TW200923941A - High hardness Ag alloy sputtering target for forming reflection film on optical recording medium - Google Patents

High hardness Ag alloy sputtering target for forming reflection film on optical recording medium Download PDF

Info

Publication number
TW200923941A
TW200923941A TW97127576A TW97127576A TW200923941A TW 200923941 A TW200923941 A TW 200923941A TW 97127576 A TW97127576 A TW 97127576A TW 97127576 A TW97127576 A TW 97127576A TW 200923941 A TW200923941 A TW 200923941A
Authority
TW
Taiwan
Prior art keywords
target
recording medium
reflective film
optical recording
alloy
Prior art date
Application number
TW97127576A
Other languages
Chinese (zh)
Other versions
TWI442393B (en
Inventor
Shozo Komiyama
Akifumi Mishima
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of TW200923941A publication Critical patent/TW200923941A/en
Application granted granted Critical
Publication of TWI442393B publication Critical patent/TWI442393B/en

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

This Ag alloy sputtering target is composed of: Cu (0.1 to 3.0% by mass); Ga (0.05 to 2.0 % by mass); Ca (0.001 to 0.1 % by mass); and the remaining part composing Ag and unavoidable impurities. The target has a target main body 1 and flange 2 formed around the target main body 1. The Vickers hardness of the target is included in the range of 40 to 70.

