TW201031180A - Display device and television system - Google Patents

Display device and television system Download PDF

Info

Publication number
TW201031180A
TW201031180A TW98132358A TW98132358A TW201031180A TW 201031180 A TW201031180 A TW 201031180A TW 98132358 A TW98132358 A TW 98132358A TW 98132358 A TW98132358 A TW 98132358A TW 201031180 A TW201031180 A TW 201031180A
Authority
TW
Taiwan
Prior art keywords
circuit
output
self
signal
display
Prior art date
Application number
TW98132358A
Other languages
Chinese (zh)
Inventor
Shinsuke Anzai
Yoshihiro Nakatani
Hiroaki Fujino
Hirofumi Matsui
Toshio Watanabe
Masami Mori
Kohichi Hosokawa
Masafumi Katsutani
Original Assignee
Sharp Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kk filed Critical Sharp Kk
Publication of TW201031180A publication Critical patent/TW201031180A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • H04N17/04Diagnosis, testing or measuring for television systems or their details for receivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0408Integration of the drivers onto the display substrate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0245Clearing or presetting the whole screen independently of waveforms, e.g. on power-on
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/027Arrangements or methods related to powering off a display
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/18Use of a frame buffer in a display terminal, inclusive of the display panel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/12Synchronisation between the display unit and other units, e.g. other display units, video-disc players

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

To provide a display device which perform self-detection and self-repair, with an appropriate timing. The display part 90 of a liquid crystal television 400 includes a source driver 10a a display panel 80 for displaying video images, on the basis of video signals supplied from a DVD apparatus 402 and the source driver 10a for driving the display panel 80, which has a comparison and determination circuit 50 and a switching circuit 60 for detecting and repairing defects of the source driver 10a. The comparison and determination circuit 50 and the switching circuit 60 detect and repair the defects of the source driver 10a in a cleaning period as maintenance period for the DVD apparatus 402.

Description

201031180 六、發明說明: 【發明所屬之技^*領域】 本發明係關於一種使用有進行DA(Digital/Analog,數位 類比)轉換器輸出電路中之不良之自我檢測及自我修復的 驅動電路之顯示裝置。 【先前技術】 近年來,伴隨著液晶面板等之大型化及高精細化,於液 晶驅動用半導體積體電路中,液晶驅動用輸出端子之端子 數不斷增加、及自輸出端子輸出之多值電壓不斷多灰階 化。例如當前主流之液晶驅動用半導體積體電路中,存在 包含可輸出256灰階之電壓之約500個輸出端子數者。進 而’當前亦進行了包含1〇〇〇個以上之輸出端子數之液晶驅 動用半導體積體電路之開發。又,伴隨著液晶面板之多色 化’亦進行可輸出1024灰階之灰階輸出電壓之液晶驅動用 半導體積體電路之開發。 於此,以下參照圖43,對先前之液晶驅動用半導體積體 電路之構成進行說明。圖43係表示先前之液晶驅動用半導 體積體電路之構成之方塊圖。 該圖所示之液晶驅動用半導體積體電路1〇1係可分別自n 個液晶驅動用信號輸出端子輸出111灰階之輸出電壓。首 先’對液晶驅動用半導體積體電路101之構成加以說明。 液晶驅動用半導體積體電路101於外部包含時脈輸入端子 102、包含複數個信號輸入端子之灰階資料輸入端子1〇3、 LOAD(載入)信號輸入端子1〇4、以及作為基準電源端子之 143485.doc 201031180 VO端子105、VI端子106、V2端子107、V3端子108、V4端 子109。進而’液晶驅動用半導體積體電路ιοί包含^個液 晶驅動用信號輸出端子111-1〜(以下,將液晶驅動用 欢輸出端子稱作#號輸出端子。進而,於對液晶驅動用 信號輸出端子111-1〜111-η進行總稱之情形時,稱作信號輸 出端子111)。又,液晶驅動用半導體積體電路1〇1包含基 準電源修正電路121、指標用移位暫存器電路123、鎖存電 路部124、保持電路125、D/A轉換器(Digital Analog Converter :以下稱作DAC)電路126、以及輸出緩衝器 127。又,指標用移位暫存器電路123包含η段移位暫存器 電路123-1〜123-η。進而,鎖存電路部124包含η個鎖存電 路124-1〜124-η,以及保持電路125包含η個保持電路125_ 1〜125-η。又,DAC電路126包含η個DAC電路126-1〜126- η。此外,輸出緩衝器127包含η個輸出緩衝器1271至127_ η’且各輸出緩衝器包含運算放大器。 其次,對液晶驅動用半導體積體電路1〇1之動作加以說 明。指標用移位暫存器電路123根據自時脈輸入端子1〇2輸 入之時脈輸入信號,自第一個鎖存電路124-1至第η個鎖存 電路124-11為止進行依序選擇。由指標用移位暫存器電路 U3選擇之鎖存電路124儲存來自灰階資料輸入端子1〇3之 灰階輪出資料。再者’灰階輸出資料係對應於每個鎖存電 路124、換言之係對應於每個信號輸出端子lu之、與上述 時脈輸入信號同步之資料。因此,各鎖存電路叫〜⑵· n可儲存對應於每個信號輸出端子⑴之各自值相異之灰階 143485.doc 201031180 輸出資料。鎖存電路124-1〜l24_n*所儲存之灰階輸出資 料係根據資料LOAD信號,而向各自對應之n個保持電路 125-1〜125-η傳輸。進而,保持電路將自鎖存 電路124-1〜124-n輸入之灰階輸出資料作為數位資料而輸 出至DAC電路126-1〜126-n。 於此,DAC電路126-1〜126-n根據來自保持電路125之灰 階輸出資料,選擇m種灰階電壓中之一種電壓值並輸出至 輸出緩衝器127-1〜127-n。再者,DAC電路126根據自基準 電源端子V0端子105〜V4端子1〇9輸入之電壓,可輸出111種 灰階電壓。繼而,輸出緩衝器127將來自DAC電路126之灰 階電壓加以緩衝,並作為液晶面板驅動用信號而輸出至信 號輸出端子111-1〜Ill-η。 如上所述’移位暫存器電路123、鎖存電路124、保持電 路125、DAC電路126以及輸出緩衝器127之個數必需與液 晶驅動用信號輸出端子111之個數相同,若液晶驅動用信 號輸出端子111為1000個端子,則上述各電路124〜127亦分 別需要1000個。 如上所述,近年來,液晶面板等之顯示裝置不斷大型 化、高精細化,於Fullspec之高精細電視(HDTV : High Definition Television)中,資料線數成為1920根。藉此, 顯示驅動用半導體積體電路必需對每個資料線提供 R*G.B(Red.Green.Blue,紅•綠•藍)之灰階電壓之信號,其結 果,顯示驅動用半導體積體電路必需1920根x3(R.G*B)=5760 根輸出數’換言之必需包含5760個液晶驅動用信號輸出端 143485.doc 201031180 =二::ΓΓΓ用半導體積體電路之輸出數 月不時,必需8個顯示驅動用半導體積體 路。 电 通常顯7F驅動用半導體積體電路於晶圓階段進行測 ν式於封裝後進行出廠測試,於搭載在液晶面板上後進行 顯不測°式。進而’利用預燒或應力測試之篩選測試’除去 可能產生初始不良之半導體積體電路。因此,搭載有可能 產生顯示不良之顯示驅動用半導體積體電路之顯示裝置不 會發貨至市場中。然而,極少會因於出廠前之測試或篩選 測試時未判斷為不良之極微小之缺陷或異物之附著混人, 而於使用顯示裝置之期間產生顯示不良。例如即便顯示 驅動用半導體積體電路之一根資料線於出廠後產生顯示不 良之比例為0.01 ppm(1億分之υ,於資料線數為576〇根之 Fullspec之HDTV中,顯示不良之產生比例亦為57 6 ppm(100萬分之57.6)。即,約17361台中有1台產生顯示不 良’且越變得更大型化、更高精細化,顯示不良之產生比 例就越高。 於產生如上所述之顯示不良之情形時’必需迅速地回收 顯示裝置而進行顯示驅動用半導體積體電路之維修,但回 收修理需要大量成本自不用說,且會導致商品形象之下 降。 於此’於先前技術中揭示有:於顯示驅動用半導體積艘 電路中設置成為缺陷之電路所具有之預備電路,將存在缺 陷之電路切換為預備電路,藉此避免顯示驅動用半導體積 143485.doc 201031180 體電路之不良。 具體而&,專利文獻1中揭示有如下方法:顯示驅動用 半導體積體電路係於移位暫存器之各段中包含預備之並聯 電路’進行移位暫存器之自我檢查,並根據該檢查結果而 選擇並聯電路之無缺陷之一方,藉此避免由缺陷之移位暫 存器所引起之顯不不良。進而,專利文獻2中揭示有如下 方法:於DAC電路之輸入端與輸出端設置有選擇器,根據 φ 記憶有存在缺陷之DAC電路之位置的RAM(Rand〇m Access201031180 VI. Description of the Invention: [Technical Fields of the Invention] The present invention relates to a display of a driving circuit using a self-detection and self-repair in a DA (Digital/Analog) converter output circuit Device. [Prior Art] In recent years, in the semiconductor integrated circuit for liquid crystal driving, the number of terminals of the liquid crystal driving output terminal is increasing, and the multi-value voltage output from the output terminal is increased in accordance with the increase in the size and the definition of the liquid crystal panel. Constantly more graying. For example, in the current mainstream semiconductor integrated circuit for liquid crystal driving, there are a number of about 500 output terminals including a voltage capable of outputting 256 gray scales. Further, the development of a semiconductor integrated circuit for liquid crystal driving including one or more output terminals has been carried out. Further, along with the multi-coloring of the liquid crystal panel, development of a liquid crystal driving semiconductor integrated circuit capable of outputting a gray scale output voltage of 1024 gray scales was also carried out. Here, the configuration of the conventional liquid crystal driving semiconductor integrated circuit will be described below with reference to Fig. 43. Fig. 43 is a block diagram showing the configuration of a conventional liquid crystal driving half-conductor body circuit. The liquid crystal driving semiconductor integrated circuit 1〇1 shown in the figure can output 111 gray-scale output voltages from n liquid crystal driving signal output terminals. First, the configuration of the liquid crystal driving semiconductor integrated circuit 101 will be described. The liquid crystal driving semiconductor integrated circuit 101 includes a clock input terminal 102, a gray scale data input terminal 1〇3 including a plurality of signal input terminals, a LOAD signal input terminal 1〇4, and a reference power supply terminal. 143485.doc 201031180 VO terminal 105, VI terminal 106, V2 terminal 107, V3 terminal 108, V4 terminal 109. Further, the semiconductor integrated circuit for liquid crystal driving includes a liquid crystal driving signal output terminal 111-1~ (hereinafter, the liquid crystal driving flash output terminal is referred to as a ## output terminal. Further, the liquid crystal driving signal output terminal is used. When 111-1 to 111-n are collectively referred to, it is referred to as a signal output terminal 111). Further, the liquid crystal driving semiconductor integrated circuit 1〇1 includes a reference power supply correction circuit 121, an index shift register circuit 123, a latch circuit unit 124, a hold circuit 125, and a D/A converter (Digital Analog Converter: It is called a DAC) circuit 126, and an output buffer 127. Further, the index shift register circuit 123 includes n stages of shift register circuits 123-1 to 123-n. Further, the latch circuit portion 124 includes n latch circuits 124-1 to 124-n, and the hold circuit 125 includes n holding circuits 125_1 to 125-n. Further, the DAC circuit 126 includes n DAC circuits 126-1 to 126-n. Further, the output buffer 127 includes n output buffers 1271 to 127_n' and each of the output buffers includes an operational amplifier. Next, the operation of the liquid crystal driving semiconductor integrated circuit 1〇1 will be described. The index shift register circuit 123 sequentially selects from the first latch circuit 124-1 to the nth latch circuit 124-11 based on the clock input signal input from the clock input terminal 1〇2. . The latch circuit 124 selected by the index shift register circuit U3 stores the gray scale wheel data from the gray scale data input terminal 1〇3. Further, the gray scale output data corresponds to each of the latch circuits 124, in other words, corresponding to each of the signal output terminals lu, synchronized with the clock input signal. Therefore, each latch circuit is called ~(2)·n to store the grayscale 143485.doc 201031180 output data corresponding to the respective values of each signal output terminal (1). The gray scale output data stored in the latch circuits 124-1 to l24_n* is transmitted to the corresponding n holding circuits 125-1 to 125-n based on the data LOAD signal. Further, the hold circuit outputs the gray scale output data input from the latch circuits 124-1 to 124-n as digital data to the DAC circuits 126-1 to 126-n. Here, the DAC circuits 126-1 to 126-n select one of the m kinds of gray scale voltages based on the gray scale output data from the hold circuit 125 and output them to the output buffers 127-1 to 127-n. Further, the DAC circuit 126 can output 111 kinds of gray scale voltages based on the voltage input from the reference power supply terminal V0 terminals 105 to V4 terminals 1 and 9. Then, the output buffer 127 buffers the gray scale voltage from the DAC circuit 126, and outputs it to the signal output terminals 111-1 to 11-n as signals for driving the liquid crystal panel. As described above, the number of the shift register circuit 123, the latch circuit 124, the holding circuit 125, the DAC circuit 126, and the output buffer 127 must be the same as the number of the liquid crystal driving signal output terminals 111, and the liquid crystal driving is used. The signal output terminal 111 is 1000 terminals, and each of the above circuits 124 to 127 also needs to be 1000. As described above, in recent years, display devices such as liquid crystal panels have been increasing in size and high definition, and in Fullspec's High Definition Television (HDTV), the number of data lines has reached 1920. Thereby, the display semiconductor integrated circuit must supply a signal of a gray scale voltage of R*GB (Red.Green.Blue) for each data line, and as a result, display the semiconductor integrated circuit for driving. 1920 x3 (RG*B)=5760 output numbers are required. In other words, 5760 liquid crystal drive signal output terminals must be included. 143485.doc 201031180 = 2:: The output of the semiconductor integrated circuit is several months from time to time. The semiconductor integrated circuit for driving is displayed. Normally, the semiconductor integrated circuit for driving the 7F is tested at the wafer stage. After the package is mounted on the liquid crystal panel, it is displayed. Further, 'the screening test using the burn-in or stress test' removes the semiconductor integrated circuit which may cause an initial failure. Therefore, a display device equipped with a semiconductor integrated circuit for display driving which may cause display failure is not shipped to the market. However, it is rare that a defect that is not judged to be defective at the time of leaving the factory or a screening test is extremely small, or a foreign matter is attached, and display failure occurs during use of the display device. For example, even if the ratio of one of the data lines of the semiconductor integrated circuit for display driving to the display is 0.01 ppm (100 million points), the display is defective in the HDTV of Full613 with a data line of 576 〇. The ratio is also 57 6 ppm (57.6 parts per million). That is, one of the approximately 17,361 units has a poor display, and the more it becomes larger and finer, the higher the proportion of poor display. In the case where the display is defective, it is necessary to quickly recover the display device and perform maintenance of the semiconductor integrated circuit for display driving. However, recovery and repair require a large amount of cost, and the image of the product is lowered. The technology discloses a preparatory circuit provided in a circuit for forming a defect in a semiconductor circuit for display driving, and switches a circuit having a defect to a preliminary circuit, thereby avoiding display semiconductor semiconductor products. Specifically, in Patent Document 1, there is disclosed a method in which a display semiconductor integrated circuit is mounted in a shift register. The segment includes a preparatory parallel circuit 'self-checking the shift register, and selecting one of the parallel circuits without defects according to the check result, thereby avoiding the defect caused by the defective shift register Further, Patent Document 2 discloses a method in which a selector is provided at an input end and an output end of a DAC circuit, and a RAM having a position of a defective DAC circuit is stored according to φ (Rand〇m Access

Memory,隨機存取記憶體)之資訊,切換選擇器而選擇使 用無缺陷之DAC電路。 [先前技術文獻] [專利文獻] [專利文獻1]日本公開專利公報「 208346號公報(1994年7月26日公開)」 [專利文獻2]日本公開專利公報「 278771號公報(1996年10月22日公開)」 【發明内容】 曰本專利特開平6-曰本專利特開平8- [發明所欲解決之問題] 然而,具有自我檢測及自我修復功能之顯示用驅動電路 具有如下特性··於進行自我檢測動作之情形時,必需使將 影像信號供給至顯示裝置之輸出電路自顯示裝置分離,因 此於此期間無法顯示圖像。因此,專利文獻丨及專利文獻2 中所揭示之自我檢測及自我修復之構成中,例如於使用者 正在視聽顯示裝置時執行自我檢測及自我修復動作之情形 143485.doc 201031180 時’會突然不顯示圖像。因此,存在阻礙使用者之視聽, 或者、^使用者造成顯示裝置是否產生故障之誤解之問題。 再者專利文獻1及專利文獻2中,完全未揭示對DAC電 路等輸出電路中之缺陷進行檢測之自我檢測之方法。 本發明係ϋ於上述問題而完成者,其目的在於提供一種 顯不裝置’該顯示裝置係具有可對輸出電路或輸出電路周 邊之輸出區塊之缺陷進行自我檢測及自我修復的驅動電路 者’且以適當之時序進行自我檢測及自我修復。 [解決問題之技術手段] 為了解決上述問題,本發明之顯示裝置之特徵在於包 3 _顯不©板’其根據自影像再生裝置供給之影像信號而 顯不影像;以及驅動電路,其係、對上述顯示面板進行驅動 者,且具有對該驅動電路之不良進行檢測並修復之自我檢 U我L復機構,上述自我檢測與自我修復機構於上 述影像再生裝置無法供給上述影像信號之㈣,對上述驅 動電路之不良進行檢測並修復。Memory, random access memory), switch selectors and choose to use a defect-free DAC circuit. [PRIOR ART DOCUMENT] [Patent Document 1] Japanese Laid-Open Patent Publication No. 208346 (published on July 26, 1994). [Patent Document 2] Japanese Laid-Open Patent Publication No. 278771 (October 1996) [Disclosed on the 22nd] "Summary of the Invention" Patent Application Laid-Open No. 6-曰 Patent-Opening No. 8-- [Problems to be Solved by the Invention] However, the display driving circuit having self-detection and self-healing functions has the following characteristics: In the case of performing the self-detection operation, it is necessary to separate the output circuit that supplies the video signal to the display device from the display device, and thus the image cannot be displayed during this period. Therefore, in the configuration of self-detection and self-repair disclosed in Patent Document 2 and Patent Document 2, for example, when the user is performing self-detection and self-repairing operations while viewing the display device, 143485.doc 201031180 will suddenly not display. image. Therefore, there is a problem that hinders the user's viewing or the user's misunderstanding of whether or not the display device is malfunctioning. Further, in Patent Document 1 and Patent Document 2, a method of self-detection for detecting a defect in an output circuit such as a DAC circuit is not disclosed at all. The present invention has been accomplished in view of the above problems, and an object thereof is to provide a display device having a drive circuit capable of self-detecting and self-repairing defects of an output block around an output circuit or an output circuit. Self-testing and self-healing at appropriate timings. [Means for Solving the Problems] In order to solve the above problems, the display device of the present invention is characterized in that the package 3_display panel is not imaged based on the image signal supplied from the image reproduction device; and the drive circuit is Driving the display panel, and having a self-checking and repairing the fault of the driving circuit, the self-detecting and self-repairing mechanism cannot supply the image signal to the image reproducing device (4), The failure of the above drive circuit is detected and repaired.

根據上述構成,顯示面板根據自影像再生裝置供給之影 像信號而顯示影像。影像再生裝置係可根據各種記憶媒體 中所記憶之資料而生成影像信號之11,例如有DVD _㈣Ve細ile Disc ’數位多功能光碟)再生裝置或_ (Hard Disk Drive,破雖艇私 3g、= · & 硬碌驅動器)再生裝置等。再者,影像 再生裝置例如可為如筆記型pc(per_ai c〇叫·,個人 電腦)或具有液晶顯示器之可携式_播放器等般一體包 含在顯示裝置中之構成,亦可為作為獨立於顯示裝置之裝 143485.doc 201031180 置而經由電境等連接於顯示裝置加以使用之構成。又,顯 丁 2亦了如桌上型P c之顯示器般不必具有電視接收功能 之構成。進而’影像再生裝置為至少具有再生功能之裝 • 4 ’亦可為具有例如錄影功能等其他之除再生外之功能的 構成,並無特別限定。 又’根據上述構成,驅動電路對顯示面板進行驅動。而 且,驅動電路具有自我檢測與自我修復機構,其可對驅動 • €路自身之不良進行檢測,並將檢測出之不良加以修復。 進而,根據上述構成,自我檢測與自我修復機構係於影 像再生裝置無法供給上述影像信號之期間進行自我檢測及 自我修復。影像再生裝置無法供給上述影像信號之期間為 影像再生裝置中無法使用通常之再生功能之期間,於此期 間顯示裝置無法根據來自影像再生裝置之信號而於顯示面 板上顯示影像。 藉此,本發明之顯示裝置中,於無法藉由影像再生裝置 ❹ 巾再生影像之期間、即使用者不使用顯示裝置之期間,進 行媒動電路之自我檢測及自我修復。因此’不會於使用者 使用顯示裝置時突然進行自我檢測及自我修復故而不會 •,给使用者造成顯示裝置產生了故障之誤解,從而可提高對 . 使用者而言之便利性。 又,本發明之顯示裝置中,上述驅動電路宜包含將用以 驅動上述顯示面板之輸出信號輸出之複數個輸出電路,上 述自我檢測與自我修復機構包含對上述輸出電路是否不良 進行判定之判定機構,於上述判定機構之判定結果為不良 143485.doc 201031180 時’以將正常之輸出信號輸出至上述顯示面板之方 式對該驅動電路進行自我修復。 出成,媒動電路包含將用以驅動顯示面板之輸 ==出之複數個輸出電路。輸出電路將例如影像資料 一火階電麼並作為驅動顯示面板之輸出信號而加 出。 出ί路,成,自我檢測與自我修復機構包含對輸 出電路疋否不良進行判定之判定機構,於判定機構中之判 2:果為不良之情形時’以將正常之輸出信號輸出至顯示 板之方式對驅動電路進行自我修復。 藉此,本發明之顯示裝置中’可對驅動電路之輸出電路 中之缺陷進行檢測,且於輪出電路存在缺陷之情形時 進行自我修復。 又,本發明之顯示裝置中’上述驅動電路宜包含可將上 述輸出信號輸出至上述顯示面板之預備輸出電路,上 我檢測與自我修復機構包含切換機構,該切換機構係於上 逑判定機構之判定結果為不良之情形時,將來自上述成為 不良之輸出電路之輸出信號切換為來自上述預備輸出電路 之輸出信號’而作為傳輸至上述顯示面板之輸出信號。 根據上述構成,上述驅動電路包含可將輸出信號輸出至 顯不面板之預備輸出電路。預備輸出電路係與輪出電路同 樣地,例如將影像資料轉換為灰階電麼並作為驅動顯示^ 板之輸出信號而輸出。 又,根據上述構成,自我檢測與自我修復機構包含將判 143485.doc 201031180 义機構判疋為不良之輸出電路切換為預備輸出電路之切換 機構。 、 藉此,本發明之顯示裝置中,於輸出電路存在缺陷之情 形時,將存在缺陷之輸出電路切換為預備輸出電路,藉此 可容易地進行驅動電路之自我修復。 •又,本發明之顯示裝置中,上述判定機構宜包含比較機 構,該比較機構將來自上述輸出電路之輸出信號與來自上 參 I預備輸出電路之輸出信號進行比較’且該判定機構根據 上述比較機構之比較結果,對上述輸出電路是否不良進 判定。 根據上述構成,判錢構包含比較機構。又,比較機構 將來自輸出電路之輸出信號與來自預備輸出電路之輸出信 號進行比較。而且,敎機構«比_構之比較結果= 對輸出電路是否不良進行判定。 藉此’本發明之顯示裝置中’藉由將輸出電路之輸出盘 預備輸出電路之輸出進行比較,可對輪出電路之不良進^ 判定’因此可以簡單之構成而容易地對輸出電 行檢測。 装斟私s 且尺疋—芡包含控制機構, 广輸入至上述輸出電路及上述預備輸出電路之 進行控制,上述控制機槿 °藏 、十w 機構將大小相異之輸入信號輸入至上 3出電路與上述預備輸出電路,並且將 號相對應之、來自上述比較機構之比較結果= 值輸出,上述判定機構於上述比較結果與上述期望值不 143485.doc 201031180 同之情形時,將上述輸出電路判定為不良。 根據上述構成,控制機構對輸入至輸出電路與預備輸出 電路之輸人信號進行控制,並輸人大小相異之輸入信號。 又,控制機構將與大小相異之輸入信號相對應之、來自比 較機構之比較結果之期望值輸出。而且,判定機構係於來 自比較機構之實際之比較結果與來自控制機構之期望值不 同之情形時’將輸出電路判定為不良。 具體而言,例如將灰階„!之輸入信號輸入至輸出電路, 將灰階m+1之輸入信號輸入至預備輸出電路。再者,灰階 m之灰階電壓為較灰階m+1之灰階電壓更低之電壓。於 此’若輸出電路正常,則比較機構輸出表示自預備輸出電 路輸入之灰階電壓較高之信號。另一方面,於輸出電路存 在缺陷,即便輸入灰階m之信號而輸出電路仍僅能輸出較 高之灰階電壓之情形時’比較機構輸出表示自輪出電路輸 入之灰階電壓較高之信號。 如上所述’本發明之驅動電路中,比較機構對自輸出電 路及預備輸出電路輸出之灰階電壓進行比較,於輸出 存在缺陷之情形時及不存在缺陷之情形時,輸出相異值之 信號。 其次,判定機構根據自比較機構輸出之信號,對輸出電 路是否不良進行判定。具體而言,於如上所述之將灰階加 之輸入信號輸入至輸出電路’將灰階m+1之輸入信號輪入 至預備輸出電路之情形時,當自比較機構輸入表示來自輪 出電路之灰階電壓較高之信號時,判定為輸出電路不良。 143485.doc -12- 201031180 方面,於自比較機構輸入表示來自預備輸出電路之 階電壓較高之信號之情形時,判定機構判定為輸出電路正 電路之缺 之情形時 藉此,本發明之顯示裝置中包含容易地對輸出 陷進行檢測之具體之機構,於輸出電路存在缺陷 可進行自我修復。According to the above configuration, the display panel displays the image based on the image signal supplied from the image reproducing device. The image reproduction device can generate image signals 11 according to the data stored in various memory media, for example, a DVD _ (four) Ve fine ile Disc 'digital versatile disc) reproduction device or _ (Hard Disk Drive, broken boat private 3g, = · & hard drive) regenerative device, etc. Furthermore, the image reproduction device may be, for example, a notebook PC (per_ai c〇, a personal computer) or a portable printer having a liquid crystal display, or the like, or may be included in the display device as an independent device. It is configured by being connected to a display device via an electric environment or the like in a display device 143485.doc 201031180. Further, the display 2 does not have to have a television receiving function as in the case of the desktop type P c display. Further, the image reproducing device is a device having at least a reproducing function, and may be configured to have a function other than the reproducing function, such as a video recording function, and is not particularly limited. Further, according to the above configuration, the drive circuit drives the display panel. Moreover, the drive circuit has a self-detecting and self-healing mechanism that detects the failure of the drive itself and repairs the detected defects. Further, according to the above configuration, the self-detection and self-repair mechanism performs self-detection and self-repair while the image reproduction device is unable to supply the video signal. The period during which the video reproduction device cannot supply the video signal is a period in which the normal reproduction function cannot be used in the video reproduction device. During this period, the display device cannot display the video on the display panel based on the signal from the video reproduction device. As a result, in the display device of the present invention, the self-detection and self-repair of the media circuit are performed while the image cannot be reproduced by the image reproducing device, that is, while the user is not using the display device. Therefore, the user does not suddenly self-detect and self-repair when using the display device, and the user does not have a misunderstanding of the display device, thereby improving the convenience for the user. Further, in the display device of the present invention, the drive circuit preferably includes a plurality of output circuits for outputting an output signal for driving the display panel, and the self-detection and self-healing mechanism includes a determination mechanism for determining whether or not the output circuit is defective. When the determination result of the above-mentioned determination means is bad 143485.doc 201031180, the drive circuit is self-repaired by outputting the normal output signal to the display panel. The output circuit includes a plurality of output circuits for driving the display panel to output ==. The output circuit adds, for example, image data to a fire level and outputs it as an output signal for driving the display panel. The utual road, the self-detecting and self-repairing mechanism includes a judging mechanism for judging whether the output circuit is defective or not, and the judgment in the judging mechanism 2: when the condition is bad, 'to output the normal output signal to the display panel The way to self-repair the drive circuit. Thereby, in the display device of the present invention, the defect in the output circuit of the driving circuit can be detected, and self-repairing can be performed in the case where the wheel-out circuit is defective. Further, in the display device of the present invention, the driving circuit preferably includes a preliminary output circuit that can output the output signal to the display panel, and the detection and self-repair mechanism includes a switching mechanism, and the switching mechanism is connected to the upper determination mechanism. When the determination result is defective, the output signal from the defective output circuit is switched to the output signal from the preliminary output circuit as an output signal transmitted to the display panel. According to the above configuration, the drive circuit includes a preliminary output circuit that can output an output signal to the display panel. The preparatory output circuit is similar to the wheel-out circuit, for example, converting image data into gray-scale power and outputting it as an output signal for driving the display panel. Further, according to the above configuration, the self-detecting and self-repairing mechanism includes a switching mechanism that switches the output circuit that is judged to be defective to the preliminary output circuit by the 143485.doc 201031180. As a result, in the display device of the present invention, when the output circuit has a defect, the output circuit having the defect is switched to the preliminary output circuit, whereby the self-repair of the drive circuit can be easily performed. Further, in the display device of the present invention, the determining means preferably includes a comparing means for comparing an output signal from the output circuit with an output signal from the upper reference I preparatory output circuit' and the determining means is based on the comparison The comparison result of the mechanism determines whether the output circuit is defective or not. According to the above configuration, the judgment structure includes the comparison means. Further, the comparing means compares the output signal from the output circuit with the output signal from the preliminary output circuit. Moreover, the comparison result of the 敎 mechanism « _ constituting = determining whether the output circuit is defective or not. Therefore, in the display device of the present invention, by comparing the output of the output disk pre-output circuit of the output circuit, it is possible to determine the defective circuit of the wheel-out circuit. Therefore, it is possible to easily detect the output current by simple configuration. . The control unit has a control unit, and is widely input to the output circuit and the preparatory output circuit for control. The control unit inputs the input signals of different sizes to the upper 3 output circuit. And the comparison output circuit corresponding to the number is outputted from the comparison means = value, and the determination means determines that the output circuit is the same as the case where the comparison result is not the same as the expected value 143485.doc 201031180 bad. According to the above configuration, the control means controls the input signals input to the output circuit and the preliminary output circuit, and inputs input signals of different sizes. Further, the control unit outputs an expected value corresponding to the comparison result from the comparison means corresponding to the input signal of a different size. Further, the judging means judges that the output circuit is defective when the actual comparison result from the comparison means is different from the expected value from the control means. Specifically, for example, the input signal of the gray level „! is input to the output circuit, and the input signal of the gray level m+1 is input to the preliminary output circuit. Furthermore, the gray level voltage of the gray level m is grayscale m+1. The voltage of the gray scale voltage is lower. If the output circuit is normal, the comparison mechanism outputs a signal indicating a higher gray scale voltage input from the preliminary output circuit. On the other hand, there is a defect in the output circuit even if the input gray scale When the signal of m is output and the circuit can only output a higher gray-scale voltage, the 'comparison mechanism output indicates a signal with a higher gray-scale voltage input from the wheel-out circuit. As described above, the drive circuit of the present invention compares The mechanism compares the gray scale voltages outputted from the output circuit and the preliminary output circuit, and outputs a signal of the different value when the output is defective and when there is no defect. Second, the determining mechanism outputs the signal according to the self-comparing mechanism. Determining whether the output circuit is defective. Specifically, inputting the gray level plus the input signal to the output circuit as described above, the input signal of the gray scale m+1 When entering the preliminary output circuit, when the self-comparison mechanism inputs a signal indicating that the gray-scale voltage from the wheel-out circuit is high, it is determined that the output circuit is defective. 143485.doc -12- 201031180 Aspect, input from the comparison mechanism In the case where the signal of the step output voltage of the preliminary output circuit is high, the determination means determines that the output circuit is missing, whereby the display device of the present invention includes a specific mechanism for easily detecting the output trap. Self-repair can be performed if there is a defect in the output circuit.

本發明之顯示裝置中,上述判定機構宜包含對來自上述 複數個輸出電路中之至少兩個輸出電路之輸出信號進行比 較的比較機構,且根據上述比較機構之比較結果,對上述 輸出電路是否不良進行判定。 ' 根據上述構成,判錢構包含比較機構。又,比較機構 對來自複數個輸出電路中之至少兩個輸出電路之輸出信號 進行比較。而且,判錢構根據比較機構之比較結果,對 輸出電路是否不良進行判定。 藉此,本發明之顯示裝置t,藉由對輸出電路之輸出進 行比較’可對輸出電路之不良進行判定,因此可以簡單之 構成而容易地對輸出電路之不良進行檢測。 本發明之顯示裝置中,宜更進—步包含控制機構,其對 輪入至上述複數個輸出電路巾之至少兩㈣出電路之輸入 信號進行控制’上述控制機構將大小相異之輸人信號輸入 至上述至少兩個輸出電路,並且將與上述大小相異之輸入 信號相對應之、來自上述比較機構之比較結果之期望值輸 出’上述判定機構於上述比較結果與上述期望值不同之情 形時,判定上述至少兩個輸出電路之任―者為不良。 143485.doc •13· 201031180 根據上述構成’控制機構對輸入至複數個輸出電路中之 至少兩個輸出電路之輸入信號進行控制,並輸入大小相異 之輸入信號。又’控制機構將與大小相異之輸入信號相對 應之、來自比較機構之比較結果的期望值輸出。而且,判 疋機構係於來自比較機構之實際之比較結果與來自控制機 構之期望值不同之情形時,將輸出電路判定為不良。 具體而言’例如於對第i輸出電路與第2輸出電路此兩個 輸出電路輸入不同之輸入信號之情形時,將灰階瓜之輸入 信號輸入至第1輸出電路,將灰階m+1之輸入信號輸入至 第2輸出電路。再者,灰階m之灰階電壓為較灰階m+l之灰 階電壓更低之電愿。於此’ ^第丄輸出電路正常,則比較 機構輸出表7F自第2輸出電路輸人之灰階電麼較高之信 號 ' 方面,於第1輸出電路存在缺陷,即便輸入灰階瓜 4號而第1輸出電路仍僅能輪出較高之灰階電壓之情形 夺比較機構輸出表不自第i輸出電路輸入之灰階電壓較 高之信號。 如上所述,本發明之媒叙啻 I骚動電路中,比較機構對自複數値 輸出電路中之至少兩個給 1輸出電路輸出之灰階電壓進行tt 較,於輸出電路存在缺险夕,法~ 、 清形時及不存在缺陷之情开 時’輸出相異值之信號。 其判疋機構根據自比較機構輸出之信號而對輸出, 路是否不良進仃判定。具體而言,於如上所述之對第1萬 出電路與第2輪出電路此兩個 1固輸出電路輸入不同之輸入f 號之情形時,且於將灰階 * 之輪入信號輸入至第1輪出 143485.doc 201031180 路’將灰階m+1之輸入信號輪 時,當自比較機構輸入表示來自 2輸出電路之情形 較高之信號時,判定機構判定第1輸出電路之灰階電壓 路之至少任一輸出電路為不良。1輸出電路與第2輸出電 第2輸出電路切換為預備之輸出電此時’將帛1輸出電路與 較機構輸入表示來自第2輪出 二另一方面,於自比In the display device of the present invention, the determining means preferably includes a comparing means for comparing output signals from at least two of the plurality of output circuits, and whether the output circuit is defective based on a comparison result of the comparing means Make a decision. According to the above configuration, the judgment structure includes a comparison institution. Further, the comparing means compares the output signals from at least two of the plurality of output circuits. Further, the judgment structure judges whether or not the output circuit is defective based on the comparison result of the comparison means. As a result, the display device t of the present invention can judge the defect of the output circuit by comparing the output of the output circuit. Therefore, it is possible to easily detect the defect of the output circuit with a simple configuration. In the display device of the present invention, it is preferable to further include a control mechanism for controlling input signals to at least two (four) out-of-circuit circuits of the plurality of output circuit pads, wherein the control mechanism converts the input signals of different sizes. And inputting to the at least two output circuits, and outputting an expected value of the comparison result from the comparing means corresponding to the input signal different in size, and determining, by the determining means, that the comparison result is different from the expected value, determining Any of the above at least two output circuits is defective. 143485.doc •13· 201031180 According to the above configuration, the control unit controls an input signal input to at least two of the plurality of output circuits, and inputs input signals of different sizes. Further, the control unit outputs an expected value of the comparison result from the comparison means corresponding to the input signal of a different size. Further, the judgment means determines that the output circuit is defective when the actual comparison result from the comparison means is different from the expected value from the control means. Specifically, for example, when a different input signal is input to the two output circuits of the ith output circuit and the second output circuit, the input signal of the gray-scale melon is input to the first output circuit, and the gray scale is m+1. The input signal is input to the second output circuit. Furthermore, the gray scale voltage of the gray scale m is lower than the gray scale voltage of the gray scale m+l. In this case, the 'the third output circuit is normal, and the comparison output unit 7F is higher than the gray output of the second output circuit', and there is a defect in the first output circuit, even if the input gray level is 4 The first output circuit can only turn out the higher gray-scale voltage, and the comparison mechanism output table does not have a higher gray-scale voltage input from the i-th output circuit. As described above, in the media smashing circuit of the present invention, the comparing means performs tt comparison on the gray scale voltage outputted from at least two of the output circuits of the self-complex 値 output circuit, and there is a defect in the output circuit. When the method is ~, clear, and there is no defect, the signal of the output is different. The judging mechanism judges whether the output is bad or not according to the signal output from the comparison mechanism. Specifically, when a different input f number is input to the two 1st solid output circuits of the 10,000th output circuit and the second round output circuit as described above, and the wheel input signal of the gray level* is input to In the first round, 143485.doc 201031180 When the input signal wheel of the gray scale m+1 is used, when the comparison mechanism inputs a signal indicating a higher condition from the 2 output circuit, the determining mechanism determines the gray scale of the first output circuit. At least one of the output circuits of the voltage path is defective. 1 output circuit and second output power The second output circuit is switched to the preliminary output power. At this time, the output of the 帛1 output circuit and the comparison mechanism are indicated by the second round.

