JP2010038723A - Flaw inspecting method - Google Patents

Flaw inspecting method Download PDF

Info

Publication number
JP2010038723A
JP2010038723A JP2008201756A JP2008201756A JP2010038723A JP 2010038723 A JP2010038723 A JP 2010038723A JP 2008201756 A JP2008201756 A JP 2008201756A JP 2008201756 A JP2008201756 A JP 2008201756A JP 2010038723 A JP2010038723 A JP 2010038723A
Authority
JP
Japan
Prior art keywords
defect
processing
light
candidate
inspection object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008201756A
Other languages
Japanese (ja)
Inventor
Hiroki Watanabe
浩樹 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008201756A priority Critical patent/JP2010038723A/en
Publication of JP2010038723A publication Critical patent/JP2010038723A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flaw inspecting method which enables the accurate determination of quality by preventing the detection and over-detection of a flaw. <P>SOLUTION: The taken images inputted from a plurality of optical systems for regular reflected light and irregular reflected light are processed by an image processor and the flaw candidate extracted from the respective taken images by light and shade detection and flaw candidate feature quantity are subjected to composite processing to classify a flaw kind. Preset quality determination parameters different at each flaw kind are adapted to perform the proper determination of quality. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば、銅張積層板の表面に発生する欠陥を光学的に自動的に検知し、欠陥種の分類、欠陥の良否判定をするための欠陥検査方法に関する。   The present invention relates to a defect inspection method for optically automatically detecting defects generated on the surface of a copper-clad laminate, for example, and classifying defect types and determining defect quality.

ガラス布エポキシ銅張積層板(CCL)のような銅張積層板は、外観レベルの高い製品が強く要求されるようになってきた。それに伴い、外観欠陥を自動的に検出する際、低S/N比の欠陥信号の検出を行う必要が出てきている。   A copper clad laminate such as a glass cloth epoxy copper clad laminate (CCL) has been strongly demanded for a product having a high appearance level. Accordingly, when an appearance defect is automatically detected, it is necessary to detect a defect signal with a low S / N ratio.

従来のCCLの欠陥検査方法においては、被対象物を単一又は複数の照明ステップ及び受光ステップによって撮像画像を得、撮像画像の明暗検出を行い欠陥候補を抽出した後、良品と欠陥を区別する閾値を設定し、欠陥候補の明暗が該当値を超える部分を欠陥としていた。   In a conventional CCL defect inspection method, a captured image of a target object is obtained by a single or a plurality of illumination steps and a light receiving step, light and dark detection of the captured image is performed, defect candidates are extracted, and then a non-defective product and a defect are distinguished. A threshold is set, and a portion where the brightness of the defect candidate exceeds the corresponding value is regarded as a defect.

しかしながら、前記従来の検査方法は、欠陥の致命性がその欠陥の大きさ、深さ等に正比例していることが前提となっている場合にのみ有効であり、それぞれ良否判定基準の異なる複数の種類の欠陥が発生する検査対象においては不適である。
また、高分解能、高精度検査においては、欠陥以外の地合を欠陥候補として抽出してしまうという機会が増え、「虚報」が増大してしまう問題を有するものであった。
However, the conventional inspection method is effective only when it is assumed that the fatality of the defect is directly proportional to the size, depth, etc. of the defect. It is unsuitable for inspection objects where types of defects occur.
Further, in the high-resolution and high-precision inspection, there is a problem that the chance of extracting a formation other than a defect as a defect candidate increases, and “false information” increases.

この問題に対し、下記特許文献1、2及び3に開示されているように、複数ある欠陥種を数種のカテゴリーに分類して、カテゴリー毎に異なる欠陥良否判定基準を設けることにより、より適切に欠陥候補の良否判定を行える方法が提案されている。   For this problem, as disclosed in the following Patent Documents 1, 2, and 3, it is more appropriate to classify a plurality of defect types into several categories and provide different defect pass / fail judgment criteria for each category. In addition, a method for determining whether or not a defect candidate is acceptable has been proposed.

銅張積層板には、例えば、凹みは大きさ、直径0.5mm(φ)以上のものがなきこと、キズは深さ5μm以上のものがなきこと等、良否判定基準の異なる複数の種類の欠陥が存在する。   There are several types of copper-clad laminates with different pass / fail criteria such as, for example, that there are no dents with a size and diameter of 0.5 mm (φ) or more, and no scratches with a depth of 5 μm or more. There is a defect.

そのため、欠陥良否判定基準が一意に決まらず、従来のすべての欠陥候補に対して同一の良否判定閾値を定めることで対応することは困難であるため、より高精度に欠陥の良否判定を行うためには、まず欠陥種を分類し、その上で、欠陥の良否判定を行う必要がある。   Therefore, the defect pass / fail judgment criteria are not uniquely determined, and it is difficult to respond by setting the same pass / fail judgment threshold for all the conventional defect candidates, so the defect pass / fail judgment is made with higher accuracy. First, it is necessary to classify defect types and then determine whether or not the defect is good.