Description

200923941 九、發明說明 【發明所屬之技術領域】 . 本發明係關於使用半導體雷射等的雷射光束來進行聲 音、影像、文字等的資訊訊號之再生、或記錄-再生-消去 的光記錄媒體(CD-RW,DVD-RAM等)的構成層之半透 明反射膜或反射膜(以下,包含兩者稱爲反射膜)形成用 之高硬度Ag合金濺鍍標$巴。 【先前技術】 以往,作爲 CD-R,CD-RW > DVD-R,DVD-RW > DVD-RAM、Blu-ray Disc、HD-DVD等的光記錄媒體的反 射膜,使用Ag或Ag合金反射膜,由於此Ag或Ag合金 反射膜具有可迅速地使已被加熱的記錄膜之熱排出的作用 ,並且在400〜830nm的寬廣之波長區域的反射率高,作 爲半透明反射膜使用之情況,半透明反射膜之吸收率小, 故被廣泛地使用著。 在Ag或Ag合金反射膜中,由於Ag反射膜,特別是 反射率佳’且成爲用以排出熱的作用效果的目標之熱傳導 率也最佳,故’作爲光記錄媒體的反射膜,Ag最優良。 但,Ag反射膜具有容易被腐蝕的特性,並且隨著雷射光 的照射次數增加’其再結晶化變快,再結晶粒大幅成長, 造成表面粗糙度容易變大,因此,反射率降低,造成使用 壽命短。且’在將A g反射膜作爲半透明反射膜使用之情 況,由於半透明反射膜之厚度爲極薄者,故,因雷射光的 -4 - 200923941 透過造成半透明反射膜凝集,因此會在半透明反射膜開孔 ,造成使用壽命變短之問題產生。 _因此,作爲光記錄媒體的反射膜,對Ag添加其他元 素,使粒成長、再結晶速度延遲之Ag合金被廣泛地使用 ,作爲前述以往的光記錄媒體的Ag合金反射膜,被提案 有由各種各樣之Ag合金所構成的光記錄媒體的反射膜。 在這些之中,藉由使用由含有Cu: 0.1〜3.0質量%、Ga :0.05〜2·0質量%、Ca: 0.001〜0_1質量%、殘餘部分 爲Ag及不可避不純物所構成之組成的Ag合金標靶進行 濺鍍所獲得之Ag合金反射膜,被稱爲可承受雷射光的高 輸出、高密度化之光記錄媒體的優良反射膜(參照日本特 開 2006-127594 號公報)。 一般,濺鍍標靶係在標靶的裏面,軟焊熱傳導性佳之 補償板,將軟焊有此補償板之標靶的補償板把持並固定於 濺鍍裝置,進行濺鍍。但,因Ag合金標靶,Ag合金本身 ί 導電性優良,所以,在Ag合金標靶的情況,如圖1的斜 視圖所示,使用將鍔2 —體地形成於標靶本體〗的周圍之 具鍔標靶10進行濺鍍。前述具鍔標靶10,由於以往的具 補償板標靶之補償板部分也以A g合金構成,故,能夠增 加其厚度,比起以往的具補償板標靶,能夠增長濺鍍時間 ’可有效率地進行濺鍍。 爲了藉由使用此具鍔標靶1 〇進行濺鍍,形成Ag合 金反射膜,如圖2的斷面說明圖所示,將此具鍔標靶1〇 載置於磁鐵3、3,、3,,之冷卻台7上,藉由把持具6,將 -5- 200923941 具鍔標靶1 0的鍔2穩固地固定,使冷卻水不會洩漏,使 Ar氣體的電漿5產生,藉由磁鐵3、3’、3”’ 一邊對具鍔 標靶〇施加磁場一邊產生磁力線8,使ΑΓ+與具鍔標靶 1 〇的標靶本體1衝突,來在基板4的表面形成Ag合金反 射膜。 近年,爲了減低成本,提高用以提升Ag合金反射膜 之成膜速度的濺鍍之輸出,同時提升用以進行由Ag合金 所組成之具鍔標靶的冷卻之冷卻水的供給壓力。但,一般 ,由Ag合金所構成之以往的具鍔標靶之硬度低,當提高 濺鍍速度,提升用以提高成膜速度的冷卻水之供給壓力時 ,因以往的由Ag合金所構成之以往的具鍔標靶的硬度低 ,所以,如圖3所示,被冷卻水之壓力所壓出,呈凸狀地 變形,與設置於由A g合金所構成之以往的具鍔標靶的正 下中央的磁鐵3之間隙Η變大,伴隨此,磁力線8的分 佈狀態產生變化。 此現象,當濺鍍時間短、濺鍍初期的具鍔標靶之標靶 本體1的厚度尙充分時,變形量少’標靶與磁鐵之間隙Η 小,但,當長時間進行濺鍍,標靶消耗而厚度變薄時,受 到冷卻水之壓力,造成具鍔標靶1 〇呈凸狀地大幅度變形 ,當該具鍔標靶1 〇呈凸狀地大幅變形時,通過標靶之磁 力線產生變化,在濺鍍初期的磁力線與灑鍍終期之磁力線 ,,其形狀不同,造成濺鍍初期與終期所形成之Ag合金 反射膜之膜厚分佈不同,因此不理想。 因此,本發明者們,爲了解決這些問題點,而進行硏 -6- 200923941 究的結果獲得以下結果,即,以往的由含有c u : 0 · 1〜3.0 質量 %、Ga: 0.05 〜2.0 質量 %、Ca: 0.001 〜0.1 質量 % 、殘餘部_分爲Ag及不可避不純物所構成之組成的Ag合 金標靶,因在進行熱處理後,進行空冷,所以,維氏硬度 (以下稱爲Η V )未滿4 0,但,藉由在熱處理後進行水冷 ’則可將HV提升至40〜70,將此HV提升至40〜70之 高硬度具鍔標靶,即使長時間進行濺鍍,變形也少,因此 ,因標靶的變形所產生之磁力線分佈変化也變小,所形成 之Ag合金反射膜之膜厚分佈在濺鍍初期與終期變化少。 【發明內容】 本發明係依據硏究結果而完成的發明,其特徵爲:( 1)具有由含有Cu: 0_1〜3.0質量%、Ga: 〇.〇5〜2.0質 量%、Ca: 0·001〜0.1質量%、殘餘部分爲Ag及不可避 不純物所構成之成分組成,維氏硬度在40〜70的範圍內 之光記錄媒體的反射膜形成用高硬度Ag合金濺鍍標靶。 前述(1)所記載的維氏硬度在40〜70的範圍內之光 記錄媒體的反射膜形成用高硬度Ag合金濺鍍標粑係藉由 在以往的Ag合金標靶加熱熱處理後再進行水冷所獲得’ 其組織成爲平均結晶粒徑:5〜200 // m的結晶組織’此結 晶組織成爲再結晶組織。 因此,本發明之(2 )爲前述(1 )所記載的Ag合金 濺鍍標靶,其中,爲具有平均結晶粒徑:5〜2 0 0 # m的結 晶組織之光記錄媒體的反射膜形成用高硬度Ag合金濺鍍 200923941 標靶。 (3 )如前述(2 )所記載的光記錄媒體的反射膜形 用高硬度Ag合金濺鍍標靶,其中,前述結晶組織爲再 晶組織。 本發明之光記錄媒體的反射膜形成用高硬度Ag合 濺鑛標靶,爲在圖1所示的標靶本體1的周圍具有鍔2 具鍔標靶1 〇。 因此’本發明之(4 )前述光記錄媒體的反射膜形 用銀合金濺鍍標靶’係如前述(1 ) 、 ( 2 )或(3 )所 載的光記錄媒體的反射膜形成用高硬度Ag合金濺鏟標 ’其中,爲在標靶本體的周圍具有鍔之具鍔標靶。 爲了製造本發明之光記錄媒體的反射膜形成用高硬 Ag合金濺鍍標靶,能以下述方式加以製造,即,作爲 料’準備純度:99.99質量%以上的高純度Ag及高純 Cu、純度:99.9質量%以上的Ga、Ca,首先,製作將 或A g及c u在高真空或不活性氣體環境中熔解所獲得 Ag熔體或Ag-Cu合金熔體,對這些熔體以成爲預定的 有量的方式分別添加G a、C a,然後,在真空或不活性 體環境中進行鑄造來製作鑄錠,將這些鑄錠進行冷加工 加上進行熱處理後進行水冷,然後,再進行機械加工, 製造。 作爲對則述A g熔體或a g - C u合金熔體添加g a之 法’理想爲預先以A g箔包住g a來進行添加,又因C a Ag幾乎不會有固丨谷’所以’爲了製作均質之標祀,理 成 結 金 之 成 記 靶 度 原 度 Ag 之 含 氣 並 來 方 對 想 -8 - 200923941 爲預先製作Ag-Ca母合金’將這些母合金添加至已被高頻 真空熔解之Ag熔體或Ag-Cu合金熔體。 本發明之光記錄媒體的反射膜形成用高硬度Ag合金 濺鍍標靶的成分組成,由於已爲所知的成分組成,故,在 此省略其限定理由之說明。 將本發明之光記錄媒體的反射膜形成用高硬度Ag合 金濺鍍標靶的維氏硬度作成爲40〜70之理由是由於因在 維氏硬度未滿40,長時間濺鍍後的標靶的翹曲變大,造 成膜厚分佈之惡化傾向變得顯著,故並不理想,又,當維 氏硬度超過70時,熱處理會變得不充分,造成壓延組織 殘留的傾向變強,比起濺鍍初期,膜厚分佈變得不均等之 故。 又,將該結晶組織或再結晶組織的平均結晶粒徑限定 於5〜2 0 0 // m之理由是由於當平均結晶粒徑未滿5 y m時 ,則熱處理變得不充分,膜厚分佈成爲不均等者,故不理 想,又,當平均結晶粒徑超過200 # m時,則標靶的翹曲 變大,因此產生膜厚分佈變得不均等之惡化傾向,故並不 理想之故。 本發明之光記錄媒體的反射膜形成用高硬度Ag合金 濺鍍標靶,比起以往的光記錄媒體用Ag合金濺鍍標靶, 即使長時間進行濺鍍,在濺鍍初期所獲得的反射膜與在濺 鍍終期所獲得的反射膜之厚度分佈的變化少,能夠製造具 均等特性之光記錄媒體,能對媒體產業的發展上貢獻極大 -9 - 200923941 【實施方式】 準備作爲原料之純度:99.99質量%以上的高純度Ag 、純度:99· 99質量%以上的高純度CU、包入於Ag箔之 純度:99_9質量%以上的Ga、Ag-5質量%Ca母合金。 藉由以高頻真空熔解爐溶解Ag,來製作Ag熔體,且 ,以高頻真空熔解爐熔解A g及C u,來製作A g - C u合金 熔體。對所獲得之Ag熔體及Ag-Cu合金熔體,添加被 Ag箔所包住的Ga、Ag-5質量%ca母合金,製作Ag合金 熔體’將所獲得之Ag合金熔體在石墨製鑄模中,於Ar 氣體環境中進行鑄造,藉此製作具有如表1所示的成分組 成之鑄錠。 (實施例) 將所獲得的鑄錠在5 5 0 °C、保持2小時間之條件下加 熱並予以水冷後,切斷成預定的大小,接著進行冷壓延, 然後’在表1所示的溫度,保持1小時之條件下施加熱處 理後再予以水冷,然後,再進行機械加工,藉此製作具有 如圖1所示之標耙本體1的直徑200mm、厚度15mm、鳄 的直徑21 0mm、厚度5mm的尺寸,且具有表1所示的維 氏硬度及平均再結晶粒徑之本發明Ag合金具鍔標靶(以 下稱爲本發明標靶)1〜6。 (以往例) -10- 200923941 且’將所獲得的鑄錠在5 5 0 r、保持2小時間之條件 下加熱並予以水冷後,切斷成預定的大小,接著進行冷壓 延’然後’在表1所示的溫度,保持1小時之條件下施加 熱處理後再予以空冷,然後,再進行機械加工,藉此製作 具有如圖1所示之標靶本體1的直徑20 0mm、厚度1 5mm 、鍔的直徑210mm、厚度5mm的尺寸,且具有表1所示 的維氏硬度及平均結晶粒徑之以往Ag合金具鍔標靶(以 下稱爲以往標靶)1〜6。 再者,在前述實施例及以往例所測定之維氏硬度爲藉 由JISZ2 244所規定之測定法進行測定者,前述平均結晶 粒徑係藉由下述條件之線分法所求出的値。 平均結晶粒徑之測定方法: 將由本發明標靶1〜6及以往標靶1〜6所切出的試料 面硏磨成鏡面,再以過氧化氫水與氨水所構成的蝕刻液進 行蝕刻後,以能夠辨識結晶粒界之倍率:5〇〜1 〇〇〇倍的 範圍內之光學顯微鏡進行顯微鏡照相,橫切所獲得之照片 ,簡單地描繪4條直線,計算分別與這4條直線交叉的結 晶粒界,使用下述的計算式: 平均結晶粒徑=(3/2) · (L/N) · (1/M) (其中,L : 4條線之長度的總合(M m ) 、N : 4條線與 結晶粒交叉之結晶粒界的總數、M :照片的倍率)’求取 平均結晶粒徑。 -11 - 200923941 將本發明標靶1〜6及以往標靶1〜6分別載置於如圖 2之直流磁通管濺鍍裝置的冷卻台7上,藉由把持具6, 將標靶的鍔2穩固地予以固定,使冷卻水不會洩漏,再以 真空排氣裝置,將直流磁通管濺鍍裝置內排氣至lxl(T4Pa 後,導入Ar氣體,作成1.0 Pa的濺鍍氣體壓,接著,以 直流電源,對標靶施加2KW的直流濺鍍電力,與前述標 靶抗衡且隔著7 0mm的間隔的方式配置成與標靶平行之縱 :30mm、横:30mm、厚度:〇_5mm的無鹼玻璃基板與前 述標靶之間產生電漿,以冷卻水壓成爲〇.4MPa的方式使 冷卻水流動’一邊斷續地以積算電力爲1 〇 〇 K W h之濺鍍。 