (1).
  • a triacetyl cellulose film having a haze of approximately 0% is bonded to the light exit surface of the light diffusing polarizing plate using glycerin, and the haze is measured in the same manner as the measurement of the total haze described above.
  • the surface haze caused by the surface shape of the light diffusing polarizing plate is preferably 2% or less. When the surface haze exceeds 2%, whitening tends to occur due to surface irregular reflection. In order to prevent whitening more effectively, the surface haze is preferably 1% or less.
  • Relative scattered light intensity The light diffusable polarizing plate of the present invention is incident on the light diffusing polarizing plate, and the laser light having a wavelength of 543.5 nm emitted after passing through the polarizing film and the light diffusing film in this order, Ratio L 2 / L 1 of the intensity L 2 of the laser beam emitted in a direction inclined by 40 ° from the normal direction with respect to the intensity L 1 of the laser beam incident in the normal direction of the light diffusing polarizing plate ( Relative scattered light intensity) is preferably 0.0002% or more and 0.01% or less.
  • the relative scattered light intensity will be described with reference to FIG.
  • FIG. 1 is a perspective view schematically showing an incident direction of laser light and a transmitted scattered light intensity measurement direction in a light diffusing polarizing plate.
  • a laser beam He having a wavelength of 543.5 nm and an intensity of L 1 incident from the incident surface side of light diffusing polarizing plate 10 in the direction of normal A1 of light diffusing polarizing plate 10 is shown.
  • the transmitted scattered light intensity L 2 of the laser light passing through the light diffusion film in a direction A3 inclined 40 ° from the normal direction A2 after passing in this order
  • the relative scattered light intensity L 2 / L 1 is preferably in the range of 0.0002% to 0.01%. More preferably, the relative scattered light intensity L 2 / L 1 is in the range of 0.0004% to 0.0014%.
  • the relative scattered light intensity L 2 / L 1 is less than 0.0002%, the light scattering property is insufficient and the viewing angle becomes narrow. If it exceeds 0.01%, light scattering is too strong, so when a light diffusing polarizing plate is applied to a liquid crystal display device, for example, in black display, it leaks obliquely with respect to the front direction of the liquid crystal display device. The front contrast is lowered due to the fact that the emitted light is scattered in the front direction by the light diffusion layer, and the display quality is deteriorated.
  • the relative scattered light intensity L 2 / L 1 is more preferably 0.0003% or more and 0.001% or less.
  • an optical power meter for example, “3292 03 optical power sensor” manufactured by Yokogawa Electric Corporation and “3292 optical power meter” manufactured by the same company.
  • the light diffusing pressure-sensitive adhesive layer is laminated at any position of the polarizing plate.
  • the total haze of the light diffusable pressure-sensitive adhesive layer is 10% or more and 80% or less.
  • the total haze of the light diffusable pressure-sensitive adhesive layer is 25% or more and 70% or less. Since the light diffusing polarizing plate according to the present invention has a light diffusing pressure-sensitive adhesive layer, even if the light diffusing film does not have high diffusibility, the light diffusing polarizing plate as a whole achieves a desired haze. be able to. Therefore, sufficient light diffusibility can be ensured as a whole.
  • the total haze of the light diffusable pressure-sensitive adhesive layer can be measured by the same method as the total haze of the light diffusable polarizing plate.
  • FIG. 2 is a schematic cross-sectional view showing the light diffusable polarizing plate of the first embodiment.
  • the light diffusing polarizing plate 100 has a polarizing film 101, and a first protective film 110, a diffusible adhesive layer 104, and a light diffusing film 102 are laminated in this order on one surface of the polarizing film 101.
  • the second protective film 109 is laminated on the other surface of the polarizing film 101.
  • the polarizing film 101 for example, a film made of a polyvinyl alcohol resin, a polyvinyl acetate resin, an ethylene / vinyl acetate (EVA) resin, a polyamide resin, a polyester resin, etc., and a dichroic dye adsorbed and oriented, a molecule A polyvinyl alcohol / polyvinylene copolymer containing an oriented molecular chain of a dichroic dehydrated product of polyvinyl alcohol (polyvinylene) in a partially oriented polyvinyl alcohol film.
  • EVA ethylene / vinyl acetate
  • a dichroic dye adsorbed and oriented a molecule A polyvinyl alcohol / polyvinylene copolymer containing an oriented molecular chain of a dichroic dehydrated product of polyvinyl alcohol (polyvinylene) in a partially oriented polyvinyl alcohol film.
  • polyvinyl alcohol resin a saponified polyvinyl acetate resin
  • examples of the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers with other monomers copolymerizable with vinyl acetate.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the saponification degree of the polyvinyl alcohol-based resin is preferably 98.0 mol% or more. If the saponification degree is less than 98.0 mol%, sufficient optical performance may not be obtained.
  • the saponification degree as used herein is a unit ratio (mol%) representing the ratio of the acetate group contained in the polyvinyl acetate resin, which is a raw material for the polyvinyl alcohol resin, to a hydroxyl group by the saponification step. Is a numerical value defined by the following formula. It can be determined by the method defined in JIS K K 6726 (1994).
  • the polyvinyl alcohol resin used in the present embodiment may be a modified polyvinyl alcohol partially modified.
  • polyvinyl alcohol-based resins modified with olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, alkyl esters of unsaturated carboxylic acids, acrylamide, etc. The average degree of polymerization of the polyvinyl alcohol resin is not particularly limited, but is preferably 100 to 10,000, and more preferably 1500 to 10,000.
  • polyvinyl alcohol-based resin having such characteristics include PVA124H (degree of saponification: 99.9 mol% or more), PVA124 (degree of saponification: 98.0 to 99.0 mol%) manufactured by Kuraray Co., Ltd.
  • PVA117H degree of saponification: 99.3 mol% or more
  • PVA117 degree of saponification: 98.0 to 99.0 mol%)
  • NH-18 degree of saponification: Nippon Synthetic Chemical Industry Co., Ltd.
  • N-300 degree of saponification: 98.0 to 99.0 mol%)
  • JF-17 degree of saponification: 98 manufactured by Nihon Acetate Bipoar Co., Ltd.
  • JF-17L degree of saponification: 98.0-99.0 mol%)
  • JF-20 degree of saponification: 98.0-99.0 mol%) and the like.
  • a film obtained by forming such a polyvinyl alcohol-based resin constitutes the polarizing film 101 according to the present embodiment.
  • the method for forming a polyvinyl alcohol-based resin is not particularly limited, and can be formed by a known method.
  • the polarizing film 101 is preferably uniaxially stretched at a stretch ratio of more than 5 times, more preferably more than 5 times and not more than 17 times.
  • the thickness of the polarizing film 101 is not particularly limited, but is generally preferably 100 ⁇ m or less, more preferably in the range of 10 to 50 ⁇ m, and still more preferably in the range of 25 to 35 ⁇ m from the viewpoint of thinning the polarizing plate.
  • the light diffusion film 102 includes a base film 105 and a light diffusion layer 106 laminated on the base film 105.
  • the light diffusing layer 106 is a layer having a translucent resin 106b as a base material, and the light diffusing agent 106a is dispersed in the translucent resin 106b.
  • the light diffusing film 106 may have a light diffusing layer 702 whose surface is constituted by an uneven surface or a flat surface. Note that another layer (including an adhesive layer) may be provided between the base film 105 and the light diffusion layer 106.
  • the base film 105 of the light diffusing film 102 may be a light-transmitting film, and for example, glass or plastic film can be used.
  • the plastic film only needs to have appropriate transparency and mechanical strength. Specific examples include cellulose acetate resins such as TAC (triacetyl cellulose), acrylic resins, polycarbonate resins, and polyester resins such as polyethylene terephthalate.
  • the layer thickness of the base film 105 is, for example, 10 to 500 ⁇ m, preferably 20 to 300 ⁇ m.
  • the light diffusing layer 106 is a layer having a light transmissive resin 106b as a base material, and a light diffusing agent 106a is dispersed in the light transmissive resin 106b.
  • the translucent resin 106b is not particularly limited as long as it has translucency.
  • an ionizing radiation curable resin such as an ultraviolet curable resin or an electron beam curable resin or a cured product of a thermosetting resin, A thermoplastic resin, a cured product of metal alkoxide, or the like can be used.
  • an ionizing radiation curable resin is preferable because it has high hardness and can impart high scratch resistance as a light diffusion film provided on the surface of the liquid crystal display device.
  • the translucent resin 106b is formed by curing the resin by irradiation or heating with ionizing radiation.
  • the ionizing radiation curable resin examples include polyfunctional acrylates such as polyhydric alcohol acrylic acid or methacrylic acid ester; polyisocyanates synthesized from diisocyanate, polyhydric alcohol and acrylic acid or methacrylic acid hydroxy ester, and the like.
  • polyfunctional acrylates such as polyhydric alcohol acrylic acid or methacrylic acid ester
  • Examples include functional urethane acrylate.
  • polyether resins having an acrylate functional group polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and the like can also be used.
  • thermosetting resin examples include a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, and a silicone resin in addition to a thermosetting urethane resin composed of an acrylic polyol and an isocyanate prepolymer.
  • thermoplastic resins include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, vinylidene chloride and copolymers thereof, and the like.
  • Acetal resins such as polyvinyl formal and polyvinyl butyral; Acrylic resins and copolymers thereof, Acrylic resins such as methacrylic resins and copolymers; Polystyrene resins; Polyamide resins; Polyester resins; Polycarbonate resins Etc.
  • a silicon oxide matrix made of a silicon alkoxide material can be used. Specifically, it is tetramethoxysilane, tetraethoxysilane, or the like, and can be made into an inorganic or organic-inorganic composite matrix (translucent resin) by hydrolysis or dehydration condensation.
  • organic fine particles or inorganic fine particles having translucency can be used as the light diffusing agent 106a in the light diffusing layer 106.
  • organic fine particles made of acrylic resin, melamine resin, polyethylene, polystyrene, organic silicone resin, acrylic-styrene copolymer, etc., and made of calcium carbonate, silica, aluminum oxide, barium carbonate, barium sulfate, titanium oxide, glass, etc.
  • examples include inorganic fine particles.
  • Organic polymer balloons and glass hollow beads can also be used.
  • the light diffusing agent 106a may be composed of one kind of fine particles or may contain two or more kinds of fine particles.
  • the shape of the light diffusing agent 106a may be any of a spherical shape, a flat shape, a plate shape, a needle shape, an indefinite shape, and the like, but a spherical shape or a substantially spherical shape is preferable.
  • the weight average particle diameter of the light diffusing agent 106a is preferably 0.1 ⁇ m or more and 15 ⁇ m or less, and more preferably 1 ⁇ m or more and 10 ⁇ m or less.
  • the weight average particle size of the light diffusing agent 106a is less than 0.1 ⁇ m, visible light having a wavelength region of 380 nm to 800 nm cannot be sufficiently scattered, and the light diffusing property of the light diffusing film 701 becomes insufficient, and the relative scattered light It may be difficult to make the intensity L 2 / L 1 0.0002% or more, and as a result, a wide viewing angle may not be obtained.
  • the weight average particle size exceeds 15 ⁇ m, sufficient light scattering properties may not be obtained, and the relative scattered light intensity L 2 / L 1 may not be 0.0002% or more.
  • the ratio of the standard deviation of the particle size to the weight average particle size (standard deviation / weight average particle size) of the light diffusing agent 106a is preferably 0.5 or less, and more preferably 0.4 or less. When the ratio exceeds 0.5, a light diffusing agent having an extremely large particle size may be included, and protrusion-like defects may occur frequently on the surface of the light diffusing layer. Doing so will cause a reduction in display quality.
  • the weight average particle diameter and the standard deviation of the particle diameter of the light diffusing agent 106a are measured using a Coulter Multisizer (manufactured by Beckman Coulter, Inc.) based on the Coulter principle (pore electrical resistance method).
  • the content of the light diffusing agent 106a in the light diffusion layer 106 is preferably 5 parts by weight or more and 100 parts by weight or less, with respect to 100 parts by weight of the translucent resin 106b, and is 10 parts by weight or more and 40 parts by weight or less. It is more preferable.
  • the refractive index difference between the light diffusing agent 106a and the translucent resin 106b is preferably in the range of 0.01 to 0.2, and more preferably 0.05 to 0.15.
  • the surface of the light diffusion layer 106 (the surface opposite to the base film 105) is formed only by the light-transmitting resin 106b. That is, it is preferable that the light diffusing agent 106 a does not protrude from the surface of the light diffusing layer 106 and is completely buried in the light diffusing layer 106.
  • the layer thickness of the light diffusion layer 106 is preferably 1 to 3 times the weight average particle diameter of the light diffusion agent 106a.
  • the layer thickness of the light diffusing layer 106 is less than 1 times the weight average particle diameter of the light diffusing agent 106 a, the light diffusing agent 106 a easily protrudes from the surface of the light diffusing layer 106. Further, when the layer thickness of the light diffusion layer 106 exceeds three times the weight average particle diameter of the light diffusion agent 106a, the layer thickness of the light diffusion layer 106 becomes too thick.
  • the layer thickness of the light diffusion layer 106 is preferably in the range of 1 to 30 ⁇ m.
  • the layer thickness of the light diffusing layer 106 is less than 1 ⁇ m, sufficient scratch resistance may not be exhibited when the light diffusing polarizing plate is disposed on the viewing side surface of the liquid crystal display device.
  • the layer thickness exceeds 30 ⁇ m, the amount of curl generated in the produced light diffusion film becomes large, and the handleability in pasting to other layers becomes poor.
  • coating of the resin liquid containing the light-diffusion agent 106a and the translucent resin 106b on the base film 105 is a gravure coat method, a micro gravure coat method, a rod coat method, a knife coat method, An air knife coating method, a kiss coating method, a die coating method, or the like can be used.
  • the coating film thickness is adjusted so that the thickness of the light diffusion layer 106 is 1 to 3 times the weight average particle diameter of the translucent fine particles 106b. It is preferable to do.
  • Various surface treatments may be applied to the surface of the base film 105 (surface on the light diffusion layer side) for the purpose of improving the coating property of the resin liquid or improving the adhesion with the light diffusion layer 106.
  • the surface treatment include corona discharge treatment, glow discharge treatment, acid surface treatment, alkali surface treatment, and ultraviolet irradiation treatment.
  • another layer such as a primer layer (easily adhesive layer) may be formed on the base film 105, and the resin liquid may be applied on the other layer.
  • the surface of the base film 105 opposite to the light diffusing layer 106 is subjected to the surface treatment as described above. Is preferred.
  • the light diffusing film 102 can also be obtained by applying a resin liquid in which the light diffusing agent 106a is dispersed on the base film 105 and then transferring the mirror surface or uneven surface of the mold to the surface of the layer made of the resin liquid.
  • a light diffusion layer having a flat surface can be formed by transferring the mirror surface by bringing the mirror surface of a mold having a mirror surface (mirror surface mold) into close contact with the surface of the layer made of the resin liquid.
  • the light diffusing layer having the uneven surface shape as shown in FIG. 2 has the uneven surface of the mold (embossing mold) having an uneven surface adhered to the surface of the layer made of the resin liquid. An uneven surface can be transferred and formed.
  • the mirror surface mold may be a mirror surface metal roll, and the embossing mold may be an embossing metal roll.
  • thermosetting resin or metal alkoxide is used as the resin for forming the translucent resin 106b, a layer made of the above resin solution is formed and dried (removing the solvent) as necessary.
  • the surface of the layer made of the resin liquid is in close contact with or close to the mold mirror surface or uneven surface, and then irradiated with ionizing radiation (when using ionizing radiation curable resin) or heated (thermosetting)
  • the layer made of the resin liquid is cured by using a mold resin or metal alkoxide.
  • the ionizing radiation can be appropriately selected from ultraviolet rays, electron beams, near ultraviolet rays, visible light, near infrared rays, infrared rays, X-rays, etc. depending on the type of resin contained in the resin liquid.
  • ultraviolet rays An electron beam is preferable, and ultraviolet rays are particularly preferable because of easy handling and high energy.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used.
  • an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a xenon arc, and a metal halide lamp are preferably used.
  • the electron beam 50 to 1000 keV emitted from various electron beam accelerators such as Cockloft Walton type, Bande graph type, resonance transformation type, insulation core transformation type, linear type, dynamitron type, and high frequency type, preferably 100 Mention may be made of electron beams having an energy of ⁇ 300 keV.
  • various electron beam accelerators such as Cockloft Walton type, Bande graph type, resonance transformation type, insulation core transformation type, linear type, dynamitron type, and high frequency type, preferably 100 Mention may be made of electron beams having an energy of ⁇ 300 keV.
  • the manufacturing method in order to continuously manufacture the light diffusion film 102, a step of continuously feeding the base film 105 wound in a roll shape, a resin liquid in which the light diffusion agent 106a is dispersed And a step of drying as necessary, a step of curing a layer made of a resin liquid, and a step of winding up the obtained light diffusion film 102.
  • FIG. 3 is a schematic diagram showing a configuration of a manufacturing apparatus for carrying out such a manufacturing method.
  • the base film 105 is continuously unwound by the unwinding device 301.
  • a resin liquid in which the light diffusing agent 106a is dispersed is applied onto the unwound base film 105 using a coating device 302 and a backup roll 303 facing the coating device 302.
  • the resin liquid is dried by passing it through a dryer 304.
  • the base film 105 provided with the layer made of the resin liquid is placed between the mirror metal roll or the embossing metal roll 305 and the nip roll 306, and the layer made of the resin liquid is a mirror metal roll or It winds so that it may contact
  • adhere with the metal roll 305 for embossing Thereby, the mirror surface of the mirror surface metal roll or the uneven surface of the metal roll for embossing is transferred to the surface of the layer made of the resin liquid.
  • a layer made of a resin liquid is obtained by irradiating ultraviolet rays from an ultraviolet irradiation device 308 through the base film 105 in a state where the base film 105 is wound around a mirror surface metal roll or an embossing metal roll 305. Is cured. Since the irradiated surface becomes high temperature due to ultraviolet irradiation, the mirror surface metal roll or the embossing metal roll 305 preferably includes a cooling device for adjusting the surface temperature to about room temperature to 80 ° C. . Further, one or a plurality of ultraviolet irradiation devices 308 can be used.
  • the base film 105 (light diffusion film 102) on which the light diffusion layer 106 is formed is peeled off from the mirror surface metal roll or the embossing metal roll 305 by the peeling roll 307.
  • the light diffusion film 102 produced as described above is taken up by the take-up device 309. At this time, for the purpose of protecting the light diffusing layer 106, it is wound up with a surface protective film made of polyethylene terephthalate, polyethylene, or the like attached to the surface of the light diffusing layer 106 through an adhesive layer having removability. Also good.
  • additional ultraviolet irradiation may be performed after peeling from the mirror surface metal roll or the embossing metal roll 305 by the peeling roll 307.
  • additional ultraviolet irradiation may be performed instead of performing ultraviolet irradiation in a state of being wound around a mirror surface metal roll or an embossing metal roll 305, a base film 105 on which a layer made of an uncured resin liquid is formed is used as a mirror surface metal roll or After peeling from the embossing metal roll 305, it may be cured by irradiation with ultraviolet rays.
  • the light diffusing pressure-sensitive adhesive layer 104 bonds the first protective film 110 and the base film 105 of the light diffusing film 102.
  • the light diffusable pressure-sensitive adhesive layer 104 has a total haze of 10% to 80%.
  • the light diffusing pressure-sensitive adhesive layer 104 has a structure in which a light diffusing agent 104a having light scattering ability is dispersed in a light-transmitting pressure-sensitive adhesive 104b.
  • the light diffusing agent 104a to be used is not particularly limited as long as it scatters light, and either organic fine particles or inorganic fine particles can be used.
  • the material and shape of the light diffusing agent 104a the same material as the light diffusing agent 106a in the light diffusing layer 106 of the light diffusing film 102 described above can be used.
  • the thickness is preferably 15 ⁇ m or less and more preferably 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the addition amount of the light diffusing agent 104a can be appropriately set according to the desired light scattering ability. Preferably, it is blended in the range of 0.5 to 40 parts by weight, particularly 1 to 20 parts by weight with respect to 100 parts by weight of the light-transmitting pressure-sensitive adhesive 104b to be dispersed.
  • the translucent adhesive 104b used for the light diffusable adhesive layer 104 a conventionally well-known appropriate adhesive can be used, for example, an acrylic adhesive, a urethane adhesive, a silicone adhesive, etc. It is done. Among these, an acrylic pressure-sensitive adhesive is preferably used from the viewpoints of transparency, adhesive strength, reliability, reworkability, and the like.
  • the light diffusing pressure-sensitive adhesive layer 104 is formed by applying a coating liquid (for example, a coating liquid containing an organic solvent) containing such a light transmissive pressure-sensitive adhesive 104b and the light diffusing agent 104a to a base film (for example, the first protective film 110 or the like).
  • the light diffusing film 102 can be provided by a method such as coating on a base film 105 or the like of the light diffusion film 102 by a die coater or a gravure coater and drying.
  • a light diffusable pressure-sensitive adhesive layer is formed in the same manner as above on a plastic film (referred to as a separate film) that has been subjected to a release treatment, and the formed sheet-like light diffusable pressure-sensitive adhesive layer is used as a base film. It can also be provided by a transfer method.
  • the thickness of the light diffusing pressure-sensitive adhesive layer 104 is not particularly limited, but is preferably in the range of 2 to 40 ⁇ m.
  • the first protective film 110 and the second protective film 109 may be simple protective films having no optical function, or may be protective films having both optical functions such as a retardation film and a brightness enhancement film.
  • the material of the protective films 109 and 110 is not particularly limited, but examples thereof include a cyclic polyolefin resin film, a cellulose acetate resin film made of a resin such as triacetyl cellulose and diacetyl cellulose, polyethylene terephthalate, and polyethylene naphthalate. Examples thereof include films that have been widely used in the art, such as polyester resin films made of resins such as phthalate and polybutylene terephthalate, polycarbonate resin films, acrylic resin films, and polypropylene resin films.
  • cyclic polyolefin-based resin examples include appropriate commercial products such as Topas (registered trademark) (manufactured by Ticona), Arton (registered trademark) (manufactured by JSR Corporation), ZEONOR (registered trademark) (Nippon ZEON ( ZEONEX (registered trademark) (manufactured by Nippon Zeon Co., Ltd.), Apel (registered trademark) (manufactured by Mitsui Chemicals, Inc.) can be suitably used.
  • Topas registered trademark
  • Arton registered trademark
  • ZEONOR registered trademark
  • Nippon ZEON ZEONEX
  • Apel registered trademark
  • Mitsui Chemicals, Inc. a known method such as a solvent casting method or a melt extrusion method is appropriately used.
  • cyclic polyolefins such as Essina (registered trademark) (manufactured by Sekisui Chemical Co., Ltd.), SCA40 (manufactured by Sekisui Chemical Co., Ltd.), ZEONOR (registered trademark) film (manufactured by Optes Co., Ltd.), etc.
  • Essina registered trademark
  • SCA40 manufactured by Sekisui Chemical Co., Ltd.
  • ZEONOR registered trademark film
  • a commercial product of a film made of a resin may be used.
  • the cyclic polyolefin resin film may be uniaxially stretched or biaxially stretched.
  • An arbitrary retardation value can be imparted to the cyclic polyolefin-based resin film by stretching. Stretching is usually performed continuously while unwinding the film roll, and is stretched in the heating furnace in the roll traveling direction, the direction perpendicular to the traveling direction, or both.
  • the temperature of the heating furnace is usually in the range from the vicinity of the glass transition temperature of the cyclic polyolefin resin to the glass transition temperature + 100 ° C.
  • the stretching ratio is usually 1.1 to 6 times, preferably 1.1 to 3.5 times in one direction.
  • the cyclic polyolefin resin film generally has poor surface activity
  • surface treatment such as plasma treatment, corona treatment, ultraviolet irradiation treatment, flame (flame) treatment, saponification treatment is performed on the surface to be bonded to the polarizing film.
  • plasma treatment and corona treatment that can be performed relatively easily are preferable.
  • Examples of the cellulose acetate-based resin film include commercially available products such as Fujitac (registered trademark) TD80 (manufactured by Fuji Film Co., Ltd.), Fujitac (registered trademark) TD80UF (manufactured by Fuji Film Co., Ltd.), and Fujitac (registered trademark).
  • TD80UZ Fluji Film Co., Ltd.
  • Fujitac registered trademark
  • TD40UZ Fujiji Film Co., Ltd.
  • KC8UX2M Konica Minolta Opto Co., Ltd.
  • KC4UY Konica Minolta Opto Co., Ltd.
  • a liquid crystal layer or the like may be formed on the surface of the cellulose acetate-based resin film in order to improve viewing angle characteristics. Moreover, in order to provide a phase difference, what stretched the cellulose acetate type-resin film may be used.
  • the cellulose acetate-based resin film is usually subjected to a saponification treatment in order to improve the adhesiveness with the polarizing film.
  • a saponification treatment a method of immersing in an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide can be employed.
  • Optical layers such as a hard coat layer, an antiglare layer, and an antireflection layer can be formed on the surfaces of the protective films 109 and 110 as described above.
  • the method for forming these optical layers on the surface of the protective film is not particularly limited, and a known method can be used.
  • the thickness of the protective films 109 and 110 is preferably as thin as possible from the request for thinning, preferably 88 ⁇ m or less, and more preferably 48 ⁇ m or less. On the other hand, if it is too thin, the strength is lowered and the processability is poor, and therefore it is preferably 5 ⁇ m or more.
  • the first protective film 110 and the second protective film 109 may be the same or different.
  • the protective films 109 and 110 and the polarizing film 101 are bonded through, for example, an unillustrated adhesive layer or pressure-sensitive adhesive layer.
  • the bonding surfaces of the protective films 109 and 110 may be subjected to easy adhesion treatment such as corona discharge treatment and primer treatment (formation of a primer layer) prior to bonding with an adhesive or a pressure-sensitive adhesive.
  • Adhesive layer The adhesive used for bonding the protective films 109 and 110 and the polarizing film 101 is, for example, an aqueous adhesive using a polyvinyl alcohol resin aqueous solution, an aqueous two-component urethane emulsion adhesive, or the like. Is mentioned.
  • a polyvinyl alcohol resin aqueous solution is suitably used as an aqueous adhesive for bonding to the polarizing film 101.
  • Polyvinyl alcohol resins used as adhesives include vinyl alcohol homopolymers obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, as well as other single quantities copolymerizable with vinyl acetate. And vinyl alcohol copolymers obtained by saponifying the copolymer with the polymer, and modified polyvinyl alcohol polymers obtained by partially modifying the hydroxyl groups.
  • a polyhydric aldehyde, a water-soluble epoxy compound, a melamine compound, a zirconia compound, a zinc compound, or the like may be added as an additive to the water-based adhesive. When such a water-based adhesive is used, the adhesive layer obtained therefrom is usually 1 ⁇ m or less.
  • the method of bonding the polarizing film 101 and the protective films 109 and 110 using an aqueous adhesive is not particularly limited.
  • the adhesive is uniformly applied to the surfaces of the polarizing film 101 and / or the protective films 109 and 110.
  • coating surface, bonding with a roll etc., and drying is mentioned.
  • the adhesive is applied at a temperature of 15 to 40 ° C., and the laminating temperature is usually in the range of 15 to 30 ° C.
  • the polarizing film 101 and the protective films 109 and 110 are bonded, and then dried to remove water contained in the water-based adhesive.
  • the temperature of the drying furnace is preferably 30 ° C to 90 ° C. When the temperature is lower than 30 ° C., the adhesive surface between the polarizing film 101 and the protective films 109 and 110 tends to be easily peeled off. If it is 90 ° C. or higher, the optical performance may be deteriorated by heat.
  • the drying time can be 10 to 1000 seconds, and particularly from the viewpoint of productivity, it is preferably 60 to 750 seconds, and more preferably 150 to 600 seconds.
  • the temperature at the time of curing is generally set lower than the temperature adopted at the time of drying.
  • a photocurable adhesive can also be used as an adhesive when the polarizing film 101 and the protective films 109 and 110 are bonded together.
  • the photocurable adhesive include a mixture of a photocurable epoxy resin and a photocationic polymerization initiator.
  • a conventionally known method can be used as a method of applying an adhesive to the polarizing film 101 or the protective films 109 and 110.
  • a casting method a Mayer bar coating method, a gravure coating method, a comma coater method, a doctor plate method, a die coating method, a dip coating method, a spraying method and the like can be mentioned.
  • the polarizing film 101 or the protective films 109 and 110 that are the objects to be coated are moved in a substantially vertical direction, a substantially horizontal direction, or an oblique direction between them, and an adhesive is allowed to flow onto the surface. It is a method of spreading.
  • the polarizing film 101 and the protective film 109, 110 are bonded together by sandwiching them with a nip roll or the like through the adhesive application surface.
  • an adhesive is dropped between the polarizing film 101 and the protective films 109 and 110 in a state where the polarizing film 601 and the protective films 109 and 110 are overlapped, and then the laminated body is pressed uniformly with a roll or the like.
  • a method of spreading out can also be suitably used. In this case, a metal, rubber, or the like can be used as the material of the roll.
  • a method of passing the laminate between the rolls and pressurizing and spreading is preferably employed.
  • these rolls may be made of the same material or different materials.
  • the thickness of the adhesive layer after being bonded using the nip roll or the like before drying or curing is preferably 5 ⁇ m or less and 0.01 ⁇ m or more.
  • the surface of the polarizing film 101 and / or the protective film 109, 110 is appropriately subjected to a surface treatment such as a plasma treatment, a corona treatment, an ultraviolet irradiation treatment, a flame (flame) treatment, or a saponification treatment.
  • a surface treatment such as a plasma treatment, a corona treatment, an ultraviolet irradiation treatment, a flame (flame) treatment, or a saponification treatment.
  • a surface treatment such as a plasma treatment, a corona treatment, an ultraviolet irradiation treatment, a flame (flame) treatment, or a saponification treatment.
  • a saponification treatment include a method of immersing in an aqueous alkali solution such as sodium hydroxide or potassium hydroxide.
  • the photocurable adhesive is cured by irradiating active energy rays after the polarizing film 101 and the protective films 109 and 110 are joined.
  • the light source of the active energy ray is not particularly limited, but an active energy ray having a light emission distribution at a wavelength of 400 nm or less is preferable.
  • the low pressure mercury lamp, the medium pressure mercury lamp, the high pressure mercury lamp, the ultrahigh pressure mercury lamp, the chemical lamp, and the black light lamp A microwave excitation mercury lamp, a metal halide lamp and the like are preferably used.
  • the light irradiation intensity to the photocurable adhesive is appropriately determined depending on the composition of the photocurable adhesive and is not particularly limited, but the irradiation intensity in the wavelength region effective for activating the polymerization initiator is 0.1 to 6000 mW / it is preferable that the cm 2.
  • the irradiation intensity is 0.1 mW / cm 2 or more, the reaction time does not become too long, and when it is 6000 mW / cm 2 or less, the epoxy is generated by the heat radiated from the light source and the heat generated when the photo-curable adhesive is cured. There is little risk of yellowing of the resin or deterioration of the polarizing film.
  • the light irradiation time to the photocurable adhesive is not particularly limited and is applied according to the photocurable adhesive to be cured, but the integrated light amount expressed as the product of the irradiation intensity and the irradiation time. Is preferably set to 10 to 10,000 mJ / cm 2 . When the cumulative amount of light to the photocurable adhesive is 10 mJ / cm 2 or more, a sufficient amount of active species derived from the polymerization initiator can be generated to allow the curing reaction to proceed more reliably, and at 10,000 mJ / cm 2 or less. In some cases, the irradiation time does not become too long and good productivity can be maintained.
  • the thickness of the adhesive layer after irradiation with active energy rays is usually about 0.001 to 5 ⁇ m, preferably 0.01 ⁇ m or more and 2 ⁇ m or less, more preferably 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the photocurable adhesive When the photocurable adhesive is cured by irradiation with active energy rays, it is cured under conditions that do not deteriorate the functions of the polarizing plate, such as the degree of polarization, the transmittance and the hue of the polarizing film 101, and the transparency of the protective films 109 and 110. It is preferable to carry out.
  • Adhesive layer The adhesive used for bonding the protective films 109 and 110 and the polarizing film 101 is usually based on an acrylic resin, a styrene resin, a silicone resin, etc., and an isocyanate compound. And a composition to which a crosslinking agent such as an epoxy compound or an aziridine compound is added. Furthermore, like the light diffusable pressure-sensitive adhesive layer 104 described above, a pressure-sensitive adhesive layer containing a light diffusing agent and exhibiting light diffusibility can also be used.
  • the thickness of the pressure-sensitive adhesive layer is preferably 1 to 40 ⁇ m, but it is preferably thinly applied as long as the workability and durability characteristics are not impaired, and more preferably 3 to 25 ⁇ m. When the thickness is 3 to 25 ⁇ m, it has good processability and is also suitable for suppressing the dimensional change of the polarizing film. When the pressure-sensitive adhesive layer is less than 1 ⁇ m, the tackiness is lowered, and when it exceeds 40 ⁇ m, problems such as the pressure-sensitive adhesive protruding easily occur.
  • the protective film 109 and 110 may be bonded to the polarizing film 101 after providing an adhesive layer on the surface of the protective film 109 or 110. After providing the pressure-sensitive adhesive layer on the surface, protective films 109 and 110 may be bonded thereto.
  • the method for forming the pressure-sensitive adhesive layer is not particularly limited, and a solution containing each component including the above-mentioned base polymer is applied to the protective film 109, 110 surface or the polarizing film 101 surface and dried.
  • the protective films 109 and 110 and the polarizing film 101 may be bonded together, or after forming the pressure-sensitive adhesive layer on the separator, the surface is transferred to the protective film 109 or 110 surface or the polarizing film 101 surface. And may be laminated.
  • an adhesion treatment is performed on the surface of the protective film 109, 110 or the polarizing film 101, or one or both of the pressure-sensitive adhesive layer, if necessary. Corona treatment or the like may be performed.
  • the light diffusing polarizing plate of the present embodiment having the above-described configuration can be used by stacking other optical layers in practical use.
  • the protective films 109 and 110 may have the functions of these optical layers.
  • other optical layers include a reflective polarizing film that transmits certain types of polarized light and reflects polarized light that exhibits the opposite properties, a film with an antiglare function having an uneven shape on the surface, and a surface antireflection function. Examples thereof include an attached film, a reflective film having a reflective function on the surface, a transflective film having both a reflective function and a transmissive function, and a viewing angle compensation film.
  • the viewing angle compensation film examples include an optical compensation film coated with a liquid crystal compound on the surface of the substrate and oriented, a retardation film made of a polycarbonate resin, and a retardation film made of a cyclic polyolefin resin.
  • the light diffusing layer 106 of the light diffusing film 102 and these optical layers are similar to each other through the same adhesive layer or pressure-sensitive adhesive layer as described in the bonding of the protective films 109 and 110 and the polarizing film 101 described above. It can be bonded by the method.
  • FIG. 4 is a schematic cross-sectional view showing the light diffusing polarizing plate of the second embodiment.
  • a light diffusing polarizing plate 200 has a polarizing film 101, and a light diffusing film 102, a light diffusing pressure-sensitive adhesive layer 104, and a surface treatment film 107 are laminated in this order on one surface of the polarizing film 101.
  • a protective film 109 is laminated on the other surface of the polarizing film 101.
  • the light diffusion film 102 includes a base film 105 and a light diffusion layer 106. Since the base film 105 is laminated immediately above the polarizing film 101, it also serves as a protective film.
  • the light diffusing polarizing plate 200 of this embodiment is partially different from the light diffusing polarizing plate 100 of the first embodiment in the stacking order, but the polarizing film 101, the protective film 109, the light diffusing film 102, and the light diffusing property. Since the detailed structure of the adhesive layer 104 is as described in the first embodiment, the same members are denoted by the same reference numerals and description thereof is omitted. In the present embodiment, the light diffusive pressure-sensitive adhesive layer 104 plays a role of bonding the light diffusion layer 106 of the light diffusion film 102 and the surface treatment film 107.
  • the surface treatment film 107 is a film in which one surface of the transparent resin film (the surface opposite to the light diffusable pressure-sensitive adhesive layer 104 side) is optically treated. It can be a film in which a surface treatment layer having a desired optical function is formed on one surface.
  • a resin film made of cellulose acetate resin such as TAC (triacetyl cellulose), acrylic resin such as polymethyl methacrylate, polycarbonate resin, and polyester resin such as polyethylene terephthalate is used. Can do.
  • the thickness of the transparent resin film is, for example, 10 to 500 ⁇ m, preferably 20 to 300 ⁇ m.
  • the surface treatment layer is an antiglare layer having surface irregularities that uses irregular reflection on the surface to reduce or prevent reflection on the display screen (that is, the above optical treatment is performed).
  • Anti-glare film (which is anti-glare treatment) and anti-reflection layer that reduces or prevents reflection on the display screen by reducing or preventing reflection of external light incident on the display screen by the surface treatment layer (ie, And the optical treatment is an antireflection treatment).
  • an antiglare film for example, a gold resin having a predetermined surface irregularity shape is formed on an ultraviolet curable resin layer formed after coating an ultraviolet curable resin composition containing or not containing fine particles on a transparent resin film.
  • the UV curable resin layer is cured while pressing the uneven surface of the mold to apply a predetermined surface unevenness to the antiglare layer, or an ultraviolet curable resin composition containing fine particles on the transparent resin film.
  • an anti-glare layer provided with predetermined surface irregularities by fine particles by curing the ultraviolet curable resin layer without using a mold.
  • a commercially available anti-glare film can also be used as the anti-glare film.
  • the antireflection film examples include a low refractive index layer made of a material lower than the refractive index of the light diffusive pressure-sensitive adhesive layer 104 as an antireflection layer, and a refractive index of the light diffusable pressure sensitive adhesive layer 104.
  • Examples include an antireflection layer having a laminated structure of a high refractive index layer composed of a high material and a low refractive index layer composed of a material lower than the refractive index of the high refractive index layer.
  • the low refractive index layer is made of, for example, silica, metal fluoride fine particles (LiF, MgF, 3NaF / AlF, AlF, Na 3 AlF 6 etc.), fine particles having voids inside (hollow silica fine particles etc.), fluorine-containing polymer, etc. It can contain a low refractive index material and a binder resin.
  • the binder resin forming material may be a conventionally known material, such as polysiloxane resin, hydrolyzate of silicon alkoxide, light or thermosetting multi-branched compound (dendrimer, hyperbranched polymer, etc.), other light or thermosetting resin. Can be used.
  • One or more of other layers such as a hard coat layer and an antistatic layer may be interposed between the transparent resin film and the low refractive index layer or the high refractive index layer.
  • a commercially available antireflection film can also be used as the antireflection film.
  • FIG. 5 is a schematic cross-sectional view showing the light diffusing polarizing plate of the third embodiment.
  • the light diffusing polarizing plate 300 includes a polarizing film 101, and a first protective film 110, a light-transmitting pressure-sensitive adhesive layer 108, a light diffusing film 102, a light diffusing on one surface of the polarizing film 101.
  • the adhesive layer 104 and the surface treatment film 107 are laminated in this order, and the second protective film 109 is laminated on the other surface of the polarizing film 101.
  • the same members as those in the first embodiment and the second embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the light diffusive pressure-sensitive adhesive layer 104 plays a role of bonding the light diffusion layer 106 of the light diffusion film 102 and the surface treatment film 107.
  • the translucent adhesive layer 108 plays the role which bonds the 1st protective film 110 and the base film 105 of a light-diffusion film.
  • the translucent pressure-sensitive adhesive layer 108 is not limited as long as it has translucency and has an action of bonding the first protective film 110 and the base film 105 of the light diffusion film.
  • the adhesive layer demonstrated as an adhesive layer used for bonding of the protective films 109 and 110 and the polarizing film 101 is used suitably.
  • the light diffusing polarizing plate having the above-described configuration is preferably used as a polarizing plate on the viewing side of a liquid crystal display device, and typically a liquid crystal display so that the light diffusing film 102 is positioned on the viewing side from the polarizing sheet 101. Built into the device.
  • the liquid crystal display device of the present invention comprises a backlight device, a light diffusion means, a backlight side polarizing plate, a liquid crystal cell, and the light diffusing polarizing plate of the present invention in this order.
  • FIG. 6 is a schematic sectional view showing a preferred example of the liquid crystal display device of the present invention.
  • a liquid crystal display device 400 in FIG. 6 is a normally white mode TN liquid crystal display device, and includes a backlight device 402, a light diffusion means 403, a backlight side polarizing plate 404, and a pair of transparent substrates 411a and 411b.
  • the backlight side polarizing plate 404 and the light diffusing polarizing plate 405 are disposed so that their transmission axes have a crossed Nicols relationship.
  • the adhesive layer or the adhesive layer is bonded to the protective films 109 and 110 and the polarizing film 101 in the above.
  • the same material as that described as the pressure-sensitive adhesive layer or adhesive layer used for combining can be used, or the same material as that described above as the light-diffusing pressure-sensitive adhesive layer 104 can also be used.
  • an adhesive layer similar to the above-described light diffusing adhesive layer 104 can be used.
  • the backlight device 402 is a direct-type backlight device including a rectangular parallelepiped case 421 having an upper surface opening and a plurality of cold cathode tubes 422 as linear light sources arranged in parallel in the case 421.
  • the light diffusion means 403 is provided on the light diffusion plate 403a disposed on the backlight device 402 and on the front side of the light diffusion plate 403a (between the light diffusion plate 403a and the backlight side polarizing plate 404). And an optical deflection plate (prism sheet) 403b.
  • the light emitted from the backlight device 402 is diffused by the light diffusing plate 403a of the light diffusing means 403, and then the light incident surface of the liquid crystal cell 401 by the light deflecting plate 403b.
  • Predetermined directivity with respect to the normal direction is given.
  • the directivity with respect to the normal direction is set higher than that of the conventional apparatus.
  • the light having a predetermined directivity is polarized by the backlight side polarizing plate 404 and enters the liquid crystal cell 401.
  • Light incident on the liquid crystal cell 401 is emitted from the liquid crystal cell 401 after the polarization state is controlled by the liquid crystal layer 412.
  • the light emitted from the liquid crystal cell 401 is diffused by the light diffusing polarizing plate 405.
  • the directivity in the normal direction of the light incident on the liquid crystal cell 401 in the light diffusing unit 403 is made higher than that in the conventional case, that is, the incident light to the liquid crystal cell 401 is reduced. It is assumed that the light is more concentrated than before, and is further diffused by the light diffusing polarizing plate 405. As a result, image quality such as color reproducibility superior to that of the conventional apparatus can be obtained.
  • the liquid crystal cell 401 includes a pair of transparent substrates 411a and 411b arranged to face each other with a predetermined distance by a spacer, and a liquid crystal layer 412 formed by sealing liquid crystal between the pair of transparent substrates 411a and 411b.
  • the pair of transparent substrates 411a and 411b are each formed by laminating a transparent electrode and an alignment film, and the liquid crystal is aligned by applying a voltage based on display data between the transparent electrodes.
  • the display method of the liquid crystal cell 401 is the TN method in the above example, but a display method such as an IPS method or a VA method may also be adopted.
  • the backlight device 402 includes a rectangular parallelepiped case 421 having an upper surface opening, and a plurality of cold cathode tubes 422 as linear light sources arranged in parallel in the case 421.
  • the case 421 is formed from a resin material or a metal material, and at least the inner peripheral surface of the case 421 may be white or silver from the viewpoint of reflecting the light emitted from the cold cathode tube 422 on the inner peripheral surface of the case 421. desirable.
  • LEDs of various shapes such as a linear shape can be used in addition to a cold cathode tube.
  • the number of the linear light sources to be arranged is not particularly limited, but the distance between the centers of the adjacent linear light sources is in the range of 15 mm to 150 mm from the viewpoint of suppressing luminance unevenness on the light emitting surface. It is preferable.
  • the backlight device 402 used in the present embodiment is not limited to the direct type shown in FIG. 5, but is a sidelight type in which a linear light source or a point light source is arranged on the side surface of the light guide plate, or Various types such as a planar light source type can be used.
  • the light diffusing unit 403 includes a light diffusing plate 403 a disposed on the backlight device 402, a front surface side of the light diffusing plate 403 a (a light diffusing plate 403 a and a backlight side polarizing plate 404. And a light deflector plate (prism sheet) 403b provided between the two.
  • the light diffusing plate 403 a can be a film or a sheet in which a light diffusing agent 440 is dispersed and mixed with a base material 430.
  • polycarbonate resin methacrylic resin, methyl methacrylate-styrene copolymer resin, acrylonitrile-styrene copolymer resin, methacrylic acid-styrene copolymer resin, polystyrene resin, polyvinyl chloride resin
  • Polyolefin resins such as polypropylene and polymethylpentene, cyclic polyolefin resins, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyamide resins, polyarylate resins, and polyimide resins can be used.
  • the light diffusing agent 440 mixed and dispersed in the base material 430 is not particularly limited as long as it is a fine particle made of a material having a refractive index different from that of the material to be the base material 430.
  • Organic fine particles consisting of various acrylic resins, melamine resins, polyethylene resins, polystyrene resins, organic silicone resins, acrylic-styrene copolymer resins, etc., and calcium carbonate, silica, aluminum oxide, barium carbonate, barium sulfate, titanium oxide, Examples include inorganic fine particles made of glass.
  • the weight average particle diameter of the light diffusing agent 440 is preferably in the range of 0.5 to 30 ⁇ m.
  • the light diffusing agent 440 may have a spherical shape, a flat shape, a plate shape, a needle shape, or the like, but is preferably a spherical shape.
  • the light deflection plate (prism sheet) 403b has a flat surface on the light incident surface side (backlight device 402 side) and a tapered cross section on the light emission surface (surface facing the backlight side polarizing plate 404).
  • the material of the light deflector 403b include polycarbonate resins, ABS resins, methacrylic resins, methyl methacrylate-styrene copolymer resins, polystyrene resins, acrylonitrile-styrene copolymer resins, and polyolefin resins such as polyethylene and polypropylene.
  • Examples thereof include resins.
  • a normal thermoplastic resin molding method can be used, and examples thereof include hot press molding using a mold and extrusion molding.
  • the thickness of the light deflection plate 403b is usually 0.1 to 15 mm, preferably 0.5 to 10 mm.
  • the light diffusing plate 403a and the light deflecting plate 403b may be integrally formed, or may be formed separately and then joined. Further, in the case of separately producing and joining, the light diffusing plate 403a and the light deflecting plate 403b may be contacted via an air layer. Further, the light diffusion plate 403a and the light deflection plate 403b may be arranged apart from each other.
  • the light diffusing means 403 may be one in which a light diffusing function is imparted by dispersing and mixing a light diffusing agent 440 to a light deflecting plate 403b having a light deflecting function.
  • FIG. 9 shows another example of the light diffusing means.
  • the light diffusing unit 403 may include two light deflecting plates (prism sheets) disposed on the front side of the light diffusing plate 403a.
  • the direction of the ridge line 451 of the linear prism 450 is substantially the same as the transmission axis direction of the backlight side polarizing plate 404.
  • the light deflection plate 403b ′ arranged so as to be parallel to each other and disposed on the front side of the light deflection plate 403b has the direction of the ridge line 451 ′ of the linear prism 450 ′ as the transmission axis direction of the light diffusing polarizing plate 405.
  • the direction of the ridge line 451 ′ of the linear prism 450 ′ of the light deflector 403b ′ is substantially parallel to the transmission axis direction of the backlight side polarizing plate 404, and the linear prism 450 of the light deflector 403b. It is also possible to arrange the ridge line 451 so that the direction of the ridge line 451 is substantially parallel to the transmission axis direction of the light diffusing polarizing plate 405.
  • FIG. 10 shows an example of a method of measuring the luminance value in the direction of 70 ° with respect to the normal line of the light incident surface of the liquid crystal cell with respect to the light diffusion means.
  • the light distribution characteristic of the light that has passed through the light diffusing means 403 is that the luminance value in the direction inclined by 70 ° from the normal direction of the light incident surface of the liquid crystal cell 401 is the front luminance value, that is, the light incident surface of the liquid crystal cell 401. It is preferable that the luminance value is 20% or less with respect to the luminance value in the normal direction, and the emitted light from the light diffusion means 403 includes non-parallel light.
  • a more preferable light distribution characteristic is to prevent light exceeding 60 ° from the normal line of the light incident surface of the liquid crystal cell 401.
  • the back surface of the light diffusing means 403 and the light incident surface of the liquid crystal cell 401 are arranged in parallel, so that the 70 ° direction of the light incident surface of the liquid crystal cell 401 is normal.
  • the luminance value is a normal line to the xy plane when the longitudinal direction of the light diffusing unit 403 is the x direction and the plane parallel to the back surface of the light diffusing unit 403 is the xy plane.
  • the luminance value is in the direction of 70 ° with respect to the z axis, and preferably the luminance value in the direction in which the angle formed with the z axis on the xz plane is 70 °.
  • the shape of the linear prism 450 (and / or the linear prism 450 ') having a triangular cross section of the light deflection plate 403b may be adjusted.
  • the apex angle ⁇ (see FIGS. 7 and 8) of the linear prisms 450 and 450 ′ is preferably in the range of 60 to 120 °, more preferably 90 to 110 °.
  • an equal side and an unequal side can be arbitrary, but an isosceles triangle is preferable when concentrating in the normal direction of the liquid crystal cell 401 (front direction of the liquid crystal display device).
  • the prism surface composed of linear prisms is arranged sequentially so that the bases corresponding to the apex angles of the triangles are adjacent to each other, and a plurality of linear prisms are arranged so as to be substantially parallel to each other. Is preferred.
  • the V-shaped grooves formed by the apexes of the linear prisms and the adjacent linear prisms may be curved as long as the light collecting ability is not significantly reduced.
  • the distance between the ridgelines of the linear prism (distance d shown in FIGS. 7 and 8) is usually in the range of 10 ⁇ m to 500 ⁇ m, and preferably in the range of 30 ⁇ m to 200 ⁇ m.
  • FIG. 11 is a diagram for explaining the definition of non-parallel light.
  • non-parallel light is parallel to the emission surface, which is 1 m away from the inside of a circle having a diameter of 1 cm on the emission surface of the light diffusing means 403 and is 1 m away from the normal direction of the emission surface.
  • the light When viewed as a projection image on a simple observation surface, the light has an emission characteristic such that the minimum half-value width of the in-plane luminance distribution of the projection image is 30 cm or more.
  • Backlight side polarizing plate As the backlight-side polarizing plate 404, a polarizing film in which a protective film is bonded to one side or both sides can be usually used. As a polarizing film and a protective film, what was mentioned above about the light diffusable polarizing plate can be used.
  • FIG. 12 is a schematic cross-sectional view showing another preferred example of the liquid crystal display device of the present invention.
  • the liquid crystal display device of the present embodiment can include a retardation plate 406.
  • the retardation film 406 is disposed between the backlight side polarizing plate 404 and the liquid crystal cell 401.
  • This phase difference plate 406 has a substantially zero phase difference in a direction perpendicular to the surface of the liquid crystal cell 401, has no optical effect from the front, and has a phase difference when viewed from an oblique direction. It is expressed and compensates for the phase difference generated in the liquid crystal cell 401.
  • the retardation plate 406 can be disposed between the backlight side polarizing plate 404 and the liquid crystal cell 401, or between the light diffusing polarizing plate 405 and the liquid crystal cell 401, or both.
  • the retardation film 406 can be laminated on the protective film of the backlight-side polarizing plate 404, or can be laminated directly on the polarizing film so as to function as a protective film. The same applies to the light diffusing polarizing plate 405.
  • phase difference plate 406 for example, a polycarbonate resin or a cyclic olefin polymer resin is used as a film, and this film is further biaxially stretched, or a liquid crystalline monomer is applied to the film, and its molecular arrangement is changed by a photopolymerization reaction. Immobilized ones are listed.
  • the phase difference plate 406 optically compensates for the alignment of the liquid crystal, and therefore has a refractive index characteristic opposite to that of the liquid crystal alignment.
  • a TN mode liquid crystal cell for example, “WV film” (manufactured by FUJIFILM Corporation)
  • STN mode liquid crystal display cell for example, “LC film” (manufactured by Nippon Oil Corporation)
  • LC film manufactured by Nippon Oil Corporation
  • IPS mode liquid crystal display cells for example, a biaxial retardation film
  • VA mode liquid crystal display cells for example, a retardation plate or a biaxial retardation film combining a A plate and a C plate
  • a ⁇ cell for the mode liquid crystal display cell, for example, “OCB WV film” (manufactured by FUJIFILM Corporation) can be suitably used.
  • the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
  • the method of measuring the weight average particle size of is as follows.
  • a “3292 03 optical power sensor” manufactured by Yokogawa Electric Corporation and a “3292 optical power meter” manufactured by the same company were used.
  • a light source for irradiating a He—Ne laser was disposed at a position of 430 mm from the glass substrate.
  • the power sensor which is a light receiver, was arranged in a direction A3 inclined by 40 ° from the normal direction on the light diffusion layer side of the sample at a position 280 mm from the emission point of the laser beam.
  • (C) Thickness of the light diffusion layer The thickness of the light diffusion film is measured using DIGIMICRO MH-15 (main body) and ZC-101 (counter) manufactured by NIKON, and the thickness of the base sheet is subtracted from the measurement layer thickness. Thus, the thickness of the light diffusion layer was measured.
  • ⁇ Light diffusion film> [Preparation of mirror surface metal roll]
  • the surface of an iron roll having a diameter of 200 mm (STKM13A by JIS) was subjected to industrial chrome plating, and the surface was then mirror-polished to produce a mirror-surface metal roll.
  • the Vickers hardness of the chrome-plated surface of the obtained mirror surface metal roll was 1000.
  • the Vickers hardness was measured according to JIS Z 2244 using an ultrasonic hardness meter MIC10 (manufactured by Krautkramer).
  • polystyrene particles having a weight average particle size of 7.2 ⁇ m, a standard deviation of 0.52 ⁇ m, and a refractive index of 1.59 are used as a light diffusing agent with respect to 100 parts by weight of the solid content of the ultraviolet curable resin composition.
  • 35 parts by weight and 5 parts by weight of “Lucirin TPO” manufactured by BASF, chemical name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide
  • a coating solution was prepared by diluting with propylene glycol monomethyl ether.
  • This coating solution was coated on a 80 ⁇ m thick triacetyl cellulose (TAC) film (base film) and dried for 1 minute in a dryer set at 80 ° C.
  • TAC triacetyl cellulose
  • the base film after drying was brought into close contact with the mirror surface of the mirror-finished metal roll produced above with a rubber roll so that the ultraviolet curable resin composition layer was on the roll side.
  • light from a high-pressure mercury lamp having an intensity of 20 mW / cm 2 is irradiated from the base film side so as to be 300 mJ / cm 2 in terms of the amount of h-line conversion, and the ultraviolet curable resin composition layer is cured and flattened.
  • the light-diffusion film which consists of a light-diffusion layer and a base film which have an appropriate surface was obtained.
  • the thickness of the light diffusion layer after curing was 8 ⁇ m.
  • the above-mentioned bending strength test was done about the obtained light-diffusion film. Evaluation was (circle).
  • Production Example 2 A light diffusion film was obtained using the same material and the same method as in Production Example 1. The thickness of the light diffusion layer after curing was 13 ⁇ m. Moreover, the above-mentioned bending strength test was done about the obtained light-diffusion film. Evaluation was (circle).
  • Production Example 3 A light diffusing film was obtained by the same material and the same method as in Production Example 1 except that the amount of the light diffusing agent was 43 parts by weight with respect to 100 parts by weight of the solid content of the ultraviolet curable resin composition.
  • the thickness of the light diffusion layer after curing was 10 ⁇ m.
  • the above-mentioned bending strength test was done about the obtained light-diffusion film. Evaluation was x.
  • ⁇ Adhesive layer> (1) Production example a A base paint in which 1.5 parts by weight of an isocyanate curing agent (D-90; manufactured by Soken Chemical Co., Ltd.) is added to 100 parts by weight of an acrylic pressure-sensitive adhesive having a refractive index of 1.50. .43, 3 parts by weight of silicon resin beads having a weight average particle diameter of 1.0 ⁇ m were added, and the mixture was stirred with an agitator for 1 hour to prepare an adhesive. Then, this pressure-sensitive adhesive was applied to an 8 ⁇ m-thick release sheet (PET3801, manufactured by Lintec Corporation), dried to form a pressure-sensitive adhesive layer, and then a release sheet (K-14, manufactured by Teijin Limited) on the pressure-sensitive adhesive layer. Were bonded together to obtain an adhesive sheet. The thickness of the pressure-sensitive adhesive layer after drying was 25 ⁇ m, the total haze of the pressure-sensitive adhesive layer was 25%, and a light diffusable pressure-sensitive adhesive layer was obtained.
  • Production example c Adhesive prepared by mixing an appropriate amount of silicone resin beads “Tospearl 145” (made by Momentive Performance Materials Japan Co., Ltd.) as a light diffusing agent with a general-purpose acrylic transparent adhesive. Except for the points used, a pressure-sensitive adhesive sheet was obtained using the same material and the same method as in Production Example a. The thickness of the pressure-sensitive adhesive layer after drying was 25 ⁇ m, the total haze of the pressure-sensitive adhesive layer was 33%, and a light diffusable pressure-sensitive adhesive layer was obtained.
  • Adhesive prepared by mixing an appropriate amount of silicone resin beads “Tospearl 145” (made by Momentive Performance Materials Japan Co., Ltd.) as a light diffusing agent with a general-purpose acrylic transparent adhesive. Except for the points used, a pressure-sensitive adhesive sheet was obtained using the same material and the same method as in Production Example a. The thickness of the pressure-sensitive adhesive layer after drying was 25 ⁇ m, the total haze of the pressure-sensitive adhesive layer was 60%, and a light diffusable pressure-sensitive adhesive layer was obtained.
  • Production example e Adhesive prepared by mixing an appropriate amount of silicone resin beads “Tospearl 145” (made by Momentive Performance Materials Japan Co., Ltd.) as a light diffusing agent with a general-purpose acrylic transparent adhesive. Except for the points used, a pressure-sensitive adhesive sheet was obtained using the same material and the same method as in Production Example a. The thickness of the pressure-sensitive adhesive layer after drying was 25 ⁇ m, the total haze of the pressure-sensitive adhesive layer was 70%, and a light diffusable pressure-sensitive adhesive layer was obtained.
  • Example 1 One release sheet is peeled off from the light diffusing film produced in Production Example 1 and the adhesive layer produced in Production Example a is applied to obtain a laminate, and the relative scattered light intensity and haze are measured by the above methods. did. Thereafter, the other release sheet was further peeled off and attached to an iodine polarizing plate (“TRW842AP7” manufactured by Sumitomo Chemical Co., Ltd.), and an iodine polarizing plate, an adhesive layer, and a light diffusion film were laminated in this order. The light diffusable polarizing plate of Example 1 was obtained.
  • TRW842AP7 manufactured by Sumitomo Chemical Co., Ltd.
  • Example 2 One release sheet is peeled off from the light diffusion film produced in Production Example 3 and the adhesive layer produced in Production Example c is applied to obtain a laminate, and the relative scattered light intensity and haze are measured by the above methods. did. Thereafter, the other release sheet was further peeled off and attached to an iodine polarizing plate (“TRW842AP7” manufactured by Sumitomo Chemical Co., Ltd.), and an iodine polarizing plate, an adhesive layer, and a light diffusion film were laminated in this order. The light diffusable polarizing plate of Example 2 was obtained.
  • TRW842AP7 manufactured by Sumitomo Chemical Co., Ltd.
  • Example 3 One release sheet is peeled off to the light diffusion film produced in Production Example 3, the adhesive layer produced in Production Example d is applied, and the other release sheet is further peeled off to remove the iodine-based polarizing plate (Sumitomo Chemical Co., Ltd.).
  • Example 4 One release sheet is peeled off from the light diffusion film produced in Production Example 3 and the pressure-sensitive adhesive layer produced in Production Example e is applied, and the other release sheet is further peeled off to remove the iodine-based polarizing plate (Sumitomo Chemical Co., Ltd.).
  • Comparative Example 1 One release sheet is peeled off from the light diffusion film produced in Production Example 1 and the pressure-sensitive adhesive layer produced in Production Example b is applied, and the other release sheet is further peeled off to remove the iodine-based polarizing plate (Sumitomo Chemical Co., Ltd.).
  • a liquid crystal display device was produced using the obtained light diffusing polarizing plate, and the image quality was comprehensively evaluated based on the front contrast, the viewing angle, the degree of moire, and the degree of whitishness.
  • a light diffusing plate was arranged on the backlight device of the Panasonic IPS mode 32-inch LCD TV “VIERA TH-32LZ85”, and a plurality of linear prisms having an apex angle of 95 ° were arranged in parallel. Two prism films were used, and these were arranged between the light diffusion plate and the backlight side polarizing plate.
  • one prism film (prism film close to the backlight device) is arranged so that the direction of the ridgeline of the linear prism is substantially parallel to the transmission axis of the backlight side polarizing plate, and the other prism film ( The prism film near the backlight side polarizing plate) was arranged so that the direction of the ridgeline of the linear prism was substantially parallel to the transmission axis of the viewing side polarizing plate (light diffusing polarizing plate) described later.
  • the luminance value in the direction of 70 ° with respect to the normal direction was 10% of the luminance value in the normal direction.
  • the viewing-side polarizing plate was peeled off, and the light-diffusing polarizing plates of Examples 1 to 4 and Comparative Examples 1 and 2 were bonded to the backlight-side polarizing plate so as to be crossed Nicols, and the liquid crystal display device Got.
  • the light diffusion films of Examples 1 to 4 are thinner than the light diffusion film (Production Example 2) used in Comparative Example 2.
  • Table 1 according to the liquid crystal display device using the light diffusing polarizing plate according to Examples 1 to 4, good image quality can be obtained.
  • the liquid crystal display device using the light diffusing polarizing plate of Comparative Example 2 in which the light diffusing film is thickened to increase the light diffusing property, the same image quality can be obtained, but in this case, the light diffusing film is weak against bending. It becomes difficult to handle. Therefore, according to the present invention, it is possible to contribute to the thinning of the liquid crystal display device by thinning the polarizing film while exhibiting good display characteristics, and the mechanical strength is strong and the handling becomes easy.
  • the light diffusing polarizing plate according to the present invention is a polarizing plate provided with a light diffusing function by providing a light diffusing layer, and has a sufficient mechanical strength, so that it is good when incorporated in a liquid crystal display device. Display with high image quality. Therefore, the light diffusing polarizing plate and the liquid crystal display device using the same according to the present invention are suitable for use in mobile phones, personal computer monitors, televisions, liquid crystal projectors, and the like.

