201105954 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種顯示裝置之檢測裝置,特別係關於 —種陣列檢測裝置’用於檢測形成在顯示基板上之電極的 電性缺陷。 【先前技術】 近年來’顯不面板已經應用於各式平面顯示器中,包 括液晶顯示器(liquid crystal displays, LCD )、電漿顯示器 (plasma display panels,PDP)及有機發光二極體顯示器 (organic light emitting diode displays, OLED )。一身史而 言,薄膜電晶體液晶顯示器(thin film transistor LCD,TFT LCD)包含一薄膜電晶體基板、一彩色濾光基板、一液晶 单元及一背光單元,其中,彩色濾光基板是以面對薄膜電 晶體基板之方式設置,且具有一彩色濾光片及一共同電 極0 在此情況中,設置於薄膜電晶體基板上之一薄膜電晶 體電極的缺陷是利用一陣列檢測裝置進行檢測。 詳細而言,在供應一預設電壓至一設置於陣列檢測| 置上之調變模組的情況下,若調變模組接近薄膜電晶體基 板,便會在兩者之間形成一電場,而當薄膜電晶體基板上 之薄膜電晶體電極具有缺陷時,所產生的電場強度就會 預期的為低。據此,電場的強度可作為偵測有缺陷之薄g 電晶體電極的依據。 201105954 習知的陣列檢測裝置包含一光源、一調變模組 (Modulator )以及一相機。光源可發射光線,且利用光源 發射出的光線以檢測薄膜電晶體電極中的缺陷。調變模組 是相對於薄膜電晶體基板而設置於光源的同側或相對 側。當供應一電壓至調變模組以及薄膜電晶體基板時,通 過調變模組的光量會因為電場強度而變化。因此,相機可 根據通過調變模組之一發射表面的光量,以偵測缺陷電極 及其位置。 此外,習知陣列檢測裝置可更具有一光學吸盤。待檢 測的基板設置於光學吸盤上,且光學吸盤中設置有複數氣 孔,用以吸放待檢測的基板。 然而,在陣列檢測基板中,異物有可能會附著於光學 吸盤上。當光學吸盤上附著有異物時,由光源發射出的光 線會在檢測過程中產生散射或折射,進而造成檢測誤差。 【發明内容】 有鑑於上述課題,本發明之目的為提供一種陣列檢測 裝置,能夠有效地移除附著於一光學吸盤上的異物。 為達上述目的,依據本發明之一種陣列檢測裝置具有 一光學吸盤清潔模組。陣列檢測裝置包含一光學吸盤 (optic chuck )、一調變模組、一光源以及一清潔模組。其 中,一待檢測的基板設置於光學吸盤上。調變模組設置於 光學吸盤之一側。光源設置於光學吸盤之另一側,且發出 一光線以照射調變模組。清潔模組移除光學吸盤上的異 201105954 物。 依據本發明較佳實施例,光源與調變模組以相同方向 移動,且當光源移動時,清潔模組清潔光學吸盤。 依據本發明較佳實施例,陣列檢測裝置包含一感測模 組以及一控制模組。感測模組偵測異物,且控制模組計算 由感測模組偵測出之異物至清潔模組間之一距離。清潔模 組移至偵測出之異物的一所在位置,進而清潔光學吸盤。 依據本發明較佳實施例,清潔模組包含一移除單元, 移除光學吸盤上之異物。 依據本發明較佳實施例,清潔模組包含一抽吸單元, 吸取附著於光學吸盤表面或其周圍空氣中之異物。 依據本發明較佳實施例,清潔模組包含用以產生超音 波之一超音波單元。 依據本發明較佳實施例,清潔模組更包含一罩體,設 置於該超音波單元之外圍,且與該超音波單元間形成一間 隙,俾使氣體得以通過該間隙。 在陣列檢測過程中,由於清潔單元移除附著於光學吸 盤上的異物,故可避免自光源發出之光線產生散射或折 射。據此,可減少檢測誤差及提高檢測可信度。 再者,分離自光學吸盤之表面的異物可完全自陣列檢 測裝置内移除,而不會殘存於光學吸盤的周圍空氣中。 以下將揭露本發明之較佳實施例並結合圖示,詳細說 明本發明之其他性質,俾使本技術領域中具通常知識者得% 以清楚瞭解。 201105954 【實施方式】 以下將參照相關圖式,說明依據本發明較佳實施例之 陣列檢測裝置,其中相同的元件將以相同的參照符號加以 說明。 圖1為依據本發明較佳實施例之陣列檢測裝置的示意 圖,而圖2為沿圖1所示之A-A連線的剖面圖。 請參考圖1所示,陣列檢測裝置100包含一光學吸盤 50、一調變模組20、一光源30以及一清潔模組200。 光學吸盤50設置於待檢測之一基板90下,換言之, 基板90設置於光學吸盤50上。光學吸盤50是由透光性 材料形成,例如玻璃。此外,光學吸盤50具有複數氣孔, 可以抽吸之方式使基板90浮起或吸附於光學吸盤50上。 此外,陣列檢測裝置100更包含一裝載單元70及一 卸載單元80。裝載單元70可將基板90引導進入陣列檢測 裝置100。導入並通過裝載單元70的基板90會運送至光 學吸盤50之上。裝載單元70具有一裝載板72以及複數 氣孔71。基板90的運送可以利用由氣孔71中噴出至基板 90之下表面的高壓空氣進行,因而當基板90藉由高壓空 氣而浮於裝載板72上時,可透過一支持件95運送基板90。 卸載單元80使檢測完成的基板90能自光學吸盤50 運送出陣列檢測裝置1〇〇。卸載單元80具有一卸載板82 以及複數氣孔81。此外,卸載單元80的運送方式與裝載 單元70相同,不再贅述。因此,高壓空氣可由氣孔81喷 !· ' ·} 出至基板90的下表面,而當基板90藉由高壓空氣而浮於 201105954 卸載板82上時,可透過一支持件進行基板9〇的運送。 調變模級20位於待檢測之基板90上方,且鄰設於基 板9〇。调變模紐_ 20包含一電極層及一光電層,調變模組 20之電極層與基板90之一電極層91共同形成一電場’調 變模組20之電極層由銦錫氧化物(Indium Tin Oxide,ITO) 或破奈米管(Carbon Nano Tubes, CNT )形成。光電層乃 是依據一電場的強度,以改變穿過本身的光量,且光電層 可由液晶(liquid crystal, LC )、無機電致光 (inorganic electro luminance (EL )以及高分子色散液晶(polymer dispersed liquid crystal, PDLC )形成。 舉例而言,若供應一電壓至基板9〇之電極層91及調 變模組20之電極層’調變模組20之預設物理性質會因為 基板90之缺陷而發生變化。當形成於待檢測基板上之 電極層未有缺陷時’電場可形成於陣列檢測裝置1〇〇中, 並進而在預設的方向上改變液晶的排列方式,使得光線可 以穿過調變模組20。反之,若形成於待檢測基板9〇上之 電極層有缺陷,電場便無法於陣列檢測裴置1〇〇中形成, 亦無法改變液晶的排列方式,造成光線無法穿過調變模組 20。 同時’陣列檢測裝置100具有一偵測單元6〇,例如相 機。彳貞測單元可設置於調變模組20之上。偵測單元6〇測 量調變模組20之改變的物質性質,藉以偵測電極層之缺 陷91。舉例而言’偵測單元60可感測透射光線的光量, 其會因形成於基板90上之電極層91的狀態而發生變化。 201105954 其後’-訊號處理單元99會對感測透射光線量後產生的 資料進行處理,藉以摘測基板9〇上之缺 光源30設置在調變模組2〇 电極及其位置。 另-側’光源3G發出-光線以目^光學吸盤50的 源30發出的光於依序穿透光學心該·彳*組2G。由光 單元20後,照射到偵測部60。光^5〇、基板90以及調變 lamp )、鈉燈(s〇diUm lamp )、鹵素汽可為氤氣燈(Xen〇n 及/或一雷射光源單元。 Kcrystalhalogenlamp) 清潔模組移除附著於光學σ及盤%上 而 陣列檢測裝置100可包含一或多倘 , .^ 固凊冻模組。在本實施例 中,清潔模組勘較佳是設置於光學吸盤5G之下且於光 源30之-側,以移除附著於光學〇及盤%之下表面的異 物。=’在本發明之其他實施例中,清潔模組可設置於 一可動式附加元件上,以移除附•光學吸盤50之上表 ㈣㈣。清潔模組綱可為各式形態,以能移除尺寸在 微米大小的顆粒為主。 ^車列檢測過程中,即便是乾淨清潔的室内,仍會有 大小介於數微米之間的微米顆教存能會 附著於陣列檢測裝置100以及基枚90上,因此,不論在 進打=列檢測過程前、中、後,都必須實行清潔作業,以 確保基板90的檢測結果。為取得財的檢縣果必須 9〇上實行清料業,當清潔作 業完成後,設置於陣列檢測裝置1〇〇中的清潔模組200將 光學吸盤5G上的異物移除,藉%少在陣列㈣過程中^ 201105954 的誤差,以及提高陣列檢測的可信度。 在本實施例中,清潔模組200較佳是與光源30連接。 詳細而言,清潔模組200是設置於光學吸盤50之下,以 移除附著於光學吸盤50之下表面的異物。光學吸盤50是 由一基座支撐以直立設置。因此,在光學吸盤50之下表 面與基座之間具有一預設空間,使光源30可設置於此預 設空間中,並且清潔模組200亦可在此預設空間中與光源 30連接。在本實施例中,清潔模組200是以可拆卸的方式 與光源30連接,俾使清潔模組200可輕易地將附著於光 學吸盤50之下表面的異物移除。 由於清潔模組200是在與光源30保持連接的情況 下,移除光學吸盤50之下表面的異物,因此,清潔模組 200在光學吸盤50上進行移除異物的作動時,並不須與基 座分離。一般而言,光學吸盤50的體積龐大且重量沉重。 因此,若可將分離體積大且重量重之光學吸盤50的步驟 省略,必然對提升陣列檢測的作業效率有所助益。 圖3為因異物附著於光學吸盤而產生之檢測誤差的示 意圖。請參考圖3所示,基板90設置於光學吸盤50上, 且複數個電極92、93及94形成於基板90之上表面上。 舉例來說,電極93是為一缺陷電極,而其餘的電極92及 94則沒有缺陷。複數液晶分子1、2及3散佈於調變模組 20内,且透明電極21設置於調變模組20之一表面上。 