在結束lOOKWh的濺鍍後,取出本發明標靶1〜6及以往 標粑1〜ό ’如圖4所不地載置於平面基材9上,以間隙 計示(gauge )測量最大間隙間隔S,將其結果顯示於表1 -12- 200923941 【15 最大間隙距離 S(pm) 300 3800 250 3500 250 3600 200 3100 Ο ι- 2800 2500 平均結晶粒徑 (μιη) Ο I 380 ί § 2^0 260 250 (N 240 CN 220 維氏硬度 I (N cn 1—Η 〇 CN m in rO m Ο 00 m I 熱處理後的 冷卻方法 水冷 空冷 水冷 空冷 水冷 空冷 水冷 空冷 水冷 1空冷 水冷 空冷 熱處理溫度 CC) _I Ο 卜 --1 650 _1 ! 600 ο νη IT) 「 500 成分組成(質量%) Ag及不可避 不純物 _I 殘餘部分 1 I 殘餘部分 _1 1 殘餘部分 殘餘部分 殘餘部分 1_ ! 殘餘部分 I 0.03 | 1 0.05 0.01 0.08 0.03 1 0.08 〇 yn 〇 (N 〇 rn 〇 〇 ο (Ν in r4 I 標靶 ί _I ^Η ΓΝΪ 寸 本發明i 以往 本發明 以往 本發明 以往 本發明 以往 本發明 以往 本發明 以往 -13- 200923941 由表1所示的結果得知,使用本發明標靶1〜6進行 1 OOKWh之濺鍍所產生之變形的最大間隙間隔S均比起使 用以往標靶1〜6進行1 OOKWh之濺鑛所產生之變形的最 大間隙間隔S小,故,本發明標靶1〜6比起以往標靶1 〜6,不易變形。 以上,說明了關於本發明之理想實施形態,但本發明 不限於上述實施形態。在不超出本發明之技術思想範圍內 ,可進行結構的附加、省略、置換、及其他的變更。本發 明不受前述說明所限定,僅被申請專利範圍所界定。 【圖式簡單說明】 圖1係Ag合金具鍔標靶的斜視圖。 圖2係顯示將Ag合金具鍔標靶安裝於濺鍍裝置之狀 態的斷面說明圖。 圖3係顯示將Ag合金具鍔標靶安裝於濺鍍裝置,進 行濺鍍的狀態之斷面說明圖。 圖4係用來說明測量A g合金具鍔標靶的變形量之方 法的斷面說明圖。 【主要元件符號說明】 1 :標靶本體 2 :鍔 3、3,、3 ” :磁鐵 4 :基板 -14- 200923941 5 :電漿 6 :把持具 7 :冷卻台 8 :磁力線 9 :平面基材 1 〇 :具鍔標靶 -15200923941 IX. Description of the Invention [Technical Fields of the Invention] The present invention relates to an optical recording medium for reproducing information signals of sound, video, characters, etc., or recording-reproduction-erasing using a laser beam such as a semiconductor laser. A high-hardness Ag alloy sputtering target $bar for forming a semitransparent reflective film or a reflective film (hereinafter referred to as a reflective film) of a constituent layer of a CD-RW, a DVD-RAM or the like. [Prior Art] Conventionally, as a reflection film of an optical recording medium such as CD-R, CD-RW > DVD-R, DVD-RW > DVD-RAM, Blu-ray Disc, HD-DVD, etc., Ag or Ag is used. The alloy reflective film has a function of rapidly discharging heat of the heated recording film due to the Ag or Ag alloy reflective film, and has high reflectance in a wide wavelength region of 400 to 830 nm, and is used as a semi-transparent reflective film. In the case where the semi-transparent reflective film has a small absorption rate, it is widely used. In the Ag or Ag alloy reflective film, since the Ag reflective film has a good reflectance, and the thermal conductivity of the target for discharging heat is also optimal, 'as the reflective film of the optical recording medium, Ag is the most excellent. However, the Ag reflective film has a property of being easily corroded, and as the number of times of irradiation of the laser light increases, the recrystallization becomes faster, the recrystallized grain grows greatly, and the surface roughness is likely to become large, so that the reflectance is lowered, resulting in a decrease in the reflectance. Short service life. And 'when the A g reflective film is used as a semi-transparent reflective film, since the thickness of the semi-transparent reflective film is extremely thin, the translucent reflective film is agglomerated due to the transmission of the laser light - 4 - 200923941, so The translucent reflective film is opened, resulting in a problem of shortened service life. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ A reflective film of an optical recording medium composed of various Ag alloys. Among these, an Ag alloy composed of Cu: 0.1 to 3.0% by mass, Ga: 0.05 to 2.0% by mass, Ca: 0.001 to 0% by mass, and a residual portion of Ag and unavoidable impurities is used. The Ag alloy reflective film obtained by sputtering on the target is called an excellent reflective film of a high-output, high-density optical recording medium that can withstand laser light (refer to Japanese Laid-Open Patent Publication No. 2006-127594). Generally, the sputtering target is placed inside the target, and the compensation plate with good thermal conductivity is soldered, and the compensation plate of the target to which the compensation plate is soldered is held and fixed to the sputtering device for sputtering. However, since the Ag alloy itself has excellent conductivity due to the Ag alloy target, in the case of the Ag alloy target, as shown in the oblique view of Fig. 1, the 锷2 is formed integrally around the target body. The target 10 is sputtered. In the above-described target 10, since the compensation plate portion of the conventional compensation plate target is also made of Ag alloy, the thickness can be increased, and the sputtering time can be increased compared with the conventional compensation plate target. Sputter is performed efficiently. In order to form an Ag alloy reflective film by sputtering using the yttrium target 1 ,, as shown in the cross-sectional explanatory view of FIG. 2, the target target 1 〇 is placed on the magnets 3, 3, 3 On the cooling table 7, by holding the holder 6, the 锷2 of the target target 10 of -5-200923941 is firmly fixed, so that the cooling water does not leak, and the plasma 5 of the Ar gas is generated. The magnets 3, 3', 3"' generate a magnetic field line 8 while applying a magnetic field