Abstract

Disclosed is a polarization plate to which light-diffusion functionality is imparted via the provision of a light-diffusing layer. Said polarization plate has sufficient mechanical strength, and when incorporated into a liquid-crystal display device, can provide high-quality display. Also disclosed is a liquid-crystal display device using said polarization plate. The disclosed light-diffusing polarization plate (100) comprises a protective film (109), a polarizing film (101), a protective film (110), a light-diffusing adhesive layer (104), and a light-diffusing film (102), layered in that order. The light-diffusing polarization plate (100) exhibits a total haze value and an internal haze value that are both greater than 40% and no greater than 85%. The light-diffusing adhesive layer (104) exhibits a total haze value between 10% and 80%.

Description

光拡散性偏光板および液晶表示装置Light diffusing polarizing plate and liquid crystal display device
 本発明は、光拡散性偏光板、および当該光拡散性偏光板を用いた液晶表示装置に関する。 The present invention relates to a light diffusing polarizing plate and a liquid crystal display device using the light diffusing polarizing plate.
 近年、液晶表示装置は、携帯電話、パソコン用モニター、テレビ、液晶プロジェクタなどへの用途展開が急速に進んでいる。一般に、液晶表示装置は、バックライト装置と、液晶セル、該液晶セルのバックライト側に配置された背面側偏光板および該液晶セルの視認側に配置された前面側偏光板からなる液晶パネルと、を含んで構成される。 In recent years, the use of liquid crystal display devices in mobile phones, monitors for personal computers, televisions, liquid crystal projectors, etc. is rapidly progressing. In general, a liquid crystal display device includes a backlight device, a liquid crystal panel including a liquid crystal cell, a back side polarizing plate disposed on the backlight side of the liquid crystal cell, and a front side polarizing plate disposed on the viewing side of the liquid crystal cell. , Including.
 従来、液晶表示装置においては、表示画面を斜め方向から見た場合に、高いコントラストが得られない、さらには画像の明暗が逆転する階調反転現象等により良好な表示特性が得られないなどといった問題、すなわち、視野角が狭いという問題が指摘されてきた。 Conventionally, in a liquid crystal display device, when the display screen is viewed from an oblique direction, high contrast cannot be obtained, and further, good display characteristics cannot be obtained due to a gradation reversal phenomenon in which the contrast of the image is reversed. The problem, that is, the problem that the viewing angle is narrow has been pointed out.
 上記問題点を解決するための方法として、液晶表示装置の視認側表面に光拡散フィルムを設ける技術が従来知られている。たとえば、特開2007-94369号公報(特許文献1)および特開2002-107512号公報(特許文献2)には、微粒子(光拡散剤)を含有する塗布液を基材上に塗布することにより形成される高ヘイズの光拡散層を有する光拡散フィルム(光拡散シート)が開示されている。 As a method for solving the above problems, a technique of providing a light diffusion film on the viewing side surface of a liquid crystal display device is conventionally known. For example, in Japanese Patent Application Laid-Open No. 2007-94369 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2002-107512 (Patent Document 2), a coating liquid containing fine particles (light diffusing agent) is applied onto a substrate. A light diffusion film (light diffusion sheet) having a high-haze light diffusion layer to be formed is disclosed.
 また、たとえば、特開2009-301014号公報(特許文献3)には、微小なフィラー(光拡散剤)を分散混合させて一定以上の光拡散性を有する防眩層を視認側に備える液晶表示装置が開示されている。このような光拡散フィルムまたは防眩層を液晶表示装置の視認側表面に配置することにより、液晶表示装置の表示画面を斜めから観察した場合における、画像のコントラスト低下や階調反転現象を改善し、視野角を広げることが可能である。 Further, for example, in Japanese Patent Application Laid-Open No. 2009-301014 (Patent Document 3), a liquid crystal display provided with a glare-proof layer having a certain level of light diffusibility on the viewing side by dispersing and mixing minute fillers (light diffusing agents). An apparatus is disclosed. By disposing such a light diffusing film or antiglare layer on the viewing side surface of the liquid crystal display device, when the display screen of the liquid crystal display device is observed from an oblique direction, image contrast deterioration and gradation inversion are improved. It is possible to widen the viewing angle.
特開2007-94369号公報JP 2007-94369 A 特開2002-107512号公報JP 2002-107512 A 特開2009-301014号公報JP 2009-301014 A
 上記のようにフィラーにより光拡散性を付与された光拡散層を備える液晶表示装置において、光拡散層中のフィラーの含有量を多くすることにより、さらなる広視野角を得ることができる。しかしながら、多量のフィラーを含有する光拡散層は、その表面粗度が高くなる。このような光拡散層がディスプレイの表面に配置されると、外光の反射による白ちゃけ(Whitening)等、表示品位を下げるので好ましくない。なお、白ちゃけ(Whitening)とは、液晶表示装置の画面の表面が白っぽく見える現象であり、特に明所で起こりやすい現象である。 In the liquid crystal display device including the light diffusing layer imparted with the light diffusibility by the filler as described above, a wider viewing angle can be obtained by increasing the content of the filler in the light diffusing layer. However, the light diffusion layer containing a large amount of filler has a high surface roughness. If such a light diffusing layer is disposed on the surface of the display, it is not preferable because the display quality is lowered such as whitening due to reflection of outside light. Note that “whitening” is a phenomenon in which the surface of the screen of the liquid crystal display device looks whitish, and is a phenomenon that is likely to occur particularly in a bright place.
 多量のフィラーを含有する光拡散層の表面粗度を低くする方法としては、光拡散層の厚みを厚くする方法、光拡散層の外側にフィラーを含まないかまたは微量にしか含まない層を形成する方法が挙げられるが、経済的に有利でない上に、液晶表示装置全体の薄型化の要求に対応するのが困難となる場合がある。また、光拡散層が厚くなると、光拡散層を含む層構成の機械的強度が低下し扱い難くなるという欠点がある。 As a method of reducing the surface roughness of the light diffusion layer containing a large amount of filler, a method of increasing the thickness of the light diffusion layer, or forming a layer containing no filler or only a small amount outside the light diffusion layer However, it is not economically advantageous, and it may be difficult to meet the demand for thinning the entire liquid crystal display device. Further, when the light diffusing layer is thick, there is a disadvantage that the mechanical strength of the layer structure including the light diffusing layer is lowered and becomes difficult to handle.
 そこで本発明の目的は、光拡散層を備えることにより光拡散機能が付与された偏光板であって、十分な機械的強度を有するとともに、液晶表示装置に組み込まれた際に良好な画質の表示を可能にする偏光板およびこれを用いた液晶表示装置を提供することにある。 Accordingly, an object of the present invention is a polarizing plate provided with a light diffusing function by providing a light diffusing layer, which has a sufficient mechanical strength and has a good image quality when incorporated in a liquid crystal display device. It is an object to provide a polarizing plate and a liquid crystal display device using the same.
 本発明は、偏光フィルム(film)と、光拡散フィルムと、光拡散性粘着剤層とを備える光拡散性偏光板であって、光拡散性偏光板の全ヘイズ(haze)が40%を超えて85%以下であり、光拡散性偏光板の内部ヘイズが40%を超えて85%以下であり、上記光拡散性粘着剤層の全ヘイズが10%以上80%以下である光拡散性偏光板を提供する。 The present invention is a light diffusing polarizing plate comprising a polarizing film (film), a light diffusing film, and a light diffusing pressure-sensitive adhesive layer, wherein the total haze of the light diffusing polarizing plate exceeds 40%. 85% or less, the internal haze of the light diffusable polarizing plate is more than 40% and 85% or less, and the total haze of the light diffusable pressure-sensitive adhesive layer is 10% or more and 80% or less. Provide a board.
 本発明の光拡散性偏光板の一形態においては、さらに上記偏光フィルムの両面上に積層されている一対の保護フィルムを備え、上記光拡散性粘着剤層は、一方の上記保護フィルムの上記偏光フィルム側とは反対側の面上に積層されている。 In one form of the light diffusable polarizing plate of the present invention, the light diffusing pressure-sensitive adhesive layer further includes a pair of protective films laminated on both surfaces of the polarizing film, It is laminated on the surface opposite to the film side.
 本発明の光拡散性偏光板の一形態においては、上記光拡散性粘着剤層は、上記光拡散フィルムの一方の面上に積層されている。 In one embodiment of the light diffusing polarizing plate of the present invention, the light diffusing pressure-sensitive adhesive layer is laminated on one surface of the light diffusing film.
 本発明の光拡散性偏光板の好ましい形態において、さらに上記偏光フィルムの両面上に積層されている一対の保護フィルムを備え、一方の上記保護フィルム、上記偏光フィルム、他方の上記保護フィルム、上記光拡散性粘着剤層、及び上記光拡散フィルムがこの順で積層されてなる。 In a preferred embodiment of the light diffusing polarizing plate of the present invention, the light diffusing polarizing plate further includes a pair of protective films laminated on both surfaces of the polarizing film, one of the protective films, the polarizing film, the other protective film, and the light. The diffusible pressure-sensitive adhesive layer and the light diffusion film are laminated in this order.
 本発明の光拡散性偏光板の一形態においては、光拡散性偏光板に入射して、上記偏光フィルム及び上記光拡散フィルムをこの順に透過した後に出射する波長543.5nmのレーザ(laser)光について、上記光拡散性偏光板の法線方向に入射するレーザ光の強度Lに対して、上記法線方向から40°傾いた方向に出射するレーザ光の強度Lの比L/Lが好ましくは0.0002%以上0.01%以下である。 In one form of the light diffusing polarizing plate of the present invention, the laser light having a wavelength of 543.5 nm is incident on the light diffusing polarizing plate and is emitted after passing through the polarizing film and the light diffusing film in this order. The ratio L 2 / L of the intensity L 2 of the laser light emitted in a direction inclined by 40 ° from the normal direction with respect to the intensity L 1 of the laser light incident in the normal direction of the light diffusing polarizing plate 1 is preferably 0.0002% or more and 0.01% or less.
 また、本発明は、バックライト(backlight)装置、光拡散手段、バックライト側偏光板、液晶セル(cell)、及び上記光拡散性偏光板がこの順で配置されてなり、上記液晶セルに近い側から上記偏光フィルム及び上記光拡散フィルムがこの順に位置するように、上記光拡散性偏光板が配置される、液晶表示装置を提供する。 In the present invention, a backlight device, a light diffusing means, a backlight side polarizing plate, a liquid crystal cell, and the light diffusing polarizing plate are arranged in this order, and are close to the liquid crystal cell. Provided is a liquid crystal display device in which the light diffusing polarizing plate is arranged so that the polarizing film and the light diffusing film are located in this order from the side.
 本発明の液晶表示装置において、上記光拡散手段からの出射光は、上記光拡散手段の法線方向から70°傾いた方向の輝度が、上記光拡散手段の法線方向の輝度に対して20%以下であり、かつ、上記出射光は非平行光を含むものであることが好ましい。 In the liquid crystal display device of the present invention, the light emitted from the light diffusing means has a luminance in a direction inclined by 70 ° from the normal direction of the light diffusing means with respect to the luminance in the normal direction of the light diffusing means. %, And the emitted light preferably includes non-parallel light.
 上記光拡散手段は、たとえば、光拡散板と、光偏向板とを備え、上記バックライト装置側から、光拡散板及び光偏向板がこの順で配置されているものである。 The light diffusion means includes, for example, a light diffusion plate and a light deflection plate, and the light diffusion plate and the light deflection plate are arranged in this order from the backlight device side.
 上記液晶セルとして、TN(Twisted Nematic)方式液晶セル、IPS(In-Plane Switching)方式液晶セルまたはVA(Vertical Alignment)方式液晶セルなどを用いることができる。 As the liquid crystal cell, a TN (twisted nematic) liquid crystal cell, an IPS (in-plane switching) liquid crystal cell, a VA (vertical alignment) liquid crystal cell, or the like can be used.
 本発明によれば、光拡散層を備えることにより光拡散機能が付与された偏光板であって、十分な機械的強度を有するとともに、液晶表示装置に組み込まれた際に良好な画質の表示を可能にする偏光板を提供できる。当該光拡散性偏光板を適用した本発明の液晶表示装置は、良好な画質の表示が可能である。 According to the present invention, a polarizing plate provided with a light diffusing function by providing a light diffusing layer has sufficient mechanical strength, and displays a good image quality when incorporated in a liquid crystal display device. A polarizing plate can be provided. The liquid crystal display device of the present invention to which the light diffusing polarizing plate is applied can display a good image quality.
光拡散性偏光板の入射面の法線方向からレーザ光を入射し、出射面において法線方向から40°傾いた方向に透過するレーザ光の透過散乱光強度を測定するときの、レーザ光の入射方向と透過散乱光強度測定方向とを模式的に示した斜視図である。When laser light is incident from the normal direction of the incident surface of the light diffusing polarizing plate, and the transmitted scattered light intensity of the laser light transmitted in the direction inclined by 40 ° from the normal direction on the output surface is measured, It is the perspective view which showed typically the incident direction and the transmitted scattered light intensity | strength measurement direction. 本発明の光拡散性偏光板の第1の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 1st Embodiment of the light diffusable polarizing plate of this invention. 光拡散フィルムを製造するための装置の一例を示す概略図である。It is the schematic which shows an example of the apparatus for manufacturing a light-diffusion film. 本発明の光拡散性偏光板の第2の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 2nd Embodiment of the light diffusable polarizing plate of this invention. 本発明の光拡散性偏光板の第3の実施形態を示す概略断面図である。It is a schematic sectional drawing which shows 3rd Embodiment of the light diffusable polarizing plate of this invention. 本発明の液晶表示装置の好ましい一例を示す概略断面図である。It is a schematic sectional drawing which shows a preferable example of the liquid crystal display device of this invention. 光拡散手段の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a light-diffusion means. 光拡散手段の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of a light-diffusion means. 2枚の光偏向板(プリズムシート)が有する線状プリズムの稜線方向と、偏光板の透過軸方向との関係を説明するための概略斜視図である。It is a schematic perspective view for demonstrating the relationship between the ridgeline direction of the linear prism which two light deflection plates (prism sheet | seat) have, and the transmission-axis direction of a polarizing plate. 光拡散手段について、液晶セルの光入射面の法線に対して70°方向の輝度値を測定する方法の一例である。It is an example of a method for measuring the luminance value in the direction of 70 ° with respect to the normal line of the light incident surface of the liquid crystal cell for the light diffusion means. 非平行光の定義を説明する図である。It is a figure explaining the definition of non-parallel light. 本発明の液晶表示装置の他の好ましい一例を示す概略断面図である。It is a schematic sectional drawing which shows another preferable example of the liquid crystal display device of this invention.
 以下、図面を参照して、本発明について詳細に説明する。ただし、本発明は下記の形態に限定されるものではない。
 <光拡散性偏光板>
 本発明に係る光拡散性偏光板は、偏光フィルムと、光拡散フィルムと、光拡散性粘着剤層とを有する。光拡散性偏光板の全ヘイズは40%を超えて85%以下であり、光拡散性偏光板の内部ヘイズは40%を超えて85%以下である。光拡散性粘着剤層は、偏光板のいずれかの位置に積層されている。光拡散性粘着剤層の全ヘイズは10%以上80%以下である。本発明に係る光拡散性偏光板は、このような光拡散性粘着剤層を一つまたは複数有する。本発明によれば、高い光拡散性を有するとともに、薄型で、取り扱いが容易な光拡散性偏光板を提供できる。当該光拡散性偏光板を適用した本発明の液晶表示装置は、良好な画質の表示が可能である。
Hereinafter, the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following forms.
<Light diffusing polarizing plate>
The light diffusable polarizing plate according to the present invention includes a polarizing film, a light diffusing film, and a light diffusing pressure-sensitive adhesive layer. The total haze of the light diffusable polarizing plate is more than 40% and 85% or less, and the internal haze of the light diffusing polarizing plate is more than 40% and 85% or less. The light diffusable pressure-sensitive adhesive layer is laminated at any position of the polarizing plate. The total haze of the light diffusable pressure-sensitive adhesive layer is 10% or more and 80% or less. The light diffusable polarizing plate according to the present invention has one or a plurality of such light diffusable pressure-sensitive adhesive layers. ADVANTAGE OF THE INVENTION According to this invention, while having high light diffusibility, it can provide the light diffusable polarizing plate which is thin and easy to handle. The liquid crystal display device of the present invention to which the light diffusing polarizing plate is applied can display a good image quality.
 [光拡散性偏光板の光学特性]
 (1)ヘイズ
 本発明の光拡散性偏光板の全ヘイズは40%を超えて85%以下であり、内部ヘイズが40%を超えて85%以下である。ここで、「全ヘイズ」とは、光拡散性偏光板に光を照射して透過した光線の全量を表す全光線透過率(Tt)と、光拡散性偏光板により拡散されて透過した拡散光線透過率(Td)との比から下式(1):
 全ヘイズ(%)=(Td/Tt)×100    (1)
により求められる。
[Optical characteristics of light-diffusing polarizing plate]
(1) Haze The total haze of the light diffusable polarizing plate of the present invention is more than 40% and 85% or less, and the internal haze is more than 40% and 85% or less. Here, “total haze” refers to the total light transmittance (Tt) that represents the total amount of light transmitted through the light diffusing polarizing plate, and the diffused light that has been diffused and transmitted by the light diffusing polarizing plate. From the ratio with the transmittance (Td), the following formula (1):
Total haze (%) = (Td / Tt) × 100 (1)
It is calculated by.
 全光線透過率(Tt)は、入射光と同軸のまま透過した平行光線透過率(Tp)と拡散光線透過率(Td)の和である。全光線透過率(Tt)および拡散光線透過率(Td)は、JIS K 7361に準拠して測定される値である。 The total light transmittance (Tt) is the sum of the parallel light transmittance (Tp) and the diffuse light transmittance (Td) that are transmitted coaxially with the incident light. The total light transmittance (Tt) and the diffused light transmittance (Td) are values measured in accordance with JIS K 7361.
 また、光拡散性偏光板の「内部ヘイズ」とは、全ヘイズのうち、光拡散性偏光板の表面形状に起因するヘイズ(表面ヘイズ)以外のヘイズである。 Further, the “internal haze” of the light diffusing polarizing plate is a haze other than the haze (surface haze) due to the surface shape of the light diffusing polarizing plate among all the hazes.
 全ヘイズおよび/または内部ヘイズが40%以下の場合、光散乱性が不十分であり、視野角が狭くなる場合がある。また、全ヘイズおよび/または内部ヘイズが85%を超える場合は、光散乱が強すぎるため、光拡散性偏光板を液晶表示装置に適用したときに、たとえば黒表示において、液晶表示装置の正面方向に対して斜めに漏れ出してくる光が正面方向へ散乱されてしまう等の原因により正面コントラストが低下し、表示品位が悪くなる。
また、全ヘイズおよび/または内部ヘイズが85%を超える場合は、光拡散性偏光板の透明性が損なわれる傾向にある。全ヘイズおよび内部ヘイズはそれぞれ、50%以上85%以下であることが好ましく、59%以上77%以下であることがさらに好ましい。
When the total haze and / or internal haze is 40% or less, the light scattering property is insufficient and the viewing angle may be narrowed. Further, when the total haze and / or internal haze exceeds 85%, light scattering is too strong. Therefore, when the light diffusing polarizing plate is applied to a liquid crystal display device, for example, in the black display, the front direction of the liquid crystal display device However, the front contrast is lowered due to the fact that light leaking obliquely is scattered in the front direction and the display quality is deteriorated.
Further, when the total haze and / or internal haze exceeds 85%, the transparency of the light diffusing polarizing plate tends to be impaired. The total haze and internal haze are each preferably 50% or more and 85% or less, and more preferably 59% or more and 77% or less.
 光拡散性偏光板の全ヘイズ、内部ヘイズおよび表面ヘイズは、具体的には次のようにして測定される。全ヘイズは、JIS K 7136に準拠したヘイズ透過率計(たとえば、株式会社村上色彩技術研究所製のヘイズメーター「HM-150」)を用いて、全光線透過率(Tt)および拡散光線透過率(Td)を測定し、上記式(1)によって算出される。 The total haze, internal haze, and surface haze of the light diffusing polarizing plate are specifically measured as follows. The total haze is measured by using a haze transmittance meter in accordance with JIS K 7136 (for example, a haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.) and total light transmittance (Tt) and diffuse light transmittance. (Td) is measured and calculated by the above formula (1).
 ついで、光拡散性偏光板の出射面に、ヘイズがほぼ0%であるトリアセチルセルロースフィルムを、グリセリンを用いて貼合し、上述の全ヘイズの測定と同様にしてヘイズを測定する。当該ヘイズは、光拡散性偏光板の表面形状に起因する表面ヘイズが貼合されたトリアセチルセルロースフィルムによってほぼ打ち消されていることから、光拡散フィルムの「内部ヘイズ」とみなすことができる。したがって、光拡散性偏光板の「表面ヘイズ」は、下記式(2):
 表面ヘイズ(%)=全ヘイズ(%)-内部ヘイズ(%)      (2)
より求められる。
Next, a triacetyl cellulose film having a haze of approximately 0% is bonded to the light exit surface of the light diffusing polarizing plate using glycerin, and the haze is measured in the same manner as the measurement of the total haze described above. The haze can be regarded as “internal haze” of the light diffusing film because it is almost canceled by the triacetyl cellulose film to which the surface haze resulting from the surface shape of the light diffusing polarizing plate is bonded. Therefore, the “surface haze” of the light diffusing polarizing plate is expressed by the following formula (2):
Surface haze (%) = Total haze (%)-Internal haze (%) (2)
More demanded.
 光拡散性偏光板の表面形状に起因する表面ヘイズは2%以下であることが好ましい。表面ヘイズが2%を超える場合には、表面乱反射により白ちゃけが発生しやすい傾向にある。白ちゃけをより効果的に防止するためには、表面ヘイズは1%以下であることが好ましい。 The surface haze caused by the surface shape of the light diffusing polarizing plate is preferably 2% or less. When the surface haze exceeds 2%, whitening tends to occur due to surface irregular reflection. In order to prevent whitening more effectively, the surface haze is preferably 1% or less.
(2)相対散乱光強度
 本発明の光拡散性偏光板は、光拡散性偏光板に入射して、偏光フィルム、光拡散フィルムをこの順に透過した後に出射する波長543.5nmのレーザ光について、上記光拡散性偏光板の法線方向に入射するレーザ光の強度Lに対して、上記法線方向から40°傾いた方向に出射するレーザ光の強度Lの比L/L(相対散乱光強度)が、好ましくは0.0002%以上0.01%以下である。以下、相対散乱光強度について図1を用いて説明する。
(2) Relative scattered light intensity The light diffusable polarizing plate of the present invention is incident on the light diffusing polarizing plate, and the laser light having a wavelength of 543.5 nm emitted after passing through the polarizing film and the light diffusing film in this order, Ratio L 2 / L 1 of the intensity L 2 of the laser beam emitted in a direction inclined by 40 ° from the normal direction with respect to the intensity L 1 of the laser beam incident in the normal direction of the light diffusing polarizing plate ( Relative scattered light intensity) is preferably 0.0002% or more and 0.01% or less. Hereinafter, the relative scattered light intensity will be described with reference to FIG.
 図1は、光拡散性偏光板において、レーザ光の入射方向と透過散乱光強度測定方向とを模式的に示した斜視図である。図1を参照して、光拡散性偏光板10の入射面側から、光拡散性偏光板10の法線A1方向に入射する波長が543.5nmであり強度がLであるレーザ光(He-Neレーザの平行光)について、偏光フィルム、光拡散フィルムをこの順に透過した後に法線A2方向から40°傾いた方向A3に透過するレーザ光の透過散乱光強度Lを測定することにより得られる相対散乱光強度L/Lが、好ましくは0.0002%以上0.01%以下の範囲内である。より好ましくは、相対散乱光強度L/Lが0.0004%以上0.0014%以下の範囲である。 FIG. 1 is a perspective view schematically showing an incident direction of laser light and a transmitted scattered light intensity measurement direction in a light diffusing polarizing plate. Referring to FIG. 1, a laser beam (He having a wavelength of 543.5 nm and an intensity of L 1 incident from the incident surface side of light diffusing polarizing plate 10 in the direction of normal A1 of light diffusing polarizing plate 10 is shown. for -Ne laser parallel light), obtained by measuring the polarizing film, the transmitted scattered light intensity L 2 of the laser light passing through the light diffusion film in a direction A3 inclined 40 ° from the normal direction A2 after passing in this order The relative scattered light intensity L 2 / L 1 is preferably in the range of 0.0002% to 0.01%. More preferably, the relative scattered light intensity L 2 / L 1 is in the range of 0.0004% to 0.0014%.
 相対散乱光強度L/Lが0.0002%未満の場合、光散乱性が不十分であり、視野角が狭くなる。また、0.01%を超える場合は、光散乱が強すぎるため、光拡散性偏光板を液晶表示装置に適用したときに、たとえば黒表示において、液晶表示装置の正面方向に対して斜めに漏れ出してくる光が光拡散層により正面方向へ散乱されてしまう等の原因により正面コントラストが低下し、表示品位が悪くなる。相対散乱光強度L/Lは、さらに好ましくは0.0003%以上0.001%以下である。 When the relative scattered light intensity L 2 / L 1 is less than 0.0002%, the light scattering property is insufficient and the viewing angle becomes narrow. If it exceeds 0.01%, light scattering is too strong, so when a light diffusing polarizing plate is applied to a liquid crystal display device, for example, in black display, it leaks obliquely with respect to the front direction of the liquid crystal display device. The front contrast is lowered due to the fact that the emitted light is scattered in the front direction by the light diffusion layer, and the display quality is deteriorated. The relative scattered light intensity L 2 / L 1 is more preferably 0.0003% or more and 0.001% or less.
 相対散乱光強度の測定には、オプティカルパワーメーター(たとえば、横河電機株式会社製の「3292 03 オプティカルパワーセンサー」および同社製の「3292 オプティカルパワーメーター」)を用いることができる。 For measuring the relative scattered light intensity, an optical power meter (for example, “3292 03 optical power sensor” manufactured by Yokogawa Electric Corporation and “3292 optical power meter” manufactured by the same company) can be used.
 [光拡散性粘着剤層のヘイズ]
 光拡散性粘着剤層は、偏光板のいずれかの位置に積層される。光拡散性粘着剤層の全ヘイズが10%以上80%以下である。好ましくは、光拡散性粘着剤層の全ヘイズが25%以上70%以下である。本発明に係る光拡散性偏光板は、光拡散性粘着剤層を有するので、光拡散フィルムが高い拡散性を有しない場合であっても、光拡散性偏光板全体として所望のヘイズを達成することができる。したがって、全体として十分な光拡散性を確保することができる。すなわち、光拡散フィルムの薄型化、表面から光拡散剤が突出することにより表示品位が低下することを抑制しつつ、所望のヘイズを有する光拡散性偏光板を提供することができる。光拡散性粘着剤層の全ヘイズは、光拡散性偏光板の全ヘイズと同様の方法により測定することができる。
[Haze of light diffusing adhesive layer]
The light diffusing pressure-sensitive adhesive layer is laminated at any position of the polarizing plate. The total haze of the light diffusable pressure-sensitive adhesive layer is 10% or more and 80% or less. Preferably, the total haze of the light diffusable pressure-sensitive adhesive layer is 25% or more and 70% or less. Since the light diffusing polarizing plate according to the present invention has a light diffusing pressure-sensitive adhesive layer, even if the light diffusing film does not have high diffusibility, the light diffusing polarizing plate as a whole achieves a desired haze. be able to. Therefore, sufficient light diffusibility can be ensured as a whole. That is, it is possible to provide a light diffusing polarizing plate having a desired haze while suppressing a reduction in display quality due to thinning of the light diffusing film and protrusion of the light diffusing agent from the surface. The total haze of the light diffusable pressure-sensitive adhesive layer can be measured by the same method as the total haze of the light diffusable polarizing plate.
 [第1の実施形態]
 図2は、第1の実施形態の光拡散性偏光板を示す概略断面図である。図2において、光拡散性偏光板100は、偏光フィルム101を有し、偏光フィルム101の一方の面に、第1の保護フィルム110、拡散性粘着剤層104、光拡散フィルム102がこの順に積層され、偏光フィルム101の他方の面には、第2の保護フィルム109が積層されている。
[First embodiment]
FIG. 2 is a schematic cross-sectional view showing the light diffusable polarizing plate of the first embodiment. In FIG. 2, the light diffusing polarizing plate 100 has a polarizing film 101, and a first protective film 110, a diffusible adhesive layer 104, and a light diffusing film 102 are laminated in this order on one surface of the polarizing film 101. The second protective film 109 is laminated on the other surface of the polarizing film 101.
 (偏光フィルム)
 偏光フィルム101としては、たとえば、ポリビニルアルコール系樹脂、ポリ酢酸ビニル樹脂、エチレン/酢酸ビニル(EVA)樹脂、ポリアミド樹脂、ポリエステル系樹脂等からなるフィルムに二色性色素を吸着配向させたもの、分子的に配向したポリビニルアルコールフィルム中に、ポリビニルアルコールの二色性脱水生成物(ポリビニレン)の配向した分子鎖を含有するポリビニルアルコール/ポリビニレンコポリマー等が挙げられる。
特に、一軸延伸されたポリビニルアルコール系樹脂層に二色性色素を吸着配向させたものが好適に用いられる。
(Polarizing film)
As the polarizing film 101, for example, a film made of a polyvinyl alcohol resin, a polyvinyl acetate resin, an ethylene / vinyl acetate (EVA) resin, a polyamide resin, a polyester resin, etc., and a dichroic dye adsorbed and oriented, a molecule A polyvinyl alcohol / polyvinylene copolymer containing an oriented molecular chain of a dichroic dehydrated product of polyvinyl alcohol (polyvinylene) in a partially oriented polyvinyl alcohol film.
In particular, those obtained by adsorbing and orienting a dichroic dye on a uniaxially stretched polyvinyl alcohol resin layer are preferably used.
 ポリビニルアルコール系樹脂としては、ポリ酢酸ビニル系樹脂をケン化したものを用いることができる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルと共重合可能な他の単量体との共重合体などが例示される。
酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などが挙げられる。
As the polyvinyl alcohol resin, a saponified polyvinyl acetate resin can be used. Examples of the polyvinyl acetate resin include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers with other monomers copolymerizable with vinyl acetate.
Examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
 ポリビニルアルコール系樹脂のケン化度は、好ましくは、98.0モル%以上である。
ケン化度が98.0モル%未満では、十分な光学性能が得られない場合がある。
The saponification degree of the polyvinyl alcohol-based resin is preferably 98.0 mol% or more.
If the saponification degree is less than 98.0 mol%, sufficient optical performance may not be obtained.
 ここでいうケン化度とは、ポリビニルアルコール系樹脂の原料であるポリ酢酸ビニル系樹脂に含まれる酢酸基がケン化工程により水酸基に変化した割合をユニット比(モル%)で表したものであり、下記式で定義される数値である。JIS K 6726(1994)で規定されている方法で求めることができる。 The saponification degree as used herein is a unit ratio (mol%) representing the ratio of the acetate group contained in the polyvinyl acetate resin, which is a raw material for the polyvinyl alcohol resin, to a hydroxyl group by the saponification step. Is a numerical value defined by the following formula. It can be determined by the method defined in JIS K K 6726 (1994).
 ケン化度(モル%)=(水酸基の数)÷(水酸基の数+酢酸基の数)×100 
 ケン化度が高いほど、水酸基の割合が高いことを示しており、すなわち結晶化を阻害する酢酸基の割合が低いことを示している。また、本実施形態に用いるポリビニルアルコール系樹脂は、一部が変性されている変性ポリビニルアルコールでもよい。例えば、ポリビニルアルコール系樹脂をエチレン、プロピレン等のオレフィン、アクリル酸、メタクリル酸、クロトン酸等の不飽和カルボン酸、不飽和カルボン酸のアルキルエステル、アクリルアミドなどで数%ほど変性したものなどが挙げられる。ポリビニルアルコール系樹脂の平均重合度も特に限定されるものではないが、100~10000が好ましく、1500~10000がより好ましい。
Saponification degree (mol%) = (number of hydroxyl groups) ÷ (number of hydroxyl groups + number of acetate groups) × 100