之情形時,判定機構判定為輸出電路二皆電壓較高之信號 藉此’本發明之顯示裝 缺陷進行檢測之具體之機構二容易地對輪出電路之 時可進行自靜復。構’料出電料在缺陷之情形 :::之顯不裝置中’上述輸出電路宜包含運算放大器 作為輸出緩衝器’上述比較機構宜為包含上述運算放大器 而構成之比較器。 根據上述構成’輪出電路包含運算放大n作為輸出緩衝 器又,比較機構為包含運算放大器之比較器。 ,通常’將來自驅動顯示面板之輸出電路之輸出信號加以 緩衝後輸出至輸出端子。於此,運算放大器藉由使自身之 輸出負反饋至自身之負極性輸人端子而成為電磨隨動器電 路,其具有作為緩衝器電路之功能。 因此’如上所述’藉由使比較機構成為包含運算放大器 而構成之比較器’而使運算放大器兼有對來自輸出電路之 輸出信號進行緩衝之緩衝器電路與比較機構此兩者之作 用。藉此’本發明之驅動電路無需另外包含用以對來自輸 出電路之輸出信號進行緩衝之緩衝器電路,從而發揮降低 143485.doc 15 201031180 成本之效果。 本發明之顯示裝置中,上述運算放大器於驅動顯示面板 之情形時宜作為電壓隨動器進行動作。 又’本發明之顯示裝置中’上述影像再生裝置宜為DVD 再生裝置。 又,本發明之顯示裝置中,上述自我檢測與自我修復機 構於上述期間即上述DVD再生裝置之清潔時,宜對上述驅 動電路之不良進行檢測並修復。 根據上述構成,自我檢測與自我修復機構係於DVD再生 © 裝置之清潔時,對驅動電路之不良進行檢測並進行修復動 作。 藉此,於DVD再生裝置之清潔時,即於無法藉由DVD再 生裝置而再生影像且使用者不使用顯示裝置之期間,可進 行自我檢測及自我修復。 又,本發明之顯示裝置中,上述影像再生裝置宜為HDD 再生裝置。 又,本發明之顯不裝置中,上述自我檢測與自我修復機 ® 構之特徵宜在於:於上述期間即上述HDD再生裝置之記憶 區域之優化時’對上述驅動電路之不良進行檢測並修復。 根據上述構成,自我檢測與自我修復機構係於hdd再生 裝置之記憶區域之優化即重組時,對驅動電路之不良進行 · 檢測並進行修復動作。 藉此於HDD再生裝置中進行重組_、即於無法藉由 HDD再生裝置而再生影像且使用者不使用顯示裝置之期 143485.doc -16- 201031180 間’可進行自我檢測及自我修復。 又,本發明之顯示裝置中,上述HDD再生裝置宜為可於 所設定之時刻開始維護,上述自我檢測與自我修復機構係 於進行在上述所設定之時刻開始之上述HDD再生裝置之記 憶區域之優化的期間,對上述驅動電路之不良進行檢 修復。 根據上述構成,影像再生裝置於所設定之時刻開始雄 • 護。例如由使用者設定影像再生裝置及顯示裝置之未使用 時間,而於所設定之時間開始維護。而且,自我檢測與自 我修復機構係於在所収之時刻開始之影像再生裝置之維 護的期間’可對驅動電路之不良進行檢測並修復。、 =此’使用者可於不制顯示裝置之時刻以影像再生 裝置之維護開始時刻,因此便利性提高。 顯進:,本發明之電視系統可為包含上述任-項中記載之 顯不裝置之構成。 φ [發明之效果] 為:解決上述問題,本發明之顯示裝置之特徵 含·顯不面板,其根據自影像再生裝置 顯示影像;以及驅動電路, “象… 者,且勺入斟枯 ,、係對上述顯不面板進行驅動 …該驅動電路之不良進行檢 測與自我修復機構, 说 < 目我檢 影像再生裝置之唯^ 測與自我修復機構於上述 測並修復。__ ’對上述驅動電路之不良進行檢 因此,本發明之顯示裝置中,於無法藉由影像再生裝置 H3485.di 201031180 而再生影像之期間、即於使用者不使 • 狀·用顯不裴置之期間, 進行驅動電路之自我檢測及自我修復 设因此可提高對使用 者而言之便利性。 【實施方式】 以下,根據圖式對本發明之實施形態進行說明 [實施形態1] 態進行說 明 以下’參照圖i〜圖17,對本發明之第1實施形 (液晶電視400)In the case of the case, the judging means judges that the output circuit has a higher voltage signal, whereby the specific mechanism 2 for detecting the display defect of the present invention can easily perform self-repeating at the time of the circuit. The above-mentioned output circuit preferably includes an operational amplifier as an output buffer. The comparator is preferably a comparator including the above operational amplifier. According to the above configuration, the rounding circuit includes the operational amplifier n as an output buffer, and the comparator is a comparator including an operational amplifier. Usually, the output signal from the output circuit that drives the display panel is buffered and output to the output terminal. Here, the operational amplifier becomes an electric grinder follower circuit by negatively feeding back its own output to its own negative input terminal, and has a function as a buffer circuit. Therefore, as described above, by making the comparison means a comparator constituting an operational amplifier, the operational amplifier has both a buffer circuit for buffering an output signal from the output circuit and a comparison means. Therefore, the driving circuit of the present invention does not need to additionally include a buffer circuit for buffering the output signal from the output circuit, thereby exerting an effect of reducing the cost of 143485.doc 15 201031180. In the display device of the present invention, the operational amplifier preferably operates as a voltage follower when driving the display panel. Further, in the display device of the present invention, the image reproducing device is preferably a DVD reproducing device. Further, in the display device of the present invention, when the self-detecting and self-repairing mechanism is cleaning the DVD reproducing device during the period, it is preferable to detect and repair the defect of the driving circuit. According to the above configuration, the self-detection and self-repair mechanism detects the failure of the drive circuit and performs the repair operation when the DVD is being used for cleaning. Thereby, self-detection and self-repair can be performed during the cleaning of the DVD reproducing apparatus, that is, when the video cannot be reproduced by the DVD reproducing apparatus and the user does not use the display apparatus. Further, in the display device of the present invention, the image reproducing device is preferably an HDD reproducing device. Further, in the display device of the present invention, the self-detecting and self-repairing mechanism is preferably characterized in that the failure of the drive circuit is detected and repaired during the optimization of the memory region of the HDD playback device. According to the above configuration, when the self-detection and self-repair mechanism are optimized or recombined in the memory area of the hdd reproduction device, the failure of the drive circuit is detected and repaired. Thereby, recombination is performed in the HDD reproducing apparatus, that is, the image cannot be reproduced by the HDD reproducing apparatus and the user does not use the display apparatus 143485.doc -16 - 201031180, and self-detection and self-repair can be performed. Further, in the display device of the present invention, it is preferable that the HDD reproducing device starts maintenance at a set time, and the self-detecting and self-repairing mechanism is configured to perform a memory region of the HDD reproducing device that is started at the set time. During the optimization period, the defect of the above drive circuit is checked and repaired. According to the above configuration, the video reproduction device starts the protection at the set time. For example, the user sets the unused time of the video reproduction device and the display device, and starts maintenance at the set time. Further, the self-detection and self-repair mechanism can detect and repair the failure of the drive circuit during the maintenance of the image reproduction device at the time of collection. If the user can use the maintenance start time of the video reproduction device at the time when the display device is not manufactured, the convenience is improved. It is obvious that the television system of the present invention may be configured to include the display device described in any of the above items. φ [Effects of the Invention] In order to solve the above problems, the display device of the present invention includes a display panel, which displays an image according to the self-image reproducing device, and a driving circuit, such as "..." The above-mentioned display panel is driven... The detection circuit and the self-repair mechanism are inferior to the drive circuit, and the measurement and repair mechanism of the image reproduction device is described above and repaired. __ 'The above drive circuit Therefore, in the display device of the present invention, the display circuit is not reproduced by the user during the period in which the image reproduction device H3485.di 201031180 cannot be reproduced, that is, during the period in which the user does not use the display device. The self-detection and the self-repairing device can improve the convenience for the user. [Embodiment] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. [Embodiment 1] Hereinafter, a description will be given below. 17, the first embodiment of the present invention (LCD TV 400)

Q 作為使用有顯示用驅動電路之顯示裝置之代表性者,可 舉出由液晶電視所代表之薄型電視。液晶電視(液晶顯示 裝請於顯示面板上安裝有複數個以半導體積體電路 (LSKLa W Integmi()n,大型積體電路))製作成的驅 動電路而進行顯示。此種顯示裝置中,於顯示用驅動電路 產生不良之情形時,將會直接作為顯示不良而由使用者識 別出。於產生此種不良之情料,必需迅速進行不良部位 之修理’理想的是儘可能於制者❹之場所以短時間完 成修理。料如對顯示信號進行處理般之控制基板,則因 以連接器與顯示面板騎連接而容易進行更換,但因顯示 驅動用電㈣直接連接於_面板而未以輪料進行連 接’故於使用者使用製品之場所難以進行更換。 因此,本申請人提出-種具有對顯示用驅動電路自身之 不良進行自我賴自我修復之功能(自餘载自我修復 功能)的顯示驅㈣電路(例如日本專利特願2刪·義48、 143485.doc -18. 201031180 曰本專利特願2008-048640、日本專利特願2008-048639以 及曰本專利特願2008-054130 :均未於本案申請前之確認 時間點公開)。 圖1係表示本發明之液晶電視400之構成之方塊圖。如圖 1 所不’液晶電視 400 包含 TFT-LCD(Thin Film Transistor-Liquid Crystal Display ’ 薄膜 電晶體 液晶顯 示器)模組 (顯 示部)90、開關按鈕401、DVD裝置402、HDD裝置403、以 及DVD與HDD控制裝置404。進而,顯示部90包含源極驅 動器(驅動電路、積體電路)10a、預備源極驅動器1 〇b、 TFT-LCD面板(顯示面板)80、閘極驅動器99以及控制器 100。而且,源極驅動器l〇a即積體電路l〇a為上述之具有 自我檢測及自我修復功能之顯示用驅動用電路。再者,預 備源極驅動器10b即預備積體電路10b亦可為具有自我檢測 及自我修復功能之構成。又’以下,於僅記作積體電路1 〇 或源極驅動器10之情形時,表示積體電路1 〇a及1 〇b即源極 驅動器10a及10b之總稱。 以下,對顯示部90中之自我檢測及自我修復之基本動作 進行說明之後,對液晶電視400中之自我檢測及自我修復 之特徵性構成、即以不會給使用者造成產生故障之誤解之 方式而可執行自我檢測及自我修復之構成進行具體說明。 (顯示部90) 首先,參照圖2,對本發明之顯示部90之概略構成進行 說明。圖2係表示顯示部90之概略構成之方塊圖。如圖2所 示,顯示部90包含顯示面板80、及根據自外部輸入之灰階 143485.doc -19- 201031180 資料而對顯示面板80進行驅動之顯示驅動用半導體積體電 路(以下稱作積體電路或源極驅動器)1()。又,源極驅動器 即積體電路10(驅動電路)包含切換電路6〇(自我檢測與自我 修復機構、切換機構)、切換電路61(自我檢測與自我修復 機構、切換機構)、輸出電路區塊30(輸出電路)、預備輸出 電路區塊40(預備輸出電路)以及比較判定電路5〇(比較機 構、判定機構、自我檢測與自我修復機構)。又,顯示面 板80包含施加有來自積體電路1〇之灰階電壓之像素7〇。 其次’對顯示部90之基本動作進行說明。首先,就顯示 部90而§,作為基本動作而包含兩個基本動作。具體而 言,顯示部90包含以下兩個基本動作:積體電路1〇將自外 部輸入之灰階資料轉換為灰階電壓(輸出信號),根據該灰 階電壓而於顯示面板80上顯示影像之一般動作;及對積體 電路10中所包含之輸出電路區塊30是否不良進行檢測,於 輸出電路區塊30存在不良之情形時,積體電路1〇對自身進 行自我修復之自我檢測修復動作。 以下,對積體電路10所進行之自我檢測修復動作之概略 加以說明。首先,於進行自我檢測修復動作之情形時,自 外部經由切換電路61而將動作確認用之灰階資料輸入至輸 出電路區塊30與預備輸出電路區塊4〇。 輸出電路區塊30及預備輸出電路區塊4〇之各自將所輸入 之灰階資料轉換為灰階電壓並輪出至比較判定電路。比較 判定電路50將來自輸出電路區塊之灰階電壓與來自預備輸 出電路區塊之灰階電壓進行比較’根據該比較結果而對輸 143485.doc -20- 201031180 出電路區塊是否不良進行判定。 進而,比較判定電路5〇將表示輸出電路區塊是否不良之 判定結果(不良檢測資訊)輸出至切換電路61及切換電路 6〇。切換電路61根據來自比較判定電路50之判定結果,而 切換來自外部之灰階資料之輸出目的地。另一方面,切換 ' 電路6〇中自輸出電路區塊3〇及預備輸出電路區塊4〇之各自 輸入有灰階電壓後,根據來自比較判定電路之判定結果, φ 而自所輸入之灰階電壓中選擇輸出至顯示面板80之灰階電 壓。 若加以更具體之說明,切換電路61中輸入有表示輸出電 路區塊30為不良之判定結果之後,將與輸出至判定為不良 之輸出電路區塊30之灰階資料相同的灰階資料亦輸入至預 備輸出電路區塊40。另一方面,切換電路6〇中輸入有表示 輸出電路區塊30為不良之判定結果之後,將來自預備輸出' 電路40之灰階電壓代替來自判定為不良之輸出電路區塊% ❹ 之灰階電壓而輸出至顯示面板80。藉此,積體電路1〇中, 即便輸出電路區塊30變為不良,仍可代替其而使用預備輸 出電路區塊,將正常之灰階電壓輸出至顯示面板8〇。 •如上所述,本實施形態之積體電路1〇包含比較判定電路 50、切換電路6〇以及切換電路61,藉此可對自身之不良進 行檢測,進而可對自身之不良進行自我修復。換言之,積 體電路10包含對自身之不良進行檢測、進而對自身之不戸 進行自我修復之自我修復電路(自我修復機構)。再者,下 文對源極驅動器10即積體電路10之構成及自我檢測以及自 143485.doc -21 · 201031180 我修復動作之詳細内容加以敍述。 (自我檢測動作開始開關) 圖3係表示液晶電視4〇〇之外觀之圖。如圖3所示,液晶 電視400包含用以使自我檢測動作開始之開關按鈕4〇ι(指 示機構)。以下,對開關按鈕401進行詳細說明。 圖4係表示構成液晶電視400中所包含之積體電路1〇之輸 出電路區塊30產生異常時的顯示之一例之圖。如圖4所 不,於輸出電路區塊30存在異常之情形時,顯示中存在縱 線。 通常,源極驅動器於作為LSI出廠時,充分地進行了功 能測試,於顯示裝置中亦充分進行了顯示之確認,因此產 生顯示異常之可能性非常低。即,於顯示裝置之一般使用 範圍内,產生顯示不良之可能性非常低。然而,有時因突 發性因素例如製造驅動器時之異物混入或損傷而導致於輸 出信號之路徑中產生之損壞,會於顯示裝置之使用期間擴 大而使得源極驅動器之輸出電路產生異常,從而引起顯示 不良。因此,源極驅動器必需進行輸出電路區塊之不良之 自我檢測。於此,亦考慮有例如於每次電源接通時進行輸 出電路區塊之自我檢測之構成,但如上所述,由於產生顯 不不良之可能性非常低,因此源極驅動器無需以如此高之 頻率進行輸出電路區塊之自我檢測。 因此,液晶電視400中,包含用以指示自我檢測及自我 修復之開始之開關按鈕4〇1。藉此,使用者可於任意之時 間使液晶電視400中之自我檢測及自我修復開始。 143485.doc -22- 201031180 圖5係表示液晶電視400中之自我檢測及自我修復動作之 不例之圖,圖5(a)係表示自我檢測及自我修復動作開始前 之液晶電視400之圖,圖5(b)係表示自我檢測及自我修復動 作進行中之液晶電視400之圖,圖5(c)係表示自我檢測及自 我修復動作結束後之液晶電視4〇〇之圖。 如圖5(a)所示,於產生液晶電視4〇〇之畫面中存在縱線之 顯示不良之情形時’使用者按下開關按鈕4〇1。藉此,液 φ 晶電視400中開始進行自我檢測及自我修復動作。自我檢 測及自我修復動作開始後,如圖5(b)所示,顯示自液晶電 視400之畫面暫時消失。於此期間,源極驅動器1〇即積體 電路10進行自我檢測,自輸出電路區塊3〇中找出不良之輪 出電路區塊後,調換不良之輸出電路區塊與預備輸出電路 區塊40。然後,自我檢測及自我修復動作結束之後如圖 5(c)所示,液晶電視4〇〇再次進行顯示。此時,將不良之輪 出電路區塊更換成正常之預備輸出電路區塊,從而顯示不 _ 良消失。 再者,如上所述,按下開關按鈕401即接通開始開關 後,如圖5(b)所示,顯示暫時消失。因此,於使用者可能 誤解為故障之情形時,將該現象清楚記載於使用說明^ 中,並且可於進行自我檢測及自我修復動作之期間由顯示 面板80(通知機構)於畫面上顯示暫時消失顯示之内容,或 者亦可為藉由揚聲器(通知機構)以聲音通告等進行通知後 關閉顯示之構成。 藉此,液晶電視400中,無需於每次電源接通時進行自 143485.doc -23- 201031180 我檢測及自我修復,因此與每次電源接通時均進行自我檢 測及自我修復之構成相比,縮短了自電源接通至進行顯示 為止之時間,並且亦節約了自我檢測所消耗之電力。 再者,亦可將開關按鈕401用作液晶電視4〇〇自身之維護 用之開關。例如於按下開關按鈕401之情形時,控制器 1〇〇(功能表顯示控制機構)將液晶電視400之維護功能表(例 如時鐘設定、畫面之色調整、畫面之調整等操作功能表) 顯示於顯示面板80上。圖6係表示液晶電視4〇〇中之維護功 能表之顯示例之圖。該維護功能表中設置有進行自我檢測 ◎ 及自我修復之功能表,於產生顯示不良之情形時可進行選 使用者自顯示於顯示面板8〇上之維護功能表中 選擇開始自我檢測及自我修復動作之功能表(圖崎示之例 中為「3.畫面之調整」)後,開始進行源極驅動器心中之 自我檢測及自我修復動作。進而’於已選擇自我檢測及自 我修復之情形時,以畫面顯示或聲音通告等通知顯示暫時 消失之後,開始進行自我檢測及自我修復動作。 又,本實施形態中,表示將開關按紐4〇1設置於液晶電© 視400上之構成,但亦可為將開關按鈕4〇1設置於遙控器上 之構成。# ’按下設置於遙控器上之開關按鈕彻後,對 液晶電視働發送指示進行自我檢測及自我修復之信號,· 於液晶電視_中,根據所接收之信號,進行驅動電路之 自我檢測及自我修復。 (預備源極驅動器) 圖7係表示液晶電視400中之自我檢測及自我修復動作之 143485.doc •24· 201031180 示例之圖,圖7(a)係表示自我檢測及自我修復動作開始前 之液晶電視400之圖,圖7(b)係表示自我檢測及自我修復動 作進行中之液晶電視400之圖,圖7(c)係表示自我檢測及自 我修復動作結束後之液晶電視400之圖。 如圖7(b)所示,液晶電視400於自我檢測及自我修復進 行中,可進行自我檢測及自我修復進行中之意思之畫面顯 示,而向使用者通知當前之狀況。再者,因液晶電視400 於自我檢測及自我修復動作進行中將源極驅動器即積體電 參 路10與液晶面板之連接電性切斷,故無法藉由積體電路10 而進行圖7(b)所示之自我檢測及自我修復進行中之意思之 晝面顯示。因此,液晶電視400包含用以進行圖7(b)所示之 晝面顯示之預備源極驅動器,於自我檢測及自我修復動作 進行中,使用預備源極驅動器進行自我檢測及自我修復進 行中之意思之畫面顯示。 圖8係表示構成液晶電視400之TFT-LCD模組即顯示部90 φ 中安裝有對顯示面板80進行驅動之源極驅動器10a之示例 的圖。如圖8所示,顯示部90包含源極驅動器10a、閘極驅 動器 99、FPC(Flexible Printed Circuit,撓性印刷電路)(薄 膜電纜《 )98、PWD(Printed Wiring Board,印刷電路板)(印 刷基板)97、玻璃基板96、源極線95、閘極線94、TFT (Thin Film Transistor,薄膜電晶體)93、像素92以及對向 電極91。 玻璃基板96上形成有源極線95、閘極線94、TFT 93、像 素92以及對向電極91而構成液晶面板80。而且,源極驅動 143485.doc •25- 201031180 器l〇a與閘極驅動器99分別安裝於液晶面板80之玻璃基板 96之一邊上。源極驅動器i〇a經由源極線95而將顯示電壓 即表示圖像之灰階電壓傳輸至像素92。閘極驅動器99經由 閘極線94,而供給表示TFT93之導通時序即將灰階電壓傳 輸至像素之時序之閘極信號。源極驅動器1 〇a與閘極驅動 器99之輸入端連接於印刷基板97,經由印刷基板97之配線 而提供控制信號或電源電壓以及GND(接地p控制信號或 電源電壓以及GND等係自經由薄膜電缓98而連接之控制基 板(未圖示)即控制器! 00進行供給。 如上所述’顯示部90亦可成為包含預備源極驅動器之構 成。圖9係表示構成液晶電視4〇〇之tft_lcd模組即顯示部 9〇中女裝有對顯示面板8〇進行驅動之源極驅動器i〇a及預 備源極驅動器1 〇b之示例的圖。圖9中,源極驅動器丨〇a(第 1驅動電路)安裝於構成顯示面板8〇之玻璃基板96之一邊。 又’預備源極驅動器1 〇b(第2驅動電路)安裝於源極驅動器 10a之對邊,且與源極驅動器1〇a同樣地,於輸入側連接於 印刷基板97而供給有控制信號等。 又,亦可以圖10〜圖12所示之安裝形態,安裝源極驅動 器即源極驅動器1〇3及1〇b。圖1〇係表示使用捲帶式載體 89,將具有自我檢測及自我修復功能之源極驅動器與 預備源極驅動器10b並聯安裝於玻璃基板%上之狀態的概 略圖。 圖10中對於具有與構成圖8及圖9所示之顯示部90之構 件相同功a之構件附上相同之編號。如圖〗⑽*,源極驅 143485.doc 201031180 動器10a及預備源極驅動器1 〇b係於輸入側連接於印刷基板 97 ’於輸出側連接於構成顯示面板8〇之玻璃基板96。於如 圖10所示安裝成筒狀之情形時’源極驅動器10a及源極驅 動器10b均可連接於印刷基板97,且可自共用之基板97供 給輸入信號。 圖11係表示將圖1 〇所示之捲帶式載體89打開之狀態之 圖。如圖11所示,源極驅動器10a係以除去了捲帶式載體 ❿ 89之薄膜基材83之元件孔部87而連接於輸入側配線88及輸 出側配線86。又’預備源極驅動器1 〇b係與源極驅動器1 〇a 朝向相反方向地連接於薄膜基材83之輸入侧配線88及輸出 側配線86。如圖11所示,薄膜基材83中,藉由將源極驅動 器l〇a與預備源極驅動器10b安裝成表背面相反,而於捲帶 式載體89上可共用地連接輸出端子。藉此,如圖1〇所示, 源極驅動器10a及源極驅動器1〇b可安裝於構成顯示面板8〇 之玻璃基板96之相同邊。 ® 圖12係表示自方向A觀察圖11所示之安裝有源極驅動器 l〇a及l〇b之捲帶式載體89的俯視圖。如圖u所示於捲帶 式載體89之兩端形成有連接於輸入侧配線88之輸入端子討 及動作切換輸入端子82。通常對動作切換輸入端子82輸入 「L」之信號後源極驅動器1〇a進行動作,顯示部9〇中進行 一般之顯不。此時,預備源極驅動器1〇b不進行動作。與 此相對,於源極驅動器1〇a中進行自我檢測及自我修復動 作之凊形時’控制器(控制基板)將「Η」之信號輸入至動 作切換輸入端子82。藉此,源極驅動器10a中開始進行自 143485.doc •27· 201031180 我檢測及自我修復動作,並且預備源極驅動器1Gb開始動 作於顯示部9〇中進行自我檢測及自我修復動作進行中之 意思之顯示。 再者因預備源極驅動器1 〇b只要進行簡單之顯示即 可故其亦可由灰階數較少之便宜之驅動H所構成。例如 於源極驅動器10a可顯示i〇24灰階之情形時亦可使用8灰 階之驅動器作為預備源極驅動器1 〇b。 又,預備驅動器l〇b之顯示控制係與源極驅動器1〇a之控 制同樣地,亦可根據自控制器發送之控制信號及顯示用資 料k號來進行,但若於預備源極驅動器之内部設置有 顯示用η己隐體並預先記憶有顯示内容,則無需將顯示用資 料始終持續供給至預備源極㈣㈣b。若於預備源極驅 動器10b進行顯示之前使顯示用記憶體記憶顯示用資料, 則可使用記憶體内之顯示資料來進行顯示控制。若決定了 顯不内容,則使顯示用記憶體成為R〇M(Read Only Memory, 唯讀記憶體)或〇TP(0ne Time Pr〇m,一次性可編程記憶 體)而使顯示内容成為固定後,無需自外部將顯示資料傳 輸至預備源極驅動器10b,能夠以簡單之構成容易地進行 顯不控制。 (旗標儲存用外部記憶體) 於自我檢測及自我修復中,由比較判定電路5〇進行輸出 電路區塊30之不良判定,判定結果係作為判定旗標(不良 檢測資訊)而記憶於源極驅動器内之記憶體中。顯示部% 根據該判定旗標進行自我修復,即便於未對源極驅動器供 143485.doc -28 · 201031180 給電源之情形時,亦需要預先記憶判定旗標。π,若失去 判定旗標,則無法指定π & Α ±Α … 良之輪出電路,因此需要再次進 灯自我檢測’而使得每次之自我修復動作需要較長之時 間。 若源極驅動器之記憶體為非揮發性則不存在問題作將 非揮發性之記憶體内置於源極驅動器内會引起成本上升, 因此通常’源極驅動器内之記憶體通常為揮發性之記憶 • Μ °因此’於切斷電源時,記憶於源極驅動器之内部之記 憶體的判定旗標會消失。 因此,液晶電視400中,包含如下構造:於切斷電源 時,將源極驅動器之判定旗標之内容傳輸至外部之記憶鍾 叫記憶裝置)’於電源接通時,反之將判定旗標自外部之 5己憶體81讀入源極驅動器内之記憶趙中。 圖13係表示構成液晶電視彻之爪丄⑶模組即顯示部 90中,將§己憶體81安裝於連接著源極驅動器1〇a之輸入之 • 印刷基板97上之示例的圖。源極驅動器10a包含··將内部之 各輸出電路區塊中所設置之敗旗標儲存用之揮發性記憶體 之值作為串列資料加以輸入輸出的串列I/〇(Input/〇utput, •輸入/輸出)端子’·用以設定向記憶體81之資料之寫入的端 子;以及設定自記憶體81之資料之讀出的端子。 串列I/O端子連接於記憶體81,可於源極驅動器i〇a之内 部之揮發性記憶體與外部之記憶體81之間進行資料之讀出 及讀入。 於藉由使用者之操作或電源斷開之計時器等而將液晶電 143485.doc •29- 201031180 視400之電源切斷時(即,顯示部9〇之電源切斷時),自控制 器1〇〇(寫入控制機構),對設定向記憶體81之資料之寫入的 端子供給指示向記憶體81之資料之寫入的信號,且將源極 驅動器10a設定為向記憶體81寫入資料之狀態。然後,根 據來自控制器100之指# ’將判定旗標之資料自源極驅動 器10a寫入至外部之記憶體8 i中,記憶體8丨記憶判定旗 標。對各源極驅動器10a進行該操作而使所有源極驅動器 之判定旗標記憶於記憶體81中。 另一方面,於啟動電源時,自控制器1〇〇對設定自記憶 體81讀出資料之端子,供給指示自記憶體81讀出資料之信 號且將源極驅動器1 〇a設定為進行自記憶體8丨讀出資料 之狀態。藉此’自外部之記憶體81,將判定旗標之資料讀 入至源極驅動器l〇a中,源極驅動器1〇a之内部之揮發性記 憶體圮憶判定旗標。對各源極驅動器1〇a進行該操作而使 判定旗標記憶於所有源極驅動器内部之記憶體中。然後, 切換電路60及61根據讀出之判定旗標,於不良之輸出電路 區塊30與預備之輸出電路區塊4〇之間進行切換,而進行源 極驅動器10a之自我修復。 圖14係表示於構成液晶電視4〇〇之tft lcd模組即顯示 部90中,將記憶體81安裝於連接著源極驅動器之輸入 端之印刷基板97上之另一例的圖。 圖14所不之構成中,將源極驅動器之用以輸入輸出源極 雜動器10a之判定旗標之資料的端子彼此連接,藉此可串 列地寫出或讀入所安裴之源極驅動器之判定旗標全體。 143485.doc 201031180 再者’本實施形態中,記憶體81使闕為非揮發性之記 憶體之快閃記憶體,但亦可成為揮發性之RAM。此時,作 為始終對RAM之電源供給電塵之電路構成,而需要設置有 防備突然之電源切斷之後備用之電容器或電池。 X,圖13及圖14之示例中,記憶體_置於印刷基板97 上,但亦可為設置於例如控制基板等其他基板上並經由薄 膜電鏡98而進行連接之構成。 • 其次,使錢15對在顯示部9G之電源斷開時進行自我檢 測之構成進灯說明。圖15係表示於顯示部9〇之電源斷開時 進行源極驅動器l〇a之自我檢測之順序的流程圖。該構成 中,於電源接通時僅進行自我修復而不進行自我檢測,代 替此而於電源斷開時進行自我檢測。 顯示部90接通電源後⑻5〇1),自儲存有判定旗標之外 部記憶體81,冑判定旗標傳輸至源極驅動器i〇a内部之記 憶體(S1502)。然後,源極驅動器心根據該判定旗標進行 ❿ 自我修復(S1503)後,開始於顯示面板80上進行顯示圖像 等之一般動作(S1504)。顯示部9〇於一般動作中,以固定 之時間間隔進行是否接收到電源斷開指令之判定 (S1505)。而且,顯不部9〇於未感知到電源斷開指令之期 自(S1505 . N。),反覆進行是否接收到電源斷開指令之列 定。 而且S顯不部90感知到自開關或遙控器對液晶電視 400(或顯示部90)發送了電源斷開之指令後(si5〇5 : Yes(是))’關閉於顯示面板8〇上之圖像之顯示(si5〇6)。此 143485.doc -31 - 201031180 時,不將顯示部90自身及包含顯示部9〇而構成之系統全體 之電源斷開。其次,顯示部9〇中,比較判定電路5〇對構成 源極驅動器10a之各輸出電路是否為不良進行判定。即, 顯示部90進行源極驅動器1〇a之自我檢測’將表示判定結 果之内容之判定旗標保存於源極驅動器1〇a之内部之記: 體中(S1507)。然後,對所有源極驅動器1〇&判定自我檢測 是否結束(S1508)。於並非所有源極驅動器1〇a均結束自我 檢測之情形時(S15〇8 : No(否)),於sl5〇7中,對未進行自 我檢測之剩餘之源極驅動器1〇a亦同樣地反覆進行自我檢 測並將判定旗標儲存於内部之記憶體中之處理。於所有源 極驅動器10a結束自我檢測之情形時(s丨5〇8 : Yes),將源極 驅動器10a之内部之記憶體中所儲存的判定旗標儲存於源 極驅動器10a之外部之非揮發性之記憶體81中(sl5〇9卜繼 而,將自我檢測之判定旗標儲存於源極驅動器j 〇a之外部 之記憶體後,顯示部90將源極驅動器1〇a及周邊電路之電 源斷開(S1510)。 藉由以上處理,顯不部9〇中,於源極驅動器1〇a中所包 含之輸出電路區塊產生異常而產生顯示不良之情形時,將 電源斷開後再次接通電源,藉此恢復顯示。 (DVD裝置 402) 圖16係表不液晶電視4〇〇中之自我檢測及自我修復動作 之例之圖,圖16(a)係表示自我檢測及自我修復動作前之 液晶電視400之圖,圖i6(b)係表示自我檢測及自我修復動 作中之液晶電視400之圖,圖16(幻係表示自我檢測及自我 143485.doc •32· 201031180 修復動作結束後之液晶電視400之圖。 如圖1所示,液晶電視400中搭載有DVD(DigitalQ As a representative of a display device using a display drive circuit, a thin type television represented by a liquid crystal television can be cited. A liquid crystal display (a liquid crystal display device is mounted on a display panel with a plurality of drive circuits fabricated by a semiconductor integrated circuit (LSKLa W Integmi), a large integrated circuit). In such a display device, when a failure occurs in the display drive circuit, it is directly recognized by the user as a display failure. In the event of such a bad situation, it is necessary to quickly repair the defective part. It is desirable to complete the repair in a short time as much as possible in the place where the manufacturer is smashed. If the control board is processed like a display signal, it is easy to replace by connecting the connector to the display panel. However, since the display drive power (4) is directly connected to the _ panel and is not connected by the wheel material, it is used. It is difficult to replace the place where the product is used. Therefore, the present applicant has proposed a display drive (four) circuit having a function of self-repairing self-repair of the display drive circuit itself (self-recovery self-repair function) (for example, Japanese Patent Patent No. 2, deletion, 48, 143,485) .doc -18. 201031180 曰 专利 特 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 -04 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 1 is a block diagram showing the configuration of a liquid crystal television 400 of the present invention. As shown in FIG. 1, the LCD TV 400 includes a TFT-LCD (Thin Film Transistor-Liquid Crystal Display) module (display portion) 90, a switch button 401, a DVD device 402, an HDD device 403, and a DVD. And HDD control device 404. Further, the display unit 90 includes a source driver (drive circuit, integrated circuit) 10a, a preliminary source driver 1b, a TFT-LCD panel (display panel) 80, a gate driver 99, and a controller 100. Further, the source driver 10a, that is, the integrated circuit 10a, is the above-described display driving circuit having a self-detection and self-healing function. Further, the preparatory source driver 10b, that is, the preparatory integrated circuit 10b, may have a self-detection and self-repair function. Further, in the case where only the integrated circuit 1 〇 or the source driver 10 is referred to, the integrated circuits 1 〇 a and 1 〇 b are collectively referred to as the source drivers 10a and 10b. Hereinafter, after describing the basic operations of self-detection and self-repair in the display unit 90, the characteristic configuration of the self-detection and self-repair in the liquid crystal television 400, that is, the manner in which the user is not misunderstood. The self-testing and self-repairing components can be specifically described. (Display Unit 90) First, a schematic configuration of the display unit 90 of the present invention will be described with reference to Fig. 2 . FIG. 2 is a block diagram showing a schematic configuration of the display unit 90. As shown in FIG. 2, the display unit 90 includes a display panel 80 and a display driving semiconductor integrated circuit that drives the display panel 80 based on the grayscale 143485.doc -19-201031180 data input from the outside (hereinafter referred to as a product). Body circuit or source driver) 1 (). Further, the source driver, that is, the integrated circuit 10 (drive circuit) includes a switching circuit 6 (self-detection and self-repair mechanism, switching mechanism), a switching circuit 61 (self-detection and self-repair mechanism, switching mechanism), and an output circuit block. 30 (output circuit), preliminary output circuit block 40 (prepared output circuit), and comparison determination circuit 5 (comparison mechanism, determination mechanism, self-detection, and self-repair mechanism). Further, the display panel 80 includes pixels 7A to which the gray scale voltage from the integrated circuit 1 is applied. Next, the basic operation of the display unit 90 will be described. First, the display unit 90 is §, and two basic operations are included as basic operations. Specifically, the display unit 90 includes the following two basic operations: the integrated circuit 1 转换 converts the gray scale data input from the outside into a gray scale voltage (output signal), and displays the image on the display panel 80 according to the gray scale voltage. The general operation; and detecting whether the output circuit block 30 included in the integrated circuit 10 is defective, and when the output circuit block 30 is defective, the integrated circuit 1 自我 self-repairing self-repairing repair action. Hereinafter, the outline of the self-detection repair operation performed by the integrated circuit 10 will be described. First, when the self-detection repair operation is performed, gray scale data for operation confirmation is input from the outside to the output circuit block 30 and the preliminary output circuit block 4 via the switching circuit 61. Each of the output circuit block 30 and the preliminary output circuit block 4 converts the input gray scale data into a gray scale voltage and rotates to the comparison determination circuit. The comparison decision circuit 50 compares the gray scale voltage from the output circuit block with the gray scale voltage from the preliminary output circuit block. 'According to the comparison result, the output block is judged as to whether the circuit block is defective or not. 143485.doc -20- 201031180 . Further, the comparison determination circuit 5 输出 outputs a determination result (defect detection information) indicating whether or not the output circuit block is defective to the switching circuit 61 and the switching circuit 6A. The switching circuit 61 switches the output destination of the gray scale data from the outside based on the determination result from the comparison determination circuit 50. On the other hand, after switching the 'circuit 6 〇 from the output circuit block 3 〇 and the preliminary output circuit block 4 〇 to the respective input gray scale voltages, according to the determination result from the comparison decision circuit, φ from the input gray The gray scale voltage output to the display panel 80 is selected among the step voltages. More specifically, after the determination result indicating that the output circuit block 30 is defective is input to the switching circuit 61, the same gray scale data as the gray scale data outputted to the output circuit block 30 determined to be defective is also input. To the preliminary output circuit block 40. On the other hand, after the determination result indicating that the output circuit block 30 is defective is input to the switching circuit 6A, the gray scale voltage from the preliminary output 'circuit 40 is substituted for the gray scale from the output circuit block % 判定 determined to be defective. The voltage is output to the display panel 80. As a result, even if the output circuit block 30 becomes defective, the integrated output circuit block can be used instead of the integrated circuit block, and the normal gray scale voltage can be output to the display panel 8A. As described above, the integrated circuit 1A of the present embodiment includes the comparison determination circuit 50, the switching circuit 6A, and the switching circuit 61, whereby the defect of itself can be detected, and the defect of itself can be self-repaired. In other words, the integrated circuit 10 includes a self-repairing circuit (self-repairing mechanism) that detects the failure of itself and then repairs itself. Furthermore, the configuration of the source driver 10, that is, the integrated circuit 10 and self-detection, and the details of the repair operation of 143485.doc -21 · 201031180 will be described below. (Self-detection operation start switch) Fig. 3 is a view showing the appearance of the liquid crystal television. As shown in Fig. 3, the liquid crystal television 400 includes a switch button 4〇 (indicating mechanism) for starting a self-detecting operation. Hereinafter, the switch button 401 will be described in detail. Fig. 4 is a view showing an example of display when an abnormality occurs in the output circuit block 30 constituting the integrated circuit 1 included in the liquid crystal television 400. As shown in Fig. 4, when there is an abnormality in the output circuit block 30, there is a vertical line in the display. In general, when the source driver is shipped as an LSI, the function test is sufficiently performed, and the display is sufficiently confirmed in the display device, so that the possibility of display abnormality is extremely low. That is, the possibility of display failure is extremely low within the general use range of the display device. However, sometimes the damage caused in the path of the output signal due to sudden factors such as foreign matter mixing or damage when manufacturing the driver may be enlarged during use of the display device, causing an abnormality in the output circuit of the source driver. Causes poor display. Therefore, the source driver must perform a bad self-detection of the output circuit block. Here, it is also considered that, for example, the self-detection of the output circuit block is performed every time the power is turned on, but as described above, since the possibility of occurrence of a display defect is very low, the source driver does not need to be so high. The frequency performs self-detection of the output circuit block. Therefore, the liquid crystal television 400 includes a switch button 4〇1 for indicating the start of self-detection and self-repair. Thereby, the user can start self-detection and self-repair in the liquid crystal television 400 at any time. 143485.doc -22- 201031180 FIG. 5 is a diagram showing the self-detection and self-repairing actions in the liquid crystal television 400, and FIG. 5(a) is a diagram showing the LCD TV 400 before the self-detection and self-repairing operations are started. Fig. 5(b) is a diagram showing the liquid crystal television 400 in the process of self-detection and self-repair, and Fig. 5(c) is a diagram showing the liquid crystal television after the self-detection and self-repairing operations are completed. As shown in Fig. 5(a), when there is a display failure of the vertical line in the screen on which the liquid crystal television 4 is generated, the user presses the switch button 4〇1. Thereby, self-detection and self-repairing operations are started in the liquid φ crystal television 400. After the self-detection and self-repair actions are started, as shown in Fig. 5(b), the screen displayed from the liquid crystal television 400 temporarily disappears. During this period, the source driver 1 or the integrated circuit 10 performs self-detection, and after finding out the defective round-out circuit block from the output circuit block 3, the defective output circuit block and the preliminary output circuit block are replaced. 40. Then, after the self-detection and self-repairing operations are completed, as shown in Fig. 5(c), the liquid crystal television 4 is displayed again. At this time, the defective circuit block is replaced with the normal preliminary output circuit block, so that the display does not disappear. Further, as described above, when the switch button 401 is pressed, the start switch is turned on, and as shown in Fig. 5 (b), the display temporarily disappears. Therefore, when the user may misunderstand the situation as a failure, the phenomenon is clearly described in the instruction manual, and can be temporarily disappeared on the screen by the display panel 80 (notification mechanism) during the self-detection and self-repair operation. The content to be displayed may be a configuration in which the display is turned off by a notification by a speaker (notification means) by voice announcement or the like. Therefore, in the liquid crystal television 400, it is not necessary to perform self-detection and self-repair since the power is turned on, and it is not necessary to perform self-detection and self-repair each time the power is turned on. , shortens the time from power-on to display, and also saves power consumed by self-test. Further, the switch button 401 can also be used as a switch for maintenance of the liquid crystal television 4 itself. For example, when the switch button 401 is pressed, the controller 1 (the function table display control means) displays the maintenance function table of the liquid crystal television 400 (for example, an operation function table such as a clock setting, a screen color adjustment, and a screen adjustment). On the display panel 80. Fig. 6 is a view showing a display example of a maintenance function table in the liquid crystal television. The maintenance function table is provided with a function table for self-detecting ◎ and self-repair. When the display is bad, the user can select the user to display self-detection and self-repair from the maintenance function table displayed on the display panel 8〇. After the action function table ("3. Screen adjustment" in the example of the diagram), the self-detection and self-repair actions in the source driver are started. Furthermore, when the self-test and the self-repair are selected, the self-detection and self-repair actions are started after the notification display such as the screen display or the voice announcement disappears temporarily. Further, in the present embodiment, the switch button 4 is set on the liquid crystal panel 400. However, the switch button 4〇1 may be provided on the remote controller. # 'Press the switch button set on the remote control to send a signal to the LCD TV to self-detect and self-repair the signal. · In the LCD TV _, according to the received signal, the drive circuit self-test and Self-healing. (Preparation source driver) Fig. 7 is a diagram showing the self-detection and self-repairing action in the liquid crystal television 400. 143485.doc • 24· 201031180 Example diagram, FIG. 7(a) shows the liquid crystal before the self-detection and self-repairing operations are started. The diagram of the television 400, FIG. 7(b) shows a picture of the liquid crystal television 400 during the self-detection and self-repair operation, and FIG. 7(c) shows the LCD TV 400 after the self-detection and self-repair operation. As shown in Fig. 7(b), in the self-detection and self-repair process, the liquid crystal television 400 can display a screen for self-detection and self-repair, and notify the user of the current situation. Further, since the liquid crystal television 400 electrically disconnects the connection between the source driver, that is, the integrated circuit 10 and the liquid crystal panel, during the self-detection and self-repair operation, the integrated circuit 10 cannot be used in FIG. 7 (FIG. 7) b) A display of the meaning of the self-test and self-repair in progress as shown. Therefore, the liquid crystal television 400 includes a preliminary source driver for performing the facet display shown in FIG. 7(b), and performs self-detection and self-repair using the preparatory source driver during the self-detection and self-repairing operations. The meaning of the screen is displayed. Fig. 8 is a view showing an example in which a source driver 10a for driving the display panel 80 is mounted in a display portion 90? of a TFT-LCD module constituting the liquid crystal television 400. As shown in FIG. 8, the display unit 90 includes a source driver 10a, a gate driver 99, an FPC (Flexible Printed Circuit) (film cable "98, and a PWD (Printed Wiring Board) (printing). Substrate 97, glass substrate 96, source line 95, gate line 94, TFT (Thin Film Transistor) 93, pixel 92, and counter electrode 91. On the glass substrate 96, a source line 95, a gate line 94, a TFT 93, a pixel 92, and a counter electrode 91 are formed to constitute a liquid crystal panel 80. Further, the source driver 143485.doc • 25- 201031180 and the gate driver 99 are respectively mounted on one side of the glass substrate 96 of the liquid crystal panel 80. The source driver i〇a transmits a display voltage, that is, a grayscale voltage representing an image, to the pixel 92 via the source line 95. The gate driver 99 supplies a gate signal indicating the timing at which the on-time of the TFT 93 is transferred to the pixel by the on-time of the TFT 93 via the gate line 94. The input terminals of the source driver 1 〇a and the gate driver 99 are connected to the printed circuit board 97, and the control signal or the power supply voltage and the GND are supplied via the wiring of the printed substrate 97 (the ground p control signal, the power supply voltage, and the GND are self-transferred through the thin film. The control board (not shown) connected to the electric buffer 98 is supplied as a controller 00. As described above, the display unit 90 may be configured to include a preliminary source driver. Fig. 9 is a view showing a structure of a liquid crystal television. The tft_lcd module is a diagram showing an example of the source driver i〇a and the preliminary source driver 1 〇b for driving the display panel 8A in the display portion. In FIG. 9, the source driver 丨〇a ( The first driving circuit is mounted on one side of the glass substrate 96 constituting the display panel 8. The "prepared source driver 1" (second driving circuit) is mounted on the opposite side of the source driver 10a, and the source driver 1 Similarly, 控制a is connected to the printed circuit board 97 on the input side to supply a control signal or the like. Alternatively, the source driver, that is, the source driver 1〇3 and 1〇b may be mounted in the mounting form shown in FIGS. 10 to 12. Figure 1 A schematic diagram showing a state in which a source driver having a self-detection and self-healing function and a preliminary source driver 10b are mounted on a glass substrate % in parallel using a tape carrier 89. FIG. 10 has a configuration and FIG. The components of the display unit 90 shown in Fig. 9 having the same work a are attached with the same numbers. As shown in Fig. (10)*, the source drive 143485.doc 201031180 The actuator 10a and the preparatory source driver 1 〇b are connected to the input side. The printed circuit board 97' is connected to the glass substrate 96 constituting the display panel 8A on the output side. When the battery board 96 is mounted in a cylindrical shape as shown in FIG. 10, the source driver 10a and the source driver 10b may be connected to the printed circuit board 97. The input signal can be supplied from the shared substrate 97. Fig. 11 is a view showing a state in which the tape carrier 89 shown in Fig. 1 is opened. As shown in Fig. 11, the source driver 10a is removed from the tape type. The element hole portion 87 of the film substrate 83 of the carrier ❿ 89 is connected to the input side wiring 88 and the output side wiring 86. Further, the 'prepared source driver 1 〇b is connected to the thin film in the opposite direction to the source driver 1 〇a. Input of substrate 83 The side wiring 88 and the output side wiring 86. As shown in FIG. 11, the film substrate 83 is mounted on the tape carrier 89 by mounting the source driver 10a and the preliminary source driver 10b opposite to the front and back surfaces. The output terminals can be connected in common. Thereby, as shown in FIG. 1A, the source driver 10a and the source driver 1b can be mounted on the same side of the glass substrate 96 constituting the display panel 8A. In the direction A, a plan view of the tape carrier 89 in which the source drivers 10a and 10b are mounted as shown in Fig. 11 is observed. As shown in Fig. u, the both sides of the tape carrier 89 are formed to be connected to the input side wiring. The input terminal of 88 refers to the operation switching input terminal 82. Normally, the source driver 1A is operated after the signal of "L" is input to the operation switching input terminal 82, and the display unit 9A performs general display. At this time, the preparatory source driver 1〇b does not operate. On the other hand, in the case where the self-detection and self-healing operation is performed in the source driver 1A, the controller (control board) inputs a signal of "Η" to the operation switching input terminal 82. Thereby, the source driver 10a starts the detection and self-repair operation from 143485.doc •27· 201031180, and the preparatory source driver 1Gb starts to operate in the display unit 9〇 for self-detection and self-repair operation. The display. Further, since the preparatory source driver 1 〇b can be simply displayed, it can be composed of an inexpensive driving H having a small number of gray scales. For example, when the source driver 10a can display the gray level of i〇24, an 8-gray driver can also be used as the preliminary source driver 1 〇b. Further, the display control system of the preparatory driver 10b may be performed based on the control signal transmitted from the controller and the data k for display, similarly to the control of the source driver 1a, but in the case of the preparatory source driver If the display content is displayed in the internal display and the display content is memorized in advance, it is not necessary to continuously supply the display data to the preliminary source (4) (4) b. If the display memory is used to store the display data before the preparatory source driver 10b performs display, the display data can be displayed using the display data in the memory. When the display content is determined, the display memory is set to R〇M (Read Only Memory) or 〇TP (0ne Time Pr〇m, one-time programmable memory) to fix the display content. Thereafter, it is not necessary to transmit the display material to the preparatory source driver 10b from the outside, and the display control can be easily performed with a simple configuration. (Flag storage external memory) In the self-detection and self-repair, the comparison determination circuit 5 〇 performs the failure determination of the output circuit block 30, and the determination result is stored as a determination flag (bad detection information) and is stored in the source. In the memory inside the drive. The display unit % performs self-repair according to the determination flag, and it is necessary to memorize the determination flag in advance even when the source driver is not supplied with power supply 143485.doc -28 · 201031180. π, if the judgment flag is lost, it is impossible to specify π & Α ±Α ... the good wheel-out circuit, so it is necessary to enter the lamp self-detection again, so that each self-repair action takes a long time. If the memory of the source driver is non-volatile, there is no problem. The non-volatile memory is placed in the source driver, which causes an increase in cost. Therefore, the memory in the source driver is usually a volatile memory. • Μ ° Therefore, when the power is turned off, the judgment flag of the memory stored in the source driver disappears. Therefore, the liquid crystal television 400 includes a configuration in which, when the power is turned off, the content of the determination flag of the source driver is transmitted to the external memory clock as a memory device) when the power is turned on, otherwise the flag is determined to be self-determined. The external 5 memory 81 is read into the memory of the source driver Zhao Zhong. Fig. 13 is a view showing an example in which the display unit 90, which is a module of the liquid crystal television module (3), is mounted on the printed circuit board 97 to which the input of the source driver 1a is connected. The source driver 10a includes a serial I/〇 (Input/〇utput) for inputting and outputting the value of the volatile memory for storing the flag set in the internal output circuit block as the serial data. • Input/output) terminals '· terminals for setting data to the memory 81 ; and terminals for reading data from the memory 81 . The serial I/O terminal is connected to the memory 81, and data can be read and read between the volatile memory inside the source driver i〇a and the external memory 81. When the power of the liquid crystal is turned off by the operation of the user or the timer of the power supply, etc., the power supply of the liquid crystal is turned off (that is, when the power of the display unit 9 is turned off), the self-controller 1〇〇 (write control means), a signal for instructing writing of data to the memory 81 is supplied to a terminal for writing data to the memory 81, and the source driver 10a is set to write to the memory 81. The status of the data. Then, the data of the determination flag is written from the source driver 10a to the external memory 8i based on the finger #' from the controller 100, and the memory 8 stores the determination flag. This operation is performed for each of the source drivers 10a so that the decision flags of all the source drivers are memorized in the memory 81. On the other hand, when the power is turned on, the controller 1 〇〇 sets a signal for reading data from the memory 81, supplies a signal indicating that data is read from the memory 81, and sets the source driver 1 〇 a to be performed. The state of the memory 8 丨 read data. Thereby, the data of the judgment flag is read into the source driver 10a from the external memory 81, and the volatile memory inside the source driver 1A recalls the decision flag. This operation is performed for each of the source drivers 1a to cause the decision flag to be stored in the memory inside all of the source drivers. Then, the switching circuits 60 and 61 switch between the defective output circuit block 30 and the preliminary output circuit block 4A based on the read determination flag, and perform self-repair of the source driver 10a. Fig. 14 is a view showing another example of mounting the memory 81 on the printed circuit board 97 connected to the input end of the source driver in the display unit 90 which is a tft lcd module constituting the liquid crystal television. In the configuration of Fig. 14, the terminals of the source driver for inputting and outputting the flag of the determination flag of the source micro-aliasing device 10a are connected to each other, whereby the source driver of the mounted device can be written or read in series. Judging the entire flag. 143485.doc 201031180 Further, in the present embodiment, the memory 81 is a flash memory of a non-volatile memory, but may be a volatile RAM. At this time, as a circuit for always supplying electric dust to the power supply of the RAM, it is necessary to provide a capacitor or a battery that is prepared to be used after the sudden power supply is turned off. In the example of Fig. 13 and Fig. 14, the memory _ is placed on the printed circuit board 97, but may be provided on another substrate such as a control board and connected via the thin film electron microscope 98. • Next, the money 15 is described as a description of the configuration of the self-detection when the power of the display unit 9G is turned off. Fig. 15 is a flow chart showing the procedure of self-detection of the source driver 10a when the power of the display unit 9 is turned off. In this configuration, only self-repair is performed without self-detection when the power is turned on, and self-detection is performed when the power is turned off instead. After the display unit 90 is powered on (8) 5〇1), the memory 81 is stored from the determination flag, and the determination flag is transmitted to the internal memory of the source driver i〇a (S1502). Then, the source driver core performs self-repair based on the determination flag (S1503), and starts a general operation of displaying an image or the like on the display panel 80 (S1504). The display unit 9 determines whether or not the power-off command has been received at a fixed time interval in the normal operation (S1505). Further, the display unit 9 does not recognize the power-off command period (S1505.N.), and repeatedly determines whether or not the power-off command is received. Moreover, the S display portion 90 senses that the self-switch or the remote controller sends a power-off command to the liquid crystal television 400 (or the display unit 90) (si5〇5: Yes) is turned off on the display panel 8 Display of images (si5〇6). In the case of 143485.doc -31 - 201031180, the power supply of the entire system including the display unit 90 itself and the display unit 9A is not disconnected. Next, in the display unit 9A, the comparison determination circuit 5 determines whether or not each of the output circuits constituting the source driver 10a is defective. In other words, the display unit 90 performs self-detection of the source driver 1a, and stores the determination flag indicating the content of the determination result in the inside of the source driver 1A (S1507). Then, it is determined whether or not the self-detection is completed for all the source drivers 1 & (S1508). In the case where not all the source drivers 1〇a end self-detection (S15〇8: No), in the sl5〇7, the remaining source drivers 1〇a that are not self-detected are similarly The process of self-testing and storing the determination flag in the internal memory is repeated. When all the source drivers 10a end self-detection (s丨5〇8: Yes), the determination flags stored in the memory inside the source driver 10a are stored in the non-volatile outside the source driver 10a. In the memory 81 (sl5〇9), after the self-detection determination flag is stored in the memory outside the source driver j 〇a, the display unit 90 supplies the source driver 1A and the peripheral circuit power. When the above processing is performed, in the case where the output circuit block included in the source driver 1A generates an abnormality and the display is defective, the power is turned off and then connected again. The power is turned on to restore the display. (DVD device 402) FIG. 16 is a diagram showing an example of self-detection and self-repairing operations in the LCD TV, and FIG. 16(a) shows the self-detection and self-repair operations. Figure of LCD TV 400, Figure i6(b) shows the picture of LCD TV 400 in self-detection and self-repair operation, Figure 16 (Psychology shows self-test and self 143485.doc •32· 201031180 After the repair action is over The picture of the LCD TV 400. As shown in FIG, 400 is mounted in a liquid crystal television with a DVD (Digital

