TW201002199A - Motor control device of electric reel - Google Patents

Motor control device of electric reel Download PDF

Info

Publication number
TW201002199A
TW201002199A TW097148243A TW97148243A TW201002199A TW 201002199 A TW201002199 A TW 201002199A TW 097148243 A TW097148243 A TW 097148243A TW 97148243 A TW97148243 A TW 97148243A TW 201002199 A TW201002199 A TW 201002199A
Authority
TW
Taiwan
Prior art keywords
speed
motor
load
upper limit
current
Prior art date
Application number
TW097148243A
Other languages
Chinese (zh)
Other versions
TWI436735B (en
Inventor
Kazuhito Yamamoto
Hiroaki Kuriyama
Masakazu Nomura
Yousuke Katayama
Original Assignee
Shimano Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimano Kk filed Critical Shimano Kk
Publication of TW201002199A publication Critical patent/TW201002199A/en
Application granted granted Critical
Publication of TWI436735B publication Critical patent/TWI436735B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K89/00Reels
    • A01K89/015Reels with a rotary drum, i.e. with a rotating spool
    • A01K89/017Reels with a rotary drum, i.e. with a rotating spool motor-driven

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)

Abstract

To provide a motor control device of an electric reel, which can control loads on a motor to prevent the burning of the motor, when the motor is controlled at multistage speeds. The control unit 90 includes a spool sensor 102 for detecting a rotation speed, an electric current detection portion 108a for detecting a load with an electric current value, an adjustment lever 101 for setting a rotation speed to either of the upper limit speeds of high and low stages, and a reel control portion 100. The reel control portion sets a target speed corresponding to an upper limit speed lower by two stages than a rotation speed, when a load satisfies a first condition that a condition above a less prescribed first electric current value than the largest electric current value flowing in the motor is continued for a time t5. A first load after the setting of the target speed is compared with a second load after the time t5. When the first load is larger by a prescribed quantity than the second load, a target speed is set to the upper limit speed which is lower by one stage. When the first load satisfies the first condition, the motor is controlled to give the target speed.

Description

201002199 九、發明說明 [發明所屬之技術領域】 本發明,是有關於馬達控制裝置,特別是,藉由馬達 的驅動可旋轉捲筒的電動捲線器的馬達控制裝置。 【先前技術】 線捲起時的捲筒的旋轉可以由馬達進行的電動捲線器 ,是具備:捲線器本體、及可旋轉自如地被支撐於捲線器 本體的捲筒、及將捲筒由手動旋轉用的操作桿、及將捲筒 朝捲起方向驅動的電動的馬達。在捲線器本體的上面裝設 有操作盤,設有供進行水深顯示用的顯示器和各種的輸入 開關。 對於這種電動捲線器,習知捲筒的捲起的上限捲起速 度是在各複數階段成爲一定的方式將馬達多(階)段速度 控制(例如,專利文獻1參照)。在習知的電動捲線器中 ,藉由在操作盤的操作桿側且設在捲線器本體的側面的擺 動的操作桿,將上限速度設定成複數階段。 在習知的電動捲線器中,依據操作桿的擺動角度設定 各階段的上限速度’其是顯示於顯示器。在馬達控制裝置 中,檢出捲筒旋轉數’控制馬達使被檢出的捲筒旋轉速度 成爲被設定的階段的速度。 [專利文獻1]日本特開2000-139299號公報 【發明內容】 -5- 201002199 (本發明所欲解決的課題) 在前述習知的結構中,即使負荷變高,直到被設定的 上限速度爲止捲筒的旋轉不上昇的情況,爲了使上昇直到 上限速度爲止而朝馬達持續流動不必要的電流。這種多餘 的電流流動的話,馬達的負擔增大,馬達有可能燒損。 本發明的課題,是將馬達多段速度控制時,抑制對於 馬達的負擔使馬達不被燒損。 (用以解決課題的手段) 發明1的電動捲線器的馬達控制裝置,是藉由馬達的 驅動可旋轉捲筒的電動捲線器的馬達控制裝置,具備:旋 轉速度檢出部、及負荷檢出部、及上限速度設定部、及第 1目標速度設定部、及負荷比較部、及第2目標速度設定 部、及馬達控制部。旋轉速度檢出部,是檢出捲筒的旋轉 速度。負荷檢出部,是將作用於捲筒的負荷藉由電流値檢 出。上限速度設定部,是將捲筒的旋轉速度設定成高低複 數階段的上限速度的任一。第1目標速度設定部,是當藉 由負荷檢出部被檢出的負荷,是在比流動至馬達的最大電 流値小的預定的第1電流値以上的狀態下連續第1預定時 間,且至少滿足被檢出的旋轉速度未滿被設定的上限速度 也就是第1條件時,設定對應比旋轉速度至少低一階段的 上限速度的目標速度。負荷比較部,是比較:目標速度設 定後的第1負荷、及從其經過第2預定時間後的第2負荷 。第2目標速度設定部,是當第2負荷比第1負荷預定量 -6 - 201002199 大時,將目標速度設定成至少低一階段的上限速度,第2 負荷是比第1負荷預定量小時,是將目標速度設定成至少 高一階段的上限速度。馬達控制部,是未滿足第1條件時 ,控制馬達使捲筒的旋轉速度成爲被設定的上限速度,藉 由第1及第2目標速度設定部使目標速度被設定時,控制 馬達使捲筒的旋轉速度成爲被設定的目標速度。 在此馬達控制裝置中,通常是控制馬達使成爲由上限 速度設定部被設定的上限速度。負荷增加,藉由負荷檢出 部被檢出的負荷,是滿足比流動至馬達的最大電流値小的 預定的第1電流値以上(例如最大電流値的5 0至9 0 % ) 的較高的負荷狀態是連續第1預定時間的第1條件時,設 定對應比旋轉速度至少低一階段的上限速度的目標速度。 且,比較當時被檢出的第1負荷及從其第2預定時間經過 後的第2負荷,第2負荷是比第1負荷預定量大時,將目 標速度設定成至少低一階段的上限速度,第2負荷是比第 1負荷預定量小時,將目標速度設定成至少高一階段的上 限速度。目標速度被設定的話使不是成爲上限速度而是成 爲目標速度的方式由馬達控制部將馬達速度控制。 在此,成爲第1條件滿足的高負荷狀態的話,一旦將 馬達的速度減速至比當時的旋轉速度至少低一階段的上限 速度,減少流動至馬達的電流,不使多餘的電流流動至馬 達。且,從其負荷進一步減少的話增加馬達的旋轉速度, 負荷增加的話進一步減少馬達的旋轉速度。因此,多餘的 電流不易流動至馬達,直到成爲上限速度爲止進行電流持 -7- 201002199 續流動至馬達的多段速度控制時,可抑制對於馬達的負擔 使馬達不被燒損。 發明2的電動捲線器的馬達控制裝置,是對於如發明 1的裝置,第1目標設定部,是當第1條件、及旋轉速度 連續第1預定時間且未滿上限速度的第2條件滿足時,設 定目標速度。此情況,高負荷的判別精度是進一步變高, 多餘的電流更不易流動。 發明3的電動捲線器的馬達控制裝置,是對於如發明 1或2的裝置,馬達控制部,是馬達控制部,是當上限速 度藉由上限速度設定部被變更至比目標速度更低速側的話 ,目標速度被解除,控制馬達使成爲上限速度。此情況, 即使目標速度被設定,在比其速度低速側設定上限速度的 話,目標速度因爲被取消,所以多餘的電流更不易流動。 發明4的電動捲線器的馬達控制裝置,是對於如發明 1至3的任一的裝置,馬達控制部,是上限速度藉由上限 速度設定部被變更至比目標速度更高速側的話,忽視該變 更,控制馬達使成爲目標速度。此情況,在減速控制中因 爲朝馬達的負荷變大的高速側的增速被禁止,所以對於馬 達的負擔進一步減少。 發明5的電動捲線器的馬達控制裝置,是對於如發明 1至4的任一的裝置,第2目標速度設定部,是將最大階 段的一半以下的低速階段作爲限度來降低目標速度。此情 況,因爲是在電流値不是很大的低速域終了減速,所以不 會發生捲線器的性能低下的多餘的減速。 -8- 201002199 發明6的電動捲線器的馬達控制裝置,是對於如發明 5的裝置,馬達控制部,是第1電流値以上的負荷狀態是 連續比第1預定時間長的第3預定時間的情況時’當捲筒 的旋轉速度是比低速階段高速側的中間階段的速度以下時 ,將通斷(ON/OFF )的間斷的電流朝捲筒流動。 此情況,因爲不是目標速度成爲中間階段以下時減速 ,而是將馬達間斷運轉,所以藉由高負荷使馬達的旋轉下 降而鎖定和低速旋轉等時多餘的電流不會流動至馬達可以 抑制馬達的發熱。且,負荷小的話,因爲可藉由被設定的 上限速度由馬達捲起,所以性能不會下降可防止馬達的燒 損。 [發明的效果] 依據本發明,成爲第1條件滿足的高負荷狀態的話’ 一旦將馬達的速度減速至成爲比當時的旋轉速度至少低一 階段的上限速度,將流動至馬達的電流減少,使多餘的電 流不會流動至馬達。且’從其負荷進一步減少的話增加馬 達的旋轉速度,負荷增加的話進一步減少馬達的旋轉速度 。因此,多餘的電流不易流動至馬達’直到成爲上限速度 爲止持續將電流流動至馬達地進行速度控制時,可抑制對 於馬達的負擔使馬達不會被燒損。 【實施方式】 [電動捲線器的槪略構成] -9- 201002199 本發明的一實施例的電動捲線器,是如第1圖所示, 外觀上,是主要具備:裝設有操作桿1的捲線器本體2、 及可旋轉自如地裝設於捲線器本體2的捲筒3、及被裝設 於捲筒3內的馬達4。在捲線器本體2的上部,裝設有進 行水深顯示等用的計數器5。在捲線器本體2的內部,如 第2圖所示,具備:將操作桿1的旋轉傳達至捲筒3並且 將馬達4的旋轉傳達至捲筒3的旋轉傳達機構6、及設在 旋轉傳達機構6的途中的離合器機構7及牽引機構8。 捲線器本體2,是如第2圖所示,具有:框架13、及 將框架1 3的兩側方覆蓋的側蓋14、1 5。框架1 3,是如第 2圖所示,鋁合金壓鑄的一體成型被構件,具有:左右1 對的側板1 6、1 7、及將側板1 6、1 7由複數處連結的連結 構件1 8。在下部的連結構件1 8中,裝設有將釣竿裝設用 的竿裝設腳1 9。 側蓋1 5,是在側板1 7藉由螺絲被結合。在側蓋1 5 中,將旋轉傳達機構6等裝設用的固定框架20是藉由無 圖示螺絲結合。因此將側蓋1 5從側板1 7取下的話,固定 框架20也與旋轉傳達機構6的一部分和側蓋1 5 —起從側 板1 7脫落。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor control device, and more particularly to a motor control device for an electric reel that can rotate a reel by a motor. [Prior Art] The electric reel which can be rotated by the motor when the reel is wound up is provided with a reel body and a reel rotatably supported by the reel body, and the reel is manually An operating lever for rotation and an electric motor that drives the reel in a winding direction. An operation panel is mounted on the upper surface of the reel body, and a display for displaying the water depth and various input switches are provided. In the electric reel, the upper limit winding speed of the conventional reel is controlled in a plurality of stages at a plurality of stages (for example, refer to Patent Document 1). In the conventional electric reel, the upper limit speed is set to a plurality of stages by a swinging lever provided on the operating lever side of the operating panel and provided on the side of the reel body. In the conventional electric reel, the upper limit speed of each stage is set in accordance with the swing angle of the operating lever, which is displayed on the display. In the motor control device, the number of detected reel rotations is controlled to control the motor so that the detected reel rotation speed becomes the speed at the set stage. [Patent Document 1] Japanese Laid-Open Patent Publication No. 2000-139299 (Summary of the Invention) - 5 - 201002199 (Problems to be Solved by the Invention) In the above-described conventional configuration, even if the load is high, the set upper limit speed is reached. When the rotation of the reel does not rise, an unnecessary current continues to flow toward the motor in order to rise up to the upper limit speed. When this excess current flows, the load on the motor increases and the motor may burn out. An object of the present invention is to prevent a motor from being burned when the motor is controlled at a plurality of speeds by suppressing a load on the motor. (Means for Solving the Problem) The motor control device for the electric reel according to the first aspect of the invention is a motor control device for an electric reel that drives a rotatable reel by a motor, and includes a rotation speed detecting unit and a load detection device. And an upper limit speed setting unit, a first target speed setting unit, a load comparing unit, a second target speed setting unit, and a motor control unit. The rotation speed detecting portion detects the rotation speed of the reel. The load detecting unit detects the load acting on the reel by the current 値. The upper limit speed setting unit is one that sets the rotational speed of the reel to the upper limit speed in the high and low complex stages. The first target speed setting unit is the first predetermined time continuous in a state in which the load detected by the load detecting unit is equal to or greater than a predetermined first current 値 that is smaller than the maximum current flowing to the motor, and At least the upper limit speed at which the detected rotational speed is not full, that is, the first condition, is set to a target speed corresponding to the upper limit speed that is at least one stage lower than the rotational speed. The load comparison unit compares the first load after the target speed is set and the second load after the second predetermined time elapses. When the second load is larger than the first load predetermined amount -6 - 201002199, the second target speed setting unit sets the target speed to an upper limit speed of at least one lower stage, and the second load is smaller than the first load predetermined amount. It is to set the target speed to an upper limit speed of at least one higher stage. When the first condition is not satisfied, the motor control unit controls the motor to set the rotation speed of the reel to the set upper limit speed, and when the first and second target speed setting units set the target speed, the motor is controlled to reel. The rotation speed becomes the set target speed. In this motor control device, normally, the control motor is set to the upper limit speed set by the upper limit speed setting unit. When the load is increased, the load detected by the load detecting unit is higher than a predetermined first current 値 which is smaller than the maximum current 流动 flowing to the motor (for example, 50 to 90% of the maximum current )). When the load state is the first condition for the first predetermined time, the target speed corresponding to the upper limit speed that is at least one stage lower than the rotational speed is set. And comparing the first load detected at the time and the second load after the second predetermined time has elapsed, and when the second load is greater than the first load predetermined amount, the target speed is set to an upper limit speed of at least one lower stage. The second load is smaller than the first load predetermined amount, and the target speed is set to an upper limit speed of at least one higher stage. When the target speed is set, the motor control unit controls the motor speed so as not to become the upper limit speed but to become the target speed. Here, when the high-load state is satisfied by the first condition, the speed of the motor is decelerated to an upper limit speed which is at least one stage lower than the current rotational speed, and the current flowing to the motor is reduced, so that unnecessary current does not flow to the motor. Further, if the load is further reduced, the rotational speed of the motor is increased, and if the load is increased, the rotational speed of the motor is further reduced. Therefore, the excess current does not easily flow to the motor, and the current is held until the upper limit speed is reached. -7- 201002199 When the multi-stage speed control is continued to the motor, the load on the motor can be suppressed and the motor is not burned. In the motor control device for the electric reel according to the second aspect of the invention, the first target setting unit is configured to satisfy the first condition and the second condition that the rotational speed is continuously continuous for the first predetermined time and the upper limit speed is not satisfied. , set the target speed. In this case, the discrimination accuracy of the high load is further increased, and the excess current is less likely to flow. In the motor control device of the electric reel according to the invention of the first aspect of the invention, the motor control unit is a motor control unit that changes the upper limit speed to a lower speed than the target speed by the upper limit speed setting unit. The target speed is released and the motor is controlled to become the upper limit speed. In this case, even if the target speed is set, if the upper limit speed is set on the lower side than the speed, the target speed is canceled, so the excess current is less likely to flow. In the motor control device according to the fourth aspect of the invention, the motor control unit is configured such that the upper limit speed is changed to a higher speed side than the target speed by the upper limit speed setting unit, and the motor control unit ignores the Change, control the motor to make the target speed. In this case, in the deceleration control, since the speed increase on the high speed side where the load on the motor is increased is prohibited, the load on the motor is further reduced. In the motor control device for the electric reel according to the fifth aspect of the invention, the second target speed setting unit lowers the target speed by using a low speed phase of half or less of the maximum stage as a limit. In this case, since the speed is decelerated in the low speed range where the current is not large, there is no excessive deceleration in which the performance of the reel is low. -8-201002199 The motor control device for the electric reel according to the invention of claim 5, wherein the motor control unit is in a state in which the load state of the first current 値 or more is continuously longer than the first predetermined time by the third predetermined time. In the case, when the rotation speed of the reel is lower than the speed of the intermediate stage on the high speed side of the low speed stage, an intermittent current of ON/OFF is caused to flow toward the reel. In this case, since the motor does not decelerate when the target speed is lower than the intermediate speed, the motor is intermittently operated. Therefore, when the rotation of the motor is lowered by a high load, the excess current does not flow to the motor and the motor can be suppressed. heat. Further, if the load is small, since the motor can be wound up by the set upper limit speed, the performance is not lowered and the motor can be prevented from being burnt. [Effects of the Invention] According to the present invention, when the high-load state is satisfied by the first condition, the current flowing to the motor is reduced by decelerating the speed of the motor to an upper limit speed that is at least one stage lower than the current rotational speed. Excess current does not flow to the motor. Further, if the load is further reduced, the rotational speed of the motor is increased, and if the load is increased, the rotational speed of the motor is further reduced. Therefore, the excess current does not easily flow to the motor'. When the current is continuously supplied to the motor for the speed control until the upper limit speed is reached, the load on the motor can be suppressed and the motor can be prevented from being burnt. [Embodiment] [A schematic configuration of an electric reel] -9-201002199 An electric reel according to an embodiment of the present invention is mainly provided with an operation lever 1 as shown in Fig. 1 . The reel body 2 and a reel 3 rotatably mounted to the reel body 2 and a motor 4 mounted in the reel 3 are provided. A counter 5 for performing water depth display or the like is mounted on the upper portion of the reel body 2. As shown in FIG. 2, the inside of the reel body 2 includes a rotation transmission mechanism 6 that transmits the rotation of the operation lever 1 to the reel 3, transmits the rotation of the motor 4 to the reel 3, and is provided in the rotation transmission. The clutch mechanism 7 and the traction mechanism 8 in the middle of the mechanism 6. As shown in Fig. 2, the reel body 2 has a frame 13 and side covers 14, 15 which cover both sides of the frame 13. The frame 13 is an integrally molded member of aluminum alloy die-casting as shown in Fig. 2, and has a pair of left and right side plates 16 and 17 and a connecting member 1 that connects the side plates 16 and 17 to a plurality of places. 8. In the lower connecting member 18, a fitting leg 19 for mounting the fishing rod is attached. The side cover 15 is joined by the side plates 17 by screws. In the side cover 15, the fixing frame 20 for mounting the rotation transmitting mechanism 6 or the like is coupled by a screw (not shown). Therefore, when the side cover 15 is removed from the side panel 17, the fixing frame 20 is also detached from the side panel 17 together with a part of the rotation transmitting mechanism 6 and the side cover 15.

