TW201029925A - Method for the production of high purity SiO2 from silicate solutions - Google Patents

Method for the production of high purity SiO2 from silicate solutions Download PDF

Info

Publication number
TW201029925A
TW201029925A TW098132733A TW98132733A TW201029925A TW 201029925 A TW201029925 A TW 201029925A TW 098132733 A TW098132733 A TW 098132733A TW 98132733 A TW98132733 A TW 98132733A TW 201029925 A TW201029925 A TW 201029925A
Authority
TW
Taiwan
Prior art keywords
less
ppm
cerium oxide
manufacture
preferably less
Prior art date
Application number
TW098132733A
Other languages
English (en)
Inventor
Christian Panz
Markus Ruf
Guido Titz
Florian Paulat
Hartwig Rauleder
Sven Mueller
Juergen Behnisch
Jens Peltzer
Original Assignee
Evonik Degussa Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa Gmbh filed Critical Evonik Degussa Gmbh
Publication of TW201029925A publication Critical patent/TW201029925A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/187Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
    • C01B33/193Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates of aqueous solutions of silicates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Silicon Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

201029925 六、發明說明: 【發明所屬技術領域】 本發明關於一種自矽酸鹽溶液製造高純度Si〇2之新 穎的方法,關於一種具特定雜質分布之新穎的高純度Si 〇2 及彼之用途。 【先前技術】 Φ 這幾年來,全世界於能量生產中使用光伏打電池的比 例持續增長。若要達到市佔率之進一步增長,必須降低製 造光伏打電池的成本及必需提高其效能。 製造光伏打電池中之主要成本因素爲高純度矽(太陽 能矽)的成本,傳統上其係使用五十多年前所發展之西門 子法(Siemens method)以大工業規模所製造。於此方法中 ,矽首先於300-350°C的流體床反應器中與氣態氯化氫反 應以產生三氯矽烷(矽氯仿)。於複雜的蒸餾步驟之後,於 〇 氫存在下藉由在1000-1200 °c於加熱的超純矽棒上逆向上 述反應而再次熱分解三氯矽烷。於製程中’元素矽生長於 棒上及再循環釋放的氯化氫。生成四氯化矽作爲副產物, 其經轉換成三氯矽烷並返回製程或於氧焰中燃燒以產生熱 解矽石。 上述方法之無氯的替代方案爲分解單矽烷’其可同樣 地得自元素及於加熱的表面上或經過流體床反應器的通道 上實施純化步驟之後再次解離。彼之實例可見於w〇 2005118474 A1 ° 201029925 以上述方式獲得的多晶矽(多晶矽(polysilic〇n))適用 於製造太陽能板並具有超過99.99%的純度。然而,上述 方法非吊複雜且需要大量能量,使得極需一種更便宜、更 有效之製造太陽能矽的方法。 因爲能得到大量砂酸鹽溶液作爲價格非常低廉的原料 ’在過去試圖自砂酸鹽溶液製造並藉還原將其轉換爲矽, 不生匱乏之虞。例如’於US 4,973,462所描述的方法中, 高黏性的水玻璃與酸化劑於低pH値的反應溶液進行反應 鲁 以產生Si〇2。接著此Si〇2經過濾、以水清洗、再懸浮於 酸、水及螯合劑的混合物中、重複地過濾及清洗。jP〇2_ 3 1 1 3 1 0說明類似的方法’但於此情況中於沉澱反應期間盡 早添加螯合劑。此二方法的缺點在於需要相當複雜的離析 (working up)步驟。另外地發現沉澱之後所得的沉澱物在 某些程度上難以過濾。最後’螯合劑及自二氧化矽分離螯 合劑均需要額外的成本。 WO 2007/1 06860 A1提出一種方法,其中首先藉由離 〇 子交換管柱自水玻璃與酸移除所有的磷及硼雜質,隨後令 水玻璃與酸反應以產生Si02。此Si02接著與碳反應以產 生元素矽。此方法的缺點在於主要僅有硼及磷雜質自水玻 璃被去除。然而,爲了獲得足夠純的太陽能矽,亦必須分 離出特定的金屬雜質。針對於此,WO 2007/1 06860A1提 出於製程中使用另外的離子交換管柱。然而,此造成非常 複雜、昂貴的步驟且時空產率低。 因此仍需要一種有效且便宜之製造高純度二氧化矽的 -6 - 201029925 方法,其可用於製造太陽能矽。 