201024714 r z / y / u i υυ TW 29769twf.doc/n 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種矽晶片缺陷的檢测裝置及方 法,且特別是有關於一種利用近紅外線檢測的矽晶片缺陷 的檢測裝置及方法。 【先前技術】 • 當矽基太陽能電池製造時,矽晶片裂痕之產生有兩個來 源,其一是石夕晶在製作時就已產生之裂痕,另一為製程中 產生之裂痕。一般來說,在生產線之進料時會檢測進料石夕 晶片之品質,其檢測項目有電性及外觀。其中,檢測是否 有裂痕是一個重要之檢測項目。在裂痕檢測時通常利用紅 外線來穿透矽晶片,有裂痕之處穿透之紅外光會因裂痕之 散射而在影像中形成明暗之對比,在經過影像處理後可找 出裂痕位置。在多晶矽晶片中除了裂痕會造成紅外光影像 ❹ 巾的明暗對比外’晶界於穿透之紅外光影像巾也有明暗之 對比,因此晶界之影像會干擾裂痕之判斷,使得誤判率增 加。另外,若晶粒較小,會使得搜尋時間拉長。 【發明内容】 因此,本發明提供一種矽晶片缺陷的檢測裝置,可以 精確且快速地檢測出矽晶片上所出現的缺陷。 本發明也提供一種矽晶片缺陷的檢測裝置,可以透過 光源的調整,降低因石夕晶片厚度變化而造成感測影像太亮 201024714 Γ^/^/viwWTW 29769twf.doc/n 或太暗所導致影像運算分析時的誤判。 此外,本發明還提供-種石夕晶片缺陷的檢測方法,可 以經由影像的比對精確且快速地檢測出石夕晶片 缺陷。 提出-_晶片裂痕的檢難置,本發明之檢 測裝置包括下光源、上光源、取像元件和處理池。下光 =可以產生具有-第-光線向梦晶片下表面照射,而上光 ί可二ί生f"有一第二光線向石夕晶片的上表面照射。另 :以在下光源照射該石夕晶片下表面時,對該 夕a曰片的上表面取像而產生—第—影像㈣,並且在上光 ,照财晶片上表面時,_晶片的上表面取像而產生一 弟一影像貝枓。另外,處理模組可以 二影像資料進行運算,以分析出秒晶片上的缺^ 本發明也提出-種矽晶片裂痕的檢 檢測裝置包括下光源、取像元件和處理模組。其Ϊ二 有一第—光線向矽晶片下表面照射。取像元 件在下光源照射石夕晶片下表面時,對石夕晶片的上表面 影像資料。光感測器則可以接收透射過 光源的I強产。另’並產生一光感測訊號用於調整控制下 運^、以八;^ /卜處理模組可以將第—影像資料進行 運异,以分析出矽晶片上的缺陷。 測方彳Γ 看’本發明也提供—種石夕晶片缺陷的檢 表面照射。藉此,太ί 朝一待測石夕晶片的下 曰 I明可以從待測矽晶片的上表面感測 4 201024714 rz/y/uiuuTW 29769twf.doc/n 透射過待測矽晶片的第一光線,以對待測矽晶片取像,而 產生一弟一影像資料。另外,產生一第二光線,並且朝待 測矽晶片的上表面照射。相同地,本發明可以從待测矽曰 片的上表面感測被待測矽晶片反射的第二光線,以對該^ 測矽晶片取像,而產生一第二影像資料。將第一影像^料 和第二影像資料進行運算,而獲得一對比影像資料。、 由於本發明可以透過將第一影像資料和第二影像資 _ 料進行運算,而獲得對比影像資料。因此,可以精確且快 速地檢測出矽晶片上所出現的缺陷。 、 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 圖1纷示為依照本發明之一較佳實施例的一種檢測裝 置的系統方塊圖。請參照圖1,本實施例所提供的檢測裝 藝置,可以檢測待測石夕晶片112中的缺陷,例如在待測石夕晶 片112製程時所造成的裂痕。本實施例之檢測裝置可以包 括下光源102、上光源104、取像元件1〇6、處理模組1〇8。 其中,處理模組108可以耦接取像元件1〇6。 在檢測待測矽晶片112時,可以把待測矽晶片112放 置於下光源102上方’下光源1〇2可以產生一第一光線, 其可以是一近紅外光光源(在本實施例中,第一光線的波長 例如是900nm〜lOOOnm)。下光源1〇2所產生第一光線可以 向待測矽晶片112下表面照射。而第一光線在穿透待測矽 晶片112後 ❹ ❿ 201024714 j^z/y/viuOTW 29769twf.doc/n 曰主〗運取像元件106。此時,取像元件i〇6 可以感測穿透待測矽晶片112後的第一光線而產生第一影 像資料給處理模組108。在本實施例中,取像元件1〇6可 以利用一電荷耦合元件來實現。而在一些選擇實施例中, 取像兀件1〇6還可以配置高通滤波$ 11〇,以渡除較短波 長的光線。 另外,在一些實施例中,上光源104可以與下光源102 為相同波奴近紅外光ϋ本發明並不⑽為限。類似 地,上光源1〇4可以產生一第二光線,並且向待測石夕晶片 112的上表面照射。第二光線經過待測吩晶片ιΐ2之上表 面的反射後’也會職取像元件·。此時,取像元件1〇6 可以感測被反射的第二光線而輪出一第二 模組108。 穿,恸晶片112上之裂痕處時,裂痕會散201024714 rz / y / ui TW TW 29769twf.doc/n VI. Description of the Invention: [Technical Field] The present invention relates to a device and method for detecting flaws in a silicon wafer, and more particularly to a near infrared ray A detecting device and method for detecting defective wafer defects. [Prior Art] • When a germanium-based solar cell is fabricated, there are two sources of cracking of the germanium wafer, one of which is the crack that has occurred in the production of Shi Xijing, and the other is the crack generated in the process. In general, the quality of the incoming stone wafer is detected during the feeding of the production line, and the test items have electrical properties and appearance. Among them, detecting whether there is a crack is an important test item. In the crack detection, the infrared rays are usually used to penetrate the silicon wafer. The infrared light transmitted through the cracks forms a contrast between light and dark in the image due to the scattering of the cracks, and the crack position can be found after image processing. In the polycrystalline germanium wafer, in addition to the crack, the infrared light image will be contrasted with the light and dark. The grain boundary is also contrasted with light and dark. Therefore, the grain boundary image will interfere with the crack judgment, which increases the false positive rate. In addition, if the grain size is small, the search time is lengthened. SUMMARY OF THE INVENTION Accordingly, the present invention provides a detecting device for a defect of a germanium wafer, which can accurately and