Versatile Disc or Digital Video Disc)裝置 402。DVD裝置 402具有利用DVD進行再生及錄影等之功能。液晶電視400 中,根據來自使用者之指示,DVD與HDD控制部404對 DVD裝置402(影像再生裝置)之各種動作進行控制。 DVD需要定期對讀出信號之磁頭進行清潔。因此,如圖 16(a)所示,插入清潔碟片進行讀頭之清潔。DVD裝置402 攀 偵測出清潔碟月之插入後,根據與使用者之指示相對應之 來自DVD與HDD控制部404之控制信號而開始進行清潔動 作。 又,如圖16(a)所示,液晶電視400中產生有於顯示畫面 上存在縱線之不良。而且,液晶電視400之特徵在於如下 構成之方面,即於進行一體地包含之DVD裝置402之清潔 之時間點’ 一併進行源極驅動器1 〇a之自我檢測。若加以 ❹ 更詳細地說明’則DVD與HDD控制部404自DVD裝置402接 收到表示已開始清潔之信號後,對控制器100供給表示開 始進行源極驅動器l〇a之自我檢測及自我修復之指示之信 號。然後,根據來自控制器100之指示,源極驅動器10a開 始進行自我檢測及自我修復動作。再者,DVD裝置402亦 可為自液晶電視400獨立而設置之構成。 如圖16(b)所示’於進行通知正在清潔之意思之顯示的 情形時’對使用者而言之便利性提昇,但一般之圖像顯示 用之源極驅動器10a會於進行清潔之同時進行自我檢測動 143485.doc •33· 201031180 作,因此如上所述需要預先具有預備之源極驅動器l〇b。 而且,將表示源極驅動器l〇a之自我檢測之判定結果的判 定旗標保持於源極驅動器l〇a之内部之記憶體中,源極驅 動器10a根據保持於内部之記憶體中之判定旗標而進行自 我修復動作。藉此,如圖l6(c)所示,消除了於圖16(&)之 顯不畫面上存在縱線之不良。於電源斷開時,將上述判定 旗標自源極驅動器l〇a之内部之記憶體儲存於外部之記憶 體81中,於接通電源時再次讀入至源極驅動器i〇a之内部 之記憶體中而再次進行自我修復。 (HDD裝置 403) 圖17係表示液晶電視4〇〇中之自我檢測及自我修復動作 之一例的圖,圖17(a)係表示自我檢測及自我修復動作前之 液晶電視400之圖,圖17(b)係表示自我檢測及自我修復動 作中之液晶電視400之圖,圖17(〇係表示自我檢測及自我 修復動作結束後之液晶電視4〇〇之圖。 如圖1所示,液晶電視400中内置有HDD(Hard以吐 Drive)裝置403。HDD裝置403具有利用HDD進行再生及錄 影等之功能。液晶電視400中,根據來自使用者之指示, DVD與HDD控制部404對HDD裝置403(影像再生裝置)之各 種動作進行控制。 HDD需要進行記憶區域之整理等(例如重組等之記憶區 域之優化或碟片之錯誤檢查等;)之维護,HDD裝置4〇3根據 與使用者之指示相對應之來自DVD與HDD控制部4〇4之控 制信號,開始維護動作。於進行維護中無法進行錄影及再 143485.doc -34- 201031180 生。因此,腿裝置403之記憶區域之維護需要於使用者 不進行使用之時間進行。 因此,液晶電視400中’如圖17⑷所示,成為由使用者 減不使用之時間(例如深夜)並於所指定之時間進行維護 之構成。即’麵農置彻具有可於預先設定之時刻進行 維護之計時器功能。又,如圖17⑷所示,液晶電視彻 中,產生於顯示畫面上存在縱線之不良。而且,液晶電視 400之特徵在於如下構成 φ 稱成之方面,即於進行一體地包含之 讎之維護之時間點上一併進行源極驅動器…之自我檢 測。若進行更詳細地說明,則_與腦控制部4〇4自 麵裝置403接收到表示已開始記憶區域之優化之信號 後’對控制器晴給表示已開始源極驅動器…之自我檢 測^自我修復之指示之信號。然後,根據來自控制器⑽ 之指示’源極驅動器1 〇a閱私> 開始進订自我檢測及自我修復動 作再者HDD裝置4〇3亦可為自液晶電視4Q_t φ 之構成》 自我檢測係於使用者不使用之時間進行,因此無需進行 :在維護HDD之意思之顯示,如圖卿斤示關閉顯示亦 ’、’、妨 亦考相使用者忘記正在進行維護hdd而欲使其 =顯示之情形’因此亦可為搭載有上述預備之源極驅動 器l〇b而進行簡單之顯示之構成。 將表不自我檢測之結果之判定旗標保持於源極驅動器 ^之㈣之記憶體中’根據該判定旗標而進行自我修復 。圖17⑷係維護結束後再次進行顯示時之畫面之狀 143485.doc •35· 201031180 態,告知使用者維護已結束。如圖17(c)所示,消除了圖 l7(a)之顯示晝面上存在縱線之不良。 而且,於斷開電源時,將記憶於源極驅動器i 〇a之内部 之。己隐體中的判定旗標儲存於外部記憶體中,於接通電源 時再次讀入至源極驅動器l〇a内之記憶體中而再次進行自 我修復。 (積體電路10之構成) 其次,參照圖18對本發明之源極驅動器1〇a之構成加以 說明。再者,如上所述,預備源極驅動器1〇b亦可成為較 源極驅動器1〇a更簡單之構成,但亦可成為與源極驅動器 l〇a相同之構成。以下,將可執行與源極驅動器1〇&相同之 自我檢測及自我修復動作之電路稱作積體電路1〇而進行說 明。 圖18係表示積體電路1〇(驅動電路)之構成之說明圖。如 該圖所示’積體電路10包含:n個取樣電路6_丨〜6_n(以下, 於總稱之情形時稱作取樣電路6),其自灰階資料輸入端子 (未圖示)經由資料匯流排而輸入與η個液晶驅動用信號輸出 端子OUT1〜OUTn(以下稱作輸出端子〇UT1〜OUTn)之各自 相對應之灰階資料;η個保持電路7-1〜7-η(以下,於總稱之 情形時稱作保持電路7) ; η個DAC電路8-1〜8-η(以下,於總 稱之情形時稱作DAC電路8),其將灰階資料轉換為灰階電 壓信號;η個運算放大器1_1〜卜η(以下,於總稱之情形時稱 作運算放大器1) ’其對來自DAC電路8之灰階電壓信號具 有緩衝器電路之作用;η個判定電路3-1〜3-η(以下,於總稱 143485.doc -36· 201031180 之清形時稱作判定電路3) ; _判定旗標4]〜‘η(以下,於 總稱之情形時稱作判定旗標4);以及η個上拉與下拉電路5_ 1 5 η(以下’於總稱之情形時稱作上拉與下拉電路”。 ▲進而,如該圖所示’積體電路1〇包含:根據加(測試) L號而於ON(開)與〇FF(關)之間進行切換之複數個開關 2a,根據test b信號而κ〇Ν與〇ff之間進行切換之複數個 開關2b ;以及根據來自判定旗標4之輸出信號即 ❹ Flagl〜Flagn而於(^與〇汀之間進行切換之複數個開關 2c(連接切換機構)及2d(連接切換機構)。再者,開關h、 2b、2d係於輸入有「H」之信號之情形時成為〇n,而於輸 入有Lj之4號之情形時成為〇FF。另一方面,開關& 係於輸入有「Η」之信號之情形時成為〇FF,而於輸入有 「H」之信號之情形時成為〇N。 又,積體電路10包含各為一個之如下電路:預備之取樣 電路26,預備之保持電路27;預備之DAC電路28(預備輸 φ 出電路);以及預備之運算放大器。 再者,圖18中,取樣電路6、保持電路7以及dAC電路8 相當於圖2所示之輸出電路區塊3〇,取樣電路26、保持電 路27以及DAC電路28相當於圖2所示之預備電路區塊4〇, 運算放大器1、判定電路3以及判定旗標4相當於圖2所示之 比較判定電路50,與輸出端子ουτί〜OUTn連接之開關2d 及開關2c相當於圖2所示之切換電路6〇,與取樣電路6連接 之開關2d相當於圖2所示之切換電路61。再者,圖18所示 之積體電路10係經由輸出端子OUT1〜OUTn而與圖2所示之 143485.doc -37- 201031180 顯示面板8〇相連接,圖18中,省略了顯示面板80之圖示。 (積體電路10之一般動作) 其次’以下參照圖18對籍練雷收 了積體電路10中之將灰階電壓輸出 至顯示面板80(參照圖2)之—般動作進行說明。 首先’於一般動作之情形時,test信號為「l」,㈣則言 號成為「H」。當test信號為「L」時,開關成為〇ff,; 關2b成為ON。藉此’冑來自未圖示之指標用移位暫存器 之信號即STR1〜STRn信號(以^,於總稱之情形時稱作str 信號)輸入至對應之各取樣電路取樣電路6根據所輸入 之STR信號,自灰階資料輸入端子經由資料匯流排而取得 與自身相對應之灰階資料。保持電路7根據資料[〇八〇信 號’自取樣電路ό輸入取樣電路6所取得之灰階資料。然 後,DAC電路8(輸出電路)自保持電路7輸入灰階資料。 DAC電路8將所輸入之灰階資料轉換為灰階電壓信號後輸 出至運算放大器1(比較機構)之正極性輸入端子。於此,因 開關2b為ON ’故運算放大器1之輸出成為向自身之負極性 輸入端子之負反饋。藉此,運算放大器1作為電壓隨動器 進行動作。藉此’運算放大器1對來自DAC電路8之灰階電 壓而具有缓衝器電路之作用,將輸入至自身之正極性輸入 端子之灰階電壓信號輸出至對應之輸出端子OUT1〜OUTn。 再者,於此,使開關2c為ON,使開關2d為OFF。下文對開 關2c及2d之動作加以敍述。將上述之串聯連接於每個輸出 端子之、包含取樣電路6、保持電路7、DAC電路8以及運 算放大器1之區塊作為輸出電路區塊,該輸出電路區塊係 143485.doc -38 - 201031180 用來將自灰階資料輸入端子輸入之灰階資料轉換為用以驅 動顯示面板80之灰階電壓後,經由輸出端子將轉換之灰階 電壓輸出至顯示面板80。 (向動作確認測試之切換) 其次,向進行DAC電路8之動作確認之動作確認測試的 . 切換,使test信號為「H」,使test B信號為「乙」。首先,藉 由開關2a成為ON,而將動作確認測試用之STR信號即 參 TSTR1彳5號輸入至預備之取樣電路26,將動作確認測試用 之STR信號即TSTR2信號輸入至取樣電路6。進而,將來自 預備之DAC電路28之灰階電壓輸入至運算放大器i之負極 性輪入端子。又’藉由開關2b成為OFF,而阻斷運算放大 器1之輸出負反饋至自身之負極性輸入端子。其結果運 算放大器1成為對來自串聯連接於自身之正極性輸入端子 之DAC電路8之輸出電壓、與來自預備之DAC電路28之輸 出電壓進行比較的比較器。 Φ 再者,test信號及test B信號從控制動作確認測試之切換 及動作確認測試之動作之控制電路(未圖示)輸出。又,該 控制電路(控制機構)亦可為對動作確認測試中之經由資料 '匯流排而輸入之灰階資料及資料LOAD信號進行控制之電 路。進而,該控制電路可與對一般動作中之灰階資料、資 料LOAD信號、移位時脈用輸入信號進行控制之控制電路 相同’亦可為不同之控制電路。 (實施形態1之動作確認測試1) 其次,以下參照圖19對動作確認測試之第一順序進行說 143485.doc •39· 201031180 明。圖19係表示第1實施形態之動作確認測試之第一順序 之流程圖。 該圖所示之步驟S21(以下簡稱作S21)中,使test信號為 「Η」,使test B信號為「L」。如已進行之上述般,藉由 S21 ’運算放大器1具有比較器之作用。 接著’ S22中,將未圖示之控制電路所包含之計數器m 初始化為0 ^進而’控制電路使TSTR1信號有效,而將與 計數器m之值相對應之灰階m之灰階資料、於此為灰階〇之 灰階資料經由資料匯流排儲存於預備之取樣電路26中。進 而,控制電路使TSTR2信號有效,而將計數器m之值加上! 所付之灰階m+1之灰階資料、於此為灰階1之灰階資料經 由資料匯流排儲存於取樣電路6中。接著,預備之保持電 路27根據資料LOAD信號,自取樣電路26取得灰階〇之灰階 資料。進而,DAC電路28自保持電路27輸入灰階資料,將 灰階〇之灰階電壓輸出至運算放大器!之負極性輸入端子 (S23)。另一方面,保持電路7根據資料LOAD信號,自取 樣電路6取得灰階1之灰階資料。進而,DAC電路8自保持 電路7輸入灰階資料。各DAC電路8將灰階1之灰階電壓輸 出至與自身串聯連接之各運算放大器丨之正極性輸入端子 (S23P再者’本發明之積體電路10輸出η灰階之灰階電 壓’灰階為0之灰階電壓為最低之電壓值,灰階為η之灰階 電壓為最高之電壓值。 繼而’運算放大器1將輸入至正極性輸入端子之來自 DAC電路8之灰階電壓、與輸入至負極性輸入端子之來自 143485.doc -40· 201031180 DAC電路28之灰階電壓進行比較(S24)。具體而言,運算 放大器1將灰階為1之灰階電壓輸入至自身之正極性輸入端 子’將灰階為0之灰階電壓輸入至自身之負極性輸入端 子。於此,若DAC電路8正常,則灰階為1之灰階電壓較灰 階為〇之灰階電壓更高,因此運算放大器丨輸出「H」位準 之信號。於此,於運算放大器之輸出為「L」位準之信號 之情形時,DAC電路8為不良。 ❹ 然後,判定電路3(判定機構)輸入來自運算放大器1之輸 出信號,且將所輸入之信號之位準與自身所記憶之期望值 進行比較。再者,判定電路3所記憶之期望值係自控制電 路提供者。於該動作確認測試1中,判定電路3將期望值作 為「H」位準而加以記憶。 於此,若自運算放大器i輸入之信號與判定電路3自身所 。己憶之期望值同為「H」位準,則判定電路3判定為DAC電 路8正常。另一方面,若自運算放大器丨輸入之信號為 參 「L」位準’則判定電路3判定為DAC電路8不良,並將 H」旗標輸出至判定旗標4。於自判定電路3輸入「H」 旗標之情形時,判定旗標4將輸入之「H」旗標記憶於自身 之内部記憶體中。(S25) 。再者,判定電路3亦可為如下構成:輸入來自運算放大 厂之輸出信號,若所輸入之信號為rH」位準,則將 」旗軚輪出至判定旗標4,若輸入之信號為「l位 準,則將「口 4自 _ 」旗—輸出至判定旗標4。此時,於判定旗標 電路3即便輸入一次「Η」旗標之情形時,之後即 143485.doc -41 - 201031180 旗標, 便自判定電路3輸入「L」 「Η」旗標。 判疋旗標4仍持續保持 刊定電路3亦可成為 人 定旗標4成為rH产… ·於判斷為不良而判 杆成為Η」之清形時,不進行其後之判定動作 其次,對計數器m之值是否為進行判定(s26)。 數器m之值為w以下之情形時,使計數器岐值加上1而 反覆進行S23〜S25之步驟直至m之值成為…丨為止。再者, 所謂該η係積體電路10可輸出之灰階數。 (實施形態1之動作確認測試2) 其次,以下參照圖20對動作確認測試之第二順序進行說 明。圖20係表示第1實施形態之動作確認測試之第二順序 之流程圖。 首先,於動作確認測試1中,輸入至運算放大器i之正極 性輸入端子之灰階電壓始終較輸入至負極性輸入端子之灰 階電壓更高,因此於存在僅將較低之電壓輸出至DAC電路 28之不良之情形時、或於存在僅將較高之電壓輸出至 電路8之不良之情形時,判定電路3會輪出表示正常之 「L」旗標。 因此,於動作確認測試2中,對運算放大器丨之正極性輸 入端子輸入較負極性輸入端子更低之灰階電壓而進行動作 確認。 首先,動作確認測試1結束後,將計數器m之值初始化 為0(S31)。然後’控制電路使丁81'尺1信號有效,而將計數 器m之值加上1所得之灰階為m+1之灰階資料、於此為灰階 143485.doc •42· 201031180 為1之灰階資料經由資料匯流排儲存於預備之取樣電路26 中。繼而,控制電路使TSTR2信號有效,而將與計數器m 相對應之灰階m之灰階資料、於此為灰階〇之灰階資料經由 資料匯流排儲存於取樣電路6中。 於此,與動作確認測試1之S23同樣地,DAC電路28經由 保持電路27而輸入取樣電路26所儲存之灰階資料。進而, DAC電路28將與所輸入之灰階資料相對應之灰階m+1之灰 φ 階電壓、於此為灰階1之灰階電壓輸出至運算放大器1之負 極性輸入端子。另一方面’ DAC電路8經由保持電路7而輸 入取樣電路6所儲存之灰階資料。進而,各dac電路8將與 所輸入之灰階資料相對應之灰階m之灰階電壓、於此為灰 階〇之灰階電壓輸出至與自身串聯連接之各運算放大 正極性輸入端子(S32)。 然後,運算放大器1將輸入至正極性輸入端子之來自 DAC電路8之灰階0之灰階電壓、與輸入至負極性輸入端子 〇 之來自DAC電路28之灰階1之灰階電壓進行比較(S33)。於 此,若DAC電路8正常,則灰階丨之灰階電壓較灰階〇之灰 階電壓更高,因此運算放大器i輸出「L」旗標之信號。於 此,於運算放大器之輸出為「H」位準之信號之情形時, DAC電路8為不良。 繼而,判定電路3輸入來自運算放大器1之輸出信號,且 將所輸入之信號之位準與自身所記憶之期望值進行比較。 於該動作確認測試丨中,判定電路3將期望值作為「l」位 準而加以記憶。於此,若自運算放大器1輸入之信號與自 143485.doc •43- 201031180Versatile Disc or Digital Video Disc) device 402. The DVD device 402 has a function of reproducing, recording, and the like using a DVD. In the liquid crystal television 400, the DVD and HDD control unit 404 controls various operations of the DVD device 402 (video reproducing device) in accordance with an instruction from the user. The DVD needs to periodically clean the head of the read signal. Therefore, as shown in Fig. 16 (a), the cleaning disc is inserted to clean the head. After the DVD device 402 detects the insertion of the cleaning disc, the cleaning operation is started based on the control signal from the DVD and HDD control unit 404 corresponding to the user's instruction. Further, as shown in Fig. 16 (a), the liquid crystal television 400 has a defect that a vertical line exists on the display screen. Further, the liquid crystal television 400 is characterized in that the self-detection of the source driver 1a is performed while the cleaning of the DVD device 402 integrally included is performed. If it is explained in more detail, the DVD and HDD control unit 404 receives a signal indicating that the cleaning has started from the DVD device 402, and supplies the controller 100 with the self-detection and self-repair of the source driver 10a. Signal of indication. Then, in accordance with an instruction from the controller 100, the source driver 10a starts self-detection and self-repair operations. Further, the DVD device 402 may be configured separately from the liquid crystal television 400. As shown in Fig. 16 (b), the convenience of the user is improved when the notification of the meaning of the cleaning is being performed, but the general image display source driver 10a is cleaned at the same time. Self-detection is performed 143485.doc •33· 201031180, so it is necessary to have a preparatory source driver l〇b in advance as described above. Further, the determination flag indicating the determination result of the self-detection of the source driver 10a is held in the memory inside the source driver 10a, and the source driver 10a is judged according to the judgment flag held in the internal memory. Self-repairing action. Thereby, as shown in Fig. 16 (c), the defect of the vertical line on the display screen of Fig. 16 (&) is eliminated. When the power is turned off, the memory of the above-mentioned determination flag from the source driver 10a is stored in the external memory 81, and is read again into the source driver i〇a when the power is turned on. Self-repairing again in memory. (HDD device 403) FIG. 17 is a view showing an example of self-detection and self-repairing operation in the liquid crystal television, and FIG. 17(a) is a view showing the liquid crystal television 400 before the self-detection and self-repair operation, FIG. (b) is a diagram showing the LCD TV 400 in the self-test and self-repair operation, and Figure 17 (the figure shows the LCD TV after the self-test and self-repair operation. As shown in Figure 1, the LCD TV The HDD (Hard to Drive) device 403 is built in the 400. The HDD device 403 has a function of reproducing, recording, and the like by the HDD. In the liquid crystal television 400, the DVD and HDD control unit 404 pairs the HDD device 403 according to an instruction from the user. The various operations of the (image reproducing device) are controlled. The HDD needs to perform maintenance such as sorting of a memory area (for example, optimization of a memory area such as reorganization or error checking of a disc, etc.), and the HDD device 4〇3 is based on the user. The instruction corresponding to the control signal from the DVD and HDD control unit 4〇4 starts the maintenance operation. The video recording cannot be performed during the maintenance and the memory is restored. Therefore, the memory of the leg device 403 is recorded. The maintenance of the domain needs to be performed when the user does not use it. Therefore, as shown in Fig. 17 (4), the liquid crystal television 400 is configured to be used by the user for a reduced time (for example, late at night) and maintained at the designated time. That is to say, 'Fountain has a timer function that can be maintained at a preset time. Further, as shown in Fig. 17 (4), the LCD TV is completely defective in the vertical line on the display screen. Moreover, the LCD TV 400 It is characterized in that the φ is defined as follows, that is, the self-detection of the source driver is performed at the time of performing the maintenance of the unit 一体 integrally. As will be described in more detail, the _ and brain control unit 4 The 自4 self-surface device 403 receives a signal indicating that the optimization of the memory area has been started, and then the signal indicating that the controller has started the self-detection of the source driver ... self-repair is performed. Then, according to the controller (10) Indication 'Source Drive 1 阅a Reading> Start to self-test and self-repair. HDD device 4〇3 can also be built from LCD TV 4Q_t φ Self-testing is performed at the time when the user is not using it, so there is no need to do it: in the display of the meaning of maintaining the HDD, as shown in the figure, the display is closed, and the user is also forgotten that the user is forgetting to maintain the hdd. Therefore, it is possible to perform a simple display by mounting the above-described source driver 100b. The determination flag indicating the result of self-detection is held in the source driver (4). In the memory, 'self-repair is performed according to the judgment flag. Fig. 17 (4) shows the state of the screen when the display is performed again after the maintenance is completed, 143485.doc • 35· 201031180, and the user is informed that the maintenance has been completed. As shown in Fig. 17 (c), the defect of the vertical line on the display surface of Fig. 17(a) is eliminated. Moreover, when the power is turned off, it will be stored inside the source driver i 〇a. The decision flag in the hidden body is stored in the external memory, and is read again into the memory in the source driver 10a when the power is turned on, and the self-repair is performed again. (Configuration of Integrated Circuit 10) Next, the configuration of the source driver 1A of the present invention will be described with reference to Fig. 18. Further, as described above, the preliminary source driver 1b may be configured to be simpler than the source driver 1a, but may have the same configuration as the source driver 100a. Hereinafter, a circuit that can perform the same self-detection and self-repair operation as the source driver 1 〇 & is referred to as an integrated circuit 1 〇. Fig. 18 is an explanatory view showing the configuration of an integrated circuit 1 (drive circuit). As shown in the figure, the integrated circuit 10 includes: n sampling circuits 6_丨~6_n (hereinafter, referred to as a sampling circuit 6 in the case of a general term), and the data is input from a gray-scale data input terminal (not shown). The gray scale data corresponding to each of the n liquid crystal driving signal output terminals OUT1 to OUTn (hereinafter referred to as output terminals 〇 UT1 to OUTn) is input to the bus bar; n holding circuits 7-1 to 7-η (hereinafter, In the case of the general term, it is called a holding circuit 7); n DAC circuits 8-1 to 8-n (hereinafter, referred to as DAC circuit 8 in the case of a general term), which convert gray scale data into gray scale voltage signals; n operational amplifiers 1_1 to η (hereinafter, referred to as operational amplifier 1 in the case of a general term) 'which functions as a buffer circuit for the gray scale voltage signal from the DAC circuit 8; n determination circuits 3-1 to 3 - η (hereinafter, referred to as decision circuit 3 in the case of clearing of 143485.doc -36· 201031180); _determination flag 4]~'η (hereinafter, referred to as judgment flag 4 in the case of the general term); And n pull-up and pull-down circuits 5_ 1 5 η (hereinafter referred to as the pull-up and pull-down circuits in the case of the general term). As shown in the figure, the [integrated circuit 1〇 includes a plurality of switches 2a that switch between ON (open) and 〇FF (off) according to the addition (test) L number, and κ 根据 according to the test b signal. a plurality of switches 2b for switching between Ν and 〇ff; and a plurality of switches 2c (connection switching mechanism) for switching between (^ and 〇) according to an output signal from the determination flag 4, that is, ❹ Flag1 to Flagn And 2d (connection switching mechanism). Further, the switches h, 2b, and 2d become 〇n when the signal of "H" is input, and become 〇FF when the number of Lj is input. On the other hand, the switch & is 〇FF when the signal of "Η" is input, and becomes 〇N when the signal of "H" is input. Further, the integrated circuit 10 includes the following circuits each : a preliminary sampling circuit 26, a preliminary holding circuit 27, a preliminary DAC circuit 28 (pre-output φ output circuit), and a preliminary operational amplifier. Further, in Fig. 18, the sampling circuit 6, the holding circuit 7, and the dAC circuit 8 Corresponding to the output circuit block 3〇 shown in FIG. 2, the sampling circuit 26, and the hold The circuit 27 and the DAC circuit 28 correspond to the preliminary circuit block 4A shown in FIG. 2. The operational amplifier 1, the decision circuit 3, and the decision flag 4 correspond to the comparison decision circuit 50 shown in FIG. 2, and the output terminals ουτί~OUTn. The connected switch 2d and the switch 2c correspond to the switching circuit 6A shown in Fig. 2, and the switch 2d connected to the sampling circuit 6 corresponds to the switching circuit 61 shown in Fig. 2. Further, the integrated circuit 10 shown in Fig. 18 The display panel 8A is connected to the 143485.doc -37-201031180 shown in FIG. 2 via the output terminals OUT1 to OUTn. In FIG. 18, the illustration of the display panel 80 is omitted. (General operation of the integrated circuit 10) Next, the general operation of outputting the gray scale voltage to the display panel 80 (see Fig. 2) in the integrated circuit 10 will be described below with reference to Fig. 18. First, in the case of normal operation, the test signal is "l", and (4) the word is "H". When the test signal is "L", the switch becomes 〇ff; and the off 2b turns ON. Therefore, the signals from the shift register that are not shown, that is, the STR1 to STRn signals (referred to as the str signal in the case of the general name) are input to the corresponding sampling circuit sampling circuits 6 according to the input. The STR signal obtains the gray scale data corresponding to itself from the gray scale data input terminal via the data bus. The hold circuit 7 inputs the gray scale data obtained by the sampling circuit 6 based on the data [〇八〇 signal] from the sampling circuit. Then, the DAC circuit 8 (output circuit) inputs gray scale data from the holding circuit 7. The DAC circuit 8 converts the input gray scale data into a gray scale voltage signal and outputs it to the positive polarity input terminal of the operational amplifier 1 (comparison mechanism). Here, since the switch 2b is ON', the output of the operational amplifier 1 becomes a negative feedback to its own negative input terminal. Thereby, the operational amplifier 1 operates as a voltage follower. The operational amplifier 1 has a buffer circuit for the gray scale voltage from the DAC circuit 8, and outputs a gray scale voltage signal input to its own positive input terminal to the corresponding output terminals OUT1 to OUTn. Here, the switch 2c is turned on, and the switch 2d is turned off. The actions of switches 2c and 2d are described below. The block including the sampling circuit 6, the holding circuit 7, the DAC circuit 8, and the operational amplifier 1 connected in series to each of the output terminals is used as an output circuit block, and the output circuit block is 143485.doc -38 - 201031180 After the gray scale data input from the gray scale data input terminal is converted into the gray scale voltage for driving the display panel 80 , the converted gray scale voltage is output to the display panel 80 via the output terminal. (Switching to the operation confirmation test) Next, the test for confirming the operation of the operation of the DAC circuit 8 is switched, so that the test signal is "H" and the test B signal is "B". First, when the switch 2a is turned ON, the STR signal for the operation confirmation test, that is, the reference TSTR1彳5, is input to the preliminary sampling circuit 26, and the STR signal for the operation confirmation test, that is, the TSTR2 signal is input to the sampling circuit 6. Further, the gray scale voltage from the prepared DAC circuit 28 is input to the negative polarity wheel-in terminal of the operational amplifier i. Further, by turning off the switch 2b, the output of the operational amplifier 1 is blocked from being negatively fed back to its own negative input terminal. As a result, the operational amplifier 1 is a comparator that compares the output voltage from the DAC circuit 8 connected in series to its own positive input terminal to the output voltage from the standby DAC circuit 28. Φ Furthermore, the test signal and the test B signal are output from a control circuit (not shown) that switches the control operation confirmation test and the operation confirmation test operation. Further, the control circuit (control means) may be a circuit for controlling the gray scale data and the data LOAD signal input via the data "bus" in the operation confirmation test. Further, the control circuit can be the same as the control circuit for controlling the gray scale data, the data LOAD signal, and the shift clock input signal in the normal operation, or can be different control circuits. (Operation Confirmation Test 1 of the First Embodiment) Next, the first sequence of the operation confirmation test will be described below with reference to Fig. 19 143485.doc •39· 201031180. Fig. 19 is a flow chart showing the first procedure of the operation confirmation test of the first embodiment. In step S21 (hereinafter referred to as S21) shown in the figure, the test signal is "Η" and the test B signal is "L". As described above, the operational amplifier 1 of S21' has the function of a comparator. Then, in S22, the counter m included in the control circuit (not shown) is initialized to 0^ and then the 'control circuit makes the TSTR1 signal valid, and the gray scale data of the gray scale m corresponding to the value of the counter m is here. The gray scale data for the gray scale is stored in the preliminary sampling circuit 26 via the data bus. Further, the control circuit asserts the TSTR2 signal and adds the value of the counter m! The gray scale data of the gray scale m+1 and the gray scale data of the gray scale 1 are stored in the sampling circuit 6 via the data bus. Next, the preparatory holding circuit 27 obtains the gray scale data of the gray scale from the sampling circuit 26 based on the data LOAD signal. Further, the DAC circuit 28 inputs the gray scale data from the hold circuit 27, and outputs the gray scale voltage of the gray scale 输出 to the operational amplifier! Negative input terminal (S23). On the other hand, the holding circuit 7 obtains the gray scale data of the gray scale 1 from the sampling circuit 6 based on the data LOAD signal. Further, the DAC circuit 8 inputs gray scale data from the holding circuit 7. Each DAC circuit 8 outputs the gray scale voltage of the gray scale 1 to the positive polarity input terminal of each operational amplifier 串联 connected in series with itself (S23P and the 'integrated circuit 10 of the present invention outputs the gray scale voltage of η gray scale' The gray scale voltage of the order 0 is the lowest voltage value, and the gray scale voltage of the gray scale is η is the highest voltage value. Then the operational amplifier 1 inputs the gray scale voltage from the DAC circuit 8 to the positive polarity input terminal, and The gray scale voltage input from the DAC circuit 28 from the 143485.doc -40·201031180 is input to the negative polarity input terminal for comparison (S24). Specifically, the operational amplifier 1 inputs the gray scale voltage of the gray scale to 1 to its own positive polarity. The input terminal ' inputs the gray scale voltage of gray scale 0 to its own negative polarity input terminal. Here, if the DAC circuit 8 is normal, the gray scale voltage of the gray scale is 1 is higher than the gray scale voltage of the gray scale is 〇 Therefore, the operational amplifier 丨 outputs a signal of "H" level. However, when the output of the operational amplifier is a signal of "L" level, the DAC circuit 8 is defective. ❹ Then, the decision circuit 3 (determination mechanism) Input from the operation put The output signal of the device 1 compares the level of the input signal with the expected value stored by itself. Furthermore, the expected value memorized by the decision circuit 3 is from the control circuit provider. In the action confirmation test 1, the determination is made. The circuit 3 memorizes the expected value as the "H" level. Here, if the signal input from the operational amplifier i and the determination circuit 3 themselves have the same expected value as the "H" level, the determination circuit 3 determines that The DAC circuit 8 is normal. On the other hand, if the signal input from the operational amplifier 为 is "L" level, the decision circuit 3 determines that the DAC circuit 8 is defective, and outputs the H" flag to the decision flag 4. When the self-determination circuit 3 inputs the "H" flag, the determination flag 4 stores the input "H" flag in its own internal memory (S25). Further, the determination circuit 3 may be configured as follows. : Input the output signal from the operational amplifier factory. If the input signal is rH" level, then the flag will be taken out to the judgment flag 4. If the input signal is "1 level, then the port 4 will be _ ” flag—output to decision flag 4. At the time of the determination flag circuit 3, even if the "Η" flag is input once, the flag of 143485.doc -41 - 201031180 is input, and the "L" and "Η" flags are input from the decision circuit 3. When the standard 4 continues to maintain the rating circuit 3, it can become a flag of the person 4 and the rH is produced... When the judgment is judged to be bad, the judgment is not performed, and the subsequent determination operation is not performed, and the counter m is Whether the value is the determination (s26). When the value of the counter m is equal to or less than w, the counter 岐 value is incremented by 1 and the steps S23 to S25 are repeated until the value of m becomes ... 。. The η-series integrated circuit 10 can output the number of gray levels. (Operation Confirmation Test 2 of the First Embodiment) Next, a second procedure of the operation confirmation test will be described below with reference to Fig. 20 . Fig. 20 is a flow chart showing the second procedure of the operation confirmation test of the first embodiment. First, in the operation confirmation test 1, the gray scale voltage input to the positive polarity input terminal of the operational amplifier i is always higher than the gray scale voltage input to the negative polarity input terminal, so that only the lower voltage is output to the DAC in the presence of the signal. In the case of a defective circuit 28, or in the case where there is a defect that only a higher voltage is output to the circuit 8, the decision circuit 3 turns out to indicate a normal "L" flag. Therefore, in the operation check test 2, a lower gray scale voltage than the negative polarity input terminal is input to the positive polarity input terminal of the operational amplifier 而, and the operation is confirmed. First, after the operation confirmation test 1 is completed, the value of the counter m is initialized to 0 (S31). Then the 'control circuit makes the D81's 1 signal valid, and the value of the counter m is increased by 1 to obtain the grayscale data of m+1, which is grayscale 143485.doc •42· 201031180 is 1 The gray scale data is stored in the preliminary sampling circuit 26 via the data bus. Then, the control circuit makes the TSTR2 signal valid, and the gray scale data of the gray scale m corresponding to the counter m, and the gray scale data of the gray scale 于此 are stored in the sampling circuit 6 via the data bus. Here, similarly to S23 of the operation check test 1, the DAC circuit 28 inputs the gray scale data stored in the sampling circuit 26 via the hold circuit 27. Further, the DAC circuit 28 outputs the gray φ step voltage of the gray scale m+1 corresponding to the input gray scale data, and the gray scale voltage of the gray scale 1 to the negative polarity input terminal of the operational amplifier 1. On the other hand, the DAC circuit 8 inputs the gray scale data stored in the sampling circuit 6 via the holding circuit 7. Further, each of the dac circuits 8 outputs the gray scale voltage of the gray scale m corresponding to the input gray scale data, and the gray scale voltage of the gray scale 于此 to the respective operational amplification positive input terminals connected in series with the self (in this case) S32). Then, the operational amplifier 1 compares the gray scale voltage of the gray scale 0 from the DAC circuit 8 input to the positive polarity input terminal with the gray scale voltage of the gray scale 1 from the DAC circuit 28 input to the negative polarity input terminal ( ( S33). Therefore, if the DAC circuit 8 is normal, the gray scale voltage of the gray scale 较 is higher than the gray scale voltage of the gray scale ,, so the operational amplifier i outputs the signal of the "L" flag. Therefore, when the output of the operational amplifier is a signal of "H" level, the DAC circuit 8 is defective. Then, the decision circuit 3 inputs the output signal from the operational amplifier 1, and compares the level of the input signal with the expected value itself. In the operation confirmation test, the determination circuit 3 memorizes the expected value as the "l" level. Here, if the signal input from the operational amplifier 1 is from 143485.doc •43- 201031180