【發明內容】 因此本發明之一目的在於提供一種製造筒純度一氧化 矽之新穎的方法,其至少沒有上述方法的一些缺點或是顯 現較低程度的缺點。本發明之另一目的在於提供一種新穎 之高純度二氧化矽,其特別適用於製造太陽能矽。藉由下 φ 述整體內容、實例及申請專利範圍而揭示未明確指出之另 外的目的。 藉由下列敘述、實例及申請專利範圍中所說明的方法 達到上述目的,以及在其中說明高純度二氧化矽。 發明人驚訝地發現簡單地藉由特定製程控制可製造高 純度二氧化矽,而不需要複數額外的純化步驟,如锻燒步 驟或螯合反應,且不需要特殊設備。此方法的重要特徵爲 控制二氧化矽的pH値及於各方法步驟期間二氧化矽所處 Ο 之反應介質的PH値。不受限於任何特定理論,發明人認 爲非常低的P Η値理想地確保無游離的帶負電S i 〇基團存 在於二氧化矽表面上(其上可能附著造成困擾的金屬離子) 。於非常低的pH値’表面甚至帶正電,致使金屬陽離子 爲二氧化砂表面所排斥。令pH値非常低,可預防這些金 屬離子(若其接著被洗掉)附著至根據本發明之二氧化砂的 表面。若二氧化矽表面帶正電,接著亦防止二氧化矽粒子 彼此附著及因此形成雜質可沉積於其中的凹洞。因此不需 使用螯合試劑或離子交換管柱而進行根據本發明的方法。 201029925 亦可免除锻燒步驟。相較於先前技藝之方法’本發明因此 實質地較簡單及較便宜。 根據本發明方法之另外的優點爲其可利用習知設備來 實施。 本發明因此提供一種製造高純度二氧化矽的方法’包 含以下步驟: a. 製造pH値小於2,較佳小於1 .5 ’特佳小於1,極 特佳小於0.5之酸化劑或酸化劑與水的初進料 @ b. 提供黏度爲0.1至2泊之矽酸鹽溶液 c. 將來自步驟b)的矽酸鹽溶液添加至來自步驟a)的初 進料,使得沉澱懸浮液的P Η値始終維持於小於2 ’較佳 小於1 .5,特佳小於1及極特佳小於0.5之値 d. 分離及清洗所得的二氧化矽,清洗介質的PH値小 於2,較佳小於1.5,特佳小於1及極特佳小於0.5 e. 乾燥所得的二氧化矽。 本發明另外提供一種二氧化矽,其特徵在於含有: @ a.介於0.001至5 ppm的鋁 b .小於1 p p m的硼 c. 小於或等於1 ppm的鈣 d. 小於或等於5 ppm的鐵 e·小於或等於1 ppm的鎳 f·小於1 ppm的磷 g .小於或等於5 p p m的鈦 h.小於或等於1 ppm的辞 -8 - 201029925 以及其特徵在於前述雜質加上鈉與鉀的總量小於ίο ppm 〇 最後,本發明提供根據本發明之二氧化矽之用途,其 係用於製造太陽能矽,作爲供製造用於實驗室或電子學之 光波導或玻璃器皿的高純度二氧化二氧化矽玻璃之高純度 原料,作爲觸媒載體及作爲供製造用於拋光高純度矽片( 晶圓)之高純度二氧化二氧化矽溶膠的起始材料。 ❹ 【實施方式】 根據本發明之製造高純度二氧化矽的方法包含以下步 驟: a. 製造pH値小於2,較佳小於1 .5,特佳小於1,極 特佳小於〇 . 5之酸化劑或酸化劑與水的初進料 b. 提供黏度爲〇. 1至2泊之矽酸鹽溶液 c. 將來自步驟b)的矽酸鹽溶液添加至來自步驟a)的初 φ 進料,使得沉澱懸浮液的PH値始終維持於小於2 ’較佳 小於1 .5,特佳小於1及極特佳小於〇 · 5之値 d. 分離及清洗所得的二氧化矽,清洗介質的pH値小 於2,較佳小於1 .5 ’特佳小於1及極特佳小於0.5 e. 乾燥所得的二氧化矽。 於步驟a)中,於沉澱容器中製造初始量的酸化劑或酸 化劑與水。供本發明目的之水較佳爲蒸餾水或去離子水。 酸化劑較佳爲亦步驟d)中所使用之供清洗濾餅的酸化劑。 酸化劑可爲呈濃縮或稀釋形式的鹽酸、磷酸、硝酸、硫酸 -9- 201029925 、氯磺酸、硫醯氯或過氯酸,或上述酸的混合物。尤其是 ,可使用較佳爲2至14N、特佳爲2至12N、極特佳爲2 至10N、尤佳爲2至7N及極尤佳爲3至6N的鹽酸·,較 佳爲2至59 N、特佳爲2至50 N、極特佳爲3至40 N、 尤佳爲3至30 N及極尤佳爲4至20 N的磷酸;較佳爲I 至24 N、特佳爲1至20 N、極特佳爲1至15 N、尤佳爲 2至1〇 N的硝酸;較佳爲1至37 N、特佳爲1至30 N、 極特佳爲2至20 N、尤佳爲2至10 N的硫酸。使用硫酸 係極特佳者。 於根據本發明之較佳變體中,於步驟a)中除酸化劑外 添加過氧化物至初進料,於酸性條件下過氧化物與鈦(IV) 離子呈黃色/橙色。於此情況中,過氧化物特佳爲過氧化 氫或過氧二硫酸鉀。依反應溶液之黃色/橙色結果,可非 常仔細地監測清洗步驟d)期間之純化程度。因鈦確實特別 造成非常黏滯性之污染物,其於p Η値大於2時其極易附 著至二氧化矽。發明人發現當步驟d)之黃色/橙色消失時 通常表示已達到所欲之二氧化矽純度,以及可於此時起以 蒸餾或去離子水清洗二氧化矽直至達到供二氧化矽的較佳 中性pH値爲止。爲了要達到過氧化物之指示劑功能,亦 可不於步驟a)但於步驟b)中添加過氧化物至水玻璃或作爲 步驟c)中的第三材料流。基本上僅可於步驟c)之後及步驟 d)之前或步驟d)期間添加過氧化物。本發明提供彼等之所 有上述變體及其混合的形式。然而,較佳變體爲於步驟a) 或b)中添加過氧化物者,因於此情況中其可顯現指示劑功 201029925 能以外的其他功能。不受任何特殊理論限制,發明人認爲 一些(尤其是含碳)雜質與過氧化物反應而被氧化並自反應 溶液被移除。其他雜質藉由氧化被轉換成更易溶解的形式 ,其可因此被洗去。根據本發明之方法因此具有不需實施 锻燒步驟的優點,儘管此爲一當然可行的選擇。 於步驟b)中,提供黏度爲〇_1至2泊、較佳爲〇.2至 1.9泊、特佳爲0.3至1 · 8泊及尤佳爲0 · 4至1.6泊及極尤 ❹ 佳爲〇·5至1.5泊的矽酸鹽溶液。可使用鹼金屬及/或鹸土 金屬矽酸鹽溶液作爲矽酸鹽溶液,較佳使用鹼金屬矽酸鹽 溶液,特佳爲矽酸鈉(水玻璃)及/或矽酸鉀溶液。