The higher the degree of saponification, the higher the proportion of hydroxyl groups, that is, the lower the proportion of acetate groups that inhibit crystallization. Further, the polyvinyl alcohol resin used in the present embodiment may be a modified polyvinyl alcohol partially modified. For example, polyvinyl alcohol-based resins modified with olefins such as ethylene and propylene, unsaturated carboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, alkyl esters of unsaturated carboxylic acids, acrylamide, etc. . The average degree of polymerization of the polyvinyl alcohol resin is not particularly limited, but is preferably 100 to 10,000, and more preferably 1500 to 10,000.
 このような特性を有するポリビニルアルコール系樹脂としては、例えば(株)クラレ製のPVA124H(ケン化度:99.9モル%以上)、PVA124(ケン化度:98.0~99.0モル%)、PVA117H(ケン化度:99.3モル%以上)、PVA117(ケン化度:98.0~99.0モル%);例えば日本合成化学工業(株)製のNH-18(ケン化度:98.0~99.0モル%)、N-300(ケン化度:98.0~99.0モル%);例えば日本酢ビ・ポバール(株)製のJF-17(ケン化度:98.0~99.0モル%)、JF-17L(ケン化度:98.0~99.0モル%)、JF-20(ケン化度:98.0~99.0モル%)などが挙げられ、本実施形態において好適に用いることができる。 Examples of the polyvinyl alcohol-based resin having such characteristics include PVA124H (degree of saponification: 99.9 mol% or more), PVA124 (degree of saponification: 98.0 to 99.0 mol%) manufactured by Kuraray Co., Ltd. PVA117H (degree of saponification: 99.3 mol% or more), PVA117 (degree of saponification: 98.0 to 99.0 mol%); for example, NH-18 (degree of saponification: Nippon Synthetic Chemical Industry Co., Ltd.) 98.0 to 99.0 mol%), N-300 (degree of saponification: 98.0 to 99.0 mol%); for example, JF-17 (degree of saponification: 98 manufactured by Nihon Acetate Bipoar Co., Ltd.) 0.0-99.0 mol%), JF-17L (degree of saponification: 98.0-99.0 mol%), JF-20 (degree of saponification: 98.0-99.0 mol%) and the like. And can be suitably used in this embodiment.
 かかるポリビニルアルコール系樹脂を製膜したものが本実施形態にかかる偏光フィルム101を構成する。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものではなく、公知の方法で製膜することができる。偏光フィルム101は、好ましくは5倍超、さらに好ましくは5倍超でかつ17倍以下の延伸倍率で一軸延伸されている。 A film obtained by forming such a polyvinyl alcohol-based resin constitutes the polarizing film 101 according to the present embodiment. The method for forming a polyvinyl alcohol-based resin is not particularly limited, and can be formed by a known method. The polarizing film 101 is preferably uniaxially stretched at a stretch ratio of more than 5 times, more preferably more than 5 times and not more than 17 times.
 偏光フィルム101の厚さに特に限定はないが、一般には偏光板の薄型化等の観点から、100μm以下が好ましく、より好ましくは10~50μmの範囲、さらに好ましくは25~35μmの範囲である。 The thickness of the polarizing film 101 is not particularly limited, but is generally preferably 100 μm or less, more preferably in the range of 10 to 50 μm, and still more preferably in the range of 25 to 35 μm from the viewpoint of thinning the polarizing plate.
 (光拡散フィルム)
 光拡散フィルム102は、基材フィルム105と基材フィルム105の上に積層された光拡散層106とを備える。光拡散層106は、透光性樹脂106bを基材とする層であって、透光性樹脂106b中に光拡散剤106aが分散されてなる。光拡散フィルム106は、図2に示されるように、光拡散層702の表面が凹凸面から構成されていてもよく、あるいは平坦面から構成されていてもよい。なお、基材フィルム105と光拡散層106との間に他の層(接着剤層を含む)を有していてもよい。
(Light diffusion film)
The light diffusion film 102 includes a base film 105 and a light diffusion layer 106 laminated on the base film 105. The light diffusing layer 106 is a layer having a translucent resin 106b as a base material, and the light diffusing agent 106a is dispersed in the translucent resin 106b. As shown in FIG. 2, the light diffusing film 106 may have a light diffusing layer 702 whose surface is constituted by an uneven surface or a flat surface. Note that another layer (including an adhesive layer) may be provided between the base film 105 and the light diffusion layer 106.
 (1)基材フィルム
 光拡散フィルム102の基材フィルム105としては透光性のものであればよく、たとえばガラスやプラスチックフィルムなどを用いることができる。プラスチックフィルムとしては適度の透明性、機械強度を有していればよい。具体的には、たとえば、TAC(トリアセチルセルロース)等のセルロースアセテート系樹脂、アクリル系樹脂、ポリカーボネート樹脂、およびポリエチエンテレフタレート等のポリエステル系樹脂などが挙げられる。基材フィルム105の層厚は、たとえば10~500μmであり、好ましくは20~300μmである。
(1) Base film The base film 105 of the light diffusing film 102 may be a light-transmitting film, and for example, glass or plastic film can be used. The plastic film only needs to have appropriate transparency and mechanical strength. Specific examples include cellulose acetate resins such as TAC (triacetyl cellulose), acrylic resins, polycarbonate resins, and polyester resins such as polyethylene terephthalate. The layer thickness of the base film 105 is, for example, 10 to 500 μm, preferably 20 to 300 μm.
 (2)光拡散層
 光拡散層106は、透光性樹脂106bを基材とする層であって、透光性樹脂106b中に光拡散剤106aが分散されてなる。
(2) Light diffusing layer The light diffusing layer 106 is a layer having a light transmissive resin 106b as a base material, and a light diffusing agent 106a is dispersed in the light transmissive resin 106b.
 透光性樹脂106bとしては、透光性を有するものであれば特に限定はなく、たとえば、紫外線硬化型樹脂、電子線硬化型樹脂などの電離放射線硬化型樹脂や熱硬化型樹脂の硬化物、熱可塑性樹脂、金属アルコキシドの硬化物などを用いることができる。この中でも、高い硬度を有し、液晶表示装置表面に設ける光拡散フィルムとして高い耐擦傷性を付与できることから、電離放射線硬化型樹脂が好適である。電離放射線硬化型樹脂、熱硬化型樹脂または金属アルコキシドを用いる場合は、電離放射線の照射または加熱により当該樹脂を硬化させることにより透光性樹脂106bが形成される。 The translucent resin 106b is not particularly limited as long as it has translucency. For example, an ionizing radiation curable resin such as an ultraviolet curable resin or an electron beam curable resin or a cured product of a thermosetting resin, A thermoplastic resin, a cured product of metal alkoxide, or the like can be used. Among these, an ionizing radiation curable resin is preferable because it has high hardness and can impart high scratch resistance as a light diffusion film provided on the surface of the liquid crystal display device. In the case of using an ionizing radiation curable resin, a thermosetting resin, or a metal alkoxide, the translucent resin 106b is formed by curing the resin by irradiation or heating with ionizing radiation.
 電離放射線硬化型樹脂としては、多価アルコールのアクリル酸またはメタクリル酸エステルのような多官能性のアクリレート;ジイソシアネートと多価アルコールおよびアクリル酸またはメタクリル酸のヒドロキシエステル等とから合成されるような多官能のウレタンアクリレートなどが挙げられる。また、これらの他にも、アクリレート系の官能基を有するポリエーテル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も使用することができる。 Examples of the ionizing radiation curable resin include polyfunctional acrylates such as polyhydric alcohol acrylic acid or methacrylic acid ester; polyisocyanates synthesized from diisocyanate, polyhydric alcohol and acrylic acid or methacrylic acid hydroxy ester, and the like. Examples include functional urethane acrylate. Besides these, polyether resins having an acrylate functional group, polyester resins, epoxy resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, and the like can also be used.
 熱硬化型樹脂としては、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化型ウレタン樹脂のほか、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂が挙げられる。 Examples of the thermosetting resin include a phenol resin, a urea melamine resin, an epoxy resin, an unsaturated polyester resin, and a silicone resin in addition to a thermosetting urethane resin composed of an acrylic polyol and an isocyanate prepolymer.
 熱可塑性樹脂としては、アセチルセルロース、ニトロセルロース、アセチルブチルセルロース、エチルセルロース、メチルセルロース等のセルロース誘導体;酢酸ビニルおよびその共重合体、塩化ビニルおよびその共重合体、塩化ビニリデンおよびその共重合体等のビニル系樹脂;ポリビニルホルマール、ポリビニルブチラール等のアセタール系樹脂;アクリル樹脂およびその共重合体、メタクリル樹脂およびその共重合体等のアクリル系樹脂;ポリスチレン系樹脂;ポリアミド系樹脂;ポリエステル系樹脂;ポリカーボネート系樹脂等が挙げられる。 Examples of thermoplastic resins include cellulose derivatives such as acetylcellulose, nitrocellulose, acetylbutylcellulose, ethylcellulose, and methylcellulose; vinyl acetate and copolymers thereof, vinyl chloride and copolymers thereof, vinylidene chloride and copolymers thereof, and the like. Acetal resins such as polyvinyl formal and polyvinyl butyral; Acrylic resins and copolymers thereof, Acrylic resins such as methacrylic resins and copolymers; Polystyrene resins; Polyamide resins; Polyester resins; Polycarbonate resins Etc.
 金属アルコキシドとしては、珪素アルコキシド系の材料を原料とする酸化珪素系マトリックス等を使用することができる。具体的には、テトラメトキシシラン、テトラエトキシシラン等であり、加水分解や脱水縮合により無機系または有機無機複合系マトリックス(透光性樹脂)とすることができる。 As the metal alkoxide, a silicon oxide matrix made of a silicon alkoxide material can be used. Specifically, it is tetramethoxysilane, tetraethoxysilane, or the like, and can be made into an inorganic or organic-inorganic composite matrix (translucent resin) by hydrolysis or dehydration condensation.
 また、光拡散層106中の光拡散剤106aとしては、透光性を有する有機微粒子または無機微粒子を用いることができる。たとえば、アクリル樹脂、メラミン樹脂、ポリエチレン、ポリスチレン、有機シリコーン樹脂、アクリル-スチレン共重合体等からなる有機微粒子や、炭酸カルシウム、シリカ、酸化アルミニウム、炭酸バリウム、硫酸バリウム、酸化チタン、ガラス等からなる無機微粒子等が挙げられる。また、有機重合体のバルーンやガラス中空ビーズも使用できる。光拡散剤106aは、1種類の微粒子から構成されていてもよいし、2種類以上の微粒子を含んでいてもよい。光拡散剤106aの形状は、球状、扁平状、板状、針状、不定形状等いずれであってもよいが、球状または略球状が好ましい。 Further, as the light diffusing agent 106a in the light diffusing layer 106, organic fine particles or inorganic fine particles having translucency can be used. For example, organic fine particles made of acrylic resin, melamine resin, polyethylene, polystyrene, organic silicone resin, acrylic-styrene copolymer, etc., and made of calcium carbonate, silica, aluminum oxide, barium carbonate, barium sulfate, titanium oxide, glass, etc. Examples include inorganic fine particles. Organic polymer balloons and glass hollow beads can also be used. The light diffusing agent 106a may be composed of one kind of fine particles or may contain two or more kinds of fine particles. The shape of the light diffusing agent 106a may be any of a spherical shape, a flat shape, a plate shape, a needle shape, an indefinite shape, and the like, but a spherical shape or a substantially spherical shape is preferable.
 光拡散剤106aの重量平均粒径は、0.1μm以上15μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。光拡散剤106aの重量平均粒径が0.1μm未満であると、波長領域が380nmから800nmの可視光を十分に散乱できず、光拡散フィルム701の光拡散性が不十分となり、相対散乱光強度L/Lを0.0002%以上とすることが困難となる場合があり、その結果、広視野角が得られない場合がある。また、重量平均粒径が15μmを超える場合、十分な光散乱性が得られない場合があり、同様に相対散乱光強度L/Lが0.0002%以上とならない場合がある。 The weight average particle diameter of the light diffusing agent 106a is preferably 0.1 μm or more and 15 μm or less, and more preferably 1 μm or more and 10 μm or less. When the weight average particle size of the light diffusing agent 106a is less than 0.1 μm, visible light having a wavelength region of 380 nm to 800 nm cannot be sufficiently scattered, and the light diffusing property of the light diffusing film 701 becomes insufficient, and the relative scattered light It may be difficult to make the intensity L 2 / L 1 0.0002% or more, and as a result, a wide viewing angle may not be obtained. When the weight average particle size exceeds 15 μm, sufficient light scattering properties may not be obtained, and the relative scattered light intensity L 2 / L 1 may not be 0.0002% or more.
 光拡散剤106aは、その粒径の標準偏差と重量平均粒径の比(標準偏差/重量平均粒径)が0.5以下であることが好ましく、0.4以下であることがより好ましい。当該比が0.5を超える場合、光拡散剤としてその粒径が極端に大きいものが含まれるようになり、光拡散層の表面に突起状欠陥が多発することがあり、液晶表示装置に適用した場合に表示品位の低下の原因となる。なお、光拡散剤106aの重量平均粒径および粒径の標準偏差は、コールター原理(細孔電気抵抗法)に基づき、コールターマルチサイザー(ベックマンコールター社製)を用いて測定される。 The ratio of the standard deviation of the particle size to the weight average particle size (standard deviation / weight average particle size) of the light diffusing agent 106a is preferably 0.5 or less, and more preferably 0.4 or less. When the ratio exceeds 0.5, a light diffusing agent having an extremely large particle size may be included, and protrusion-like defects may occur frequently on the surface of the light diffusing layer. Doing so will cause a reduction in display quality. The weight average particle diameter and the standard deviation of the particle diameter of the light diffusing agent 106a are measured using a Coulter Multisizer (manufactured by Beckman Coulter, Inc.) based on the Coulter principle (pore electrical resistance method).
 光拡散層106における光拡散剤106aの含有量は、透光性樹脂106bの100重量部に対して5重量部以上100重量部以下であることが好ましく、10重量部以上40重量部以下であることがより好ましい。 The content of the light diffusing agent 106a in the light diffusion layer 106 is preferably 5 parts by weight or more and 100 parts by weight or less, with respect to 100 parts by weight of the translucent resin 106b, and is 10 parts by weight or more and 40 parts by weight or less. It is more preferable.
 光拡散剤106aと透光性樹脂106bとの屈折率差は0.01から0.2の範囲が好ましく、さらには0.05~0.15が好ましい。光拡散剤106aと透光性樹脂106bとの屈折率差を上記範囲内とすることによって、光拡散剤106aと透光性樹脂106bとの屈折率差による適度な内部散乱が生じ、光拡散性偏光板の全ヘイズおよび内部ヘイズを上記所定の範囲内に制御することが容易になる。 The refractive index difference between the light diffusing agent 106a and the translucent resin 106b is preferably in the range of 0.01 to 0.2, and more preferably 0.05 to 0.15. By setting the difference in refractive index between the light diffusing agent 106a and the translucent resin 106b within the above range, appropriate internal scattering occurs due to the difference in refractive index between the light diffusing agent 106a and the translucent resin 106b. It becomes easy to control the total haze and internal haze of the polarizing plate within the predetermined range.
 また、光拡散層106の表面(基材フィルム105とは反対側の表面)は、透光性樹脂106bのみによって形成されていることが好ましい。すなわち、光拡散剤106aは、光拡散層106表面から突出しておらず、完全に光拡散層106内に埋没していることが好ましい。このために、光拡散層106の層厚は、光拡散剤106aの重量平均粒径に対して1倍以上3倍以下であることが好ましい。光拡散層106の層厚が、光拡散剤106aの重量平均粒径の1倍未満である場合、光拡散剤106aが光拡散層106の表面から突出しやすくなる。また、光拡散層106の層厚が光拡散剤106aの重量平均粒径の3倍を超える場合、光拡散層106の層厚が厚くなり過ぎ好ましくない。 Further, it is preferable that the surface of the light diffusion layer 106 (the surface opposite to the base film 105) is formed only by the light-transmitting resin 106b. That is, it is preferable that the light diffusing agent 106 a does not protrude from the surface of the light diffusing layer 106 and is completely buried in the light diffusing layer 106. For this reason, the layer thickness of the light diffusion layer 106 is preferably 1 to 3 times the weight average particle diameter of the light diffusion agent 106a. When the layer thickness of the light diffusing layer 106 is less than 1 times the weight average particle diameter of the light diffusing agent 106 a, the light diffusing agent 106 a easily protrudes from the surface of the light diffusing layer 106. Further, when the layer thickness of the light diffusion layer 106 exceeds three times the weight average particle diameter of the light diffusion agent 106a, the layer thickness of the light diffusion layer 106 becomes too thick.
 光拡散層106の層厚は、1~30μmの範囲が好ましい。光拡散層106の層厚が1μm未満の場合、光拡散性偏光板が液晶表示装置の視認側表面に配置される場合に十分な耐擦傷性を発揮できない場合がある。また、層厚が30μmを超える場合、作製した光拡散フィルムに発生するカールの量が大きくなり、他の層への貼合における取り扱い性が悪くなる。 The layer thickness of the light diffusion layer 106 is preferably in the range of 1 to 30 μm. When the layer thickness of the light diffusing layer 106 is less than 1 μm, sufficient scratch resistance may not be exhibited when the light diffusing polarizing plate is disposed on the viewing side surface of the liquid crystal display device. Moreover, when the layer thickness exceeds 30 μm, the amount of curl generated in the produced light diffusion film becomes large, and the handleability in pasting to other layers becomes poor.
 (3)製造方法
 基材フィルム105上への光拡散剤106aと透光性樹脂106bとを含む樹脂液の塗布は、たとえば、グラビアコート法、マイクログラビアコート法、ロッドコート法、ナイフコート法、エアーナイフコート法、キスコート法、ダイコート法などによって行なうことができる。樹脂液の塗布にあたっては、上述のように、光拡散層106の厚さが、透光性微粒子106bの重量平均粒径に対して1倍以上3倍以下となるように、塗布膜厚を調整することが好ましい。
(3) Manufacturing method Application | coating of the resin liquid containing the light-diffusion agent 106a and the translucent resin 106b on the base film 105 is a gravure coat method, a micro gravure coat method, a rod coat method, a knife coat method, An air knife coating method, a kiss coating method, a die coating method, or the like can be used. When applying the resin liquid, as described above, the coating film thickness is adjusted so that the thickness of the light diffusion layer 106 is 1 to 3 times the weight average particle diameter of the translucent fine particles 106b. It is preferable to do.
 樹脂液の塗布性の改良または光拡散層106との接着性の改良を目的として、基材フィルム105の表面(光拡散層側表面)には、各種表面処理を施してもよい。表面処理としては、コロナ放電処理、グロー放電処理、酸表面処理、アルカリ表面処理、紫外線照射処理などが挙げられる。また、基材フィルム105上に、たとえばプライマー層(易接着層)等の他の層を形成し、この他の層の上に、樹脂液を塗布するようにしてもよい。 Various surface treatments may be applied to the surface of the base film 105 (surface on the light diffusion layer side) for the purpose of improving the coating property of the resin liquid or improving the adhesion with the light diffusion layer 106. Examples of the surface treatment include corona discharge treatment, glow discharge treatment, acid surface treatment, alkali surface treatment, and ultraviolet irradiation treatment. Further, another layer such as a primer layer (easily adhesive layer) may be formed on the base film 105, and the resin liquid may be applied on the other layer.
 また、基材フィルム105と光拡散性粘着剤層104との接着性を向上させるために、基材フィルム105の光拡散層106とは反対側の表面に、上記したような表面処理を施すことが好ましい。 In order to improve the adhesion between the base film 105 and the light diffusing pressure-sensitive adhesive layer 104, the surface of the base film 105 opposite to the light diffusing layer 106 is subjected to the surface treatment as described above. Is preferred.
 光拡散フィルム102は、基材フィルム105上に、光拡散剤106aが分散された樹脂液を塗布した後、樹脂液からなる層の表面に、金型の鏡面または凹凸面を転写する方法によっても形成することができる。たとえば、平坦な表面を有する光拡散層は、上記樹脂液からなる層の表面に、鏡面を有する金型(鏡面金型)の当該鏡面を密着させて鏡面を転写することにより形成することができる。また、図2に示されるような凹凸表面形状を有する光拡散層は、上記樹脂液からなる層の表面に、凹凸面を有する金型(エンボス加工用金型)の当該凹凸面を密着させて凹凸面を転写する形成することができる。鏡面金型は鏡面金属製ロールでもよく、また、エンボス加工用金型はエンボス加工用金属製ロールでもよい。 The light diffusing film 102 can also be obtained by applying a resin liquid in which the light diffusing agent 106a is dispersed on the base film 105 and then transferring the mirror surface or uneven surface of the mold to the surface of the layer made of the resin liquid. Can be formed. For example, a light diffusion layer having a flat surface can be formed by transferring the mirror surface by bringing the mirror surface of a mold having a mirror surface (mirror surface mold) into close contact with the surface of the layer made of the resin liquid. . In addition, the light diffusing layer having the uneven surface shape as shown in FIG. 2 has the uneven surface of the mold (embossing mold) having an uneven surface adhered to the surface of the layer made of the resin liquid. An uneven surface can be transferred and formed. The mirror surface mold may be a mirror surface metal roll, and the embossing mold may be an embossing metal roll.
 透光性樹脂106bを形成する樹脂として電離放射線硬化型樹脂、熱硬化型樹脂または金属アルコキシドを用いる場合は、上記樹脂液からなる層を形成し、必要により乾燥(溶媒の除去)を行ない、必要に応じてその樹脂液からなる層の表面に金型の鏡面または凹凸面を密着させた状態でまたは密着させた後、電離放射線の照射(電離放射線硬化型樹脂を用いる場合)または加熱(熱硬化型樹脂または金属アルコキシドを用いる場合)により樹脂液からなる層を硬化させる。電離放射線としては、樹脂液に含まれる樹脂の種類に応じて紫外線、電子線、近紫外線、可視光、近赤外線、赤外線、X線などから適宜選択することができるが、これらの中で紫外線、電子線が好ましく、特に取り扱いが簡便で高エネルギーが得られることから紫外線が好ましい。 When ionizing radiation curable resin, thermosetting resin or metal alkoxide is used as the resin for forming the translucent resin 106b, a layer made of the above resin solution is formed and dried (removing the solvent) as necessary. Depending on the condition, the surface of the layer made of the resin liquid is in close contact with or close to the mold mirror surface or uneven surface, and then irradiated with ionizing radiation (when using ionizing radiation curable resin) or heated (thermosetting) The layer made of the resin liquid is cured by using a mold resin or metal alkoxide. The ionizing radiation can be appropriately selected from ultraviolet rays, electron beams, near ultraviolet rays, visible light, near infrared rays, infrared rays, X-rays, etc. depending on the type of resin contained in the resin liquid. Among these, ultraviolet rays, An electron beam is preferable, and ultraviolet rays are particularly preferable because of easy handling and high energy.
 紫外線の光源としては、たとえば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を用いることができる。また、ArFエキシマレーザ、KrFエキシマレーザ、エキシマランプまたはシンクロトロン放射光等も用いることができる。これらの中でも、超高圧水銀灯、高圧水銀灯、低圧水銀灯、キセノンアーク、メタルハライドランプが好ましく用いられる。 As the ultraviolet light source, for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. An ArF excimer laser, a KrF excimer laser, an excimer lamp, synchrotron radiation, or the like can also be used. Among these, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a xenon arc, and a metal halide lamp are preferably used.
 また、電子線としては、コックロフトワルトン型、バンデグラフ型、共振変圧型、絶縁コア変圧型、直線型、ダイナミトロン型、高周波型等の各種電子線加速器から放出される50~1000keV、好ましくは100~300keVのエネルギーを有する電子線を挙げることができる。 As the electron beam, 50 to 1000 keV emitted from various electron beam accelerators such as Cockloft Walton type, Bande graph type, resonance transformation type, insulation core transformation type, linear type, dynamitron type, and high frequency type, preferably 100 Mention may be made of electron beams having an energy of ˜300 keV.
 次に、光拡散フィルム102を製造するための好ましい実施形態について説明する。当該好ましい実施形態に係る製造方法は、光拡散フィルム102を連続的に製造するために、ロール状に巻き付けられた基材フィルム105を連続的に送り出す工程、光拡散剤106aが分散された樹脂液を塗布し、必要に応じて乾燥させる工程、樹脂液からなる層を硬化させる工程、および、得られた光拡散フィルム102を巻き取る工程を含む。 Next, a preferred embodiment for manufacturing the light diffusion film 102 will be described. In the manufacturing method according to the preferred embodiment, in order to continuously manufacture the light diffusion film 102, a step of continuously feeding the base film 105 wound in a roll shape, a resin liquid in which the light diffusion agent 106a is dispersed And a step of drying as necessary, a step of curing a layer made of a resin liquid, and a step of winding up the obtained light diffusion film 102.
 図3は、このような製造方法を実施するための製造装置の構成を示す模式図である。まず、巻き出し装置301により基材フィルム105が連続的に巻き出される。ついで、巻き出された基材フィルム105上に、塗工装置302およびこれに対向するバックアップロール303を使用して、光拡散剤106aが分散された樹脂液が塗工される。次に、樹脂液に溶媒が含まれる場合には、乾燥機304を通過させることにより乾燥される。次に、樹脂液からなる層が設けられた基材フィルム105は、鏡面金属製ロールまたはエンボス加工用金属製ロール305とニップロール306との間へ、その樹脂液からなる層が鏡面金属製ロールまたはエンボス加工用金属製ロール305と密着するように巻き掛けられる。これにより、樹脂液からなる層の表面に鏡面金属製ロールの鏡面またはエンボス加工用金属製ロールの凹凸面が転写される。 FIG. 3 is a schematic diagram showing a configuration of a manufacturing apparatus for carrying out such a manufacturing method. First, the base film 105 is continuously unwound by the unwinding device 301. Next, a resin liquid in which the light diffusing agent 106a is dispersed is applied onto the unwound base film 105 using a coating device 302 and a backup roll 303 facing the coating device 302. Next, when a solvent is contained in the resin liquid, the resin liquid is dried by passing it through a dryer 304. Next, the base film 105 provided with the layer made of the resin liquid is placed between the mirror metal roll or the embossing metal roll 305 and the nip roll 306, and the layer made of the resin liquid is a mirror metal roll or It winds so that it may contact | adhere with the metal roll 305 for embossing. Thereby, the mirror surface of the mirror surface metal roll or the uneven surface of the metal roll for embossing is transferred to the surface of the layer made of the resin liquid.
 ついで、基材フィルム105が鏡面金属製ロールまたはエンボス加工用金属製ロール305に巻き掛けられた状態で、基材フィルム105を通して、紫外線照射装置308から紫外線を照射することにより、樹脂液からなる層を硬化させる。紫外線照射により照射面が高温になることから、鏡面金属製ロールまたはエンボス加工用金属製ロール305は、その表面温度を室温~80℃程度に調整するための冷却装置をその内部に備えることが好ましい。また、紫外線照射装置308は、1機、もしくは複数機を使用することができる。光拡散層106が形成された基材フィルム105(光拡散フィルム102)は、剥離ロール307によって、鏡面金属製ロールまたはエンボス加工用金属製ロール305から剥離される。 Next, a layer made of a resin liquid is obtained by irradiating ultraviolet rays from an ultraviolet irradiation device 308 through the base film 105 in a state where the base film 105 is wound around a mirror surface metal roll or an embossing metal roll 305. Is cured. Since the irradiated surface becomes high temperature due to ultraviolet irradiation, the mirror surface metal roll or the embossing metal roll 305 preferably includes a cooling device for adjusting the surface temperature to about room temperature to 80 ° C. . Further, one or a plurality of ultraviolet irradiation devices 308 can be used. The base film 105 (light diffusion film 102) on which the light diffusion layer 106 is formed is peeled off from the mirror surface metal roll or the embossing metal roll 305 by the peeling roll 307.
 以上のようにして作製された光拡散フィルム102は、巻き取り装置309へ巻き取られる。この際、光拡散層106を保護する目的で、再剥離性を有した粘着剤層を介して、光拡散層106表面にポリエチレンテレフタレートやポリエチレン等からなる表面保護フィルムを貼着しながら巻き取ってもよい。 The light diffusion film 102 produced as described above is taken up by the take-up device 309. At this time, for the purpose of protecting the light diffusing layer 106, it is wound up with a surface protective film made of polyethylene terephthalate, polyethylene, or the like attached to the surface of the light diffusing layer 106 through an adhesive layer having removability. Also good.
 なお、剥離ロール307によって鏡面金属製ロールまたはエンボス加工用金属製ロール305から剥離された後に、追加の紫外線照射を行なってもよい。また、鏡面金属製ロールまたはエンボス加工用金属製ロール305に巻き掛けられた状態で紫外線照射を行なう代わりに、未硬化の樹脂液からなる層が形成された基材フィルム105を鏡面金属製ロールまたはエンボス加工用金属製ロール305から剥離した後に、紫外線を照射して硬化させてもよい。 In addition, after peeling from the mirror surface metal roll or the embossing metal roll 305 by the peeling roll 307, additional ultraviolet irradiation may be performed. Further, instead of performing ultraviolet irradiation in a state of being wound around a mirror surface metal roll or an embossing metal roll 305, a base film 105 on which a layer made of an uncured resin liquid is formed is used as a mirror surface metal roll or After peeling from the embossing metal roll 305, it may be cured by irradiation with ultraviolet rays.
 (光拡散性粘着剤層)
 本実施形態の光拡散性偏光板100において、光拡散性粘着剤層104は、第1の保護フィルム110と光拡散フィルム102の基材フィルム105を貼合する。光拡散性粘着剤層104は、全ヘイズが10%以上80%以下である。
(Light diffusion adhesive layer)
In the light diffusing polarizing plate 100 of the present embodiment, the light diffusing pressure-sensitive adhesive layer 104 bonds the first protective film 110 and the base film 105 of the light diffusing film 102. The light diffusable pressure-sensitive adhesive layer 104 has a total haze of 10% to 80%.
 光拡散性粘着剤層104は、透光性粘着剤104b中に光散乱能を有する光拡散剤104aが分散されている構成である。使用する光拡散剤104aは、光を散乱するものであれば特に限定されず、有機微粒子、無機微粒子のいずれも使用できる。光拡散剤104aの材料、形状としては、上述した光拡散フィルム102の光拡散層106中の光拡散剤106aと同様のものを使用することができる。 The light diffusing pressure-sensitive adhesive layer 104 has a structure in which a light diffusing agent 104a having light scattering ability is dispersed in a light-transmitting pressure-sensitive adhesive 104b. The light diffusing agent 104a to be used is not particularly limited as long as it scatters light, and either organic fine particles or inorganic fine particles can be used. As the material and shape of the light diffusing agent 104a, the same material as the light diffusing agent 106a in the light diffusing layer 106 of the light diffusing film 102 described above can be used.
 光拡散剤104aの粒径は、小さすぎると光散乱能が発現されず、また、大きすぎると光拡散性偏光板を液晶表示装置に適用した際に表示品位を低下させることから、0.1μm以上15μm以下であるのが好適であり、0.5μm以上10μm以下であるのがより好ましい。光拡散剤104aの添加量は、所望する光散乱能の大小に応じて適宜設定できる。好ましくは、被分散体である透光性粘着剤104bの100重量部に対して、0.5~40重量部、特には1~20重量部の範囲で配合される。 If the particle size of the light diffusing agent 104a is too small, the light scattering ability is not expressed, and if it is too large, the display quality deteriorates when the light diffusing polarizing plate is applied to a liquid crystal display device. The thickness is preferably 15 μm or less and more preferably 0.5 μm or more and 10 μm or less. The addition amount of the light diffusing agent 104a can be appropriately set according to the desired light scattering ability. Preferably, it is blended in the range of 0.5 to 40 parts by weight, particularly 1 to 20 parts by weight with respect to 100 parts by weight of the light-transmitting pressure-sensitive adhesive 104b to be dispersed.