前記特許文献1、2及び3において複数ある欠陥良否判定の異なる欠陥種を数種のカテゴリーに分類する欠陥検査方法が提案されているが、製品表面に発生する欠陥と欠陥の良否判定基準が、ある特定の条件下における場合にのみ有効な手段である。   In Patent Documents 1, 2 and 3, a defect inspection method for classifying a plurality of defect types having different defect quality determination into several categories has been proposed, but defects occurring on the product surface and defect quality determination criteria are It is an effective means only under certain conditions.

また、撮像画像の欠陥部の面積、縦横比等の形状を持って欠陥種の分類を行う方法が考えられるが、単一の光学系では、欠陥部全体を検出できず、欠陥の全容が解明できないため、欠陥形状の正確な分析ができない。
そのため、欠陥種の分類を行うためには、複数の光学系にまたがって検出を行った情報を複合して判断する必要が出てくる。
In addition, there is a method to classify the defect type with the shape of the defect area, aspect ratio, etc. of the captured image, but it is impossible to detect the whole defect part with a single optical system, and the whole defect is clarified Because it is not possible, the defect shape cannot be accurately analyzed.
Therefore, in order to classify defect types, it is necessary to make a judgment by combining the information detected across a plurality of optical systems.

特開平04−067622号公報Japanese Patent Laid-Open No. 04-066762 特開平06−207909号公報Japanese Patent Laid-Open No. 06-207909 特開平06−029864号公報Japanese Patent Laid-Open No. 06-029864

本発明は、欠陥の検出、過検出を防止して、正確に良否判定を行うことができる欠陥検査方法を提供することを目的とするものである。   It is an object of the present invention to provide a defect inspection method capable of preventing a defect from being detected and overdetecting and performing a quality determination accurately.

本発明は、銅張積層板の表面の欠陥を検査する欠陥検査方法において、前記被検査物の移動方向の反対又は移動方向から平行光線で前記被検査物の表面に正反射光のため及び乱反射光のための複数の照明源からそれぞれ光を照射する照明ステップと、
前記照明ステップにより複数の照明源から前記被検査物の表面に照射されたそれぞれの光の前記被検査物の表面から反射光を、前記被検査物の移動又は移動方向の反対方向に直交する方向に受光操作方向を持つ複数の受光手段により受光する受光ステップと、
前記受光ステップによって得られた複数の撮像画像にそれぞれ画像処理を施して明暗検出により被検査物の特徴領域の検知を行うことで欠陥候補を抽出し、特徴領域の複数の特徴量分析を行う画像処理ステップと、
前記画像処理ステップの複数の撮像画像の画像処理結果を関連付け、複合処理し、前記被検査物の欠陥の種類を分類する複合処理欠陥分類ステップと、
分類した各欠陥候補に対して異なる欠陥良否判定条件により良否判定を行う欠陥種別良否判定ステップと、
を含む工程からなることを特徴とする欠陥検査方法に関する。
The present invention relates to a defect inspection method for inspecting a defect on a surface of a copper clad laminate, because of specularly reflected light on the surface of the inspection object in a direction parallel to or opposite to the movement direction of the inspection object and irregular reflection. An illumination step of irradiating light from each of a plurality of illumination sources for light;
The reflected light from the surface of the inspection object of each light irradiated from the plurality of illumination sources to the surface of the inspection object by the illumination step, the direction orthogonal to the movement of the inspection object or the direction opposite to the movement direction A light receiving step for receiving light by a plurality of light receiving means having a light receiving operation direction;
An image in which defect candidates are extracted by performing image processing on each of the plurality of captured images obtained by the light receiving step and detecting feature regions of the inspection object by light and dark detection, and performing analysis of a plurality of feature amounts of the feature regions Processing steps;
A combined processing defect classification step for associating image processing results of a plurality of captured images of the image processing step, performing composite processing, and classifying the types of defects of the inspection object;
Defect type pass / fail determination step for determining pass / fail according to different defect pass / fail determination conditions for each classified defect candidate,
It is related with the defect inspection method characterized by comprising the process containing these.