亦可使用 複數種矽酸鹽溶液的混合物。鹼金屬矽酸鹽溶液的優勢在 於藉由清洗可輕易地分離鹼金屬離子。於步驟b)中所使用 之矽酸鹽溶液之較佳模數,即金屬氧化物對二氧化矽的重 量比,爲1.5至4_5、較佳爲1.7至4.2、特佳爲2至4.0 。例如藉由蒸發習知市售矽酸鹽溶液或藉將矽酸鹽溶解於 # 水中可設定黏度。 於根據本發明之方法的步驟c)中,添加初進料至砂酸 鹽溶液中及因此沉激出二氧化砂。此處必須特別注意以確 保酸化劑始終過量存在。在此情況中添加矽酸鹽溶液使得 反應溶液的PH値始終小於2 '較佳小於1 · 5、特佳小於1 、及極特佳小於〇.5及尤佳爲0.001至0.5。若必要,可添 加另外的酸化劑。於添加矽酸鹽溶液期間,藉由加熱或冷 卻沉澱容器至20至95°C、較佳30至90°C '特佳40至80 °C,維持反應溶液的溫度。 -11 - 201029925 發明人發現,若矽酸鹽溶液以液滴般加至初進料及/ 或沉澱懸浮液,則得到特別有利之可過濾沉澱物。於本發 明之較佳實施例中,因此要注意確保矽酸鹽溶液以液滴般 加至初進料及/或沉澱懸浮液。此可藉由例如逐滴添加矽 酸鹽溶液至初進料而達成。可使用安置於初進料/沉澱懸 浮液外部及/或浸沒於初進料/懸浮液中的分配單元。適當 地分配單元如熟此技藝者熟知的噴灑裝置、液滴產生器或 製粒裝置。 @ 於另外的特佳實施例中,如藉由攪拌或泵抽而攪動 初進料/沉澱懸浮液,以使流速(於沉澱容器之半徑的一半 ±5 cm與反應溶液表面至反應表面以下1〇 cm所界定的區 域中所測量)爲0.001至10 m/s,較佳0.005至8 m/s,特 佳〇.〇1至5 m/s,極特佳0.01至4 m/s,尤佳0·01至2 m/s及極尤佳0·01至1 m/s。不受任何特殊理論限制,發 明人認爲於進入至初進料/沉澱懸浮液之後,因低流速之 故進入的矽酸鹽溶液隨即僅稍微分散。 @ 此造成進入的矽酸溶液的液滴或矽酸鹽流的外殻快速 膠化,一方面使得膠態矽石的形成受到抑制以及可過濾之 Si02的產量大幅增加,另一方面確保pH充分快速改變, 此爲要達到高純度則所必須者。 初進料/沉澱懸浮液之流速的最佳選擇可能因此改進 所得產物的純度。 藉由組合最佳流速及可能的矽酸鹽輸入液滴形狀,可 進一步增加此效果使得根據本發明之方法的實施例爲較佳 -12- 201029925 者,其中以液滴般導入矽酸鹽溶液至具流速的初進料/沉 澱懸浮液,以沉澱容器半徑之一半±5 cm橫向延伸與以反 應溶液表面至反應表面以下10 c m縱向延伸的區域中所測 量的流速爲0.001至10 m/s、較佳爲0.005至8 m/s、特佳 爲0.01至5 m/s、極特佳爲0.01至4 m/s、尤佳爲0.01至 2 m/s及極尤佳爲〇.〇1至1 m/s。此外,依此方式可製造 能極有效地被過濾的二氧化矽粒子(見圖1 a及2a)。相反 φ 的,於初進料/沉澱懸浮液之流速增加的方法中,易形成 難以過濾的微細粒子。 藉此本發明亦提供平均粒徑d5Q較佳爲0.1至10 mm 、特佳爲0.3至9 mm及極特佳爲2至8 mm的二氧化矽粒 子。於本發明之第一特定實施例中,這些粒子爲環形,即 彼等於中間具有“洞”(見圖la及lb)並因此如小型的“甜甜 圈”。環形粒子可爲大致圓形但更似橢圓形。 於本發明的第二特定實施例中,這些二氧化矽粒子如 • “蕈形頭”或“水母”。亦β卩,除了上述“甜甜圈”形粒子中 的洞之外,於環形基礎結構的中間具有向一側彎曲且較佳 爲薄(即較環形部分薄且覆蓋“環”的內部開口)的二氧化矽 層(見圖2a及2b)。若將這些粒子放置在地上以其彎曲側 朝下並從上方垂直觀察,粒子相當於具有彎曲基底的殼, 具有些許堅固的,即厚的上緣且於彎曲區域中的基底較薄 〇 藉由根據本發明之方法可製造根據上述實施例1及2 之本發明的粒子。不受任何特別理論的限制’發明人認爲 -13- 201029925 初進料/反應溶液中的酸性條件並以液滴般方式般添加矽 酸鹽溶液,使得矽酸鹽溶液的液滴之表面與酸接觸的瞬間 開始膠化/沉澱,同時液滴因於反應溶液/初進料中的移動 而變形。取決於反應條件,於較慢的液滴移動中形成“蕈 形頭”狀粒子,而較快的液滴則導致形成“甜甜圈”狀粒子 0 根據本發明沉澱致能獲得不同物理化學性質的粒子。 因於清洗步驟之前已經存在上述實施例1(“甜甜圈”)及實 施例2(“蕈形頭”)粒子,依據是否在根據本發明之方法的 步驟d)及e)另外處理粒子而可能改變雜質的含量。本發明 因此提供如下文所說明之實施例1 (“甜甜圈”)及實施例2 (“ 蕈形頭”)二氧化矽粒子的實施例1(“甜甜圈”)及實施例2(“ 蕈形頭”)之兩種高純度二氧化矽粒子,根據所欲之後續應 用其包含較大比例的雜質。於此情況中,雜質比例可相當 於習知巾售沉澱的砂石者,例如得自Evonik Degussa GmbH 之 Ultrasil 7000 GR 或得自 Rhodia Chimie 之 Zeosil 1165 MP。 本發明亦提供一種方法,其中根據步驟c)的二氧化矽 粒子’即上述之實施例1(“甜甜圈”)及實施例2(“蕈形頭”) 二氧化矽粒子’係於至少一步驟中被製造或經另外的處理 〇 根據步驟C)所得的二氧化矽係於步驟d)中自沉澱懸浮 液之剩餘的組分分離。取決於沉澱物的過濾性,此可藉由 習知過濾方法進行’例如熟此技藝者所熟悉的壓濾機或旋 -14- 201029925 濾機。於沉澱物難以過濾的情況中,藉由離心及/或傾析 去除沉澱懸浮液之液體組分亦可進行分離。 一旦上清液經分離去除,清洗沉澱物,有必要由適合 的清洗介質確保清洗期間之清洗介質及因此二氧化砂的 p Η値小於2、較佳小於1 .5、特佳小於1、極特佳〇. 5及 尤佳0.001至0.5。所使用的清洗介質較佳爲呈稀釋或未 經稀釋形式之步驟a )及c )中所使用的酸化劑或彼等的混合 ❿ 物。 