當供應一電壓至調變模組20之透明電極21以及基板 90之電極92、93及94時,會在調變模組20以及非缺陷 201105954 電極92及94之問报屮 _ 成—電場8。因此,位於電場8中之 液曰曰刀子1及3的排列方式會產生變化,至於位於電場8 外的液晶分子2,其排列方式則不會產生變化。杨 由光源3G發出的光線5、6及7可以穿透排列方式產 1變化祕晶分子1及3,但魅法穿透制方式未發生 變化的液晶分子2。據此,藉由測量穿透光的光量可_ 基板9〇上的缺陷電極。換言之,由於部分由光源30發出 的光線5及7可直線前進並穿透液晶分子1及3,但A他 光線6無法順利穿透液晶分子2,因此可偵測出電極9 3、是 為缺陷電極。 右光學吸盤5G上有異物9附著,會使得光線7無法 直線前進,且因為異物9的存在可㈣生光線散射或折射 的現象,因而便有可能產生將正常電極94判斷為一缺陷 電極的誤差。 然而,在本實施例中,清潔模組200可移除附著於光 學吸盤50上之任何異物9,藉此減少檢測誤差以及提升檢 測可信度。 圖4為依據本發明另一實施例之陣列檢測裝置的示意 圖’而圖5為依據本實施例之陣列檢測裝置之光源於移動 狀態下的示意圖。 請參考圖4及5所示,光源30與調變模組20以相同 方向移動。當光源30移動時,清潔模組200清潔光學吸 盤。 在本實施例中,調變模組20以及光源30是以一對一 11 201105954 相互對應的方式設置,並且在x軸上移動。x軸代表一方 向,其是與基板90運送並通過裝載單元70、光學吸盤50 以及卸載單元80的一方向相互垂直。在本實施例中,光 源30的大小與調變模組20相同或略大。 體積小的光源30可顯著地降低本身的明度偏差 (luminance deviation)。因此,光源30可朝向基板90均 勻地發射光線,而光線亦可均勻地達到調變模組20,俾使 光量的變化僅受到基板電極的缺陷所影響。其後,由偵測 單元60準確地測量穿透過調變模組20之光的光量。 陣列檢測裝置100具有一調變模組轉移模組45及一 光源轉移模組40。調變模組轉移模組45在X軸方向上移 動調變模組20 —預定間距。光源轉移模組40使得光源30 可以與調變模組20同時移動。 由於光源30的轉移是於開始檢測陣列前實行,因此 光學吸盤50的表面可在每一次陣列檢測開始前維持乾淨 清潔。再者,即便進行光源30轉移,清潔模組200仍可 定時對光學吸盤50實行清潔。 陣列檢測裝置100可更包含一感測單元以及一控制單 元。感測單元偵測附著於光學吸盤50上的異物。感測單 元可為上述的偵測單元60。因此,感測單元可利用取得光 學吸盤50影像的方式,以偵測是否有異物附著於光學吸 盤50,且判斷異物的所在位置。 控制單元輸出由清潔模組至感測模組偵測出之異物 間之一距離,並傳送有關距離的資訊至驅動清潔模組200 12 201105954 的一單元,使清潔模組可移至異物的所在位置。在本實施 例中,由於清潔模組200是與光源30連接,故當控制單 元輸出距離後,是將有關於距離的資訊傳送至驅動光源30 的一單元。在清潔模組200移動至異物的所在位置後,清 潔模組200清潔光學吸盤50。待清潔完成後,感測單元會 再次實行偵測。若異物仍然存在,則會重複實行上述的清 潔作業。 圖6為清潔模組之移除單元的剖面圖,且移除單元是 用於依據本發明實施例之陣列檢測裝置。請參考圖6所 示,清潔模組200可包含一移除單元180。移除單元180 移除光學吸盤50上之異物。移除單元180可為一氣體喷 射器,其可向光學吸盤50喷出氣體。氣體喷射器喷出高 壓空氣,藉以移除附著於光學吸盤50上之異物。 圖7為清潔模組之抽吸單元的剖面圖,且抽吸單元是 用於依據本發明實施例之陣列檢測裝置。請參考圖7所 示,清潔模組200可包含一抽吸單元170。抽吸單元170 吸取附著於光學吸盤表面或其周圍空氣中之異物。在本實 施例中,分離自由光學吸盤表面的異物可完全自陣列檢測 裝置内移除,而不會殘存於光學吸盤50的周圍空氣中。 圖8為圖7所示之清潔模組之另一態樣的剖面圖,圖 9為圖7所示之清潔模組之又一態樣的剖面圖,而圖10亦 為圖7所示之清潔模組之又一態樣的剖面圖。 請參考圖8所示,移除單元180以及抽吸單元170可 彼此相鄰設置。請參考圖9所示,兩個抽吸單元170可分 13 201105954 設於移除單元180之兩側。在本實施例中,附著於光學吸 盤50上之異物及存在於空氣中之異物可以抽吸之方式有 效地移除。此外,請參考圖10所示,兩個移除單元180 可分設於抽吸單元170之兩側。 圖11為具有針腳之清潔模組的剖面圖。請參考圖11 所示,抽吸單元170可具有複數針腳171。針腳171設置 於抽吸單元170之上表面,且與抽吸單元170互相垂直而 沿Z軸朝向光學吸盤垂直延伸。當針腳171設置於抽吸單 元170上時,產生與吸入氣孔之氣流互相垂直的一氣流, 利用此與吸入氣孔之氣流相垂直的氣流可使光學吸盤50 周圍的異物輕易地由光學吸盤50之表面上移除。 圖12為具有超音波單元之清潔模組的剖面圖。請參 考圖12所示,清潔模組200具有一超音波單元150。超音 波單元產生超音波以震動附著於光學吸盤50表面之異 物,藉以移除異物。 圖13為具有罩體之清潔模組的剖面圖。請參考圖13 所示,清潔模組200可更具有一罩體160。 罩體160圍繞於超音波單元150之外圍,使得罩體160 與超音波單元150之外圍間可形成一間隙。罩體160之一 側與氣體喷射器連接,而罩體160之另一側具有一開口 161,以朝向光學吸盤50之表面喷射氣體。由氣體喷射器 噴出的氣體藉由通過形成於超音波單元150與罩體160間 的空隙,達到光學吸盤50之表面。 在上述的結構中,附著於光學吸盤50之表面的異物 201105954 主要是藉由超音波單元 160之開口 161的高壓 清潔作用° 二50移除’其次才是||由通過罩體 空氣移除。據此’可更有效地實行 ^ 〜巧滿模組之另一態樣的剖面圖, 而圖15為圖13所不之洛、如4社, 社來老R u 之/㈠糸模組之另一態樣的剖面圖。 b +SI 14㈣’兩個超音 吸單元17之兩侧。另外,請參考圖15所 可同時設置於超音波單元150及罩體160之^0 清潔模組200可且古BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a detecting device for a display device, and more particularly to an array detecting device for detecting an electrical defect of an electrode formed on a display substrate. [Prior Art] In recent years, the display panel has been applied to various flat panel displays, including liquid crystal displays (LCDs), plasma display panels (PDPs), and organic light-emitting diode displays (organic light). Array diode displays, OLED ). In a history, a thin film transistor LCD (TFT LCD) includes a thin film transistor substrate, a color filter substrate, a liquid crystal cell, and a backlight unit, wherein the color filter substrate is facing The thin film transistor substrate is disposed in such a manner as to have a color filter and a common electrode. In this case, a defect of a thin film transistor electrode disposed on the thin film transistor substrate is detected by an array detecting device. In detail, in the case of supplying a predetermined voltage to a modulation module disposed on the array detection device, if the modulation module is close to the thin film transistor substrate, an electric field is formed between the two. When the thin film transistor electrode on the thin film transistor substrate has a defect, the generated electric field intensity is expected to be low. Accordingly, the strength of the electric field can be used as a basis for detecting a defective thin transistor electrode. 