側蓋1 4,是在側板1 6藉由無圖示的螺絲結合。在側 蓋1 4中,與被設在外部的蓄電池等的電源連接用的電源 纜線用的連接器部1 4a (第1圖)是朝前部傾斜地突出設 置。在與此連接器部1 4 a連接的電源纜線中,設有後述的 無線通訊用的天線。又,電動捲線器,是可對應直流1 2 V -10 - 201002199 (伏特)、16.8V、24V的3種類的電壓的電源。 在捲線器本體2的操作桿1側的前側側面中,捲筒3 的捲起速度可3 1階段調節,並且捲附於捲筒3的釣線的 張力可3 1階段調節的調整操作桿(速度設定部及上限張 力設定部的一例)1 〇 1是可擺動。在調整操作桿1 0 1的擺 動軸中安裝有檢出調整操作桿1 0 1的擺動角度用的電位計 104 (第 6 圖)。 捲筒3,是如第2圖所示,具有:在內部可收納馬達 4的筒狀的捲線胴部3 a、及在捲線胴部3 a的外周部隔有 間隔地形成的左右1對的凸緣部3 b。捲筒3的一端是從 凸緣部3b朝外方延伸,在其延伸的端部的外周面配置有 軸承25。在捲筒3的另一端,固定有齒輪板3c。齒輪板 3 c,是爲了將捲筒3的旋轉傳達至無圖示的均勻捲線機構 而設置。對於齒輪板3 c的捲筒中心側部,在齒輪板3 c及 固定框架2 0之間是裝設有滾動軸承2 6。藉由此2個軸承 25、26,捲筒3,是可旋轉自如地被支撐於捲線器本體2 [計數器的結構] 計數器5,是爲了顯示被裝設於釣線的先端的擬餌的 水深,並且控制馬達4而設置。計數器5,是如第3圖及 第4圖所示’具有上殻5a及下殼5b。上殼5a,是顯示部 分是形成前細狀’具有從顯示部分朝左右稍爲凹陷形成的 稜線部5 c、5 d。稜線部5 c,是與側蓋1 4呈同一面連接’ -11 - 201002199 稜線部5d,是與側蓋1 5呈同一面連結。在上殼5a的顯 示部分中’固定有梯形的各片稍爲凸地彎曲的形狀的先端 較細的刻板8 8。在刻板8 8中,設有窺視水深顯示部9 8 用的透明蓋88a。在下殼5b的底面,設有由將後述的電 場效果晶體管(FET ) 1 0 8b冷卻用的鋁板構成的散熱器 5 e 〇 在計數器5中,如第3圖所示,設有:由將擬餌的水 深資料LX和棚位置以從水面及從底的2個基準顯示用的 液晶顯示顯示器所構成的水深顯示部9 8、及配置於水深 顯示部9 8的前方側(第3圖下側)的例如由3個開關按 鈕所構成的操作按鍵部9 9。且,在計數器5的內部,如 第4圖所示,設有:配置有水深顯示部98和操作按鍵部 99的第1電路基板10、及配置於第1電路基板10的下方 的第2電路基板11。第1電路基板1〇,是爲了達成計數 器5的小型化而製作比習知小。在第2電路基板1 1的操 作桿1裝設側中,朝調整操作桿1 0 1的配線1 0 1 a是從上 下的殻5 a、5 b的連接部朝橫方向地朝外部導出。由此防 止與釣線的接觸。此配線的導出部分是由矽等密封,將計 數器5內部水密地保持。且,對於第1及2電路基板1〇 、11,在相關於電源線的軟焊條部和馬達驅動的電解電容 器的腳部和微電腦的腳部的軟焊條部分中藉由塗抹矽來提 高絕緣性,防止由濕氣所產生的影響使不會產生誤作動。 水深顯示部9 8,是如第5圖所示,使用具有背部光 源3 0的區段式的液晶顯示器9 8 a。背部光源3 0,是具有 -12- 201002199 :可發光紅及綠的二色的發光二極管30a、及發光二極管 3〇a配置於一側的導光板30b。藉由設置這種導光板30b 就可以使液晶顯示器9 8 a全面發光。 操作按鍵部99,是具有:在水深顯示部98的下側呈 左右並列配置的選單按鈕MB、及決定按鈕DB、及棚備 忘用的棚備忘按鈕TB。選單按鈕MB,是爲了選擇水深顯 示部9 8內的顯示項目所使用的按鈕。例如,連同選單按 鈕MB的操作而切換至從上模式(將擬餌的水深由從水面 的深度顯示的模式)及從底模式(將擬餌的水深由從水底 的水深顯示的模式)。且將選單按鈕Μ B長按壓3秒以上 的話,每次長按壓,將馬達的控制模式可以切換至速度模 式及張力模式。在此,速度模式,是依據調整操作桿1 0 1 的擺動角度將捲筒3的旋轉速度的上限速度可31階段多 段速度控制的模式。張力模式,是將作用於釣線的張力的 上限張力可3 1階段多段張力控制的模式。又,兩模式的 最高階段的3 1階段皆是由100%負荷工作使馬達4動作 的速捲速度,雖進行電流限制,但不進行速度控制。 決定按鈕DB,是將選擇結果確定設定的按鈕。且, 將決定按鈕DB例如長按壓3秒以上的話,進行當時的水 深資料LX被作爲水深0的基準位置設定的0設定處理。 棚備忘按鈕ΤΒ,是將操作時的擬餌的水深作爲棚位置設 定用的按鈕。之後是由從被設定的基準位置的線長顯示水 深資料LX。又,釣魚人通常是擬餌著水於海面時長按壓 決定按鈕進行〇設定。 -13- 201002199 且,在計數器5的內部,如第6圖所示,設有控制水 深顯示部98和馬達4用的控制組件(模式控制裝置的一 例)90。在控制組件90中,設有由微電腦所構成的捲線 器控制部1 〇〇。捲線器控制部1 00,是對於作爲功能性的 構成,具有:將馬達4速度控制的第1控制部100a、及 將馬達4的扭矩藉由線捲徑修正張力並控制張力的第2控 制部1 00b。又,線捲徑,是可以由水深資料求得。 在捲線器控制部1 〇 〇中,連接有:操作按鍵部9 9、 及可擺動自如地裝設於側蓋1 5供將捲筒的速度和釣線的 張力調整用的調整操作桿101、及將捲筒3的旋轉數及旋 轉方向朝例如旋轉方向並列配置的由2個霍爾(Hal 1 )元 件檢出的捲筒感測器(旋轉速度檢出部的一例)1 02、及 檢出馬達的溫度的溫度感測器1 03、及與調整操作桿1 〇 1 連結的電位計1 04、及將設在捲線器的外部的釣魚資訊顯 示裝置 120 及擬餌的水深資料等由無線(例如 IEEE802.15.4 ( ZigBee (日本註冊商標)等的規格)相互 通訊用的無線通訊部1 05。且,在捲線器控制部1 〇〇中, 連接有:各種的報知用的蜂鳴器1 06、及水深顯示部98、 及將各種的資料記憶的例如由EEPROM所構成的記憶部 1 07、及將馬達4由脈寬調變(PWM )的負荷工作比驅動 的馬達驅動電路1 〇 8、及其他的輸入輸出部。在馬達驅動 電路1 〇 8中,設有:檢出流動至馬達4的電流的電流檢出 部(負荷檢出部及張力檢出部的一例)1 〇 8 a、及電場效果 晶體管1 〇 8 b。溫度感測器1 〇 3,不是將馬達4的溫度直接 -14- 201002199 檢出,而是藉由被搭載於馬達驅動電路108的電場效果晶 體管(FET ) 10 8b的溫度檢出。電場效果晶體管l〇8b, 是被搭載於第2電路基板1 1。 釣魚資訊顯示裝置1 2 0,是藉由被搭載於釣魚船的魚 群探知機1 40及無線將資料相互通訊,將與魚群探知機 1 40同樣的魚探資料(底位置和棚位置)描畫及數値顯示 。且,由無線與捲線器相互通訊藉由從捲線器獲得的水深 資料將擬餌的位置描畫及數値顯示。 [捲線器控制部的控制] 捲線器控制部1 〇〇,是依據調整操作桿1 〇 1的操作量 控制馬達4的速度和扭矩(張力)。且,藉由捲筒感測器 1 02的輸出算出被安裝在釣線的先端的擬餌的水深,將其 在水深顯示部98顯示。進一步,藉由操作按鍵部99的操 作設定底位置(海底的水深)或棚位置(魚群的水深)的 話,被算出的水深及被設定的底位置和棚位置一致且擬餌 到達棚位置或底位置時,藉由蜂鳴器1 0 6報知該事。 接著,將具體的捲線器控制部1 00的控制動作以馬達 4的控制爲中心參照第7圖至第1 6圖的流程圖說明。 [主例行程式] 電源投入捲線器控制部1 〇〇的話,由第7圖的步驟 S 1進行初期設定。在此初期設定中,各種的標記被設定 斷開(OFF ),並且馬達的控制模式是設定爲速度模式’ -15- 201002199 水深顯示是設定爲從上模式。在步驟S 2中,進行各種的 顯示處理。在此顯示處理中,進行在水深顯示部98顯示 的資料的顯示處理。例如進行水深資料等的顯示處理。 在步驟S3中,判斷操作按鍵部99和調整操作桿等的 輸入是否被操作。在步驟S4中,判斷是否藉由從捲筒感 測器〗〇2的輸出使捲筒3旋轉。在步驟S5中,藉由從溫 度感測器1 0 3的輸出貫行第8圖所示的馬達4的溫度保護 處理。在步驟S 6中’判斷是否被下指令進行學習依據線 捲徑的算出和釣線的捲筒旋轉數及線長的關係的學習處理 等的其他的處理。 具有按鍵輸入的話’從步驟S3移行至步驟S7。在步 驟S7中’實行第9圖所示的按鍵輸入處理。在步驟s4判 斷出捲筒3旋轉的話,從步驟S 4移行至步驟s 8。在步驟 S 8中’實行第1 6圖所示的各動作模式處理。其他的處理 的指令被進行的情況時,從步驟S 6移行至步驟s 9實行被 下指令的其他的處理。 [溫度保護處理] 步驟S 5的溫度保護處理,是馬達驅動電路1 〇 8的溫 度(即馬達4的溫度)成爲9 0度以上的話將馬達4斷開 (OFF)的處理。在溫度保護處理中,由第8圖的步驟 S 1 1藉由溫度感測器1 〇 3的輸出將馬達驅動電路〗〇 8的溫 度讀入。馬達驅動電路1 〇 8的溫度因爲與馬達4的溫度略 比例’所以藉由馬達驅動電路1 〇 8的溫度可以將馬達4的 -16- 201002199 溫度檢出。在步驟s 1 2中,判斷馬達驅動電路1 0 8的溫度 是否超越第1預定溫度(例如攝氏85度至95度程度較佳 ,在此實施例中,攝氏9 0度)。馬達驅動電路1 〇 8的溫 度是超越90度的話從步驟S12移行至步驟S13。在步驟 S 1 3中,溫度開始超越9 0度時判斷導通(ON )的溫度標 記FS是否已經爲導通(ON)。溫度標記FS不是導通( ON )的情況時,移行至步驟S 1 4使溫度標記FS爲導通( ON ),移行至步驟S15。溫度標記FS已經爲導通(ON ) 的情況時跳過步驟S 14。在步驟S 1 5中’將馬達4斷開( OFF ),返回至主例行程式。由此,可防止過負荷時的馬 達4的燒損。 溫度是第1預定溫度以下的情況時,從步驟S1 2移行 至步驟S 1 6。在步驟S 1 6中,判斷溫度標記F S是否已經 爲導通(ON )。溫度標記FS不是導通(ON )時’返回 至主例行程式。溫度標記FS是已經導通(ON )的情況時 ,移行至步驟S17判斷被檢出的溫度Td是否下降至比第 1預定溫度低的第2預定溫度(例如攝氏75度至85度程 度較佳,在此實施例爲攝氏8 0度)以下。藉由此判斷終 了溫度保護處理。被檢出的溫度Td是超越80度的情況時 ,返回至主例行程式,8 0度以下的情況時移行至步驟s 1 8 。在步驟S 1 8中,判斷正時器τ 1是否導通(ON )。正時 器T 1,是供調查第2預定溫度以下的狀態是否持續預定 時間11 (例如2 0秒至4 0秒較佳,在此實施例爲3 0秒) 用。正時器T1不是導通(ON)(開始)的情況時’移行 -17- 201002199 至步驟S19將正時器T1導通(ON)。正時器τΐ已經導 通(Ο Ν )的情況時跳過步驟S 1 9。在步驟S 2 0中,判斷 正時器Τ1是否時間結束並斷開(OFF )。時間未結束的 情況時返回至主例行程式,時間結束的情況,即,8 〇度 以下的狀態持續3 0秒以上情況時,認爲過負荷狀態已消 滅並移行至步驟S 2 1使溫度標記F S爲斷開(〇 F F ),終 了溫度保護處理。在溫度保護處理終了之後藉由〜日將調 整操作桿101返回至操作開始位置(階段ST = 〇),馬達 4就可動作。 [按鍵輸入處理] 在步驟S7的按鍵輸入處理中,在第9圖的步驟S31 判斷選單按鈕MB是否被長按壓3秒以上。在步驟S32中 ’判斷調整操作桿1 〇 1是否從操作開始位置被操作。在步 驟S33中,判斷棚備忘按鈕TB和決定按鈕DB和選單按 鈕MB的單點選等的其他的按鍵是否被操作。 選單按鈕MB是。被長按壓的話從步驟S31移行至步 驟S34。在步驟S34中’判斷是否爲速度模式。速度模式 時,移行至步驟S36設定爲張力模式,張力模式時移行至 步驟S 3 5設定爲速度模式。 判斷出調整操作桿1 0 1被操作至操作開始位置( ST = 0 )以外的位置的話從步驟S32移行至步驟S37。在步 驟S3 7中,判斷溫度標記FS是否爲導通(on )。溫度標 記F S爲導通(〇 N )時’爲了禁止由調整操作桿1 〇 I所產 -18 - 201002199 生的馬達控制操作而移行至步驟S 3 3。溫度標記F S不是 導通(ON )情況時,從步驟S37移行至步驟S38。在步 驟S 3 8判斷是否爲速度模式。速度模式時,移行至步驟 S39實行速度模式處理。張力模式時移行至步驟S4〇實行 張力模式處理。其他的按鍵被操作的情況時,從步驟S33 移行至步驟S4 1,進行對應被操作的按鍵的處理。 [速度模式處理] 在步驟S39的速度模式處理中,控制馬達4使捲筒3 的旋轉數成爲各階段被設定的上限速度。又,上限速度, 是藉由捲筒3的線捲徑被修正,實際上,控制馬達4使捲 附於捲筒3的釣線的捲起速度成爲一定。 在第1 0圖的步驟S 5 0判斷顯示後述的間斷處理中用 的間斷標記FP3是否爲導通(ON )。間斷標記FP3爲斷 開(OFF )的情況時移行至步驟S5 1。間斷標記FP3爲導 通(ON )的情況時移行至步驟S54。 在步驟S 5 1中,讀入藉由調整操作桿1 〇 1被設定的段 數ST及藉由捲筒感測器102的輸出被算出的捲筒3的旋 轉速度Vd。在步驟S52中,判斷捲筒3的速度Vd是否未 滿階段ST或是對應後述的保護階段STS (目標速度的一 例)的上限速度Vs的下限値Vstl。在步驟S53中’判斷 捲筒3的速度Vd是否超越階段ST或是對應保護階段 S T S的上限速度V S的下限値V s 12。又’進行速度控制時 ,在各階段S T設定上限速度v s的下限値V s 11及上限値 -19- 201002199The side cover 14 is joined to the side plate 16 by a screw (not shown). In the side cover 14, the connector portion 14a (Fig. 1) for the power cable for connecting to a power source such as a battery or the like provided outside is obliquely protruded toward the front portion. An antenna for wireless communication, which will be described later, is provided in the power cable connected to the connector unit 14a. Moreover, the electric cord reel is a power source that can correspond to three types of voltages of DC 1 2 V -10 - 201002199 (volts), 16.8V, and 24V. In the front side surface of the reel body 2 on the side of the operating lever 1, the winding speed of the reel 3 can be adjusted in 3 steps, and the tension of the fishing line attached to the reel 3 can be adjusted by the adjustment mechanism of the 3 (stage) adjustment ( An example of the speed setting unit and the upper limit tension setting unit) 1 〇 1 is swingable. A potentiometer 104 for detecting the swing angle of the adjustment operating lever 110 is attached to the swing shaft of the adjustment lever 1 0 1 (Fig. 6). As shown in Fig. 2, the reel 3 has a cylindrical winding portion 3a in which the motor 4 can be housed, and a pair of left and right sides which are formed at intervals on the outer peripheral portion of the winding portion 3a. Flange portion 3 b. One end of the spool 3 extends outward from the flange portion 3b, and a bearing 25 is disposed on the outer peripheral surface of the extended end portion. At the other end of the reel 3, a gear plate 3c is fixed. The gear plate 3c is provided to convey the rotation of the reel 3 to a uniform winding mechanism (not shown). A rolling bearing 26 is mounted between the gear plate 3c and the fixed frame 20 for the center side portion of the reel of the gear plate 3c. The reel 3 is rotatably supported by the reel body 2 [structure of the counter] by the two bearings 25 and 26, and the counter 5 is for displaying the water depth of the bait attached to the tip end of the fishing line. And it is set to control the motor 4. The counter 5 has an upper case 5a and a lower case 5b as shown in Figs. 3 and 4. The upper case 5a is a ridge line portion 5c, 5d having a display portion which is formed in a thin front shape and has a slight depression from the display portion toward the left and right. The ridge portion 5c is connected to the side cover 14 by the same surface ‘-11 - 201002199 ridge portion 5d, and is connected to the side cover 15 in the same plane. In the display portion of the upper casing 5a, the apex of the trapezoidal sheet is slightly convexly curved, and the apex is thinner. In the stereotype 8 8 , a transparent cover 88a for the peep water depth display portion 98 is provided. On the bottom surface of the lower case 5b, a heat sink 5e composed of an aluminum plate for cooling an electric field effect transistor (FET) 1 8 8 to be described later is provided in the counter 5, as shown in Fig. 3, The water depth data LX and the shed position are the water depth display unit 98 formed by the liquid crystal display display for the two reference displays from the water surface and the bottom, and the front side of the water depth display unit 98 (the lower side of FIG. 3). For example, the operation button portion 9 is composed of three switch buttons. In the inside of the counter 5, as shown in FIG. 4, the first circuit board 10 in which the water depth display unit 98 and the operation button unit 99 are disposed, and the second circuit disposed below the first circuit board 10 are provided. Substrate 11. The first circuit board 1 is made smaller than the conventional one in order to achieve miniaturization of the counter 5. In the mounting side of the operation lever 1 of the second circuit board 1 1 , the wiring 10 1 a to the adjustment operation lever 1 0 1 is led out from the connection portion of the upper and lower casings 5 a and 5 b toward the outside in the lateral direction. This prevents contact with the fishing line. The lead-out portion of this wiring is sealed by a crucible or the like, and the inside of the counter 5 is watertightly held. Further, in the first and second circuit boards 1A and 11, the insulation is improved by applying 矽 in the soft electrode portion of the power supply line, the leg portion of the motor-driven electrolytic capacitor, and the soft electrode portion of the leg portion of the microcomputer. To prevent the effects of moisture from being caused by misuse. The water depth display unit 987 is a segment type liquid crystal display 9 8 a having a back light source 30 as shown in Fig. 5. The back light source 30 is a light-emitting diode 30a having -12-201002199: two colors that emit red and green, and a light guide plate 30b on which the light-emitting diodes 3A are disposed. By providing such a light guide plate 30b, the liquid crystal display 98 8 can be fully illuminated. The operation button unit 99 is provided with a menu button MB arranged side by side on the lower side of the water depth display unit 98, a decision button DB, and a shed memo button TB for forgetting. The menu button MB is a button used to select a display item in the water depth display unit 9.8. For example, in conjunction with the operation of the menu button MB, the mode is switched to the upper mode (the mode in which the water depth of the lure is displayed from the depth of the water surface) and the bottom mode (the mode in which the water depth of the lure is displayed from the water depth of the bottom). When the menu button Μ B is pressed for 3 seconds or longer, the motor control mode can be switched to the speed mode and the tension mode each time the button is pressed. Here, the speed mode is a mode in which the upper limit speed of the rotational speed of the reel 3 can be controlled in a multi-stage speed of 31 stages in accordance with the swing angle of the adjustment lever 1 0 1 . The tension mode is a mode in which the upper limit tension of the tension acting on the fishing line can be controlled in a three-stage multi-stage tension. Further, the 31st stage of the highest stage of both modes is a speed-up speed in which the motor 4 is operated by 100% load operation, and although current limitation is performed, speed control is not performed. The decision button DB is a button for determining the selection result. When the decision button DB is pressed for 3 seconds or longer, for example, the water depth data LX at that time is set to 0 as the reference position setting of the water depth 0. The shed memo button ΤΒ is a button for setting the water depth of the bait during operation as a shed position. Then, the water depth data LX is displayed by the line length from the set reference position. In addition, the angler usually presses the decision button to set the squat when the water is on the sea surface. Further, inside the counter 5, as shown in Fig. 6, a control unit (an example of a mode control device) 90 for controlling the water depth display portion 98 and the motor 4 is provided. In the control unit 90, a reel control unit 1 composed of a microcomputer is provided. In the functional configuration, the reel control unit 100 includes a first control unit 100a that controls the speed of the motor 4, and a second control unit that controls the tension by correcting the tension of the motor 4 by the coil diameter. 1 00b. Moreover, the coil diameter can be obtained from the water depth data. The reel control unit 1 is connected to an operation button unit 919 and an adjustment operation lever 101 that is swingably mounted to the side cover 15 for adjusting the speed of the reel and the tension of the fishing line, And a reel sensor (an example of a rotation speed detecting portion) detected by two Hall (Hal 1 ) elements, which are arranged in parallel with the rotation direction and the rotation direction of the reel 3, for example, and inspection The temperature sensor 101 of the temperature of the motor, the potentiometer 104 connected to the adjustment lever 1 〇1, and the water depth information of the fishing information display device 120 and the bait provided outside the reel are wirelessly For example, IEEE802.15.4 (ZigBee (Japanese registered trademark) and other specifications) wireless communication unit 105 for communication with each other. In the cord reel control unit 1A, various buzzer for notification is connected. And a water depth display unit 98, and a memory unit 107 that is composed of, for example, an EEPROM that stores various data, and a motor drive circuit 1 that drives the motor 4 by a pulse width modulation (PWM) load operation ratio, And other input and output parts. In the first aspect, a current detecting unit (an example of a load detecting unit and a tension detecting unit) that detects a current flowing to the motor 4 is provided, and an electric field effect transistor 1 〇 8 b is provided. The detector 1 〇3 is not detected by the temperature of the motor 4 directly -14 - 201002199, but is detected by the temperature of the electric field effect transistor (FET) 10 8b mounted on the motor drive circuit 108. The electric field effect transistor 8b is mounted on the second circuit board 1 1. The fishery information display device 1120 is configured to communicate with each other by the fish finder 140 and the wireless device mounted on the fishing boat, and will be the same as the fish finder 1 40. The fish finder data (bottom position and shed position) are displayed and displayed in number. Moreover, the wireless and the reel are communicated with each other, and the position of the bait is displayed and displayed by the water depth data obtained from the reel. [Reel Control Unit Control] The reel control unit 1 控制 controls the speed and torque (tension) of the motor 4 in accordance with the amount of operation of the adjustment lever 1 〇 1. Further, it is calculated by the output of the reel sensor 102 to be mounted on the fishing line. The apex of the line Further, it is displayed on the water depth display unit 98. Further, when the bottom position (water depth of the sea floor) or the shed position (water depth of the fish group) is set by the operation of the operation button portion 99, the calculated water depth and the set bottom position and When the shed position is the same and the bait arrives at the shed position or the bottom position, the buzzer 016 is notified of the matter. Next, the control operation of the specific reel control unit 100 is referred to the control of the motor 4 as a center. The flowchart of Fig. 16 is explained. [Main example stroke type] When the power supply reel control unit 1 is turned on, the initial setting is performed in step S1 of Fig. 7. In this initial setting, various flags are set to OFF (OFF), and the motor's control mode is set to speed mode' -15- 201002199 The water depth display is set to the slave mode. In step S2, various display processing is performed. In this display processing, display processing of the material displayed on the water depth display unit 98 is performed. For example, display processing such as water depth data is performed. In step S3, it is judged whether or not the input of the operation button portion 99 and the adjustment operation lever or the like is operated. In step S4, it is judged whether or not the reel 3 is rotated by the output from the reel sensor 〇2. In step S5, the temperature protection process of the motor 4 shown in Fig. 8 is performed from the output of the temperature sensor 103. In step S6, it is determined whether or not the other processing such as the learning process based on the calculation of the coil diameter and the learning of the relationship between the number of reels of the fishline and the line length is performed. If there is a key input, the operation proceeds from step S3 to step S7. In step S7, the key input processing shown in Fig. 9 is carried out. If it is determined in step s4 that the reel 3 is rotated, the flow proceeds from step S4 to step s8. In step S8, each of the operation mode processes shown in Fig. 16 is executed. When the other processed command is executed, the process proceeds from step S6 to step s9 to execute another process of the command. [Temperature Protection Process] The temperature protection process in step S5 is a process of turning off the motor 4 when the temperature of the motor drive circuit 1 ( 8 (i.e., the temperature of the motor 4) is 90 degrees or more. In the temperature protection process, the temperature of the motor drive circuit 〇 8 is read in by the output of the temperature sensor 1 〇 3 in step S 1 1 of Fig. 8. Since the temperature of the motor drive circuit 1 〇 8 is slightly proportional to the temperature of the motor 4, the temperature of the motor 4 of -16 - 201002199 can be detected by the temperature of the motor drive circuit 1 〇 8. In the step s 1 2, it is judged whether or not the temperature of the motor drive circuit 108 exceeds the first predetermined temperature (e.g., preferably 85 to 95 degrees Celsius, in this embodiment, 90 degrees Celsius). When the temperature of the motor drive circuit 1 〇 8 exceeds 90 degrees, the process proceeds from step S12 to step S13. In step S13, when the temperature starts to exceed 90 degrees, it is judged whether or not the temperature flag FS of ON is already ON. When the temperature flag FS is not ON (ON), the process proceeds to step S14 to turn on the temperature flag FS (ON), and the process proceeds to step S15. Step S14 is skipped when the temperature flag FS is already ON (ON). In step S15, the motor 4 is turned "off" (OFF), and returns to the main routine. Thereby, the burning of the motor 4 at the time of overload can be prevented. When the temperature is equal to or lower than the first predetermined temperature, the process proceeds from step S1 2 to step S16. In step S16, it is judged whether or not the temperature flag Fs is already ON. When the temperature flag FS is not ON ('ON'), it returns to the main routine. When the temperature flag FS is already ON (ON), the process proceeds to step S17 to determine whether or not the detected temperature Td falls to a second predetermined temperature lower than the first predetermined temperature (for example, 75 degrees Celsius to 85 degrees Celsius). In this embodiment, it is 80 degrees Celsius or less. By this, the temperature protection process is terminated. When the detected temperature Td exceeds 80 degrees, the process returns to the main example stroke type, and if it is 80 degrees or less, the process proceeds to step s 1 8 . In step S188, it is judged whether or not the timer τ1 is turned ON. The timer T1 is for checking whether the state below the second predetermined temperature continues for a predetermined time 11 (e.g., preferably 20 seconds to 40 seconds, in this embodiment, 30 seconds). When the timer T1 is not ON (start), the transition timer -17-201002199 to step S19 turns the timer T1 ON. Step S19 is skipped when the timing τΐ has been turned on (Ο Ν ). In step S20, it is judged whether or not the timer Τ1 is over and turned off (OFF). When the time is not over, return to the main routine. When the time is over, that is, if the state below 8 degrees lasts for more than 30 seconds, the overload state is considered to have been extinguished and the flow is shifted to step S 2 1 to make the temperature. The flag FS is off (〇FF), and the temperature protection process is terminated. After the temperature protection process is finished, the adjustment operation lever 101 is returned to the operation start position by the day (phase ST = 〇), and the motor 4 can be operated. [Key Input Processing] In the key input processing of step S7, it is determined in step S31 of Fig. 9 whether or not the menu button MB has been pressed for 3 seconds or longer. It is judged in step S32 whether or not the adjustment operation lever 1 〇 1 is operated from the operation start position. In step S33, it is judged whether or not the other functions such as the shed memo button TB and the decision button DB and the single button of the menu button MB are operated. The menu button MB is. When it is pressed long, the flow proceeds from step S31 to step S34. In step S34, it is judged whether or not it is the speed mode. In the speed mode, the process proceeds to step S36 to set to the tension mode, and in the tension mode to step S3 5 to the speed mode. When it is judged that the adjustment operation lever 110 is operated to a position other than the operation start position (ST = 0), the flow proceeds from step S32 to step S37. In step S37, it is judged whether or not the temperature flag FS is on (on). When the temperature flag F S is ON (〇 N ), the process proceeds to step S 3 3 in order to prohibit the motor control operation by the adjustment operation lever 1 〇 I -18 - 201002199. When the temperature flag F S is not in the ON state, the process proceeds from step S37 to step S38. It is judged at step S38 whether it is the speed mode. In the speed mode, the process proceeds to step S39 to execute the speed mode processing. In the tension mode, the process proceeds to step S4 and the tension mode processing is executed. When the other button is operated, the process proceeds from step S33 to step S4 1, and the process corresponding to the operated button is performed. [Speed Mode Processing] In the speed mode processing of step S39, the motor 4 is controlled to set the number of rotations of the reel 3 to the upper limit speed set at each stage. Further, the upper limit speed is corrected by the winding diameter of the spool 3, and actually, the motor 4 is controlled so that the winding speed of the fishing line wound around the spool 3 is constant. In step S50 of Fig. 10, it is judged whether or not the intermittent flag FP3 used for the intermittent processing to be described later is turned on (ON). When the discontinuous flag FP3 is off (OFF), the process proceeds to step S51. When the discontinuous flag FP3 is ON (ON), the process proceeds to step S54. In step S51, the number of stages ST set by adjusting the operation lever 1 〇 1 and the rotational speed Vd of the reel 3 calculated by the output of the reel sensor 102 are read. In step S52, it is judged whether or not the speed Vd of the reel 3 is not full or the lower limit 値Vstl of the upper limit speed Vs corresponding to the protection phase STS (an example of the target speed) to be described later. In step S53, it is judged whether or not the speed Vd of the reel 3 exceeds the lower limit 値Vs12 of the upper limit speed Vs of the phase ST or the corresponding protection phase S T S . When the speed control is performed, the lower limit 値V s 11 and the upper limit 値 -19 - 201002199 of the upper limit speed v s are set in each stage S T .