雖非必要可選擇性地添加螯合劑至清洗介質或於含螯 合劑且具小於2、較佳小於1 · 5、特佳小於1、極特佳爲 0.5及尤佳爲0.001至0.5之對應pH値的清洗介質中攪拌 沉澱的二氧化矽。然而,較佳於分離二氧化矽沉澱物之後 立即以酸性清洗介質進行清洗且無實施其他步驟。 較佳持續清洗直至根據步驟c)之由二氧化矽所組成的 清洗懸浮液及清洗介質不再具有可見的黃色/橙色。若根 # 據發明的方法實施步驟a)至d)而不添加與Ti(IV)離子形成 黃色/橙色化合物之過氧化物,則每個清洗步驟期間必須 取出小樣本的清洗懸浮液並與適當的過氧化物合倂。持續 此步驟直至取出的樣本於添加過氧化物之後不再具有可見 的黃色/橙色。此處必須確保清洗介質之pH値及因此至此 時點的二氧化矽之pH値均小於2、較佳小於1 .5、特佳小 於1、極特佳〇·5及尤佳0.001至0.5。 依此方式清洗的二氧化矽較佳於中間步驟d1)’即介 於步驟d)及e)之間,以蒸餾水或去離子水進行另外的清洗 -15- 201029925 ,直至得到的二氧化矽之pH値爲4至7.5爲止及/或直至 清洗懸浮液的導電性爲小於或等於9 pS/cm、較佳小於或 等於5 pS/cm。此確保所有黏著至二氧化矽的酸性殘留物 已充分地被移除。 於難以過濾或清洗沉澱物的情況中,藉由令清洗介質 於密篩網多孔籃中自下方通過沉澱物可有利於實施清洗。 較佳可於15至100 °C的溫度實施所有的清洗步驟。 爲了保證過氧化物(黃色/橙色)的指示劑效果,可有利 的連同清洗介質添加另外的過氧化物直至黃色/橙色不可 辨識爲止,及接著僅以清洗介質而無過氧化物持續清洗。 所得的高純度二氧化矽可經乾燥及進一步的處理。藉 由熟此技藝者所熟知的方法可進行乾燥,例如帶式乾燥機 、盤式乾燥機、筒形乾燥機等。 有利的是硏磨乾燥的二氧化矽以得到理想粒徑範圍, 以供進一步加工爲太陽能矽。根據本發明之供選擇性硏磨 二氧化矽的方法爲熟此技藝者所熟知者,且可見於例如 e山iiow, 5-20。較佳在流體床反向噴射磨 機中進行硏磨以最小化或避免高純度二氧化矽受到由磨機 壁所磨耗之金屬汙染。選擇硏磨參數使得所得的粒子之平 均粒徑d5()爲1至100 μιη、較佳3至30 μχη、特佳5至15 μιη 〇 根據本發明之二氧化矽的特徵在於其含有: a· 鋁含量介於0.001 ppm至5 ppm、較佳介於0.01 ppm 至 0.2 ppm、特佳 0.02 至 0.1、極特佳 〇.〇5 201029925 至0.8及尤佳0.1至0.5 ppm, b. 硼含量小於 1 ppm、較佳 0.001 ppm至 0.099 ppm、特佳 0.001 ppm 至 0.09 ppm 及極特佳 〇.〇1 ppm 至 0.08 ppm C. 銘含量小於或等於1 ppm、0.001 ppm至0.3 ppm 、特佳0.01 ppm至0.3 ppm及極特佳0.05 ppm 至 0.2 ppm φ d- 鐵含量小於或等於5 ppm、較佳0.001 ppm至3 ppm、特佳 0.05 ppm 至 3 ppm 及極特佳 〇.〇1 ppm 至1 ppm、尤佳0.01 ppm至.0.8 ppm及極尤佳 0.05 ppm 至 0.5 ppm e· 鎮含量小於或等於1 ppm、0.001 ppm至0.8 ppm 、特佳0.01 ppm至0·5 ppm及極特佳0.05 ppm 至 0 _ 4 ppm f· 碟含量小於1 〇 ppm、較佳小於5 ppm、特佳小於 ^ 1、極特佳 0.001 ppm 至 0.099 ppm、尤佳 0.001 ppm 至 0.09 ppm 及極尤佳 0.01 ppm 至 0.08 ppm g. 鈦含量小於或等於1 ppm、0.001 ppm至0.8 ppm 、特佳0.01 ppm至0.6 ppm及極特佳0.1 ppm至 0.5 ppm h. 鋅含量小於或等於1 ppm、較佳0.001 ppm至 0 · 8 p p m、特佳 〇 · 〇 1 p p m至 0.5 p p m及極特佳 0.05 ppm 至 0.3 ppm 以及前述雜質加上鈉與鉀的總量小於1 〇 ppm、較佳小於4 -17- 201029925 ppm、特佳小於3 ppm、極特佳0.5至3 ppm及尤佳1 ppm 至3 ppm。相較於例如WO 2007/106860 A1之先前技術的 二氧化矽,根據本方法產生的二氧化矽就多種雜質而言顯 現極高純度。 根據本發明之高純度二氧化矽可呈上述形式,即如“ 甜甜圈”及“蕈形頭”粒子或習知粒子形式。然而,使用熟 此技藝者習知之方法亦可將粒子壓模成爲顆粒或團塊。若 粒子爲圓形’即習知之粒子形式,其較佳平均粒徑d 5 〇爲 _ 1至100 μιη、特佳爲3至30 μιη及極特佳爲5至15 μιη。 “甜甜圈”及“蕈形頭”粒子之平均粒徑d5G較佳爲0.1至1〇 mm、特佳爲0·3至9 mm及極特佳爲2至8 mm。 可另外加工根據本發明之高純度二氧化矽以得到供太 陽能工業的高純度矽。熟此技藝者熟知之二氧化矽例如見 WO 2007/ 1 06860 A1。 高純度二氧化矽亦可作爲供製造用於實驗室及電子學 之光波導或玻璃器皿的高純度二氧化二氧化矽玻璃之高純 @ 度原料,作爲觸媒撐體及作爲供製造用於拋光高純度矽片 (晶圓)之高純度二氧化二氧化矽溶膠的起始材料。 高純度二氧化矽亦可用於製造所謂的“晶錠(boule)” ;用 於製造如光纖中的套管(casing tube)、套管(casing pipe)' 外包覆管或心骨或內包覆材料之成型的玻璃體;用於製造 平面光纖的芯材;用於製造坩堝;用於製造光學透鏡、稜 鏡及光罩、用於製造光晶格、電氣、熱或磁性絕緣體;用 於製造供化學、醫藥、半導體或太陽能工業的容器或設備 -18- 201029925 ;用於製造供塗佈金屬、塑料、陶瓷或玻 璃管(glass pipe)或玻璃管(glass tube):作 料、聚合物、漆的彈性體中之塡料;作爲 電路的拋光劑;用於製造燈或於製造太陽 載體。 