to the target target, and cause the ΑΓ+ to collide with the target body 1 having the target 1 〇 to form an Ag alloy reflection on the surface of the substrate 4. In recent years, in order to reduce the cost, the output of the sputtering for increasing the film forming speed of the Ag alloy reflective film is increased, and the supply pressure of the cooling water for cooling the target having the target of the Ag alloy is increased. However, in general, the conventional yttrium target composed of an Ag alloy has a low hardness, and when the sputtering speed is increased and the supply pressure of the cooling water for increasing the film formation speed is increased, the conventional alloy is composed of Ag alloy. In the past, the hardness of the target has a low hardness, so as shown in Fig. 3, the water to be cooled The force is pushed out and deformed in a convex shape, and becomes larger in the gap 磁铁 between the magnets 3 disposed directly under the center of the conventional target having the Ag alloy, and the distribution state of the magnetic lines 8 changes accordingly. In this case, when the sputtering time is short and the thickness of the target body 1 with the target in the initial stage of sputtering is sufficient, the amount of deformation is small, and the gap between the target and the magnet is small, but when the sputtering is performed for a long time. When the target is consumed and the thickness is thinned, the pressure of the cooling water is exerted, and the target 1 target 〇 is convexly deformed greatly, and when the target 1 target 〇 is convexly deformed greatly, the target is passed. The magnetic field lines change, and the magnetic lines of force at the initial stage of sputtering and the magnetic lines of force at the end of the sputtering process are different in shape, and the film thickness distribution of the Ag alloy reflective film formed at the initial stage and the final stage of sputtering is different, which is not preferable. In order to solve these problems, the results of the 硏-6-200923941 study have been obtained, that is, the conventional one contains cu: 0 · 1 to 3.0% by mass, Ga: 0.05 to 2.0% by mass, and Ca: 0.001. ~0.1% by mass, disabled The remaining part is an Ag alloy target consisting of Ag and an unavoidable impurity. Since the air is cooled after heat treatment, the Vickers hardness (hereinafter referred to as Η V ) is less than 40, but by heat treatment. After the water cooling, the HV can be raised to 40 to 70, and the HV is raised to a high hardness of 40 to 70 with a target, and even if the sputtering is performed for a long time, the deformation is small, and therefore, the deformation of the target is generated. The distribution of the magnetic field lines is also reduced, and the film thickness distribution of the formed Ag alloy reflective film is less changed at the initial stage and the final stage of sputtering. SUMMARY OF THE INVENTION The present invention is an invention completed based on the results of an investigation, and is characterized in that: (1) ) having a composition consisting of Cu: 0_1 to 3.0% by mass, Ga: 〇.〇5 to 2.0% by mass, Ca: 0.001 to 0.1% by mass, residual Ag and unavoidable impurities, and Vickers hardness at A high-hardness Ag alloy sputtering target for forming a reflective film of an optical recording medium in the range of 40 to 70. The high-hardness Ag alloy sputtering target for forming a reflective film of an optical recording medium having a Vickers hardness in the range of 40 to 70 as described in the above (1) is water-cooled by heat treatment of a conventional Ag alloy target. The obtained crystal structure whose average crystal grain size is 5 to 200 // m is obtained, and this crystal structure becomes a recrystallized structure. (2) The Ag alloy sputtering target according to the above (1), wherein the reflective film is formed on an optical recording medium having a crystal structure having an average crystal grain size of 5 to 2 0 0 #m. The 200923941 target was sputtered with a high hardness Ag alloy. (3) The reflective film of the optical recording medium according to (2) above wherein the reflective film is formed of a high-hardness Ag alloy sputtering target, wherein the crystal structure is a recrystallized structure. The high-hardness Ag splash target for forming a reflective film of the optical recording medium of the present invention has a target of 1 on the periphery of the target body 1 shown in Fig. 1 . Therefore, the (4) silver alloy sputtering target of the reflective film shape of the optical recording medium of the present invention is high in the formation of the reflective film of the optical recording medium as set forth in the above (1), (2) or (3). The hardness of the Ag alloy splash shovel is a target for the ruthenium around the target body. In order to produce a high-hardness Ag alloy sputtering target for forming a reflective