201105954 A conventional array detection device includes a light source, a modulation module (Modulator), and a camera. The light source can emit light and utilize the light emitted by the light source to detect defects in the thin film transistor. The modulation module is disposed on the same side or opposite side of the light source with respect to the thin film transistor substrate. When a voltage is supplied to the modulation module and the thin film transistor substrate, the amount of light passing through the modulation module changes due to the electric field strength. Therefore, the camera can detect the defective electrode and its position based on the amount of light emitted from the surface of one of the modulation modules. In addition, the conventional array detecting device may further have an optical chuck. The substrate to be tested is disposed on the optical chuck, and the optical chuck is provided with a plurality of air holes for sucking and dropping the substrate to be detected. However, in the array detecting substrate, foreign matter may adhere to the optical chuck. When a foreign matter adheres to the optical chuck, the light emitted by the light source may be scattered or refracted during the detection process, thereby causing a detection error. SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an array detecting device capable of effectively removing foreign matter attached to an optical chuck. To achieve the above object, an array detecting device according to the present invention has an optical chuck cleaning module. The array detecting device comprises an optical chuck, a modulation module, a light source and a cleaning module. A substrate to be inspected is disposed on the optical chuck. The modulation module is disposed on one side of the optical chuck. The light source is disposed on the other side of the optical chuck, and emits a light to illuminate the modulation module. The cleaning module removes the different 201105954 on the optical chuck. According to a preferred embodiment of the invention, the light source and the modulation module move in the same direction, and the cleaning module cleans the optical chuck as the light source moves. According to a preferred embodiment of the invention, the array detection device comprises a sensing module and a control module. The sensing module detects foreign matter, and the control module calculates a distance between the foreign matter detected by the sensing module and the cleaning module. The cleaning module is moved to a position where the detected foreign matter is located, thereby cleaning the optical chuck. According to a preferred embodiment of the invention, the cleaning module includes a removal unit for removing foreign matter from the optical chuck. According to a preferred embodiment of the invention, the cleaning module includes a suction unit that draws foreign matter attached to the air on or around the surface of the optical chuck. In accordance with a preferred embodiment of the present invention, the cleaning module includes one of the ultrasonic units for generating ultrasonic waves. According to a preferred embodiment of the present invention, the cleaning module further includes a cover disposed on the periphery of the ultrasonic unit and forming a gap with the ultrasonic unit to allow gas to pass through the gap. During the array inspection process, since the cleaning unit removes foreign matter attached to the optical chuck, scattering or folding of light from the light source can be avoided. According to this, the detection error can be reduced and the reliability of the detection can be improved. Furthermore, the foreign matter separated from the surface of the optical chuck can be completely removed from the array detecting device without remaining in the surrounding air of the optical chuck. The other embodiments of the present invention will be described in detail with reference to the preferred embodiments of the invention. [Embodiment] Hereinafter, an array detecting device according to a preferred embodiment of the present invention will be described with reference to the accompanying drawings, wherein the same elements will be described with the same reference numerals. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic view of an array detecting device in accordance with a preferred embodiment of the present invention, and Figure 2 is a cross-sectional view taken along line A-A of Figure 1. Referring to FIG. 1 , the array detecting device 100 includes an optical chuck 50 , a modulation module 20 , a light source 30 , and a cleaning module 200 . The optical chuck 50 is disposed under one of the substrates 90 to be inspected, in other words, the substrate 90 is disposed on the optical chuck 50. The optical chuck 50 is formed of a light transmissive material such as glass. In addition, the optical chuck 50 has a plurality of air holes for floating or adsorbing the substrate 90 on the optical chuck 50 in a suction manner. In addition, the array detecting device 100 further includes a loading unit 70 and an unloading unit 80. The loading unit 70 can guide the substrate 90 into the array detecting device 100. The substrate 90 introduced and passed through the loading unit 70 is transported onto the optical chuck 50. The loading unit 70 has a loading plate 72 and a plurality of air holes 71. The substrate 90 can be transported by high-pressure air ejected from the air holes 71 to the lower surface of the substrate 90, so that when the substrate 90 floats on the loading plate 72 by high-pressure air, the substrate 90 can be transported through a support member 95. The unloading unit 80 enables the substrate 90 that has been detected to be carried out of the array detecting device 1 from the optical chuck 50. The unloading unit 80 has an unloading plate 82 and a plurality of air holes 81. Further, the unloading unit 80 is transported in the same manner as the loading unit 70, and will not be described again. Therefore, the high-pressure air can be ejected from the air holes 81 to the lower surface of the substrate 90, and when the substrate 90 floats on the unloading plate 82 by the high-pressure air, the substrate 9 can be transported through a support member. . The modulation mode 20 is located above the substrate 90 to be inspected and adjacent to the substrate 9A. The modulation module -20 includes an electrode layer and a photoelectric layer. The electrode layer of the modulation module 20 and the electrode layer 91 of the substrate 90 together form an electric field. The electrode layer of the modulation module 20 is made of indium tin oxide ( Indium Tin Oxide (ITO) or Carbon Nano Tubes (CNT) are formed. The photoelectric layer is based on the intensity of an electric field to change the amount of light passing through itself, and the photovoltaic layer can be liquid crystal (LC), inorganic electroluminescence (EL), and polymer dispersed liquid. For example, if the voltage is supplied to the electrode layer 91 of the substrate 9 and the electrode layer of the modulation module 20, the predetermined physical properties of the modulation module 20 may occur due to defects of the substrate 90. The electric field can be formed in the array detecting device 1〇〇 when the electrode layer formed on the substrate to be inspected is not defective, and then the arrangement of the liquid crystals is changed in a predetermined direction so that the light can pass through the modulation Module 20. Conversely, if the electrode layer formed on the substrate 9 to be inspected is defective, the electric field cannot be formed in the array detecting device 1 , and the arrangement of the liquid crystal cannot be changed, so that the light cannot pass through the modulation. Module 20. At the same time, the array detecting device 100 has a detecting unit 6〇, such as a camera. The detecting unit can be disposed on the modulation module 20. The detecting unit 6 The altered material properties of the module 20 are used to detect defects 91 of the electrode layer. For example, the detecting unit 60 can sense the amount of transmitted light, which may occur due to the state of the electrode layer 91 formed on the substrate 90. The subsequent processing is performed by the signal processing unit 99, and the data generated after sensing the amount of transmitted light is processed, so that the missing light source 30 on the substrate 9 is placed on the electrode of the modulation module 2 and its position. The other side of the light source 3G emits light, and the light emitted from the source 30 of the optical chuck 50 sequentially penetrates the optical core of the group 2G. After the light unit 20, it is irradiated to the detecting portion 60. 