測量方法: φ 測定沉澱懸浮液的pH値 利用根據DIN EN ISO 787-9之方法 水性懸浮液的pH値或主要不含Si02清洗 於進行pH測量之前,必須於20°C使 pH測量儀器(Knick,型號:具溫度感測器 Calimatic)及pH電極(由Schott所製造之 N7 6 8 0)。應選擇校正功能使得所使用的兩 樣本之預期的pH値(pH 4.00及7.00、pH φ 及選擇性地pH 7.00及I2· 00的緩衝溶液) 於步驟a)及d)中,在20°C測定pH値 於個別的反應溶液溫度進行測量。爲測量 去離子水接著以些許懸浮液淋洗電極,然 懸浮液中。若pH計顯示常數値,由顯示| 針對小於7〇 μηι之粒徑以Coulter LS 230 定高純度二氧化矽的平均粒徑d50 說明: 璃之玻璃棒、玻 爲金屬、玻璃材 供半導體材料及 能電池期間作爲 來測定二氧化矽 夜的pH値。 用緩衝溶液校正 之 766 pH meter 複合電極,型號 種緩衝溶液包括 7.00 及 pH 9.00 〇 。於步驟C)中, pH値,首先以 後將電極浸沒於 ί出pH値。 雷射繞射儀器測 -19- 201029925 根據用於測定粒徑之夫朗和(F r a u n h 〇 f e r)模型之雷射 繞射應用係基於粒子以不同強度圖案於所有方向散射單色 光的現象。此散射係取決於粒徑。粒子越小,散射角度越 大。 步驟: 一旦開啓,Coulter LS 23 0雷射繞射儀器需要暖機1.5 至2.0小時以得到恆定測量値。於測量之前,必須使樣本 搖晃均勻。首先以雙擊起始“Coulter LS 23 0”程式。當執 行此時,應注意確保“使用光具座”經啓動及Coulter儀器 之顯示部上顯示“減速”。按壓“排放”鈕並持續按壓直至測 量管中的水流盡,接著按壓液體傳送泵上的“開始”鈕並再 次持續按壓直至進入儀器的水滿溢。總共進行此步驟兩次 。接著按壓“塡充”鈕。程式由自身啓動及自系統移除任何 氣泡,速度自動地增加且接著再次降低。必須設定選擇用 於測量的泵容量。 爲要起始測量,選擇“測量”“測量周期”。 無PIDS的測量 測量時間爲60秒,等候時間爲〇秒。接著選擇形成 雷射繞射基礎的計算模型。基本上,於每一次測量之前自 動地進行背景測量。於背景測量之後,樣本必需被送進測 量管直至達到8至12 %的濃度爲止。此藉由於頂部顯露“ 好”而由程式指明。點擊“就緒”以結束。程式接著自身進 -20- 201029925 行所有必要步驟及於測量之後產生所硏究的樣本之粒徑分 佈。 測定“甜甜圈”形及“覃形頭,,形產物之平均粒徑d50 選擇1 00個代表性粒子及於光學顯微鏡子下測定粒子 直徑。因粒子可能具有不均勻形狀,測定最大直徑處的直 徑。所測定之所有粒子直徑的平均値相當於d 5 〇値。 使用落球式黏度計測定水玻璃的動態黏度 使用落球式黏度計(Happier Viscosimeter,Thermo Haake)測定水玻璃的動態黏度。
_t±=. ESC
W W 無氣泡地注入水玻璃(約45 cm3)至落球式黏度計 (Thermo Haake,落球式黏度計C)之下落管中至管端點的 φ 下方,及接著導入球(Thermo Haake,球組型號 800-0 1 82 ,球 3,密度 δκ = 8·116 g/cm3,直徑(1κ=15·599 mm,球比 常數 K = 〇_〇9010 mPa*s*cm3/g)。藉由循環恆溫(Jalubo 4) ,確實地調整黏度計的溫度至20± 0.03 °C。於測量前’球 通過管一次以完全地混合水玻璃。間隔1 5分鐘後開始第 一次測量。 測量部以預定方式嚙合於儀器底部10°位置內。藉由 翻轉測量部1 8 0。使球被帶到供測量的起始位置。由手動碼 表測定通過測量段A - B的下落時間t °測量時間始於當球 -21 - 201029925 下方外緣碰觸預期之上方環狀標記A(其對觀察者而言必 須爲線)時。測量時間止於當球下方外緣碰觸下方環狀標 記B(其亦同樣地必須爲線)。藉由反向翻轉測量部180°, 球下落回起始位置。間隔1 5分鐘後,如所述般進行第二 次測量。若量測値彼此差異不超過〇 . 5 %表示具有重複性 〇 根據以下數値式計算水玻璃(ηννοί)的動態黏度(以 mPa*s爲單位) nWGL = K*(8K-SwGL)*t 球常數:κ = 0.090 1 0 mPa*s*cm3/g 球密度:δκ: = 8·116 g/cm3 水玻璃密度:3WGL ’以g/cm3表不 t =球下降時間,以s表示 精確度至小數點第一位。 1 0 0 m P a * s相當於1泊。 測定清洗介質的導電性 於室溫根據DIN EN ISO 787- 1 4測定水性二氧化矽懸 浮液的導電性或主要不含Si〇2之清洗流體的導電性。 測定流速
藉由具有水流探針的容積流量計P-67〇-M(得自PCE 201029925