film of the optical recording medium of the present invention, it can be produced by preparing a high-purity Ag and high-purity Cu having a purity of 99.99% by mass or more as a material. Purity: Ga, Ca of 99.9% by mass or more. First, a melt of Ag or Ag-Cu alloy obtained by melting A g and cu in a high vacuum or an inert gas atmosphere is prepared, and these melts are predetermined. G a and Ca are added in a quantitative manner, and then ingots are cast in a vacuum or inactive environment to form ingots, and these ingots are subjected to cold working, heat treatment, water cooling, and then mechanical processing. , manufacturing. As a method of adding ga to the Ag melt or the ag-C u alloy melt, it is desirable to add ga in advance with A g foil, and since Ca a Ag hardly has a solid valley, 'so' In order to produce a homogenous standard, the composition of the gold is the target of the original Ag and the gas is in the opposite direction - 8 - 200923941 is the pre-made Ag-Ca master alloy 'add these master alloys to the high frequency Vacuum melted Ag melt or Ag-Cu alloy melt. The component composition of the high-hardness Ag alloy sputtering target for forming a reflective film for forming an optical recording medium of the present invention is known as a component composition, and therefore the reason for the limitation is omitted here. The reason why the Vickers hardness of the high-hardness Ag alloy sputtering target for forming a reflective film of the optical recording medium of the present invention is 40 to 70 is because the target is after a long time of sputtering because the Vickers hardness is less than 40. When the warpage becomes large, the tendency to deteriorate the film thickness distribution becomes remarkable, so that it is not preferable, and when the Vickers hardness exceeds 70, the heat treatment becomes insufficient, and the tendency of the calendered structure remains strong, compared with At the initial stage of sputtering, the film thickness distribution becomes uneven. Further, the reason why the average crystal grain size of the crystal structure or the recrystallized structure is limited to 5 to 2 0 // m is because when the average crystal grain size is less than 5 μm, the heat treatment becomes insufficient, and the film thickness distribution is insufficient. When it is not uniform, when the average crystal grain size exceeds 200 # m, the warpage of the target becomes large, and thus the film thickness distribution tends to be uneven, which is not preferable. . The high-hardness Ag alloy sputtering target for forming a reflective film of the optical recording medium of the present invention is a reflection obtained at the initial stage of sputtering even if sputtering is performed for a long period of time compared to the conventional Ag alloy sputtering target for an optical recording medium. The change in the thickness distribution of the film and the reflective film obtained at the end of the sputtering period is small, and it is possible to manufacture an optical recording medium having uniform characteristics, which can greatly contribute to the development of the media industry - 200923941 [Embodiment] Preparation of purity as a raw material High-purity Ag of 99.99% by mass or more, high-purity CU having a purity of 99. 99% by mass or more, Ga, Ag-5 mass% Ca master alloy having a purity of 99-9% by mass or more. The Ag melt was prepared by dissolving Ag in a high-frequency vacuum melting furnace, and A g and C u were melted in a high-frequency vacuum melting furnace to prepare an Ag-C u alloy melt. For the Ag melt and the Ag-Cu alloy melt obtained, a Ga, Ag-5 mass% ca master alloy surrounded by an Ag foil is added to prepare an Ag alloy melt, and the obtained Ag alloy melt is melted in the graphite. In the mold, casting was carried out in an Ar gas atmosphere, thereby producing an ingot having a composition as shown in Table 1. (Example) The obtained ingot was heated at 550 ° C for 2 hours and then water-cooled, and then cut into a predetermined size, followed by cold rolling, and then 'shown in Table 1 The temperature was maintained for 1 hour, and then heat-treated, and then subjected to water-cooling, and then mechanically processed, thereby producing a diameter of 200 mm, a thickness of 15 mm, a crocodile diameter of 21 mm, and a thickness of the target body 1 as shown in FIG. The Ag alloy of the present invention having a size of 5 mm and having the Vickers hardness and the average recrystallized grain size shown in Table 1 has a target (hereinafter referred to as a target of the present invention) 1 to 6. (Conventional example) -10- 200923941 and 'The obtained ingot is heated at 550 rpm for 2 hours and then water-cooled, and then cut into a predetermined size, followed by cold rolling 'then' and then The temperature shown in Table 1 was subjected to heat treatment for 1 hour, and then air-cooled, and then mechanically