また、本発明は、前記複合処理欠陥分類ステップが、前記画像処理ステップで前記受光ステップにより得られた複数の撮像画像にそれぞれ画質改善処理後、2値化処理を施して2値化データを獲得し、ラベリング処理(画素連結処理)によって欠陥候補を抽出し、さらに欠陥候補に対してアスペクト比、円形度及び周囲長の複数の粒子解析により特徴量を獲得し、複数の撮像画像から抽出された欠陥候補及び欠陥候補の特徴量を、欠陥候補の発生位置の情報をもとに関連付けを行い、欠陥の特徴量を複合的に処理することを特徴とする上記の欠陥検査方法に関する。   Further, according to the present invention, the composite processing defect classification step performs binarization processing on each of the plurality of captured images obtained by the light receiving step in the image processing step, and obtains binarized data by performing binarization processing. Then, defect candidates are extracted by a labeling process (pixel concatenation process), and feature quantities are obtained from a plurality of particle analyzes of aspect ratio, circularity, and perimeter for the defect candidates, and extracted from a plurality of captured images. The present invention relates to the defect inspection method described above, wherein the defect candidate and the feature amount of the defect candidate are associated with each other based on the information on the occurrence position of the defect candidate, and the feature amount of the defect is processed in a composite manner.

また、本発明は、前記複合処理欠陥分類ステップが、前記欠陥候補及び欠陥候補の特徴量の関連付けにより複合された複数の欠陥特徴量を用いて合成し、条件分岐により、欠陥候補の欠陥種の振るい分けを行うことを特徴とする上記の欠陥検査方法に関する。   Further, according to the present invention, the combined processing defect classification step synthesizes using a plurality of defect feature quantities combined by associating the defect candidates and the feature quantities of the defect candidates, and performs conditional branching to determine the defect type of the defect candidate. The present invention relates to the above-described defect inspection method characterized by performing sorting.

さらに、本発明は、前記欠陥種別良否判定ステップが、前記複合処理欠陥分類ステップにより、分類されたそれぞれの欠陥種群に対して、面積、明暗のレベルの欠陥良否判定基準を欠陥種毎に個別に定め、適用することを特徴とする上記の欠陥検査方法に関する。   Further, according to the present invention, in the defect type pass / fail judgment step, for each defect type group classified by the combined processing defect classification step, defect quality judgment criteria of area, brightness and darkness level are individually set for each defect type. The present invention relates to the defect inspection method described above.

本発明によれば、従来、欠陥種判別を行わずに、すべての欠陥候補に対して同一の良否判定基準を定めることで良否判定を行っていたのに対し、検出した欠陥候補に対して欠陥種の分類処理を行い、それぞれ良否判定基準の異なる複数の種類の欠陥についてより適切な良否判定を行うことを可能とするため、欠陥の未検出、過検出を防止することができる。   According to the present invention, conventionally, defect determination is performed for all detected defect candidates by determining the same pass / fail judgment criteria without performing defect type discrimination, whereas defects are detected for detected defect candidates. It is possible to perform defect classification processing and perform more appropriate pass / fail judgment for a plurality of types of defects each having different pass / fail judgment criteria, thereby preventing defect non-detection and overdetection.

以下、発明を実施するための最良の形態について図面を参照しながら説明する。
図1は、本発明を説明するための欠陥検査装置のシステム構成図である。
この欠陥検査装置は、被検査物として、ガラス布エポキシ銅張積層板(CCL)のような銅張積層板の表面上の欠陥を検査する装置であり本発明の欠陥検査方法を実行する。
The best mode for carrying out the invention will be described below with reference to the drawings.
FIG. 1 is a system configuration diagram of a defect inspection apparatus for explaining the present invention.
This defect inspection apparatus is an apparatus for inspecting defects on the surface of a copper clad laminate such as a glass cloth epoxy copper clad laminate (CCL) as an object to be inspected, and executes the defect inspection method of the present invention.

銅張積層板の積層板の欠陥は、大きく分けて凹欠陥、キズ欠陥、平滑欠陥がある。
これらの欠陥はある基準を超えると、回路加工の際に断線の原因となり、製品機能に支障を生じさせてしまい、また、製品機能に支障を生じさせてしまう基準は、それぞれの欠陥毎に異なる。
The defects of the copper clad laminate are roughly classified into a concave defect, a scratch defect and a smooth defect.
If these defects exceed a certain standard, disconnection may occur during circuit processing, causing problems in product function, and the standards causing problems in product function are different for each defect. .

凹欠陥には、打痕、銅皺、たも割れ、たも皺がある。
打痕は、プレス成形の際に銅箔とプレス成形時必要となる冶具板間に異物が進入することによって生じる。
銅皺は、銅箔の皺であり、薄い銅箔のよれが発生原因である。
Concave defects include dents, copper troughs, cracks, and troughs.
The dent is generated when a foreign substance enters between a copper foil and a jig plate required for press forming during press forming.
The copper cocoon is a copper foil cocoon, and is caused by the thin copper foil.