Group)來測定流速。設置探針於反應器半徑之一半土5 cm 的橫向方向及初進料/沉澱懸浮液表面至初進料/沉澱懸浮 液表面之下10 cm的縱向方向所界定的反應器區域中。應 觀察流量計的指示。 測定雜質含量·· 藉由高解析度感應耦合式電漿質譜法(HR_ICPMS)說 φ 明用於測定二氧化矽中微量元素的方法(依據測試報告 A080007580) ° 秤重1_5 g的樣本材料至PFA燒杯至準確度爲±1 mg 。添加1 g的甘露醇溶液(約1%)及25-30 g的氫氟酸(約 50%)。於短暫攪動之後,於加熱組中將pFA燒杯加熱至 110 °C ’使得樣本中所含有的矽緩慢地蒸發成六氟矽酸 (hexafluoro silicic acid) ’過多的氫氟酸亦緩慢地蒸發。以 0 · 5 m 1硝酸(約6 5 % )以及數滴過氧化氫溶液(約3 0 % )溶解 Φ 殘留物持續約1小時並且以超純水補足爲l〇g。 爲測定微量元素’自分解溶液中取出0.05 ml或0.1 ml,於各情況中送進聚丙烯樣本管,合倂ο」的銦溶液 (濃度=0.1 mg/1)作爲內標準並以稀釋的硝酸(約3%)補足爲 1 0 ml。於不同稀釋度中生產此二種樣本溶液作爲內部品 質確認,即,於測量或樣本製備期間已驗證錯誤。基本上 ,亦可僅使用一種樣本溶液。 由含有所有待分析元素(除銦之外)的多元素原液(濃度 =10 mg/1)中製造四種校準溶液(濃度=0.1 ; 〇.5 ; j.o ; 5.0 -23- 201029925 μ§/1),再次添加0.1 ml的銦溶液(濃度=0.1 mg/l)以使最終 體積爲10 m卜此外,以〇.1 ml的銦溶液(濃度=0.1 mg/1) 製造空白溶液得到最終體積1 〇 ml。 使用高解析度感應耦合式質譜法(HR-ICPMS)及外部校 準量化空白、校準及樣本溶液中的元素含量。針對元素鉀 、砷及硒以至少4000或10000的質量解析度(m/Δπι)進行 測量。 以下實例欲用於更仔細地說明而非限制本發明。 比較實例1 令3 97.6 g之基於WO 2007/106860 A1之實例1的水 玻璃(27.2重量%之Si02及8.0重量%之Na20)與2542.4 g 的去離子水混合。接者使稀釋的水玻璃通過內徑爲41 mm 及長度爲540 mm、塡充有700 ml(乾重500 g)於水中之 Amberlite IRA 743的管柱。於13.5分鐘後,於管柱出口 測得大於1 〇之pH値,這表示此時第一水玻璃已通過管柱 。於第50及第74分鐘之間所取出之總量爲981 g之純化 的水玻璃之樣本係用於進一步測試。 可利用以下表1了解水玻璃純化之前及之後的分析數 201029925 表1 : 雜質 含量單位 離子交換器上游的水玻璃 離子交換器下游的水玻璃 鋁 ppm 31 31 硼 ppm <1 <1 鈣 ppm 3 3 鐵 ppm 8 7 鎳 ppm <0.3 <0.3 磷 ppm <10 <10 欽 ppm 8 2 鋅 ppm <1 <1 由表1的數據顯示主要於wo 2007/106860 A1所說明 之以Amberlite IRA 743純化水玻璃的步驟,對於習知市 售水玻璃並沒有任何好的純化效果以及僅對於鈦含量有些 許改進。 進一步依據WO 2007/106860 A1之實例5來處理純化 的水玻璃以產生Si02。爲此,於2000 ml的圓底燒瓶中利 φ 用攪拌方式以10%硫酸酸化700 g的水玻璃。初始的pH 値爲1 1.26。於添加1 10 g的硫酸之後,凝膠點到達pH 7.62以及添加1 〇〇 g的去離子水以重建懸浮液的攪拌性。 於添加共113 g的硫酸之後,pH値到達6.9並於此PH値 開始進行攪拌持續1 0分鐘。隨後使用直徑爲1 50 mm的布 赫納漏斗實施過濾。產物相當難以過濾。於每次各以500 tnl去離子水清洗五次之後,導電性爲140 μS/cm。於循環 空氣乾燥箱中105°C下乾燥所得的濾餅持續2.5天,可得 到25.4 g的乾燥產物。於表2中顯示分析結果。 -25- 201029925 實例ι(根據本發明) 將2500 g之16.3 %硫酸及16 g之35 %的H2〇2加入至 3000 ml燒杯(直徑152 mm、高度210 mm)並於緩慢攪拌 同時逐滴添加 750 g的水玻璃(8.05%Na20、26.7%Si02、 密度 1.3 505 g/ml、黏度0.582泊)。攪拌子的速度爲50 rpm。於逐滴添加期間,膠化的粒子隨即呈蕈形頭形(水母 形)並掉落至底部。此等結構係薄壁且經良好的沉積。上 清液成爲黃色且無任何濁度。於完全添加水玻璃之後,於 50 rpm持續攪拌20分鐘。 藉由傾析上清液而離析懸浮液。添加1〇〇〇 ml去離子 水與50 ml之% %硫酸的混合物至固體材料,並於加熱浴 中加熱至超過70-80 °C。 於懸浮液經些許冷卻之後,再次傾析上清液。重複此 步驟十次。 接著以每次1 000 ml份的去離子水進行稀釋且實施傾 析直到pH値爲5.5爲止。實施另外的清洗直至導電性爲1 pS/cm 〇 於循環空氣乾燥箱中l〇5°c下,於瓷皿中乾燥產物過 夜。得到193 g的乾燥產物,相當於產率爲96 4%。將— 些樣本進行分析。 -26 · 201029925 表2 雜質 含量單位 依據比較實例1之Si〇2 依據實例1之根據本發明的Si〇2 鋁 ppm 720 <5 硼 PPm 1 <1 鈣 Epm 42 <1 鐵 PPm 170 2 鎮 —_PPm <0.3 0.8 磷 PPm <10 <10 鈦 ppm 57 <0.5 鋅 ___£pm <3 <1 鈉 PPm 6800 <10 鉀 PPm 34 <10 $表2之結果顯示,雖比較實例中所得的二氧化矽具 低硼及磷含量(如WO 2007/106860 A1所揭露者),但其他 雜質含量過高使得二氧化矽不適合作爲用於製造太陽能矽 的起始材料。 基於所有測量的元素,藉由根據本發明之方法所製造 的二氧化砂之雜質含量低於lOppm,其係根據最難移除之 多價元素鐵、鈦及鋁加以計算。表2亦指出元素的雜質度 (其係製造太陽能矽的關鍵)亦位於可接受的範圍中。因此 清楚的知道,相對於先前技術的教示,藉由根據本發明的 方法而不需螯合劑或使用離子交換管柱,可由習知市售之 濃縮的水玻璃及習知市售的硫酸來製造二氧化矽’此二氧 化矽因其雜質分布而高度適合作爲用於太陽能矽的起始材· 料。 -27- 201029925 【圖式簡單說明】 圖la顯示未乾燥之環形粒子的相片。 圖lb顯示乾燥之環形粒子的相片。 圖2a顯示未乾燥之蕈形頭或水母狀粒子。 圖2b顯示乾燥之蕈形頭或水母狀粒子。
-28-