Vst2的理由,是爲了使在兩速度Vstl、Vst2之間速度變 動的情況時負荷工作比不變化’不會產生負荷工作比頻繁 變動的尖叫音’使反饋控制穩定。此上限値V st2及下限 値Vstl是設定於上限速度Vst的例如±10%以內。 在步驟S54中,高負荷的情況時實行將馬達4間斷運 轉的第1保護處理,在步驟S 5 5中,高負荷的情況時實行 將馬達4減速運轉的第2保護處理,返回至按鍵輸入處理 〇 速度Vd是下限値Vstl未滿的情況時,從步驟S52移 行至步驟S 5 6。在步驟S 5 6中,後述的第2保護處理時判 斷被導通(ON)的第2保護標記FP 2是否爲導通(ON) 。第2保護標記FP2是導通(ON )的情況’爲了禁止從 由第2保護處理減速的保護階段STS朝高速側的階段ST 的操作桿操作所產生的增速動作,從步驟S 5 6移行至步驟 S 6 1。在步驟S 61中,被設定的階段S T是由第2保護處 理判斷是否超越被設定的保護階段STS。被設定的階段是 超越保護階段STS的情況時,爲了忽視操作桿操作禁止 增速動作而移行至步驟S 5 3。由操作桿操作使被設定的階 段ST成爲保護階段STS以下的情況時,從步驟S61移行 至步驟S62,使第2保護標記FP2爲斷開(〇FF)移行至 步驟S57。 第2保護標記FP2是斷開(OFF )的情況時’從步驟 S 5 6移行至步驟s 5 7將現在的第1負荷工作比D 1讀入。 此第〗負荷工作比D 1,是每次設定變更就被記憶在記憶 -20- 201002199 部l〇7。且,在各階段ST設定最大値DUst及最小 DLst,最初在各階段ST被設定時,是設定成例如其中 的第 1負荷工作比 Dl=( ( DUst + DLst ) /2 )。在步 S 5 8中,判斷現在的第1負荷工作比D 1是否超越被設 的階段的最大値DUst。超過的情況時移行至步驟S60 第1負荷工作比D 1設定最大値DUst。未超過的情況時 從步驟S 5 8移行至步驟S 5 9,只有將第1負荷工作比 增加預定的增分DI (例如1%)移行至步驟S53。又, 高階段(ST = 31 )的負荷工作比,雖是設定成100%, 是在之前爲止的階段(ST=1在30)中最大値DUst是 負荷工作比設定成8 5 %以下。 速度V是超越上限値Vst2的情況時,從步驟S53 行至步驟S63將現在的第1負荷工作比D 1讀入。此第 負荷工作比D1也與步驟S57同樣。在步驟S64中,判 現在的第1負荷工作比D 1是否被低於設定的階段的最 値D L s t。低於的情況時移行至步驟S 6 6在第1負荷工 比D 1設定最小値D L s t。未低於的情況時,從步驟S 6 4 行至步驟S 6 5,只有將第1負荷工作比D 1減少預定的 分DI (例如1%)移行至步驟S54。 [第1保護處理] 步驟S 54的第1保護處理,是在速度模式時階段 是5〜3 1時有效的馬達保護處理’在馬達4高負荷作用 ,將通斷(ON/OFF )的間斷電流流動防止馬達4的燒 値 間 驟 定 在 D1 最 但 將 移 1 斷 小 作 移 減 ST 時 損 -21 - 201002199 。在第1保護處理中,流動至馬達4的電流値(即,作用 於馬達4的負荷)是成爲流動至馬達的最大電流値(例如 18A)的50%以上90%以下的第1電流値(例如12A)連 續第1預定時間(例如較佳是0.5秒至2秒,在此實施例 爲1秒),且在最高速階段的上限速度的40 %以下的旋 轉速度也就是第1速度(例如12階段(ST= 12 )的上限 速度)以下捲筒3旋轉的第1狀態的話,進行將通斷( ΟΝ/OFF )的間斷的電流流動至馬達4的間斷控制。且, 速度是成爲比第1速度高速側的第2速度(例如1 3階段 (S T = 1 3 )的上限速度)的話,判斷爲負荷減少而解除間 斷控制,返回至通常的速度控制或是張力控制。 具體而言,在第11圖的步驟S69將旋轉速度Vd及 負荷電流値Id讀入。在步驟S70中,判斷現在的階段ST 是否爲5以上。階段S T是5以上的情況時’移行至步驟 S 7 1,判斷藉由電流檢出部1 0 8 a被檢出的馬達4的流動的 電流値Id,即負荷是否爲第1電流値也就是1 2A以上。 電流値Id是1 2A以上的情況時,移行至步驟S73 ’滿足 第1條件的話判斷導通(ON )的第1保護標記FP1是否 已經導通(ON )。第1保護標記FP 1非導通(ON )的情 況時,移行至步驟S 7 4。第1保護標記F P 1是已經導通( ON )的情況時,跳過步驟S 7 3〜步驟S 7 7移行至步驟S 7 8 〇 在步驟S74中,判斷測量第1預定時間t2用的正時 器T2是否已經導通(ON )。正時器T2是未導通(ON ) -22- 201002199 時,移行至步驟S75將正時器T2導通(〇N )移行至步驟 S76。正時器T2是導通(ON )的情況時,跳過步驟S75 移行至步驟S 7 6。 在步驟S76中’判斷正時器T2是否時間結束而斷開 (OFF )。即,判斷負荷及速度是否從滿足預定的條件經 過1分鐘。判斷出正時器T2是時間結束的話,移行至步 驟S 77使識別滿足第1條件用的第1保護標記FP 1爲導通 (ON)。在步驟S78中,將通斷(ON/OFF )的電流流動 至馬達4實行驅動的間斷控制處理。在步驟S 7 9中,判斷 負荷是否爲比第1電流値大的第2電流値也就是1 5 A (安 培)以下。負荷是1 5 A以下的情況時移行至步驟S 8 0。在 步驟S80中,判斷速度Vd是否爲13階段(ST13 )的上 限速度Vs 1 3以上。速度Vd是上限速度Vs 1 3以上的情況 時,判斷爲不需要保護使第1保護標記FP 1爲斷開(OFF )。第1保護標記FP1爲斷開(OFF )的話,馬達4是被 通常的速度或張力控制。 在步驟S70、71、72、76、79、80的判斷是NO的情 況時,返回至速度模式處理。 [間斷處理] 在步驟S 7 8的間斷處理中,在第1 2圖的步驟S 9 1判 斷從間斷處理開始測量第2預定時間(例如1 5秒)用的 正時器T3是否時間結束。在步驟S92中,判斷正時器T3 是否導通(ON )。正時器T3未導通(ON )的情況時移 -23- 201002199 行至步驟S99將正時器T3導通(〇N)開始計時後移行至 步驟S93。正時器T3已經爲導通(〇N)的情況時,跳過 步驟S99移行至步驟S93。在步驟S93中,藉由溫度感測 器1 03的輸出將馬達驅動電路1 〇8的溫度即馬達4的溫度 Td δ賣入。在步驟S94中,判斷馬達4的溫度Td是否超越 第1預疋溫度(例如攝氏5 0度至7 〇度是較佳,在此實施 例爲60度)。在此間斷控制中,將馬達4的導通(〇N ) 時間及斷開(0 F F )時間,以第丨預定溫度爲界變更。即 ,溫度低時使導通(〇 N )時間比斷開(〇 F F )時間長,溫 度高時是爲了設置冷卻期間而使斷開(〇FF )時間比導通 (ON )時間長。溫度Td是攝氏6 〇度未滿的情況時,從 步驟S94移行至步驟S95。在步驟S95中,將馬達4導通 (〇N )時間tnl (例如600至1 00〇m秒,在此實施例中 750m秒)。在步驟S96中,將馬達4斷開(OFF )時間 tfl (例如比時間tnl短35〇至75〇m秒,在此實施例爲 5 00m秒)返回至第1保護處理。溫度Td是60度以上的 情況時’移行至步驟S 9 7,將馬達4導通(Ο N )時間t η 2 (例如6〇0至1〇〇()m秒,在此實施例爲75〇m秒)。在步 驟S 96中’將馬達4斷開(OFF )時間tfl (例如比時間 tnl長的80〇至12〇〇m秒,在此實施例爲1〇〇〇111秒),返 回至第1保護處理。 正時器T 3是時間結束的即間斷處理是1 5秒以上經過 的話’從步驟S9 1移行至步驟S 1 〇〇 ’判斷間斷標記FP3 是否爲導通(〇N )。間斷標記FP3,是如前述間斷處理 -24- 201002199 是第2預定時間經過的話就導通(〇N )的標記。間斷標 記FP 3未導通(ON )情況時,移行至步驟S 1 〇 1使間斷標 記FP3爲導通(ON)。在步驟S102中,將馬達4斷開( OFF )。間斷標記FP3是已經導通(on )的情況時,跳過 步驟S101、步驟S102。在步驟S103中,判斷正時器T4 是否已經導通(ON )。正時器T4,是測量從馬達4斷開 (Ο F F )後的時間經過使馬達4的旋轉回復用的正時器, 3 0秒經過的話時間結束而斷開(〇 F F )。正時器T4未導 通(ON )情況時,移行至步驟s 1 04將正時器T4導通( ON )。正時器T4是已經導通(on )的情況時,跳過步 驟S 1 0 4。在步驟S 1 0 5中,判斷正時器T4是否時間結束 斷開(Ο F F )。時間結束的情況時,移行至步驟s 1 0 6,爲 了使馬達4可動作而使間斷標記FP3爲斷開(OFF )返回 至第1保護處理。此後,將調整操作桿1 〇 1返回至操作開 始位置的話,馬達4成爲可動作。 在這種第1保護處理中,高負荷的狀態時將馬達4藉 由間斷地旋轉使多餘的電流不會流動至馬達4可以抑制發 熱。且,負荷很小的話’馬達4是由被設定的上限速度旋 轉。因此性能不會下降可防止馬達4的燒損。 [第2保護處理] 步驟S 5 5的第2保護處理,是由速度模式的8階段以 上時才有效’作用於馬達4的負荷變高的話將馬達4減速 的處理。在第2保護處理中,藉由電流檢出部i〇8a被檢 -25- 201002199 出的負荷,是滿足在第3電流値I s (例如1 5 A )以上的狀 態下連續第4預定時間t5 (例如3秒)的第1條件時,對 應比被檢出的旋轉速度至少低一階段(此實施例設定爲2 階段)的上限速度的目標速度。且,比較:目標速度設定 後第5預定時間(例如3秒)經過的第1負荷、及從其第 6預定時間(例如1秒)後的第2負荷,第2負荷是比第 1負荷預定量(例如1A )大時,是將目標速度由1秒間 隔返覆設定成低一階段的上限速度,第2負荷是比第1負 荷預定量(例如〇 · 5 A )小時,是將目標速度由1秒間隔 返覆設定成至少高一階段的上限速度。 在第2保護處理中,在第13圖的步驟Sill,將旋轉 速度Vd、負荷電流値Id、現在的段數ST及由第2保護 處理被設定的保護階段S T S讀入。在步驟S 1 1 2中,判斷 現在的階段ST是否爲8以上。階段ST是8以上的情況 時移行至步驟S 1 1 3。階段s T是8未滿的情況時不進行處 理並返回至速度模式處理。在步驟s 1 1 3中,判斷顯示負 荷的電流値I d是否爲第3電流値IS以上。電流値I d是第 3電流値(例如’ 1 5 A ) I s以上的情況時,移行至步驟 S 1 14,判斷正時器T5是否時間結束。正時器T5,是爲了 測量供判斷第2保護處理所需要的第1條件用的預定時間 15。正時器T 5是時間未結束情況時移行至步驟S丨丨5,判 斷正時器T5是否已經導通(on)開始。正時器T5未導 通(Ο N )情況時,移行至步驟s丨丨6將正時器τ 5導通( ON )並開始計時。正時器τ5是導通(on )的情況時跳 -26- 201002199 過步驟S116移行至步驟S117。 正時器T5是時間結束的情況,即,滿足負荷是 以上的狀態持續3秒以上的第1條件的情況時,從 S 1 1 4移行至步驟s 1 1 7。在步驟S 1 1 7中,判斷保護 STS是否8階段以上。在此第2保護處理中,7階段 不減速。因此在第2保護處理中,若保護階段STS未 階段的情況時,終了處理返回至速度模式處理。保護 S T S是8階段以上的情況時,移行至步驟s 1 1 8。在 s 1 1 8中,滿足第1條件且最初減速處理時判斷導通 )的第2保護標記FP2是否爲導通(ON)。第2保 記FP2未導通(ON)時,移行至步驟S119使第2保 記FP2爲導通(ON )。在步驟S120中,判斷保護 STS是否爲8段。在此實施例中,因爲7段以下不減 所以保護階段STS是9段以上的情況時,移行至 S 1 2 1,將保護階段STS設定成從對應現在的旋轉速| 的上限速度的階段STvd低二階段的階段(STvd-2 ) 體而言,設定成現在的速度Vd以下即從最高的上限 的階段低二階段。保護階段STS是8段的情況時, 至步驟S 1 22,從對應現在的旋轉速度Vd的上限速度 段STvd低一階段的階段(STvd-Ι ),即將保護階段 設定成7階段。第2保護處理的實行中(第2保護標 導通(ON)),使成爲此保護階段STS以上的方式 調整操作桿1 〇 1的話,對於第1 〇圖的速度模式處理 驟S6 1,操作後的階段ST是超越保護階段STS的話 1 5A 步騾 階段 以下 :滿8 階段 步驟 (ON 護標 護標 階段 速, 步驟 ? Vd ° 具 速度 移行 的階 STS 記爲 操作 的步 其操 -27- 201002199 作被忽視’保護階段STS以上的高速操作無法進行。 在步驟S 1 23中,判斷正時器T6是否時間結束的。此 正時器T6,是從最初減速,爲了等待預定時間(例如3 秒)的經過而組裝的正時器。正時器T6是時間結束的情 況時移行至步驟s 1 2 6,將當時的第1負荷也就是電流値 Idn讀入,返回至速度模式處理。又,變數η,是最初設 定爲1。正時器Τ6未時間結束的情況時移行至步驟s〗24 ,判斷正時器Τ6是否已經導通(ON )。正時器T6未導 通(ON )的情況時,移行至步驟S125使正時器T6導通 (ON )並開始計時。正時器T6是已經導通(ON )的情 況時,跳過步驟s 1 2 5移行至步驟s 1 2 6。在此,不是從二 段減速立即讀入電流値而是等待3秒間的理由,是在二、段 減速後立即將電流値讀入的話’電流値會不穩定。 判斷出讀入的現在的電流値(現在的負荷)Id是第3 電流値Is未滿的話’從步驟S 1 1 4移行至步驟S 1 3 6。在 步驟S136中,使第2保護標記FP2爲斷開(OFF )解除 第2保護處理返回至速度模式處理。由此’保護階段STS 也被重設成3 1段。 判斷第2保護標記FP2爲導通(ON )的話’從步驟 S 1 1 9移行至步驟S 1 2 7,判斷正時器T 7是否時間結束。 此正時器T7,是檢出第1負荷也就是電流値Idn之後’ 爲了等待預定時間(例如’ 1秒)的經過而被組裝的正時 器。正時器T 7是時間結束的情況時移行至步驟s 1 3 0 ’將 變數η增加1。正時器T 7是時間未結束時’移行至步驟 -28 - 201002199 S128,判斷正時器T7是否已經導通(〇N)。正時器T7 是未導通(Ο Ν )情況時’移行至步驟S丨2 9使正時器τ 7 導通(ON)並開始計時。正時器T7是已經導通(ON) 的情況時,跳過步驟s 1 2 9移行至步驟s 1 3 0。在步驟s 1 3 1 中,將當時的第2負荷也就是電流値Idn讀入。 在步驟S 1 3 2中’判斷讀入的第2負荷也就是電流値 I d η是否爲第3電流値I s的7 〇 %以下。電流値I d η是第3 電流値的7〇%以下的情況時移行至步驟S136使第2保護 標記FP2爲斷開(OFF)解除第2保護處理。電流値Idn 是超越第3電流値I s的7 0 %的情況時移行至步驟S 1 3 3。 在步驟S 1 3 3中,判斷現在讀入的第2負荷(Idn )是否比 先前的減速時讀入的第1負荷(Id ( η-1 ))大1 A以上。 負荷是增加1 A以上的情況時,移行至步驟S 1 3 4,由在1 秒後的下一個時間點的第2負荷的判定將成爲作爲比較對 照的第1負荷的現在的電流値Idn的値下降0.1 A。在步驟 S 135中,將階段ST設定成從對應現在的旋轉速度Vd的 上限速度的階段STvd低一階段的階段(STvd-1 ) ’返回 至速度模式處理。 第2負荷(I d η )未比先前的減速時讀入的第1負荷 (I d ( η -1 ))大1 Α以上情況時’從步驟S 1 3 3移行至步 驟S 1 3 7。在步驟S 1 3 7中’判斷第2負荷也就是電流値 Idn是否到達流動至馬達4的最大電流値(例如1 8 A )。 到達最大電流値的情況時’移行至步驟S 1 3 4進行減速處 理,未到達的情況時,移行至步驟S 1 3 8 ° -29- 201002199 在步驟S 1 3 8中,判斷第1負荷(Id ( η-1 ))是否比 第2負荷(Idn)大0.5A以上。第1負荷是比第2負荷大 0.5 A以上,且負荷減少的情況時,移行至步驟S 1 3 9,將 階段ST設定成從對應現在的旋轉速度Vd的上限速度的 階段S T V d高一階段的階段(S T V d + 1 ),返回至速度模式 處理。且,第2負荷的增加未滿1A’或第負荷減少未 滿0.5 A的情況時,不進行任何處理返回至速度模式處理 〇 在這種第2保護處理中,成爲滿足第1條件的高負荷 狀態的話,一旦將馬達4的速度減速至成爲比當時的旋轉 速度至少低一階段的上限速度’使減少流動至馬達4的電 流,多餘的電流就不會流動至馬達4。且,從其負荷進一 步減少的話增加馬達的旋轉速度’負荷增加的話進一步減 少馬達的旋轉速度。因此,多餘的電流不易流動至馬達, 直到成爲上限速度爲止將電流持續流動至馬達的速度控制 時,可抑制對於馬達的負擔使馬達不會被燒損。 且,在第10圖的速度模式處理的步驟S61,目標速 度即使被設定,被設定成比其速度低速側的上限速度的話 ’目標速度因爲被取消,所以多餘的電流更不易流動。且 ’上限速度變更至比目標速度高速側的話其變更被忽視。 因此,在第2保護處理中藉由保護階段STS就不會被變 速至高速側。 [張力模式處理] -30- 201002199 在步驟S30的張力模式處理中,在第14圖的步驟 S 1 4 1將藉由調整操作桿1 〇 1被設定的段數S T及將電流檢 出部1 08a的檢出結果的扭矩由線捲徑修正的張力Qd讀入 。在步驟S 1 42中,判斷張力Qd是否未滿對應階段ST的 上限張力Qs的下限値Qstl。在步驟S143中,判斷張力 Q d是否超越對應階段S T的上限張力Q s的下限値Q st2。 又,進行張力控制時,在各階段S T設有上限張力Ts的下 限値Qstl及上限値Qst2,與速度模式同樣地在兩張力 Qstl、Qst2之間張力變動的情況時負荷工作比不變化,負 荷工作比是在頻繁變動的尖叫音不會產生,反饋控制穩定 。此上限値Qst2及下限値Qstl是設定於上限張力Qst的 例如± 1 〇 %以內。 在步驟S 144中,判斷階段ST是否爲最高段的3 1段 ,3 1階段的情況時移行至步驟S 1 4 6,實行第1 1圖所示的 第1保護處理。階段S T是3 1階段以外的情況時,移行至 步驟S145,移行至第15圖所示的第3保護處理。這些的 處理完成的話返回至按鍵輸入處理。 張力Qd是下限値Qstl未滿的情況時’從步驟S142 移行至步驟S147。在步驟S147中,將現在的第2負荷工 作比D4讀入。此第2負荷工作比D4 ’是每次設定變更就 被記憶於記憶部107。在步驟S148中,只有將第2負荷 工作比D 4增加預定的增分DI (例如1 % )移行至步驟 S 143。將其持續直到張力Qd超越下限値Qstl爲止。 張力Qd是超越上限値Qst2的情況時’從步驟S143 -31 - 201002199 移行至步驟S149將現在的第2負荷工作比D4讀入。此 第2負荷工作比D4也與步驟S147同樣。在步驟S148中 ,只有將第2負荷工作比D4減少預定的減分DI (例如1 % )移行至步驟S 1 4 4。將其持續直到張力Q d低於上限値 Qst2爲止。 在此張力模式處理中,與速度模式處理相比不進行由 第2保護處理所產生的張力減少處理。這是因爲,在張力 模式中,是在各階段ST決定電流値(張力)。 [第3保護處理] 步驟SM5的第3保護處理,是階段ST是5〜30時 有效的馬達保護處理,因爲與速度模式用的第1保護處理 略同樣’所以變更成張力模式用。在此第3保護處理中, 流動至馬達4的電流値(即作用於馬達4的負荷)是流動 至馬達的最大電流値(例如1 8 A )的5 0 %以上9 0 %以下 的第1電流値(例如,1 1 A )連續預定時間(例如較佳是 3 〇秒至60秒,在此實施例爲45秒)的第3狀態的話, 進行將通斷(ON/OFF )的間斷的電流流動至馬達4的第 2間斷控制。 具體而言,在第15圖的步驟S160判斷現在的階段 ST是否爲5以上。階段ST是5以上的情況時,移行至步 驟S 1 6 1,判斷藉由電流檢出部1 0 8 a被檢出的馬達4的流 動的電流値Id,即負荷是否爲第1電流値也就是1 1 A以 上。電流値Id是1 1 A以上的情況時,移行至步驟S 1 62, -32- 201002199 第3條件滿足的話判斷導通(ON )的第3保護 是否已經爲導通(ON )。第3保護標記FP4未 )的情況時,移行至步驟S 1 6 3。第3保護標記 經導通(ON )的情況時,跳過步驟S 1 6 3〜步驟 行至步驟S167。 在步驟S 1 63中,判斷測量從電流値id超越 的經過時間t8用的正時器T8是否已經導通( 時器T8是未導通(ON)時,移行至步驟S164 T8導通(ON )。正時器T8是已經導通(ON ) 步驟S164移行至步驟S165。在步驟S165中, 器T8是否時間結束而斷開(OFF )。即,判斷 預定的條件之後是否4 5分鐘經過。判斷出正時^ 結束的話,移行至步驟S 1 66使供識別第3條件 第3保護標記FP4爲導通(ON)。在步驟S167 將通斷(ΟΝ/OFF)的電流流動至馬達4的方式 斷控制處理。此間斷處理是進行與速度模式時 1 2圖所示的處理。在步驟S 1 6 8中,判斷負荷是 3電流値小的第4電流値也就是1 0 A以下。負荷 下的情況時移行至步驟s 1 6 9。在步驟s 1 6 9中, 需要保護並使第3保護標記FP4爲斷開(〇ff) 護標記F P 4是斷開(Ο F F )的話,藉由將調整搏 返回至操作開始位置爲止馬達4可動作。The reason for Vst2 is to stabilize the feedback control so that the load operation ratio does not change when the speed between the two speeds Vstl and Vst2 is changed, and the scream sound that does not cause the load operation ratio to fluctuate frequently. The upper limit 値V st2 and the lower limit 値Vstl are set within, for example, ±10% of the upper limit speed Vst. In step S54, when the load is high, the first protection process for interrupting the operation of the motor 4 is performed, and in the case of high load, the second protection process for decelerating the motor 4 is performed in the case of high load, and the operation is returned to the key input. When the processing 〇 speed Vd is the lower limit 値Vstl is not full, the process proceeds from step S52 to step S56. In step S56, it is determined whether or not the second protection flag FP2 that is turned "ON" is turned "ON" during the second protection process to be described later. When the second protection mark FP2 is turned "ON", in order to prohibit the speed increase operation from the guard stage STS decelerating by the second protection process to the high-speed side stage ST, the process proceeds from step S56 to Step S 6 1. In step S61, the set phase S T is determined by the second protection process whether or not the set protection phase STS is exceeded. When the set phase is beyond the protection phase STS, the process proceeds to step S53 to ignore the joystick operation prohibiting the speed increase operation. When the set stage ST is set to be equal to or lower than the protection stage STS by the operation of the operation lever, the process proceeds from step S61 to step S62, and the second protection flag FP2 is turned off (〇FF) to step S57. When the second protection flag FP2 is OFF (OFF), the process proceeds from step S56 to step s7, and the current first duty operation ratio D1 is read. This 〗 〖load work ratio D 1, is changed in memory every time the setting changes -20- 201002199 part l 〇 7. Further, the maximum 値DUst and the minimum DLst are set in each stage ST, and when the stages ST are set first, for example, the first load operation ratio D1 = ((DUst + DLst) /2) is set. In step S58, it is judged whether or not the current first duty operation ratio D1 exceeds the maximum 値DUst of the set stage. If it is exceeded, the process proceeds to step S60. The first load operation ratio D 1 sets the maximum 値 DUst. If it is not exceeded, the process proceeds from step S58 to step S59, and only the first load duty ratio is increased by a predetermined increment DI (e.g., 1%) to step S53. In addition, the load ratio of the high stage (ST = 31) is set to 100%, and the maximum 値DUst is set to 85% or less in the previous stage (ST = 1 in 30). When the speed V is greater than the upper limit 値Vst2, the current first load