たも割れは、プリプレグの樹脂突起(たも)部での銅箔の割れであり、たもによる銅箔の重度のよれにより生じる。
また、たも皺は、たも部での銅皺であり、たもによる銅箔の軽度のよれにより生じる。
これらは、例えば、サイズ、直径0.5mm(φ)以上などと欠陥の大きさによりその致命度が大きくなる。
The crack is a crack in the copper foil at the resin protrusion (tread) portion of the prepreg, and is caused by the severeness of the copper foil due to the crack.
Also, the cocoon cake is a copper cocoon at the heel part, and is caused by the mild twist of the copper foil by the cocoon.
For example, the criticality of these increases depending on the size of the defect, such as a size and a diameter of 0.5 mm (φ) or more.

また、キズ欠陥は、製造設備による搬送時のトラブル等が発生原因であり、例えば、長さ30mm以上、深さ5μm未満又は長さ30mm未満、深さ5μm以上などと、欠陥の長さと深さに比例してその致命度が大きくなる。   In addition, the flaw defect is a cause of troubles at the time of transportation by a manufacturing facility. The fatality increases in proportion to.

また、平滑欠陥には、変色と付着物がある。変色は銅張積層板銅箔のサビ及び汚れであり、鏡板の水残りなどによって生じる。
また、付着物は、銅張積層板表面に異物が生じることによって生じ、機械油等の付着が原因である。これらは、欠陥の大きさに比例して、その致命度が大きくなる。
In addition, smooth defects include discoloration and deposits. The discoloration is rust and dirt on the copper clad laminate copper foil, and is caused by water residue on the end plate.
Further, the deposit is caused by foreign matters generated on the surface of the copper-clad laminate, and is caused by adhesion of machine oil or the like. These are fatal in proportion to the size of the defect.

これら複数の欠陥を安定して検知し、適切な良否判定を行う必要がある。
まず、高い検知能力を得るため、照明・撮像系は、色ムラなどの平滑欠陥を強調させる正反射照明・撮像系及び凹凸系の欠陥を強調させる乱反射照明・撮像系の2光学系以上とし、また適切な良否判定を行うため、正反射照明・撮像系及び乱反射照明・撮像系の複合処理を行うことにより、欠陥種の分類処理を行う。
It is necessary to detect these multiple defects stably and make an appropriate pass / fail judgment.
First, in order to obtain a high detection capability, the illumination / imaging system has at least two optical systems of specular reflection illumination / imaging system that emphasizes smooth defects such as color unevenness and irregular reflection illumination / imaging system that emphasizes irregular defects. In addition, in order to perform appropriate pass / fail determination, defect type classification processing is performed by performing combined processing of regular reflection illumination / imaging system and irregular reflection illumination / imaging system.

図1の欠陥検査装置は、搬送コンベア上に配置された被検査物である銅張積層板に光を照射し、画像を撮像する照明・撮像系と、照明・撮像系から送られた画像に後述する画像処理を施す画像処理装置と、画像処理された画像に足して複合処理を施して欠陥種の分類、良否判定を行う複合処理装置とを備えている。   The defect inspection apparatus in FIG. 1 irradiates light onto a copper-clad laminate, which is an object to be inspected, placed on a conveyor, and captures an image and an image sent from the illumination / imaging system. An image processing apparatus that performs image processing, which will be described later, and a composite processing apparatus that performs composite processing on the image processed image to classify defect types and determine pass / fail are provided.

照明・撮像系は、前記被検査物の移動方向の反対又は移動方向から平行光線で照射する2以上の複数の照明源と、2以上の複数の照明源及び前記被検査物の表面に照射されたそれぞれの光の前記被検査物の移動又は移動方向の反対方向に直交する方向に受光操作方向を持つ2以上の複数の受光手段からなる。   The illumination / imaging system irradiates two or more illumination sources that irradiate with parallel rays from the opposite or moving direction of the inspection object, the two or more illumination sources, and the surface of the inspection object. In addition, each light is composed of two or more light receiving means having a light receiving operation direction in a direction orthogonal to the direction opposite to the movement of the inspection object or the moving direction.

画像処理装置は、受光ステップで撮像を行い、被検査物の画像の取り込みを行なった後に、画質改善処理し、2値化・ラベリング処理を行うことにより、欠陥候補の抽出を行う。
また、抽出した欠陥候補の縦横比、周囲長等の形状分析を行う。
The image processing apparatus captures an image in the light receiving step, captures an image of the inspection object, and then performs image quality improvement processing and binarization / labeling processing to extract defect candidates.
Further, the shape analysis of the extracted defect candidates such as the aspect ratio and the perimeter is performed.

また、複合処理装置は、正反射画像処理装置及び乱反射画像処理装置等の複数の画像処理装置により抽出された欠陥候補の形状分析結果を、欠陥発生位置をもとに関連付けを行い、多角的に行った欠陥特徴量の統合を行う。   Further, the composite processing device associates the shape analysis results of defect candidates extracted by a plurality of image processing devices such as a regular reflection image processing device and a diffuse reflection image processing device based on the defect occurrence position, and Integration of the defect feature values made is performed.