5〇, substrate 90 and modulation lamp), sodium lamp (s〇diUm lamp), halogen vapor can be xenon lamp (Xen〇n and / or a laser light source unit. Kcrystalhalogenlamp) cleaning module removed attached to optical σ The array detecting device 100 may include one or more, and a solid freezing module. In the present embodiment, the cleaning module is preferably disposed under the optical chuck 5G and on the side of the light source 30 to remove foreign matter attached to the lower surface of the optical disk and the disk. =' In other embodiments of the invention, the cleaning module can be disposed on a movable attachment member to remove the upper (4) (4) of the optical chuck 50. The cleaning module can be in various forms to remove particles of a size in the order of micrometers. During the train inspection process, even in a clean and clean room, there will still be micron-sized teaching energy between a few micrometers attached to the array detecting device 100 and the base 90, so whether or not Cleaning operations must be performed before, during, and after the column inspection process to ensure the detection results of the substrate 90. In order to obtain the money, the county must implement the clearing industry. When the cleaning operation is completed, the cleaning module 200 disposed in the array detecting device 1 removes the foreign matter on the optical chuck 5G. Array (d) process error ^ 201105954, and improve the reliability of array detection. In the embodiment, the cleaning module 200 is preferably connected to the light source 30. In detail, the cleaning module 200 is disposed under the optical chuck 50 to remove foreign matter attached to the lower surface of the optical chuck 50. The optical chuck 50 is supported by a susceptor to be placed upright. Therefore, a predetermined space is provided between the surface of the optical chuck 50 and the base, so that the light source 30 can be disposed in the preset space, and the cleaning module 200 can also be connected to the light source 30 in the preset space. In the present embodiment, the cleaning module 200 is detachably coupled to the light source 30 so that the cleaning module 200 can easily remove foreign matter attached to the lower surface of the optical chuck 50. Since the cleaning module 200 removes the foreign matter on the lower surface of the optical chuck 50 while being connected to the light source 30, the cleaning module 200 does not need to perform the action of removing the foreign matter on the optical chuck 50. The pedestal is separated. In general, the optical chuck 50 is bulky and heavy. Therefore, if the step of separating the optical chuck 50 having a large volume and a heavy weight can be omitted, it is inevitable to improve the work efficiency of the array detection. Fig. 3 is a view showing a detection error caused by adhesion of foreign matter to an optical chuck. Referring to FIG. 3, the substrate 90 is disposed on the optical chuck 50, and a plurality of electrodes 92, 93, and 94 are formed on the upper surface of the substrate 90. For example, electrode 93 is a defective electrode and the remaining electrodes 92 and 94 are free of defects. The plurality of liquid crystal molecules 1, 2, and 3 are dispersed in the modulation module 20, and the transparent electrode 21 is disposed on one surface of the modulation module 20. When a voltage is supplied to the transparent electrode 21 of the modulation module 20 and the electrodes 92, 93 and 94 of the substrate 90, it will be reported in the modulation module 20 and the non-defect 