operation ratio D 1 is read from step S53 to step S63. This first load operation ratio D1 is also the same as step S57. In step S64, it is judged whether or not the first duty operation ratio D 1 is lower than the final value D L s t of the set phase. If it is lower than the case, the process proceeds to step S6 6 to set the minimum 値D L s t at the first duty ratio D 1 . If it is not lower than the above, from step S6 4 to step S65, only the first load duty ratio D1 is decreased by a predetermined division DI (for example, 1%) to step S54. [First Protection Process] The first protection process in step S 54 is a motor protection process that is effective when the speed mode is 5 to 3 1 'The motor 4 is under high load and the ON/OFF is interrupted. The current flow prevents the burnout of the motor 4 from being suddenly set at D1, but will be shifted by 1 and then reduced by ST when the loss is 21 - 201002199. In the first protection process, the current 値 flowing to the motor 4 (that is, the load acting on the motor 4) is the first current 成为 which is 50% or more and 90% or less of the maximum current 値 (for example, 18A) flowing to the motor ( For example, 12A) continuous first predetermined time (for example, preferably 0.5 second to 2 seconds, in this embodiment, 1 second), and the rotational speed below 40% of the upper limit speed of the highest speed stage is also the first speed (for example, When the first state in which the reel 3 is rotated is the first state in which the reel 3 is rotated, the intermittent current of the ON/OFF (ΟΝ/OFF) flows to the motor 4 for intermittent control. In addition, when the speed is the second speed (for example, the upper limit speed of the 1st stage (ST = 1 3)) on the high speed side of the first speed, it is determined that the load is reduced, the intermittent control is released, and the normal speed control or the tension is returned. control. Specifically, the rotational speed Vd and the load current 値Id are read in step S69 of Fig. 11. In step S70, it is determined whether or not the current stage ST is 5 or more. When the phase ST is 5 or more, the process proceeds to step S7, and the current 値Id of the motor 4 detected by the current detecting unit 108a is determined, that is, whether the load is the first current or not. 1 2A or more. When the current 値Id is 1 2A or more, the process proceeds to step S73. When the first condition is satisfied, it is determined whether or not the first protection flag FP1 that is turned "ON" is turned "ON". When the first protection flag FP 1 is not turned ON (ON), the process proceeds to step S74. When the first protection flag FP 1 is already ON (ON), the steps S 7 3 to S 7 7 are skipped and the process proceeds to step S 7 8 . In step S74, the timing for measuring the first predetermined time t2 is determined. Whether T2 has been turned ON (ON). When the timer T2 is not ON (ON) -22- 201002199, the process proceeds to step S75 to turn on the timer T2 (〇N) to step S76. When the timer T2 is ON (ON), the process proceeds to step S76 by skipping step S75. In step S76, it is judged whether or not the timer T2 has expired and is turned off (OFF). That is, it is judged whether or not the load and the speed have passed from the predetermined condition for one minute. When it is determined that the timer T2 has expired, the process proceeds to step S77 to make it clear that the first protection flag FP1 for satisfying the first condition is turned "ON". In step S78, an on/off current is flown to the intermittent control process in which the motor 4 performs driving. In step S709, it is judged whether or not the load is the second current 比 which is larger than the first current 値, i.e., 15 A (amperes) or less. When the load is 1 5 A or less, the process proceeds to step S 8 0. In step S80, it is judged whether or not the speed Vd is equal to or higher than the upper limit speed Vs 1 3 of the 13th step (ST13). When the speed Vd is equal to or higher than the upper limit speed Vs 1 3 , it is determined that the first protection mark FP 1 is off (OFF) without requiring protection. When the first protection mark FP1 is OFF (OFF), the motor 4 is controlled by the normal speed or tension. When the determination in steps S70, 71, 72, 76, 79, and 80 is NO, the process returns to the speed mode processing. [Intermittent processing] In the interrupt processing of step S78, it is determined in step S9 1 of Fig. 2 whether or not the timer T3 for measuring the second predetermined time (e.g., 15 seconds) from the discontinuous processing ends. In step S92, it is determined whether or not the timer T3 is turned "ON". When the timing device T3 is not turned ON (ON), the time shift is -23-201002199. The routine proceeds to step S99 to turn on the timer T3 (〇N) and then shift to step S93. When the timer T3 is already turned on (〇N), the process proceeds to step S93 by skipping step S99. In step S93, the temperature of the motor drive circuit 1 〇 8 , that is, the temperature Td δ of the motor 4 is sold by the output of the temperature sensor 103. In step S94, it is judged whether or not the temperature Td of the motor 4 exceeds the first pre-expansion temperature (e.g., 50 degrees Celsius to 7 degrees Celsius is preferable, and in this embodiment, 60 degrees). In this intermittent control, the conduction (〇N) time and the OFF (0 F F) time of the motor 4 are changed by the second predetermined temperature. That is, when the temperature is low, the conduction (〇 N ) time is longer than the OFF (〇 F F ) time, and when the temperature is high, the cooling period is set to make the OFF (〇FF) time longer than the ON time. When the temperature Td is less than 6 degrees Celsius, the process proceeds from step S94 to step S95. In step S95, the motor 4 is turned on (〇N) time tn1 (e.g., 600 to 100 〇 m seconds, 750 msec in this embodiment). In step S96, the motor 4 is turned OFF (OFF) time tfl (e.g., 35 〇 to 75 〇 m seconds shorter than time tn1, in this embodiment, 50,000 m seconds), and returns to the first protection process. When the temperature Td is 60 degrees or more, 'Move to step S9 7 to turn on the motor 4 (Ο N ) time t η 2 (for example, 6 〇 0 to 1 〇〇 () m seconds, which is 75 此 in this embodiment. m seconds). In step S96, 'turn off the motor 4 (OFF) time tfl (for example, 80 〇 to 12 〇〇 m seconds longer than the time tn1, in this embodiment, 1 〇〇〇 111 seconds), return to the first protection. deal with. When the timer T 3 is the end of the time, that is, if the intermittent processing is over 15 seconds or more, the process proceeds from the step S9 1 to the step S 1 〇〇 ' to determine whether or not the intermittent flag FP3 is ON (〇N). The discontinuous mark FP3 is a mark that is turned on (〇N) when the second predetermined time elapses as described above -24 - 201002199. When the discontinuous flag FP 3 is not ON (ON), the process proceeds to step S 1 〇 1 to make the discontinuity flag FP3 ON. In step S102, the motor 4 is turned off (OFF). When the discontinuous flag FP3 is already on (on), steps S101 and S102 are skipped. In step S103, it is judged whether or not the timer T4 has been turned ON (ON). The timer T4 is a timer for measuring the time after the motor 4 is turned off (Ο F F ) to recover the rotation of the motor 4, and when the passage of 30 seconds elapses, the time is turned off (〇 F F ). When the timer T4 is not ON (ON), the process proceeds to step s 1 04 to turn on the timer T4 (ON). When the timer T4 is already on (on), the step S1 0 4 is skipped. In step S1 0 5, it is judged whether or not the timer T4 is turned off (Ο F F ). When the time has elapsed, the process proceeds to step s 1 0 6. In order to make the motor 4 operate, the discontinuity flag FP3 is turned OFF (OFF) and returns to the first protection process. Thereafter, when the adjustment lever 1 〇 1 is returned to the operation start position, the motor 4 becomes operable. In such a first protection process, the motor 4 is prevented from generating heat by intermittently rotating the motor 4 so that excess current does not flow to the motor 4 in a high load state. Further, if the load is small, the motor 4 is rotated by the set upper limit speed. Therefore, the performance is not lowered to prevent the burning of the motor 4. [Second protection process] The second protection process of step S5 5 is a process of decelerating the motor 4 when the load acting on the motor 4 becomes high when the speed mode is equal to or higher than eight stages. In the second protection process, the current detected by the current detecting unit i 8a is detected in the state of the second current 値I s (for example, 1 5 A ) or more for the fourth predetermined time. The first condition of t5 (for example, 3 seconds) corresponds to the target speed of the upper limit speed which is at least one stage lower than the detected rotation speed (the second stage is set in this embodiment). And comparing: the first load that has elapsed after the fifth predetermined time (for example, three seconds) after the target speed is set, and the second load that has elapsed since the sixth predetermined time (for example, one second), and the second load is predetermined to be the first load. When the amount (for example, 1A) is large, the target speed is set to the upper limit speed of the lower stage by the interval of 1 second, and the second load is the target speed by the predetermined amount of the first load (for example, 〇·5 A). The upper limit speed is set to at least one higher stage by the 1 second interval. In the second protection process, in step Sill of Fig. 13, the rotational speed Vd, the load current 値Id, the current number of segments ST, and the protection phase S T S set by the second protection process are read. In step S1 1 2, it is judged whether or not the current stage ST is 8 or more. When the stage ST is 8 or more, the process proceeds to step S 1 1 3 . When the stage s T is 8 is not full, it is not processed and returns to the speed mode processing. In the step s 1 1 3, it is judged whether or not the current 値I d indicating the load is equal to or higher than the third current 値IS. When the current 値I d is equal to or greater than the third current 値 (e.g., < 1 5 A ) I s , the process proceeds to step S 1 14, and it is determined whether or not the timer T5 has expired. The timer T5 is for measuring the predetermined time 15 for determining the first condition required for the second protection processing. The timer T 5 is moved to the step S丨丨5 when the time is not over, and it is judged whether or not the timer T5 has started (on). When the timer T5 is not conducting (Ο N ), the process proceeds to step s丨丨6 to turn on the timer τ 5 (ON) and start timing. When the timing τ5 is ON, the jump -26-201002199 goes to the step S117 via the step S116. The timer T5 is a case where the time is over, that is, when the load is such that the above condition continues for the first condition of 3 seconds or longer, the process proceeds from S 1 14 to step s 1 1 7 . In step S1 17, it is judged whether or not the protection STS is 8 or more. In this second protection process, the 7 stages do not decelerate. Therefore, in the second protection process, if the protection phase STS is not in the stage, the process returns to the speed mode process. When the protection S T S is equal to or greater than 8 stages, the process proceeds to step s 1 1 8 . In s 1 18, whether or not the second protection flag FP2 that satisfies the first condition and is judged to be turned on at the time of the first deceleration processing is turned "ON". When the second security FP2 is not turned "ON", the process proceeds to step S119 to turn on the second security FP2 (ON). In step S120, it is judged whether or not the protected STS is 8 segments. In this embodiment, since the protection phase STS is 9 or more in the case where the 7-segment or less is not reduced, the transition to S 1 2 1 sets the protection phase STS to the stage