図2は、欠陥検査装置における画像処理装置の機能ブロック図である。
画像処理装置は、機能的に、シェーディング補正処理部と、ノイズフィルタ部と、2値化処理部とラベリング部と、特徴量分析部とを備える。
FIG. 2 is a functional block diagram of the image processing apparatus in the defect inspection apparatus.
The image processing apparatus functionally includes a shading correction processing unit, a noise filter unit, a binarization processing unit, a labeling unit, and a feature amount analysis unit.

シェーディング処理部は、受光ステップで撮像を行った正反射画像、乱反射画像等にシェーディング補正処理を施して受光量バラツキの補正を行う。
ノイズフィルタ部では、シェーディング補正処理部を経た撮像画像に画像フィルタにより撮像素子、搬送速度変化等により発生するノイズのフィルタリングを行う。
The shading processing unit performs shading correction processing on the specular reflection image, irregular reflection image, and the like captured at the light receiving step to correct the received light amount variation.
The noise filter unit filters noise generated by an image sensor, a change in conveyance speed, and the like by an image filter on the captured image that has passed through the shading correction processing unit.

2値化処理部は、シェーディング補正処理部、ノイズフィルタ部を経た撮像画像を2値化する。
ラベリング部は、シェーディング補正処理部、ノイズフィルタ部、2値化処理部を経て2値化処理されることで得られた特徴粒子群の連結成分を求めることで、欠陥候補の抽出を行う。
The binarization processing unit binarizes the captured image that has passed through the shading correction processing unit and the noise filter unit.
The labeling unit extracts defect candidates by obtaining a connected component of the characteristic particle group obtained by the binarization process through the shading correction processing unit, the noise filter unit, and the binarization processing unit.

特徴量分析部は、シェーディング補正処理部、ノイズフィルタ部、2値化処理部、ラベリング処理部を経て、抽出された欠陥候補群に対して、例えば、連結pixel数、短径、長径等といった欠陥の形状分析を行い、特徴量を得る。
特徴量分析部を経て、求められた各光学系の欠陥候補及び欠陥特徴量はすべて、複合処理装置へ転送される。
The feature amount analysis unit performs a defect such as the number of connected pixels, a short diameter, a long diameter, etc. on the defect candidate group extracted through the shading correction processing unit, the noise filter unit, the binarization processing unit, and the labeling processing unit. The feature analysis is performed.
All the obtained defect candidates and defect feature quantities of each optical system are transferred to the composite processing apparatus through the feature quantity analysis unit.

図3は、欠陥検査装置における複合処理装置の機能ブロック図である。
複合処理装置は、機能的に、欠陥候補関連付け処理部、欠陥候補特徴量統合処理部、欠陥種分類処理部及び欠陥良否判定処理部を備える。
FIG. 3 is a functional block diagram of the composite processing apparatus in the defect inspection apparatus.
The composite processing apparatus functionally includes a defect candidate association processing unit, a defect candidate feature amount integration processing unit, a defect type classification processing unit, and a defect quality determination processing unit.

欠陥候補関連付け処理部は、各光学系の画像処理装置から転送された撮像画像内の欠陥候補及び欠陥特徴量を、欠陥候補の抽出位置をもとに、複数の他光学系撮像画像内の周辺探索を行い、座標がほぼ同一であるものを、同一欠陥とみなし関連付けを行う。   The defect candidate associating processing unit calculates the defect candidate and the defect feature amount in the captured image transferred from the image processing apparatus of each optical system based on the defect candidate extraction position in the periphery of the plurality of other optical system captured images. A search is performed, and those having substantially the same coordinates are regarded as the same defect and are associated.

欠陥候補特徴量統合処理部は、欠陥候補関連付け処理を経て、関連付け処理がなされた欠陥候補群に対して、面積を足し合わせるなどの欠陥特徴量の統合を行う。   The defect candidate feature amount integration processing unit performs defect feature amount integration such as adding the areas to the defect candidate group subjected to the association processing through the defect candidate association processing.

欠陥種分類処理部は、欠陥候補関連付け処理部、欠陥候補特徴量統合処理部を経て、複合された欠陥候補群に対して、欠陥候補群の欠陥形状パラメータ等を保有する欠陥特徴量をもとに、条件分岐により、欠陥種の分類を行う。   The defect type classification processing unit passes through the defect candidate association processing unit and the defect candidate feature amount integration processing unit, based on the defect feature amount possessing defect shape parameters and the like of the defect candidate group for the combined defect candidate group. In addition, defect types are classified by conditional branching.