quickly detect defects occurring on a germanium wafer. The invention also provides a detecting device for defect of a silicon wafer, which can reduce the image of the sensing image by the adjustment of the light source to reduce the thickness of the laser chip, and the image is too dark. Misjudgment during analysis. In addition, the present invention also provides a method for detecting a defect of a stone wafer, which can accurately and quickly detect a defect of a silicon wafer via an alignment of an image. The detecting device of the present invention is proposed. The detecting device of the present invention comprises a lower light source, an upper light source, an image capturing element and a processing tank. The light can be generated with a -first light illuminating the lower surface of the dream wafer, while the glazing light has a second light illuminating the upper surface of the stone wafer. In addition, when the lower surface of the wafer is irradiated to the lower surface of the wafer, the upper surface of the wafer is imaged to produce a first image (four), and when the upper surface of the wafer is glazed, the upper surface of the wafer Take the image and produce a younger brother and an image. In addition, the processing module can perform operations on the two image data to analyze the defects on the second wafer. The invention also proposes that the inspection device for the silicon wafer crack includes a lower light source, an image capturing component and a processing module. The second light has a first light that illuminates the lower surface of the germanium wafer. When the image element is irradiated onto the lower surface of the stone wafer, the image of the upper surface of the stone wafer is taken. The light sensor can receive I strong transmission through the light source. In addition, a light sensing signal is generated for adjusting and controlling the operation, and the processing module can perform the first image data to analyze the defects on the silicon wafer. The invention also provides the surface illumination of the defects of the Shixi wafer. Therefore, the lower ray of the wafer to be tested can be sensed from the upper surface of the wafer to be tested, and the first light transmitted through the wafer to be tested is sensed by the upper surface of the wafer to be tested. Taking a picture of the wafer to be tested, and generating a video image. In addition, a second light is generated and directed toward the upper surface of the wafer to be tested. Similarly, the present invention can sense the second light reflected by the wafer to be tested from the upper surface of the film to be tested to take an image of the wafer, and generate a second image. The first image material and the second image data are calculated to obtain a contrast image data. The present invention can obtain the contrast image data by performing operations on the first image data and the second image material. Therefore, it is possible to accurately and quickly detect defects occurring on the germanium wafer. The above described features and advantages of the present invention will become more apparent from the description of the appended claims. [Embodiment] FIG. 1 is a block diagram showing a system of a detecting device in accordance with a preferred embodiment of the present invention. Referring to FIG. 1, the detecting device provided in this embodiment can detect defects in the silicon wafer 112 to be tested, for example, cracks caused during the process of the stone wafer 112 to be tested. The detecting device of this embodiment may include a lower light source 102, an upper light source 104, an image capturing element 