部記憶體中(S34)。反覆進行以上之幻3〜 备3輸入「H」旗標之 旗標記憶於自身之内 33〜S34之步驟直至m 之值成為n-1為止(S35、S36)。 (實施形態1之動作確認測試3) 其次,以下參照圖21對動作確認測試之第三順序進行說 明。圖21係表示第1實施形態之動作確認測試之第三順序 之流程圖。 DAC電路8中存在如下情形:於存在輸出端成為開路之 不良之情形時,運算放大器i持續保持藉由已執行之確認 測試而輸入至運算放大器i之灰階電壓,而於動作確認測 ”式1及2中無法檢測出不良。於此’動作確認測試3中將 下拉電路連接於運算放大器1之正極性輸入端子。藉此, 於DAC電路8之輸出端成為開路之情形時,會將較低之電 壓輸入至運算放大器1之正極性輸入端子。其結果可防止 於DAC電路8之輸出端成為開路之情形時、換言之於DAC 電路8無輸出之情形時,運算放大器丨持續保持藉由已執行 之確認測試而輸入至運算放大器1之灰階電壓。 動作確認測試3之具體順序係如圖21所示,首先,將計 數器m初始化為〇(S41)。然後,上拉與下拉電路5將運算放 大器1之正極性輸入端子下拉(S42)。自此開始之S43〜S47 143485.doc -44- 201031180 之步驟與已進行之上述之動作確認測試S23〜S27之步驟 相同,因此於此省略其說明。 如上所述’藉由將運算放大器1之正極性輸入端子下拉 進行動作確認測試1之順序’而於DAC電路8之輸出端成為 開路之情形時,運算放大器1輸出「L」位準之信號。其於 果’判定電路3根據所輸入之「L」位準之信號,判定為 DAC電路8中存在不良,且判定旗標4記憶「η」旗標。 ^ (實施形態1之動作確認測試4) 其次,以下參照圖22對動作確認測試之第四順序進行說 明。圖22係表示第1實施形態之動作確認測試之第四順序 之流程圖。 於此,動作確認測試4係與動作確認測試3同樣地用以對 應於DAC電路8之輸出端成為開路之不良。如該圖所示, 首先’將計數器m初始化為〇(S51)。然後,上拉與下拉電 路5將運算放大器1之正極性輸入端子上拉(S52)。自此開 Φ 始之S53〜S57之步驟與已進行之上述之動作確認測試2之 S32〜S36之步驟相同’因此於此省略其說明。 如上所述,藉由將運算放大器丨之正極性輸入端子上拉 進行動作確認測試2之順序,而於DAC電路8之輸出端成為 開路之情形時,運算放大器丨輸出rH」位準之信號。其結 果,判定電路3根據所輸入之rH」位準之信號,判定為 DAC電路8中存在不良,且判定旗標4記憶「Η」旗標。 (實施形態1之動作確認測試5) 其次,以下參照圖23對動作確認測試之第五順序進行說 143485.doc •45· 201031180 明。圖23係表示第1實施形態之動作確認測試之第五順序 之流程圖。 DAC電路8中存在產生自身之鄰接之兩個灰階短路之不 良的情形。如上所述,於鄰接之兩個灰階短路之情形時, DAC電路8輸出短路之兩個灰階之中間電壓。於該不良之 情形時,DAC電路8所輸出之灰階電壓與正常之情形相 比,不會偏差1灰階以上之電壓。因此,動作確認測試卜4 中,無法檢測出該不良。於此,動作確認測試5中之目的 在於對如上所述之DAC電路8中之鄰接之兩個灰階短路的 不良進行檢測。 如該圖所示’首先’將計數器m初始化為〇(S6l)。然 後,使TSTR1及TSTR2有效,進而,經由資料匯流排將灰 階m之灰階資料、於此為灰階〇之灰階資料輸入至取樣電路 26及取樣電路繼而,DAC電路28及8經由保持電路27及 7 ’自取樣電路26及6取得灰階〇之灰階資料。進而,Dac 電路28及8將灰階〇之灰階電壓輸出至運算放大器1之正極 性輸入端子及負極性輸入端子(S62)。 接著’藉由未圖示之開關,而使運算放大器1之正極性 輸入端子與負極性輸入端子短路。再者,於動作碟認測試 1及2中,判定為DAC電路8不存在不良之情形時,輸入至 正極性輸入端子與負極性輸入端子之灰階電壓之差不會成 為1灰階以上之電壓差。因此,藉由使正極性輸入端子與 負極性輸入端子短路,而不存在較大之電流流動之問題。 於此,藉由使運算放大器1之正極性輸入端子與負極性 143485.doc -46- 201031180 輸入端子短路,而使運算放大器1之兩個輸入端子輸入相 同之灰階電壓。於此,因運算放大Si原本具有輸入輸出 之偏移電壓,故即便將相同之灰階電壓輸入至自身之兩個 輸入端子,運算放大器1之輸出端仍輸出「H」或「L」之 任一者。判定電路3將上述之使運算放大器丨之正極性輸入 端子與負極性輸入端子短路之情形時的運算放大器1之輸 出之位準作為期望值加以記憶(S63)。 ❿ 繼而’使未圖示之開關成為〇FF而解除運算放大器1之 正極性輸入端子與負極性輸入端子之短路。此時,將來自 DAC電路8之灰階〇之灰階電壓輸入至運算放大器丨之正極 性輸入端子’將來自DAC電路28之灰階〇之灰階電壓輸入 至負極性輸入端子。於此,若DAC電路28及8無不良,則 運异放大器1之輸出成為與記憶於判定電路3中之期望值相 同之輸出。因此,判定電路3將來自運算放大器1之輸出與 自身所記憶之期望值進行比較(S64)e若來自運算放大器1 • 之輸出值為與期望值不同之值,則判定電路3將「H」旗標 輸出至判定旗標4(S65)。 接著’藉由未圖示之開關,以將來自DAC電路28之灰階 電壓輸入至運算放大器1之正極性輸入端子,將來自Dac 電路8之灰階電壓輸入至負極性輸入端子之方式,切換運 算放大器1之輸入端(S66)。於此,進行與S64相同之處理 (S67)。S67中,若來自運算放大器!之輸出與自身所記憶 之期望值不同,則判定電路3將「H」旗標輸出至判定旗標 4(S68) ^如上所述,藉由在正極性輸入端子與負極性輸入 143485.doc -47- 201031180 端子之間進行切換’即便判定電路3所記憶之期望值為 「H」位準或「L」位準之任一者’仍可檢測出dac電路8 之不良。 使計數器m之值加上1而反覆進行以上之S62〜S68之步驟 直至計數器m之值成為η為止(S69、S70)。 (自我修復) 其次,以下參照圖24,對在判定旗標4記憶有「Η」旗標 之情形時、換言之於上述動作確認測試卜5中判定電路3判 定為DAC電路8-1〜8-η之任一者存在不良之情形時的修復 © 進行說明。圖24係表示於判定為不良之DAC電路8與預備 之DAC電路28之間進行切換而進行自我修復之順序的流程 圖0 判定電路3於判定為DAC電路8不良之情形時,將% 旗標輸出至判定旗標4。進而’判定旗標4輸入來自判定電 路3之「H」旗標並記憶於自身之内部。於此,控制電路對 ❹ 判定旗標4是否記錄有「H」進行檢測(S7i)。於控制電路 檢測出判定旗標4未記憶「H」之情形時,移行至π之處 理二另一方面,控制電路於檢測出判定旗標4記憶有% 時:判定旗標4·1,之各自所記憶之「H」之旗 數為複:广。於此,於判定旗標4所記憶之「H」之旗標 數為複數個之情形肖,移行至S73 判定旗標4所記憶之「H」之旗標數為。另一方面,於 至S74之處理(S72)e 、、數為-個之情形時’移行 MM中,進行將與記憶「H」旗標之判定旗標4相對應 143485.doc •48· 201031180 之DAC電路8切換為預備之DAC電路28之處理(S74)。首 先,當對不良之DAC電路8與預備之DAC電路28之切換順 序進行說明時,於此,使與液晶驅動用信號輸出端子 ◦UT1相對應之判定旗標4-1為記憶有「Η」旗標者。 判定旗標4-1對開關2c及2d輸出成為「Η」位準之Fiagl 之輸出信號。根據Flagl之輸出信號,已輸入「η」位準之In the memory (S34). Repeat the above illusion 3~3 input the "H" flag flag in its own memory 33~S34 until the value of m becomes n-1 (S35, S36). (Operation Confirmation Test 3 of the First Embodiment) Next, a third sequence of the operation confirmation test will be described below with reference to Fig. 21 . Fig. 21 is a flow chart showing the third sequence of the operation confirmation test of the first embodiment. In the DAC circuit 8, there is a case where the operational amplifier i continues to maintain the gray-scale voltage input to the operational amplifier i by the acknowledgment test that has been performed when there is a problem that the output terminal is open, and the operation confirmation test In 1 and 2, the failure cannot be detected. In the 'operation confirmation test 3, the pull-down circuit is connected to the positive input terminal of the operational amplifier 1. Therefore, when the output of the DAC circuit 8 is open, it will be compared. The low voltage is input to the positive input terminal of the operational amplifier 1. As a result, the operation amplifier can be prevented from being maintained when the output of the DAC circuit 8 is open, in other words, when the DAC circuit 8 has no output. The grayscale voltage input to the operational amplifier 1 is performed by the confirmation test. The specific sequence of the operation confirmation test 3 is as shown in Fig. 21. First, the counter m is initialized to 〇 (S41). Then, the pull-up and pull-down circuit 5 will The positive input terminal of the operational amplifier 1 is pulled down (S42). The steps from S43 to S47 143485.doc -44- 201031180 and the above actions have been performed. Since the steps of tests S23 to S27 are the same, the description thereof is omitted here. As described above, 'the order of the test 1 is checked by pulling down the positive input terminal of the operational amplifier 1', and the output terminal of the DAC circuit 8 is opened. In the case, the operational amplifier 1 outputs a signal of the "L" level. The determination circuit 3 determines that there is a defect in the DAC circuit 8 based on the input "L" level signal, and determines that the flag 4 stores the "η" flag. ^ (Operation Confirmation Test 4 of the First Embodiment) Next, the fourth sequence of the operation confirmation test will be described below with reference to Fig. 22 . Fig. 22 is a flow chart showing the fourth procedure of the operation confirmation test of the first embodiment. Here, the operation check test 4 is used to correspond to the failure of the output end of the DAC circuit 8 in the same manner as the operation check test 3. As shown in the figure, first, the counter m is initialized to 〇 (S51). Then, the pull-up and pull-down circuit 5 pulls up the positive input terminal of the operational amplifier 1 (S52). The steps from S53 to S57 from the start of Φ are the same as the steps S32 to S36 of the above-described operation confirmation test 2, and thus the description thereof is omitted here. As described above, the operation check test 2 is performed by pulling up the positive input terminal of the operational amplifier ,, and when the output of the DAC circuit 8 is open, the operational amplifier 丨 outputs a signal of the rH" level. As a result, the determination circuit 3 determines that there is a defect in the DAC circuit 8 based on the input rH" level signal, and the determination flag 4 memorizes the "Η" flag. (Operation Confirmation Test 5 of the First Embodiment) Next, the fifth sequence of the operation confirmation test will be described below with reference to Fig. 23 143485.doc •45· 201031180. Fig. 23 is a flow chart showing the fifth sequence of the operation confirmation test of the first embodiment. In the DAC circuit 8, there is a case where the two gray-scale short circuits adjacent to each other are generated. As described above, in the case where two adjacent gray scales are short-circuited, the DAC circuit 8 outputs the intermediate voltage of the two gray scales of the short circuit. In this unfavorable situation, the gray scale voltage outputted by the DAC circuit 8 does not deviate from the voltage of 1 gray scale or more as compared with the normal case. Therefore, in the action confirmation test 4, the defect cannot be detected. Here, the purpose of the operation confirmation test 5 is to detect the failure of the two adjacent gray scales in the DAC circuit 8 as described above. The counter m is initialized to 〇 (S6l) as shown in the figure. Then, TSTR1 and TSTR2 are enabled, and further, the gray scale data of the gray scale m, the gray scale data of the gray scale, and the sampling circuit are input to the sampling circuit 26, and then the DAC circuits 28 and 8 are maintained via the data bus. Circuits 27 and 7' obtain self-sampling circuits 26 and 6 for gray scale data of gray scales. Further, the Dac circuits 28 and 8 output the gray scale voltage of the gray scale 输出 to the positive polarity input terminal and the negative polarity input terminal of the operational amplifier 1 (S62). Then, the positive input terminal of the operational amplifier 1 and the negative input terminal are short-circuited by a switch (not shown). Further, in the case of the operation panel identification tests 1 and 2, when it is determined that there is no defect in the DAC circuit 8, the difference between the gray scale voltages input to the positive polarity input terminal and the negative polarity input terminal does not become 1 gray scale or more. Voltage difference. Therefore, by short-circuiting the positive polarity input terminal and the negative polarity input terminal, there is no problem that a large current flows. Here, the same gray scale voltage is input to the two input terminals of the operational amplifier 1 by short-circuiting the positive input terminal of the operational amplifier 1 with the negative terminal 143485.doc -46-201031180 input terminal. Here, since the operation amplifier A has an input/output offset voltage, even if the same gray scale voltage is input to its own two input terminals, the output of the operational amplifier 1 outputs "H" or "L". One. The determination circuit 3 stores the level of the output of the operational amplifier 1 when the positive polarity input terminal and the negative polarity input terminal of the operational amplifier 短路 are short-circuited as an expected value (S63).继 Next, the switch (not shown) is turned 〇FF to cancel the short circuit between the positive input terminal and the negative input terminal of the operational amplifier 1. At this time, the gray scale voltage from the gray scale DAC of the DAC circuit 8 is input to the positive polarity input terminal ' of the operational amplifier ’, and the gray scale voltage from the gray scale DAC of the DAC circuit 28 is input to the negative polarity input terminal. Here, if there is no defect in the DAC circuits 28 and 8, the output of the operational amplifier 1 becomes the same output as the expected value stored in the decision circuit 3. Therefore, the decision circuit 3 compares the output from the operational amplifier 1 with the expected value stored by itself (S64). If the output value from the operational amplifier 1 is different from the expected value, the decision circuit 3 sets the "H" flag. Output to decision flag 4 (S65). Then, by switching a gray scale voltage from the DAC circuit 28 to the positive polarity input terminal of the operational amplifier 1 and inputting the gray scale voltage from the Dac circuit 8 to the negative polarity input terminal by a switch (not shown), switching is performed. The input terminal of the operational amplifier 1 (S66). Here, the same processing as that of S64 is performed (S67). In S67, if it comes from an operational amplifier! The output is different from the expected value stored by itself, and the decision circuit 3 outputs the "H" flag to the decision flag 4 (S68) ^ as described above, by the positive polarity input terminal and the negative polarity input 143485.doc -47 - 201031180 Switching between terminals' Even if the expected value memorized by the decision circuit 3 is "H" level or "L" level, the defect of the dac circuit 8 can be detected. By adding 1 to the value of the counter m, the above steps S62 to S68 are repeated until the value of the counter m becomes η (S69, S70). (Self-repair) Next, with reference to Fig. 24, in the case where the determination flag 4 has a "Η" flag, in other words, in the above-described operation confirmation test 5, the determination circuit 3 determines that the DAC circuits 8-1 to 8- Repair when any of η is defective © Explain. Fig. 24 is a flowchart showing the procedure of self-repairing by switching between the DAC circuit 8 determined to be defective and the standby DAC circuit 28. The determination circuit 3 sets the % flag when it is determined that the DAC circuit 8 is defective. Output to decision flag 4. Further, the "decision flag 4" is input from the "H" flag of the decision circuit 3 and is stored inside itself. Here, the control circuit detects whether or not the "H" is recorded in the determination flag 4 (S7i). When the control circuit detects that the determination flag 4 does not memorize "H", the process proceeds to π. On the other hand, when the control circuit detects that the determination flag 4 has % memory: the determination flag 4·1, The number of "H" flags remembered by each is complex: wide. Here, in the case where it is determined that the flag number of the "H" stored in the flag 4 is plural, the number of flags of the "H" memorized in the flag flag 4 is determined to be S73. On the other hand, in the case where the processing (S72) e and the number of S74 are -, the transition flag MM corresponds to the judgment flag 4 of the memory "H" flag. 143485.doc •48· 201031180 The DAC circuit 8 is switched to the processing of the preliminary DAC circuit 28 (S74). First, when the switching sequence between the defective DAC circuit 8 and the prepared DAC circuit 28 is described, the determination flag 4-1 corresponding to the liquid crystal driving signal output terminal ◦UT1 is stored as "Η". Flagkeeper. The determination flag 4-1 outputs the output signal of the Fiagl which becomes the "Η" level to the switches 2c and 2d. According to the output signal of Flagl, the "η" level has been entered.