201105954 electrodes 92 and 94. . Therefore, the arrangement of the liquid helium knives 1 and 3 located in the electric field 8 changes, and the arrangement of the liquid crystal molecules 2 located outside the electric field 8 does not change. The light rays 5, 6 and 7 emitted from the light source 3G can be produced by penetrating the crystal molecules 2 which change the crystal molecules 1 and 3, but which have not changed by the enchantment method. Accordingly, the defect electrode on the substrate 9 can be measured by measuring the amount of light passing through the light. In other words, since the light rays 5 and 7 emitted by the light source 30 can linearly advance and penetrate the liquid crystal molecules 1 and 3, the A light 6 cannot penetrate the liquid crystal molecules 2 smoothly, so that the electrode 9 3 can be detected as a defect. electrode. There is a foreign matter 9 attached to the right optical chuck 5G, which makes the light 7 unable to advance straight, and because of the presence of the foreign matter 9 (4) the phenomenon of scattering or refraction of the raw light, it is possible to cause the error of determining the normal electrode 94 as a defective electrode. . However, in the present embodiment, the cleaning module 200 can remove any foreign matter 9 attached to the optical chuck 50, thereby reducing detection errors and improving detection reliability. 4 is a schematic view of an array detecting device according to another embodiment of the present invention. FIG. 5 is a schematic view showing a light source of the array detecting device according to the present embodiment in a moving state. Referring to Figures 4 and 5, the light source 30 and the modulation module 20 are moved in the same direction. The cleaning module 200 cleans the optical chuck as the light source 30 moves. In this embodiment, the modulation module 20 and the light source 30 are disposed in a corresponding manner to one another and 11 201105954, and move on the x-axis. The x-axis represents a direction which is perpendicular to the direction in which the substrate 90 is transported and passed through the loading unit 70, the optical chuck 50, and the unloading unit 80. In the present embodiment, the size of the light source 30 is the same as or slightly larger than the modulation module 20. The small volume light source 30 can significantly reduce its own luminance deviation. Therefore, the light source 30 can uniformly emit light toward the substrate 90, and the light can evenly reach the modulation module 20, so that the change in the amount of light is only affected by the defects of the substrate electrode. Thereafter, the detection unit 60 accurately measures the amount of light that has passed through the modulation module 20. The array detecting device 100 has a modulation module transfer module 45 and a light source transfer module 40. The modulation module transfer module 45 moves the modulation module 20 in the X-axis direction - a predetermined pitch. The light source transfer module 40 allows the light source 30 to move simultaneously with the modulation module 20. Since the transfer of the light source 30 is performed prior to the start of detecting the array, the surface of the optical chuck 50 can be cleaned and cleaned before each array detection begins. Moreover, even if the light source 30 is transferred, the cleaning module 200 can periodically clean the optical chuck 50. The array detecting device 100 may further include a sensing unit and a control unit. The sensing unit detects foreign matter attached to the optical chuck 50. The sensing unit can be the detecting unit 60 described above. Therefore, the sensing unit can use the method of obtaining the image of the optical chuck 50 to detect whether foreign matter adheres to the optical chuck 50 and determine the location of the foreign matter. The control unit outputs a distance between the foreign objects detected by the cleaning module and the sensing module, and transmits information about the distance to a unit of the driving cleaning module 200 12 201105954, so that the