processed, thereby producing a target body 1 having a diameter of 20 mm and a thickness of 15 mm as shown in FIG. The conventional Ag alloy having a diameter of 210 mm and a thickness of 5 mm and having the Vickers hardness and the average crystal grain size shown in Table 1 have a target (hereinafter referred to as a conventional target) 1 to 6. In addition, the Vickers hardness measured in the above-described examples and the conventional examples is measured by a measurement method defined in JIS Z2 244, and the average crystal grain size is determined by a line method of the following conditions. . Method for measuring average crystal grain size: The sample surface cut out from the targets 1 to 6 of the present invention and the conventional targets 1 to 6 is honed into a mirror surface, and then etched with an etching solution composed of hydrogen peroxide water and ammonia water. Microscope photographing with an optical microscope capable of recognizing the magnification of the crystal grain boundary: 5〇~1 〇〇〇 times, cross-cutting the photograph, simply drawing four straight lines, and calculating the intersection with the four straight lines For the crystal grain boundary, the following calculation formula is used: Average crystal grain size = (3/2) · (L/N) · (1/M) (where L: the sum of the lengths of the 4 lines (M m ), N: the total number of crystal grain boundaries where the four lines intersect the crystal grains, M: the magnification of the photograph) 'to obtain the average crystal grain size. -11 - 200923941 The target 1 to 6 of the present invention and the conventional targets 1 to 6 are respectively placed on the cooling stage 7 of the DC flux tube sputtering apparatus as shown in FIG. 2, and the target 6 is used to hold the target.锷2 is firmly fixed so that the cooling water does not leak, and then the DC flux tube sputtering device is exhausted to lxl (T4Pa, and then Ar gas is introduced by a vacuum exhaust device to make a sputtering pressure of 1.0 Pa). Then, with a DC power supply, 2 KW of DC sputtering power was applied to the target, and the target was placed at a distance of 70 mm across the target to be parallel to the target: 30 mm, horizontal: 30 mm, thickness: 〇 A plasma is generated between the _5 mm alkali-free glass substrate and the target, and the cooling water is flowed so that the cooling water pressure becomes 〇4 MPa, and the electric power is intermittently calculated to be 1 〇〇 KW h of sputtering. After the sputtering of 100 KWh is completed, the targets 1 to 6 of the present invention and the conventional labels 1 to ό ' are taken out on the flat substrate 9 as shown in FIG. 4, and the gap interval S is measured by the gap gauge. The results are shown in Table 1 -12- 200923941 [15 Maximum gap distance S (pm) 300 3800 250 3500 250 36 00 200 3100 Ο ι- 2800 2500 Average crystal grain size (μιη) Ο I 380 ί § 2^0 260 250 (N 240 CN 220 Vickers hardness I (N cn 1—Η 〇CN m in rO m Ο 00 m I Cooling method after heat treatment Water-cooled air-cooled water-cooled air-cooled water-cooled air-cooled water-cooled air-cooled water-cooled air-cooled water-cooled air-cooled heat treatment temperature CC) _I Ο 卜 -1 650 _1 ! 600 ο νη IT) "500 composition (% by mass) Ag and unavoidable impurities _I Residue 1 I Residual part_1 1 Residual part Residual part Residual part 1_ ! Residual part I 0.03 | 1 0.05 0.01 0.08 0.03 1 0.08 〇yn 〇(N 〇rn 〇〇ο (Ν in r4 I Target ί _I ^Η 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The maximum gap interval S of the generated deformation is smaller than the maximum gap interval S of the deformation caused by the sputtering of 1000 Hzh using the conventional targets 1 to 6, so that the targets 1 to 6 of the present invention are compared with the conventional target 1 ~6, not easy to deform. The preferred embodiments of the present invention have been described above, but the present invention is not limited to the above embodiments. Additions, omissions, substitutions, and other modifications can be made in the structure without departing from the scope of the invention. The present invention is not limited by the foregoing description and is only defined by the scope of the patent application. [Simple description of the drawing] Fig. 1 is a perspective view of an Ag alloy with a target. Fig. 2 is a cross-sectional explanatory view showing a state in which an Ag alloy has a target attached to a sputtering apparatus. Fig. 3 is a cross-sectional explanatory view showing a state in which an Ag alloy has a target attached to a sputtering apparatus and is sputtered. Fig. 4 is a cross-sectional explanatory view for explaining a method of measuring the amount of deformation of the Ag alloy with a target. [Main component symbol description] 1 : Target body 2 : 锷 3, 3, 3 ” : Magnet 4 : Substrate-14- 200923941 5 : Plasma 6 : Grip 7 : Cooling table 8 : Magnetic field line 9 : Flat substrate 1 〇: with target -15