Claims (1)

  1. 201029925 七、申請專利範团: 1. 一種製造高純度二氧化矽的方法,包含以下步驟: a. 製造pH値小於2 ’較佳小於1.5,特佳小於1,極 特佳小於〇. 5之酸化劑或酸化劑與水的初進料’ b- 提供黏度爲〇 . 2至2泊之矽酸鹽溶液, c. 將來自步驟b)的矽酸鹽溶液添加至來自步驟a) 的初進料,使得沉澱懸浮液的pH値始終維持在 ❹ 小於2,較佳小於1 .5,特佳小於1及極特佳小 於〇 . 5之値, d. 分離及清洗所得的二氧化矽,清洗介質的pH値 小於2,較佳小於1 .5,特佳小於1及極特佳小 於 0.5, e- 乾燥所得的二氧化矽。 2. 根據申請專利範圍第1項之方法,其中於反應器中 之初進料或沉澱懸浮液的流速爲0.001至10 m/s。 # 3.根據申請專利範圍第1或2項之方法,其中除酸化 劑之外,步驟a)中的初進料亦含有過氧化物,其在酸性條 件下與鈦(IV)離子化合以形成黃色/橙色化合物。 4.根據申請專利範圍第1或2項之方法,其中於步驟 c)中添加矽酸鹽溶液係令矽酸鹽溶液以液滴般進入初進料 及/或沉澱懸浮液的方式進行,較佳使用合適的分配單元 將矽酸鹽溶液添加至初進料,特佳係藉由將分配單元安裝 於初進料/沉澱懸浮液外部及/或將分配單元浸沒於初進料/ 沉澱懸浮液的方式來進行添加。 -29- 201029925 5. 根據申請專利範圍第1或2項之方法,其中於步驟 c)之後所得的二氧化矽粒子爲環形或蕈形頭形式,即內部 的洞由向一側彎曲之二氧化矽層所覆蓋的環形基礎結構。 6. 根據申請專利範圍第1或2項之方法,其中於步驟 〇、二氧化矽的分離與以清洗介質清洗間不需進行另外的 步驟,該清洗介質之pH値小於2,較佳小於1 .5,特佳小 於1及極特佳小於〇. 5。 7. 根據申請專利範圍第1或2項之方法,其中於以pH 値小於2,較佳小於1 .5,特佳小於1及極特佳小於0.5之 清洗介質進行清洗之後,以蒸餾水進行額外的清洗,直到 所得的二氧化矽之pH値爲4至7.5及/或清洗懸浮液的導 電性小於或等於9 pS/cm,較佳小於或等於5 pS/cm爲止 〇 8 _根據申請專利範圍第1或2項之方法,其中酸化劑 包含呈濃縮或稀釋形式的鹽酸、磷酸、硝酸、硫酸、氯磺 酸、硫醯氯或過氯酸,或包含前述酸的混合物。 9. 根據申請專利範圍第1或2項之方法,其中該方法 不包含鍛燒步驟。 10. —種二氧化矽,其特徵在於其呈環形形式。 11. 一種二氧化矽,其特徵在於其呈蕈形頭形式,即 內部的洞由向一側彎曲之二氧化矽層所覆蓋的環形基礎結 構。 12. —種較佳根據申請專利範圍第10或11項之二氧 化矽,其特徵在於含有: -30- 201029925 a. 0.01 至 5 ppm 的鋁 b. 小於1 ppm的硼 c. 小於或等於1 ppm的鈣 d. 小於或等於5 ppm的鐵 e. 小於或等於1 p p m的鎳 f 小於1 p p m的磷 g.小於或等於5 ppm的鈦 φ h.小於或等於1 ppm的鋅, 以及前述雜質加上鈉與鉀的總量小於10 ppm。 1 3 .根據申請專利範圍第1 0或丨丨項之二氧化矽,其 平均粒徑d5◦爲0.1至l〇mm。 14. 一種二氧化矽,其可得自根據申請專利範圍第1 項之方法。 1 5 · —種根據申請專利範圍第1 〇至1 4項中任一項之 二氧化矽的用途’其係用於製造元素矽或作爲供製造用於 φ 實驗室或電子學之光波導或玻璃器皿的高純度二氧化矽玻 璃之高純度原料或作爲供製造用於拋光高純度矽片(晶圓) 之高純度二氧化矽溶膠的起始材料;用於製造所謂的“晶 淀(boule)”;用於製造如光纖中的套管(casing tube)、套管 (casing pipe)、外包覆管或心骨或內包覆材料之成型的玻 璃體;用於製造平面光纖之芯材;用於製造坩堝;用於製 造光學透鏡、稜鏡及光罩;用於製造光晶格、電氣、熱或 磁性絕緣體;用於製造供化學、醫藥、半導體或太陽能工 業的容器或設備;用於製造供塗佈金屬、塑料、陶瓷或玻 -31 - 201029925 璃之玻璃棒、玻璃管(glass pipe)或玻璃管(glass tube);作 爲金屬、玻璃材料、聚合物、漆的彈性體中之塡料;作爲 供半導體材料及電路的拋光劑;用於製造燈,或作爲製造 太陽能電池期間的載體。
    -32-
TW098132733A 2008-09-30 2009-09-28 Method for the production of high purity SiO2 from silicate solutions TW201029925A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008049597 2008-09-30