1〇6, and a processing module 1〇8. The processing module 108 can be coupled to the image taking component 1〇6. When detecting the wafer 112 to be tested, the wafer 112 to be tested may be placed above the lower light source 102. The lower light source 1〇2 may generate a first light, which may be a near-infrared light source (in this embodiment, The wavelength of the first light is, for example, 900 nm to 100 nm. The first light generated by the lower light source 1〇2 can be irradiated to the lower surface of the wafer 112 to be tested. After the first light passes through the wafer 112 to be tested, ❿ ❿ 201024714 j^z/y/viuOTW 29769 twf.doc/n 运 main image element 106 is taken. At this time, the image capturing component i〇6 can sense the first light that has passed through the wafer 112 to be tested to generate the first image data to the processing module 108. In the present embodiment, the image taking element 1〇6 can be realized by a charge coupled element. In some alternative embodiments, the image capture device 1〇6 can also be configured with high-pass filtering of $11〇 to remove light of shorter wavelengths. Additionally, in some embodiments, the upper source 104 can be the same as the lower source 102. The invention is not limited to (10). Similarly, the upper light source 1〇4 can generate a second light and illuminate the upper surface of the wafer 112 to be tested. After the second light passes through the reflection on the surface of the TEM 2 to be tested, it will also take the image component. At this time, the image capturing element 1〇6 can sense the reflected second light and rotate a second module 108. When worn, when the crack on the wafer 112 is cracked, the crack will be scattered.
Sit 一影像資料中可以包括裂痕影像和晶 免界衫像。舉例來說,_ 4Α〜圖4C:树示本發明— 的散射後,第”,圖、參關4A,經過第一光線 的政射後’弟-影像資料出現如圖4 影 及晶界影像404。 . 丁』农展汾诼叫2 像,締1(34之料¥料大部分為反射影 刀為晶塊邊界的影像。舉例來說,請參昭圖 可見的影像為晶界影像鄕,二忒 像中戎手/又有裂痕的影像的存在。 將取像τΜ牛106形成之影像資料傳送到處理模組 6 201024714 i^z /y /〇 I uuTW 29769twf.doc/n 108 ’處理模組i〇8可將第一、第二影像資料進行運算即可 得到對比影像資料’如減法運算。舉例來說,請參照圖, 圖4C中,在第一、第二影像資料作相減之運算後,晶界 影像410經相減運算後被消去而變的不明顯,裂痕影像"ο 則相對的清楚可辨認。 圖2緣示為依照本發明另一實施例的一種檢測裝置的 系統方塊圖。請參照圖2 ’在本實施例中所提供的檢測裝 φ 置包括下光源102、取像元件106、處理模組1〇8、透鏡組 2〇2、光感測器204及光強度控制器2〇6。其中,處理模組 108可以耦接取像元件1〇6。光感測器2〇4可以耦接光強度 控制器206 透鏡組202則可以收集透射待測矽晶片112的第一光 線。被透鏡組202收集的第一光線接著被光感測器2〇4所 接收,其可以產生一光感測訊號給光強度控制器2〇6。另 外光強度控制器206耦接下光源1〇2和光感測器204, 鲁 其可以控制下光源ι〇2和產生照射待測石夕晶片m的光 線二此時,光強度控制器206可以依據光感測訊號而調整 下光源102的光線,使得取像元件ι〇6在感測不同厚度之 待測石夕b曰片112 b夺產生的第一影像資料亮度為一致,以降 低處理模組1〇8將第一影像資料作運算之誤判率。 另外,本實施例之檢測裝置可以更包括一上光源 至光強度控制器2〇6。其中上光源104之功能 :上貝轭例相同,在此不再贅述。光強度控制器206可 以依據光感測訊號而調整下光源1〇2和上光源刚的光 201024714 ri /y/uiuuTW 29769twf.doc/n 線’使第一影像資料和第二影像資料二者的亮度為一致, 以降低處理模組108將第一、第二影像資料作運^之誤判 率。 將以上的敘述作一整理,本發明提供了 一種矽晶片缺 陷的檢測方法,如圖3所繪示。請參照圖3,本實施例所 提供的矽晶片缺陷的檢測方法’先如步驟S3〇2所述,產 生一第一光線,並朝一待測矽晶片的下表面照射。接著, ❹ 以如步驟S304所述’從待測矽晶片的上表面感測透射過 待测矽晶片的第一光線’以對待測矽晶片取像,而產生第 一影像資料。另外,再如步驟S306所述,產生一第二光 線’並朝待測矽晶片的上表面照射。接著,以如步驟S308 所述’從待測矽晶片的上表面感測被待測矽晶片反射的第 二光線’以對待測矽晶片取像,而產生第二影像資料。之 後’將上述第一影像資料和第二影像資料進行運算,而獲 得—對比影像資料(就如步驟S310所述)’其中所進行之運 异如減法運算。 另外,本實施例還可以在步驟S308和步驟8310間加 入—步驟S312,也就是將第一影像資料和第二影像資料做 適當處理(步驟S312),再將第一影像資料和第二影像資料 進行一減法運算’而獲得一對比影像資料(步驟S310)。 其中,在步驟S312中,適當處理的方法可以是將第 一影像資料乘以一第一倍數,並產生一修正之第一影像資 料。另外,再將第二影像資料乘以〆第二倍數,並產生一 修正之第二影像資料。