cleaning module can be moved to the foreign object. position. In the present embodiment, since the cleaning module 200 is connected to the light source 30, after the control unit outputs the distance, information about the distance is transmitted to a unit of the driving light source 30. After the cleaning module 200 is moved to the position of the foreign matter, the cleaning module 200 cleans the optical chuck 50. After the cleaning is completed, the sensing unit will perform the detection again. If the foreign matter still exists, the above cleaning operation will be repeated. Figure 6 is a cross-sectional view of the removal unit of the cleaning module, and the removal unit is an array detecting device for use in accordance with an embodiment of the present invention. Referring to FIG. 6, the cleaning module 200 can include a removal unit 180. The removing unit 180 removes foreign matter on the optical chuck 50. The removal unit 180 can be a gas injector that can eject gas to the optical chuck 50. The gas injector ejects high pressure air to remove foreign matter attached to the optical chuck 50. Figure 7 is a cross-sectional view of the suction unit of the cleaning module, and the suction unit is an array detecting device for use in accordance with an embodiment of the present invention. Referring to FIG. 7, the cleaning module 200 can include a suction unit 170. The suction unit 170 sucks foreign matter attached to the air on or around the surface of the optical chuck. In the present embodiment, the foreign matter separated from the surface of the free optical chuck can be completely removed from the array detecting device without remaining in the ambient air of the optical chuck 50. Figure 8 is a cross-sectional view showing another aspect of the cleaning module shown in Figure 7, Figure 9 is a cross-sectional view showing another aspect of the cleaning module shown in Figure 7, and Figure 10 is also shown in Figure 7. A cross-sectional view of another aspect of the cleaning module. Referring to FIG. 8, the removing unit 180 and the suction unit 170 may be disposed adjacent to each other. Referring to FIG. 9, the two suction units 170 can be disposed on both sides of the removal unit 180 according to 13 201105954. In the present embodiment, the foreign matter attached to the optical chuck 50 and the foreign matter present in the air can be effectively removed by suction. In addition, referring to FIG. 10 , the two removing units 180 can be disposed on both sides of the suction unit 170 . Figure 11 is a cross-sectional view of a cleaning module having a stitch. Referring to FIG. 11 , the suction unit 170 may have a plurality of pins 171 . The stitches 171 are disposed on the upper surface of the suction unit 170, and are perpendicular to the suction unit 170 and extend vertically along the Z-axis toward the optical chuck. When the stitching 171 is disposed on the suction unit 170, an air flow perpendicular to the air flow of the suction air hole is generated, and the air flow perpendicular to the air flow of the suction air hole can make the foreign matter around the optical suction cup 50 easily pass by the optical suction cup 50. Removed on the surface. Figure 12 is a cross-sectional view of a cleaning module having an ultrasonic unit. Referring to Figure 12, the cleaning module 200 has an ultrasonic unit 150. The ultrasonic unit generates ultrasonic waves to vibrate foreign matter attached to the surface of the optical chuck 50, thereby removing foreign matter. Figure 13 is a cross-sectional view of a cleaning module having a cover. Referring to FIG. 13 , the cleaning module 200 can further have a cover 160 . The cover 160 surrounds the periphery of the ultrasonic unit 150 such that a gap can be formed between the cover 160 and the periphery of the ultrasonic unit 150. One side of the cover 160 is coupled to the gas injector, and the other side of the cover 160 has an opening 161 for injecting gas toward the surface of the optical chuck 50. The gas ejected from the gas injector reaches the surface of the optical chuck 50 by passing through