 光拡散性粘着剤層104に用いられる透光性粘着剤104bとしては、従来公知の適宜の粘着剤を用いることができ、たとえばアクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤などが挙げられる。中でも、透明性、粘着力、信頼性、リワーク性などの観点から、アクリル系粘着剤が好ましく用いられる。光拡散性粘着剤層104は、このような透光性粘着剤104bおよび光拡散剤104aを含有する塗布液(たとえば有機溶剤を含む塗布液)を基材フィルム(たとえば第1の保護フィルム110や光拡散フィルム102の基材フィルム105等)上にダイコータやグラビアコータなどによって塗布し、乾燥させる方法によって設けることができる。また、離型処理が施されたプラスチックフィルム(セパレートフィルムと呼ばれる)上に上記と同様にして光拡散性粘着剤層を形成し、形成されたシート状の光拡散性粘着剤層を基材フィルムに転写する方法によっても設けることができる。光拡散性粘着剤層104の厚みは、特に制限されないが、2~40μmの範囲内であることが好ましい。 As the translucent adhesive 104b used for the light diffusable adhesive layer 104, a conventionally well-known appropriate adhesive can be used, for example, an acrylic adhesive, a urethane adhesive, a silicone adhesive, etc. It is done. Among these, an acrylic pressure-sensitive adhesive is preferably used from the viewpoints of transparency, adhesive strength, reliability, reworkability, and the like. The light diffusing pressure-sensitive adhesive layer 104 is formed by applying a coating liquid (for example, a coating liquid containing an organic solvent) containing such a light transmissive pressure-sensitive adhesive 104b and the light diffusing agent 104a to a base film (for example, the first protective film 110 or the like). The light diffusing film 102 can be provided by a method such as coating on a base film 105 or the like of the light diffusion film 102 by a die coater or a gravure coater and drying. In addition, a light diffusable pressure-sensitive adhesive layer is formed in the same manner as above on a plastic film (referred to as a separate film) that has been subjected to a release treatment, and the formed sheet-like light diffusable pressure-sensitive adhesive layer is used as a base film. It can also be provided by a transfer method. The thickness of the light diffusing pressure-sensitive adhesive layer 104 is not particularly limited, but is preferably in the range of 2 to 40 μm.
 (保護フィルム)
 第1の保護フィルム110および第2の保護フィルム109は、光学機能を有さない単なる保護フィルムであってもよいし、位相差フィルムや輝度向上フィルムといった光学機能を併せ持つ保護フィルムであってもよい。保護フィルム109,110の材料としては、特に限定されるものではないが、例えば、環状ポリオレフィン系樹脂フィルム、トリアセチルセルロース、ジアセチルセルロースのような樹脂からなる酢酸セルロース系樹脂フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートのような樹脂からなるポリエステル系樹脂フィルム、ポリカーボネート系樹脂フィルム、アクリル系樹脂フィルム、ポリプロピレン系樹脂フィルムなど、当分野において従来より広く用いられてきているフィルムを挙げることができる。
(Protective film)
The first protective film 110 and the second protective film 109 may be simple protective films having no optical function, or may be protective films having both optical functions such as a retardation film and a brightness enhancement film. . The material of the protective films 109 and 110 is not particularly limited, but examples thereof include a cyclic polyolefin resin film, a cellulose acetate resin film made of a resin such as triacetyl cellulose and diacetyl cellulose, polyethylene terephthalate, and polyethylene naphthalate. Examples thereof include films that have been widely used in the art, such as polyester resin films made of resins such as phthalate and polybutylene terephthalate, polycarbonate resin films, acrylic resin films, and polypropylene resin films.
 環状ポリオレフィン系樹脂としては、適宜の市販品、例えば、Topas(登録商標)(Ticona社製)、アートン(登録商標)(JSR(株)製)、ゼオノア(ZEONOR)(登録商標)(日本ゼオン(株)製)、ゼオネックス(登録商標)(ZEONEX)(日本ゼオン(株)製)、アペル(登録商標)(三井化学(株)製)を好適に用いることができる。このような環状ポリオレフィン系樹脂を製膜してフィルムとする際には、溶剤キャスト法、溶融押出法などの公知の方法が適宜用いられる。また、エスシーナ(登録商標)(積水化学工業(株)製)、SCA40(積水化学工業(株)製)、ゼオノア(登録商標)フィルム((株)オプテス製)などの予め製膜された環状ポリオレフィン系樹脂製のフィルムの市販品を用いてもよい。 Examples of the cyclic polyolefin-based resin include appropriate commercial products such as Topas (registered trademark) (manufactured by Ticona), Arton (registered trademark) (manufactured by JSR Corporation), ZEONOR (registered trademark) (Nippon ZEON ( ZEONEX (registered trademark) (manufactured by Nippon Zeon Co., Ltd.), Apel (registered trademark) (manufactured by Mitsui Chemicals, Inc.) can be suitably used. When such a cyclic polyolefin resin is formed into a film, a known method such as a solvent casting method or a melt extrusion method is appropriately used. In addition, pre-formed cyclic polyolefins such as Essina (registered trademark) (manufactured by Sekisui Chemical Co., Ltd.), SCA40 (manufactured by Sekisui Chemical Co., Ltd.), ZEONOR (registered trademark) film (manufactured by Optes Co., Ltd.), etc. A commercial product of a film made of a resin may be used.
 環状ポリオレフィン系樹脂フィルムは、一軸延伸又は二軸延伸されたものであってもよい。延伸することで、環状ポリオレフィン系樹脂フィルムに任意の位相差値を付与することができる。延伸は、通常、フィルムロールを巻き出しながら連続的に行われ、加熱炉にて、ロールの進行方向、その進行方向と垂直の方向、またはその両方へ延伸される。加熱炉の温度は、通常、環状ポリオレフィン系樹脂のガラス転移温度近傍からガラス転移温度+100℃までの範囲である。延伸の倍率は、一つの方向につき通常1.1~6倍、好ましくは1.1~3.5倍である。 The cyclic polyolefin resin film may be uniaxially stretched or biaxially stretched. An arbitrary retardation value can be imparted to the cyclic polyolefin-based resin film by stretching. Stretching is usually performed continuously while unwinding the film roll, and is stretched in the heating furnace in the roll traveling direction, the direction perpendicular to the traveling direction, or both. The temperature of the heating furnace is usually in the range from the vicinity of the glass transition temperature of the cyclic polyolefin resin to the glass transition temperature + 100 ° C. The stretching ratio is usually 1.1 to 6 times, preferably 1.1 to 3.5 times in one direction.
 環状ポリオレフィン系樹脂フィルムは、一般に表面活性が劣るため、偏光フィルムと接着させる表面には、プラズマ処理、コロナ処理、紫外線照射処理、フレーム(火炎)処理、ケン化処理などの表面処理を行うのが好ましい。中でも、比較的容易に実施可能なプラズマ処理、コロナ処理が好適である。 Since the cyclic polyolefin resin film generally has poor surface activity, surface treatment such as plasma treatment, corona treatment, ultraviolet irradiation treatment, flame (flame) treatment, saponification treatment is performed on the surface to be bonded to the polarizing film. preferable. Among these, plasma treatment and corona treatment that can be performed relatively easily are preferable.
 酢酸セルロース系樹脂フィルムとしては、適宜の市販品、たとえば、フジタック(登録商標)TD80(富士フィルム(株)製)、フジタック(登録商標)TD80UF(富士フィルム(株)製)、フジタック(登録商標)TD80UZ(富士フィルム(株)製)、フジタック(登録商標)TD40UZ(富士フィルム(株)製)、KC8UX2M(コニカミノルタオプト(株)製)、KC4UY(コニカミノルタオプト(株)製)を好適に用いることができる。 Examples of the cellulose acetate-based resin film include commercially available products such as Fujitac (registered trademark) TD80 (manufactured by Fuji Film Co., Ltd.), Fujitac (registered trademark) TD80UF (manufactured by Fuji Film Co., Ltd.), and Fujitac (registered trademark). TD80UZ (Fuji Film Co., Ltd.), Fujitac (registered trademark) TD40UZ (Fuji Film Co., Ltd.), KC8UX2M (Konica Minolta Opto Co., Ltd.), KC4UY (Konica Minolta Opto Co., Ltd.) are preferably used. be able to.
 酢酸セルロース系樹脂フィルムの表面には、視野角特性を改良するために液晶層などを形成してもよい。また、位相差を付与するため酢酸セルロース系樹脂フィルムを延伸させたものでもよい。酢酸セルロース系樹脂フィルムは、偏光フィルムとの接着性を高めるため、通常はケン化処理が施される。ケン化処理としては、水酸化ナトリウムや水酸化カリウムのようなアルカリの水溶液に浸漬する方法が採用できる。 A liquid crystal layer or the like may be formed on the surface of the cellulose acetate-based resin film in order to improve viewing angle characteristics. Moreover, in order to provide a phase difference, what stretched the cellulose acetate type-resin film may be used. The cellulose acetate-based resin film is usually subjected to a saponification treatment in order to improve the adhesiveness with the polarizing film. As the saponification treatment, a method of immersing in an alkaline aqueous solution such as sodium hydroxide or potassium hydroxide can be employed.
 上述したような保護フィルム109,110の表面には、ハードコート層、防眩層、反射防止層などの光学層を形成することもできる。保護フィルム表面にこれらの光学層を形成する方法はとくに限定されず、公知の方法を用いることができる。 Optical layers such as a hard coat layer, an antiglare layer, and an antireflection layer can be formed on the surfaces of the protective films 109 and 110 as described above. The method for forming these optical layers on the surface of the protective film is not particularly limited, and a known method can be used.
 保護フィルム109,110の厚みは薄型化の要求から、できるだけ薄いものが好ましく、88μm以下が好ましく、48μm以下がより好ましい。逆に薄すぎると強度が低下して加工性に劣るため、5μm以上であることが好ましい。 The thickness of the protective films 109 and 110 is preferably as thin as possible from the request for thinning, preferably 88 μm or less, and more preferably 48 μm or less. On the other hand, if it is too thin, the strength is lowered and the processability is poor, and therefore it is preferably 5 μm or more.
 第1の保護フィルム110と、第2の保護フィルム109とは、同一のものであっても異なるものであってもよい。保護フィルム109,110と偏光フィルム101は、たとえば、不図示の接着剤層または粘着剤層を介して貼合される。保護フィルム109、110の貼合面には、接着剤または粘着剤による貼合に先立って、コロナ放電処理、プライマー処理(プライマー層の形成)などの易接着処理が施されてもよい。 The first protective film 110 and the second protective film 109 may be the same or different. The protective films 109 and 110 and the polarizing film 101 are bonded through, for example, an unillustrated adhesive layer or pressure-sensitive adhesive layer. The bonding surfaces of the protective films 109 and 110 may be subjected to easy adhesion treatment such as corona discharge treatment and primer treatment (formation of a primer layer) prior to bonding with an adhesive or a pressure-sensitive adhesive.
 (1)接着剤層
 保護フィルム109,110と偏光フィルム101との貼合に用いられる接着剤は、たとえば、ポリビニルアルコール系樹脂水溶液、水系二液型ウレタン系エマルジョン接着剤などを用いた水系接着剤が挙げられる。保護フィルム109,110としてケン化処理などで親水化処理された酢酸セルロース系フィルムを用いる場合、偏光フィルム101との貼合用の水系接着剤として、ポリビニルアルコール系樹脂水溶液が好適に用いられる。接着剤として用いるポリビニルアルコール系樹脂には、酢酸ビニルの単独重合体であるポリ酢酸ビニルをケン化処理して得られるビニルアルコールホモポリマーのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体をケン化処理して得られるビニルアルコール系共重合体、さらにはそれらの水酸基を部分的に変性した変性ポリビニルアルコール系重合体などがある。水系接着剤には、多価アルデヒド、水溶性エポキシ化合物、メラミン系化合物、ジルコニア化合物、亜鉛化合物などが添加剤として添加されてもよい。このような水系の接着剤を用いた場合、それから得られる接着剤層は、通常1μm以下である。
(1) Adhesive layer The adhesive used for bonding the protective films 109 and 110 and the polarizing film 101 is, for example, an aqueous adhesive using a polyvinyl alcohol resin aqueous solution, an aqueous two-component urethane emulsion adhesive, or the like. Is mentioned. In the case of using a cellulose acetate film hydrophilized by a saponification process or the like as the protective films 109 and 110, a polyvinyl alcohol resin aqueous solution is suitably used as an aqueous adhesive for bonding to the polarizing film 101. Polyvinyl alcohol resins used as adhesives include vinyl alcohol homopolymers obtained by saponifying polyvinyl acetate, which is a homopolymer of vinyl acetate, as well as other single quantities copolymerizable with vinyl acetate. And vinyl alcohol copolymers obtained by saponifying the copolymer with the polymer, and modified polyvinyl alcohol polymers obtained by partially modifying the hydroxyl groups. A polyhydric aldehyde, a water-soluble epoxy compound, a melamine compound, a zirconia compound, a zinc compound, or the like may be added as an additive to the water-based adhesive. When such a water-based adhesive is used, the adhesive layer obtained therefrom is usually 1 μm or less.
 水系接着剤を用いて偏光フィルム101と保護フィルム109,110とを貼合する方法は特に限定されるものではなく、たとえば偏光フィルム101および/または保護フィルム109,110の表面に接着剤を均一に塗布し、塗布面にもう一方のフィルムを重ねてロールなどにより貼合し、乾燥する方法などが挙げられる。通常、接着剤は、その調製後、15~40℃の温度下で塗布され、貼合温度は、通常15~30℃の範囲である。 The method of bonding the polarizing film 101 and the protective films 109 and 110 using an aqueous adhesive is not particularly limited. For example, the adhesive is uniformly applied to the surfaces of the polarizing film 101 and / or the protective films 109 and 110. The method of apply | coating, laminating | stacking another film on an application | coating surface, bonding with a roll etc., and drying is mentioned. Usually, after the preparation, the adhesive is applied at a temperature of 15 to 40 ° C., and the laminating temperature is usually in the range of 15 to 30 ° C.
 水系接着剤を使用する場合は、偏光フィルム101と保護フィルム109,110とを貼合した後、水系接着剤中に含まれる水を除去するため、乾燥させる。乾燥炉の温度は、30℃~90℃が好ましい。30℃未満であると偏光フィルム101と保護フィルム109,110との接着面が剥離しやすくなる傾向がある。90℃以上であると熱によって光学性能が劣化するおそれがある。乾燥時間は10~1000秒とすることができ、特に生産性の観点からは、好ましくは60~750秒、更に好ましくは150~600秒である。 When using a water-based adhesive, the polarizing film 101 and the protective films 109 and 110 are bonded, and then dried to remove water contained in the water-based adhesive. The temperature of the drying furnace is preferably 30 ° C to 90 ° C. When the temperature is lower than 30 ° C., the adhesive surface between the polarizing film 101 and the protective films 109 and 110 tends to be easily peeled off. If it is 90 ° C. or higher, the optical performance may be deteriorated by heat. The drying time can be 10 to 1000 seconds, and particularly from the viewpoint of productivity, it is preferably 60 to 750 seconds, and more preferably 150 to 600 seconds.
 乾燥後はさらに、室温またはそれよりやや高い温度、たとえば、20~45℃程度の温度で12~600時間程度養生しても良い。養生のときの温度は、乾燥時に採用した温度よりも低く設定されるのが一般的である。 After drying, it may be further cured at room temperature or slightly higher, for example, at a temperature of about 20 to 45 ° C. for about 12 to 600 hours. The temperature at the time of curing is generally set lower than the temperature adopted at the time of drying.
 また偏光フィルム101と保護フィルム109,110を貼合する際の接着剤として、光硬化性接着剤を用いることもできる。光硬化性接着剤としては、たとえば、光硬化性エポキシ樹脂と光カチオン重合開始剤との混合物などを挙げることができる。 Moreover, a photocurable adhesive can also be used as an adhesive when the polarizing film 101 and the protective films 109 and 110 are bonded together. Examples of the photocurable adhesive include a mixture of a photocurable epoxy resin and a photocationic polymerization initiator.
 偏光フィルム101または保護フィルム109,110に接着剤を塗布する方法としては、従来公知の方法を用いることができる。たとえば、流延法、マイヤーバーコート法、グラビアコート法、カンマコーター法、ドクタープレート法、ダイコート法、ディップコート法、噴霧法などが挙げられる。流延法とは、被塗布物である偏光フィルム101または保護フィルム109,110を、概ね垂直方向、概ね水平方向、または両者の間の斜め方向に移動させながら、その表面に接着剤を流下して拡布させる方法である。 As a method of applying an adhesive to the polarizing film 101 or the protective films 109 and 110, a conventionally known method can be used. For example, a casting method, a Mayer bar coating method, a gravure coating method, a comma coater method, a doctor plate method, a die coating method, a dip coating method, a spraying method and the like can be mentioned. In the casting method, the polarizing film 101 or the protective films 109 and 110 that are the objects to be coated are moved in a substantially vertical direction, a substantially horizontal direction, or an oblique direction between them, and an adhesive is allowed to flow onto the surface. It is a method of spreading.
 偏光フィルム101または保護フィルム109,110の表面に接着剤を塗布した後、偏光フィルム101および保護フィルム109,110を接着剤塗布面を介してニップロールなどで挟んで貼り合わせることにより接着される。また、偏光フィルム601と保護フィルム109,110とを重ね合わせた状態で偏光フィルム101と保護フィルム109,110との間に接着剤を滴下した後、この積層体をロール等で加圧して均一に押し広げる方法も好適に使用することができる。この場合、ロールの材質としては金属やゴム等を用いることが可能である。さらに、偏光フィルム101と保護フィルム109,110の間に接着剤を滴下した後、この積層体をロールとロールとの間に通し、加圧して押し広げる方法も好ましく採用される。この場合、これらロールは同じ材質であってもよく、異なる材質であってもよい。上記ニップロール等を用いて貼り合わされた後の接着剤層の、乾燥または硬化前の厚さは、5μm以下かつ0.01μm以上であることが好ましい。 After applying an adhesive on the surface of the polarizing film 101 or the protective film 109, 110, the polarizing film 101 and the protective film 109, 110 are bonded together by sandwiching them with a nip roll or the like through the adhesive application surface. In addition, an adhesive is dropped between the polarizing film 101 and the protective films 109 and 110 in a state where the polarizing film 601 and the protective films 109 and 110 are overlapped, and then the laminated body is pressed uniformly with a roll or the like. A method of spreading out can also be suitably used. In this case, a metal, rubber, or the like can be used as the material of the roll. Furthermore, after dropping an adhesive agent between the polarizing film 101 and the protective films 109 and 110, a method of passing the laminate between the rolls and pressurizing and spreading is preferably employed. In this case, these rolls may be made of the same material or different materials. The thickness of the adhesive layer after being bonded using the nip roll or the like before drying or curing is preferably 5 μm or less and 0.01 μm or more.
 偏光フィルム101および/または保護フィルム109,110の接着表面には、接着性を向上させるために、プラズマ処理、コロナ処理、紫外線照射処理、フレーム(火炎)処理、ケン化処理などの表面処理を適宜施してもよい。ケン化処理としては、水酸化ナトリウムや水酸化カリウムのようなアルカリの水溶液に浸漬する方法が挙げられる。 In order to improve the adhesion, the surface of the polarizing film 101 and / or the protective film 109, 110 is appropriately subjected to a surface treatment such as a plasma treatment, a corona treatment, an ultraviolet irradiation treatment, a flame (flame) treatment, or a saponification treatment. You may give it. Examples of the saponification treatment include a method of immersing in an aqueous alkali solution such as sodium hydroxide or potassium hydroxide.
 接着剤として光硬化性樹脂を用いた場合は、偏光フィルム101と保護フィルム109,110とを接合後、活性エネルギー線を照射することによって光硬化性接着剤を硬化させる。活性エネルギー線の光源は特に限定されないが、波長400nm以下に発光分布を有する活性エネルギー線が好ましく、具体的には、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプなどが好ましく用いられる。 When a photocurable resin is used as the adhesive, the photocurable adhesive is cured by irradiating active energy rays after the polarizing film 101 and the protective films 109 and 110 are joined. The light source of the active energy ray is not particularly limited, but an active energy ray having a light emission distribution at a wavelength of 400 nm or less is preferable. Specifically, the low pressure mercury lamp, the medium pressure mercury lamp, the high pressure mercury lamp, the ultrahigh pressure mercury lamp, the chemical lamp, and the black light lamp A microwave excitation mercury lamp, a metal halide lamp and the like are preferably used.
 光硬化性接着剤への光照射強度は、光硬化性接着剤の組成によって適宜決定され、特に限定されないが、重合開始剤の活性化に有効な波長領域の照射強度が0.1~6000mW/cmであることが好ましい。照射強度が0.1mW/cm以上である場合、反応時間が長くなりすぎず、6000mW/cm以下である場合、光源から輻射される熱および光硬化性接着剤の硬化時の発熱によるエポキシ樹脂の黄変や偏光フィルムの劣化を生じるおそれが少ない。光硬化性接着剤への光照射時間は、硬化させる光硬化性接着剤に応じて適用されるものであって特に限定されないが、上記の照射強度と照射時間との積として表される積算光量が10~10000mJ/cmとなるように設定されることが好ましい。光硬化性接着剤への積算光量が10mJ/cm以上である場合、重合開始剤由来の活性種を十分量発生させて硬化反応をより確実に進行させることができ、10000mJ/cm以下である場合、照射時間が長くなりすぎず、良好な生産性を維持できる。なお、活性エネルギー線照射後の接着剤層の厚みは、通常0.001~5μm程度であり、好ましくは0.01μm以上でかつ2μm以下、さらに好ましくは0.01μm以上でかつ1μm以下である。 The light irradiation intensity to the photocurable adhesive is appropriately determined depending on the composition of the photocurable adhesive and is not particularly limited, but the irradiation intensity in the wavelength region effective for activating the polymerization initiator is 0.1 to 6000 mW / it is preferable that the cm 2. When the irradiation intensity is 0.1 mW / cm 2 or more, the reaction time does not become too long, and when it is 6000 mW / cm 2 or less, the epoxy is generated by the heat radiated from the light source and the heat generated when the photo-curable adhesive is cured. There is little risk of yellowing of the resin or deterioration of the polarizing film. The light irradiation time to the photocurable adhesive is not particularly limited and is applied according to the photocurable adhesive to be cured, but the integrated light amount expressed as the product of the irradiation intensity and the irradiation time. Is preferably set to 10 to 10,000 mJ / cm 2 . When the cumulative amount of light to the photocurable adhesive is 10 mJ / cm 2 or more, a sufficient amount of active species derived from the polymerization initiator can be generated to allow the curing reaction to proceed more reliably, and at 10,000 mJ / cm 2 or less. In some cases, the irradiation time does not become too long and good productivity can be maintained. The thickness of the adhesive layer after irradiation with active energy rays is usually about 0.001 to 5 μm, preferably 0.01 μm or more and 2 μm or less, more preferably 0.01 μm or more and 1 μm or less.
 活性エネルギー線の照射によって光硬化性接着剤を硬化させる場合、偏光フィルム101の偏光度、透過率および色相、ならびに保護フィルム109,110の透明性など、偏光板の諸機能が低下しない条件で硬化を行うことが好ましい。 When the photocurable adhesive is cured by irradiation with active energy rays, it is cured under conditions that do not deteriorate the functions of the polarizing plate, such as the degree of polarization, the transmittance and the hue of the polarizing film 101, and the transparency of the protective films 109 and 110. It is preferable to carry out.
 (2)粘着剤層
 保護フィルム109,110と偏光フィルム101との貼合に用いられる粘着剤は、通常、アクリル系樹脂、スチレン系樹脂、シリコーン系樹脂などをベースポリマーとし、そこに、イソシアネート化合物、エポキシ化合物、アジリジン化合物などの架橋剤を加えた組成物からなる。さらには、上述の光拡散性粘着剤層104と同様に、光拡散剤を含有して光拡散性を示す粘着剤層とすることもできる。
(2) Adhesive layer The adhesive used for bonding the protective films 109 and 110 and the polarizing film 101 is usually based on an acrylic resin, a styrene resin, a silicone resin, etc., and an isocyanate compound. And a composition to which a crosslinking agent such as an epoxy compound or an aziridine compound is added. Furthermore, like the light diffusable pressure-sensitive adhesive layer 104 described above, a pressure-sensitive adhesive layer containing a light diffusing agent and exhibiting light diffusibility can also be used.
 粘着剤層の厚みは1~40μmであることが好ましいが、加工性、耐久性の特性を損なわない範囲で、薄く塗るのが好ましく、より好ましくは3~25μmである。3~25μmであると良好な加工性を有し、かつ偏光フィルムの寸法変化を押さえる上でも好適な厚みである。粘着剤層が1μm未満であると粘着性が低下し、40μmを超えると粘着剤がはみ出すなどの不具合を生じ易くなる。 The thickness of the pressure-sensitive adhesive layer is preferably 1 to 40 μm, but it is preferably thinly applied as long as the workability and durability characteristics are not impaired, and more preferably 3 to 25 μm. When the thickness is 3 to 25 μm, it has good processability and is also suitable for suppressing the dimensional change of the polarizing film. When the pressure-sensitive adhesive layer is less than 1 μm, the tackiness is lowered, and when it exceeds 40 μm, problems such as the pressure-sensitive adhesive protruding easily occur.
 粘着剤により保護フィルム109,110を偏光フィルム101に貼合する方法においては、保護フィルム109,110面に粘着剤層を設けた後、偏光フィルム101に貼合してもよいし、偏光フィルム101の表面に粘着剤層を設けた後、ここに保護フィルム109,110を貼合してもよい。 In the method of bonding the protective films 109 and 110 to the polarizing film 101 with an adhesive, the protective film 109 and 110 may be bonded to the polarizing film 101 after providing an adhesive layer on the surface of the protective film 109 or 110. After providing the pressure-sensitive adhesive layer on the surface, protective films 109 and 110 may be bonded thereto.
 粘着剤層を形成する方法は特に限定されるものではなく、保護フィルム109,110面、もしくは偏光フィルム101面に、上記したベースポリマーをはじめとする各成分を含む溶液を塗布し、乾燥して粘着剤層を形成した後、保護フィルム109,110と偏光フィルム101とを貼り合わせてもよいし、セパレータ上に粘着剤層を形成した後、保護フィルム109,110面もしくは偏光フィルム101面に転写して積層してもよい。また、粘着剤層を保護フィルム109,110もしくは偏光フィルム101面に形成する際には必要に応じて保護フィルム109,110もしくは偏光フィルム101面、または粘着剤層の片方若しくは両方に密着処理、たとえば、コロナ処理等を施してもよい。 The method for forming the pressure-sensitive adhesive layer is not particularly limited, and a solution containing each component including the above-mentioned base polymer is applied to the protective film 109, 110 surface or the polarizing film 101 surface and dried. After forming the pressure-sensitive adhesive layer, the protective films 109 and 110 and the polarizing film 101 may be bonded together, or after forming the pressure-sensitive adhesive layer on the separator, the surface is transferred to the protective film 109 or 110 surface or the polarizing film 101 surface. And may be laminated. Further, when the pressure-sensitive adhesive layer is formed on the surface of the protective film 109, 110 or the polarizing film 101, an adhesion treatment is performed on the surface of the protective film 109, 110 or the polarizing film 101, or one or both of the pressure-sensitive adhesive layer, if necessary. Corona treatment or the like may be performed.
 (他の光学層)
 以上のような構成の本実施形態の光拡散性偏光板は、実用に際して他の光学層を積層して用いることができる。また、上記保護フィルム109,110がこれらの光学層の機能を有していてもよい。他の光学層の例としては、ある種の偏光光を透過し、それと逆の性質を示す偏光光を反射する反射型偏光フィルム、表面に凹凸形状を有する防眩機能付きフィルム、表面反射防止機能付きフィルム、表面に反射機能を有する反射フィルム、反射機能と透過機能とを併せ持つ半透過反射フィルム、視野角補償フィルムが挙げられる。
(Other optical layers)
The light diffusing polarizing plate of the present embodiment having the above-described configuration can be used by stacking other optical layers in practical use. The protective films 109 and 110 may have the functions of these optical layers. Examples of other optical layers include a reflective polarizing film that transmits certain types of polarized light and reflects polarized light that exhibits the opposite properties, a film with an antiglare function having an uneven shape on the surface, and a surface antireflection function. Examples thereof include an attached film, a reflective film having a reflective function on the surface, a transflective film having both a reflective function and a transmissive function, and a viewing angle compensation film.
 ある種の偏光光を透過し、それと逆の性質を示す偏光光を反射する反射型偏光フィルムに相当する市販品としては、例えばDBEF(3M社製、住友スリーエム(株)から入手可能)、APF(3M社製、住友スリーエム(株)から入手可能)が挙げられる。視野角補償フィルムとしては基材表面に液晶性化合物が塗布され、配向されている光学補償フィルム、ポリカーボネート系樹脂からなる位相差フィルム、環状ポリオレフィン系樹脂からなる位相差フィルムが挙げられる。基材表面に液晶性化合物が塗布され、配向されている光学補償フィルムに相当する市販品としては、WVフィルム(富士フィルム(株)製)、NHフィルム(新日本石油(株)製)、NRフィルム(新日本石油(株)製)などが挙げられる。また、環状ポリオレフィン系樹脂からなる位相差フィルムに相当する市販品としては、アートン(登録商標)フィルム(JSR(株)製)、エスシーナ(登録商標)(積水化学工業(株)製)、ゼオノア(登録商標)フィルム((株)オプテス製)などが挙げられる。これらの光学層は、好ましくは光拡散フィルム102の表面に配置される。光拡散フィルム102の光拡散層106とこれら光学層とは、上述の保護フィルム109,110と偏光フィルム101の貼合において説明したのと同様の接着剤層または粘着剤層を介して、同様の方法により貼合することができる。 Commercially available products corresponding to reflective polarizing films that transmit certain types of polarized light and reflect polarized light that exhibits the opposite properties include DBEF (available from 3M, Sumitomo 3M Co., Ltd.), APF (Available from 3M, available from Sumitomo 3M Limited). Examples of the viewing angle compensation film include an optical compensation film coated with a liquid crystal compound on the surface of the substrate and oriented, a retardation film made of a polycarbonate resin, and a retardation film made of a cyclic polyolefin resin. Commercially available products corresponding to an optical compensation film coated with a liquid crystal compound on the substrate surface and oriented are WV film (Fuji Film Co., Ltd.), NH film (Shin Nippon Oil Co., Ltd.), NR Examples include films (manufactured by Nippon Oil Corporation). Commercial products corresponding to retardation films made of cyclic polyolefin resins include Arton (registered trademark) film (manufactured by JSR Corporation), Essina (registered trademark) (manufactured by Sekisui Chemical Co., Ltd.), Zeonor ( Registered trademark) film (manufactured by Optes Co., Ltd.). These optical layers are preferably disposed on the surface of the light diffusion film 102. The light diffusing layer 106 of the light diffusing film 102 and these optical layers are similar to each other through the same adhesive layer or pressure-sensitive adhesive layer as described in the bonding of the protective films 109 and 110 and the polarizing film 101 described above. It can be bonded by the method.
 [第2の実施形態]
 図4は、第2の実施形態の光拡散性偏光板を示す概略断面図である。図4において、光拡散性偏光板200は、偏光フィルム101を有し、偏光フィルム101の一方の面に、光拡散フィルム102、光拡散性粘着剤層104、表面処理フィルム107がこの順に積層され、偏光フィルム101の他方の面には、保護フィルム109が積層されている。光拡散フィルム102は、基材フィルム105と、光拡散層106とからなり、基材フィルム105は、偏光フィルム101の直上に積層されるので、保護フィルムの機能も兼ねる。本実施形態の光拡散性偏光板200は、第1の実施形態の光拡散性偏光板100とは積層順序が一部異なるが、偏光フィルム101、保護フィルム109、光拡散フィルム102、光拡散性粘着剤層104の詳細な構成は第1の実施形態で説明した通りであるので、同一の部材には同一の符号を付して説明を省略する。本実施形態において、光拡散性粘着剤層104は、光拡散フィルム102の光拡散層106と表面処理フィルム107とを貼合する役割を担う。
[Second Embodiment]
FIG. 4 is a schematic cross-sectional view showing the light diffusing polarizing plate of the second embodiment. In FIG. 4, a light diffusing polarizing plate 200 has a polarizing film 101, and a light diffusing film 102, a light diffusing pressure-sensitive adhesive layer 104, and a surface treatment film 107 are laminated in this order on one surface of the polarizing film 101. A protective film 109 is laminated on the other surface of the polarizing film 101. The light diffusion film 102 includes a base film 105 and a light diffusion layer 106. Since the base film 105 is laminated immediately above the polarizing film 101, it also serves as a protective film. The light diffusing polarizing plate 200 of this embodiment is partially different from the light diffusing polarizing plate 100 of the first embodiment in the stacking order, but the polarizing film 101, the protective film 109, the light diffusing film 102, and the light diffusing property. Since the detailed structure of the adhesive layer 104 is as described in the first embodiment, the same members are denoted by the same reference numerals and description thereof is omitted. In the present embodiment, the light diffusive pressure-sensitive adhesive layer 104 plays a role of bonding the light diffusion layer 106 of the light diffusion film 102 and the surface treatment film 107.
 (表面処理フィルム)
 表面処理フィルム107は、透明樹脂フィルムの一方の面(光拡散性粘着剤層104側とは反対側の面)に光学的処理が施されたフィルムであり、具体的には、透明樹脂フィルムの一方の面に所望の光学機能を有する表面処理層を形成したフィルムであることができる。透明樹脂フィルムとしては、たとえば、TAC(トリアセチルセルロース)等のセルロースアセテート系樹脂、ポリメタクリル酸メチル等のアクリル系樹脂、ポリカーボネート樹脂、およびポリエチレンテレフタレート等のポリエステル系樹脂などからなる樹脂フィルムを用いることができる。透明樹脂フィルムの厚さは、たとえば10~500μmであり、好ましくは20~300μmである。
(Surface treatment film)