或者是,調整第一影像資料和第二 8Sit imagery can include crack images and crystal-free shirts. For example, _ 4Α ~ Figure 4C: tree showing the scattering of the invention - the first, the picture, the reference 4A, after the first light of the political shot, the younger-image data appear as shown in Figure 4 and the grain boundary image 404. Ding's agricultural exhibition screams 2 images, and the 1st material of the material is the image of the boundary of the ingot. For example, the image visible in the map is the grain boundary image. The image of the smashing/cracked image in the image is transmitted to the processing module 6 201024714 i^z /y /〇I uuTW 29769twf.doc/n 108 'Processing The module i〇8 can calculate the first and second image data to obtain the contrast image data, such as subtraction. For example, please refer to the figure, in FIG. 4C, the first and second image data are subtracted. After the operation, the grain boundary image 410 is eliminated after being subtracted, and the crack image is relatively clearly identifiable. FIG. 2 is a view showing a detecting device according to another embodiment of the present invention. System block diagram. Please refer to FIG. 2 'The detection device φ provided in this embodiment includes the light The image capturing component 106, the processing module 1〇8, the lens group 2〇2, the photo sensor 204, and the light intensity controller 2〇6, wherein the processing module 108 can be coupled to the image capturing component 1〇6. The light sensor 2〇4 can be coupled to the light intensity controller 206. The lens group 202 can then collect the first light transmitted through the wafer 112 to be tested. The first light collected by the lens group 202 is then used by the light sensor 2〇4 Receiving, it can generate a light sensing signal to the light intensity controller 2〇6. In addition, the light intensity controller 206 is coupled to the lower light source 1〇2 and the light sensor 204, which can control the light source ι〇2 and generate At the same time, the light intensity controller 206 can adjust the light of the lower light source 102 according to the light sensing signal, so that the image capturing component ι 6 is sensing the different thickness of the stone to be tested. The brightness of the first image data generated by the cymbal 112 b is the same, so as to reduce the false positive rate of the first image data by the processing module 1 。 8. In addition, the detecting device of the embodiment may further include an upper light source to the light. The intensity controller 2〇6. The function of the upper light source 104: the same as the upper shell yoke The light intensity controller 206 can adjust the light source 1〇2 and the light source just according to the light sensing signal 201024714 ri /y/uiuuTW 29769twf.doc/n line 'to make the first image data and the first The brightness of the two image data is the same, so as to reduce the false positive rate of the first and second image data by the processing module 108. The above description is provided, and the present invention provides a method for detecting defects of the germanium wafer. As shown in FIG. 3, referring to FIG. 3, the method for detecting defects of a germanium wafer provided in this embodiment first generates a first light and is directed to the lower surface of a wafer to be tested, as described in step S3〇2. Irradiation. Next, the first image material is generated by sensing the first light ray transmitted through the wafer to be tested from the upper surface of the wafer to be tested as described in step S304 to image the wafer to be tested. Further, as described in step S306, a second light line ' is generated and irradiated toward the upper surface of the wafer to be tested. Next, the second image ray is imaged by sensing the second ray reflected by the wafer to be tested from the upper surface of the wafer to be tested as described in step S308. Thereafter, the first image data and the second image data are operated to obtain - contrast image data (as described in step S310), wherein the difference is performed as a subtraction operation. In addition, in this embodiment, step S312 may be