k號之開關2c成為OFF,開關2d成為ON。藉此,開關2C將 來自運算放大器1_1之輸出端與液晶驅動用信號輸出端子 ουτι之連接斷開。另一方面,開關2d將輸入至取樣電路 6-1之STR1信號輸出至取樣電路26。藉此,與液晶驅動用 信號輸出端子OUT1相對應之灰階資料亦儲存於取樣電路 26中。進而,開關2d將運算放大器21之輸出端與液晶驅動 用信號輸出端子〇UT1連接。如上所述,根據來自判定旗 標4-1之Flagl之輸出信號,開關仏及24進行切換,藉此將 不良之DAC電路8-1切換為預備之DAC電路28。 其-人,對S73之處理進行說明。於判定旗標4所記憶之 「H」旗標數為複數個之情形時,考慮有預備之DAC電路 28可能為不良。因此’於奶中,控制電路使判定旗標*所 »己隱之旗;^全部成為「L」旗標後,移行至奶之處理。其 人於S71中判定為_(否)之情形時,於⑺之處理後或於 S74之處理後’控制電路將⑽信號切換為「[」,將㈣b 信號切換為「Hj|,移行至一般動作(Μ)。 如上所述,糟由進行動作確認測試卜5及自我修復之處 理,積體電路10可將不良之峨電路切換為預備之DAC電 143485.doc -49- 201031180 路28。進而,第!實施形態中,包含與預備之電路u 相對應之預備之取樣電路26及保持電路27。因此,不僅於 DAC電路8存在不良之情形時,而且於取樣電路6或保持電 路7存在不良之情形時,亦可切換為預備之取樣電路%及 保持電路28。 其次,以下參照圖25,對自搭載有積體電路⑺之顯示裝 置之電源接通起至進行動作確認測試後進 的順序進行說明。圖25係表示自顯示裝置之電源2 = 進行動作確認測試後移行至一般動作為止之處理順序的流 程圖。 如該圖所示,首先,將顯示裝置接通電源,使積體電路 10初始化,藉此判定旗標4全部成為「L」旗標(S8l)。然 後,控制電路使test信號為「H」,使^以B信號為 後,將積體電路10切換為動作確認測試之狀態(S82卜接 著’控制電路及積體電路10進行上述動作確認測試 (S83)。進而,控制電路對全部動作確認測試丨〜5是否結束 進行確認,將成為不良之電路切換為預備之電路後,移行 至一般動作(S84)。 (運算放大器1之動作確認) 上述動作確認測試係以運算放大器丨不存在不良為前 提。然而’運算放大器1中亦存在產生不良之可能性。因 此,本實施形態中’於進行上述動作確認測試之前,宜進 行運算放大器1之動作確認。因此,以下參照圖26,亦對 運算放大器1之動作確認進行說明。圖26係表示運算放大 143485.doc -50- 201031180 器1及用於運算放大器丨之動作確認之周邊電路之構成的說 明圖。 如該圖所示,於輸入來自DAC電路8之輸出與輸入特定 之電壓之間進行切換的開關S5連接於運算放大器1之正極 性輸入端子《進而,於兩個特定之電壓Vrefl及Vref2之間 進行切換之開關S3連接於開關S5之B侧(特定電壓之輸入 側)。另一方面’於輸入用以進行來自運算放大器1之負反 ❹ 饋之運算放大器1之輸出與輸入特定之電壓之間進行切換 的開關S6連接於運算放大器1之負極性輸入端子。進而, 於兩個特定之電壓Vrefl及Vref2之間進行切換之開關以連 接於開關S4之B侧(特定電壓之輸入側)。 其次’對運算放大器1之一般動作進行說明。於運算放 大器1之一般動作時,使開關S5位於A側(DAC電路8之輸出 側)’使開關S6位於A側’藉此運算放大器i作為電壓隨動 器之電路進行動作。 ❹ 其次’以下對用以進行運算放大器1之動作確認之順序 進行說明。首先,將開關51及82切換至b側。藉此,不存 在運算放大器1之負反饋,而運算放大器1作為比較器進行 動作。然後’將開關S3及S4切換至A側。藉此,運算放大 器1之正極性輸入端子輸入Vrefl,負極性輸入端子輸入 Vref2。於此,Vrefl及Vref2為預先生成之電壓,且使 vrefl之電壓值為較Vref2之電壓值更大之值。再者,使 Vref 1與Vref2之電壓值之差為較運算放大器1之輸入輪出偏 移值更大之值。此時,與輸入至負極性輸入端子之Vref2 I43485.doc -51- 201031180 相比,輸入至正極性輸入端子之Vrefl2電壓較高因此 運异放大器1輸出「H」位準之信號。判定電路3檢測出來 自該運算放大器1之輸出後,與自身所記憶之期望值rH」 進行比較。於此,於運算放大器丨之輸出為「L」位準之情 形時,判定電路3可判定為運算放大器〖存在不良。再者, 判定電路3所記憶之期望值係自控制電路提供。 其次,亦考慮有運算放大器以比較器動作存在不良, 而運算放大器!僅能輸出「H」位準之情形。因此,將開關 S3及S4切換至B側,將Vref2輸入至運算放大器丨之正極性^ 輸入端子,將Vrefl輸入至負極性輸入端子。此時,與輸 入至正極性輸入端子之力扣相比,輸入至負極性輸入端 子之憾之電壓值更高’因此運算放大器i輸出「L」位 準。判定電路3檢測出來自該運算放大器!之輸出後與自 身所記憶之期望值「L」進行比較。於此,於運算放大器丨 之輸出為H」位準之情形時,判定電路3可判定為運算放 大器1存在不良再者,開關S3〜S6係藉由控制電路進行切The switch 2c of k is turned OFF, and the switch 2d is turned ON. Thereby, the switch 2C disconnects the output terminal of the operational amplifier 1_1 from the liquid crystal driving signal output terminal ουτι. On the other hand, the switch 2d outputs the STR1 signal input to the sampling circuit 6-1 to the sampling circuit 26. Thereby, the gray scale data corresponding to the liquid crystal driving signal output terminal OUT1 is also stored in the sampling circuit 26. Further, the switch 2d connects the output terminal of the operational amplifier 21 to the liquid crystal driving signal output terminal 〇UT1. As described above, the switches 24 and 24 are switched in accordance with the output signal of Flagl from the decision flag 4-1, whereby the defective DAC circuit 8-1 is switched to the standby DAC circuit 28. The person-to-person describes the processing of S73. When it is determined that the number of "H" flags stored in the flag 4 is plural, it is considered that the prepared DAC circuit 28 may be defective. Therefore, in the milk, the control circuit makes the flag of the judgment flag * the hidden flag; ^ all becomes the "L" flag, and then moves to the milk processing. When the person determines _ (No) in S71, after the processing of (7) or after the processing of S74, the control circuit switches the (10) signal to "[", and switches the (4)b signal to "Hj|, and moves to the general Action (Μ) As described above, the process of confirming the test and the self-repair is performed, and the integrated circuit 10 can switch the defective circuit to the prepared DAC 143485.doc -49 - 201031180. In the third embodiment, the preliminary sampling circuit 26 and the holding circuit 27 corresponding to the preparatory circuit u are included. Therefore, not only when the DAC circuit 8 is defective, but also when the sampling circuit 6 or the holding circuit 7 is defective. In this case, it is also possible to switch to the preparatory sampling circuit % and the holding circuit 28. Next, with reference to Fig. 25, the sequence from the power-on of the display device in which the integrated circuit (7) is mounted to the operation confirmation test is performed. Fig. 25 is a flow chart showing the processing procedure from the power supply 2 of the display device = moving to the normal operation after the operation confirmation test. As shown in the figure, first, the display device is powered on. The integrated circuit 10 is initialized, thereby judging flag 4 all become "L" flag (S8l). Then, the control circuit sets the test signal to "H", and switches the integrated circuit 10 to the state of the operation confirmation test after the B signal (S82), and then the control circuit and the integrated circuit 10 perform the above-described operation confirmation test ( S83) Further, the control circuit checks whether or not all the operation check tests 丨5 have been completed, and switches the circuit that has become defective to the standby circuit, and then moves to the normal operation (S84). (According to the operation of the operational amplifier 1) The verification test is based on the assumption that the operational amplifier is not defective. However, there is a possibility that the operational amplifier 1 is defective. Therefore, in the present embodiment, it is preferable to confirm the operation of the operational amplifier 1 before performing the above-described operation confirmation test. Therefore, the operation confirmation of the operational amplifier 1 will be described below with reference to Fig. 26. Fig. 26 is a view showing the configuration of the operational amplifier 143485.doc -50- 201031180 and the configuration of the peripheral circuit for confirming the operation of the operational amplifier 丨. As shown in the figure, switching between inputting the output from the DAC circuit 8 and inputting a specific voltage is shown. S5 is connected to the positive input terminal of the operational amplifier 1. Further, the switch S3 for switching between the two specific voltages Vref1 and Vref2 is connected to the B side of the switch S5 (on the input side of the specific voltage). A switch S6 for switching between an output of the operational amplifier 1 for negative feedback from the operational amplifier 1 and an input specific voltage is connected to the negative input terminal of the operational amplifier 1. Further, for two specific voltages The switch for switching between Vref1 and Vref2 is connected to the B side of the switch S4 (on the input side of the specific voltage). Next, the general operation of the operational amplifier 1 will be described. When the operational amplifier 1 is in general operation, the switch S5 is placed. The A side (the output side of the DAC circuit 8) 'Os the switch S6 is on the A side' is operated by the operational amplifier i as a circuit of the voltage follower. ❹ Next, the following is the procedure for confirming the operation of the operational amplifier 1. First, the switches 51 and 82 are switched to the b side. Thereby, there is no negative feedback of the operational amplifier 1, and the operational amplifier 1 is used as a comparator. Then, the switches S3 and S4 are switched to the A side. Thereby, the positive input terminal of the operational amplifier 1 is input with Vref1, and the negative input terminal is input with Vref2. Here, Vref1 and Vref2 are pre-generated voltages, and vrefl is made. The voltage value is greater than the voltage value of Vref 2. Further, the difference between the voltage values of Vref 1 and Vref2 is greater than the input wheel offset value of the operational amplifier 1. At this time, Vref2 I43485.doc -51- 201031180 of the negative input terminal is higher than the voltage of Vrefl2 input to the positive input terminal, so the amplifier amplifier 1 outputs a signal of "H" level. The determination circuit 3 detects the output from the operational amplifier 1 and compares it with the expected value rH" memorized by itself. Here, when the output of the operational amplifier 为 is "L" level, the determination circuit 3 can determine that the operational amplifier is defective. Furthermore, the expected value memorized by the decision circuit 3 is provided from the control circuit. Secondly, it is also considered that there is a fault in the operation of the comparator by the operational amplifier, and the operational amplifier! can only output the "H" level. Therefore, switches S3 and S4 are switched to the B side, Vref2 is input to the positive polarity input terminal of the operational amplifier ,, and Vref1 is input to the negative polarity input terminal. At this time, the voltage value input to the negative polarity input terminal is higher than the force button input to the positive polarity input terminal. Therefore, the operational amplifier i outputs the "L" level. The decision circuit 3 detects from the operational amplifier! After the output, it is compared with the expected value "L" memorized by itself. Here, when the output of the operational amplifier 为 is at the H" level, the determination circuit 3 can determine that the operational amplifier 1 is defective, and the switches S3 to S6 are cut by the control circuit.

換。 Qchange. Q

[實施形態2] 其次,以下參照圖27〜圖33,對本發明之第2實施形態進 行說明。再者,實施形態2之說明係僅對與實施形態丨不同 - 之地方進行說明,對於重複之地方省略其說明。 首先,對實施形態1與實施形態2之不同進行簡單說明。 實施形態!係於運算放A器】中將DAC電路8之輸出與預備 之說電路28之輸出進行比較。另—方面,實施形態2係 143485.doc •52- 201031180 將彼此鄰接之兩個DAC電路8設為一組而於運算放大器1中 對來自彼此之DAC電路8之輸出進行比較。 (顯示驅動用半導體積體電路20之構成) 參照圖27對本發明之顯示驅動用半導體積體電路(以下 稱作積體電路)20之構成進行說明。圖27係表示積體電路 2〇(顯示裝置驅動用之積體電路)之構成之說明圖。[Embodiment 2] Next, a second embodiment of the present invention will be described below with reference to Figs. 27 to 33. In the description of the second embodiment, only the differences from the embodiment will be described, and the description of the overlapping portions will be omitted. First, the differences between the first embodiment and the second embodiment will be briefly described. Implementation form! The output of the DAC circuit 8 is compared to the output of the ready circuit 28 in the arithmetic amplifier. On the other hand, the second embodiment is 143485.doc • 52- 201031180 The two DAC circuits 8 adjacent to each other are grouped and the outputs of the DAC circuits 8 from each other are compared in the operational amplifier 1. (Configuration of Display Driving Semiconductor Integrated Circuit 20) A configuration of the display driving semiconductor integrated circuit (hereinafter referred to as integrated circuit) 20 of the present invention will be described with reference to Fig. 27 . Fig. 27 is an explanatory view showing the configuration of an integrated circuit 2 (an integrated circuit for driving a display device).

運算放大器1將來自串聯連接於自身之DAC電路8之輸出 輸入至自身之正極性輸入端子。進而,運算放大器〖將來 自串聯連接於自身所鄰接之運算放大器之DAC電路8之輸 出輸入至自身之負極性輸入端子。具體而言,如該圖所 不,運算放大器1-1將來自DAC電路8-1之輸出輸入至自身 之正極性輸入端子,將來自DAC電路8_2之輸出經由開關 2a而輸入至自身之負極性輸入端子。同樣地,運算放大器 1-2將來自DAC電路8_2之輸出輸入至自纟之正極性輸入端 子,將來自DAC電路8-1之輸出經由開關2&而輸入至自身 之負極性輸人端子。又,積體電路2〇包含預備之取樣電路 26A及26B、預備之保持電路27A及27B、預備之電路 28A及28B、運算放大器21八及21B、以及上拉與下拉電路 25A 及 25B。運篡姑 士 ^ 逆异敌大器21A中,亦將來自DAC電路28A之 輸出輸入至自身之正;_The operational amplifier 1 inputs the output from the DAC circuit 8 connected in series to its own positive input terminal. Further, the operational amplifier is to be input from the output of the DAC circuit 8 connected in series to its own operational amplifier to its negative input terminal. Specifically, as shown in the figure, the operational amplifier 1-1 inputs the output from the DAC circuit 8-1 to its own positive input terminal, and inputs the output from the DAC circuit 8_2 to its own negative polarity via the switch 2a. Input terminal. Similarly, the operational amplifier 1-2 inputs the output from the DAC circuit 8_2 to its own positive input terminal, and the output from the DAC circuit 8-1 is input to its own negative input terminal via the switch 2&. Further, the integrated circuit 2A includes the preliminary sampling circuits 26A and 26B, the preliminary holding circuits 27A and 27B, the preparatory circuits 28A and 28B, the operational amplifiers 21 and 21B, and the pull-up and pull-down circuits 25A and 25B. In the reverse of the enemy, the output from the DAC circuit 28A is also input to itself;

極陡輸入端子,將來自DAC電路28B 之輸出㈣開關2a而輸入至自身之負極性輸入端子。進 運算放大器21B中,亦將來自DAC電路28B之輸出輸 入至自S之正極性輸人端子,將來自dac電路激之輸出 經由開關2a而輸入至自身之負極性輸入端子。 143485.doc -53- 201031180 (積體電路20之一般動作) 於積體電路20之一般動作中,與實施形態i同樣地,控 制電路使test信號成為「L」位準,使test 8信號成為「H」 位準β藉此,DAC電路8將自保持電路7輸入之灰階資料轉 換為灰階電壓信號並作為灰階電壓輸出至運算放大器1之 正極性輸入端子。於此,因開關21?為〇Ν,故運算放大器1 之輸出成為向自身之負極性輸入端子之負反饋。藉此,運 算放大器1作為電壓隨動器進行動作。藉此,運算放大器i 將來自DAC電路8之灰階電壓加以緩衝後輸出至對應之各 輸出端子OUT1〜OUTn。 (動作確認測試之切換)The extremely steep input terminal is input from the output (four) switch 2a of the DAC circuit 28B to its own negative input terminal. In the operational amplifier 21B, the output from the DAC circuit 28B is also input to the positive input terminal from S, and the output from the dac circuit is input to its own negative input terminal via the switch 2a. 143485.doc -53- 201031180 (General operation of the integrated circuit 20) In the general operation of the integrated circuit 20, the control circuit sets the test signal to the "L" level and the test 8 signal becomes the same as in the embodiment i. The "H" level β is thereby used, and the DAC circuit 8 converts the gray scale data input from the holding circuit 7 into a gray scale voltage signal and outputs it as a gray scale voltage to the positive polarity input terminal of the operational amplifier 1. Here, since the switch 21? is 〇Ν, the output of the operational amplifier 1 becomes negative feedback to its own negative input terminal. Thereby, the operational amplifier 1 operates as a voltage follower. Thereby, the operational amplifier i buffers the gray scale voltage from the DAC circuit 8 and outputs it to the corresponding output terminals OUT1 to OUTn. (switching of action confirmation test)

向積體電路20之動作確認測試之切換中,控制電路使 test信號成為「η」位準,使化“3信號成為「[」位準。首 先,因開關2a為ON,故將TSTR1信號輸入至取樣電路26A 及第奇數個取樣電路6(取樣電路6_丨、6-3.....6-0-1))。 進而,將TSTR2信號輸入至取樣電路26B及第偶數個取樣 電路6(取樣電路6_2、6_3、…、㈣。進而,因開關2&成 為ON,故對第奇數個運算放大器〗之負極性輸入端子輸入 鄰接之來自第偶數個DAC電路8之輸出,對第偶數個運算 放大器1之負極性輸入端子輸入來自鄰接之第奇數個dac 電路8之輸出。又,因test B信號為「L」位準,故開關⑽ OFF。藉此,將運算放A||1之自身之輸出向負極性輸入 端子的負反鑌pm结果,運算放大器i成為將來自串 聯連接於自身之DAC電路8之輸出與來自鄰接之賣電路8 143485.doc -54- 201031180 之輸出進行比較的比較器。 (實施形態2之動作確認測試1) 以下參照圖28對第2實施形態之動作確認測試之 丨頁序進行說明。圖28係表示第2實施形態之動作確認 測試之第一順序之流程圖。 ❹In the switching of the operation check test of the integrated circuit 20, the control circuit sets the test signal to the "η" level, and makes the "3 signal" the "[" level. First, since the switch 2a is ON, the TSTR1 signal is input to the sampling circuit 26A and the odd-numbered sampling circuits 6 (sampling circuits 6_丨, 6-3.....6-0-1). Further, the TSTR2 signal is input to the sampling circuit 26B and the even-numbered sampling circuits 6 (sampling circuits 6_2, 6_3, ..., (4). Further, since the switch 2& turns ON, the negative input terminal of the odd-numbered operational amplifiers Input the output from the even-numbered DAC circuits 8 and input the output from the adjacent odd-numbered dac circuits 8 to the negative input terminals of the even-numbered operational amplifiers 1. Also, since the test B signal is at the "L" level Therefore, the switch (10) is turned off. Thereby, the negative output of the output of the operation A||1 is turned to the negative input terminal, and the operational amplifier i becomes the output from the DAC circuit 8 connected in series to itself. Comparator for comparing the outputs of the adjacent selling circuits 8 143485.doc -54 - 201031180 (Operation check test 1 of the second embodiment) The following describes the page sequence of the operation check test of the second embodiment with reference to Fig. 28 . Fig. 28 is a flow chart showing the first procedure of the operation confirmation test in the second embodiment.