欠陥良否判定処理部は、欠陥候補関連付け処理部、欠陥候補特徴量統合処理部、欠陥種分類処理を経て、欠陥種の分類が行われた欠陥候補に対して、各欠陥種群に対して良否判定基準の異なる欠陥良否判定パラメータを適用して、欠陥候補の良否判定処理を行う。   The defect pass / fail determination processing unit performs pass / fail determination for each defect type group with respect to the defect candidates subjected to the defect type classification through the defect candidate association processing unit, the defect candidate feature amount integration processing unit, and the defect type classification process. The defect candidate pass / fail judgment process is performed by applying defect pass / fail judgment parameters with different standards.

図4は、欠陥検査装置の複合処理装置の欠陥候補関連付け処理手法である。即ち、複合処理装置にて実行される、本発明の複合処理の処理手順を示す。
2つの画像は、同一のキズ欠陥を、2つの異なる光学系A及びBで撮像された画像である。
まず、光学系Aで欠陥候補が抽出された際に、欠陥候補の欠陥発生位置座標の算出を行う。
FIG. 4 shows a defect candidate associating process technique of the composite processing apparatus of the defect inspection apparatus. That is, the processing procedure of the composite processing of the present invention executed by the composite processing apparatus is shown.
The two images are images in which the same scratch defect is captured by two different optical systems A and B.
First, when defect candidates are extracted by the optical system A, the defect occurrence position coordinates of the defect candidates are calculated.

次に、他光学系Bにおいて、前記光学系Aで抽出された欠陥候補の発生位置座標の周辺探索を行い、他光学系Bにおいて抽出された欠陥候補が発見された場合、光学系Aで抽出された欠陥候補と他光学系Bで抽出された欠陥候補の関連付け処理を行う。   Next, in the other optical system B, a peripheral search of the occurrence position coordinates of the defect candidate extracted in the optical system A is performed, and when the defect candidate extracted in the other optical system B is found, the optical system A extracts it. The associated defect candidate and the defect candidate extracted by the other optical system B are associated with each other.

図5は、欠陥検査装置における複合処理装置の欠陥種分類処理のフローチャートの一例である。
前記欠陥候補関連付け処理により、関連付けがなされた欠陥候補の特徴量をもとに、例えば、図5に示すような条件分岐により行う。
FIG. 5 is an example of a flowchart of the defect type classification process of the composite processing apparatus in the defect inspection apparatus.
For example, conditional branching as shown in FIG. 5 is performed based on the feature amount of the defect candidate associated with the defect candidate associating process.

以上に説明したように、本発明の欠陥検査方法によれば、銅張積層板表面に生じる良否判定基準の異なる複数種の欠陥の検知、欠陥良否判定において、複数の光学系から入力された欠陥候補信号を複合処理することにより、より高精度に欠陥種の分類を行い、良否判定基準の異なる欠陥群に対して、それぞれ異なる良否判定パラメータを設定できるため、欠陥の未検出、過検出を防止することができる。   As described above, according to the defect inspection method of the present invention, defects input from a plurality of optical systems in detection of a plurality of types of defects having different quality determination criteria and defect quality determination that occur on the surface of a copper-clad laminate. By combining candidate signals, defect types can be classified with higher accuracy, and different pass / fail judgment parameters can be set for defect groups with different pass / fail judgment criteria, thus preventing defect non-detection and over-detection. can do.

本発明を説明するための欠陥検査装置のシステム構成図である。It is a system configuration figure of a defect inspection device for explaining the present invention. 欠陥検査装置における画像処理装置の機能ブロック図である。It is a functional block diagram of the image processing apparatus in a defect inspection apparatus. 欠陥検査装置における複合処理装置の機能ブロック図である。It is a functional block diagram of the composite processing apparatus in a defect inspection apparatus. 欠陥検査装置における複合処理装置の欠陥候補関連付け処理手法である。This is a defect candidate associating process method of the composite processing apparatus in the defect inspection apparatus. 欠陥検査装置における複合処理装置の欠陥種分類処理のフローチャートの一例である。It is an example of the flowchart of the defect kind classification | category process of the compound processing apparatus in a defect inspection apparatus.

Claims (4)