Claims (1)

200923941 十、申請專利範圍 1- 一種光記錄媒體的反射膜形成用高硬度Ag合金源 鍍標靶,其係具有由含有Cu: 0Λ〜3.0質量% ' Ga: 0_05 〜2.0質量%、ca: 0.001〜〇.1質量%、且殘餘部分爲 及不可避不純物所構成之成分組成,維氏硬度在40〜70 的範圍內者。 2. 如申請專利範圍第1項之光記錄媒體的反射膜形 成用高硬度Ag合金濺鍍標靶,其中,具有平均結晶粒徑 :5〜2 0 〇 // m的結晶組織。 3. 如申請專利範圍第2項之光記錄媒體的反射膜形 成用高硬度Ag合金濺鍍標靶,其中,前述結晶組織爲再 結晶組織。 4. 如申請專利範圍第1項之光記錄媒體的反射膜形 成用高硬度Ag合金濺鍍標靶,其中,前述光記錄媒體的 反射膜形成用銀合金濺鍍標靶爲在標靶本體的周圍具有鍔 之具鍔標靶。 5 ·如申請專利範圍第2項之光記錄媒體的反射膜形 成用高硬度Ag合金濺鍍標靶,其中,前述光記錄媒體的 反射膜形成用銀合金濺鍍標靶爲在標靶本體的周圍具有鳄 之具鍔標靶。 6.如申請專利範圍第3項之光記錄媒體的反射膜形 成用高硬度Ag合金濺鍍標靶,其中,前述光記錄媒體的 反射膜形成用銀合金濺鍍標靶爲在標靶本體的周圍具有鍔 之具鍔標靶。 -16 -200923941 X. Patent Application No. 1 - A high-hardness Ag alloy source plating target for forming a reflective film of an optical recording medium, which has a Cu: 0 Λ to 3.0% by mass 'Ga: 0_05 to 2.0% by mass, ca: 0.001 ~ 〇.1% by mass, and the residual component is composed of unavoidable impurities, and the Vickers hardness is in the range of 40 to 70. 2. The reflective film of the optical recording medium of claim 1 is formed of a high-hardness Ag alloy sputtering target having a crystal structure having an average crystal grain size of 5 to 2 0 〇 // m. 3. The reflective film of the optical recording medium of claim 2 is formed of a high hardness Ag alloy sputtering target, wherein the crystal structure is a recrystallized structure. 4. The high-hardness Ag alloy sputtering target for forming a reflective film of an optical recording medium according to the first aspect of the invention, wherein the silver alloy sputtering target for forming a reflective film of the optical recording medium is a target body There are 锷 targets in the surrounding area. 5. A high-hardness Ag alloy sputtering target for forming a reflective film of an optical recording medium according to the second aspect of the invention, wherein the silver alloy sputtering target for forming a reflective film of the optical recording medium is a target body There are crocodile targets around. 6. The high-hardness Ag alloy sputtering target for forming a reflective film of an optical recording medium according to the third aspect of the invention, wherein the silver alloy sputtering target for forming a reflective film of the optical recording medium is a target body There are 锷 targets in the surrounding area. -16 -
TW97127576A 2007-07-19 2008-07-18 High hardness ag alloy sputtering target for forming reflection film on optical recording medium TWI442393B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007187778A JP2009024212A (en) 2007-07-19 2007-07-19 HIGH HARDNESS Ag ALLOY SPUTTERING TARGET FOR FORMING REFLECTIVE FILM OF OPTICAL RECORDING MEDIUM