The surface treatment film 107 is a film in which one surface of the transparent resin film (the surface opposite to the light diffusable pressure-sensitive adhesive layer 104 side) is optically treated. It can be a film in which a surface treatment layer having a desired optical function is formed on one surface. As the transparent resin film, for example, a resin film made of cellulose acetate resin such as TAC (triacetyl cellulose), acrylic resin such as polymethyl methacrylate, polycarbonate resin, and polyester resin such as polyethylene terephthalate is used. Can do. The thickness of the transparent resin film is, for example, 10 to 500 μm, preferably 20 to 300 μm.
 表面処理フィルム107としては、たとえば、表面処理層が表面での乱反射を利用して表示画面への映り込みを低減または防止する、表面凹凸を有する防眩層である(すなわち、上記光学的処理が防眩処理である)防眩フィルムや、表面処理層が表示画面に入射した外光の反射を低減または防止することにより、表示画面への映り込みを低減または防止する反射防止層である(すなわち、上記光学的処理が反射防止処理である)反射防止フィルムを挙げることができる。 As the surface treatment film 107, for example, the surface treatment layer is an antiglare layer having surface irregularities that uses irregular reflection on the surface to reduce or prevent reflection on the display screen (that is, the above optical treatment is performed). Anti-glare film (which is anti-glare treatment) and anti-reflection layer that reduces or prevents reflection on the display screen by reducing or preventing reflection of external light incident on the display screen by the surface treatment layer (ie, And the optical treatment is an antireflection treatment).
 防眩フィルムとしては、たとえば、透明樹脂フィルム上に微粒子を含有する、または含有しない紫外線硬化型樹脂組成物を塗工した後、形成された紫外線硬化型樹脂層に所定の表面凹凸形状を有する金型の該凹凸面を押し付けながら紫外線硬化型樹脂層を硬化させることにより、防眩層に所定の表面凹凸を付与したものや、透明樹脂フィルム上に微粒子を含有する紫外線硬化型樹脂組成物を塗工した後、金型を用いることなく、紫外線硬化型樹脂層を硬化させることにより、防眩層に微粒子による所定の表面凹凸を付与したものなどを用いることができる。防眩フィルムとして、市販の防眩フィルムを使用することもできる。 As an antiglare film, for example, a gold resin having a predetermined surface irregularity shape is formed on an ultraviolet curable resin layer formed after coating an ultraviolet curable resin composition containing or not containing fine particles on a transparent resin film. The UV curable resin layer is cured while pressing the uneven surface of the mold to apply a predetermined surface unevenness to the antiglare layer, or an ultraviolet curable resin composition containing fine particles on the transparent resin film. After the processing, it is possible to use an anti-glare layer provided with predetermined surface irregularities by fine particles by curing the ultraviolet curable resin layer without using a mold. A commercially available anti-glare film can also be used as the anti-glare film.
 反射防止フィルムとしては、たとえば、光拡散性粘着剤層104の屈折率よりも低い材料から構成された低屈折率層を反射防止層として備えるものや、光拡散性粘着剤層104の屈折率より高い材料から構成された高屈折率層と、この高屈折率層の屈折率より低い材料から構成された低屈折率層との積層構造を反射防止層として備えるものなどを挙げることができる。低屈折率層は、たとえば、シリカ、金属フッ化物微粒子(LiF、MgF、3NaF・AlF、AlF、NaAlF等)、内部に空隙を有する微粒子(中空シリカ微粒子等)、フッ素含有ポリマーなどの低屈折率材料およびバインダー樹脂を含有するものであることができる。バインダー樹脂形成材料は従来公知のものであってよく、ポリシロキサン樹脂、ケイ素アルコキシドの加水分解物、光または熱硬化性多分岐化合物(デンドリマーやハイパーブランチポリマー等)、その他の光または熱硬化性樹脂を用いることができる。透明樹脂フィルムと低屈折率層または高屈折率層との間には、ハードコート層や帯電防止層等の他の層の1種または2種以上が介在していてもよい。反射防止フィルムとして、市販の反射防止フィルムを使用することもできる。 Examples of the antireflection film include a low refractive index layer made of a material lower than the refractive index of the light diffusive pressure-sensitive adhesive layer 104 as an antireflection layer, and a refractive index of the light diffusable pressure sensitive adhesive layer 104. Examples include an antireflection layer having a laminated structure of a high refractive index layer composed of a high material and a low refractive index layer composed of a material lower than the refractive index of the high refractive index layer. The low refractive index layer is made of, for example, silica, metal fluoride fine particles (LiF, MgF, 3NaF / AlF, AlF, Na 3 AlF 6 etc.), fine particles having voids inside (hollow silica fine particles etc.), fluorine-containing polymer, etc. It can contain a low refractive index material and a binder resin. The binder resin forming material may be a conventionally known material, such as polysiloxane resin, hydrolyzate of silicon alkoxide, light or thermosetting multi-branched compound (dendrimer, hyperbranched polymer, etc.), other light or thermosetting resin. Can be used. One or more of other layers such as a hard coat layer and an antistatic layer may be interposed between the transparent resin film and the low refractive index layer or the high refractive index layer. A commercially available antireflection film can also be used as the antireflection film.
 [第3の実施形態]
 図5は、第3の実施形態の光拡散性偏光板を示す概略断面図である。図5において、光拡散性偏光板300は、偏光フィルム101を有し、偏光フィルム101の一方の面に、第1の保護フィルム110、透光性粘着剤層108、光拡散フィルム102、光拡散性粘着剤層104、表面処理フィルム107がこの順に積層され、偏光フィルム101の他方の面には、第2の保護フィルム109が積層されている。第1の実施形態および第2の実施形態と同一の部材には同一の符号を付して説明を省略する。本実施形態において、光拡散性粘着剤層104は、光拡散フィルム102の光拡散層106と表面処理フィルム107とを貼合する役割を担う。また、透光性粘着剤層108は、第1の保護フィルム110と光拡散フィルムの基材フィルム105とを貼合する役割を担う。
[Third embodiment]
FIG. 5 is a schematic cross-sectional view showing the light diffusing polarizing plate of the third embodiment. In FIG. 5, the light diffusing polarizing plate 300 includes a polarizing film 101, and a first protective film 110, a light-transmitting pressure-sensitive adhesive layer 108, a light diffusing film 102, a light diffusing on one surface of the polarizing film 101. The adhesive layer 104 and the surface treatment film 107 are laminated in this order, and the second protective film 109 is laminated on the other surface of the polarizing film 101. The same members as those in the first embodiment and the second embodiment are denoted by the same reference numerals and description thereof is omitted. In the present embodiment, the light diffusive pressure-sensitive adhesive layer 104 plays a role of bonding the light diffusion layer 106 of the light diffusion film 102 and the surface treatment film 107. Moreover, the translucent adhesive layer 108 plays the role which bonds the 1st protective film 110 and the base film 105 of a light-diffusion film.
 透光性粘着剤層108は、透光性を有し、第1の保護フィルム110と光拡散フィルムの基材フィルム105とを貼合する作用を有するものであれば限定されることはなく、第1の実施形態において、保護フィルム109,110と偏光フィルム101との貼合に用いられる粘着剤層として説明した粘着剤層が好適に用いられる。 The translucent pressure-sensitive adhesive layer 108 is not limited as long as it has translucency and has an action of bonding the first protective film 110 and the base film 105 of the light diffusion film. In 1st Embodiment, the adhesive layer demonstrated as an adhesive layer used for bonding of the protective films 109 and 110 and the polarizing film 101 is used suitably.
 以上のような構成の光拡散性偏光板は、液晶表示装置の視認側の偏光板として好適に用いられ、典型的には光拡散フィルム102が偏光シート101より視認側に位置するように液晶表示装置に組み込まれる。 The light diffusing polarizing plate having the above-described configuration is preferably used as a polarizing plate on the viewing side of a liquid crystal display device, and typically a liquid crystal display so that the light diffusing film 102 is positioned on the viewing side from the polarizing sheet 101. Built into the device.
 <液晶表示装置>
 次に、本発明に係る液晶表示装置について説明する。本発明の液晶表示装置は、バックライト装置と、光拡散手段と、バックライト側偏光板と、液晶セルと、上記本発明の光拡散性偏光板とをこの順で備えるものである。図6は、本発明の液晶表示装置の好ましい一例を示す概略断面図である。図6の液晶表示装置400は、ノーマリーホワイトモードのTN方式の液晶表示装置であって、バックライト装置402、光拡散手段403、バックライト側偏光板404、一対の透明基板411a、411bの間に液晶層412が設けられてなる液晶セル401、および、視認側偏光板である本実施形態に係る光拡散性偏光板405がこの順で配置されてなる。バックライト側偏光板404と光拡散性偏光板405は、それらの透過軸が直交ニコルの関係となるように配置される。
<Liquid crystal display device>
Next, the liquid crystal display device according to the present invention will be described. The liquid crystal display device of the present invention comprises a backlight device, a light diffusion means, a backlight side polarizing plate, a liquid crystal cell, and the light diffusing polarizing plate of the present invention in this order. FIG. 6 is a schematic sectional view showing a preferred example of the liquid crystal display device of the present invention. A liquid crystal display device 400 in FIG. 6 is a normally white mode TN liquid crystal display device, and includes a backlight device 402, a light diffusion means 403, a backlight side polarizing plate 404, and a pair of transparent substrates 411a and 411b. A liquid crystal cell 401 in which a liquid crystal layer 412 is provided, and a light diffusing polarizing plate 405 according to this embodiment which is a viewing side polarizing plate are arranged in this order. The backlight side polarizing plate 404 and the light diffusing polarizing plate 405 are disposed so that their transmission axes have a crossed Nicols relationship.
 液晶表示装置を構成する際に、各部材を接着剤層または粘着剤層を用いて貼合する場合、粘着剤層または接着剤層は、上記において保護フィルム109,110面および偏光フィルム101を貼合するために用いられる粘着剤層または接着剤層として説明したものと同様のものを用いることもできるし、上記において光拡散性粘着剤層104として説明したものと同様のものを用いることもできる。たとえば、光拡散性偏光板405と液晶セル401とを貼合するに際して、上述の光拡散性粘着剤層104と同様の粘着剤層を用いることができる。 When each member is bonded using an adhesive layer or an adhesive layer when configuring a liquid crystal display device, the adhesive layer or the adhesive layer is bonded to the protective films 109 and 110 and the polarizing film 101 in the above. The same material as that described as the pressure-sensitive adhesive layer or adhesive layer used for combining can be used, or the same material as that described above as the light-diffusing pressure-sensitive adhesive layer 104 can also be used. . For example, when the light diffusing polarizing plate 405 and the liquid crystal cell 401 are bonded, an adhesive layer similar to the above-described light diffusing adhesive layer 104 can be used.
 バックライト装置402は、上面開口の直方体形状のケース421と、ケース421内に複数本並列配置された、線状光源としての冷陰極管422とを備える直下型のバックライト装置である。また、光拡散手段403は、バックライト装置402上に配置された光拡散板403aと、光拡散板403aの前面側(光拡散板403aとバックライト側偏光板404との間)に設けられた光偏向板(プリズムシート)403bとから構成される。 The backlight device 402 is a direct-type backlight device including a rectangular parallelepiped case 421 having an upper surface opening and a plurality of cold cathode tubes 422 as linear light sources arranged in parallel in the case 421. The light diffusion means 403 is provided on the light diffusion plate 403a disposed on the backlight device 402 and on the front side of the light diffusion plate 403a (between the light diffusion plate 403a and the backlight side polarizing plate 404). And an optical deflection plate (prism sheet) 403b.
 このような構成の液晶表示装置400において、バックライト装置402から放射された光は、光拡散手段403の光拡散板403aによって拡散された後、光偏向板403bによって液晶セル401の光入射面の法線方向に対する所定の指向性が付与される。この法線方向に対する指向性は従来の装置よりも高く設定される。そして、所定の指向性が付与された光は、バックライト側偏光板404によって偏光とされて液晶セル401に入射する。液晶セル401に入射した光は、液晶層412によって偏光状態が制御された後、液晶セル401から出射する。そして、液晶セル401から出射した光は、光拡散性偏光板405によって拡散される。 In the liquid crystal display device 400 having such a configuration, the light emitted from the backlight device 402 is diffused by the light diffusing plate 403a of the light diffusing means 403, and then the light incident surface of the liquid crystal cell 401 by the light deflecting plate 403b. Predetermined directivity with respect to the normal direction is given. The directivity with respect to the normal direction is set higher than that of the conventional apparatus. The light having a predetermined directivity is polarized by the backlight side polarizing plate 404 and enters the liquid crystal cell 401. Light incident on the liquid crystal cell 401 is emitted from the liquid crystal cell 401 after the polarization state is controlled by the liquid crystal layer 412. The light emitted from the liquid crystal cell 401 is diffused by the light diffusing polarizing plate 405.
 このように、本実施形態の液晶表示装置では、光拡散手段403における、液晶セル401に入射する光の法線方向への指向性を従来よりも高くする、すなわち液晶セル401への入射光を従来よりも集光されたものとし、これを光拡散性偏光板405によってさらに拡散させる。これによって、従来の装置に比べて色再現性など優れた画像品位が得られるようになる。 Thus, in the liquid crystal display device of this embodiment, the directivity in the normal direction of the light incident on the liquid crystal cell 401 in the light diffusing unit 403 is made higher than that in the conventional case, that is, the incident light to the liquid crystal cell 401 is reduced. It is assumed that the light is more concentrated than before, and is further diffused by the light diffusing polarizing plate 405. As a result, image quality such as color reproducibility superior to that of the conventional apparatus can be obtained.
 以下、本実施形態の液晶表示装置を構成する構成部材についてより詳細に説明する。
 (液晶セル)
 液晶セル401は、スペーサーにより所定距離を隔てて対向配置された一対の透明基板411a、411bと、この一対の透明基板411a、411bの間に液晶を封入してなる液晶層412を備える。一対の透明基板411a、411bには、それぞれ透明電極や配向膜が積層形成されており、透明電極間に表示データに基づいた電圧が印加されることによって液晶が配向する。液晶セル401の表示方式は、上記の例ではTN方式であるが、IPS方式、VA方式などの表示方式も採用してもよい。
Hereafter, the structural member which comprises the liquid crystal display device of this embodiment is demonstrated in detail.
(Liquid crystal cell)
The liquid crystal cell 401 includes a pair of transparent substrates 411a and 411b arranged to face each other with a predetermined distance by a spacer, and a liquid crystal layer 412 formed by sealing liquid crystal between the pair of transparent substrates 411a and 411b. The pair of transparent substrates 411a and 411b are each formed by laminating a transparent electrode and an alignment film, and the liquid crystal is aligned by applying a voltage based on display data between the transparent electrodes. The display method of the liquid crystal cell 401 is the TN method in the above example, but a display method such as an IPS method or a VA method may also be adopted.
 (バックライト装置)
 バックライト装置402は、上面開口の直方体形状のケース421と、ケース421内に複数本並列配置された、線状光源としての冷陰極管422とを備える。ケース421は、樹脂材料や金属材料から成形されてなり、冷陰極管422から放射された光をケース421内周面で反射させる観点から、少なくともケース421内周面は白色または銀色であることが望ましい。光源としては、冷陰極管の他、線状形状等の各種形状のLED等も使用できる。線状光源を用いる場合、配置する線状光源の本数に特に限定はないが、発光面の輝度ムラの抑制等の観点から、隣接する線状光源の中心間距離が15mmから150mmの範囲であることが好ましい。なお、本実施形態で使用するバックライト装置402は、図5に示す直下型のものに限定されるものではなく、導光板の側面に線状光源または点状光源を配置したサイドライト型、あるいは平面状光源型などの各種のものが使用できる。
(Backlight device)
The backlight device 402 includes a rectangular parallelepiped case 421 having an upper surface opening, and a plurality of cold cathode tubes 422 as linear light sources arranged in parallel in the case 421. The case 421 is formed from a resin material or a metal material, and at least the inner peripheral surface of the case 421 may be white or silver from the viewpoint of reflecting the light emitted from the cold cathode tube 422 on the inner peripheral surface of the case 421. desirable. As a light source, LEDs of various shapes such as a linear shape can be used in addition to a cold cathode tube. When the linear light source is used, the number of the linear light sources to be arranged is not particularly limited, but the distance between the centers of the adjacent linear light sources is in the range of 15 mm to 150 mm from the viewpoint of suppressing luminance unevenness on the light emitting surface. It is preferable. The backlight device 402 used in the present embodiment is not limited to the direct type shown in FIG. 5, but is a sidelight type in which a linear light source or a point light source is arranged on the side surface of the light guide plate, or Various types such as a planar light source type can be used.
 (光拡散手段)
 図7および図8は、光拡散手段の好ましい一例を示す断面図である。光拡散手段403は、図7に示されるように、バックライト装置402上に配置された光拡散板403aと、光拡散板403aの前面側(光拡散板403aとバックライト側偏光板404との間)に設けられた光偏向板(プリズムシート)403bとから構成されることが好ましい。光拡散板403aは、たとえば、図7に示されるように、基材430に光拡散剤440が分散混合されてなるフィルムまたはシートであることができる。基材430としては、ポリカーボネート系樹脂、メタクリル系樹脂、メタクリル酸メチル-スチレン共重合体樹脂、アクリロニトリル-スチレン共重合体樹脂、メタクリル酸-スチレン共重合体樹脂、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、ポリプロピレンやポリメチルペンテン等のポリオレフィン系樹脂、環状ポリオレフィン系樹脂、ポリエチレンテレフタレートやポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリイミド系樹脂等が使用できる。
(Light diffusion means)
7 and 8 are cross-sectional views showing a preferred example of the light diffusing means. As shown in FIG. 7, the light diffusing unit 403 includes a light diffusing plate 403 a disposed on the backlight device 402, a front surface side of the light diffusing plate 403 a (a light diffusing plate 403 a and a backlight side polarizing plate 404. And a light deflector plate (prism sheet) 403b provided between the two. For example, as shown in FIG. 7, the light diffusing plate 403 a can be a film or a sheet in which a light diffusing agent 440 is dispersed and mixed with a base material 430. As the base material 430, polycarbonate resin, methacrylic resin, methyl methacrylate-styrene copolymer resin, acrylonitrile-styrene copolymer resin, methacrylic acid-styrene copolymer resin, polystyrene resin, polyvinyl chloride resin Polyolefin resins such as polypropylene and polymethylpentene, cyclic polyolefin resins, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyamide resins, polyarylate resins, and polyimide resins can be used.
 また、基材430に混合分散させる光拡散剤440は、基材430となる材料とは屈折率が異なる材料からなる微粒子である限り特に制限されないが、たとえば、基材430となる材料とは異なる種類のアクリル系樹脂、メラミン樹脂、ポリエチレン樹脂、ポリスチレン樹脂、有機シリコーン樹脂、アクリル-スチレン共重合体樹脂などからなる有機微粒子、および炭酸カルシウム、シリカ、酸化アルミニウム、炭酸バリウム、硫酸バリウム、酸化チタン、ガラスなどからなる無機微粒子が挙げられる。使用する光拡散剤440は、1種のみであってもよく、2種以上を併用してもよい。また、有機重合体のバルーンやガラス中空ビーズも光拡散剤440として使用できる。光拡散剤440の重量平均粒径は0.5~30μmの範囲が好ましい。また、光拡散剤440の形状は球形、偏平、板状、針状等であってよいが、好ましくは球形である。 Further, the light diffusing agent 440 mixed and dispersed in the base material 430 is not particularly limited as long as it is a fine particle made of a material having a refractive index different from that of the material to be the base material 430. For example, it is different from the material to be the base material 430. Organic fine particles consisting of various acrylic resins, melamine resins, polyethylene resins, polystyrene resins, organic silicone resins, acrylic-styrene copolymer resins, etc., and calcium carbonate, silica, aluminum oxide, barium carbonate, barium sulfate, titanium oxide, Examples include inorganic fine particles made of glass. Only one type of light diffusing agent 440 may be used, or two or more types may be used in combination. An organic polymer balloon or glass hollow beads can also be used as the light diffusing agent 440. The weight average particle diameter of the light diffusing agent 440 is preferably in the range of 0.5 to 30 μm. The light diffusing agent 440 may have a spherical shape, a flat shape, a plate shape, a needle shape, or the like, but is preferably a spherical shape.
 一方、光偏向板(プリズムシート)403bは、光入射面側(バックライト装置402側)が平坦面で、光出射側の面(バックライト側偏光板404に対向する表面)に、断面が先細の多角形状、好ましくは三角形状の線状プリズム450が平行に複数形成されたものである。光偏向板403bの材料としては、たとえば、ポリカーボネート系樹脂、ABS樹脂、メタクリル樹脂、メタクリル酸メチル-スチレン共重合体樹脂、ポリスチレン系樹脂、アクリロニトリル-スチレン共重合体樹脂、ポリエチレンやポリプロピレン等のポリオレフィン系樹脂等が挙げられる。光偏向板403bの作製方法としては、通常の熱可塑性樹脂の成形法を用いることができ、たとえば、金型を用いた熱プレス成形や、押出成形などが挙げられる。光偏向板403bの厚さは、通常、0.1~15mmであり、好ましくは0.5~10mmである。 On the other hand, the light deflection plate (prism sheet) 403b has a flat surface on the light incident surface side (backlight device 402 side) and a tapered cross section on the light emission surface (surface facing the backlight side polarizing plate 404). A plurality of polygonal prisms, preferably triangular linear prisms 450, are formed in parallel. Examples of the material of the light deflector 403b include polycarbonate resins, ABS resins, methacrylic resins, methyl methacrylate-styrene copolymer resins, polystyrene resins, acrylonitrile-styrene copolymer resins, and polyolefin resins such as polyethylene and polypropylene. Examples thereof include resins. As a method for producing the light deflection plate 403b, a normal thermoplastic resin molding method can be used, and examples thereof include hot press molding using a mold and extrusion molding. The thickness of the light deflection plate 403b is usually 0.1 to 15 mm, preferably 0.5 to 10 mm.
 光拡散板403aと光偏向板403bとは一体に成形してもよいし、別々に作製した後接合してもよい。また、別々に作製し接合する場合、光拡散板403aと光偏向板403bとの間に空気層を介して接触させてもよい。また、光拡散板403aと光偏向板403bとは、離間して配置してもよい。 The light diffusing plate 403a and the light deflecting plate 403b may be integrally formed, or may be formed separately and then joined. Further, in the case of separately producing and joining, the light diffusing plate 403a and the light deflecting plate 403b may be contacted via an air layer. Further, the light diffusion plate 403a and the light deflection plate 403b may be arranged apart from each other.
 光拡散手段403は、図8に示すように、光偏向機能を奏する光偏向板403bに光拡散剤440を分散混合させて、光拡散機能を付与したものであってもよい。 As shown in FIG. 8, the light diffusing means 403 may be one in which a light diffusing function is imparted by dispersing and mixing a light diffusing agent 440 to a light deflecting plate 403b having a light deflecting function.
 図9は、光拡散手段に他の一例を示すものである。光拡散手段403は、図9に示すように、光拡散板403aの前面側に配置された2枚の光偏向板(プリズムシート)を有するものであってもよい。この場合、図9を参照して、光拡散板403aに近い側に配置される光偏向板403bは、その線状プリズム450の稜線451の方向がバックライト側偏光板404の透過軸方向と実質的に平行となるよう配置され、光偏向板403bの前面側に配置される光偏向板403b’は、その線状プリズム450’の稜線451’の方向が光拡散性偏光板405の透過軸方向と実質的に平行となるように配置されることが好ましい。このような構成により、液晶表示装置における正面方向の輝度をより向上させることができる。ただし、光偏向板403b’の線状プリズム450’の稜線451’の方向がバックライト側偏光板404の透過軸方向と実質的に平行となるよう配置し、光偏向板403bの線状プリズム450の稜線451の方向が光拡散性偏光板405の透過軸方向と実質的に平行となるように配置することも可能である。 FIG. 9 shows another example of the light diffusing means. As shown in FIG. 9, the light diffusing unit 403 may include two light deflecting plates (prism sheets) disposed on the front side of the light diffusing plate 403a. In this case, referring to FIG. 9, in the light deflection plate 403b disposed on the side closer to the light diffusion plate 403a, the direction of the ridge line 451 of the linear prism 450 is substantially the same as the transmission axis direction of the backlight side polarizing plate 404. The light deflection plate 403b ′ arranged so as to be parallel to each other and disposed on the front side of the light deflection plate 403b has the direction of the ridge line 451 ′ of the linear prism 450 ′ as the transmission axis direction of the light diffusing polarizing plate 405. Are preferably arranged so as to be substantially parallel to each other. With such a configuration, the luminance in the front direction of the liquid crystal display device can be further improved. However, it is arranged so that the direction of the ridge line 451 ′ of the linear prism 450 ′ of the light deflector 403b ′ is substantially parallel to the transmission axis direction of the backlight side polarizing plate 404, and the linear prism 450 of the light deflector 403b. It is also possible to arrange the ridge line 451 so that the direction of the ridge line 451 is substantially parallel to the transmission axis direction of the light diffusing polarizing plate 405.
 図10は、光拡散手段について、液晶セルの光入射面の法線に対して70°方向の輝度値を測定する方法の一例である。光拡散手段403を通過した光の配光特性は、液晶セル401の光入射面の法線方向から70°傾いた方向の輝度値が、正面輝度値、すなわち、液晶セル401の光入射面の法線方向の輝度値に対して20%以下であり、かつ、光拡散手段403からの出射光は非平行光を含むものであることが好ましい。より好ましい配光特性は、液晶セル401の光入射面の法線に対して60°を超える光がないようにすることである。通常、図6に示すように、光拡散手段403の背面と、液晶セル401の光入射面とは平行に配置されるので、液晶セル401の光入射面の法線に対して70°方向の輝度値とは、たとえば、図10に示すように、光拡散手段403の長手方向をx方向とし、光拡散手段403の背面に平行な面をxy面としたときに、このxy面に対する法線であるz軸に対して70°方向の輝度値となり、好ましくは、xz面上においてz軸となす角が70°となる方向の輝度値である。このような配光特性とするには、たとえば、光偏向板403bの断面三角形状の線状プリズム450(および/または線状プリズム450’)の形状を調整すればよい。 FIG. 10 shows an example of a method of measuring the luminance value in the direction of 70 ° with respect to the normal line of the light incident surface of the liquid crystal cell with respect to the light diffusion means. The light distribution characteristic of the light that has passed through the light diffusing means 403 is that the luminance value in the direction inclined by 70 ° from the normal direction of the light incident surface of the liquid crystal cell 401 is the front luminance value, that is, the light incident surface of the liquid crystal cell 401. It is preferable that the luminance value is 20% or less with respect to the luminance value in the normal direction, and the emitted light from the light diffusion means 403 includes non-parallel light. A more preferable light distribution characteristic is to prevent light exceeding 60 ° from the normal line of the light incident surface of the liquid crystal cell 401. Normally, as shown in FIG. 6, the back surface of the light diffusing means 403 and the light incident surface of the liquid crystal cell 401 are arranged in parallel, so that the 70 ° direction of the light incident surface of the liquid crystal cell 401 is normal. For example, as shown in FIG. 10, the luminance value is a normal line to the xy plane when the longitudinal direction of the light diffusing unit 403 is the x direction and the plane parallel to the back surface of the light diffusing unit 403 is the xy plane. The luminance value is in the direction of 70 ° with respect to the z axis, and preferably the luminance value in the direction in which the angle formed with the z axis on the xz plane is 70 °. In order to achieve such a light distribution characteristic, for example, the shape of the linear prism 450 (and / or the linear prism 450 ') having a triangular cross section of the light deflection plate 403b may be adjusted.
 線状プリズム450,450’の頂角θ(図7および図8参照)は、60~120°の範囲が好ましく、より好ましくは90~110°である。この三角形の形状は、等辺、不等辺は任意であるが、液晶セル401の法線方向(液晶表示装置の正面方向)に集光しようとする場合には二等辺三角形が好ましい。また、線状プリズムから構成されるプリズム面は、三角形の頂角に相対した底辺が互いに隣接するように順次配置され、複数の線状プリズムが互いにほぼ平行になるように配列した構造とするのが好ましい。この場合、集光能力が著しく減退しない限り、線状プリズムの頂点および隣接する線状プリズムによって形成されるV字状溝は、曲線形状となっていてもよい。線状プリズムの稜線間の距離(図7および図8に示される距離d)は、通常、10μm~500μmの範囲であり、好ましくは、30μm~200μmの範囲である。 The apex angle θ (see FIGS. 7 and 8) of the linear prisms 450 and 450 ′ is preferably in the range of 60 to 120 °, more preferably 90 to 110 °. As for the shape of this triangle, an equal side and an unequal side can be arbitrary, but an isosceles triangle is preferable when concentrating in the normal direction of the liquid crystal cell 401 (front direction of the liquid crystal display device). Also, the prism surface composed of linear prisms is arranged sequentially so that the bases corresponding to the apex angles of the triangles are adjacent to each other, and a plurality of linear prisms are arranged so as to be substantially parallel to each other. Is preferred. In this case, the V-shaped grooves formed by the apexes of the linear prisms and the adjacent linear prisms may be curved as long as the light collecting ability is not significantly reduced. The distance between the ridgelines of the linear prism (distance d shown in FIGS. 7 and 8) is usually in the range of 10 μm to 500 μm, and preferably in the range of 30 μm to 200 μm.
 図11は、非平行光の定義を説明する図である。非平行光とは、図11に示すように、光拡散手段403の出射面における直径1cmの円内から出射された光を、該出射面の法線方向に1m離れた、該出射面に平行な観察面における投影像として観察したとき、その投影像の面内輝度分布の最小半値幅が30cm以上であるような出射特性を有する光である。 FIG. 11 is a diagram for explaining the definition of non-parallel light. As shown in FIG. 11, non-parallel light is parallel to the emission surface, which is 1 m away from the inside of a circle having a diameter of 1 cm on the emission surface of the light diffusing means 403 and is 1 m away from the normal direction of the emission surface. When viewed as a projection image on a simple observation surface, the light has an emission characteristic such that the minimum half-value width of the in-plane luminance distribution of the projection image is 30 cm or more.
 (バックライト側偏光板)
 バックライト側偏光板404としては、通常は、偏光フィルムの片面または両面に保護フィルムを貼合したものを使用することができる。偏光フィルムおよび保護フィルムとしては、光拡散性偏光板について上述したものを用いることができる。
(Backlight side polarizing plate)
As the backlight-side polarizing plate 404, a polarizing film in which a protective film is bonded to one side or both sides can be usually used. As a polarizing film and a protective film, what was mentioned above about the light diffusable polarizing plate can be used.
 (位相差板)
 図12は、本発明の液晶表示装置の他の好ましい一例を示す概略断面図である。本実施形態の液晶表示装置は、図12に示されるように、位相差板406を備えることができる。図12に示される液晶表示装置400’おいて位相差板406は、バックライト側偏光板404と液晶セル401との間に配置されている。この位相差板406は、液晶セル401の表面に対して垂直な方向に位相差がほぼゼロのものであり、真正面からは何ら光学的な作用を及ぼさず、斜めから見たときに位相差が発現し、液晶セル401で生じる位相差を補償するものである。これによって、より広い視野角が得られ、より優れた表示品位および色再現性が得られるようになる。位相差板406は、バックライト側偏光板404と液晶セル401の間、もしくは、光拡散性偏光板405と液晶セル401の間の一方、または、その両方に配置することができる。位相差板406は、バックライト側偏光板404の保護フィルム上に積層することもできるし、あるいは保護フィルムの機能を兼ねて、偏光フィルム上に直接積層することもできる。光拡散性偏光板405についても同様である。
(Phase difference plate)