STvd from the upper limit speed corresponding to the current rotational speed | In the lower two-stage stage (STvd-2), the current speed Vd is set to be lower than the highest upper limit stage. When the protection phase STS is eight stages, the process proceeds from step S1 22 to a stage (STvd-Ι) lower than the upper limit speed segment STvd corresponding to the current rotational speed Vd, that is, the protection phase is set to seven stages. In the middle of the second protection process (the second protection target is turned ON), if the operation lever 1 〇1 is adjusted so as to be in the protection stage STS or more, the speed pattern processing step S6 1 of the first map is operated. The stage ST is beyond the protection stage STS. 1 5A Steps and stages: Full 8 stage steps (ON protection standard stage speed, step? Vd ° Speed step STS is recorded as operation step -27- 201002199 It is ignored that the high-speed operation above the protection stage STS cannot be performed. In step S1 23, it is judged whether or not the timer T6 has expired. This timing T6 is decelerated from the initial time, in order to wait for a predetermined time (for example, 3 seconds) When the timer T6 is the end of the time, the timer T6 is shifted to the step s 1 2 6, and the current first load, that is, the current 値Idn, is read in and returned to the speed mode processing. The variable η is initially set to 1. When the timer Τ6 has not expired, the process proceeds to step s-24, and it is determined whether or not the timer Τ6 has been turned ON (ON). When the timer T6 is not turned ON (ON) , move to step S12 5 Turn on the timer T6 (ON) and start timing. When the timer T6 is already ON (ON), skip the step s 1 2 5 and move to the step s 1 2 6 . Here, not from the second stage Deceleration immediately reads in the current 値 but waits for 3 seconds. If the current is read immediately after the deceleration of the second stage, the current 値 will be unstable. It is judged that the current current 读 (current load) Id is read. If the third current 値Is is not full, 'the flow proceeds from step S1 1 4 to step S1 36. In step S136, the second protection flag FP2 is turned off (OFF), and the second protection process is returned to the speed mode. Therefore, the 'protection phase STS is also reset to 31 segments. If it is judged that the second protection flag FP2 is ON ('transfer from step S1 1 9 to step S1 2, 7, the timing device T 7 is judged. Whether or not the time is over. This timing T7 is a timing device that is assembled after waiting for a predetermined time (for example, '1 second) after detecting the first load, that is, the current 値Idn. The timing T 7 is time. In the case of the end, the process moves to step s 1 3 0 'to increase the variable η by 1. The timer T 7 is when the time is not over. 'Move to step -28 - 201002199 S128 to determine if the timer T7 is turned on (〇N). When the timer T7 is not conducting (Ο Ν), 'Move to step S丨2 9 to make the timer τ 7 Turn ON (ON) and start timing. When the timer T7 is already ON, skip the step s 1 2 9 and move to the step s 1 3 0. In the step s 1 3 1 , the 2nd at that time The load is also the current 値Idn read in. In step S1 3 2, it is judged whether or not the read second load is the current 値 I d η which is equal to or less than 7 〇 % of the third current 値I s . When the current 値I d η is equal to or less than 7〇% of the third current 値, the process proceeds to step S136, and the second protection flag FP2 is turned off (OFF) to cancel the second protection process. When the current 値Idn is over 70% of the third current 値I s , the process proceeds to step S 1 3 3 . In step S1 3 3, it is judged whether or not the second load (Idn) read now is 1 A or more larger than the first load (Id (η-1)) read in the previous deceleration. When the load is increased by 1 A or more, the process proceeds to step S1 3 4, and the determination of the second load at the next time point after 1 second becomes the current current 値Idn of the first load as a comparison control.値 decreased by 0.1 A. In step S135, the stage ST is set to return to the speed mode processing from the stage (STvd-1)' which is one stage lower than the stage STvd corresponding to the upper limit speed of the current rotational speed Vd. When the second load (I d η ) is not larger than the first load (I d ( η -1 )) read in the previous deceleration, the process proceeds from step S 1 3 3 to step S 1 3 7 . In step S1 37, it is judged whether the second load, that is, the current 値Idn, reaches the maximum current 流动 (for example, 18 A) flowing to the motor 4. When the maximum current 到达 is reached, 'Move to step S 1 3 4 for deceleration processing. If it is not reached, go to step S 1 3 8 ° -29- 201002199. In step S 1 3 8 , judge the first load ( Whether Id ( η - 1 )) is greater than the second load (Idn) by 0.5 A or more. When the first load is 0.5 A or more larger than the second load and the load is decreased, the process proceeds to step S1 3 9, and the stage ST is set to a stage higher than the stage STV d corresponding to the upper limit speed of the current rotational speed Vd. The stage (STV d + 1) returns to the speed mode processing. When the increase of the second load is less than 1A' or the first load is less than 0.5 A, the process is returned to the speed mode without any processing. In the second protection process, the high load is satisfied. In the state, once the speed of the motor 4 is decelerated to an upper limit speed that is at least one stage lower than the current rotational speed, the current flowing to the motor 4 is reduced, and the excess current does not flow to the motor 4. Further, if the load is further reduced, the rotational speed of the motor is increased. When the load is increased, the rotational speed of the motor is further reduced. Therefore, the excess current does not easily flow to the motor, and when the current is continuously supplied to the speed control of the motor until the upper limit speed is reached, the load on the motor can be suppressed and the motor can be prevented from being burnt. Further, in step S61 of the speed mode processing of Fig. 10, even if the target speed is set to be higher than the upper limit speed on the lower side of the speed, the target speed is canceled, so that the excess current is less likely to flow. When the upper limit speed is changed to the higher speed side than the target speed, the change is ignored. Therefore, in the second protection process, the protection phase STS is not accelerated to the high speed side. [Tension Mode Processing] -30- 201002199 In the tension mode processing of step S30, the number of stages ST set by adjusting the operation lever 1 〇1 and the current detecting unit 1 are performed in step S1 4 1 of Fig. 14 The torque of the detection result of 08a is read by the tension Qd of the wire diameter correction. In step S1 42, it is judged whether or not the tension Qd is less than the lower limit 値Qstl of the upper limit tension Qs of the corresponding stage ST. In step S143, it is judged whether or not the tension Qd exceeds the lower limit 値Qst2 of the upper limit tension Qs of the corresponding stage S T . Further, when the tension control is performed, the lower limit 値Qstl and the upper limit 値Qst2 of the upper limit tension Ts are provided in each stage ST, and the load duty ratio does not change when the tension between the tensions Qstl and Qst2 fluctuates as in the speed mode. The work ratio is not generated in frequently changing screams, and the feedback control is stable. The upper limit 値Qst2 and the lower limit 値Qstl are set within, for example, ± 1 〇 % of the upper limit tension Qst. In step S 144, it is judged whether or not the phase ST is the 3 1 segment of the highest segment, and in the case of the 3 1 phase, the process proceeds to the step S146, and the first protection process shown in Fig. 1 is executed. When the stage S T is other than the 3 1 stage, the process proceeds to step S145, and the process proceeds to the third protection process shown in Fig. 15. When the processing of these is completed, the processing returns to the key input processing. When the tension Qd is the case where the lower limit 値Qstl is not full, the process proceeds from step S142 to step S147. In step S147, the current second load operation is read in comparison with D4. This second duty operation ratio D4' is memorized in the memory unit 107 every time the setting is changed. In step S148, only the second load duty ratio D 4 is increased by a predetermined increment DI (e.g., 1%) to step S143. This is continued until the tension Qd exceeds the lower limit 値Qstl. When the tension Qd is beyond the upper limit 値Qst2, the process proceeds from step S143 - 31 - 201002199 to step S149 to read the current second load operation ratio D4. This second duty operation ratio D4 is also the same as step S147. In step S148, only the second load duty ratio D4 is decreased by a predetermined minus point DI (for example, 1%) to step S1 4 4 . This is continued until the tension Qd is lower than the upper limit 値 Qst2. In this tension mode processing, the tension reduction processing by the second protection processing is not performed as compared with the speed mode processing. This is because, in the tension mode, the current 値 (tension) is determined at each stage ST. [Third Protection Process] The third protection process in step SM5 is a motor protection process that is effective when the stage ST is 5 to 30, and is changed to the tension mode because it is slightly the same as the first protection process for the speed mode. In the third protection process, the current 値 flowing to the motor 4 (that is, the load acting on the motor 4) is the first of 50% or more and 90% or less of the maximum current 値 (for example, 18 A) flowing to the motor. When the current 値 (for example, 1 1 A) is in the third state for a predetermined period of time (for example, preferably 3 sec to 60 sec, in this embodiment, 45 sec.), the ON/OFF interrupt is performed. The current flows to the second intermittent control of the motor 4. Specifically, it is determined in step S160 of Fig. 15 whether or not the current stage ST is 5 or more. When the phase ST is 5 or more, the process proceeds to step S166, and the current 値Id of the motor 4 detected by the current detecting unit 108a is determined, that is, whether the load is the first current or not. It is 1 1 A or more. When the current 値Id is 1 1 A or more, the process proceeds to step S 1 62, and -32-201002199. If the third condition is satisfied, it is judged whether or not the third protection of ON is already ON. In the case where the third protection mark FP4 is not ), the process proceeds to step S136. When the third protection flag is turned ON (ON), the step S 1 6 3 to the step S167 are skipped. In step S1 63, it is judged whether or not the timer T8 for measuring the elapsed time t8 from the current 値id has been turned on (when the timer T8 is not turned ON), the process proceeds to step S164, and T8 is turned ON (ON). The timer T8 is already turned ON (ON). Step S164 is shifted to step S165. In step S165, the timer T8 is turned off (OFF). That is, it is judged whether or not 45 minutes have elapsed after the predetermined condition. When it is finished, the process proceeds to step S1 66 to make the third condition third protection flag FP4 to be turned ON. In step S167, the current of the on/off (ΟΝ/OFF) is flown to the motor 4 to control the process. This discontinuous process is the process shown in Fig. 1 in the case of the speed mode. In step S168, it is judged that the fourth current 値 whose load is 3 is smaller than 10 A. The case is shifted under load. Go to step s 1 6 9. In step s 1 6 9 , protection is required and the third protection mark FP4 is turned off (〇ff). When the guard mark FP 4 is off (Ο FF ), the adjustment pulse is returned. The motor 4 can be operated up to the operation start position.