。首先,控制電路使test信號成為「H」位準使“Μ B信 Y成為乙」位準(S101)。藉此,運算放大器丨作為比較器 進仃動作(S102)。然後,控制電路將第奇數個判定電路 3(判疋電路3-1、3_3.....3-(n-l))之期望值設定為rL」 〇 s > —. 方面,控制電路將第偶數個判定電路3 (判定電 路3-2 ' 3-4.....3-n)之期望值設定為「H」位準。 繼而,控制電路將自身所包含之計數器爪初始化為 〇(si〇3)。進而,控制電路使TSTR1有效後,取樣電路 及第奇數個取樣電路6經由資料匯流排而輸入灰階m之灰階 資料。又,控制電路使TSTR2有效後,取樣電路26B及第 偶數個取樣電路6經由資料匯流排而輸入灰階爪+丨之灰階 資料(S104)。 於此若考慮δ十數器m之值為〇之情形,則第奇數個運 算放大器1將灰階〇之灰階電壓,自串聯連接於自身之第奇 數個DAC電路8輸入至自身之正極性輸入端子。又,第奇 數個運算放大器1將灰階1之灰階電壓,自鄰接之第偶數個 DAC電路8輸入至自身之負極性輸入端子。於此,若連接 於運算放大器1之兩個輸入端子之DAC電路8為正常,則第 奇數個運算放大器1之輸出為「L」。另一方面,第偶數個 143485.doc -55- 201031180 運算放大器1將灰階1之灰階㈣,自串聯連接於自身之第 偶數個DAC電路8輸入至自身之正極性輸入端子。又,第 偶數個運算放大器1將灰階〇之灰階電壓,自鄰接之第奇數 個DAC電路8輸人至自身之負極性輸人端子。於此,若連 接於運算放大器1之兩個輸入端子之DAC電路8為正常,則 第偶數個運算放大器輸出為「H」。 然後,判定電路3對來自運算放大器i之輸出信號之位準 是否與自身所記憶之期望值一致進行判定(sl〇5)。於此, 於來自運算放大器丨之輸出與期望值不同之情形時,判定 電路3將「H」旗標輸出至判定旗標4(sl〇6)。將計數 值逐增加而反覆進行以上之S104〜S 106之處理直至計數 器m之值成為卜1為止(s1〇7、s1〇g)。 (實施形態2之動作確認測試2) 其次,以下參照圖29對第2實施形態之動作確認測試之 第二順序進行說明。圖29係表示第2實施形態之動作確認 測試之第二順序之流程圖。 第2實施形態中之動作確認測試2係將第2實施形態中之 動作確認測試1中之第奇數個與第偶數個灰階之電壓關係 顛倒過來的動作確認,除此之外,與第2實施形態中之動 作確遇測試相同。 首先,控制電路將第奇數個判定電路3之期望值設定為 H」另一方面,將第偶數個判定電路3之期望值設定為 L」進而’控制電路將自身所包含之計數器瓜初始化為 〇(Siii) 〇 143485.doc 201031180 接著,控制電路使TSTR1有效後,取樣電路26A及第奇 數個取樣電路6經由資料匯流排而輸入灰階m+1之灰階資 料。又’控制電路使TSTR2有效後,取樣電路26B及第偶 數個取樣電路6經由資料匯流排而輸入灰階m之灰階資料 * (S112)。 於此’若考慮計數器m之值為〇之情形,則第奇數個運 算放大器1將灰階1之灰階電壓,自串聯連接於自身之第奇 參 數個DAC電路8輸入至自身之正極性輸入端子。又,第奇 數個運算放大器1將灰階〇之灰階電壓,自鄰接之第偶數個 DAC電路8輸入至自身之負極性輸入端子。於此,若連接 於運算放大器1之兩個輸入端子之DAC電路8為正常,則第 奇數個運算放大器!之輸出為rH」位準。另一方面,第偶 數個運算放大器1將灰階〇之灰階電壓,自串聯連接於自身 之第偶數個DAC電路8輸入至自身之正極性輸入端子。 又’第偶數個運算放大器1將灰階1之灰階電壓,自鄰接之 ❹ 第奇數個DAC電路8輸入至自身之負極性輸入端子。於 此,若相連接於運算放大器1之兩個輸入端子之DAC電路8 為正常’則第偶數個運算放大器1之輸出為rLj位準。 其次’判定電路3將來自運算放大器丨之輸出之位準與自 身所記憶之期望值進行比較(S113)n於此,於來自運算放 大器1之輸出與期望值不同之情形時,判定電路3將「H」 旗標輸出至判定旗標4。將計數器瓜之值逐一增加而反覆進 行以上之SU2〜SH4之處理直至計數器瓜之值成為卜〗為止 (S115 、 S116)。 143485.doc •57- 201031180 (實施形態2之動作確認測試3) 其次,以下參照圖3〇對第2實施形態之動作確認測試之 第三順序進行說明13〇係表示第2實施形態之動作確認 測試之第三順序之流程圖。 如第1實施形態之動作確認測試3中所說明般存在如下情 形:於DAC電路8中存在輸出端成為開路之不良之情形 時運算放大器1會持續保持藉由已執行之確認測試而輸 入至運算放大器1之灰階電壓,從而於實施形態2之動作確 認測試1及2中無法檢測出不良。 首先,與動作確認測試1〜2同樣地,控制電路將自身所 包含之計數器m之值初始化為〇(sl21)。又,積體電路2〇 中,將上拉與下拉電路5連接於DAC電路8之正極性輸入端 子。於此,控制電路以將第奇數個運算放大器丨之正極性 輸入端子上拉之方式控制上拉與下拉電路5(S122)。其結 果,於第奇數個DAC電路8之輸出端為開路之情形時,對 第奇數個運算放大器丨之正極性輸入端子輸入較高之電 壓。另一方面,控制電路以將第偶數個運算放大器丨之正 極性輸入端子下拉之方式控制上拉與下拉電路5(s 122)。 其結果,於第偶數個DAC電路8之輸出端成為開路之情形 時,對第偶數個運算放大器1之正極性輸入端子輸入較低 之電壓。 其後之S123-S127之處理與第2實施形態之動作確認測試 1相同’因此於此省略其說明。 (實施形態2之動作確認測試4) 143485.doc -58- 201031180 其次,以下參照圖31對第2實施形態之動作確認測試之 第四順序進行說明。圖31係表示第2實施形態之動作確認 測試之第四順序之流程圖。 , 於此之目的在於檢測與上述動作確認測試3相同之不 良。首先,與至此為止之動作確認測試同樣地,控制電路 將自身所包含之計數器m之值初始化為〇(S13l)。然後控 制電路以將第奇數個運算放大器1之正極性輸入端子下拉 Φ 之方式控制上拉與下拉電路5(S122)。其結果,於第奇數 個DAC電路8之輸出端成為開路之情形時,對第奇數個運 算放大器1之正極性輸入端子輸入較低之電壓。另一方 面,控制電路以將第偶數個運算放大器丨之正極性輸入端 子上拉之方式控制上拉與下拉電路5(S122)。其結果於 第偶數個DAC電路8之輸出端成為開路之情形時,對第偶 數個運算放大益1之正極性輸入端子輸入較高之電壓。 其後之S133〜S137之處理與第2實施形態之動作確認測試 ❹ 2相同,因此於此省略其說明。 (實施形態2之動作確認測試5) 其人以下參照圖3 2對第2實施形態之動作確認測試之 第五順序進行說明。圖32係表示第2實施形態之動作確認 測試之第五順序之流程圖。 如第1實施形態之動作確認測試5中已說明般,於DAC電 路8中存在產生自身中之鄰接之兩個灰階短路之不良的情 形。第2實施形態之動作確認測試5之目的在於檢測此種不 良。 143485.doc -59- 201031180 如該圖所示,首先,控制電路將自身所包含之計數器m 之值初始化為0(S141)。其次,使TSTR1及TSTR2有效,進 而’經由資料匯流排將灰階m之灰階資料輸入至取樣電路 26A、取樣電路26B以及取樣電路6。進而,藉由使資料 LOAD信號有效’第奇數個DAC電路8及第偶數個DAC電路 8輸出相同之灰階m之灰階電壓(s 142)。然後,控制電路經 由未圖示之開關而使運算放大器1之正極性輸入端子與負 極性輸入端子短路。藉由使該運算放大器1之正極性輸入 端子與負極性輸入端子短路,而使得運算放大器1之正極 性輸入端子及負極性輸入端子輸入相同之灰階電壓。其 次’判定電路3將使運算放大器1之正極性輸入端子與負極 性輸入端子短路之情形時的運算放大器之輸出之位準作為 期望值加以記憶(S143)。 繼而’使未圖示之開關成為OFF,而解除運算放大器i 之正極性輸入端子與負極性輸入端子之短路。此時,對第 奇數個運算放大器1之正極性輸入端子,輸入來自串聯連 接於自身之第奇數個DAC電路8之灰階m之灰階電壓,對負 極性輸入端子輸入來自鄰接於自身之第偶數個DAC電路8 之灰階m之灰階電壓。另一方面,對第偶數個運算放大器J 之正極性輸入端子,輸入來自串聯連接於自身之第偶數個 DAC電路8之灰階m之灰階電壓’對負極性輸入端子輸入來 自鄰接於自身之第奇數個DAC電路8之灰階m之灰階電壓。 於此’判定電路3將自身所記憶之期望值與來自運算放大 器1之輪出進行比較(S144)。進而,於來自運算放大器丄之 143485.doc -60· 201031180 輸出,、自身所5己憶之期望值不同之情形時,判定電路3將 「H」旗標輸出至判定旗標4。進而,判定旗標㈣自判定 電路3輸入之「H」旗標記憶於自身之内部。 . 、'後控制電路使用未圖示之開關,將來自DAC電路8 《輸人至運算放大器!之正極性輸人端子之信號、與輸入 至負極性輸入端子之信號加以調換(S146)。之後,進行與 S147之處理相同之處理(S147)。又,與㈣同樣地,於來 ❿ 自運τ放大器1之輸出與自身所記憶之期望值不同之情形 時’判定電路3將「H」輸出至判定旗標4(S148)。 以使計數器m之值增加丨之方式而反覆進行以上之 S142 S148之處理直至計數器爪之值成為n為止(si49、 S150) 〇 (實施形態2之自我修復) 其次,以下參照圖33 ’對在判定旗標4記憶有「H」之情 形時、換言之於上述動作確認測試丨〜5中判定電路3判定為 ❹ DAC電路8之任-者存在*良之情料的修復進行說明。 圖33係表tf於判定為不良之DA(:電路㈣預備之電路 28A及28B之間進行切換而進行自我修復之順序的流程. 圖。 f S ’控制電路對判定旗標4是否記憶彳「H」進行檢測 (S15D。於控制電路檢測出判定旗標4未記憶「H」之情形 時’移打至S153之處理。另一方面,於控制電路檢測出記 憶有「H」之判定旗標4之情形時,將與記憶有「h」之判 疋旗標4相對應之D AC電路8切換為預備之DAC電路2 8 A或 143485.doc -61· 201031180 28B。於此,實施形態2中,因將兩個DAc電路8作為一組 進行動作確認,故即便判定旗標4記憶有「H」旗標,仍無 法判斷一組中之哪一個DAC電路為不良。因此,實施形態 2中,將與記憶有「H」之判定旗標4相對應之一組之DAc 電路8、換言之第奇數個及第偶數個此兩個DAc電路8切換 為預備之DAC電路28A及28B(S152)。作為具體之說明,以 下設為DAC電路8-1存在不良而進行說明。 於此,於DAC電路8-1存在不良之情形時,藉由動作確 認測試1〜5,判定電路弘丨及%]均將「Η」輸出至判定旗標 4-1及4-2 ^進而,判定旗標4_丨及4_2將自判定電路3_〗及3_2 輸入之「Η」旗標輸出至開關2c及2d,使開關2c成為 OFF ’使開關2d成為ON。其結果,取樣電路26A輸入STR1 信號,取樣電路26B輸入STR2信號。藉此,取樣電路μα 自資料匯流排取得與液晶驅動用信號輸出端子OUT 1相對 應之灰階資料’又’取樣電路26B自資料匯流排取得與液 晶驅動用信號輸出端子OUT2相對應之灰階資料。進而, 因開關2c為OFF ’故將運算放大器1_1之輸出端與液晶驅動 用信號輸出端子OUT 1之連接斷開,亦將運算放大器1 _2之 輸出端與液晶驅動用信號輸出端子OUT2之連接斷開。進 而’因開關2d為ON,故運算放大器21A之輸出端連接於液 晶驅動用信號輸出端子OUT1,運算放大器21B之輸出端連 接於液晶驅動用信號輸出端子OUT2。 如上所述’將存在不良之DAC電路8及與其成對之DAC 電路8作為一組而切換為預備之DAC電路28A及28B,藉此 143485.doc • 62· 201031180 可將存在不良之DAC電路8切換為預備之DAC電路26A或 26B ° 繼而’控制電路使test信號為「L」,使test B信號為 「H」後,移行至一般動作(S153)。 [實施形態3] 以上說明之實施形態1及實施形態2中,於來自輸出電路 區塊30(參照圖2)之灰階電壓與來自預備輸出電路區塊 φ 40(參照圖2)之灰階電壓之間進行切換的切換電路60(參照 圖2)為包含於積體電路10及20中之構成,但本發明並不限 定於此,切換電路60亦可為包含於顯示面板側之構成。 以下’將於顯示面板側包含切換電路60之顯示部9〇,之 構成及動作作為本發明之第3實施形態進行說明。再者, 本實施形態中,對與實施形態丨不同之處進行說明,而對 於重複之地方省略其說明。 (顯示部90’之概略構成) 參 首先,參照圖34對本實施形態之顯示部90,之概略構成 進打說明。圖34係表示顯示部9〇,之概略構成之方塊圖。 如圖34所不,顯示部9〇,包含顯示面板8〇,、及根據自外 部輸入之灰階資料而驅動顯示面板8〇,之積體電路丨〇|(驅動 .電路)。於此,積體電路1〇,中,與實施形態丨之積體電路 不同之方面在於未包含切換電路6〇,其他構成為與積體電 路10相同之構成X,顯不面板8〇,中,與實施形態1之顯 不面板80不同之方面在於包含切換電路⑼,其他構成為與 顯示面板80相同之構成。 143485.doc •63· 201031180 (顯示部90,之構成) 其次,參照圖35對本實施形態之顯示部90,之更詳細之 構成進行說明。圖35係表示積體電路1〇,之構成之方塊圖。 如圖35所示,積體電路1〇,包含:η個取樣電路6,其自 灰階資料輸入端子(未圖示)經由資料匯流排而輸入與η個輸 出端子OUT 1〜OUTn之各自相對應之灰階資料;η個保持電 路7 ; DAC電路8,其將灰階資料轉換為灰階電壓信號;運 算放大器1’其對來自DAC電路8之灰階電壓信號具有緩衝 器電路之作用;η個判定電路3 ;以及η個上拉與下拉電路 5 ° 進而,如圖35所示’積體電路1〇,包含:根據test信號於 ON與OFF之間進行切換之複數個開關2a ;根據test B信號 於ON與OFF之間進行切換之複數個開關2b ;以及根據 LF(Low Frequency ’低頻)信號於ON與OFF之間進行切換 之複數個開關2f。再者,開關2a、2b以及2f於輸入有 「H」信號之情形時為on,於輸入有rL」信號之情形時 為OFF。進而,積體電路i〇,包含各為一個之以下電路:預 備之取樣電路26;預備之保持電路27;預備之DAC電路 28;預備之運算放大器21以及預備之輸出端子〇uT〇。 另一方面,如圖35所示,顯示面板80'包含:連接於積 體電路10’所包含之輸出端子OUT 1〜OUTn之各自之連接端 子(未圖示);判定旗標9-^9^(以下,於總稱之情形時稱 作判定旗標9);根據來自控制電路(未圖示)之^信號而於 ON與OFF之間進行切換之開關2f;根據LIMt號之反轉信號 143485.doc -64- 201031180 即LFB(Low Frequency Band,低頻帶)信號而於〇N與off 之間進行切換之開關2e ;以及根據來自判定旗標9之輸出 信號即Flag 1〜Flagn而於ON與OFF之間進行切換之開關2c 及2d。再者,開關2d、2e以及2f於輸入有Γ η」信號之情 形時為ON’於輸入有「L」信號之情形時為〇FF。又,開 關2c於輸入有「L」信號之情形時為ON,於輸入有「H」 信號之情形時為OFF。 φ 又’本實施形態中之顯示面板80'為液晶顯示面板,如 圖35所示’資料信號線SL-1〜SL-n(以下,於總稱之情形時 稱作資料信號線SL)經由開關2e及2c而連接於積體電路1〇, 之各個輸出端子out。又,數量與掃描信號線(31^之根數相 同之像素P連接於各個資料信號線SL。再者,圖35中,將 連接於資料信號線SL-1之像素P作為像素P-1,將連接於資 料信號線SL-n之像素P作為像素p-n。 (實施形態3之自我修復) • 其次,對在本實施形態之顯示部9〇,中進行動作確認測 試之結果為判定旗標4記憶有「H」旗標之情形時的自我修 復動作進行說明。再者,本實施形態中之動作確認測試之 方法與實施形態1中所述之動作確認測試丨〜5相同,因此於 此省略動作確認測試之說明。 首先,於動作確認測試卜5結束之時間點,化以信號為 H」’ test B信號成為rL」e因此,藉由開關^而將運算 放大器1與輸出端子〇UT之連接斷開。於此,於動作確認 測試1〜5結束後’控制電路輸出「H」⑽信號,並且: 143485.doc •65- 201031180 出「L」之LFB信號。藉由輸出該「h」之^信號,開關^ 成為ON ’各個判定旗標4經由各輸出端子⑽τ而連接於各 判定旗標9。進而,各個判定旗標4將自身所記憶之「H」 旗標或L」旗標作為Flagl〜Flagn,經由各輸出端子〇υτ @輸出至各判疋旗標9 〇各判定旗標9將自判定旗標4輸出 之Flagl〜Flagn記憶於自身之内部記憶體中,並且輸出至連 接於自身之開關2。及2廿。再者,於LF信號為「H」之期 間’ LFB信號成為「L」,因此各開關㈣。藉此,防 止將判定旗標4所輸出之Flag!〜Flagn輸出至資料信號線◎ 1〜SL-n,其結果判定旗標4所輸出之糾不會對像 素P產生影響。 以下,作為顯示部9〇|中之自我修復動作之詳細說明, 以與輸出端子OUT1相對應之判定旗標4_丨記憶有「H」旗 標之情形為例進行說明。 「首先,於與輸出端子OUT1相對應之判定旗標4_丨記憶有 「H」旗標之情形時,換言之於DAC電路81為不良之情形 時,判定旗標9]中自判定旗標4輸出有「H」旗標且將© 所輸出之Η」旗標§己錄於自身所包含之内部記憶體中。 再者,於此示例中,判定旗標4_2〜4_η記錄有「l」旗標。 然後,判定旗標9]將「H」旗標之FUgl輸出至連;於 自身之開關2。及2(1。藉此’連接於判定旗標9]之開關& 將輸出端子0UT1與資料信號線sl]之連接切斷,進而連^ 接於判定旗標W之開關Μ使輸出端子〇υτ〇與資料信號線 SL-i連接。另一方面’各個判定旗標9·2〜對連接^自 143485.doc -66- 201031180 身之開關2c及2d輸出「L」旗標之Flag2〜Flagn,因此連接 於判定旗標9-2〜9-n之開關2c成為ON ’連接於判定旗標9_ 2〜9-n之開關2d成為〇FF。其結果,各個資料信號線SL_ 2〜SL-n經由開關2e*連接於各個輸出端子〇υΤ2〜ουΤη。 各判定旗標9根據來自判定旗標4之Flagl〜Flagri,對連接 於自身之開關2c及2d進行切換後’控制電路輸出「L」之 LF信號,並且輸出rH」之:叩信號。藉此,使各個輸出 φ 端子0UT2〜OUTn與各個資料信號線SL-2〜SL-n連接。 接著,控制電路輸出「L」2LF信號後,輸出「L」之 test信號與「H」之test b信號,藉此資料信號線π」經由 輸出端子ουτο而連接於運算放大器21之輸出端,另一方 面,各個資料信號線SL-2〜SL-n經由輸出端子〇xjT2〜〇UTn 而連接於運算放大器W〜^。再者,連接於取樣電路Η 之開關2d根據來自判定旗標心⑴⑽而成為⑽,因此輸 入至取樣電路6-1之灰階資料(與資料信號線SL-1相對應之 • 《階資料)亦輸入至取樣電路%。其結果,與資料信號線 SL-丨相對應之灰階資料自輸出端子〇υτ〇,而代替自輸出 端子〇im輸入至資料信號線SL_卜再者,輸人至取樣電 路6及各個預備之取樣電路26之灰階資料之切換與實㈣ 態1中之動作相同,因此於此省略其詳細說明。 如上所述’顯示部90,進行自我修復動作,藉此可使用 預備之DAC電路28而代替檢測為不良之DAc電路8,將正 常之灰階電壓輸出至資料作酴綠 _ D諕線SL。再者,與實施形態丄 同樣地’本實施形態中’亦包含與預備之說電路Μ相對 143485.doc •67· 201031180 應之預備之取樣電路26及保持電路27。因此,不僅於DAC 電路8,而且於取樣電路6或保持電路7存在不良之情形 時,亦可切換為預備之取樣電路26及保持電路28。 其次’以下參照圖36 ’對顯示部90,中之自電源接通起 至進行動作確認測試後移行至一般動作為止之順序進行說 明。圖36係表示自顯示部90,之電源接通起至進行動作確認 測試後移行至一般動作為止之處理順序的流程圖。 如圖36所示,首先,顯示部90,檢測出由使用者接通電 源後,將積體電路10初始化,藉此使判定旗標4所記憶之 所有旗標成為「L」旗標(S161)。然後,控制電路使“以信 號為「H」,使test B信號為「L」後,將積體電路1〇,切換 為動作確認測試之狀態(S162)。接著,控制電路及積體電 路1〇進行上述之動作確認測試(S163)»進而,控制電路對 所有動作確認測試1〜5是否結束進行確認(s i 64)。若於該 S1 64中控制電路檢測出並非所有動作確認測試1〜$已結 束,則顯示部90,根據來自控制電路之指示,將處理移行至 S163 ’進行未結束之動作確認測試。另一方面,若於si64 中控制電路確認出顯示部90'中所有動作確認測試已結束, 則於輸出「H」之LF信號及「L」之LFB信號而檢測出成為 不良之電路(取樣電路6、保持電路7、DAC電路9、運算放 大器1)之情形時,將該不良電路切換為預備之電路(取樣電 路26、保持電路27、DAC電路29、運算放大器21)後移行 至一般動作(S165)。 再者,本實施形態中之顯示部9〇,中係作為記憶判定電 143485.doc -68 - 201031180 路3-1之判定結果即旗標之電路而包含判定旗標4及判定旗 標9的構成,但作為顯示部90'之變形例,亦可為不包含判 定旗標9、開關2f、開關2e,且判定旗標4控制開關2c及2d 之構成。此時,不需要控制開關2f及2e之LF信號及LFB信 號’另一方面,需要用以使判定旗標4與開關2c及2d連接 之配線及連接端子。 [實施形態4] 以上說明之實施形態1〜實施形態3中係積體電路與顯示 面板經由輸出端子OUT而連接之構成,但積體電路與顯示 面板不經由輸出端子OUT而成為一體之顯示裝置亦包含於 本發明之範嘴内。 以下,參照圖37,將積體電路與顯示面板成為一體之顯 示部90"作為第4實施形態進行說明。再者,本實施形態之 顯示部90"為實施形態!之顯示部90之變形例,本實施形態 中,對與實施形態1不同之處進行說明,而對重複之地方 省略其說明。 (顯示部90"之構成) 首先’參照圖37對本實施形態之顯示部9〇”之構成進行 說明。圖37係表示顯示部90"之構成之方塊圖。 如圖37所示,顯示部90”與實施形態1中所示之積體電路 10及顯示面板80並無區別,運算放大器1及21之輸出端經 由開關2b、2c以及2d而直接連接於資料信號線sl。即,本 實施形態之顯示部90"中’與實施形態1之顯示部9〇不同之 方面在於是否包含輸出端子0UT之不同,其他構成與實施 143485.doc •69- 201031180 形態1之顯示部90相同。 再者,本實施形態中,作為實施形態1之變形例進行説 明,但自不用說,實施形態2及3亦同樣地,積體電路與顯 示面板不經由輸出端子OUT而成為一體之顯示裝置亦包含 於本發明之範疇内。 (電視系統) 其次,參照圖38對包含實施形態1之顯示部90之電視系 統300進行說明。再者,圖38係表示電視系統300之構成之 方塊圖。再者,以下將電視系統300作為包含實施形態1之 顯示部90者進行說明,但本發明之電視系統並不限於此, 亦可為包含實施形態2〜4之顯示裝置而代替顯示部90之構 成。 (電視系統300之構成) 如圖38所示,電視系統300包含:天線301,其接收廣播 波;調諧器部302 ’其將接收到之廣播波解調為影像聲音 信號;信號分離部303,其將解調之影像聲音信號分離為 影像信號與聲音信號;影像信號處理部304,其將分離之 影像信號解碼為數位影像信號;顯示部9 0,其取得解瑪之^ 數位影像信號而作為灰階資料,且根據所取得之灰階資料 而於顯示面板80(參照圖2)上顯示影像;聲音信號處理部 3〇5’其將分離之聲音信號解碼為數位聲音信號;以及聲 音信號輸出部306,其將解碼之數位聲音信號轉換為類比 聲音信號後,將轉換之類比聲音信號作為聲音自揚聲器輪 出0 143485.doc •70- 201031180 (電視系統300之動作) 其次’對電視系統中之動作處理進行說明。首先, 天線301接收來自廣播台 虑 ^ ^ 播波,並將接收到之廣播波 翰出至調諧器部302。調嗜||卹,。,必 • 調為部3G2將所輸出之廣播波解調 為衫像聲音信號並輸出至信 • 刀離0P 303 Ms唬分離部303 久斤輸出之影像聲音信號分離為影像信號與聲音信號並將 广號輸出至影像信號處理部3G4及聲音信號處理部 φ K象信號處理部3。4將所輸出之影像信號解碼為數位影像 信號,並將解碼之數位影像信號作為灰階資料而輸出至顯 不部90。顯示部90使用自身所包含之顯示面板⑽而顯示輸 出之灰階資料。另一方面,聲音信號處理部3〇5將由信號 分離部303所分離之聲音信號解媽為數位聲音信號並輸出 至聲音輸出部3〇6。聲音信號輸出部306將輸出《數位聲音 信號轉換為類比聲音信號後,使用自身所包含之揚聲器而 將類比聲音信號作為聲音加以輸出。 • 再者,本發明之電視系統30〇為使用天線3〇1及調諧器部 302作為取得影像聲音信號之機構而自廣播局取得影像聲 音信號之構成,但本發明並不限於此,亦可為自記錄媒體 . 讀出記錄於該記錄媒體争之内容資料之DVD播放器等内容 . 讀取裝置、或者經由PC(個人電腦)自網際網路等取得資料 之構成。 實施形態1及實施形態4中所說明之動作確認測試及自我 修復之處理動作係於剛將液晶驅動用半導體積體電路1〇接 通電源後便進行該動作之構成,但本發明並不限於此,亦 143485.doc -71 - 201031180 了成為藉由將控制信號輸入至液晶驅動用半導體積體電路 ίο而進行上述動作之構成,且可於任意之時間點進行上述 動作。例如亦可於自顯示裝置之控制器將表示顯示之返馳 期間之信號輸入至液晶驅動用半導體積體電路〗0之時間點 上’進行動作確認測試、自我修復。 又’動作確認測試及自我修復之處理動作亦可於如下時 間點上進行’即液晶驅動用半導體積體電路1〇中構成有偵 測液晶驅動用半導體積體電路10之異常之電路,於液晶驅 動用半導體積體電路10中產生異常時進行該動作。例如亦❿ 可對自液晶驅動用半導體積體電路10輸出之信號之電流進 仃備測’並於偵測出之電流多於設定電流之情形時,進行 動作確認測試及自我修復之處理動作。 又,動作確認測試及自我修復之處理動作亦可定期進 行。例如亦可於不進行顯示之每個垂直返驰期間進行該動 作,或者於預先設定之每個累計顯示時間進行該動作。 又,動作確認測試及自我修復之處理動作亦可於進行顯 不之期間之一部分中進行。例如因液晶顯示裝置中像素記❹ 憶顯示電壓’故於顯示電壓之充電結束後,即便使液晶驅 動用半導體積體電路10之輸出成為高阻抗,顯示仍不存在 問題。於顯示期間之-部分中,使液晶骚動用半導體積體 電路10之輸出成為高阻抗,而進行動作確認測試及自我修 復之處理動作。此時’若無進行所有動作確認測試模式: 時間’則亦可W條線之顯示期間之—部分中進行例如— 種模式之判定’且亦可於—個晝面之顯示期間或顯示數個 U3485.doc -72- 201031180 晝面之期間進行。 再者,本發明之積體電路〗〇(參照圖18)為了對自身之缺 陷進行自我檢測(動作確認測試),必需將用以驅動顯示面 板8G(參照圖2)之輸出信號停止。即,積體電路1〇於自我檢 測之期間無法驅動顯示面板80。因此,積體電路10進行自 我檢測之時間必需於不會對顯示裝置之影像之顯示產生影 響的期間進行。 / φ 因此,本發明之實施形態中,作為積體電路10進行自我 檢測之期間,對積體電路10於顯示裝置之電源接通時之啟 動過程中進行自我檢測及自我修復之示例進行說明。其原 因在於:若於顯示裝置之啟動過程中,則因顯示裴置不進 订影像之顯示,故積體電路10可於不會對顯示裝置之影像 之顯示產生影響的狀態下進行自我檢測及自我修復。 如上所述,本實施形態中之積體電路10於顯示裝置之電 源接通時之啟動過程中進行檢測自身缺陷之自我檢測但 • 纟發明並不限於此,可於除顯示裝置之啟動過程中以外之 期間進行自我檢測及自我修復。 以下將除顯示裝置之啟動過程中以外之可進行自我檢 測及自我修復之期間作為實施例進行說明。 [實施例1] (於垂直返她期間之自我檢測及自我修復) 首先,作為第一實施例,於顯示裝置之垂直返驰期間 中,積體電路10可於不會對顯示裝置之影像顯示產生影響 之狀態下進行自我檢測及自我修復。以下說明其理由。 143485.doc -73- 201031180 下參3圖39(a)〜圖39(f)對輸入至顯示裝置之 之時序進抒难日日 m ° 。圖39(a)〜圖39(f)係表示輸入至液晶顯示 裝置之各信號之時序之時序圖。 圖39⑷表不自驅動顯示裝置之掃描線之掃描侧驅動電路 輸出之、;提供給顯示裝置之第-根掃描信號線之掃描信號 SCN1 ’㈣(b)表示自掃描側驅動電路輸出之、提供給顯 不裝置之第二根掃描信號線之掃描信號SCN2,該圖(e)表 示自積體電路1〇(參⑯圖18)提供給影像信號反轉電路之、 與顯不裝置之第j根資料信號線相對應之影像信號DSj,該 圖(d)表不自影像信號反轉電路提供給資料側驅動電路之、 與顯不裝置之第j根資料信號線相對應之影像信號DRVj, 該圖(e)表示提供給顯示裝置之第j根資料信號線之影像信 號DATAj ’該圖(f)表示對連接於顯示裝置中之第一根掃描 信號線與第j根資料信號線之像素所施加之驅動電壓 VDlj °又,圖39所示之時刻tl~t5之期間τν為顯示裝置之 垂直掃描期間’期間TV1為垂直返驰期間,時刻tl〜t3之期 間TH為水平掃描期間,時刻t2〜t3之期間TH1為水平返驰期 間。再者’上述影像信號反轉電路為如下電路:於每個水 平掃描期間TH及垂直掃描期間TV使來自積體電路10之影 像信號DSj之極性反轉,以使顯示裝置之各像素中之顯示 電極之極性反轉。 如圖39(a)及(b)所示,掃描側驅動電路係自第一根掃描 信號線起依序使時序延遲水平掃描期間ΊΉ,而對顯示裝 置之各掃描信號線輸出掃描信號SCN1、掃描信號 I43485.doc • 74· 201031180 SCN2.....掃描信號SCNm。又,掃描側驅動電路係於每 個垂直掃描期間TV,對顯示裝置之各掃描信號線反覆輸 出各掃描信號SCN1〜掃描信號SCNm。再者,於此,顯示 裝置包含m根掃描信號線。 將圖39(c)所示之來自積體電路1〇之影像信號DSj輸入至 影像信號反轉電路。然後,影像信號反轉電路於每個水平 掃描期間TH將影像信號DSj之極性反轉,並於每個垂直掃 φ 描期間TV將該影像信號DSj之極性反轉,而生成圖39(d)所 示之影像#號DRVj。進而,影像信號反轉電路將所生成 之衫像彳s號DRVj輸入至資料侧驅動電路。 繼而’負料側驅動電路於每個水平掃描期間TH,對來 自影像信號反轉電路之影像信號DRVj進行取樣,並將所 取樣之信號值延遲一水平掃描期間,作為圖39(e)所 不之影像信號DATAj而輸出至顯示裝置之第』根資料信號 線。 然後,於連接於第一根掃描信號線及第j根資料信 之顯示裝置之像素(以下稱作像素⑴中,藉由在時刻心2 之水平掃描期間ΤΗ之掃描信號SCN1,而將像素〖j内之TFT 導通’其結果經由第j根資料信號線,將在時刻tl〜t2之影 像L號DATAj之影像化號電壓作為驅動電壓v叫而施加至 像素lj内之顯不電極。於此’即便於時刻口〜c將像素"内 之TFT之導通斷開’對像素lj之顯示電極所施加之驅動電 壓vmj仍持續保持時刻㈣之期間之電壓位準。同樣 地於連接於第一根掃描信號線及第j根資料信號線之顯 143485.doc -75. 201031180 示裝置之像素(以下稱作像素2j)中,藉由在時刻t3〜t4之水 平掃描期間TH之掃描信號SCN2 ,而將像素2j内之TFT導 通,其結果經由第j根資料信號線,將在時刻t3〜t4之影像 k號DATAj之影像信號電壓作為驅動電壓而施加至像素 内之顯示電極。於此,亦為即便將像素勾内之TFT之導通 斷開,對像素2j之顯示電極所施加之驅動電壓仍持續保持 時刻t3〜t4之期間之電壓位準。 如上所述,即便將各像素内之TFT之導通斷開,顯示裝 置之各像素中之驅動電壓仍持續保持於TFT導通時所施加 之驅動電壓之電壓位準。藉此,掃描側驅動電路不將使各 像素之TFT導通之掃描彳§號scni〜SCNm輸出至掃描信號 線,換言之,於將各像素之TFT之導通斷開之期間即垂直 返馳期間TV1,顯示裝置無需對各像素之顯示電極施加電 壓。即,積體電路10無需輸出作為驅動電壓之根源之影像 信號DSj,而即便將積體電路1〇與顯示裝置電氣切斷,仍 不會對顯示裝置之影像顯示產生影響。 因此,若為顯示裝置之垂直返馳期間,則積體電路1〇可 於不會對顯示裝置之影像顯示產生影響之狀態下進行自我 檢測及自我修復。 (積體電路10全體之動作不良檢測) 本實施形態中之積體電路10所進行之檢測自身所包含之 輸出電路區塊之不良的自我檢測處理,係於與各資料信號 線相對應之各輸出電路區塊、且以各輸出電路區塊全體作° 為對象而進行之處理。藉此,該自我檢測處理需要時間。 143485.doc •76- 201031180 二’於積邀電路〗。所包含之各輪出電路區塊 之可能性之情形時’積體電路ig無需進行自、我檢 起動作不Γ:二積體電路10僅於各輸出電路區塊存在引 Μ < 之情形時,進行自我檢測處理即可。 全=:?體電路10包含動作判定電路,其對積體電路10 ^體^疋否存在動作不良之可能性,只要為僅於藉由動 ^ 判定出積體電路10之哪-處存在動作不良之情. First, the control circuit sets the test signal to the "H" level so that the "Μ B letter Y becomes B" level (S101). Thereby, the operational amplifier 丨 acts as a comparator (S102). Then, the control circuit will an odd number of decision circuits 3 (determination circuits 3-1, 3_3. . . . . The expected value of 3-(n-l)) is set to rL" 〇 s > —.  In respect, the control circuit will have an even number of decision circuits 3 (decision circuit 3-2' 3-4. . . . . The expected value of 3-n) is set to the "H" level. Then, the control circuit initializes the counter claws included in itself to 〇(si〇3). Further, after the control circuit makes TSTR1 valid, the sampling circuit and the odd-numbered sampling circuits 6 input the gray scale data of the gray scale m via the data bus. Further, after the control circuit makes TSTR2 valid, the sampling circuit 26B and the even-numbered sampling circuits 6 input the gray scale data of the gray scale claw + 经由 via the data bus (S104). Here, considering the case where the value of the δ decimator m is 〇, the odd-numbered operational amplifier 1 inputs the gray scale voltage of the gray scale , from the odd-numbered DAC circuits 8 connected in series to the positive polarity of itself. Input terminal. Further, the odd-numbered operational amplifiers 1 input the gray scale voltage of the gray scale 1 from the adjacent even number of DAC circuits 8 to its own negative polarity input terminal. Here, if the DAC circuit 8 connected to the two input terminals of the operational amplifier 1 is normal, the output of the odd-numbered operational amplifier 1 is "L". On the other hand, the even number is 143485. Doc -55- 201031180 The operational amplifier 1 inputs the gray scale (four) of the gray scale 1 from the even number of DAC circuits 8 connected in series to its own positive input terminal. Further, the even-numbered operational amplifier 1 inputs the gray scale voltage of the gray scale , from the adjacent odd-numbered DAC circuits 8 to its own negative polarity input terminal. Here, if the DAC circuit 8 connected to the two input terminals of the operational amplifier 1 is normal, the even-numbered operational amplifier outputs "H". Then, the decision circuit 3 determines whether or not the level of the output signal from the operational amplifier i coincides with the expected value memorized by itself (s1 to 5). Here, when the output from the operational amplifier 不同 is different from the expected value, the determination circuit 3 outputs the "H" flag to the determination flag 4 (s1 〇 6). The above-described processing of S104 to S106 is repeated by incrementing the count value until the value of the counter m becomes 1 (s1〇7, s1〇g). (Operation check test 2 of the second embodiment) Next, a second procedure of the operation check test of the second embodiment will be described below with reference to Fig. 29 . Fig. 29 is a flow chart showing the second sequence of the operation confirmation test in the second embodiment. The operation confirmation test 2 in the second embodiment confirms the operation in which the voltage relationship between the odd-numbered and the even-numbered gray levels in the operation confirmation test 1 in the second embodiment is reversed, and the second and the second The action in the embodiment is the same as the test. First, the control circuit sets the expected value of the odd-numbered determination circuits 3 to H". On the other hand, the expected value of the even-numbered determination circuits 3 is set to L" and the control circuit initializes the counter melon contained therein to 〇 (Siii ) 〇143485. Doc 201031180 Next, after the control circuit makes TSTR1 valid, the sampling circuit 26A and the odd-numbered sampling circuits 6 input gray scale data of gray scale m+1 via the data bus. Further, after the control circuit makes TSTR2 valid, the sampling circuit 26B and the even-numbered sampling circuits 6 input the gray scale data * of the gray scale m via the data bus (S112). Here, if the value of the counter m is considered to be 〇, the odd-numbered operational amplifiers 1 input the gray scale voltage of the gray scale 1 from the DAC circuit 8 connected in series to its own symmetrical circuit DAC circuit 8 to its own positive input. Terminal. Further, the odd-numbered operational amplifiers 1 input the gray scale voltage of the gray scale , from the adjacent even number of DAC circuits 8 to their own negative polarity input terminals. Here, if the DAC circuit 8 connected to the two input terminals of the operational amplifier 1 is normal, the odd-numbered operational amplifiers! The output is at the rH" level. On the other hand, the even-numbered operational amplifier 1 inputs the gray scale voltage of the gray scale , from the even number of DAC circuits 8 connected in series to its own positive polarity input terminal. Further, the even-numbered operational amplifier 1 inputs the gray scale voltage of the gray scale 1 from the adjacent odd-numbered DAC circuits 8 to its own negative polarity input terminal. Thus, if the DAC circuit 8 connected to the two input terminals of the operational amplifier 1 is normal', the output of the even-numbered operational amplifier 1 is the rLj level. Next, the 'decision circuit 3 compares the level of the output from the operational amplifier 与 with the expected value stored by itself (S113). Here, when the output from the operational amplifier 1 is different from the expected value, the decision circuit 3 will "H". The flag is output to the decision flag 4. The value of the counter melon is incremented one by one, and the above processing of SU2 to SH4 is repeated until the value of the counter melon becomes the same (S115, S116). 143485. Doc 57-201031180 (Operation confirmation test 3 of the second embodiment) Next, the third procedure of the operation confirmation test of the second embodiment will be described below with reference to Fig. 3A. The operation confirmation test of the second embodiment is shown. Flow chart of the third sequence. As described in the operation check test 3 of the first embodiment, when the output terminal becomes an open circuit failure in the DAC circuit 8, the operational amplifier 1 continues to be input to the operation by the executed verification test. The gray scale voltage of the amplifier 1 was confirmed in the operation confirmation tests 1 and 2 of the second embodiment. First, similarly to the operation confirmation tests 1 to 2, the control circuit initializes the value of the counter m included in itself to 〇 (s21). Further, in the integrated circuit 2, the pull-up and pull-down circuit 5 is connected to the positive input terminal of the DAC circuit 8. Here, the control circuit controls the pull-up and pull-down circuit 5 so as to pull up the positive input terminal of the odd-numbered operational amplifier ( (S122). As a result, when the output of the odd-numbered DAC circuits 8 is open, a higher voltage is input to the positive input terminals of the odd-numbered operational amplifiers. On the other hand, the control circuit controls the pull-up and pull-down circuits 5 (s 122) by pulling down the positive polarity input terminals of the even-numbered operational amplifiers 丨. As a result, when the output terminals of the even-numbered DAC circuits 8 are opened, a lower voltage is input to the positive input terminals of the even-numbered operational amplifiers 1. The subsequent processing of S123-S127 is the same as that of the operation confirmation test 1 of the second embodiment. Therefore, the description thereof is omitted here. (Action Confirmation Test 4 of Embodiment 2) 143485. Doc - 58 - 201031180 Next, the fourth procedure of the operation confirmation test of the second embodiment will be described below with reference to Fig. 31. Fig. 31 is a flow chart showing the fourth sequence of the operation confirmation test in the second embodiment. The purpose here is to detect the same defect as the above-described action confirmation test 3. First, similarly to the operation confirmation test up to this point, the control circuit initializes the value of the counter m included in itself to 〇 (S13l). Then, the control circuit controls the pull-up and pull-down circuits 5 in such a manner that the positive input terminals of the odd-numbered operational amplifiers 1 are pulled down by Φ (S122). As a result, when the output terminals of the odd-numbered DAC circuits 8 are opened, a lower voltage is input to the positive input terminals of the odd-numbered operational amplifiers 1. On the other hand, the control circuit controls the pull-up and pull-down circuits 5 in such a manner as to pull up the positive input terminals of the even-numbered operational amplifiers (S122). As a result, when the output of the even-numbered DAC circuits 8 is open, a higher voltage is input to the positive input terminal of the even-numbered operational amplifier. The subsequent processing of S133 to S137 is the same as the operation confirmation test ❹ 2 of the second embodiment, and thus the description thereof will be omitted. (Operation check test 5 of the second embodiment) The fifth sequence of the operation check test of the second embodiment will be described below with reference to Fig. 32. Fig. 32 is a flow chart showing the fifth sequence of the operation confirmation test in the second embodiment. As described in the operation check test 5 of the first embodiment, the DAC circuit 8 has a defect in which two gray-scale short circuits adjacent to each other are generated. The purpose of the operation confirmation test 5 of the second embodiment is to detect such a defect. 143485. Doc -59- 201031180 As shown in the figure, first, the control circuit initializes the value of the counter m included in itself to 0 (S141). Next, TSTR1 and TSTR2 are made valid, and the gray scale data of the gray scale m is input to the sampling circuit 26A, the sampling circuit 26B, and the sampling circuit 6 via the data bus. Further, by making the data LOAD signal valid, the odd-numbered DAC circuits 8 and the even-numbered DAC circuits 8 output the gray scale voltage (s 142) of the same gray scale m. Then, the control circuit short-circuits the positive polarity input terminal of the operational amplifier 1 and the negative polarity input terminal via a switch (not shown). By short-circuiting the positive input terminal of the operational amplifier 1 and the negative input terminal, the same gray scale voltage is input to the positive input terminal and the negative input terminal of the operational amplifier 1. The second determination circuit 3 stores the level of the output of the operational amplifier when the positive polarity input terminal of the operational amplifier 1 is short-circuited with the negative polarity input terminal as an expected value (S143). Then, the switch (not shown) is turned OFF, and the short circuit between the positive input terminal and the negative input terminal of the operational amplifier i is released. At this time, the gray-scale voltage of the gray scale m from the odd-numbered DAC circuits 8 connected in series to the odd-numbered input terminals of the odd-numbered operational amplifiers 1 is input, and the input to the negative-polarity input terminal is adjacent to the first The gray scale voltage of the gray scale m of an even number of DAC circuits 8. On the other hand, for the positive input terminal of the even-numbered operational amplifier J, the gray-scale voltage 'from the gray-scale m of the even-numbered DAC circuits 8 connected in series is input', and the input to the negative-polarity input terminal is adjacent to itself. The gray scale voltage of the gray scale m of the odd number of DAC circuits 8. Here, the decision circuit 3 compares the expected value stored by itself with the round-out from the operational amplifier 1 (S144). Furthermore, from the operational amplifier 丄 143485. Doc -60· 201031180 Output, if the expected value of the 5th recall is different, the decision circuit 3 outputs the "H" flag to the decision flag 4. Further, the judgment flag (4) is stored in the "H" flag input from the decision circuit 3 in its own interior. .  , 'The rear control circuit uses a switch (not shown), which will be input from the DAC circuit 8 to the operational amplifier! The signal of the positive input terminal and the signal input to the negative input terminal are exchanged (S146). Thereafter, the same processing as that of S147 is performed (S147). Further, in the same manner as (4), when the output of the self-operated τ amplifier 1 is different from the expected value stored by itself, the determination circuit 3 outputs "H" to the determination flag 4 (S148). The above process of S142 S148 is repeated until the value of the counter claw is n (si49, S150) 〇 (self-repair of the second embodiment), so that the following is described with reference to FIG. 33. When it is determined that there is "H" in the flag 4, in other words, in the above-described operation confirmation test 丨5, the determination by the determination circuit 3 that the DAC circuit 8 is present is present. Fig. 33 is a flow chart showing the sequence in which the table tf is self-repaired by switching between the circuits 28A and 28B which are determined to be defective (the circuit (4) is prepared.  Figure. The f S ' control circuit detects whether or not the determination flag 4 is 彳 "H" (S15D. When the control circuit detects that the determination flag 4 does not memorize "H", it moves to S153. On the other hand, When the control circuit detects the determination flag 4 in which "H" is stored, the D AC circuit 8 corresponding to the judgment flag 4 in which "h" is stored is switched to the standby DAC circuit 2 8 A or 143485. . Doc -61· 201031180 28B. Here, in the second embodiment, since the two DAc circuits 8 are operated as a group, even if the flag "H" is stored in the flag 4, it is impossible to determine which of the DAC circuits in the group is defective. Therefore, in the second embodiment, the DAc circuit 8 corresponding to one of the determination flags 4 in which "H" is stored, in other words, the odd-numbered and even-numbered two DAc circuits 8 are switched to the preliminary DAC circuit 28A. And 28B (S152). Specifically, the following description will be made on the case where the DAC circuit 8-1 has a defect. Here, when there is a problem in the DAC circuit 8-1, by the operation confirmation tests 1 to 5, it is determined that the circuit 丨 and %] both output "Η" to the determination flags 4-1 and 4-2 ^ The determination flags 4_丨 and 4_2 output the "Η" flag input from the decision circuits 3_ and 3_2 to the switches 2c and 2d, and the switch 2c is turned OFF to turn the switch 2d ON. As a result, the sampling circuit 26A inputs the STR1 signal, and the sampling circuit 26B inputs the STR2 signal. Thereby, the sampling circuit μα obtains the gray scale data corresponding to the liquid crystal driving signal output terminal OUT 1 from the data bus and the sampling circuit 26B obtains the gray scale corresponding to the liquid crystal driving signal output terminal OUT2 from the data bus. data. Further, since the switch 2c is OFF', the output terminal of the operational amplifier 1_1 is disconnected from the liquid crystal driving signal output terminal OUT1, and the output terminal of the operational amplifier 1_2 is connected to the liquid crystal driving signal output terminal OUT2. open. Further, since the switch 2d is turned on, the output terminal of the operational amplifier 21A is connected to the liquid crystal driving signal output terminal OUT1, and the output terminal of the operational amplifier 21B is connected to the liquid crystal driving signal output terminal OUT2. As described above, the defective DAC circuit 8 and its paired DAC circuit 8 are switched into a set of DAC circuits 28A and 28B as a group, thereby 143485. Doc • 62· 201031180 It is possible to switch the defective DAC circuit 8 to the prepared DAC circuit 26A or 26B ° and then the 'control circuit makes the test signal "L", and the test B signal is "H", then move to the general action ( S153). [Embodiment 3] In the first embodiment and the second embodiment described above, the gray scale voltage from the output circuit block 30 (see Fig. 2) and the gray scale from the preliminary output circuit block φ 40 (refer to Fig. 2) The switching circuit 60 (see FIG. 2) for switching between voltages is included in the integrated circuits 10 and 20. However, the present invention is not limited thereto, and the switching circuit 60 may be configured to be included on the display panel side. Hereinafter, the display unit 9A of the switching circuit 60 will be included on the display panel side, and the configuration and operation will be described as a third embodiment of the present invention. In the present embodiment, differences from the embodiment will be described, and the description of the overlapping portions will be omitted. (Schematic configuration of display unit 90') First, the schematic configuration of display unit 90 of the present embodiment will be described with reference to Fig. 34. Fig. 34 is a block diagram showing a schematic configuration of the display unit 9A. As shown in Fig. 34, the display unit 9A includes a display panel 8A, and an integrated circuit 丨〇| (driver) that drives the display panel 8A according to grayscale data input from the outside. Circuit). Here, the integrated circuit 1A differs from the integrated circuit of the embodiment in that the switching circuit 6 is not included, and the other configuration is the same as the configuration X of the integrated circuit 10, and the panel 8 is displayed. The difference from the display panel 80 of the first embodiment is that the switching circuit (9) is included, and the other configuration is the same as that of the display panel 80. 143485. Doc • 63· 201031180 (Configuration of display unit 90) Next, a more detailed configuration of the display unit 90 of the present embodiment will be described with reference to Fig. 35 . Fig. 35 is a block diagram showing the configuration of the integrated circuit 1A. As shown in FIG. 35, the integrated circuit 1A includes: n sampling circuits 6 which are input from the gray-scale data input terminals (not shown) via the data bus and input to the respective n output terminals OUT 1 to OUTn. Corresponding gray scale data; n holding circuits 7; DAC circuit 8 for converting gray scale data into gray scale voltage signals; and operational amplifier 1' having a buffer circuit for gray scale voltage signals from DAC circuit 8; n determination circuit 3; and n pull-up and pull-down circuits 5 °, and as shown in FIG. 35, the integrated circuit 1 includes a plurality of switches 2a that switch between ON and OFF according to the test signal; The test B signal is a plurality of switches 2b that switch between ON and OFF; and a plurality of switches 2f that switch between ON and OFF according to the LF (Low Frequency 'low frequency) signal. Further, the switches 2a, 2b, and 2f are on when the "H" signal is input, and are OFF when the "L" signal is input. Further, the integrated circuit i〇 includes one of the following circuits: a prepared sampling circuit 26, a preliminary holding circuit 27, a preliminary DAC circuit 28, a preliminary operational amplifier 21, and a preliminary output terminal 〇uT〇. On the other hand, as shown in FIG. 35, the display panel 80' includes connection terminals (not shown) connected to the output terminals OUT1 to OUTn included in the integrated circuit 10'; the determination flag 9-^9 ^ (hereinafter, referred to as the judgment flag 9 in the case of the general term); the switch 2f that switches between ON and OFF according to the signal from the control circuit (not shown); the inverted signal 143485 according to the LIMt number . Doc -64- 201031180 is the switch 2e for switching the LFB (Low Frequency Band) signal between 〇N and off; and ON and OFF according to the output signal from the decision flag 9, that is, Flag 1 to Flagn Switches 2c and 2d are switched between. Further, the switches 2d, 2e, and 2f are ON when the Γ η signal is input, and 〇 FF when the "L" signal is input. Further, the switch 2c is turned ON when the "L" signal is input, and is turned OFF when the "H" signal is input. φ Further, the display panel 80' in the present embodiment is a liquid crystal display panel, and the data signal lines SL-1 to SL-n (hereinafter, referred to as the data signal line SL in the case of a general term) are switched via the switch as shown in FIG. 2e and 2c are connected to the respective output terminals out of the integrated circuit 1A. Further, the number of pixels P having the same number as the scanning signal line (31) is connected to each of the data signal lines SL. Further, in FIG. 35, the pixel P connected to the data signal line SL-1 is taken as the pixel P-1. The pixel P connected to the data signal line SL-n is used as the pixel pn. (Self-repair of the third embodiment) • Next, the result of the operation confirmation test in the display unit 9A of the present embodiment is the determination flag 4 The self-repairing operation in the case where the "H" flag is stored will be described. The method of the operation confirmation test in the present embodiment is the same as the operation confirmation test 丨5 described in the first embodiment, and therefore is omitted here. Description of the operation confirmation test First, at the time point when the operation confirmation test 5 ends, the signal is H"' test B signal becomes rL" e. Therefore, the operational amplifier 1 and the output terminal 〇UT are switched by the switch ^ The connection is disconnected. Here, after the operation confirmation tests 1 to 5 are completed, the control circuit outputs the "H" (10) signal, and: 143485. Doc •65- 201031180 The LFB signal of "L". By outputting the "h" signal, the switch ^ is turned ON. Each of the determination flags 4 is connected to each of the determination flags 9 via the respective output terminals (10) τ. Further, each of the determination flags 4 has its own "H" flag or L" flag as Flagl~Flagn, and is output to each of the judgment flags 9 via the respective output terminals 〇υτ @. Flag1~Flagn of the decision flag 4 output are memorized in its own internal memory and output to the switch 2 connected to itself. And 2廿. Furthermore, when the LF signal is "H", the LFB signal is "L", so each switch (4). Thereby, it is prevented that the Flag!~Flagn outputted by the determination flag 4 is output to the data signal lines ◎ 1 to SL-n, and as a result, it is determined that the correction outputted by the flag 4 does not affect the pixel P. Hereinafter, as a detailed description of the self-repairing operation in the display unit 9A, the case where the determination flag 4_丨 corresponding to the output terminal OUT1 is stored with the "H" flag will be described as an example. "First, when the judgment flag 4_丨 corresponding to the output terminal OUT1 stores the "H" flag, in other words, when the DAC circuit 81 is defective, the self-decision flag 4 in the flag 9] is judged. The output has the "H" flag and the flag "output" of © is recorded in the internal memory contained in itself. Furthermore, in this example, the determination flags 4_2 to 4_n are recorded with the "l" flag. Then, the decision flag 9] outputs the FUgl of the "H" flag to the connection; on its own switch 2. And 2 (1. By means of the switch connected to the judgment flag 9], the connection of the output terminal OUT1 and the data signal line sl] is cut off, and the switch of the determination flag W is connected to the output terminal 〇 Υτ〇 is connected to the data signal line SL-i. On the other hand, 'each judgment flag 9·2~ pair connection ^ from 143485. Doc -66- 201031180 The switches 2c and 2d of the body output Flag2~Flagn of the "L" flag, so the switch 2c connected to the judgment flags 9-2~9-n becomes ON' is connected to the judgment flag 9_ 2~9 The switch 2d of -n becomes 〇FF. As a result, the respective data signal lines SL_ 2 to SL-n are connected to the respective output terminals 〇υΤ2 to ουΤ via the switch 2e*. Each of the determination flags 9 outputs a LF signal of "L" after the switching of the switches 2c and 2d connected to itself based on Flag1 to Flagri from the determination flag 4, and outputs a 叩 signal of rH". Thereby, the respective output φ terminals OUT2 to OUTn are connected to the respective data signal lines SL-2 to SL-n. Next, after the control circuit outputs the "L" 2LF signal, the test signal of "L" and the test b signal of "H" are output, whereby the data signal line π" is connected to the output terminal of the operational amplifier 21 via the output terminal ουτο, and On the other hand, the respective data signal lines SL-2 to SL-n are connected to the operational amplifiers W to ^ via the output terminals 〇xjT2 to 〇UTn. Further, the switch 2d connected to the sampling circuit Η becomes (10) based on the judgment flag center (1) (10), and therefore the gray scale data input to the sampling circuit 6-1 (corresponding to the data signal line SL-1) Also input to the sampling circuit %. As a result, the gray scale data corresponding to the data signal line SL-丨 is output from the output terminal 〇υτ〇, and instead of the input terminal 〇im input to the data signal line SL_b, the input to the sampling circuit 6 and each preparation The switching of the gray scale data of the sampling circuit 26 is the same as that of the actual (four) state 1, and thus a detailed description thereof will be omitted herein. As described above, the display unit 90 performs a self-repairing operation, whereby the preliminary DAC circuit 28 can be used instead of the DAc circuit 8 which is detected as defective, and the normal gray scale voltage is output to the data 酴 green _ D 諕 line SL. Furthermore, in the same manner as the embodiment ’, the present embodiment also includes a circuit Μ opposite to the preparatory circuit 143485. Doc •67· 201031180 Prepared sampling circuit 26 and holding circuit 27. Therefore, not only the DAC circuit 8, but also the sampling circuit 6 or the holding circuit 7 may be switched to the preliminary sampling circuit 26 and the holding circuit 28. Next, the sequence of the display unit 90 from the power-on to the operation confirmation test and then to the normal operation will be described with reference to Fig. 36'. Fig. 36 is a flow chart showing the processing procedure from the time when the power is turned on from the display unit 90 to the normal operation after the operation check test is performed. As shown in FIG. 36, first, the display unit 90 detects that the integrated circuit 10 is initialized after the user turns on the power, so that all the flags memorized by the determination flag 4 become the "L" flag (S161). ). Then, the control circuit sets "the signal to "H" and sets the test B signal to "L", and then switches the integrated circuit 1 to the state of the operation confirmation test (S162). Next, the control circuit and the integrated circuit 1 perform the above-described operation check test (S163). Further, the control circuit confirms whether or not all the operation check tests 1 to 5 are completed (s i 64). When the control circuit detects that not all of the operation confirmation tests 1 to $ have been completed in the S1 64, the display unit 90 shifts the processing to S163' to perform an unfinished operation confirmation test based on an instruction from the control circuit. On the other hand, if the control circuit in si64 confirms that all the operation confirmation tests in the display unit 90' have been completed, the LF signal of "H" and the LFB signal of "L" are outputted to detect a defective circuit (sampling circuit) 6. In the case of the holding circuit 7, the DAC circuit 9, and the operational amplifier 1), the defective circuit is switched to the preparatory circuit (sampling circuit 26, holding circuit 27, DAC circuit 29, operational amplifier 21) and then moved to the general operation ( S165). Further, in the present embodiment, the display unit 9A is used as the memory determination unit 143485. Doc -68 - 201031180 The result of the determination of the path 3-1, that is, the circuit of the flag includes the configuration of the determination flag 4 and the determination flag 9. However, as a modification of the display unit 90', the determination flag 9 may not be included. The switch 2f and the switch 2e are arranged, and the flag 4 is controlled to control the switches 2c and 2d. At this time, it is not necessary to control the LF signal and the LFB signal of the switches 2f and 2e. On the other hand, wirings and connection terminals for connecting the determination flag 4 to the switches 2c and 2d are required. [Embodiment 4] In the first to third embodiments described above, the integrated circuit and the display panel are connected via the output terminal OUT, but the integrated circuit and the display panel are integrated without the output terminal OUT. Also included in the scope of the present invention. Hereinafter, a display unit 90" in which an integrated circuit and a display panel are integrated will be described as a fourth embodiment with reference to Fig. 37. Furthermore, the display unit 90" of this embodiment is an embodiment! In the modification of the display unit 90, the difference from the first embodiment will be described in the present embodiment, and the description of the overlapping portions will be omitted. (Configuration of Display Unit 90" First, the configuration of the display unit 9A of the present embodiment will be described with reference to Fig. 37. Fig. 37 is a block diagram showing the configuration of the display unit 90" As shown in Fig. 37, the display unit 90 is shown. The integrated circuit 10 and the display panel 80 shown in the first embodiment are not different, and the output terminals of the operational amplifiers 1 and 21 are directly connected to the data signal line sl via the switches 2b, 2c, and 2d. That is, the difference between the display unit 90" in the present embodiment and the display unit 9 in the first embodiment is whether or not the output terminal OUT is included, and other configurations and implementations are 143,485. Doc •69- 201031180 The display unit 90 of the form 1 is the same. In the present embodiment, a modification of the first embodiment will be described. However, in the same manner as in the second and third embodiments, the integrated circuit and the display panel are integrated without the output terminal OUT. It is included in the scope of the present invention. (Television System) Next, a television system 300 including the display unit 90 of the first embodiment will be described with reference to Fig. 38. Further, Fig. 38 is a block diagram showing the configuration of the television system 300. In the following description, the television system 300 will be described as the display unit 90 according to the first embodiment. However, the television system of the present invention is not limited thereto, and the display device according to the second to fourth embodiments may be used instead of the display unit 90. Composition. (Configuration of Television System 300) As shown in FIG. 38, the television system 300 includes an antenna 301 that receives a broadcast wave, and a tuner section 302' that demodulates the received broadcast wave into a video sound signal; the signal separation section 303, The image and audio signal is demultiplexed into a video signal and a sound signal; the video signal processing unit 304 decodes the separated video signal into a digital video signal; and the display unit 90 obtains the digital video signal of the solution Gray scale data, and displaying an image on the display panel 80 (refer to FIG. 2) according to the obtained gray scale data; the sound signal processing unit 3〇5' decodes the separated sound signal into a digital sound signal; and the sound signal output The part 306 converts the decoded digital sound signal into an analog sound signal, and converts the analog sound signal as a sound from the speaker wheel 0 143485. Doc •70- 201031180 (Operation of TV system 300) Next, explain the action processing in the TV system. First, the antenna 301 receives the broadcast from the broadcast station and sends the received broadcast wave to the tuner section 302. Tune ||shirt,. , must be adjusted to the part 3G2 to demodulate the output broadcast wave into a shirt image sound signal and output it to the letter • knife away from 0P 303 Ms 唬 separation unit 303 The image sound signal outputted by the long-term is separated into image signal and sound signal and The wide number is output to the video signal processing unit 3G4 and the audio signal processing unit φ K like the signal processing unit 3. The decoded video signal is decoded into a digital video signal, and the decoded digital video signal is output as gray scale data to the display. Not part 90. The display unit 90 displays the output gray scale data using the display panel (10) included in itself. On the other hand, the sound signal processing unit 3〇5 interprets the sound signal separated by the signal separating unit 303 into a digital sound signal and outputs it to the sound output unit 3〇6. The audio signal output unit 306 converts the digital sound signal into an analog sound signal, and outputs the analog sound signal as a sound using the speaker included in the sound signal. Further, the television system 30 of the present invention has a configuration in which the video signal is obtained from the broadcasting station using the antenna 3〇1 and the tuner unit 302 as a mechanism for acquiring video and audio signals, but the present invention is not limited thereto. For self-recording media.  Reading out a content such as a DVD player recorded on the content of the recording medium.  A reading device or a component that acquires data from the Internet or the like via a PC (personal computer). The operation confirmation test and the self-repair processing operation described in the first embodiment and the fourth embodiment are configured to perform the operation immediately after the liquid crystal driving semiconductor integrated circuit 1 is turned on, but the present invention is not limited thereto. This is also 143485. Doc-71 - 201031180 The configuration is performed by inputting a control signal to the liquid crystal driving semiconductor integrated circuit ίο, and the above operation can be performed at an arbitrary timing. For example, it is also possible to perform an operation confirmation test and self-repair by inputting a signal indicating a return period of the display to the liquid crystal driving semiconductor integrated circuit "0" from the controller of the display device. In addition, the operation of the operation confirmation test and the self-repair process may be performed at the following point in time, that is, the circuit for detecting the abnormality of the liquid crystal driving semiconductor integrated circuit 10 is formed in the liquid crystal driving semiconductor integrated circuit 1A. This operation is performed when an abnormality occurs in the semiconductor integrated circuit 10 for driving. For example, the current of the signal output from the liquid crystal driving semiconductor integrated circuit 10 can be measured and the operation confirmation test and the self-repair processing operation can be performed when the detected current exceeds the set current. Further, the action confirmation test and the self-repair process can be performed periodically. For example, the operation may be performed during each vertical flyback period in which display is not performed, or may be performed at each accumulated display time set in advance. Further, the operation confirmation test and the self-repair processing operation can also be performed in one of the periods during which the display is performed. For example, since the pixel is recorded as the display voltage in the liquid crystal display device, even after the charging of the display voltage is completed, even if the output of the liquid crystal driving semiconductor integrated circuit 10 is made high impedance, there is no problem in display. In the portion of the display period, the output of the semiconductor integrated circuit 10 for liquid crystal turbulence is made high impedance, and the operation confirmation test and the self-repair processing operation are performed. At this time, 'If you do not perform all the operation confirmation test mode: time', you can also perform the judgment of, for example, the mode in the part of the display period of the W line', and also during the display period of the one face or several displays U3485. Doc -72- 201031180 During the period of the face. Further, in the integrated circuit of the present invention (see Fig. 18), in order to perform self-detection (operation check test) on its own defect, it is necessary to stop the output signal for driving the display panel 8G (see Fig. 2). That is, the integrated circuit 1 cannot drive the display panel 80 during the self-detection. Therefore, the time during which the integrated circuit 10 performs the self-detection must be performed during a period in which the display of the image of the display device is not affected. In the embodiment of the present invention, as an example in which the integrated circuit 10 performs self-detection, the integrated circuit 10 performs self-detection and self-repair in the startup process when the power of the display device is turned on. The reason is that, during the startup of the display device, since the display device does not display the display of the image, the integrated circuit 10 can perform self-detection without affecting the display of the image of the display device. Self-healing. As described above, the integrated circuit 10 of the present embodiment performs self-detection for detecting self-defects during startup of the display device when the power is turned on. However, the invention is not limited thereto, and may be performed during the startup of the display device. Self-test and self-repair in other periods. Hereinafter, a period in which self-detection and self-repair can be performed other than during the startup of the display device will be described as an embodiment. [Embodiment 1] (Self-detection and self-repair during vertical return to her) First, as a first embodiment, in the vertical flyback period of the display device, the integrated circuit 10 can display the image of the display device without Self-detection and self-healing in the state of influence. The reason is explained below. 143485. Doc -73- 201031180 The next step 3, Fig. 39(a) to Fig. 39(f), is the date and time of the input to the display device. 39(a) to 39(f) are timing charts showing the timings of signals input to the liquid crystal display device. 39(4) shows the output from the scanning side driving circuit of the scanning line of the driving display device; the scanning signal SCN1 '(4)(b) supplied to the first scanning signal line of the display device indicates the output from the scanning side driving circuit The scanning signal SCN2 of the second scanning signal line of the display device is not provided, and the figure (e) represents the jth of the self-integrated circuit 1〇 (refer to FIG. 18) provided to the image signal inversion circuit and the display device The image signal DSj corresponding to the root data signal line, the image (D) of the image signal DRVj corresponding to the jth data signal line of the display device is not supplied from the image signal inversion circuit to the data side driving circuit, The figure (e) shows the image signal DATAj ' supplied to the jth data signal line of the display device. The figure (f) shows the pixel connected to the first scanning signal line and the jth data signal line connected to the display device. The applied driving voltage VDlj°, the period τν of the time t1 to t5 shown in FIG. 39 is the vertical scanning period of the display device 'the period during which the TV1 is the vertical return period, and the period TH of the time t1 to t3 is the horizontal scanning period, the time Period t2~t3 TH1 horizontal flyback interval. Furthermore, the image inversion circuit is a circuit that inverts the polarity of the image signal DSj from the integrated circuit 10 during each horizontal scanning period TH and the vertical scanning period so that the display is performed in each pixel of the display device. The polarity of the electrodes is reversed. As shown in FIGS. 39(a) and (b), the scanning side driving circuit sequentially delays the horizontal scanning period ΊΉ from the first scanning signal line, and outputs the scanning signal SCN1 to each scanning signal line of the display device. Scanning signal I43485. Doc • 74· 201031180 SCN2. . . . . Scan signal SCNm. Further, the scanning side driving circuit is for each vertical scanning period TV, and the scanning signals SCN1 to SCNm are repeatedly output to the respective scanning signal lines of the display device. Furthermore, here, the display device includes m scanning signal lines. The image signal DSj from the integrated circuit 1A shown in Fig. 39 (c) is input to the image signal inverting circuit. Then, the image signal inversion circuit inverts the polarity of the image signal DSj during each horizontal scanning period TH, and inverts the polarity of the image signal DSj during each vertical scanning period to generate FIG. 39(d). The image shown is #DRVj. Further, the video signal inverting circuit inputs the generated shirt image 彳s number DRVj to the data side drive circuit. Then, the negative-side driving circuit samples the image signal DRVj from the image signal inverting circuit during each horizontal scanning period TH, and delays the sampled signal value by one horizontal scanning period, as shown in FIG. 39(e). The image signal DATAj is output to the first data signal line of the display device. Then, in a pixel connected to the display device of the first scanning signal line and the jth data signal (hereinafter referred to as pixel (1), the pixel 〖j is obtained by the scanning signal SCN1 during the horizontal scanning of the time center 2 The result is that the TFT is turned on. The result is applied to the display electrode in the pixel 1j as the driving voltage v by the image signal voltage of the image L number DATAj at the time t1 to t2 via the jth data signal line. That is, it is convenient for the time port 〜c to turn off the turn-on of the TFT in the pixel". The driving voltage vmj applied to the display electrode of the pixel lj continues to maintain the voltage level during the time (four). Similarly, it is connected to the first root. The scanning signal line and the jth data signal line are displayed 143485. Doc -75.  In the pixel of the display device (hereinafter referred to as pixel 2j), the TFT in the pixel 2j is turned on by the scanning signal SCN2 in the horizontal scanning period TH at time t3 to t4, and the result is via the jth data signal line. The video signal voltage of the image k number DATAj at time t3 to t4 is applied as a driving voltage to the display electrodes in the pixels. Here, even if the TFT in the pixel hook is turned off, the driving voltage applied to the display electrode of the pixel 2j is maintained at the voltage level during the period from time t3 to time t4. As described above, even if the TFTs in the respective pixels are turned on, the driving voltage in each pixel of the display device is maintained at the voltage level of the driving voltage applied when the TFT is turned on. Thereby, the scanning side driving circuit does not output the scanning parameters scni to SCNm for turning on the TFTs of the respective pixels to the scanning signal line, in other words, during the period in which the TFTs of the respective pixels are turned off, that is, the vertical return period TV1, The display device does not need to apply a voltage to the display electrodes of the respective pixels. In other words, the integrated circuit 10 does not need to output the video signal DSj, which is the source of the driving voltage, and does not affect the image display of the display device even if the integrated circuit 1 is electrically disconnected from the display device. Therefore, in the vertical flyback period of the display device, the integrated circuit 1 can perform self-detection and self-repair without affecting the image display of the display device. (Detection of malfunction of the entire integrated circuit 10) The self-detection processing of the defective output circuit block included in the integrated circuit 10 of the present embodiment is performed for each data signal line. The output circuit block is processed for the entire output circuit block. Thereby, the self-detection process takes time. 143485. Doc •76- 201031180 II's inviting circuit. In the case of the possibility of each of the included circuit blocks, the integrated circuit ig does not need to perform the self-detection operation: the two-integrated circuit 10 has only the reference in each output circuit block. In the case of <, self-detection processing may be performed. The full =: body circuit 10 includes an operation determining circuit, and it is possible for the integrated circuit 10 to have a malfunction, and it is only necessary to determine by which the integrated circuit 10 has an action. Bad feelings