FIG. 12 is a schematic cross-sectional view showing another preferred example of the liquid crystal display device of the present invention. As shown in FIG. 12, the liquid crystal display device of the present embodiment can include a retardation plate 406. In the liquid crystal display device 400 ′ shown in FIG. 12, the retardation film 406 is disposed between the backlight side polarizing plate 404 and the liquid crystal cell 401. This phase difference plate 406 has a substantially zero phase difference in a direction perpendicular to the surface of the liquid crystal cell 401, has no optical effect from the front, and has a phase difference when viewed from an oblique direction. It is expressed and compensates for the phase difference generated in the liquid crystal cell 401. As a result, a wider viewing angle can be obtained, and better display quality and color reproducibility can be obtained. The retardation plate 406 can be disposed between the backlight side polarizing plate 404 and the liquid crystal cell 401, or between the light diffusing polarizing plate 405 and the liquid crystal cell 401, or both. The retardation film 406 can be laminated on the protective film of the backlight-side polarizing plate 404, or can be laminated directly on the polarizing film so as to function as a protective film. The same applies to the light diffusing polarizing plate 405.
 位相差板406としては、たとえば、ポリカーボネート樹脂や環状オレフィン系重合体樹脂をフィルムにし、このフィルムをさらに二軸延伸したものや、液晶性モノマーをフィルムに塗布し、光重合反応によってその分子配列を固定化したもの等が挙げられる。位相差板406は、液晶の配列を光学的に補償するものであるから、液晶配列と逆の屈折率特性のものを用いる。具体的にはTNモードの液晶セルには、たとえば、「WVフィルム」(富士フイルム株式会社製)、STNモードの液晶表示セルには、たとえば、「LCフィルム」(新日本石油株式会社製)、IPSモードの液晶表示セルには、たとえば、二軸性位相差フィルム、VAモードの液晶表示セルには、たとえば、AプレートおよびCプレートを組み合わせた位相差板や二軸性位相差フィルム、πセルモードの液晶表示セルには、たとえば、「OCB用WVフィルム」(富士フイルム株式会社製)等が好適に使用できる。 As the phase difference plate 406, for example, a polycarbonate resin or a cyclic olefin polymer resin is used as a film, and this film is further biaxially stretched, or a liquid crystalline monomer is applied to the film, and its molecular arrangement is changed by a photopolymerization reaction. Immobilized ones are listed. The phase difference plate 406 optically compensates for the alignment of the liquid crystal, and therefore has a refractive index characteristic opposite to that of the liquid crystal alignment. Specifically, for a TN mode liquid crystal cell, for example, “WV film” (manufactured by FUJIFILM Corporation), for an STN mode liquid crystal display cell, for example, “LC film” (manufactured by Nippon Oil Corporation), For IPS mode liquid crystal display cells, for example, a biaxial retardation film, for VA mode liquid crystal display cells, for example, a retardation plate or a biaxial retardation film combining a A plate and a C plate, a π cell For the mode liquid crystal display cell, for example, “OCB WV film” (manufactured by FUJIFILM Corporation) can be suitably used.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の例における光拡散性偏光板の相対散乱光強度、ヘイズ、光拡散フィルムの光拡散層の厚さ、光拡散フィルムの曲げ強さ、粘着剤層のヘイズ、ならびに用いた光拡散剤の重量平均粒径の測定方法は次のとおりである。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the following examples, the relative scattered light intensity and haze of the light diffusing polarizing plate, the thickness of the light diffusing layer of the light diffusing film, the bending strength of the light diffusing film, the haze of the adhesive layer, and the light diffusing agent used. The method of measuring the weight average particle size of is as follows.
 (a)相対散乱光強度
 光学的に透明な粘着剤を用いて、光拡散性偏光板を、光拡散フィルムとは反対側の面でガラス基板に貼合した測定用サンプルを用いて測定を行なった。測定用サンプルのガラス基板面側から、光拡散性偏光板の法線方向にHe-Neレーザの平行光(波長543.5nm)を入射し、光拡散層側の法線方向から40°傾いた方向A3に透過するレーザ光の強度Lを測定し、透過散乱光の強度Lを光源の光強度Lで除した値として相対散乱光強度L/Lを算出した。測定には、横河電機株式会社製の「3292 03 オプティカルパワーセンサー」および同社製の「3292 オプティカルパワーメーター」を用いた。この測定を行なうに当たり、He-Neレーザを照射する光源は、上記ガラス基板から430mmの位置に配置した。受光器である上記パワーセンサーは、上記サンプルの光拡散層側の法線方向から40°傾いた方向A3に、レーザ光の出射点から280mmの位置に配置した。なお、上記光源の光強度Lの測定は、上記光源から710mm(=430mm+280mm)の位置に上記パワーセンサーを配置して行なった。
(A) Relative scattered light intensity Using an optically transparent adhesive, measurement is performed using a measurement sample in which a light diffusing polarizing plate is bonded to a glass substrate on the side opposite to the light diffusing film. It was. He-Ne laser parallel light (wavelength 543.5 nm) was incident from the glass substrate surface side of the measurement sample into the normal direction of the light diffusing polarizing plate, and was tilted by 40 ° from the normal direction of the light diffusion layer side. The intensity L 2 of the laser beam transmitted in the direction A3 was measured, and the relative scattered light intensity L 2 / L 1 was calculated as a value obtained by dividing the intensity L 2 of the transmitted scattered light by the light intensity L 1 of the light source. For measurement, a “3292 03 optical power sensor” manufactured by Yokogawa Electric Corporation and a “3292 optical power meter” manufactured by the same company were used. In performing this measurement, a light source for irradiating a He—Ne laser was disposed at a position of 430 mm from the glass substrate. The power sensor, which is a light receiver, was arranged in a direction A3 inclined by 40 ° from the normal direction on the light diffusion layer side of the sample at a position 280 mm from the emission point of the laser beam. The measurement of the light intensity L 1 of the light source was performed by placing the power sensor to the position of 710mm (= 430mm + 280mm) from the light source.
 (b)ヘイズ
 光学的に透明な粘着剤を用いて、光拡散性偏光板を、光拡散フィルムとは反対側の面でガラス基板に貼合した測定用サンプルを用いて測定を行なった。全ヘイズおよび内部ヘイズの測定には、JIS K 7136に準拠したヘイズ透過率計(株式会社村上色彩技術研究所製のヘイズメーター「HM-150」)を用いた。粘着剤層については、光学的に透明な粘着剤を用いて、粘着剤層を含む粘着剤シートをガラス基板に貼合した測定用サンプルを用いて上述した光拡散性偏光板と同様の方法により測定を行なった。
(B) Haze Using an optically transparent adhesive, measurement was performed using a measurement sample in which a light diffusing polarizing plate was bonded to a glass substrate on the surface opposite to the light diffusing film. For the measurement of total haze and internal haze, a haze transmittance meter (haze meter “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.) according to JIS K 7136 was used. About an adhesive layer, by the method similar to the light diffusable polarizing plate mentioned above using the sample for a measurement which bonded the adhesive sheet containing an adhesive layer to the glass substrate using an optically transparent adhesive. Measurements were made.
 (c)光拡散層の厚さ
 光拡散フィルムの厚さをNIKON社製 DIGIMICRO MH-15(本体)およびZC-101(カウンター)を用いて測定し、基材シートの厚みを測定層厚から差し引くことにより光拡散層の厚さを測定した。
(C) Thickness of the light diffusion layer The thickness of the light diffusion film is measured using DIGIMICRO MH-15 (main body) and ZC-101 (counter) manufactured by NIKON, and the thickness of the base sheet is subtracted from the measurement layer thickness. Thus, the thickness of the light diffusion layer was measured.
 (d)光拡散フィルムの曲げ強度
 光拡散フィルムの曲げ強さについて、JIS K5600に準拠したマンドレル試験機を用い、8mm径の金属棒を用いてマンドレル試験を実施した。このとき、塗膜(光拡散層)に割れや白化などの異常が見られたものを×評価、異常が見られなかったものを○評価とした。
(D) Bending strength of light diffusing film About the bending strength of the light diffusing film, the mandrel test was implemented using the metal rod of 8 mm diameter using the mandrel testing machine based on JISK5600. At this time, a case where abnormality such as cracking or whitening was observed in the coating film (light diffusion layer) was evaluated as x, and a case where abnormality was not observed was evaluated as o.
 (e)光拡散剤の重量平均粒径および粒径の標準偏差
 コールター原理(細孔電気抵抗法)に基づき、コールターマルチサイザー(ベックマンコールター社製)を用いて測定した。
(E) Weight average particle diameter of light diffusing agent and standard deviation of particle diameter Based on the Coulter principle (pore electrical resistance method), measurement was performed using a Coulter Multisizer (manufactured by Beckman Coulter).
 <光拡散フィルム>
 [鏡面金属製ロールの作製]
 直径200mmの鉄ロール(JISによるSTKM13A)の表面に工業用クロムめっき加工を行ない、ついで表面を鏡面研磨して鏡面金属製ロールを作製した。得られた鏡面金属製ロールのクロムめっき面のビッカース硬度は1000であった。なお、ビッカース硬度は、超音波硬度計MIC10(Krautkramer社製)を用い、JIS Z 2244に準拠して測定した。
<Light diffusion film>
[Preparation of mirror surface metal roll]
The surface of an iron roll having a diameter of 200 mm (STKM13A by JIS) was subjected to industrial chrome plating, and the surface was then mirror-polished to produce a mirror-surface metal roll. The Vickers hardness of the chrome-plated surface of the obtained mirror surface metal roll was 1000. The Vickers hardness was measured according to JIS Z 2244 using an ultrasonic hardness meter MIC10 (manufactured by Krautkramer).
 [光拡散フィルム]
 (1)製造例1
 ペンタエリスリトールトリアクリレート60重量部、および多官能ウレタン化アクリレート(ヘキサメチレンジイソシアネートとペンタエリスリトールトリアクリレートの反応生成物)40重量部をプロピレングリコールモノメチルエーテル溶液に混合し、固形分濃度60重量%となるように調整して紫外線硬化性樹脂組成物を得た。なお、該組成物からプロピレングリコールモノメチルエーテルを除去して紫外線硬化した後の硬化物の屈折率は1.53であった。
[Light diffusion film]
(1) Production Example 1
60 parts by weight of pentaerythritol triacrylate and 40 parts by weight of polyfunctional urethanized acrylate (reaction product of hexamethylene diisocyanate and pentaerythritol triacrylate) are mixed in a propylene glycol monomethyl ether solution so that the solid content concentration becomes 60% by weight. To obtain an ultraviolet curable resin composition. The refractive index of the cured product after removing propylene glycol monomethyl ether from the composition and curing with ultraviolet rays was 1.53.
 次に、上記紫外線硬化性樹脂組成物の固形分100重量部に対して、光拡散剤として重量平均粒径が7.2μm、標準偏差が0.52μm、屈折率1.59のポリスチレン系粒子を35重量部、および光重合開始剤である「ルシリン TPO」(BASF社製、化学名:2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド)を5重量部添加し、固形分率が60重量%になるようにプロピレングリコールモノメチルエーテルで希釈して塗布液を調製した。 Next, polystyrene particles having a weight average particle size of 7.2 μm, a standard deviation of 0.52 μm, and a refractive index of 1.59 are used as a light diffusing agent with respect to 100 parts by weight of the solid content of the ultraviolet curable resin composition. 35 parts by weight and 5 parts by weight of “Lucirin TPO” (manufactured by BASF, chemical name: 2,4,6-trimethylbenzoyldiphenylphosphine oxide) as a photopolymerization initiator are added, and the solid content is 60% by weight. A coating solution was prepared by diluting with propylene glycol monomethyl ether.
 この塗布液を、厚さ80μmのトリアセチルセルロース(TAC)フィルム(基材フィルム)上に塗布し、80℃に設定した乾燥機中で1分間乾燥させた。乾燥後の基材フィルムを、上記で作製した鏡面金属製ロールの鏡面に、紫外線硬化性樹脂組成物層がロール側となるようにゴムロールで押し付けて密着させた。この状態で基材フィルム側より、強度20mW/cmの高圧水銀灯からの光をh線換算光量で300mJ/cmとなるように照射して、紫外線硬化性樹脂組成物層を硬化させ、平坦な表面を有する光拡散層と基材フィルムとからなる、光拡散フィルムを得た。硬化後の光拡散層の厚みは8μmであった。また、得られた光拡散フィルムについて上述の曲げ強さ試験を行なった。評価は○であった。 This coating solution was coated on a 80 μm thick triacetyl cellulose (TAC) film (base film) and dried for 1 minute in a dryer set at 80 ° C. The base film after drying was brought into close contact with the mirror surface of the mirror-finished metal roll produced above with a rubber roll so that the ultraviolet curable resin composition layer was on the roll side. In this state, light from a high-pressure mercury lamp having an intensity of 20 mW / cm 2 is irradiated from the base film side so as to be 300 mJ / cm 2 in terms of the amount of h-line conversion, and the ultraviolet curable resin composition layer is cured and flattened. The light-diffusion film which consists of a light-diffusion layer and a base film which have an appropriate surface was obtained. The thickness of the light diffusion layer after curing was 8 μm. Moreover, the above-mentioned bending strength test was done about the obtained light-diffusion film. Evaluation was (circle).
 (2)製造例2
 製造例1と同様の材料、同様の方法で光拡散フィルムを得た。硬化後の光拡散層の厚みは13μmであった。また、得られた光拡散フィルムについて上述の曲げ強さ試験を行なった。評価は○であった。
(2) Production Example 2
A light diffusion film was obtained using the same material and the same method as in Production Example 1. The thickness of the light diffusion layer after curing was 13 μm. Moreover, the above-mentioned bending strength test was done about the obtained light-diffusion film. Evaluation was (circle).
 (3)製造例3
 光拡散剤の配合量を紫外線硬化性樹脂組成物の固形分100重量部に対して43重量部とした点以外は、製造例1と同様の材料、同様の方法で光拡散フィルムを得た。硬化後の光拡散層の厚みは10μmであった。また、得られた光拡散フィルムについて上述の曲げ強さ試験を行なった。評価は×であった。
(3) Production Example 3
A light diffusing film was obtained by the same material and the same method as in Production Example 1 except that the amount of the light diffusing agent was 43 parts by weight with respect to 100 parts by weight of the solid content of the ultraviolet curable resin composition. The thickness of the light diffusion layer after curing was 10 μm. Moreover, the above-mentioned bending strength test was done about the obtained light-diffusion film. Evaluation was x.
 <粘着剤層>
 (1)製造例a
 屈折率1.50のアクリル系の粘着剤100重量部に対し、イソシアネート系硬化剤(D-90;総研化学社製)を1.5重量部添加したベース塗料に、光拡散剤として屈折率1.43、重量平均粒子径1.0μmのシリコン樹脂ビーズを3重量部添加し、アジテータで1時間撹拌して粘着剤を調製した。そしてこの粘着剤を8μm厚の離型シート(PET3801、リンテック社製)に塗布し、乾燥して粘着剤層を形成した後、粘着剤層上に離型シート(K-14、帝人社製)を貼り合わせ、粘着剤シートを得た。乾燥後の粘着剤層の厚さは25μm、粘着剤層の全ヘーズは25%であり、光拡散性粘着剤層を得た。
<Adhesive layer>
(1) Production example a
A base paint in which 1.5 parts by weight of an isocyanate curing agent (D-90; manufactured by Soken Chemical Co., Ltd.) is added to 100 parts by weight of an acrylic pressure-sensitive adhesive having a refractive index of 1.50. .43, 3 parts by weight of silicon resin beads having a weight average particle diameter of 1.0 μm were added, and the mixture was stirred with an agitator for 1 hour to prepare an adhesive. Then, this pressure-sensitive adhesive was applied to an 8 μm-thick release sheet (PET3801, manufactured by Lintec Corporation), dried to form a pressure-sensitive adhesive layer, and then a release sheet (K-14, manufactured by Teijin Limited) on the pressure-sensitive adhesive layer. Were bonded together to obtain an adhesive sheet. The thickness of the pressure-sensitive adhesive layer after drying was 25 μm, the total haze of the pressure-sensitive adhesive layer was 25%, and a light diffusable pressure-sensitive adhesive layer was obtained.
 (2)製造例b
 光拡散剤を配合しなかった点以外は、製造例aと同様に粘着剤シートを得た。粘着剤層の全ヘーズは0%であった。
(2) Production example b
An adhesive sheet was obtained in the same manner as in Production Example a except that no light diffusing agent was blended. The total haze of the pressure-sensitive adhesive layer was 0%.
 (3)製造例c
 汎用のアクリル系透明粘着剤に、光拡散剤としてシリコン系樹脂ビーズ「トスパール145」(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)を所望のヘーズとなるように適当量混合したものを粘着剤として用いた点以外は、製造例aと同様の材料、同様の方法で粘着剤シートを得た。乾燥後の粘着剤層の厚さは25μm、粘着剤層の全ヘーズは33%であり、光拡散性粘着剤層を得た。
(3) Production example c
Adhesive prepared by mixing an appropriate amount of silicone resin beads “Tospearl 145” (made by Momentive Performance Materials Japan Co., Ltd.) as a light diffusing agent with a general-purpose acrylic transparent adhesive. Except for the points used, a pressure-sensitive adhesive sheet was obtained using the same material and the same method as in Production Example a. The thickness of the pressure-sensitive adhesive layer after drying was 25 μm, the total haze of the pressure-sensitive adhesive layer was 33%, and a light diffusable pressure-sensitive adhesive layer was obtained.
 (4)製造例d
 汎用のアクリル系透明粘着剤に、光拡散剤としてシリコン系樹脂ビーズ「トスパール145」(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)を所望のヘーズとなるように適当量混合したものを粘着剤として用いた点以外は、製造例aと同様の材料、同様の方法で粘着剤シートを得た。乾燥後の粘着剤層の厚さは25μm、粘着剤層の全ヘーズは60%であり、光拡散性粘着剤層を得た。
(4) Production example d
Adhesive prepared by mixing an appropriate amount of silicone resin beads “Tospearl 145” (made by Momentive Performance Materials Japan Co., Ltd.) as a light diffusing agent with a general-purpose acrylic transparent adhesive. Except for the points used, a pressure-sensitive adhesive sheet was obtained using the same material and the same method as in Production Example a. The thickness of the pressure-sensitive adhesive layer after drying was 25 μm, the total haze of the pressure-sensitive adhesive layer was 60%, and a light diffusable pressure-sensitive adhesive layer was obtained.
 (5)製造例e
 汎用のアクリル系透明粘着剤に、光拡散剤としてシリコン系樹脂ビーズ「トスパール145」(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)を所望のヘーズとなるように適当量混合したものを粘着剤として用いた点以外は、製造例aと同様の材料、同様の方法で粘着剤シートを得た。乾燥後の粘着剤層の厚さが25μm、粘着剤層の全ヘーズは70%であり、光拡散性粘着層を得た。
(5) Production example e
Adhesive prepared by mixing an appropriate amount of silicone resin beads “Tospearl 145” (made by Momentive Performance Materials Japan Co., Ltd.) as a light diffusing agent with a general-purpose acrylic transparent adhesive. Except for the points used, a pressure-sensitive adhesive sheet was obtained using the same material and the same method as in Production Example a. The thickness of the pressure-sensitive adhesive layer after drying was 25 μm, the total haze of the pressure-sensitive adhesive layer was 70%, and a light diffusable pressure-sensitive adhesive layer was obtained.
 <光拡散性偏光板>
 [作製]
 (1)実施例1
 製造例1で製造した光拡散フィルムに、一方の離型シートを剥がして製造例aで製造した粘着剤層を貼付して積層体を得て、上記の方法により相対散乱光強度、ヘイズを測定した。その後、さらに他方の離型シートを剥がしてヨウ素系偏光板(住友化学社製の「TRW842AP7」)に貼付して、ヨウ素系偏光板、粘着剤層、光拡散フィルムとがこの順で積層された実施例1の光拡散性偏光板を得た。
<Light diffusing polarizing plate>
[Production]
(1) Example 1
One release sheet is peeled off from the light diffusing film produced in Production Example 1 and the adhesive layer produced in Production Example a is applied to obtain a laminate, and the relative scattered light intensity and haze are measured by the above methods. did. Thereafter, the other release sheet was further peeled off and attached to an iodine polarizing plate (“TRW842AP7” manufactured by Sumitomo Chemical Co., Ltd.), and an iodine polarizing plate, an adhesive layer, and a light diffusion film were laminated in this order. The light diffusable polarizing plate of Example 1 was obtained.
 (2)実施例2
 製造例3で製造した光拡散フィルムに、一方の離型シートを剥がして製造例cで製造した粘着剤層を貼付して積層体を得て、上記の方法により相対散乱光強度、ヘイズを測定した。その後、さらに他方の離型シートを剥がしてヨウ素系偏光板(住友化学社製の「TRW842AP7」)に貼付して、ヨウ素系偏光板、粘着剤層、光拡散フィルムとがこの順で積層された実施例2の光拡散性偏光板を得た。
(2) Example 2
One release sheet is peeled off from the light diffusion film produced in Production Example 3 and the adhesive layer produced in Production Example c is applied to obtain a laminate, and the relative scattered light intensity and haze are measured by the above methods. did. Thereafter, the other release sheet was further peeled off and attached to an iodine polarizing plate (“TRW842AP7” manufactured by Sumitomo Chemical Co., Ltd.), and an iodine polarizing plate, an adhesive layer, and a light diffusion film were laminated in this order. The light diffusable polarizing plate of Example 2 was obtained.
 (3)実施例3
 製造例3で製造した光拡散フィルムに、一方の離型シートを剥がして製造例dで製造した粘着剤層を貼付して、さらに他方の離型シートを剥がしてヨウ素系偏光板(住友化学社製の「TRW842AP7」)に貼付して、ヨウ素系偏光板、粘着剤層、光拡散フィルムとがこの順で積層された実施例3の光拡散性偏光板を得た。
(3) Example 3
One release sheet is peeled off to the light diffusion film produced in Production Example 3, the adhesive layer produced in Production Example d is applied, and the other release sheet is further peeled off to remove the iodine-based polarizing plate (Sumitomo Chemical Co., Ltd.). A light diffusing polarizing plate of Example 3 in which an iodine polarizing plate, an adhesive layer, and a light diffusing film were laminated in this order was attached to “TRW842AP7”).
 (4)実施例4
 製造例3で製造した光拡散フィルムに、一方の離型シートを剥がして製造例eで製造した粘着剤層を貼付して、さらに他方の離型シートを剥がしてヨウ素系偏光板(住友化学社製の「TRW842AP7」)に貼付して、ヨウ素系偏光板、粘着剤層、光拡散フィルムとがこの順で積層された実施例4の光拡散性偏光板を得た。
(4) Example 4
One release sheet is peeled off from the light diffusion film produced in Production Example 3 and the pressure-sensitive adhesive layer produced in Production Example e is applied, and the other release sheet is further peeled off to remove the iodine-based polarizing plate (Sumitomo Chemical Co., Ltd.). A light diffusing polarizing plate of Example 4 in which an iodine polarizing plate, an adhesive layer, and a light diffusing film were laminated in this order was attached to “TRW842AP7”).
 (5)比較例1
 製造例1で製造した光拡散フィルムに、一方の離型シートを剥がして製造例bで製造した粘着剤層を貼付して、さらに他方の離型シートを剥がしてヨウ素系偏光板(住友化学社製の「TRW842AP7」)に貼付して、ヨウ素系偏光板、粘着剤層、光拡散フィルムとがこの順で積層された比較例1の光拡散性偏光板を得た。
(5) Comparative Example 1
One release sheet is peeled off from the light diffusion film produced in Production Example 1 and the pressure-sensitive adhesive layer produced in Production Example b is applied, and the other release sheet is further peeled off to remove the iodine-based polarizing plate (Sumitomo Chemical Co., Ltd.). A light diffusing polarizing plate of Comparative Example 1 in which an iodine polarizing plate, an adhesive layer, and a light diffusing film were laminated in this order was attached to “TRW842AP7”).
 (6)比較例2
 製造例2で製造した光拡散フィルムに、一方の離型シートを剥がして製造例bで製造した光拡散性粘着剤層を貼付して、さらに他方の離型シートを剥がしてヨウ素系偏光板(住友化学社製の「TRW842AP7」)に貼付して、ヨウ素系偏光板、粘着剤層、及び光拡散フィルムがこの順で積層された比較例2の光拡散性偏光板を得た。
(6) Comparative Example 2
One release sheet is peeled off to the light diffusion film produced in Production Example 2 and the light diffusable pressure-sensitive adhesive layer produced in Production Example b is applied, and the other release sheet is further peeled off to remove the iodine-based polarizing plate ( It was affixed to “TRW842AP7” manufactured by Sumitomo Chemical Co., Ltd.) to obtain a light diffusing polarizing plate of Comparative Example 2 in which an iodine polarizing plate, an adhesive layer, and a light diffusing film were laminated in this order.
 [光学特性の測定]
 得られた光拡散性偏光板について、上述の方法により全ヘイズ、相対散乱光強度を測定した。表1に結果を示す。なお、得られた光拡散性偏光板の表面ヘイズは、いずれも実質的に0%であるため、その内部ヘイズは、実質的にその全ヘイズと同じ値になっている。
[Measurement of optical properties]
About the obtained light diffusable polarizing plate, the total haze and relative scattered light intensity were measured by the above-mentioned method. Table 1 shows the results. Since the surface haze of the obtained light diffusing polarizing plate is substantially 0%, the internal haze is substantially the same value as the total haze.
 <液晶表示装置>
 [作製]
 得られた光拡散性偏光板を用いて液晶表示装置を作製し、正面コントラスト、視野角、モアレ(moire)の程度および白ちゃけの程度に基づき画質を総合的に評価した。まず、IPSモードのPanasonic製32型液晶テレビ「VIERA TH-32LZ85」のバックライト装置上に、光拡散板を配置するとともに、頂角が95°である複数の線状プリズムが平行に配列されたプリズムフィルムを2枚使用し、これらを光拡散板とバックライト側偏光板との間に配置した。この際、一方のプリズムフィルム(バックライト装置寄りのプリズムフィルム)は、その線状プリズムの稜線の方向がバックライト側偏光板の透過軸に略平行となるように配置し、他方のプリズムフィルム(バックライト側偏光板寄りのプリズムフィルム)は、その線状プリズムの稜線の方向が後述する視認側偏光板(光拡散性偏光板)の透過軸に略平行となるように配置した。プリズムフィルムからの出射光は、法線方向に対して70°方向の輝度値が法線方向の輝度値の10%であった。また、視認側偏光板を剥がして、実施例1~4、比較例1,2の光拡散性偏光板を、バックライト側偏光板に対してクロスニコルとなるように貼合し、液晶表示装置を得た。
<Liquid crystal display device>
[Production]
A liquid crystal display device was produced using the obtained light diffusing polarizing plate, and the image quality was comprehensively evaluated based on the front contrast, the viewing angle, the degree of moire, and the degree of whitishness. First, a light diffusing plate was arranged on the backlight device of the Panasonic IPS mode 32-inch LCD TV “VIERA TH-32LZ85”, and a plurality of linear prisms having an apex angle of 95 ° were arranged in parallel. Two prism films were used, and these were arranged between the light diffusion plate and the backlight side polarizing plate. At this time, one prism film (prism film close to the backlight device) is arranged so that the direction of the ridgeline of the linear prism is substantially parallel to the transmission axis of the backlight side polarizing plate, and the other prism film ( The prism film near the backlight side polarizing plate) was arranged so that the direction of the ridgeline of the linear prism was substantially parallel to the transmission axis of the viewing side polarizing plate (light diffusing polarizing plate) described later. In the light emitted from the prism film, the luminance value in the direction of 70 ° with respect to the normal direction was 10% of the luminance value in the normal direction. Further, the viewing-side polarizing plate was peeled off, and the light-diffusing polarizing plates of Examples 1 to 4 and Comparative Examples 1 and 2 were bonded to the backlight-side polarizing plate so as to be crossed Nicols, and the liquid crystal display device Got.
 [評価]
 上記のようにして得られた液晶表示装置の画質について、視野角、モアレの程度および白ちゃけの程度に基づき目視評価した。評価基準は次の通りである。評価結果を表1に示す。
◎:表示品位に異常が全く認められない。
○:表示品位に異常がほとんど認められない。
×:階調潰れ、反転、コントラスト低下、モアレ発生等表示品位に異常が認められる。
[Evaluation]
The image quality of the liquid crystal display device obtained as described above was visually evaluated based on the viewing angle, the degree of moire and the degree of whitishness. The evaluation criteria are as follows. The evaluation results are shown in Table 1.
A: No abnormality is observed in the display quality.
○: There is almost no abnormality in the display quality.
X: Abnormality is recognized in display quality such as gradation collapse, inversion, contrast reduction, and moire generation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~4の光拡散フィルム(製造例1および3)は、比較例2で用いた光拡散フィルム(製造例2)と比較すると薄い。そして、表1に示されるように、実施例1~4に係る光拡散性偏光板を用いた液晶表示装置によると、良好な画質が得られる。光拡散性フィルムを厚くして光拡散性を強くした比較例2の光拡散性偏光板を用いた液晶表示装置においても同等の画質が得られるが、この場合光拡散フィルムが曲げに対して弱くなり、取り扱いが困難となる。したがって、本発明によると、良好な表示特性を示しつつ、偏光フィルムを薄くすることで、液晶表示装置の薄型化に寄与することができ、さらに機械的強度が強く取り扱いが容易となる。 The light diffusion films of Examples 1 to 4 (Production Examples 1 and 3) are thinner than the light diffusion film (Production Example 2) used in Comparative Example 2. As shown in Table 1, according to the liquid crystal display device using the light diffusing polarizing plate according to Examples 1 to 4, good image quality can be obtained. In the liquid crystal display device using the light diffusing polarizing plate of Comparative Example 2 in which the light diffusing film is thickened to increase the light diffusing property, the same image quality can be obtained, but in this case, the light diffusing film is weak against bending. It becomes difficult to handle. Therefore, according to the present invention, it is possible to contribute to the thinning of the liquid crystal display device by thinning the polarizing film while exhibiting good display characteristics, and the mechanical strength is strong and the handling becomes easy.
 本発明に係る光拡散性偏光板は、光拡散層を備えることにより光拡散機能が付与された偏光板であって、十分な機械的強度を有するため、液晶表示装置に組み込まれた際に良好な画質の表示を可能にする。よって、本発明に係る光拡散性偏光板及びこれを用いた液晶表示装置は、携帯電話、パソコン用モニター、テレビ、液晶プロジェクタなどへの用途に適している。 The light diffusing polarizing plate according to the present invention is a polarizing plate provided with a light diffusing function by providing a light diffusing layer, and has a sufficient mechanical strength, so that it is good when incorporated in a liquid crystal display device. Display with high image quality. Therefore, the light diffusing polarizing plate and the liquid crystal display device using the same according to the present invention are suitable for use in mobile phones, personal computer monitors, televisions, liquid crystal projectors, and the like.
 10,100,200,300,405・・・光拡散性偏光板、101・・・偏光フィルム、102・・・光拡散フィルム、104・・・光拡散性粘着剤層、104a・・・光拡散剤、104b・・・透光性粘着剤、105・・・基材フィルム、106・・・光拡散層、106a・・・光拡散剤、106b・・・透光性樹脂、107・・・表面処理フィルム、108・・・透光性粘着剤層、109,110・・・保護フィルム、301・・・巻き出し装置、302・・・塗工装置、303・・・バックアップロール、304・・・乾燥機、305・・・鏡面金属製ロールまたはエンボス加工用金属製ロール、306・・・ニップロール、307・・・剥離ロール、308・・・紫外線照射装置、309・・・巻き取り装置、400,400’ ・・・液晶表示装置、401・・・液晶セル、402・・・バックライト装置、403・・・光拡散手段、403a・・・光拡散板、403b,403b’ ・・・光偏向板、404・・・バックライト側偏光板、406・・・位相差板、411a,411b・・・透明基板、412・・・液晶層、421・・・ケース、422・・・冷陰極管、430・・・基材、440・・・光拡散剤、450,450’ ・・・線状プリズム、451,451’ ・・・線状プリズムの稜線。 DESCRIPTION OF SYMBOLS 10,100,200,300,405 ... Light diffusable polarizing plate, 101 ... Polarizing film, 102 ... Light diffusing film, 104 ... Light diffusing adhesive layer, 104a ... Light diffusing Agent, 104b ... translucent adhesive, 105 ... substrate film, 106 ... light diffusion layer, 106a ... light diffusion agent, 106b ... translucent resin, 107 ... surface Treated film, 108 ... translucent adhesive layer, 109, 110 ... protective film, 301 ... unwinding device, 302 ... coating device, 303 ... backup roll, 304 ... Dryer, 305 ... mirror metal roll or embossing metal roll, 306 ... nip roll, 307 ... peeling roll, 308 ... UV irradiation device, 309 ... winding device, 400, 400 ... Liquid crystal display device, 401 ... Liquid crystal cell, 402 ... Backlight device, 403 ... Light diffusing means, 403a ... Light diffusing plate, 403b, 403b '... Light deflecting plate, 404 ... Backlight side polarizing plate, 406 ... Phase difference plate, 411a, 411b ... Transparent substrate, 412 ... Liquid crystal layer, 421 ... Case, 422 ... Cold cathode tube, 430 ... -Base material, 440 ... Light diffusing agent, 450, 450 '? ... linear prism, 451, 451'? ... ridge line of linear prism.