在步驟S160、161、165、168的判斷是NO ,返回至張力模式處理。 i標記FP4 導通(ON FP4是已 S166 移 1 1 A之後 ON )。正 將正時器 時’跳過 判斷正時 負荷滿足 蓉T8時間 滿足用的 中,實行 驅動的間 相同的第 否爲比第 是1 0 A以 判斷爲不 。第3保 :作桿1 〇 1 的情況時 -33- 201002199 [各動作模式處理] 在步驟S8的各動作模式處理中,在第16圖的步 S 1 7 1判斷捲筒3的旋轉方向是否爲線吐出方向。此判 ,是判斷捲筒感測器1 〇 2的任一的霍爾(H al 1 )元件是 先發出脈衝。判斷出捲筒3的旋轉方向是線吐出方向的 從步驟S171移行至步驟S172。在步驟SN2中,每次 筒旋轉數減少就從捲筒旋轉數讀出被記憶在記憶部1 07 資料算出水深。此水深是由步驟S2的顯示處理被顯示 在步驟S 1 73中,判斷獲得的水深是否與底位置一致, ’擬餌是否到達底。底位置,是擬餌到達底時藉由按壓 忘按鈕Μ B而被設定於記憶部1 〇 7。在步驟S 1 7 4中, 斷是否爲學習模式等的其他的模式。不是其他的模式情 時,將各動作模式處理結束並返回至主例行程式。 水深是與底位置一致的話從步驟 S 1 7 3移行至步 S 1 7 5 ’ 了報知擬餌到達底而讓蜂鳴器丨〇 6叫。其他的模 的情況時,從步驟S 1 7 4移行至步驟S 1 7 6,實行被指定 其他的模式。 判斷出捲筒3的旋轉爲線捲取方向的話從步驟S 1 移行至步驟S177。在步驟S177中,從捲筒旋轉數讀出 記憶於記憶部1 07的資料算出水深。此水深是由步驟 的顯示處理被顯示。在步驟S 1 7 8中,判斷水深是否與 緣停止位置一致。未捲取至船緣停止位置爲止的情況時 回至主例行程式。到達船緣停止位置的話從步驟S 1 7 8 驟 斷 否 話 捲 的 〇 即 備 判 況 驟 式 的 7 1 被 S2 船 返 移 -34- 201002199 行至步驟S179。在步驟S179中’爲了報知擬餌位於船緣 而讓蜂鳴器106叫。在步驟S180中,將馬達4斷開( OFF )。由此將魚釣上時魚被配置於容易取入的位置。此 船緣停止位置,是在例如水深6m以內預定時間以上捲筒 3停止的話被設定。 [其他的實施例] (a )在前述實施例中,設定各種的電流値和時間値 的那些的具體的數値只是一例,本發明不限定於那些的數 値。 (b )在前述實施例中,對於第2保護處理,雖是當 滿足第1條件及第2條件時設定目標速度,但是只有由第 1條件設定目標速度也可以。 (C )在前述實施例中,雖將間斷控制的解除依據旋 轉速度及電流値的檢出結果進行,但是依據旋轉速度或是 電流値單獨的檢出結果進行解除也可以。 (d )在前述實施例中,雖將電流値由線捲徑修正來 檢出張力,但是只要可檢出作用於釣線的張力的話任何的 構成皆可以。 【圖式簡單說明】 [第1圖]採用本發明的一實施例的電動捲線器的立體 圖。 [第2圖]其背面一部分剖面圖。 -35- 201002199 [第3圖]計數器的平面圖。 [第4圖]計數器的剖面圖。 [第5圖]水深顯示部的平面圖。 [第6圖]顯示電動捲線器的控制系統的結構的方塊圖 [第7圖]顯示捲線器控制部的主例彳了程式1的流程圖° [第8圖]顯示溫度保護處理副例行程式的流程圖。 [第9圖]顯示按鍵輸入處理副例行程式的流程圖。 [第1 0圖]顯示速度模式處理副例行程式的流程圖。 [第1 1圖]顯示第1保護處理副例行程式的流程圖。 [第1 2圖]顯示間斷處理副例行程式的流程圖。 [第1 3圖]顯示第2保護處理副例行程式的流程圖。 [第1 4圖]顯示張力模式處理副例行程式的流程圖。 [第1 5圖]顯示第3保護處理副例行程式的流程圖。 [第16圖]顯示各動作模式處理副例行程式的流程圖 t主要元件符號說明】 1 :操作桿 2 :捲線器本體 3 ·’捲筒 3 a :捲線胴部 3 b :凸緣部 3 c :齒輪板 -36- 201002199 4 :馬達 5 :計數器 5a :下殼 5b :下殼 5 c :稜線部 5 d :稜線部 5 e :散熱器 6 :旋轉傳達機構 7 :離合器機構 8 :牽引機構 1 〇 :第1電路基板 1 1 :第2電路基板 1 3 :框架 1 4 :側蓋 14a :連接器部 1 5 :側蓋 1 6 :側板 1 7 :側板 1 8 :連結構件 1 9 :竿裝設腳 20 :固定框架 25 :軸承 26 :軸承 3 〇 :背部光源 -37- 201002199 30a:發光二極管 3〇b :導光板 8 8 :刻板 8 8 a :蓋 90 :控制組件(馬達控制裝置的一例) 9 8 :水深顯示部 9 8 a :液晶顯不益 99 :操作按鍵部 1 00 :捲線器控制部(馬達控制部、第1及第2目標速 度設定部以及負荷比較部的一例) 1 0 0 a :第1控制部 1 0 0 b :第2控制部 1 〇 1 :調整操作桿(上限速度設定部的一例) 1 〇 1 a :配線 1 02 :捲筒感測器(旋轉速度檢出部的一例) 1 〇 3 :溫度感測器 1 〇 4 :電位計 1 〇 5 :無線通訊部 1 0 6 :蜂鳴器 107 :記憶部 1 0 8 :馬達驅動電路 1 0 8 a :電流檢出部(負荷檢出部的一例) 1 0 8 b :電場效果晶體管 120 :釣魚資訊顯示裝置 -38- 201002199 140 :魚群探知機 -39-The determination in steps S160, 161, 165, and 168 is NO, and returns to the tension mode processing. The i mark FP4 is turned on (ON FP4 is ON after S166 shifts 1 1 A). When the timer is being used, the judgment is not satisfied. 3rd guarantee: When lever 1 〇1 is used -33- 201002199 [Each operation mode processing] In each operation mode processing of step S8, it is judged whether or not the rotation direction of the reel 3 is in step S 17 7 of Fig. 16 Speak out the direction for the line. In this judgment, it is judged that any of the Hall (H al 1 ) elements of the reel sensor 1 〇 2 is pulsed first. It is judged that the rotation direction of the reel 3 is the line discharge direction. The flow proceeds from step S171 to step S172. In step SN2, each time the number of rotations of the cylinder is reduced, the water depth is calculated by reading from the number of revolutions of the drum and storing it in the memory unit. This water depth is displayed by the display processing of step S2. In step S1 73, it is judged whether or not the obtained water depth coincides with the bottom position, and whether the quasi-bait reaches the bottom. The bottom position is set to the memory unit 1 〇 7 by pressing the forget button Μ B when the bait reaches the bottom. In step S1 7 4, it is determined whether or not it is another mode such as a learning mode. When it is not in other modes, the processing of each action mode ends and returns to the main routine. If the water depth is the same as the bottom position, the process proceeds from step S1 7 3 to step S 1 7 5 ′ to notify the bait to reach the bottom and let the buzzer 丨〇 6 call. In the case of other modulo, the process proceeds from step S147 to step S178, and the other mode is designated. When it is judged that the rotation of the reel 3 is the wire winding direction, the flow proceeds from step S1 to step S177. In step S177, the water depth is calculated by reading the data stored in the memory unit 107 from the number of reels of the reel. This water depth is displayed by the display processing of the steps. In step S178, it is judged whether or not the water depth coincides with the edge stop position. When it is not taken up to the rim stop position, return to the main routine. When the rim stop position is reached, the 7 of the 话 〇 〇 〇 〇 7 7 被 被 被 被 被 被 被 被 被 被 被 被 被 被 被 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 In step S179, the buzzer 106 is called in order to notify that the bait is located at the edge of the ship. In step S180, the motor 4 is turned off (OFF). As a result, the fish is placed in a position where it is easy to take in when the fish is caught. This rim stop position is set when, for example, the reel 3 is stopped for a predetermined time or longer within a water depth of 6 m. [Other Embodiments] (a) In the foregoing embodiment, the specific numbers of those in which various currents 値 and 値 are set are merely examples, and the present invention is not limited to those. (b) In the above embodiment, the target speed is set when the first condition and the second condition are satisfied, but the target speed may be set only by the first condition. (C) In the above embodiment, the release of the intermittent control is performed based on the detection result of the rotational speed and the current ,, but it may be released depending on the rotational speed or the current detection result of the current 値. (d) In the above embodiment, the tension is detected by the wire diameter correction, but any configuration may be used as long as the tension acting on the fishing line can be detected. BRIEF DESCRIPTION OF THE DRAWINGS [Fig. 1] A perspective view of an electric reel according to an embodiment of the present invention. [Fig. 2] A partial cross-sectional view of the back side. -35- 201002199 [Fig. 3] Plan view of the counter. [Fig. 4] A cross-sectional view of the counter. [Fig. 5] A plan view of the water depth display portion. [Fig. 6] A block diagram showing the structure of the control system of the electric reel [Fig. 7] shows the main example of the reel control unit. The flowchart of the program 1 [Fig. 8] shows the routine routine of the temperature protection processing. The flow chart of the program. [Fig. 9] A flow chart showing the stroke type of the key input processing subroutine. [Fig. 10] A flowchart showing the stroke pattern of the speed mode processing subroutine. [Fig. 1 1] A flowchart showing the stroke pattern of the first protection processing sub-example. [Fig. 1 2] A flow chart showing the stroke of the sub-process of the intermittent processing. [Fig. 1 3] A flowchart showing the stroke pattern of the second protection processing sub-example. [Fig. 14] A flow chart showing the stroke pattern of the tension mode processing subroutine. [Fig. 15] A flow chart showing the stroke pattern of the third protection processing sub-example. [Fig. 16] Flowchart showing the stroke pattern of each operation mode processing sub-routine t Description of main component symbols: 1 : Operating lever 2: Reel body 3 · 'Reel 3 a : Winding dam 3 b : Flange portion 3 c : Gear plate - 36 - 201002199 4 : Motor 5 : Counter 5a : Lower case 5b : Lower case 5 c : Ridge portion 5 d : Ridge portion 5 e : Radiator 6 : Rotation transmission mechanism 7 : Clutch mechanism 8 : Traction mechanism 1 〇: 1st circuit board 1 1 : 2nd circuit board 1 3 : Frame 1 4 : Side cover 14a : Connector part 1 5 : Side cover 1 6 : Side plate 1 7 : Side plate 1 8 : Connection member 1 9 : 竿Mounting foot 20: Fixing frame 25: Bearing 26: Bearing 3 〇: Back light source -37- 201002199 30a: Light-emitting diode 3〇b: Light guide plate 8 8: Stereo plate 8 8 a : Cover 90: Control unit (motor control unit (1) 9 8 : Water depth display unit 9 8 a : Liquid crystal display failure 99 : Operation button unit 1 00 : Reel control unit (example of motor control unit, first and second target speed setting unit and load comparison unit) 1 0 0 a : First control unit 1 0 0 b : Second control unit 1 〇 1 : Adjustment of the operation lever (an example of the upper limit speed setting unit) 1 〇 1 a : Wiring 1 02 : Reel sensor (an example of the rotation speed detection unit) 1 〇3 : Temperature sensor 1 〇 4 : Potentiometer 1 〇 5 : Wireless communication unit 1 0 6 : Buzzer 107 : Memory unit 1 0 8 : Motor drive circuit 1 0 8 a : Current detection unit (an example of load detection unit) 1 0 8 b : Electric field effect transistor 120 : Fishing information display device -38 - 201002199 140 : Fish finder -39-

Claims (1)

201002199 十、申請專利範圍 1. 一種電動捲線器的馬達控制裝置,是藉由馬達的 驅動可旋轉捲筒,具備: 檢出前述捲筒的旋轉速度用的旋轉速度檢出部;及 將作用於前述捲筒的負荷藉由電流値檢出的負荷檢出 部;及 將前述捲筒的旋轉速度設定成高低複數階段的上限速 度的任一的上限速度設定部;及 至少當藉由前述負荷檢出部被檢出的負荷,是至少滿 足在比流動至前述馬達的最大電流値小的預定的第1電流 値以上的狀態下連續第1預定時間的第1條件時,設定對 應比前述旋轉速度至少低一階段的前述上限速度的目標速 度用的第1目標速度設定部;及 比較前述目標速度設定後的第1負荷和從其經過第2 預定時間後的第2負荷用的負荷比較部;及 當前述第2負荷比前述第1負荷大預定量時,將前述 目標速度返覆設定成至少低一階段的前述上限速度,當前 述第2負荷比前述第1負荷小預定量時,將前述目標速度 設定成至少高一階段的前述上限速度用的第2目標速度設 定部;及 未滿足前述第1條件時,控制前述馬達使成爲前述捲 筒的旋轉速度所設定的前述上限速度,藉由前述第1及第 2目標速度設定部設定前述目標速度時,控制前述馬達使 成爲前述捲筒的旋轉速度所設定的前述目標速度用的馬達 -40- 201002199 控制部。 2. 如申請專利範圍第1項的電動捲線器的馬達控制 裝置,其中,前述第1目標速度設定部,是當前述第1條 件、及前述旋轉速度連續前述第1預定時間且未滿前述上 限速度的第2條件滿足時,設定前述目標速度。 3. 如申請專利範圍第1或2項的電動捲線器的馬達 控制裝置,其中,前述馬達控制部,是當前述上限速度藉 由前述上限速度設定部被變更至比前述目標速度更低速側 的話,前述目標速度被解除,控制前述馬達使成爲前述上 限速度。 4. 如申請專利範圍第1或2項的電動捲線器的馬達 控制裝置,其中,前述馬達控制部,是前述上限速度藉由 前述上限速度設定部被變更至比前述目標速度更高速側的 話,忽視該變更,控制前述馬達使成爲前述目標速度。 5. 如申請專利範圍第1或2項的電動捲線器的馬達 控制裝置,其中,前述第2目標速度設定部,是將最大階 段的一半以下的低速階段作爲限度來降低前述目標速度。 6. 如申請專利範圍第5項的電動捲線器的馬達控制 裝置,其中,前述馬達控制部,是前述第1電流値以上的 負荷狀態是連續比前述第1預定時間長的第3預定時間的 情況時,當前述捲筒的旋轉速度是比前述低速階段高速側 的中間階段的速度以下時,將通斷(ΟΝ/OFF)的間斷的電 流流動至前述捲筒。 -41 -201002199 X. Patent application scope 1. A motor control device for an electric reel is a rotatable reel driven by a motor, and includes: a rotation speed detecting portion for detecting a rotation speed of the reel; and a load detecting unit that detects the load of the spool by the current ;; and an upper limit speed setting unit that sets the rotational speed of the spool to an upper limit speed of the high and low complex stages; and at least when the load is detected by the load When the load to be detected is at least the first condition that is continuous for the first predetermined time in a state in which the current is greater than or equal to the predetermined maximum current 流动 flowing to the motor, the corresponding rotational speed is set. a first target speed setting unit for the target speed of the lower limit speed of at least one stage; and a first load for comparing the target speed setting and a load comparing unit for the second load after the second predetermined time elapses; And when the second load is greater than the first load by a predetermined amount, setting the target speed return to at least one lower stage speed, current When the second load is smaller than the first load by a predetermined amount, the target speed is set to at least a second target speed setting unit for the upper limit speed; and when the first condition is not satisfied, the motor is controlled When the target speed is set by the first and second target speed setting units, the first and second target speed setting units control the motor to control the target speed set as the rotation speed of the reel. Motor-40- 201002199 Control Department. 2. The motor control device for an electric reel according to the first aspect of the invention, wherein the first target speed setting unit is configured to extend the first predetermined time and the rotation speed by the first predetermined time and less than the upper limit. When the second condition of the speed is satisfied, the target speed is set. 3. The motor control device for an electric reel according to the first or second aspect of the invention, wherein the motor control unit is configured to change the upper limit speed to a lower speed than the target speed by the upper limit speed setting unit. The target speed is released, and the motor is controlled to be the upper limit speed. 4. The motor control device for an electric reel according to the first or second aspect of the invention, wherein the motor control unit is configured to change the upper limit speed to a higher speed side than the target speed by the upper limit speed setting unit. Neglecting the change, the motor is controlled to be the target speed. 5. The motor control device for an electric reel according to the first or second aspect of the invention, wherein the second target speed setting unit reduces the target speed by using a low speed phase of at least half of the maximum stage as a limit. 6. The motor control device for an electric reel according to the fifth aspect of the invention, wherein the motor control unit is configured such that a load state of the first current 値 or more is a third predetermined time that is continuously longer than the first predetermined time. In the case, when the rotation speed of the reel is equal to or lower than the speed of the intermediate stage on the high speed side of the low speed stage, an intermittent current of 通/OFF is flown to the reel. -41 -
TW097148243A 2008-01-31 2008-12-11 Motor reducer motor control device TWI436735B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008021631A JP5134991B2 (en) 2008-01-31 2008-01-31 Electric reel motor control device