形時進行自我檢測處理,則可防止徒勞之自我檢測處理。 以下’參照圖40〜圖42對積體電路1〇所包含之對 路全體判定是否存在動作不良之可能性的動作判定電路 200進行說明。 首先,於積體電路10中產生動作不良之情形時供給至 積體電路1G之電源電流與正常動作時相比,換言之與作為 製品而出廠時判定為合格品之初始階段相比變多。因此, 於供給至積體電路1〇之電源電流之值與正常動作時相比大 了固定值以上之情形時,積體電路10中會產生動作不良。 因此,動作判定電路200對供給至積體電路10之電源電流 之值進行檢測,根據檢測出之電源電流之值而判定於積體 電路10中是否產生了動作不良。 (動作判定電路200之構成) 以下’參照圖40對動作判定電路200之構成進行說明。 圖40係表示動作判定電路2〇〇之構成之方塊圖。 如圖40所示’動作判定電路2〇〇係於對積體電路1〇供給 電源之VA201與積體電路1〇之間,包含電阻2〇2(檢測機構) 143485.doc -77- 201031180 及開關203。再者,電阻202與開關203以彼此成為並聯之 方式而連接。進而,動作判定電路200包含:A/D轉換器 204(檢測機構),其連接於電阻202及開關203之於積體電路 10側之一端;開關205,其輸入來自A/D轉換器204之輸出 信號;EEPROM(Electrically Erasable and Programmable Read Only Memory,電子可擦可程式唯讀記憶體)206(正常 電流值記憶機構),其係連接於開關205之一方之輸出端子 之非揮發性記憶體;資料鎖存電路207,其連接於開關205 之另一方之輸出端子;以及比較電路208(電流值比較機 構、驅動電路判定機構),其將EEPROM 206之輸出值與來 自資料鎖存電路207之輸出值進行比較。再者,比較電路 208之輸出端子連接於積體電路10所包含之控制電路,其 將比較電路208中之比較結果輸出至該控制電路。再者, 開關203及205之切換係藉由積體電路10所包含之控制電路 而進行控制。 (動作判定電路200之概略動作) 動作判定電路200預先將與積體電路10正常動作時之電 源電流值相對應之值作為基準資料而記憶於EEPROM 206 中。於此,動作判定電路200於判定積體電路10中是否產 生動作不良之情形時,對與供給至積體電路1 〇之電源電流 值相對應之值進行檢測,將該檢測出之值與EEPROM 206 預先記憶之基準資料之值進行比較,於檢測出之值為固定 值以上之情形時,判定為積體電路10中產生了動作不良。 進而,動作判定電路200對積體電路10所包含之控制電路 143485.doc •78- 201031180 輸出表示積體電路ίο中產生了動作不良之信號,藉此控制 電路開始進行積體電路10之自我檢測處理及自我修復處 理。 (基準資料之生成及記憶處理) 如上所述,動作判定電路200需要預先將基準資料記憶 於自身所包含之EEPROM 206中。因此,以下參照圖41對 用於動作判定電路200將基準資料記憶於EEPROM 206中之 處理進行說明。圖41係表示動作判定電路200將基準資料 記憶於EEPROM 206中之動作處理之流程圖。 如圖41所示,於生成基準資料時,控制電路將開關203 打開而使來自VA201之電源電流於電阻202中流動(S301)。 於此,電阻202之電阻值係如積體電路10正常動作時之電 阻202之電壓下降成為約0.1 V般之電阻值。再者,電阻 202之電阻值宜考慮積體電路之消耗電流後決定。 然後,A/D轉換器204將電阻202之積體電路10側之一端 之電壓值轉換為數位值(S302)。A/D轉換器204將轉換之數 位值經由開關205而輸入至EEPROM 206。EEPROM 206將 輸入之來自A/D轉換器之數位值作為基礎資料而加以記憶 (S303)。再者,S303中之開關205係藉由控制電路以使A/D 轉換器204與EEPROM 206連接之方式進行切換。 繼而,EEPROM 206記憶基礎資料後,控制電路將開關 203短路而使積體電路1〇恢復至一般動作狀態(S3〇4)。再 者,自S301至S304為止之基準資料之生成及記憶處理,係 於包含積體電路10之顯示裝置之製品出廠階段,換言之係 143485.doc -79· 201031180 於積體電路ι〇藉由各種出廠檢查而判定為正常之階段進 行。 (動作判定電路200之動作不良檢測處理) 其次,以下參照圖42對動作判定電路200之檢測積體電 路10之動作不良之處理進行說明。圖42係表示動作判定電 路200中之檢測積體電路10之動作不良之處理的流程圖。 如圖42所示,首先,控制電路將開關203打開而使來自 VA201之電源電流於電阻202中流動(S305)。 然後,A/D轉換器204將電阻202之於積體電路10側之一 端之電壓值轉換為數位值(S306)。A/D轉換器204將轉換之 數位值經由開關205而輸入至資料鎖存電路207。資料鎖存 電路207將所輸入之來自A/D轉換器之數位值作為檢測資料 而加以記憶(S307)。再者,S306中之開關205係藉由控制 電路以使A/D轉換器204與資料鎖存電路207連接之方式進 行切換。 繼而,比較電路208將EEPROM 206所記憶之基準資料與 資料鎖存電路207所記憶之檢測資料讀出,並將讀出之基 準資料之值與檢測資料之值進行比較(S308)。進而,比較 電路208對基準資料之值與檢測資料之值之差是否為特定 值以上(例如以數位值示為3以上)進行檢測(S309)。於此, 於基準資料之值與檢測資料之值之差為特定值以上(例如 以數位值示為3以上)之情形時,將表示積體電路10中產生 動作不良之信號輸出至積體電路10所包含之控制電路。 於此,控制電路自比較電路208輸入表示積體電路10中 143485.doc -80· 201031180 產生了動作不良之信號後,開始進行積體電路10之自我檢 】()進而,於在積體電路10之自我檢測中積體電路 1〇於自身之輸出電路區塊中檢測出不良之情形時,積體電 _將不良之輸出電路區塊之輸出切換為預備之輸出電路 ㊣塊之輸出而進行自我修復。再者,於在S3u之積體電路 10之自我檢測中無法檢測出輸出電路區塊之不良之情形 時’考慮因其他因素所引起之電源電流值之變動。因此, ❿ 此時,由於電源電流值產生變動,故動作判定電路200生 成S301〜S304中所示之基準資料及進行記憶處理,將產生 變動之電源電流值作為新之基準資料記憶於EEpR〇M 2⑽ 中(S312)。進而,S312之後,控制電路將開關2〇3短路而 使動作判定電路2〇〇及積體電路丨〇成為一般動作狀態 (S310) 〇 另一方面,於S309中,當比較電路2〇8檢測出基準資料 之值與檢測資料之值之差未滿特定值(例如以數位值表示 φ 而未滿3)之情形時,將處理移行至S3 10。 [實施例2] (定期之積體電路10之自我檢測) 又,亦可定期進行積體電路10之自我檢測(動作確認測 試)及自我修復。具體而言,亦可如上述實施例i中所說明 於顯示裝置之每個垂直返馳期間,進行積體電路10之自我 檢測(動作確認測試)及自我修復。此時,對垂直同步信號 進行計數,於每個固定次數之顯示中進行上述自我檢測及 自我修復。此時,由非揮發性之記憶體構成計數器,計數 143485.doc -81 - 201031180 器對垂直同步信號之次數進行計數,藉此可實現。進而, 亦可為如下構成:積體電路10包含測定時間之計時器,藉 由該計時器而對動作時間進行計數,於每個預先設定之累: 計動作時間進行積體電路1G之自我檢測及自我修復。 [實施例3] 又,積體電路10之自我檢測(動作確認測試)及自我修復 之處理動作亦可於顯示裝置進行影像顯示之期間之—部分 中進仃。例如顯不裝置之各像f記憶顯示電極之電壓,因 此顯不電極之電壓之充電結束後’即便使積體電路1〇之輸 出端子OUT1〜QUTn成為高阻抗,顯示襄置中之影像之顯 示仍不存在問題。 因此,於顯示冑置進行影像顯示之顯示期間之一部分 中,使積體電路10之輸出#子〇UT1〜〇UTn成為高阻抗而 進行自我檢測(動作確認測試)及自我修復之處理動作。作 為使輸出端子贿1〜謝η成為高阻抗之方法之—例,相 對於使輸出端子〇UT1〜㈤Τη與顯示裝置連接之每個信號 傳送路徑而串聯設置開Μ,將該開關打開,藉此可使輸出 端子OUT1 OUTn與顯不裝置成為高阻抗,換言之可將該 兩者電氣切斷。 又’於自我檢測(動作確認測試)中,如本實施形態”斤 說月存在右干個模式。因此,若無進行自我檢測(動作確 ι測忒)之所有模式之時間,則亦可於“条線之顯示期間之 Ρ刀中進行自我檢測(動作確認測試)之一部分模式(例 如僅-種模式)。藉此,可於顯示裝置之Η貞之顯示期間 143485.doc 201031180 或數幀之顯示期間進行自我檢測(動作確認測試)之所有模 式。又,若採用不一次性地進行自我檢測(動作確認測試) 之模式而將各模式分開進行之上述方法,則可於圖39所示 之水平返馳期間進行自我檢測(動作確認測試)。 再者,上述實施例1〜3中,將實施形態丨中之積體電路 作為對象進行了說明’但本發明並不限於此,亦可適用於 實施形態2及3中之積體電路10,、20以及實施形態4中之顯 # 示部90"。 又,本實施形態1〜4中,對藉由液晶顯示面板顯示影像 之液晶顯示裝置進行了說明,但本發明並不限於此,亦可 適用於除液晶顯示裝置以外之顯示裝置例如電漿電視等。 本發明並不限定於上述各實施形態,可於請求項所示之 範圍内進行各種變更,適當地組合不同實施形態中所分別 揭示之技術性機構而獲得之實施形態亦包含於本發明之技 術性範圍内》 • 再者,亦可以如下方式構成本發明之顯示裝置驅動用之 積體電路及顯示裝置。 [第1構成] —種驅動電路,其特徵在於:其係驅動顯示面板者,且 包含對成為不良之該驅動電路進行自我修復之自我修復 機構。 [第2構成] 如第1構成之驅動電路,其中包含輸出用以驅動上述顯 示面板之輸出信號之輸出電路, 143485.doc -83 - 201031180 上述自我修復機構包含 對上述輸出電路是否不良進 進仃匈疋之判定機構,且 於上述判定機構之判定結果 a 果為不良之情形時,以對上述 顯示面板輸出正常之輸出作跋 〇 鞠出、號之方式對該驅動電路進行自 我修復。 [第3構成] 如第2構成之驅動電路,其 吩再中包含可對上述顯示面板輸 出上述輸出信號之預備輸出電路, 上述自我修復機構包含 切換機構,其係於上述判定機構之判定結果為不良之情 :時’將來自上述成為不良之輪出電路之輸出信號切換為 來自上述預備輸出電路之輪出护缺 掏出15虓而作為向上述顯示面板 之輸出信號。 [第4構成] 如第3構成之驅動電路,其中上述判定機構, 包含比較機構’其將來自上述輸出電路之輸出信號與來 自上述預備輸出電路之輸出信號進行比較,且 根據上述比較機構之比較結果,對上述輸出電路是否不 良進行判定。 [第5構成] -種顯示裝置’纟特徵在於包含第i構成至第谓成中任 一構成之驅動電路與上述顯示面板。 [第6構成] 一種顯不裝置,其特徵在於:其係包含顯示面板與驅戴 143485.doc -84- 201031180 电路者, :驅動電路包含輸出用以驅動 之輸出電路, κ物出信號 上述驅動電路包含: 判疋機構’其對上述輸出電路是否 預備輪出電路,其可對m 選仃〜,以及 述顯不面板輸出上述輸出信號; 述顯示面板包含切換機構, , 情==係於來自上述判定機構之判定結果為不良之 為來自上述預備輸出電路出電路之輸出信號切換 難㈣電路之輸Μ號而作為_該顯亍而 板之輪出信號。 J X顯不面 [第7構成] 一種顯示裝置,其特徵在於包含·· 顯示面板; 輸出電路,其輸出用以驅動 參 預備輸出電路,其可對上二 號; 低鞠出上述輸出信 判定機構,其對上述輸出電路是否不良進 切換機構,其於上述判定機構之判定鈇 , 時’將來自上it忐&丈& ^ ”〇果為不良之情形 將來自上述成為不良之輸出電路之輪出 自上述預備輸出電路之輸出信號而 & ·"、 之輸出信號。 μ動上述顯示面板 [第8構成] 一種電視系統,其特徵在於包含如社 明衣項5至7中任一項 143485.doc -85 - 201031180 之顯示裝置。 [第9構成] 一種驅動電路,其特徵在於包含: 輸出端子,其連接於顯示面板; 輸出電路區塊’其包含可連接於上述輪出 路;以及 询; 二輸出電路區塊’其包含可連接於上述輸出端子之, 備輸出電路;且驅動上述顯示面板,Self-detection processing at the time of the shape prevents the self-detection process in vain. The operation determination circuit 200 for determining whether or not there is a possibility of malfunction in the entire path included in the integrated circuit 1A will be described below with reference to Figs. 40 to 42. First, when a malfunction occurs in the integrated circuit 10, the power supply current supplied to the integrated circuit 1G is higher than that in the normal operation, in other words, compared with the initial stage when it is judged to be a good product when it is shipped as a product. Therefore, when the value of the power supply current supplied to the integrated circuit 1 is larger than the fixed value, the integrated circuit 10 may cause malfunction. Therefore, the operation determination circuit 200 detects the value of the power supply current supplied to the integrated circuit 10, and determines whether or not a malfunction has occurred in the integrated circuit 10 based on the value of the detected power supply current. (Configuration of Operation Determination Circuit 200) Hereinafter, the configuration of the operation determination circuit 200 will be described with reference to Fig. 40. Fig. 40 is a block diagram showing the configuration of the operation judging circuit 2A. As shown in FIG. 40, the 'action determination circuit 2' is between the VA 201 and the integrated circuit 1A for supplying power to the integrated circuit 1A, and includes a resistor 2〇2 (detection mechanism) 143485.doc -77- 201031180 and Switch 203. Further, the resistor 202 and the switch 203 are connected in parallel to each other. Further, the operation determination circuit 200 includes an A/D converter 204 (detection mechanism) connected to one end of the resistor 202 and the switch 203 on the side of the integrated circuit 10, and a switch 205 whose input is from the A/D converter 204. Output signal; EEPROM (Electrically Erasable and Programmable Read Only Memory) 206 (normal current value memory mechanism), which is a non-volatile memory connected to an output terminal of one of the switches 205; A data latch circuit 207 connected to the other output terminal of the switch 205; and a comparison circuit 208 (current value comparing means, drive circuit determining means) for outputting the output value of the EEPROM 206 and the output from the data latch circuit 207 Values are compared. Further, the output terminal of the comparison circuit 208 is connected to a control circuit included in the integrated circuit 10, and outputs the comparison result in the comparison circuit 208 to the control circuit. Furthermore, the switching of the switches 203 and 205 is controlled by the control circuit included in the integrated circuit 10. (Schematic Operation of Operation Determination Circuit 200) The operation determination circuit 200 stores the value corresponding to the power source current value when the integrated circuit 10 operates normally as the reference data in the EEPROM 206. Here, the operation determination circuit 200 detects a value corresponding to the power supply current value supplied to the integrated circuit 1 when determining whether or not the integrated circuit 10 has a malfunction, and detects the detected value with the EEPROM. 206 The value of the reference data stored in advance is compared. When the detected value is equal to or greater than the fixed value, it is determined that the integrated circuit 10 has a malfunction. Further, the operation determination circuit 200 outputs, to the control circuit 143485.doc •78-201031180 included in the integrated circuit 10, a signal indicating that a malfunction has occurred in the integrated circuit ί, whereby the control circuit starts self-detection of the integrated circuit 10. Processing and self-healing processing. (Generation and Memory Processing of Reference Data) As described above, the operation determination circuit 200 needs to store the reference data in advance in the EEPROM 206 included in itself. Therefore, a process for the operation determination circuit 200 to store the reference data in the EEPROM 206 will be described below with reference to FIG. Fig. 41 is a flow chart showing the operation of the operation determination circuit 200 for storing the reference data in the EEPROM 206. As shown in Fig. 41, when the reference data is generated, the control circuit turns on the switch 203 to cause the power source current from the VA 201 to flow in the resistor 202 (S301). Here, the resistance value of the resistor 202 is such that the voltage of the resistor 202 when the integrated circuit 10 operates normally becomes a resistance value of about 0.1 V. Furthermore, the resistance value of the resistor 202 should be determined in consideration of the current consumption of the integrated circuit. Then, the A/D converter 204 converts the voltage value at one end of the integrated circuit 10 side of the resistor 202 into a digital value (S302). The A/D converter 204 inputs the converted digital value to the EEPROM 206 via the switch 205. The EEPROM 206 memorizes the input digital value from the A/D converter as a base material (S303). Furthermore, the switch 205 in S303 is switched by the control circuit to connect the A/D converter 204 to the EEPROM 206. Then, after the EEPROM 206 memorizes the basic data, the control circuit short-circuits the switch 203 to return the integrated circuit 1 to the normal operation state (S3〇4). Furthermore, the generation and memory processing of the reference data from S301 to S304 is performed at the factory stage of the display device including the integrated circuit 10, in other words, 143485.doc -79· 201031180 in the integrated circuit ι by various It is judged to be normal at the factory inspection. (Operation failure detection processing of the operation determination circuit 200) Next, a process of detecting the malfunction of the integrated circuit 10 by the operation determination circuit 200 will be described below with reference to Fig. 42. Fig. 42 is a flowchart showing the processing of the malfunction of the detected integrated circuit 10 in the operation determining circuit 200. As shown in Fig. 42, first, the control circuit opens the switch 203 to cause the power source current from the VA 201 to flow in the resistor 202 (S305). Then, the A/D converter 204 converts the voltage value of the resistor 202 to one end of the integrated circuit 10 side into a digital value (S306). The A/D converter 204 inputs the converted digital value to the data latch circuit 207 via the switch 205. The data latch circuit 207 memorizes the input digital value from the A/D converter as detection data (S307). Further, the switch 205 in S306 is switched by the control circuit to connect the A/D converter 204 and the data latch circuit 207. Then, the comparison circuit 208 reads the reference data stored in the EEPROM 206 and the detection data memorized by the data latch circuit 207, and compares the value of the read reference data with the value of the detected data (S308). Further, the comparison circuit 208 detects whether or not the difference between the value of the reference data and the value of the detection data is equal to or greater than a specific value (for example, three or more digits) (S309). In the case where the difference between the value of the reference data and the value of the detection data is a specific value or more (for example, when the digital value is 3 or more), a signal indicating that the malfunction of the integrated circuit 10 is generated is output to the integrated circuit. 10 control circuits included. Here, the control circuit inputs a signal indicating that the 143485.doc -80·201031180 in the integrated circuit 10 has caused a malfunction, and starts the self-check of the integrated circuit 10 (), and further, in the integrated circuit. When the self-detection integrated circuit 1 detects a defect in its own output circuit block, the integrated power _ switches the output of the defective output circuit block to the output of the positive output circuit block. Self-healing. Further, when the failure of the output circuit block cannot be detected in the self-detection of the integrated circuit 10 of S3u, the fluctuation of the power supply current value due to other factors is considered. Therefore, at this time, since the power supply current value fluctuates, the operation determination circuit 200 generates the reference data shown in S301 to S304 and performs the memory processing, and stores the generated power supply current value as the new reference data in the EEpR〇M. 2(10) (S312). Further, after S312, the control circuit short-circuits the switch 2〇3 to cause the operation determination circuit 2〇〇 and the integrated circuit 丨〇 to be in a normal operation state (S310). On the other hand, in S309, when the comparison circuit 2〇8 detects When the difference between the value of the reference data and the value of the detected data is less than a specific value (for example, φ is represented by a digital value but less than 3), the process proceeds to S3 10. [Embodiment 2] (Self-detection of the integrated integrated circuit 10) Further, self-detection (operation confirmation test) and self-repair of the integrated circuit 10 may be performed periodically. Specifically, the self-detection (action confirmation test) and self-repair of the integrated circuit 10 can be performed during each vertical flyback period of the display device as described in the above embodiment i. At this time, the vertical sync signal is counted, and the above self-detection and self-repair are performed in each fixed number of displays. At this time, the counter is composed of non-volatile memory, and counting 143485.doc -81 - 201031180 counts the number of vertical sync signals, thereby achieving this. Further, the integrated circuit 10 may include a timer for measuring time, and the operating time is counted by the timer, and the self-detection of the integrated circuit 1G is performed for each predetermined accumulated operation time. And self-healing. [Embodiment 3] Further, the self-detection (operation confirmation test) and the self-repair processing operation of the integrated circuit 10 may be performed in a part of the period during which the display device performs video display. For example, each of the display devices f memory the voltage of the display electrode. Therefore, after the charging of the voltage of the display electrode is completed, the display of the image in the display device is displayed even if the output terminals OUT1 to QUTn of the integrated circuit 1 are made high impedance. There are still no problems. Therefore, in one of the display periods during which the display device performs video display, the outputs #子〇UT1 to 〇UTn of the integrated circuit 10 are made high impedance, and self-detection (operation confirmation test) and self-repair processing operations are performed. As an example of the method of making the output terminal bribe 1 to X η high impedance, the switch is opened in series with respect to each signal transmission path for connecting the output terminals 〇 UT1 to (5) 与 to the display device, thereby opening the switch. The output terminals OUT1 OUTn and the display device can be made high impedance, in other words, the two can be electrically disconnected. In the self-test (operation confirmation test), as in the present embodiment, there is a right-dry mode in the month of the sentence. Therefore, if the time of all modes of self-detection (action is determined) is not performed, "The part of the self-test (action confirmation test) in the file during the display of the line (for example, only the mode). Thereby, all modes of the self-test (action confirmation test) can be performed during the display period of the display device 143485.doc 201031180 or during the display of several frames. Further, if the above method is performed in which the modes are performed separately without performing the self-detection (operation confirmation test) mode at one time, the self-detection (operation confirmation test) can be performed during the horizontal flyback period shown in Fig. 39. Further, in the above-described first to third embodiments, the integrated circuit of the embodiment has been described as a subject. However, the present invention is not limited thereto, and the present invention is also applicable to the integrated circuit 10 of the second and third embodiments. 20 and the display unit 90" in the fourth embodiment. Further, in the first to fourth embodiments, the liquid crystal display device that displays an image by the liquid crystal display panel has been described. However, the present invention is not limited thereto, and may be applied to a display device other than the liquid crystal display device such as a plasma television. Wait. The present invention is not limited to the above embodiments, and various modifications can be made within the scope of the claims. The embodiments obtained by appropriately combining the technical mechanisms disclosed in the different embodiments are also included in the technology of the present invention. In the range of the characteristics, the integrated circuit for driving the display device of the present invention and the display device may be configured as follows. [First configuration] A drive circuit that drives a display panel and includes a self-healing mechanism that self-repairs the drive circuit that is defective. [Second Configuration] The driving circuit of the first configuration includes an output circuit for outputting an output signal for driving the display panel, 143485.doc - 83 - 201031180 The self-healing mechanism includes whether the output circuit is defective or not. In the case where the judgment result of the above-mentioned judging means is a bad condition, the drive circuit is self-repaired by outputting a normal output to the display panel. [Third configuration] The drive circuit of the second configuration includes a preliminary output circuit that can output the output signal to the display panel, and the self-healing mechanism includes a switching mechanism, and the determination result of the determination means is Unsatisfactory situation: At the time of 'switching the output signal from the above-mentioned defective turn-out circuit to the output of the above-mentioned preliminary output circuit 15 虓 as the output signal to the display panel. [Fourth configuration] The driving circuit according to the third aspect, wherein the determining means includes a comparing means for comparing an output signal from the output circuit with an output signal from the preliminary output circuit, and comparing the comparison means according to the comparison means As a result, it is determined whether or not the above output circuit is defective. [Fifth Configuration] A display device is characterized in that it includes a drive circuit having any one of the i-th configuration and the first embodiment, and the display panel. [6th configuration] A display device is characterized in that it includes a display panel and a circuit for driving 143485.doc -84 - 201031180, the drive circuit includes an output circuit for driving output, and the κ output signal is driven by the above The circuit comprises: a judging mechanism 'whether or not the output circuit is ready for the output circuit, which can select m from the m, and the display panel outputs the output signal; the display panel includes a switching mechanism, and the The result of the determination by the above-mentioned judging means is that the output signal from the pre-output circuit output circuit is switched to the input signal of the (four) circuit as the output signal of the board. JX is not visible [7th configuration] A display device comprising: · a display panel; an output circuit, the output of which is used to drive a reference preparatory output circuit, which can be paired with the upper two; Whether or not the output circuit is defective in the switching mechanism, and in the determination of the above-mentioned determining mechanism, the condition that the 'will be from the upper and the lower and the lower limit will be from the above-mentioned bad output circuit. The output signal of the above-mentioned preparatory output circuit is output signal of &·", and the above display panel [Eighth configuration] A television system characterized by including any one of the items 5 to 7 143485.doc -85 - 201031180 Display device. [9th configuration] A driving circuit, comprising: an output terminal connected to a display panel; an output circuit block 'which includes a wheel connection; a second output circuit block comprising: an output circuit connectable to the output terminal; and driving the display panel,

上述驅動電路包含:j;卜妨换搂 3比較機構,其將來自上述輸出電鲜 之輸出信號與來自上述預備輪屮愈攸+认 . 丄扎預備輸出電路之輸出信號進行比 較;The driving circuit includes: j; a switching mechanism 3, which compares an output signal from the output power to an output signal from the preparatory wheel and the output signal of the preparatory output circuit;

判定機構,其根據上述比較機構之比較結果,對上述 出電路是否不良進行判定; J ,連接切換機構,其於上述判定機構之判定結果為不良之 情形時,使上述預備輸出電路代替上述輸出電路而連接於 上述輸出端子。a determination unit that determines whether the circuit is defective according to a comparison result of the comparison means; J. a connection switching mechanism that causes the preliminary output circuit to replace the output circuit when the determination result of the determination means is defective And connected to the above output terminal.

[第10構成] 如第9構成之驅動電路,其中上述比較機構為運算放大 器。 [第11構成] 如第9構成之驅動電路,其中上述輸出電路區塊及上述 預備輸出電路區塊更包含使用有運算放大器之輸出緩衝 器’於使用上述運算放大器作為上述比較機構而上述判定 結果為不良之情形時,連接上述預備輸出電路區塊而代替 143485.doc -86 - 201031180 上述輸出電路區塊。 [第12構成] 如第9構成之驅動電路,其中上述輸出電路區塊及上述 預備輸出電路區塊更包含:使用有運算放大器之輸出緩衝 器,以及記憶提供給輸出電路之輸入端之信號之電路;於 使用上述運算放大器作為上述比較機構而上述判定結果為 不良之情形時,連接上述預備輸出電路區塊而代替上述輸 A 出電路區塊。 [第13構成] 如第9構成至第12構成中任一項之驅動電路,其中包含 對輸入至上述輸出電路及預備輸出電路之輸入信號進行控 制之控制機構, 上述控制機構係對上述輸出電路與預備輸出電路輸入大 小相異之輸入信號,並輸出與上述大小相異之輸入信號相 對應之、來自上述比較機構之比較結果之期望值, ® 上述判定機構係於上述比較結果與上述期望值不同之情 形時’將上述輸出電路判定為不良。 [第14構成] 如第9構成至第13構成中任一構成之驅動電路,其中更 包含儲存表示上述判定機構之判定結果之旗標的旗標储存 機構, 當上述旗標之值表示上述輸出電路為不良時,上述連接 切換機構使上述預備輸出電路代替上述輸出電路而連接於 上述輸出端子。 143485.doc -87- 201031180 [第15構成] 如第9構成至第14構成中任一構成之驅動電路,其中於 不會對上述顯示面板所顯示之圖像產生影響之期間, 上述比較機構將來自上述輸出電路之輸出信號與來自上 述預備輸出電路之輸出信號進行比較, 上述判定機構根據上述比較機構之比較結果,對上述輪 出電路是否不良進行判定, 上述連接切換機構將對於上述輸出端子之連接,自藉由 上述判定機構判定為不良之輸出電路之輸出端切換為上述 預備輸出電路之輸出端, 於上述連接切換機構將上述輸出端子與上述預備輸出電 路之輸出端連接後,上述預備輸出電路對上述輸出端子輪 出輸出信號。 [第16構成] 如第9構成至第15構成中任一構成之驅動電路,其中更 包含: 檢測機構,其對供給至上述驅動電路之電源電流之值進 行檢測; 正常電/”L值S己憶機構,其預先記憶上述驅動電路正常動 作時之上述電源電流之值; 電流值比較機構,其將來自上述檢測機構之電源電流之 值與來自上述正常電流值記憶機構之電源電流之值進行比 較;以及 驅動電路判定機構,其根據上述電流值比較機構之比較 J43485.doc -88- 201031180 結果,對上述驅動電路是否不良進行判定; 於上述驅動t路判定機構之判定結果為不良之情形時, 上述比較機構將來自上述輸出電路之輸出信號與來自上 述預備輸出電路之輸出信號進行比較, 上述職機構根據上述比較機構之比較結果,對上述輪 出電路是否不良進行判定, 上述連接切換機構將對於上述輸出端子之連接,自藉由 φ 1述判定機構判定為不良之輸出電路之輸出端切換為上述 預備輸出電路之輸出端。 [第Π構成] 如第9構成至第16構成中任一構成之驅動電路,其中於 上述顯示面板之電源剛接通後, 上述比較機構將來自上述輸出電路之輸出信號與來自上 述預備輸出電路之輸出信號進行比較, 上述判定機構根據上述比較機構之比較結果,對上述輸 φ 出電路是否不良進行判定, 上述連接切換機構將對於上述輸出端子之連接,自藉由 上述判定機構判定為不良之輸出電路之輸出端切換為上述 預備輸出電路之輸出端。 • [第18構成] 如第9構成至第16構成中任一構成之驅動電路,其中於 上述顯示面板之垂直返馳期間, 上述比較機構將來自上述輸出電路之輸出信號與來自上 述預備輸出電路之輸出信號進行比較, 143485.doc -89 - 201031180 上述判定機構根據上述比較機構之比較結果,對上述輪 出電路是否不良進行判定, 上述連接切換機構將對於上述輸出端子之連接,自藉由 上述判定機構判定為不良之輸出電路之輸出端切換為上述 預備輸出電路之輸出端。 [第19構成] 如第9構成至第18構成中任一構成之驅動電路,其中更 包含將自上述輸出端子至上述顯示面板之信號傳送路徑切 斷之切斷機構, 於上述切斷機構將自上述輸出端子至上述顯示面板之信 號傳送路徑切斷後, 上述比較機構將來自上述輸出電路之輸出信號與來自上 述預備輸出電路之輸出信號進行比較, 上述判定機構根據上述比較機構之比較結果,對上述輸 出電路是否不良進行判定, 上述連接切換機構將對於上述輸出端子之連接自藉由 上述判錢構判定為*良之輸出電路之輸出端切換為上述 預備輸出電路之輸出端。 [產業上之可利用性] 本發明提供—種顯示裝置,其包含對輸出電路之缺陷進 行檢測及自我修復之具體的機構,且包含可更容易處理輸 出電路之不良之顯示驅動用積體電路,特別是本發明較佳 地適於可以適當之時機進行自我檢測及自我修復之液晶顯 示裝置。 143485.doc -90· 201031180 【圖式簡單說明】 圖1係表示本發明之一實施形態之液晶電視之構成的方 塊圖; 圖2係表示本發明之一實施形態之顯示裝置之構成的方 塊圖; 圖3係表示本發明之一實施形態之液晶電視之外觀之 fSI · 圖, Φ 圖4係表示本發明之一實施形態之構成液晶電視中所包 含之積體電路的輸出電路區塊產生異常之情形時之顯示之 一例的圖; 圖5係表示本發明之一實施形態之液晶電視中之自我檢 測及自我修復動作之示例的圖,圖5(a)係表示自我檢測及 自我修復動作開始前之液晶電視之圖,圖5(b)係表示自我 檢測及自我修復動作進行中之液晶電視之圖,圖5(幻係表 不自我檢測及自我修復動作結束後之液晶電視之圖; Φ 圖6係表示本發明之一實施形態之液晶電視中之維護功 能表之顯示例的圖; 圖7係表示本發明之一實施形態之液晶電視中之自我檢 ‘ 測及自我修復動作之示例的圖,圖7(a)係表示自我檢測及 ' 自我修復動作開始前之液晶電視之圖,圖7(b)係表示自我 檢測及自我修復動作進行中之液晶電視之圖,圖7(c)係表 示自我檢測及自我修復動作結束後之液晶電視之圖; 圖8係表示本發明之—實施形態之構成液晶 LCD模組即顯示部中安裝有對顯示面板進行驅動之源極驅 143485.doc -91 · 201031180 動器之示例的圖; 圖9係表示本發明之一實施形態之構成液晶電視之tfT-LCD模組即顯示部中安裝有對顯示面板進行驅動之源極驅 動器及預備源極驅動器之示例的圖; 圖10係表示使用捲帶式載體,將本發明之一實施形態之 具有自我檢測及自我修復功能之源極驅動器與預備之源極 驅動器並聯安裝於玻璃基板上之狀態的概略圖; 圖11係表示將圖10所示之捲帶式載體打開之狀態的圖; 圖12係自方向a觀察圖11所示之安裝有源極驅動器及預 備之源極驅動器之捲帶式載體的俯視圖; 圖13係表示本發明之一實施形態之構成液晶電視之tFT_ LCD模組即顯示部中,將記憶體安裝於連接著源極驅動器 之輸入端之印刷基板上之示例的圖; 圖14係表示本發明之一實施形態之構成液晶電視之tft_ LCD模組即顯示部中,將記憶體安裝於連接著源極驅動器 之輸入端之印刷基板上之另一例的圖; 圖15係表示於本發明之一實施形態之顯示部之電源斷開 時,進行源極驅動器之自我檢測之順序的流程圖; 圖16係表示本發明之一實施形態之液晶電視中之自我檢 測及自我修復動作之一例的圖,圖16(a)係表示自我檢測及 自我修復動作前之液晶電視的圖,圖16(1))係表示自我檢測 及自我修復動作進行中之液晶電視之圖,圖16((;)係表示自 我檢測及自我修復動作結束後之液晶電視之圖; 圖17係表示本發明之一實施形態之液晶電視中之自我檢 143485.doc •92- 201031180 2自我修復動作之—例的圖,圖17⑷係表示自我檢夠及 修復動作前之液晶電視之圖,圖17(b)係表示自我檢測 及自我修復動作進行中之液晶電視之圖,圖17(c)係表示自 我檢測及自我修復動作結束後之液晶電視之圖; 圖18係表示本發明之一實施形態之顯示驅動用半導體 體電路之構成之說明圖; 圖19係表示本發明之一實施形態之動作確認測試之第一 _ 順序之流程圖; 圖20係表示本發明之一實施形態之動作確認測試之第二 順序之流程圖; 圖21係表示本發明之一實施形態之動作確認測試之第三 順序之流程圖; 圖22係表示本發明之一實施形態之動作確認測試之第四 順序之流程圖; 圖23係表示本發明之一實施形態之動作確認測試之第五 順序之流程圖; 圖24係表示本發明之一實施形態之將不良之輸出電路切 換為預備之輸出電路之順序的流程圖; •圖25係表示本發明之一實施形態之自顯示裝置之電源接 •通起至進行動作確認測試後移行至一般動作為止之順序的 流程圖; 圖26係表示本發明之一實施形態之用以進行運算放大器 之動作確認之電路構成的說明圖; 圖27係表示本發明之另一實施形態之顯示驅動用半導體 143485.doc -93- 201031180 積體電路之構成的說明圖; 圖2 8係表示本發明之另一實施形態之動作確認測試之第 一順序的流程圖; 圖29係表示本發明之另一實施形態之動作確認測試之第 二順序的流程圖; 圖3 0係表示本發明之另一實施形態之動作確認測試之第 三順序的流程圖; 圖3 1係表示本發明之另一實施形態之動作確認測試之第 四順序的流程圖; 圖32係表示本發明之另一實施形態之動作確認測試之第 五順序的流程圖; 圖33係表示本發明之另—實施形態之將不良之輸出電路 切換為預備之輸出電路之順序的流程圖; 圖34係表示本發明之進而另一實施形態之顯示裝置之概 略構成的方塊圖; 圖35係表示本發明之進而另一實施形態之顯示裝置之 成的方塊圖; 圖3 6係表示本發明之進而另一實施形態之自顯示裝置之 電源接通起至進行動作確認測試後移行至—般動作為止之 順序的流程圖; 圖37係表示本發明之進而另—實施形態之顯示裝置之構 成的方塊圖; 圖38係表示本發明之—實施形態之電視系統之構成之方 塊圖; 143485.doc 201031180 圖39(a)〜圖3 9(f)係表示本發明之一實施形態之輪入至顯 示裝置之掃描信號、影像信號、像素電極之電壓值的時序 1ΞΙ · 圃, 圖40係表示表示本發明之一實施形態之動作判定電路之 構成的方塊圖; 圖41係表示本發明之一實施形態之對正常動作時之積體 電路之電源電流值進行檢測及記憶之處理的流程圖; φ 圖42係表示本發明之一實施形態之根據供給至積體電路 之電源電流值而對積體電路之動作不良進行檢測之處理的 流程圖;及 圖43係表示先前例中之顯示驅動用半導體積體電路之構 成的說明圖。 【主要元件符號說明】 1-1 運算放大器(比較機構) 1-2 運算放大器(比較機構) 1 -η 運算放大器(比較機構) 2c 開關(連接切換機構) 2d 開關(連接切換機構) 3-1 判定電路(判定機構) 3-2 判定電路(判定機構) 3-n 判定電路(判定機構) 4-1 判定旗標(旗標儲存機構) 4-2 判定旗標(旗標儲存機構) 4-n 判定旗標(旗標儲存機構) 143485.doc •95· 201031180 8-1 DAC電路(輸出電路) 8-2 DAC電路(輸出電路) 8-n DAC電路(輸出電路) 10 液晶驅動用半導體積體電路(驅動電路) 10, 液晶驅動用半導體積體電路(驅動電路) 10a 液晶驅動用半導體積體電路(驅動電路、第1驅 動電路、源極驅動器) l〇b 液晶驅動用半導體積體電路(驅動電路、第2驅 動電路、預備源極驅動器) 20 液晶驅動用半導體積體電路(驅動電路) 21 運算放大器(比較機構) 21A 運算放大器(比較機構) 21B 運算放大器(比較機構) 28 DAC電路(預備輸出電路) 28A DAC電路(預備輸出電路) 28B DAC電路(預備輸出電路) 50 比較判定機構(自我檢測與自我修復機構、 機構) 判定 60 切換電路(自我檢測與自我修復機構、切 構) 換機 61 切換電路(自我檢測與自我修復機構) 80 顯示面板 80' 顯示面板 81 記愧體(記憶裴置) 143485.doc ·%· 201031180 82 動作切換輸入端子 83 薄膜基材 84 輸入端子 85 阻焊劑 • 86 輸出側配線 • 87 元件孔 88 輸入側配線 89 捲帶式載體 A w 90 顯示部(顯示裝置) 92 像素 93 TFT 94 閘極線 95 源極線 96 玻璃基板 97 印刷基板(PWD) 赢 98 薄膜電纜(FPC) 99 閘極驅動器 100 控制器(寫入控制機構) - 202 電阻(檢測機構) 204 A/D轉換器(檢測機構) 206 EEPROM(正常電流值記憶機構) 208 比較電路(電流值比較機構、驅動電路判定機 構) 300 電視系統 143485.doc -97- 201031180 400 液晶電視 401 開關按鈕 DVD再生裝置) HDD再生裝置) 402 DVD裝置(影像再生裝置 403 HDD裝置(影像再生裝置 404 DVD與HDD控制部 143485.doc -98-[10th configuration] The drive circuit of the ninth aspect, wherein the comparison means is an operational amplifier. [11th configuration] The drive circuit of the ninth aspect, wherein the output circuit block and the preliminary output circuit block further include an output buffer of an operational amplifier, and the use of the operational amplifier as the comparison means In the case of a bad situation, connect the above-mentioned preliminary output circuit block instead of the above output circuit block of 143485.doc -86 - 201031180. [12th configuration] The driving circuit of the ninth aspect, wherein the output circuit block and the preliminary output circuit block further include: an output buffer using an operational amplifier, and a signal for supplying an input terminal to the output circuit In the case where the operational amplifier is used as the comparison means and the determination result is defective, the preparatory output circuit block is connected instead of the input/output circuit block. [13th configuration] The driving circuit according to any one of the ninth to twelfth aspects, comprising: a control unit that controls an input signal input to the output circuit and the preliminary output circuit, wherein the control unit is connected to the output circuit An input signal having a different input size from the preliminary output circuit, and outputting an expected value of the comparison result from the comparison means corresponding to the input signal different in size, the above-mentioned judging means is different from the expected value In the case of the case, the above output circuit is judged to be defective. [Fourth configuration] The drive circuit of any one of the ninth to thirteenth configurations further includes a flag storage unit that stores a flag indicating a determination result of the determination unit, wherein the value of the flag indicates the output circuit In the case of a failure, the connection switching mechanism connects the preliminary output circuit to the output terminal instead of the output circuit. [Fourteenth configuration] The driving circuit according to any one of the ninth to fourteenth aspects, wherein the comparing means does not affect the image displayed on the display panel The output signal from the output circuit is compared with an output signal from the preliminary output circuit, and the determining means determines whether the round circuit is defective based on a comparison result of the comparing means, and the connection switching means is for the output terminal Connecting, the output end of the output circuit determined to be defective by the determining means is switched to the output end of the preliminary output circuit, and the preliminary output is connected after the connection switching means connects the output terminal to the output end of the preliminary output circuit The circuit outputs an output signal to the output terminal. [16th configuration] The drive circuit according to any one of the ninth to fifteenth configurations, further comprising: a detection mechanism that detects a value of a power supply current supplied to the drive circuit; a normal power/"L value S a memory mechanism that pre-memorizes the value of the power source current when the driving circuit is normally operated; and a current value comparing mechanism that performs a value of a power source current from the detecting mechanism and a value of a power source current from the normal current value memory mechanism And a driving circuit determining unit that determines whether the driving circuit is defective according to a result of the comparison of the current value comparing means J43485.doc -88 - 201031180; and when the determination result of the driving t path determining means is bad The comparison means compares an output signal from the output circuit with an output signal from the preliminary output circuit, and the service mechanism determines whether the round circuit is defective based on a comparison result of the comparison means, and the connection switching mechanism For the connection of the above output terminals, it is judged by φ 1 The output terminal of the output circuit that is determined to be defective by the mechanism is switched to the output terminal of the preparatory output circuit. [Parallel configuration] The drive circuit of any one of the ninth to sixteenth configurations, wherein the power supply of the display panel is just connected After the pass, the comparing means compares an output signal from the output circuit with an output signal from the preliminary output circuit, and the determining means determines whether the output φ circuit is defective based on a comparison result of the comparing means, and the connecting The switching mechanism switches the output terminal of the output circuit determined to be defective by the determination means to the output terminal of the preliminary output circuit for the connection of the output terminal. [18th configuration] In the ninth to sixteenth configurations In any one of the driving circuits, wherein the comparing means compares an output signal from the output circuit with an output signal from the preliminary output circuit during a vertical flyback of the display panel, 143485.doc -89 - 201031180 According to the comparison results of the above comparison institutions, the above It is determined whether or not the circuit is defective, and the connection switching means switches the output end of the output circuit determined to be defective by the determining means to the output end of the preliminary output circuit by the connection to the output terminal. [19th structure] The drive circuit of any one of the ninth to eighteenth aspects, further comprising: a cutting mechanism that cuts a signal transmission path from the output terminal to the display panel, wherein the cutting mechanism is from the output terminal to the After the signal transmission path of the display panel is cut off, the comparison means compares an output signal from the output circuit with an output signal from the preliminary output circuit, and the determination means performs a defect on the output circuit based on a comparison result of the comparison means. It is determined that the connection switching means switches the output of the output terminal to the output end of the preliminary output circuit from the output of the output circuit determined by the judgment. [Industrial Applicability] The present invention provides a display device including a specific mechanism for detecting and self-repairing defects of an output circuit, and including a display drive integrated circuit which can more easily handle an output circuit. In particular, the present invention is preferably adapted to a liquid crystal display device that can self-detect and self-repair at an appropriate timing. 1 is a block diagram showing a configuration of a liquid crystal television according to an embodiment of the present invention; and FIG. 2 is a block diagram showing a configuration of a display device according to an embodiment of the present invention. Fig. 3 is a fSI diagram showing the appearance of a liquid crystal television according to an embodiment of the present invention, and Fig. 4 is a diagram showing an abnormality of an output circuit block of an integrated circuit included in a liquid crystal television according to an embodiment of the present invention. FIG. 5 is a diagram showing an example of self-detection and self-repairing operations in a liquid crystal television according to an embodiment of the present invention, and FIG. 5(a) shows the start of self-detection and self-repairing operations. The picture of the former LCD TV, Figure 5 (b) shows the picture of the LCD TV in the process of self-detection and self-repair, Figure 5 (the picture of the LCD TV after the self-test and self-repair of the illusion table; Φ 6 is a view showing a display example of a maintenance function table in a liquid crystal television according to an embodiment of the present invention; and FIG. 7 is a view showing self-checking in a liquid crystal television according to an embodiment of the present invention. Figure 7 (a) shows the LCD TV before self-test and ' self-repair action, and Figure 7 (b) shows the LCD TV in self-test and self-repair action. FIG. 7(c) is a view showing a liquid crystal television after the end of the self-detection and self-repairing operation; FIG. 8 is a view showing the display unit of the display unit in which the liquid crystal LCD module is constructed according to the embodiment of the present invention. Driving source drive 143485.doc -91 · 201031180 FIG. 9 is a diagram showing an example of the actuator; FIG. 9 is a tfT-LCD module constituting a liquid crystal television according to an embodiment of the present invention, that is, a display unit is mounted on the display unit. FIG. 10 is a diagram showing an example of a source driver and a preparatory source driver having a self-detection and self-repair function according to an embodiment of the present invention using a tape carrier. FIG. 11 is a view showing a state in which the tape carrier shown in FIG. 10 is opened; FIG. 12 is a view showing the direction shown in FIG. FIG. 13 is a top view showing a tape carrier of a pole driver and a preparatory source driver; FIG. 13 is a view showing a tFT_LCD module constituting a liquid crystal television according to an embodiment of the present invention, in which a memory is mounted on a source driver; FIG. 14 is a view showing a display unit of a tft_LCD module constituting a liquid crystal television according to an embodiment of the present invention, wherein a memory is mounted on an input terminal to which a source driver is connected. FIG. 15 is a flow chart showing the sequence of performing self-detection of the source driver when the power of the display portion of the embodiment of the present invention is turned off; FIG. 16 is a diagram showing one of the present inventions. FIG. 16(a) is a diagram showing a liquid crystal television before self-detection and self-repair operation, and FIG. 16(1) shows self-detection and self. FIG. 16(a) is a diagram showing an example of self-detection and self-repairing operations in a liquid crystal television according to an embodiment. Figure 17 ((;) shows the picture of the LCD TV after the end of the self-test and self-repair operation; Figure 17 shows the actual picture of the present invention. Self-checking in the form of LCD TV 143485.doc • 92- 201031180 2 Self-repairing action - example of the figure, Figure 17 (4) shows the picture of the LCD TV before the self-checking and repairing action, Figure 17 (b) shows the self FIG. 17(c) is a view showing a liquid crystal television after completion of self-detection and self-repairing operations; FIG. 18 is a view showing a display driving semiconductor body according to an embodiment of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 19 is a flow chart showing the first sequence of the operation confirmation test according to an embodiment of the present invention; and FIG. 20 is a flow chart showing the second sequence of the operation confirmation test according to an embodiment of the present invention. Figure 21 is a flow chart showing the third sequence of the operation confirmation test according to an embodiment of the present invention; Figure 22 is a flow chart showing the fourth sequence of the operation confirmation test according to an embodiment of the present invention; A flowchart of the fifth sequence of the operation confirmation test according to an embodiment of the present invention; and FIG. 24 is a diagram showing the switching of the defective output circuit to one embodiment of the present invention. Flowchart of the sequence of the output circuits; FIG. 25 is a flow chart showing the sequence of the power supply from the display device to the normal operation until the operation confirmation test is performed according to an embodiment of the present invention; FIG. 27 is a view showing a circuit configuration for confirming the operation of an operational amplifier according to an embodiment of the present invention; and FIG. 27 is a display driving semiconductor according to another embodiment of the present invention. 143485.doc -93 - 201031180 Integrated circuit FIG. 2 is a flowchart showing a first procedure of the operation confirmation test according to another embodiment of the present invention; and FIG. 29 is a second sequence of the operation confirmation test according to another embodiment of the present invention. Figure 3 is a flow chart showing a third sequence of the operation confirmation test according to another embodiment of the present invention; and Figure 3 is a flow chart showing the fourth sequence of the operation confirmation test according to another embodiment of the present invention. Figure 32 is a flow chart showing the fifth sequence of the operation confirmation test according to another embodiment of the present invention; and Figure 33 is a view showing another embodiment of the present invention. FIG. 34 is a block diagram showing a schematic configuration of a display device according to still another embodiment of the present invention; FIG. 35 is a block diagram showing still another embodiment of the present invention. FIG. 3 is a block diagram showing the sequence of the display device to the normal operation from the power-on of the display device to the normal operation after the operation confirmation test according to still another embodiment of the present invention; 37 is a block diagram showing a configuration of a display device according to still another embodiment of the present invention; and FIG. 38 is a block diagram showing a configuration of a television system according to an embodiment of the present invention; 143485.doc 201031180 FIG. 39(a) to FIG. 3(f) shows a timing of a voltage value of a scanning signal, a video signal, and a pixel electrode which are wheeled into a display device according to an embodiment of the present invention. FIG. 40 is a view showing an operation of an embodiment of the present invention. FIG. 41 is a block diagram showing the power supply current value of the integrated circuit during normal operation according to an embodiment of the present invention; Fig. 42 is a flowchart showing a process of detecting a malfunction of the integrated circuit based on a power source current value supplied to the integrated circuit according to an embodiment of the present invention; and Fig. 43 is a view showing Description of the configuration of the semiconductor integrated circuit for display driving in the prior art. [Explanation of main component symbols] 1-1 Operational amplifier (comparison mechanism) 1-2 Operational amplifier (comparison mechanism) 1 -η Operational amplifier (comparison mechanism) 2c Switch (connection switching mechanism) 2d switch (connection switching mechanism) 3-1 Judgment circuit (determination mechanism) 3-2 Judgment circuit (judgment mechanism) 3-n Judgment circuit (judgment mechanism) 4-1 Judgment flag (flag storage mechanism) 4-2 Judgment flag (flag storage mechanism) 4- n Judgment flag (flag storage mechanism) 143485.doc •95· 201031180 8-1 DAC circuit (output circuit) 8-2 DAC circuit (output circuit) 8-n DAC circuit (output circuit) 10 Semiconductor product for liquid crystal drive Body circuit (drive circuit) 10, semiconductor integrated circuit for driving liquid crystal drive (drive circuit) 10a Semiconductor integrated circuit for liquid crystal drive (drive circuit, first drive circuit, and source driver) l〇b Semiconductor integrated circuit for liquid crystal drive (Drive circuit, second drive circuit, and preparatory source driver) 20 Semiconductor integrated circuit for driving liquid crystal drive (drive circuit) 21 Operational amplifier (comparison mechanism) 21A Operational Amplifier (Comparison Mechanism) 21B Operational Amplifier (Comparative Mechanism) 28 DAC Circuit (Prepared Output Circuit) 28A DAC Circuit (Prepared Output Circuit) 28B DAC Circuit (Prepared Output Circuit) 50 Comparison Judging Mechanism (Self-Detection and Self-Repair Mechanism, Mechanism ) Judging 60 switching circuit (self-detecting and self-healing mechanism, cutting) Switching 61 switching circuit (self-detecting and self-repairing mechanism) 80 Display panel 80' Display panel 81 Recording body (memory device) 143485.doc ·% · 201031180 82 Operation switching input terminal 83 Film substrate 84 Input terminal 85 Solder resist • 86 Output side wiring • 87 Component hole 88 Input side wiring 89 Tape carrier A w 90 Display unit (display unit) 92 Pixels 93 TFT 94 Gate Polar Line 95 Source Line 96 Glass Substrate 97 Printed Substrate (PWD) Win 98 Membrane Cable (FPC) 99 Gate Driver 100 Controller (Write Control Mechanism) - 202 Resistance (Detection Mechanism) 204 A/D Converter (Detection Organization) 206 EEPROM (normal current value memory mechanism) 208 comparison circuit Current value comparison mechanism, drive circuit determination mechanism) 300 TV system 143485.doc -97- 201031180 400 LCD TV 401 switch button DVD reproduction device) HDD reproduction device 402 DVD device (image reproduction device 403 HDD device (image reproduction device 404 DVD) And HDD Control Department 143485.doc -98-

Claims (1)

201031180 七、申請專利範圍: 1· 一種顯示裝置’其特徵在於包含: 顯示面板,其根據自影像再生裝置供給之影像信號而 顯示影像;以及 驅動電路,其係驅動上述顯示面板者,且包含對該驅 動電路之不良進行檢測並修復之自我檢測與自我修復機 構; 上述自我檢測與自我修復機構係於上述影像再生裝置 無法供給上述影像信號之期間,對上述驅動電路之不良 進行檢測、修復。 2. 如請求項1之顯示裝置,其中 上述驅動電路包含複數個輸出電路,其等輸出用以驅 動上述顯示面板之輸出信號, 上述自我檢測與自我修復機構包含對上述輸出電路是 否不良進行判定之判定機構,且於上述判定機構之判定 結果為不良之情形時,以對上述顯示面板輸出正常之輸 出信號之方式對該驅動電路進行自我修復。 3. 如請求項2之顯示裝置,其中 。上述驅動電路包含可對上述顯示面板輸出上述輸出信 號之預備輸出電路, ° 、上述自我檢測與自我修復機構包含切換機構,其於上 ^判疋機構之判^結果為不良之情形時,將來自上述成 二不良之輸出電路之輸出信號切換為來自上 電路之輪出信號而作為向上述顯示面板之輸出信號出 143485.d〇c 201031180 4. 如請求項3之顯示裝置,其中 上述判定機構包含將來自上述輸出電路之輸出信號與 來自上述預備輸出電路之輸出信號進行比較的比較機 構,且根據上述比較機構之比較結果對上述輸出電路是 否不良進行判定。 5. 如請求項4之顯示裝置’其中進一步包含控制機構,其 對輪入至上述輸出電路及上述預備輸出電路之輸入信號 進行控制, 上述控制機構係對上述輸出電路與上述預備輸出電路 輸入大小相異之輸人信號,並且輸出與上述大小相異之 輸入信號相對應之、來自上述比較機構之比較結果之期 望值, 上述判定機構於上述比較結果與上述期望值不同之情 形時,將上述輸出電路判定為不良。 6. 如請求項3之顯示裝置,其中 上述判疋機構包含將來自上述複數個輸出電路中之至 少兩個輸出電路之輸出信號進行比較的比較機構,且根 據上述比較機構之比較結果對上述輸出電路是否不良進 行判定。 7. 如請求項6之顯示裝置,其中進一步包含控制機構,其 對輸入至上述複數個輸出電路中之至少兩個輸出電路之 輸入信號進行控制, 上述控制機構係對上述至少兩個輸出電路輸入大小相 異之輸入信號,並且輸出與上述大小相異之輸入信號相 143485.doc 201031180 8. 9. ❹ 10. 11. 12. 13. 14. 對應之、來自上述比較機構之比較結果之期望值, 上述判定機構於上述比較結果與上述期望值不同之情 形時,判定上述至少兩個輸出電路之任一者為不良。 如請求項4之顯示裝置,其中 上述輸出電路包含運算放大器作為輸出緩衝器, 上述比較機構係包含上述運算放大器而構成之比較 器。 如請求項8之顯示裝置,其中 上述運算放大器於驅動顯示面板之情形時,作為電壓 隨動器進行動作。 如請求項1之顯示裝置,其中 上述影像再生裝置係DVD再生裝置。 如請求項10之顯示裝置,其令 上述自我檢測與自我修復機構於作為上述期間之上述 DVD再生裝置之清潔時,對上述驅動電路之不良進行檢 測、修復。 如請求項1之顯示裝置,其中 上述影像再生裝置係HDD再生裝置。 如請求項12之顯示裝置,其中 上述自我檢測與自我修復機構於作為上述期間之上述 HDD再生裝置之記憶區域之優化時,對上述驅動電路之 不良進行檢測、修復。 如請求項13之顯示裝置,其中 上述HDD再生裝置可於所設定之時刻開始記憶區域之 143485.doc 201031180 優化, 上述自我檢測與自我修復機構係於進行在上述所設定 之時刻開始之上述HDD再生裝置的記憶區域之優化之期 間,對上述驅動電路之不良進行檢測、修復。 15. —種電視系統,其特徵在於包含如請求項1之顯示裝 置。 143485.doc201031180 VII. Patent application scope: 1. A display device characterized by comprising: a display panel that displays an image according to an image signal supplied from the image reproduction device; and a driving circuit that drives the display panel and includes The self-detecting and self-repairing mechanism for detecting and repairing the defect of the driving circuit; the self-detecting and self-healing mechanism detecting and repairing the defect of the driving circuit while the image reproducing device is unable to supply the image signal. 2. The display device of claim 1, wherein the driving circuit comprises a plurality of output circuits for outputting an output signal of the display panel, wherein the self-detecting and self-repairing mechanism comprises determining whether the output circuit is defective. When the determination result of the determination means is defective, the determination means self-repairs the drive circuit so as to output a normal output signal to the display panel. 3. The display device of claim 2, wherein. The driving circuit includes a preliminary output circuit capable of outputting the output signal to the display panel, wherein the self-detecting and self-repairing mechanism includes a switching mechanism, and when the result of the determination is abnormal, the The output signal of the above-mentioned defective output circuit is switched to the output signal from the upper circuit as the output signal to the display panel. 143485.d〇c 201031180. The display device of claim 3, wherein the determining means includes A comparison means for comparing an output signal from the output circuit with an output signal from the preliminary output circuit, and determining whether the output circuit is defective based on a comparison result of the comparison means. 5. The display device of claim 4, further comprising a control mechanism for controlling an input signal to the output circuit and the preliminary output circuit, wherein the control mechanism inputs the size of the output circuit and the preliminary output circuit a different input signal, and outputting an expected value of the comparison result from the comparison means corresponding to the input signal different in size, wherein the determining means sets the output circuit when the comparison result is different from the expected value It was judged to be bad. 6. The display device of claim 3, wherein the determining means comprises comparing means for comparing output signals from at least two of the plurality of output circuits, and comparing the output according to a comparison result of the comparing means Whether the circuit is bad or not. 7. The display device of claim 6, further comprising a control mechanism for controlling an input signal input to at least two of the plurality of output circuits, wherein the control mechanism inputs the at least two output circuits Input signals of different sizes, and outputting the input signal phase different from the above size 143485.doc 201031180 8. 9. ❹ 10. 11. 12. 13. 14. Corresponding to the expected value of the comparison result from the above comparison mechanism, The determining means determines that any of the at least two output circuits is defective when the comparison result is different from the expected value. A display device according to claim 4, wherein said output circuit includes an operational amplifier as an output buffer, and said comparison means includes a comparator including said operational amplifier. A display device according to claim 8, wherein said operational amplifier operates as a voltage follower when driving the display panel. The display device of claim 1, wherein the video reproduction device is a DVD reproduction device. The display device of claim 10, wherein the self-detecting and self-healing means detects and repairs a defect of the drive circuit when cleaning the DVD reproducing device as the period. The display device of claim 1, wherein the image reproducing device is an HDD reproducing device. The display device of claim 12, wherein the self-detecting and self-healing means detects and repairs a defect of the driving circuit when optimizing the memory area of the HDD reproducing device during the period. The display device of claim 13, wherein the HDD reproducing device can optimize the 143485.doc 201031180 of the memory region at the set time, wherein the self-detecting and self-repairing mechanism performs the HDD regeneration starting at the set time. During the optimization of the memory area of the device, the failure of the above drive circuit is detected and repaired. A television system characterized by comprising the display device of claim 1. 143485.doc
TW98132358A 2008-09-25 2009-09-24 Display device and television system TW201031180A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008246724A JP2010081254A (en) 2008-09-25 2008-09-25 Display apparatus and television system

Publications (1)

Publication Number Publication Date
TW201031180A true TW201031180A (en) 2010-08-16

Family

ID=42059796

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98132358A TW201031180A (en) 2008-09-25 2009-09-24 Display device and television system

Country Status (3)

Country Link
JP (1) JP2010081254A (en)
TW (1) TW201031180A (en)
WO (1) WO2010035801A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4277055B2 (en) 2007-05-29 2009-06-10 シャープ株式会社 Drive circuit, display device, and television system
CN101960511B (en) 2008-02-28 2013-06-26 夏普株式会社 Drive circuit, and display device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2624750B2 (en) * 1988-03-07 1997-06-25 株式会社日立製作所 Liquid crystal display
GB9219836D0 (en) * 1992-09-18 1992-10-28 Philips Electronics Uk Ltd Electronic drive circuits for active matrix devices,and a method of self-tasting and programming such circuits
JPH06324651A (en) * 1992-10-19 1994-11-25 Fujitsu Ltd Driving circuit of liquid crystal display device
JP3821862B2 (en) * 1994-09-06 2006-09-13 株式会社半導体エネルギー研究所 Method of operating drive circuit of active matrix display device
JP3136066B2 (en) * 1994-12-28 2001-02-19 シャープ株式会社 Liquid crystal display
JP4277055B2 (en) * 2007-05-29 2009-06-10 シャープ株式会社 Drive circuit, display device, and television system
JP5520437B2 (en) * 2007-06-28 2014-06-11 株式会社半導体エネルギー研究所 Display device

Also Published As

Publication number Publication date
JP2010081254A (en) 2010-04-08
WO2010035801A1 (en) 2010-04-01

Similar Documents

Publication Publication Date Title
TWI391901B (en) Drive circuit, display device, and television system
WO2010035797A1 (en) Display apparatus and television system
TWI283846B (en) Display device, drive circuit for the same, and driving method for the same
JP3827823B2 (en) Liquid crystal display image erasing device and liquid crystal display device including the same
TWI424402B (en) Driving circuit, display apparatus, and self-inspection/self-healing method of driving circuit
TW201201182A (en) Organic light emitting display device and method for driving thereof
TWI512380B (en) Display apparatus and method for operating that
TW201028992A (en) Display device and television system
WO2010035792A1 (en) Display device and television system
WO2020062336A1 (en) Goa detection circuit and test method therefor
WO2010058836A1 (en) Display device and television system
CN100365494C (en) LCD device of thin film transistor possessing function of restoring disconnection, and detection circuit with high impedance
TW201031180A (en) Display device and television system
US7423447B2 (en) Method for testing liquid crystal display panels
TW201407590A (en) Driving apparatus of liquid crystal display panel
JPH06505606A (en) Redundant shift register for scanning devices
JPH09179532A (en) Driving device for matrix type display panel
CN112331114A (en) Liquid crystal panel and liquid crystal panel scanning line voltage detection method
JP2002196743A (en) Display device, abnormal operation preventing circuit and method therefor
TWI240243B (en) Liquid crystal display driving circuit and verifying apparatus and error tolerance method thereof
JPH10104300A (en) Lcd substrate inspection device and method therefor
US20130113989A1 (en) Video processing apparatus and method for simultaneously displaying a plurality of video signals on display device
TWI298861B (en) Display apparatus and its source driver
JP2004102013A (en) Method for inspecting active matrix substrate
JP2002287714A (en) Liquid crystal display device