Claims (9)

  1.  偏光フィルムと、光拡散フィルムと、光拡散性粘着剤層とを備える光拡散性偏光板であって、
     前記光拡散性偏光板の全ヘイズが40%を超えて85%以下であり、
     前記光拡散性偏光板の内部ヘイズが40%を超えて85%以下であり、
     前記光拡散性粘着剤層の全ヘイズが10%以上80%以下である、光拡散性偏光板。
    A light diffusing polarizing plate comprising a polarizing film, a light diffusing film, and a light diffusing pressure-sensitive adhesive layer,
    The total haze of the light diffusing polarizing plate is more than 40% and 85% or less,
    The internal haze of the light diffusing polarizing plate is more than 40% and 85% or less,
    The light diffusable polarizing plate whose total haze of the said light diffusable adhesive layer is 10% or more and 80% or less.
  2.  前記偏光フィルムの両面上に積層されている一対の保護フィルムを備え、
     前記光拡散性粘着剤層は、一方の前記保護フィルムの前記偏光フィルム側とは反対側の面上に積層されている、請求項1に記載の光拡散性偏光板。
    Comprising a pair of protective films laminated on both sides of the polarizing film;
    The light diffusable polarizing plate according to claim 1, wherein the light diffusable pressure-sensitive adhesive layer is laminated on a surface of one of the protective films opposite to the polarizing film side.
  3.  前記光拡散性粘着剤層は、前記光拡散フィルムの一方の面上に積層されている、請求項1または2に記載の光拡散性偏光板。 The light diffusable polarizing plate according to claim 1, wherein the light diffusive pressure-sensitive adhesive layer is laminated on one surface of the light diffusing film.
  4.  前記偏光フィルムの両面上に積層されている一対の保護フィルムを備え、
     一方の前記保護フィルム、前記偏光フィルム、他方の前記保護フィルム、前記光拡散性粘着剤層、及び前記光拡散フィルムがこの順で積層されてなる、請求項1に記載の光拡散性偏光板。
    Comprising a pair of protective films laminated on both sides of the polarizing film;
    The light diffusing polarizing plate according to claim 1, wherein the one protective film, the polarizing film, the other protective film, the light diffusing pressure-sensitive adhesive layer, and the light diffusing film are laminated in this order.
  5.  前記光拡散性偏光板に入射して、前記偏光フィルム及び前記光拡散フィルムをこの順に透過した後に出射する波長543.5nmのレーザ光について、前記光拡散性偏光板の法線方向に入射するレーザ光の強度Lに対して、前記法線方向から40°傾いた方向に出射するレーザ光の強度Lの比L/Lが0.0002%以上0.01%以下である、請求項1~4のいずれかに記載の光拡散性偏光板。 Laser that is incident on the light diffusable polarizing plate and is emitted in the normal direction of the light diffusing polarizing plate with respect to laser light having a wavelength of 543.5 nm that is emitted after passing through the polarizing film and the light diffusing film in this order. relative intensity of the light L 1, the ratio L 2 / L 1 of the laser light intensity L 2 emitted from the normal direction to the 40 ° inclined direction is less than 0.01% not less than 0.0002%, wherein Item 5. The light diffusing polarizing plate according to any one of Items 1 to 4.
  6.  バックライト装置、光拡散手段、バックライト側偏光板、液晶セル、及び請求項1~5のいずれかに記載の光拡散性偏光板がこの順で配置されてなり、
     前記液晶セルに近い側から前記偏光フィルム及び前記光拡散フィルムがこの順に位置するように、前記光拡散性偏光板が配置される、液晶表示装置。
    A backlight device, a light diffusing means, a backlight side polarizing plate, a liquid crystal cell, and the light diffusing polarizing plate according to any one of claims 1 to 5 are arranged in this order,
    The liquid crystal display device in which the light diffusing polarizing plate is disposed so that the polarizing film and the light diffusing film are positioned in this order from the side close to the liquid crystal cell.
  7.  前記光拡散手段からの出射光は、前記光拡散手段の法線方向から70°傾いた方向の輝度が、前記光拡散手段の法線方向の輝度に対して20%以下であり、かつ、前記出射光は非平行光を含む、請求項6に記載の液晶表示装置。 The emitted light from the light diffusing means has a luminance in a direction inclined by 70 ° from the normal direction of the light diffusing means with respect to the luminance in the normal direction of the light diffusing means being 20% or less, and The liquid crystal display device according to claim 6, wherein the emitted light includes non-parallel light.
  8.  前記光拡散手段は、光拡散板と、光偏向板とを備え、
     前記バックライト装置側から、前記光拡散板及び前記光偏向板がこの順で配置されている、請求項6または7に記載の液晶表示装置。
    The light diffusing means includes a light diffusing plate and a light deflecting plate,
    The liquid crystal display device according to claim 6 or 7, wherein the light diffusion plate and the light deflection plate are arranged in this order from the backlight device side.
  9.  前記液晶セルは、TN方式液晶セル、IPS方式液晶セルまたはVA方式液晶セルである、請求項6~8のいずれかに記載の液晶表示装置。 9. The liquid crystal display device according to claim 6, wherein the liquid crystal cell is a TN liquid crystal cell, an IPS liquid crystal cell, or a VA liquid crystal cell.
PCT/JP2011/063952 2010-06-24 2011-06-17 Light-diffusing polarization plate and liquid-crystal display device WO2011162184A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010144052A JP2012008332A (en) 2010-06-24 2010-06-24 Light-diffusing polarizing plate and liquid crystal display device
JP2010-144052 2010-06-24