銅張積層板の表面の欠陥を検査する欠陥検査方法において、前記被検査物の移動方向の反対又は移動方向から平行光線で前記被検査物の表面に正反射光のため及び乱反射光のための複数の照明源からそれぞれ光を照射する照明ステップと、
前記照明ステップにより複数の照明源から前記被検査物の表面に照射されたそれぞれの光の前記被検査物の表面から反射光を、前記被検査物の移動又は移動方向の反対方向に直交する方向に受光操作方向を持つ複数の受光手段により受光する受光ステップと、
前記受光ステップによって得られた複数の撮像画像にそれぞれ画像処理を施して明暗検出により被検査物の特徴領域の検知を行うことで欠陥候補を抽出し、特徴領域の複数の特徴量分析を行う画像処理ステップと、
前記画像処理ステップの複数の撮像画像の画像処理結果を関連付け、複合処理し、前記被検査物の欠陥の種類を分類する複合処理欠陥分類ステップと、
分類した各欠陥候補に対して異なる欠陥良否判定条件により良否判定を行う欠陥種別良否判定ステップと、
を含む工程からなることを特徴とする欠陥検査方法。
In a defect inspection method for inspecting a defect on a surface of a copper clad laminate, for a specular reflection light and a diffuse reflection light on the surface of the inspection object with a parallel light beam from a direction opposite to or in a movement direction of the inspection object An illumination step of irradiating light from each of a plurality of illumination sources;
The reflected light from the surface of the inspection object of each light irradiated from the plurality of illumination sources to the surface of the inspection object by the illumination step, the direction orthogonal to the movement of the inspection object or the direction opposite to the movement direction A light receiving step for receiving light by a plurality of light receiving means having a light receiving operation direction;
An image in which defect candidates are extracted by performing image processing on each of the plurality of captured images obtained by the light receiving step and detecting feature regions of the inspection object by light and dark detection, and performing analysis of a plurality of feature amounts of the feature regions Processing steps;
A combined processing defect classification step for associating image processing results of a plurality of captured images of the image processing step, performing composite processing, and classifying the types of defects of the inspection object;
Defect type pass / fail determination step for determining pass / fail according to different defect pass / fail determination conditions for each classified defect candidate,
A defect inspection method comprising the steps including:
前記複合処理欠陥分類ステップが、前記画像処理ステップで前記受光ステップにより得られた複数の撮像画像にそれぞれ画質改善処理後、2値化処理を施して2値化データを獲得し、ラベリング処理(画素連結処理)によって欠陥候補を抽出し、さらに欠陥候補に対してアスペクト比、円形度及び周囲長の複数の粒子解析により特徴量を獲得し、複数の撮像画像から抽出された欠陥候補及び欠陥候補の特徴量を、欠陥候補の発生位置の情報をもとに関連付けを行い、欠陥の特徴量を複合的に処理することを特徴とする請求項1記載の欠陥検査方法。   In the composite processing defect classification step, after the image quality improvement processing is performed on each of the plurality of captured images obtained by the light receiving step in the image processing step, binarization processing is performed to obtain binarized data, and labeling processing (pixel The defect candidate is extracted by a concatenation process), and the feature amount is obtained by analyzing a plurality of particles of aspect ratio, circularity, and perimeter for the defect candidate, and the defect candidate and defect candidate extracted from the plurality of captured images are acquired. 2. The defect inspection method according to claim 1, wherein the feature quantity is correlated based on the information on the occurrence position of the defect candidate, and the feature quantity of the defect is processed in a complex manner. 前記複合処理欠陥分類ステップが、前記欠陥候補及び欠陥候補の特徴量の関連付けにより複合された複数の欠陥特徴量を用いて合成し、条件分岐により、欠陥候補の欠陥種の振るい分けを行うことを特徴とする請求項1記載の欠陥検査方法。   The combined processing defect classification step uses a plurality of defect feature values combined by associating the defect candidates and feature values of defect candidates, and performs defect branching of defect candidates by conditional branching. The defect inspection method according to claim 1, wherein: 前記欠陥種別良否判定ステップが、前記複合処理欠陥分類ステップにより、分類されたそれぞれの欠陥種群に対して、面積、明暗のレベルの欠陥良否判定基準を欠陥種毎に個別に定め、適用することを特徴とする請求項1記載の欠陥検査方法。   The defect type pass / fail judgment step individually determines and applies defect quality judgment criteria of area, brightness and darkness level for each defect type for each defect type group classified by the combined processing defect classification step. The defect inspection method according to claim 1, wherein:
JP2008201756A 2008-08-05 2008-08-05 Flaw inspecting method Pending JP2010038723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008201756A JP2010038723A (en) 2008-08-05 2008-08-05 Flaw inspecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008201756A JP2010038723A (en) 2008-08-05 2008-08-05 Flaw inspecting method

Publications (1)

Publication Number Publication Date
JP2010038723A true JP2010038723A (en) 2010-02-18

Family

ID=42011431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008201756A Pending JP2010038723A (en) 2008-08-05 2008-08-05 Flaw inspecting method

Country Status (1)