Publications (1)

Publication Number Publication Date
TW201029925A true TW201029925A (en) 2010-08-16

Family

ID=41404576

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098132733A TW201029925A (en) 2008-09-30 2009-09-28 Method for the production of high purity SiO2 from silicate solutions

Country Status (12)

Country Link
US (1) US20110244238A1 (zh)
EP (1) EP2331463A1 (zh)
JP (1) JP2012504102A (zh)
KR (1) KR20110076904A (zh)
CN (1) CN102171144A (zh)
AU (1) AU2009299917A1 (zh)
BR (1) BRPI0920744A2 (zh)
CA (1) CA2738561A1 (zh)
EA (1) EA201100567A1 (zh)
TW (1) TW201029925A (zh)
WO (1) WO2010037705A1 (zh)
ZA (1) ZA201102325B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403124A (zh) * 2011-02-22 2013-11-20 赢创德固赛有限公司 由碱金属硅酸盐溶液制备高纯度含水胶态二氧化硅溶胶的方法
TWI557073B (zh) * 2011-02-22 2016-11-11 贏創德固賽有限責任公司 供石英玻璃應用之高純度矽石顆粒

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006024590A1 (de) 2006-05-26 2007-11-29 Degussa Gmbh Hydrophile Kieselsäure für Dichtungsmassen
DE102007052269A1 (de) * 2007-11-02 2009-05-07 Evonik Degussa Gmbh Fällungskieselsäuren für lagerstabile RTV-1 Siliconkautschukformulierungen ohne Stabilisator
DE102008040264A1 (de) * 2008-07-09 2010-01-14 Evonik Degussa Gmbh Schweißaufnehmende Schuheinlegesohle mit verbesserter Schweißaufnahme
JP5501117B2 (ja) * 2010-06-28 2014-05-21 日揮触媒化成株式会社 透明被膜付基材および透明被膜形成用塗布液
DE102011004534A1 (de) 2011-02-22 2012-08-23 Evonik Degussa Gmbh Verfahren zur Herstellung wässriger kolloidaler Silikasole hoher Reinheit aus Alkalimetallsilikatlösungen
DE102011017783A1 (de) 2011-04-29 2012-10-31 Evonik Degussa Gmbh Verfahren zur Herstellung wässriger kolloidaler Silikasole hoher Reinheit aus Alkalimetallsilikatlösungen
DE102011004750A1 (de) 2011-02-25 2012-08-30 Evonik Degussa Gmbh Vorrichtung und Verfahren zum Verarbeiten eines SiO2-haltigen Materials
DE102011007708A1 (de) 2011-04-19 2012-10-25 Sgl Carbon Se Tiegelanordnung
CN102249249A (zh) * 2011-06-22 2011-11-23 武汉大学 一种采用熔盐法提纯石英砂的方法
DE102012202587A1 (de) * 2012-02-21 2013-08-22 Evonik Degussa Gmbh Verfahren zur Herstellung von hochreinem SiO2
DE102012218823A1 (de) * 2012-10-16 2014-04-17 Evonik Degussa Gmbh Verfahren zur Herstellung von hochreinem Siliziumnitrid
JP2014141400A (ja) * 2012-12-28 2014-08-07 Taiheiyo Cement Corp シリカとカーボンの混合物の製造方法
CN103130194B (zh) * 2013-03-25 2015-07-08 北京乾润开元环保科技有限公司 一种水冷式臭氧发生器地电极
JP6647575B2 (ja) * 2016-09-13 2020-02-14 国立研究開発法人物質・材料研究機構 層状珪酸塩粉粒体及びその製造方法
US10690858B2 (en) 2018-02-28 2020-06-23 Corning Incorporated Evanescent optical couplers employing polymer-clad fibers and tapered ion-exchanged optical waveguides
CN108910899A (zh) * 2018-08-03 2018-11-30 上海硅硅生物技术有限公司 一种简易的偏硅酸制备方法
US10585242B1 (en) 2018-09-28 2020-03-10 Corning Research & Development Corporation Channel waveguides with bend compensation for low-loss optical transmission
CN113955761B (zh) * 2021-11-17 2022-05-24 金三江(肇庆)硅材料股份有限公司 一种防团聚增稠型二氧化硅及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61150366A (ja) * 1984-12-25 1986-07-09 Nec Corp Mis型メモリ−セル
JPS6212608A (ja) * 1985-07-11 1987-01-21 Nippon Chem Ind Co Ltd:The 高純度シリカ及びその製造方法
JPS62270424A (ja) * 1986-05-15 1987-11-24 Nippon Sekiei Glass Kk 超高純度石英ガラス粉末の製造法
JPH0796447B2 (ja) * 1986-06-13 1995-10-18 モ−ゼス レイク インダストリ−ズ インコ−ポレイテツド 高純度シリカの製造方法
US4973462A (en) * 1987-05-25 1990-11-27 Kawatetsu Mining Company, Ltd. Process for producing high purity silica
JP2545282B2 (ja) * 1989-04-17 1996-10-16 日東化学工業株式会社 球状シリカ粒子の製造方法
US5028407A (en) * 1990-01-25 1991-07-02 International Minerals & Chemical Corp. Method of production of high purity fusible silica
DE10211958A1 (de) * 2002-03-18 2003-10-16 Wacker Chemie Gmbh Hochreines Silica-Pulver, Verfahren und Vorrichtung zu seiner Herstellung
US20060110307A1 (en) * 2004-11-24 2006-05-25 Mcgill Patrick D High-cleaning silica materials made via product morphology control and dentifrice containing such

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103403124A (zh) * 2011-02-22 2013-11-20 赢创德固赛有限公司 由碱金属硅酸盐溶液制备高纯度含水胶态二氧化硅溶胶的方法
CN103403124B (zh) * 2011-02-22 2015-09-30 赢创德固赛有限公司 由碱金属硅酸盐溶液制备高纯度含水胶态二氧化硅溶胶的方法
TWI557073B (zh) * 2011-02-22 2016-11-11 贏創德固賽有限責任公司 供石英玻璃應用之高純度矽石顆粒

Also Published As

Publication number Publication date
EP2331463A1 (de) 2011-06-15
KR20110076904A (ko) 2011-07-06
CA2738561A1 (en) 2010-04-08
WO2010037705A1 (de) 2010-04-08
US20110244238A1 (en) 2011-10-06
BRPI0920744A2 (pt) 2015-12-22
AU2009299917A1 (en) 2010-04-08
JP2012504102A (ja) 2012-02-16
ZA201102325B (en) 2011-12-28
EA201100567A1 (ru) 2011-10-31
CN102171144A (zh) 2011-08-31

Similar Documents

Publication Publication Date Title
TW201029925A (en) Method for the production of high purity SiO2 from silicate solutions
TW201029924A (en) Method for the production of high purity SiO2 from silicate solutions
TWI557073B (zh) 供石英玻璃應用之高純度矽石顆粒
JP4566645B2 (ja) シリカゾル及びその製造方法
US10676388B2 (en) Glass fibers and pre-forms made of homogeneous quartz glass
JP2019502630A (ja) 二酸化ケイ素造粒体からの石英ガラス体の調製
JP2019504810A (ja) 石英ガラス体の調製および後処理
EP3390291A1 (de) Quarzglas aus pyrogenem siliziumdioxidgranulat mit geringem oh-, cl- und al-gehalt
JP2019506349A (ja) 吊り下げ式金属シート坩堝内での石英ガラス体の調製
CN112811431A (zh) 一种单分散二氧化硅微球高通量制备方法
JP7376670B2 (ja) シリカゾルの製造方法
JP2019116396A (ja) シリカ系粒子分散液及びその製造方法
JP4068225B2 (ja) シリカガラス粉粒体及びその製造法
KR20210130138A (ko) 실리카 분말, 수지 조성물 및 분산체
JP3442119B2 (ja) シリカヒドロゲルの洗浄方法
JP2009143743A (ja) 合成シリカ粉の製造方法
JP2012236738A (ja) 高純度シリカ粉末の製造方法
YANG et al. Preparation and characterization of large-particle pure silica sol
JPH03159911A (ja) 球状シリカ粒子の製造方法