Publications (1)

Publication Number Publication Date
WO2011162184A1 true WO2011162184A1 (en) 2011-12-29

Family

ID=45371371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063952 WO2011162184A1 (en) 2010-06-24 2011-06-17 Light-diffusing polarization plate and liquid-crystal display device

Country Status (3)

Country Link
JP (1) JP2012008332A (en)
TW (1) TW201213886A (en)
WO (1) WO2011162184A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160154272A1 (en) * 2014-12-02 2016-06-02 Samsung Display Co., Ltd. Polarizing member and display device having the same
WO2021079804A1 (en) * 2019-10-24 2021-04-29 日東電工株式会社 Light-diffusing film, and polarizing plate comprising light-diffusing film
CN114815372A (en) * 2022-05-07 2022-07-29 深圳市华星光电半导体显示技术有限公司 Display panel and display device
TWI789017B (en) * 2021-09-17 2023-01-01 明基材料股份有限公司 High-haze anti-glare film and high-haze anti-glare anti-reflection film
US20230038437A1 (en) * 2020-09-28 2023-02-09 Hefei Boe Display Technology Co., Ltd. Display device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5988649B2 (en) * 2012-03-29 2016-09-07 住友化学株式会社 Manufacturing method of polarizing plate
KR20160111089A (en) * 2015-03-16 2016-09-26 동우 화인켐 주식회사 Polarizing plate and image display comprising the same
KR102262895B1 (en) * 2015-05-28 2021-06-09 삼성전자주식회사 Display module and display device having the same
KR101720435B1 (en) * 2015-11-30 2017-03-28 엘지디스플레이 주식회사 Liquid Crystal Display
JP7369761B2 (en) * 2021-12-24 2023-10-26 日東電工株式会社 Sheet for encapsulating optical semiconductor devices

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114766A (en) * 1998-07-07 2003-04-18 Sumitomo Chem Co Ltd Upper transparent electrode plate for touch panel, and device including the same
JP2005208557A (en) * 2003-12-25 2005-08-04 Arisawa Mfg Co Ltd Reflex-type screen
JP2007155785A (en) * 2005-11-30 2007-06-21 Casio Comput Co Ltd Liquid crystal display device
JP2009210592A (en) * 2008-02-29 2009-09-17 Sumitomo Chemical Co Ltd Antiglare polarizing plate and image display using the same
JP2009301014A (en) * 2008-04-03 2009-12-24 Sumitomo Chemical Co Ltd Liquid crystal display device
JP2010039170A (en) * 2008-08-05 2010-02-18 Sumitomo Chemical Co Ltd Optical film with pressure-sensitive adhesive, laminated optical member, and image display

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003114766A (en) * 1998-07-07 2003-04-18 Sumitomo Chem Co Ltd Upper transparent electrode plate for touch panel, and device including the same
JP2005208557A (en) * 2003-12-25 2005-08-04 Arisawa Mfg Co Ltd Reflex-type screen
JP2007155785A (en) * 2005-11-30 2007-06-21 Casio Comput Co Ltd Liquid crystal display device
JP2009210592A (en) * 2008-02-29 2009-09-17 Sumitomo Chemical Co Ltd Antiglare polarizing plate and image display using the same
JP2009301014A (en) * 2008-04-03 2009-12-24 Sumitomo Chemical Co Ltd Liquid crystal display device
JP2010039170A (en) * 2008-08-05 2010-02-18 Sumitomo Chemical Co Ltd Optical film with pressure-sensitive adhesive, laminated optical member, and image display

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160154272A1 (en) * 2014-12-02 2016-06-02 Samsung Display Co., Ltd. Polarizing member and display device having the same
US9977278B2 (en) * 2014-12-02 2018-05-22 Samsung Display Co., Ltd. Polarizing member and display device having the same
WO2021079804A1 (en) * 2019-10-24 2021-04-29 日東電工株式会社 Light-diffusing film, and polarizing plate comprising light-diffusing film
JP2021067849A (en) * 2019-10-24 2021-04-30 日東電工株式会社 Light diffusion film and polarizer provided with light diffusion film
CN114600008A (en) * 2019-10-24 2022-06-07 日东电工株式会社 Light diffusion film and polarizing plate provided with light diffusion film
JP7446766B2 (en) 2019-10-24 2024-03-11 日東電工株式会社 Light diffusion film and polarizing plate with light diffusion film
US20230038437A1 (en) * 2020-09-28 2023-02-09 Hefei Boe Display Technology Co., Ltd. Display device
TWI789017B (en) * 2021-09-17 2023-01-01 明基材料股份有限公司 High-haze anti-glare film and high-haze anti-glare anti-reflection film
CN114815372A (en) * 2022-05-07 2022-07-29 深圳市华星光电半导体显示技术有限公司 Display panel and display device
CN114815372B (en) * 2022-05-07 2023-10-31 深圳市华星光电半导体显示技术有限公司 Display panel and display device

Also Published As

Publication number Publication date
TW201213886A (en) 2012-04-01
JP2012008332A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
WO2011162184A1 (en) Light-diffusing polarization plate and liquid-crystal display device
WO2011027905A1 (en) Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device
WO2011027903A1 (en) Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device
JP5887080B2 (en) Light diffusing film and manufacturing method thereof, light diffusing polarizing plate, and liquid crystal display device
WO2011004898A1 (en) Light diffusion film and liquid crystal display device comprising same
TWI647476B (en) Polarizing plate, polarizing plate with adhesive and liquid crystal display device
WO2011162133A1 (en) Light-diffusing polarization plate and liquid-crystal display device
WO2012043410A1 (en) Light-diffusing polarizing plate and liquid crystal display device
WO2010073985A1 (en) Optical film and liquid crystal display device comprising same
WO2011162188A1 (en) Light-diffusing polarizing plate and liquid crystal display device
KR101751543B1 (en) Polarizer, and liquid-crystal panel and liquid-crystal display device each including same
WO2012046790A1 (en) Light diffusion film and process for production thereof, light-diffusing polarizing plate, and liquid crystal display device
WO2010073997A1 (en) Optical film and liquid crystal display device comprising same
WO2010113873A1 (en) Liquid crystal display device
WO2010143742A1 (en) Liquid crystal display device
WO2010131757A1 (en) Polarizing plate, and liquid crystal panel and liquid crystal display device using said polarizing plate
WO2010113879A1 (en) Liquid crystal display device
JP2010185968A (en) Polarizing plate, liquid crystal panel using the same and liquid crystal display apparatus
JP5827811B2 (en) Liquid crystal display
JP2010085627A (en) Polarizing plate, liquid crystal panel using it, and liquid crystal display
WO2011162132A1 (en) Light-diffusing polarization plate and liquid-crystal display device
JP2010231022A (en) Polarizing plate, liquid crystal panel using the same, and liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11798068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11798068

Country of ref document: EP

Kind code of ref document: A1