Publications (2)

Publication Number Publication Date
TW201002199A true TW201002199A (en) 2010-01-16
TWI436735B TWI436735B (en) 2014-05-11

Family

ID=40943944

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097148243A TWI436735B (en) 2008-01-31 2008-12-11 Motor reducer motor control device

Country Status (4)

Country Link
JP (1) JP5134991B2 (en)
KR (1) KR101506151B1 (en)
CN (1) CN101496509B (en)
TW (1) TWI436735B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5386263B2 (en) 2009-07-30 2014-01-15 日立オートモティブシステムズ株式会社 Rotating electric machine
JP5460404B2 (en) * 2010-03-24 2014-04-02 株式会社シマノ Electric reel counter case
JP5763909B2 (en) * 2010-11-30 2015-08-12 株式会社シマノ Electric reel motor control device
JP5374483B2 (en) * 2010-12-01 2013-12-25 グローブライド株式会社 Control case for electric reel for fishing
JP5798808B2 (en) * 2011-06-17 2015-10-21 株式会社シマノ Electric reel
CN107809190A (en) * 2016-08-31 2018-03-16 上海舜为电子科技有限公司 A kind of intelligent control method for insertion type concrete vibrator with built-in motor
JP7227877B2 (en) * 2019-08-26 2023-02-22 株式会社シマノ motor controller
JP7114538B2 (en) * 2019-09-17 2022-08-08 太平洋工業株式会社 Electric reel and electric reel control device
TWI742458B (en) * 2019-11-05 2021-10-11 張聰捷 Woodworking machine tool protection system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09205954A (en) * 1996-02-01 1997-08-12 Ryobi Ltd Driving speed controller for motor-driven reel for fishing
JP3717089B2 (en) * 1996-09-04 2005-11-16 株式会社シマノ Electric reel motor control device
JP3993709B2 (en) * 1998-11-04 2007-10-17 株式会社シマノ Electric reel
JP2002051674A (en) 2000-08-09 2002-02-19 Shimano Inc Motor control circuit of electric reel
JP2002125546A (en) * 2000-10-27 2002-05-08 Shimano Inc Motor controller for electric reel
JP2002238420A (en) * 2001-02-16 2002-08-27 Miyamae:Kk Fishing reel
JP3410464B2 (en) * 2002-03-14 2003-05-26 日本信号株式会社 Level crossing barrier
JP2004236566A (en) * 2003-02-05 2004-08-26 Shimano Inc Motor controller for electric reel
JP4825655B2 (en) * 2006-12-15 2011-11-30 株式会社ミヤマエ Fishing electric reel

Also Published As

Publication number Publication date
CN101496509B (en) 2012-06-13
CN101496509A (en) 2009-08-05
JP5134991B2 (en) 2013-01-30
KR101506151B1 (en) 2015-03-26
JP2009178119A (en) 2009-08-13
TWI436735B (en) 2014-05-11
KR20090084658A (en) 2009-08-05

Similar Documents

Publication Publication Date Title
TW201002199A (en) Motor control device of electric reel
TWI432139B (en) Motor reducer motor control device
JP2009178119A5 (en)
JP2019024465A (en) Electric reel
JP3717089B2 (en) Electric reel motor control device
KR102638428B1 (en) Motor control device for motor driven reel
JP3993709B2 (en) Electric reel
JP2000125724A (en) Electrically driven reel
JP4520650B2 (en) Electric reel motor control device
JP2007275074A (en) Electric reel
JP2021029183A (en) Motor control device
JP2002051674A (en) Motor control circuit of electric reel
JP5021589B2 (en) Fishing electric reel
JP2019080540A5 (en)
KR200397807Y1 (en) Electric fan including a controlling system
JPH11253082A (en) Control system for electric reel
JP3850820B2 (en) camera
JP4420795B2 (en) Electric reel motor control device
JP2004166505A (en) Motor controller for electric reel
JP2014239665A (en) Control device of electric reel
JP2021000019A (en) Motor drive control device of fishing electric reel, fishing electric reel including the same, motor drive control method, and motor drive control program
JP2021052668A (en) Electrically-driven reel control device and electrically-driven reel
JP2000354443A (en) Electric reel
JP2000125723A (en) Electrically driven reel
JP2000354444A (en) Motor controlling device for electric reel