Country Link
JP (1) JP2010038723A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167596A (en) * 2012-02-17 2013-08-29 Honda Motor Co Ltd Defect inspection device, defect inspection method, and program
CN108364291A (en) * 2018-03-13 2018-08-03 钟国韵 Grey cloth rapid detection method based on computer vision technique
CN111435118A (en) * 2019-01-14 2020-07-21 日商登肯股份有限公司 Inspection apparatus and inspection method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623968A (en) * 1992-07-13 1994-02-01 Toshiba Corp Device for determining degree of blur on printed matter
JPH09196645A (en) * 1996-01-22 1997-07-31 Canon Inc Apparatus and method for data processing as well as apparatus and method for inspection of defect
JPH11185037A (en) * 1997-12-24 1999-07-09 Canon Inc Device and method for processing defect information
JP2002107310A (en) * 2000-09-29 2002-04-10 Komatsu Electronic Metals Co Ltd Wafer-surface information processing device
JP2003222597A (en) * 2002-01-31 2003-08-08 Kokusai Gijutsu Kaihatsu Co Ltd Copper foil surface inspection device and copper foil surface inspection method
JP2004151006A (en) * 2002-10-31 2004-05-27 Jfe Steel Kk Quality control method of hot dip zinced steel plate, and quality control device of hot dip zinced steel plate
JP2006145484A (en) * 2004-11-24 2006-06-08 Sharp Corp Visual inspection device, visual inspection method, and program for functioning computer as visual inspection device
JP2008107311A (en) * 2006-09-29 2008-05-08 Hitachi Chem Co Ltd Defect inspection method and device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623968A (en) * 1992-07-13 1994-02-01 Toshiba Corp Device for determining degree of blur on printed matter
JPH09196645A (en) * 1996-01-22 1997-07-31 Canon Inc Apparatus and method for data processing as well as apparatus and method for inspection of defect
JPH11185037A (en) * 1997-12-24 1999-07-09 Canon Inc Device and method for processing defect information
JP2002107310A (en) * 2000-09-29 2002-04-10 Komatsu Electronic Metals Co Ltd Wafer-surface information processing device
JP2003222597A (en) * 2002-01-31 2003-08-08 Kokusai Gijutsu Kaihatsu Co Ltd Copper foil surface inspection device and copper foil surface inspection method
JP2004151006A (en) * 2002-10-31 2004-05-27 Jfe Steel Kk Quality control method of hot dip zinced steel plate, and quality control device of hot dip zinced steel plate
JP2006145484A (en) * 2004-11-24 2006-06-08 Sharp Corp Visual inspection device, visual inspection method, and program for functioning computer as visual inspection device
JP2008107311A (en) * 2006-09-29 2008-05-08 Hitachi Chem Co Ltd Defect inspection method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013167596A (en) * 2012-02-17 2013-08-29 Honda Motor Co Ltd Defect inspection device, defect inspection method, and program
CN108364291A (en) * 2018-03-13 2018-08-03 钟国韵 Grey cloth rapid detection method based on computer vision technique
CN111435118A (en) * 2019-01-14 2020-07-21 日商登肯股份有限公司 Inspection apparatus and inspection method

Similar Documents

Publication Publication Date Title
KR102003781B1 (en) Apparatus for detecting defects on the glass substrate using hyper-spectral imaging
WO2005084121A2 (en) System and method for inspecting electrical circuits utilizing reflective and fluorescent imagery
JP5074998B2 (en) Appearance inspection method and apparatus for transparent film
CN110208269B (en) Method and system for distinguishing foreign matters on surface of glass from foreign matters inside glass
JP5670915B2 (en) Appearance inspection device
JP3938227B2 (en) Foreign object inspection method and apparatus
US7463765B2 (en) System and method for detecting and reporting fabrication defects using a multi-variant image analysis
JP4986255B1 (en) Container mouth inspection method and apparatus
JP2010038723A (en) Flaw inspecting method
JP5732605B2 (en) Appearance inspection device
JP4015436B2 (en) Gold plating defect inspection system
JP2010014670A (en) Visual inspection apparatus, visual inspection method, image processing method, and visual inspecting apparatus using the apparatus
Kaushik et al. Machine vision based automated inspection approach for clutch friction disc (CFD)
JP3089079B2 (en) Circuit pattern defect inspection method
CN114820622A (en) Interlayer foreign matter detection method and device
CN116997927A (en) Curved substrate bubble detection method and detection system
JP3135075B2 (en) Appearance inspection method and apparatus, magnetic head inspection method and apparatus, and magnetic head manufacturing facility
JP4408902B2 (en) Foreign object inspection method and apparatus
JP2000275033A (en) Surface defect inspection device
JPH09105618A (en) Method and apparatus for inspection of defect on smooth surface of object as well as method and apparatus for measurement of roughness on surface of object
JPH07113758A (en) Binary calculating method in appearance inspection device
JP6409606B2 (en) Scratch defect inspection device and scratch defect inspection method
JP4220304B2 (en) Nuclear fuel pellet inspection method and apparatus
JPH11352073A (en) Foreign matter inspection method and apparatus thereof
JPH04121647A (en) Appearance inspection method and device for metal can edge part

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110801

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120919

A131 Notification of reasons for refusal

Effective date: 20121004

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130221