added between step S308 and step 8310, that is, the first image data and the second image data are appropriately processed (step S312), and then the first image data and the second image data are further processed. A subtraction operation is performed to obtain a comparison image data (step S310). In step S312, the method of appropriately processing may be to multiply the first image data by a first multiple and generate a corrected first image data. In addition, the second image data is multiplied by a second multiple and a corrected second image data is generated. Or, adjust the first image data and the second 8
意圖 201024714 ^/y/uiuuTW 29769twf.doc/n 影像資料二者的梵度為一致。也可以是,調整上光源和下 光源的光強度,使第一影像資料和第二影像資料二者的亮 度為一致。 ^對第一影像資料和第二影像資料做適當處理後,接 f,可以如步驟S310所述,將調整後的第一影像資料和 第Γ影像Ϊ料進行運算,以獲得—對比影像資料,其中所 進灯之運算如減法運算。透過將第—影像資料和第二影像 資料做適當處理後,^規域—f彡像資料和第二影像 貧料@使進行減法運算後的影像f料對比度更高。 、v、斤^本發明之碎晶片缺陷的檢測裝置及其檢測 =法可以透過由上下兩光源所得到的影像資料做減法運 而精確且快逮地檢測出⑪晶片上所出現的缺陷,另 产=β透過對下光源的光強度調節來增加缺陷影像的辨識 太務明財發明已叫關财如上,然其並_以限定 發明之保護範圍二’田u許之更動與潤飾’故本 更祀圍虽現後附之申請專利範圍所界定者為準: 【圖式簡單說明】 的示依照本發明之—較佳實施儀—種檢測楚置 圖2纷不依照本發明另—實施例的一種檢測裝置的 9 201024714 srA/y/υι uv/TW 29769twf.doc/n 圖3繪示依照本發明之一較佳實施例的矽晶片缺陷的 檢測方法之步驟流程圖。 圖4A〜圖4C繪示本發明一實施例的影像資料的示意 圖0 【主要元件符號說明】 102 :下光源 104 :上光源 ® 106 :取像元件 108 :處理模組 110:高通濾波器 112 :待測矽晶片 202 :透鏡組 204 :光感測器 206 :光強度控制器 S302、S304、S306、S308、S310、S312 :矽晶片缺陷 ® 的檢測方法之步驟流程 402、408 :裂痕影像 4〇4、406、410 :晶界影像Intention 201024714 ^/y/uiuuTW 29769twf.doc/n The vanity of both images is the same. Alternatively, the light intensity of the upper light source and the lower light source may be adjusted such that the brightness of both the first image material and the second image material are uniform. After the first image data and the second image data are properly processed, the image data may be processed by the first image data and the second image data to obtain the contrast image data, as described in step S310. The operation of the incoming light is as a subtraction operation. After the first image data and the second image data are properly processed, the image field and the second image poor material are made to have a higher contrast of the image after subtraction. , v, kg ^ The detection device of the chip defect of the invention and the detection method thereof can accurately and quickly detect the defects appearing on the 11 wafers by subtracting the image data obtained by the upper and lower light sources, and Production = β through the adjustment of the light intensity of the lower light source to increase the identification of defective images. The fortune Mingcai invention has been called Guancai as above, but it is limited to the scope of protection of the invention 'Tian Yu Xu Zhizhi and retouching' Further, the scope of the patent application is defined as follows: [Simplified description of the drawings] The present invention is in accordance with the present invention - the preferred embodiment of the invention is not in accordance with the present invention. A type of detecting device 9 201024714 srA/y/υι uv/TW 29769twf.doc/n FIG. 3 is a flow chart showing the steps of a method for detecting defects in a germanium wafer according to a preferred embodiment of the present invention. 4A to 4C are schematic diagrams of image data according to an embodiment of the invention. [Main component symbol description] 102: Lower light source 104: Upper light source® 106: Image capturing component 108: Processing module 110: High-pass filter 112: The wafer to be tested 202: lens group 204: photosensor 206: light intensity controllers S302, S304, S306, S308, S310, S312: steps of the method for detecting the defect of the wafer defect 402, 408: crack image 4〇 4, 406, 410: grain boundary image