a gap formed between the ultrasonic unit 150 and the cover 160. In the above structure, the foreign matter 201105954 attached to the surface of the optical chuck 50 is mainly removed by the high pressure cleaning action of the opening 161 of the ultrasonic unit 160. The second is removed by the air passing through the cover. According to this, a cross-sectional view of another aspect of the ^ ^ full module can be implemented more effectively, and FIG. 15 is a figure of FIG. 13 , such as 4, and the old R u / (1) 糸 module Another aspect of the profile. b + SI 14 (four) 'on both sides of the two supersonic suction units 17. In addition, please refer to FIG. 15 and the cleaning module 200 can be disposed on the ultrasonic unit 150 and the cover 160 at the same time.
移除附著於先學吸盤;〇:,除元件。靜電W 的附著力,使得清潔槿二、物的靜電’藉此降低與物 月/乐鵪組200可有效地抽吸異物。 以上所述僅為舉例性,而非為限制性者。任何未脱鄭 本發明之輯與料’㈣其進狀等效料錢更,均 應包含於後附之申請專利範圍中。 【圖式簡單說明 圖1為依據 圖; 本發明較佳實施例之陣列檢阀裝置的系意 圖2為沿圖1所示之A-A連線的剖面圖; 圖3為因異物附著於光學吸盤而產生之檢測誤差的系 意圖; ' 圖4為依據本發明另一實施例之陣列檢剛裝置的系意 圖; 圖5為俊據本發明較佳實施例之陣列檢測裝置之光源 201105954 於移動狀態下的示意圖; 圖6為清潔模組之移除單元的剖面圖,且移除單元θ 用於依據本發明實施例之陣列檢顯置; ”早疋疋 圖7為清潔模組之抽吸單元的剖面圖,且抽吸單元3 用於依據本發明實施例之陣列檢測裴置; 疋 圖8為圖7所示之清潔模組之另一態樣的剖面圖; 圖9為圖7所示之清潔模組之又—態樣的剖面圖; 圖為圖7所示之清潔模組之又一態樣的剖面圖; 圖11為具有針腳之清潔模組的剖面圖; 圖12為具有超音波單元之清潔模組的剖面圖; 圖13為具有罩體之清潔模組的剖面圖; 圖14為圖12所示之清潔模組之另一態樣的剖面圖; 以及 圖15為圖13所示之清潔模組之另一態樣的剖面圖。 【主要元件符號說明】 1、2、3 :液晶分子 100 :陣列檢測裝置 160 :罩體 161 ··開口 170 :抽吸單元 171 :針腳 180 :移除單元 2〇 :調變模組 201105954 200 :清潔模組 21 :透明電極 30 :光源 40 :光源轉移模組 45 :調變模組轉移模組 5、6、7 :光線 50 :光學吸盤 60 :偵測單元 70 :裝載單元Remove the attached suction cup; 〇:, except the component. The adhesion of the static electricity W causes the static electricity of the cleaning device to be lowered, thereby reducing the object/month group 200 to effectively suck foreign matter. The above is intended to be illustrative only and not limiting. Anything that has not been removed from the Zheng's invention and the material '(4)'s equivalent amount of money shall be included in the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram according to a preferred embodiment of the present invention; FIG. 3 is a cross-sectional view taken along line AA of FIG. 1; FIG. 3 is attached to an optical chuck by foreign matter. FIG. 4 is a schematic diagram of an array detecting device according to another embodiment of the present invention; FIG. 5 is a light source 201105954 of the array detecting device according to a preferred embodiment of the present invention. Figure 6 is a cross-sectional view of the cleaning unit of the cleaning module, and the removal unit θ is used for the array inspection according to the embodiment of the present invention; A cross-sectional view, and the suction unit 3 is used for the array detection device according to the embodiment of the present invention; FIG. 8 is a cross-sectional view of another aspect of the cleaning module shown in FIG. 7; FIG. 11 is a cross-sectional view of another embodiment of the cleaning module shown in FIG. 7; FIG. 11 is a cross-sectional view of the cleaning module having the stitches; Sectional view of the cleaning module of the unit; Figure 13 is the cleaning of the cover Figure 14 is a cross-sectional view showing another aspect of the cleaning module shown in Figure 12; and Figure 15 is a cross-sectional view showing another aspect of the cleaning module shown in Figure 13. [Main component symbol Description] 1, 2, 3: Liquid crystal molecule 100: Array detecting device 160: Cover 161 · Opening 170: Suction unit 171: Pin 180: Removal unit 2: Modulation module 201105954 200: Cleaning module 21 : transparent electrode 30 : light source 40 : light source transfer module 45 : modulation module transfer module 5 , 6 , 7 : light 50 : optical chuck 60 : detection unit 70 : loading unit
71 、81 : IUL 72 :裝載板 8 ·電場 80 :卸載單元 82 :卸載板 9 :異物 90基板 91 :電極層 92、93、94 :電極 95 :支持件 99 :訊號處理單元 A-A :剖面線 X、Y、Z :方向71, 81 : IUL 72 : loading plate 8 · electric field 80 : unloading unit 82 : unloading plate 9 : foreign matter 90 substrate 91 : electrode layer 92 , 93 , 94 : electrode 95 : support member 99 : signal processing unit AA : section line X , Y, Z: direction