Publications (2)

Publication Number Publication Date
TW200923941A true TW200923941A (en) 2009-06-01
TWI442393B TWI442393B (en) 2014-06-21

Family

ID=40396311

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97127576A TWI442393B (en) 2007-07-19 2008-07-18 High hardness ag alloy sputtering target for forming reflection film on optical recording medium

Country Status (2)

Country Link
JP (1) JP2009024212A (en)
TW (1) TWI442393B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114395749A (en) * 2021-11-13 2022-04-26 洛阳高新四丰电子材料有限公司 Preparation method of large-size multi-element Ag-based alloy sputtering target material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140015432A (en) * 2011-04-06 2014-02-06 미쓰비시 마테리알 가부시키가이샤 Silver alloy sputtering target for forming electroconductive film, and method for manufacture same
JP5830907B2 (en) * 2011-04-06 2015-12-09 三菱マテリアル株式会社 Silver alloy sputtering target for forming conductive film and method for producing the same
JP5830908B2 (en) * 2011-04-06 2015-12-09 三菱マテリアル株式会社 Silver alloy sputtering target for forming conductive film and method for producing the same
JP6172230B2 (en) 2014-09-18 2017-08-02 三菱マテリアル株式会社 Ag alloy sputtering target, Ag alloy film, and method for producing Ag alloy film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002121662A (en) * 2000-04-07 2002-04-26 Kojundo Chem Lab Co Ltd Integral sputtering target
JP4569863B2 (en) * 2004-04-27 2010-10-27 日立金属株式会社 Ag alloy sputtering target material and Ag alloy film
JP4605494B2 (en) * 2004-05-20 2011-01-05 日立金属株式会社 Ag alloy sputtering target material
JP4186224B2 (en) * 2004-10-27 2008-11-26 三菱マテリアル株式会社 Reflective film for optical recording medium and Ag alloy sputtering target for forming the reflective film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114395749A (en) * 2021-11-13 2022-04-26 洛阳高新四丰电子材料有限公司 Preparation method of large-size multi-element Ag-based alloy sputtering target material

Also Published As

Publication number Publication date
JP2009024212A (en) 2009-02-05
TWI442393B (en) 2014-06-21

Similar Documents

Publication Publication Date Title
KR100568392B1 (en) Silver alloy sputtering target and process for producing the same
JP4379602B2 (en) Optical recording medium having translucent reflective film or reflective film as constituent layer, and Ag alloy sputtering target used for forming said reflective film
EP2832895B1 (en) Silver-based cylindrical target
JP4384453B2 (en) Ag-based sputtering target and manufacturing method thereof
TW200923941A (en) High hardness Ag alloy sputtering target for forming reflection film on optical recording medium
JP4305809B2 (en) Ag alloy-based sputtering target material
TW201837216A (en) Sputtering target and manufacturing method therefor
JPWO2011034127A1 (en) Copper material used for sputtering target and method for producing the same
JP2007066417A (en) Aluminum alloy reflection film for optical recording medium having excellent corrosion resistance and surface smoothness and sputtering target for forming the reflection film
JP2002326825A (en) Metal mold for molding optic and optic
JP2004084065A (en) Silver alloy sputtering target and its producing method
US6478895B1 (en) Nickel-titanium sputter target alloy
US8815149B2 (en) Semi-reflective film and reflective film for optical recording medium, and Ag alloy sputtering target for forming semi-reflective film or reflective film for optical recording medium
JP4186224B2 (en) Reflective film for optical recording medium and Ag alloy sputtering target for forming the reflective film
JP5354199B2 (en) Aluminum alloy reflective film for optical recording medium and sputtering target for forming the reflective film
JP5223840B2 (en) Aluminum alloy reflective film for optical recording medium and sputtering target for forming the reflective film
JP3968662B2 (en) Silver alloy sputtering target for reflection film formation of optical recording media
JP4553149B2 (en) Translucent reflective film and reflective film for optical recording medium, and Ag alloy sputtering target for forming these translucent reflective film and reflective film
JP2006012318A (en) Laminated reflection film for optical recording medium and its forming method
JP4186222B2 (en) Reflective film and translucent reflective film for optical recording medium, and Ag alloy sputtering target for forming these reflective films
JP2002129314A (en) Sputtering target and its production method, reflector for lcd, reflection wiring electrode, and thin film and its manufacturing method
JP2010189751A (en) METHOD FOR MANUFACTURING SPUTTERING TARGET MATERIAL OF Co-Cr BASED ALLOY
JP2011084802A (en) Aluminum alloy reflection film for optical recording medium and sputtering target for forming the reflection film
JP2005290422A (en) Aluminum alloy and method for producing aluminum alloy member
JP2007026501A (en) Semitransparent reflection film for optical recording medium and ag alloy sputtering target for forming semitransparent reflection film

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees