JP4186224B2 - Reflective film for optical recording medium and Ag alloy sputtering target for forming the reflective film - Google Patents
Reflective film for optical recording medium and Ag alloy sputtering target for forming the reflective film Download PDFInfo
- Publication number
- JP4186224B2 JP4186224B2 JP2004312002A JP2004312002A JP4186224B2 JP 4186224 B2 JP4186224 B2 JP 4186224B2 JP 2004312002 A JP2004312002 A JP 2004312002A JP 2004312002 A JP2004312002 A JP 2004312002A JP 4186224 B2 JP4186224 B2 JP 4186224B2
- Authority
- JP
- Japan
- Prior art keywords
- reflective film
- alloy
- mass
- optical recording
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
- Manufacturing Optical Record Carriers (AREA)
Description
この発明は、半導体レーザーなどのレーザービームを用いて音声、映像、文字などの情報信号を再生あるいは記録・再生・消去を行う光記録媒体(CD−RW,DVD−RAMなど)の構成層である半透明反射膜または反射膜(以下、両者を含めて反射膜と呼ぶ)およびこれら反射膜をスパッタリング法にて形成するためのAg合金スパッタリングターゲットに関するものである。 The present invention is a constituent layer of an optical recording medium (CD-RW, DVD-RAM, etc.) for reproducing or recording / reproducing / erasing information signals such as audio, video and characters using a laser beam such as a semiconductor laser. The present invention relates to a translucent reflective film or a reflective film (hereinafter referred to as a reflective film together) and an Ag alloy sputtering target for forming these reflective films by a sputtering method.
従来、CD−R,CD−RW,DVD−R,DVD−RW,DVD−RAMなどの光記録媒体の反射膜としてAgまたはAg合金反射膜が使用されており、このAgまたはAg合金反射膜は加熱された記録膜の熱を速やかに逃がす作用を有するとともに400〜830nmの幅広い波長域での反射率が高く、特に他の金属の反射膜にくらべて、CDおよびDVDにおいて使用されている波長:780nmおよび650nmのレーザー光に対する反射率が優れているところから広く使用されている。 Conventionally, an Ag or Ag alloy reflective film has been used as a reflective film for optical recording media such as CD-R, CD-RW, DVD-R, DVD-RW, and DVD-RAM. It has the effect of quickly releasing the heat of the heated recording film and has a high reflectance in a wide wavelength range of 400 to 830 nm, and in particular, the wavelength used in CDs and DVDs compared to other metal reflective films: Widely used because of its excellent reflectivity with respect to 780 nm and 650 nm laser beams.
AgまたはAg合金反射膜の中でもAg反射膜は、特に反射率が優れ、さらに熱を逃がす作用効果の目安となる熱伝導率が最も優れているところから、光記録媒体の反射膜としてAgが最も優れているとされている。しかし、Ag反射膜は腐食され易い特性を有するとともにレーザー光の照射回数が増えるにつれて再結晶化が速く、再結晶粒が大きく成長することによって表面粗さが大きくなりやすく、そのために反射率が低下して使用寿命が短い。さらにAg反射膜を半透明反射膜として使用した場合、半透明反射膜の厚さが極めて薄いものであるために、レーザー光の透過によって半透明反射膜が凝集し、それによって半透明反射膜に穴があき、使用寿命が短くなると言う欠点があった。
そのために、光記録媒体の反射膜としてはAgにその他の元素を添加して粒成長や再結晶速度を遅延させたAg合金が広く使用されており、前記従来の光記録媒体のAg合金反射膜として多種多様なAg合金からなる光記録媒体の反射膜が提案されている(例えば、特許文献1、2および3参照)。この中でも特許文献3には、Ga:0.1〜5.0原子%を含有し、残部がAgからなる光記録媒体の反射膜が記載されている。
Therefore, an Ag alloy in which other elements are added to Ag to delay the grain growth and recrystallization speed is widely used as the reflective film of the optical recording medium, and the Ag alloy reflective film of the conventional optical recording medium is used. For example, reflection films for optical recording media made of a variety of Ag alloys have been proposed (see, for example, Patent Documents 1, 2, and 3). Among these, Patent Document 3 describes a reflective film for an optical recording medium containing Ga: 0.1 to 5.0 atomic% and the balance being Ag.
近年、高精細な画像や映像を光記録媒体に記録するニーズが高まり、光記録媒体の情報記録密度が高密度化され、かつより高速で記録されるようになってきている。高密度化のためには、短波長のレーザー光を使用してより微細な領域に集光されたレーザースポットによって書き込みを行うことが有効であり、このような微小な領域で記録・再生を行う場合にはAg合金反射膜の再結晶化に伴う表面粗さ変化が記録デスクの再生信号に一層敏感に影響を与える。高密度化のもう一つの方法として記録層を多層化する方法があり、高反射率の反射膜の他に半透明反射膜が使用されるが、この場合、半透明反射膜は再結晶化により穴があき、半透明反射膜の反射率および透過率に影響を及ぼす。一方、高速記録の面からは、高出力のレーザー光を用いてより短時間に記録膜の温度を上昇させ、かつ短時間に冷却させる必要があり、記録膜に隣接または接近する反射膜は記録膜の熱をすばやく拡散する機能を担っているが、レーザー光の高出力高密度化により一層苛酷な温度履歴を受けるようになってきている。このような苛酷な温度履歴の下で光記録媒体の記録・再生・消去の繰り返しを行うと、レーザー光の照射により反射膜の急激な加熱冷却が繰り返され、再結晶化が通常よりも早く進行して結晶粒の粗大化が早く進行し、そのために反射膜の表面粗さが通常よりも早く増大し、あるいは半透過膜に従来よりも早く穴があき、エラーが速く増大するようになって、長期に亘る十分な記録再生耐性が得られなかった。 In recent years, the need for recording high-definition images and videos on an optical recording medium has increased, and the information recording density of the optical recording medium has been increased and recorded at a higher speed. In order to increase the density, it is effective to perform writing with a laser spot focused on a finer area using short-wavelength laser light, and recording / reproduction is performed in such a fine area. In this case, the surface roughness change accompanying recrystallization of the Ag alloy reflective film has a more sensitive influence on the reproduction signal of the recording desk. As another method for increasing the density, there is a method of multilayering the recording layer. In addition to the reflective film having a high reflectance, a semitransparent reflective film is used. In this case, the semitransparent reflective film is recrystallized. There is a hole, which affects the reflectance and transmittance of the translucent reflective film. On the other hand, from the aspect of high-speed recording, it is necessary to increase the temperature of the recording film in a shorter time using a high-power laser beam and to cool it in a short time. Although it has a function of quickly diffusing the heat of the film, it has come to receive a more severe temperature history due to the high output density of the laser beam. When recording / reproducing / erasing of an optical recording medium is repeated under such a severe temperature history, the reflection film is rapidly heated and cooled repeatedly by irradiation with laser light, and recrystallization proceeds faster than usual. As a result, the coarsening of the crystal grains progresses quickly, so that the surface roughness of the reflective film increases faster than usual, or the semi-transmissive film has holes earlier than before, and the error increases faster. Thus, sufficient recording / reproduction resistance over a long period of time could not be obtained.
そこで本発明者らは、従来のAg合金反射膜がかかえるこれら問題点を解決することのできるAg合金反射膜を得るべく研究を行なっていたところ、
(イ)Ga:0.05〜2.0質量%に、さらにCa、BeおよびSiの内の1種または2種以上を合計で0.001〜0.1質量%を含む組成のAg合金からなるスパッタリングターゲットを用いてスパッタリングすることにより得られたAg合金反射膜は、前記問題点の発生を一層抑制することができる、
(ロ)前記(イ)記載のAg合金にさらにCu:0.1〜3.0質量%を含有する組成のAg合金からなるスパッタリングターゲットを用いてスパッタリングすることにより得られたAg合金反射膜は、前記問題点の発生をさらに一層抑制することができる、
(ハ)前記(イ)または(ロ)記載のAg合金反射膜は、該Ag合金反射膜の成分組成とほぼ同じ成分組成を有するターゲットを用いてスパッタリングすることにより得られる、という研究結果が得られたのである。
Therefore, the present inventors have been studying to obtain an Ag alloy reflective film that can solve these problems associated with the conventional Ag alloy reflective film.
(A) From an Ag alloy having a composition containing 0.001 to 0.1% by mass in total of Ga: 0.05 to 2.0% by mass and one or more of Ca, Be and Si. An Ag alloy reflective film obtained by sputtering using a sputtering target can further suppress the occurrence of the above problems.
(B) The Ag alloy reflective film obtained by sputtering the Ag alloy described in (a) above using a sputtering target made of an Ag alloy having a composition containing Cu: 0.1 to 3.0% by mass, , The occurrence of the problem can be further suppressed,
(C) The research result that the Ag alloy reflective film described in (a) or (b) is obtained by sputtering using a target having almost the same component composition as that of the Ag alloy reflective film is obtained. It was done.
この発明は、かかる研究結果に基づいて成されたものであって、
(1)Ga:0.05〜2.0質量%を含有し、さらにCa、BeおよびSiの内の1種または2種以上を合計で0.001〜0.1質量%を含有し、残部がAgおよび不可避不純物からなる組成のAg合金からなる光記録媒体用反射膜、
(2)Ga:0.05〜2.0質量%を含有し、さらにCa、BeおよびSiの内の1種または2種以上を合計で0.001〜0.1質量%を含有し、さらにCu:0.1〜3.0質量%を含有し、残部がAgおよび不可避不純物からなる組成のAg合金からなる光記録媒体用反射膜、
(3)Ga:0.05〜2.0質量%を含有し、さらにCa、BeおよびSiの内の1種または2種以上を合計で0.001〜0.1質量%を含有し、残部がAgおよび不可避不純物からなる組成のAg合金からなる光記録媒体の反射膜形成用Ag合金スパッタリングターゲット、
(4)Ga:0.05〜2.0質量%を含有し、さらにCa、BeおよびSiの内の1種または2種以上を合計で0.001〜0.1質量%を含有し、さらにCu:0.1〜3.0質量%を含有し、残部がAgおよび不可避不純物からなる組成のAg合金からなる光記録媒体の反射膜形成用Ag合金スパッタリングターゲット、に特徴を有するものである。
The present invention has been made based on such research results,
(1) Ga: 0.05 to 2.0% by mass, further containing one or more of Ca, Be and Si in a total amount of 0.001 to 0.1% by mass, the balance A reflective film for an optical recording medium comprising an Ag alloy having a composition comprising Ag and inevitable impurities,
(2) Ga: 0.05 to 2.0% by mass, further containing one or more of Ca, Be and Si in a total amount of 0.001 to 0.1% by mass, A reflective film for an optical recording medium comprising Cu: 0.1 to 3.0% by mass, and the balance being made of an Ag alloy having a composition comprising Ag and inevitable impurities;
(3) Ga: 0.05 to 2.0% by mass, further containing one or more of Ca, Be and Si in a total amount of 0.001 to 0.1% by mass, the balance An Ag alloy sputtering target for forming a reflective film of an optical recording medium comprising an Ag alloy having a composition comprising Ag and inevitable impurities,
(4) Ga: 0.05 to 2.0% by mass, further containing one or more of Ca, Be and Si in a total amount of 0.001 to 0.1% by mass, It is characterized by an Ag alloy sputtering target for forming a reflective film of an optical recording medium comprising Cu: 0.1 to 3.0% by mass and the balance being made of an Ag alloy having a composition comprising Ag and inevitable impurities.
この発明のAg合金反射膜を形成するためのスパッタリングターゲットは、原料として純度:99.99質量%以上の高純度Agおよび高純度Cu、いずれも純度:99.9質量%以上のGa、Ca、Be、Siを用意し、まず、AgまたはAgおよびCuを高真空もしくは不活性ガス雰囲気中で溶解して得られたAg溶湯またはAg―Cu合金溶湯を作製し、これらの溶湯にそれぞれGa、Ca、Be、Siを所定の含有量となるように添加し、その後、真空または不活性ガス雰囲気中で鋳造してインゴットを作製し、これらインゴットを冷間加工し熱処理を加えたのち機械加工することにより製造することができる。 The sputtering target for forming the Ag alloy reflective film of the present invention is made of high purity Ag and high purity Cu having a purity of 99.99% by mass or more as raw materials, and Ga, Ca having a purity of 99.9% by mass or more. Be and Si are prepared, and first, Ag or Ag and Cu are melted in a high vacuum or an inert gas atmosphere, and a molten Ag or an Ag-Cu alloy is prepared. , Be and Si are added so as to have a predetermined content, and then ingots are produced by casting in a vacuum or an inert gas atmosphere, and these ingots are cold worked and subjected to heat treatment and then machined. Can be manufactured.
前記Ag溶湯またはAg―Cu合金溶湯にGaを添加する方法はGaを予めAg箔で包んで添加することが好ましく、またCa、Be、SiはCa、Be、SiがいずれもAgへの固溶が殆どないので、均質なターゲットを作製するためにAg−Ca母合金、Ag−Be母合金またはAg−Si母合金を予め作製し、これら母合金を高周波真空溶解したAg溶湯またはAg−Cu合金溶湯に添加することが好ましい。 As a method of adding Ga to the molten Ag or Ag-Cu alloy, it is preferable to add Ga by wrapping in advance with Ag foil, and Ca, Be, and Si are all dissolved in Ag, Ca, Be, and Si. Therefore, in order to produce a homogeneous target, an Ag—Ca master alloy, an Ag—Be master alloy or an Ag—Si master alloy is prepared in advance, and these master alloys are melted by high frequency vacuum melting or Ag—Cu alloy. It is preferable to add to the molten metal.
次に、この発明のAg合金からなる反射膜およびこのAg合金からなる反射膜を形成するためのスパッタリングターゲットにおける成分組成を前記の如く限定した理由を説明する。 Next, the reason why the component composition in the sputtering target for forming the reflective film made of the Ag alloy of the present invention and the reflective film made of the Ag alloy is limited as described above will be described.
Ga:
Gaは、Agに固溶して反射膜の再結晶化を抑制することによって膜の表面粗さの増大を抑制し、それによって反射膜の反射率の低下を抑制するとともに反射膜の耐食性を向上させる効果を有し、さらにターゲットの結晶粒の粗大化を抑制すると共にスパッタにより形成された膜中の結晶粒を微細化させる効果を有するが、Gaを0.05質量%未満含んでも所望の効果が得られず、一方、Gaが2.0質量%を越えて含有すると、スパッタにより形成されたAg合金反射膜の反射率が低下し、さらにAg合金反射膜の熱伝導率が低下し、高速記録に支障をきたすようになるので好ましくない。したがって、Ag合金反射膜およびこのAg合金反射膜を形成するためのスパッタリングターゲットに含まれるこれらGaの含有量は0.05〜2.0質量%(一層好ましくは0.2〜1.0質量%)に定めた。
Ga:
Ga is dissolved in Ag to suppress recrystallization of the reflective film, thereby suppressing an increase in the surface roughness of the film, thereby suppressing a decrease in the reflectance of the reflective film and improving the corrosion resistance of the reflective film. In addition, it has the effect of suppressing the coarsening of the target crystal grains and miniaturizing the crystal grains in the film formed by sputtering. On the other hand, if the Ga content exceeds 2.0% by mass, the reflectance of the Ag alloy reflective film formed by sputtering decreases, the thermal conductivity of the Ag alloy reflective film also decreases, and the high speed This is not preferable because it causes trouble in recording. Therefore, the content of Ga contained in the Ag alloy reflective film and the sputtering target for forming the Ag alloy reflective film is 0.05 to 2.0 mass% (more preferably 0.2 to 1.0 mass%). ).
Ca、Be、Si:
これら成分は、Agに殆ど固溶しないが、スパッタリングにより膜を形成することによりAgによって形成される結晶粒内に強制的に固溶され、それによって反射膜または半透明反射膜の結晶粒内でのAgの自己拡散を抑制し、さらに結晶粒界に析出し、Ag内部への強制固溶と結晶流界ヘの析出と言う両者の効果により膜が加熱されても結晶粒同士の結合を防止し、微量でAg合金反射膜の再結晶化防止を促進する成分であるが、Ca、BeおよびSiの内の1種または2種以上を合計で0.001質量%未満含んでも格段の効果が得られず、一方、0.1質量%を越えて含有すると、スパッタにより形成されたAg合金反射膜の熱伝導率が低下し、高速記録に支障をきたすようになるので好ましくない。したがって、Ag合金反射膜およびこのAg合金反射膜を形成するためのスパッタリングターゲットに含まれるこれら成分の含有量は0.001〜0.1質量%(一層好ましくは0.03〜0.07質量%)に定めた。
Ca, Be, Si:
These components hardly dissolve in Ag, but are forcibly dissolved in the crystal grains formed by Ag by forming a film by sputtering, and thereby in the crystal grains of the reflective film or the semitransparent reflective film. Suppresses the self-diffusion of Ag, further precipitates at the grain boundaries, and prevents the bonding of the grains even when the film is heated by the effects of forced solid solution inside Ag and precipitation at the crystal flow boundaries. However, it is a component that promotes prevention of recrystallization of the Ag alloy reflective film in a trace amount, but even if it contains less than 0.001% by mass in total of one or more of Ca, Be, and Si, a remarkable effect can be obtained. On the other hand, if the content exceeds 0.1% by mass, the thermal conductivity of the Ag alloy reflective film formed by sputtering is lowered, which hinders high-speed recording. Therefore, the content of these components contained in the Ag alloy reflective film and the sputtering target for forming this Ag alloy reflective film is 0.001 to 0.1% by mass (more preferably 0.03 to 0.07% by mass). ).
Cu:
Cuは、Agに固溶することによって高温高湿雰囲気下での耐食性がさらに向上すると共にAg合金反射膜の再結晶化を抑制する成分であるが、Cuを0.1質量%未満含んでも格段の効果が得られず、一方、3.0質量%を越えて含有すると、スパッタにより形成されたAg合金反射膜の熱伝導率が低下し、高速記録に支障をきたすようになるだけでなく、反射率が低下するので好ましくない。したがって、Ag合金反射膜およびこのAg合金反射膜を形成するためのスパッタリングターゲットに含まれるこれら成分の含有量は0.1〜3.0質量%(一層好ましくは0.3〜1.0質量%)に定めた。
Cu:
Cu is a component that further improves the corrosion resistance in a high-temperature and high-humidity atmosphere by being dissolved in Ag, and suppresses recrystallization of the Ag alloy reflective film. On the other hand, when the content exceeds 3.0% by mass, not only the thermal conductivity of the Ag alloy reflective film formed by sputtering is lowered, but the high-speed recording is hindered. This is not preferable because the reflectance decreases. Therefore, the content of these components contained in the Ag alloy reflective film and the sputtering target for forming this Ag alloy reflective film is 0.1 to 3.0% by mass (more preferably 0.3 to 1.0% by mass). ).
この発明のAg合金スパッタリングターゲットを用いて作製した光記録媒体の反射膜は、従来の光記録媒体のAg合金スパッタリングターゲットを用いて作製した光記録媒体の反射膜に比べて、経時変化による反射率の低下が少なく、長期にわたって使用できる光記録媒体を製造することができ、メディア産業の発展に大いに貢献し得るものである。 The reflective film of the optical recording medium produced using the Ag alloy sputtering target of the present invention has a reflectivity due to change over time as compared with the reflective film of the optical recording medium produced using the Ag alloy sputtering target of the conventional optical recording medium. Thus, an optical recording medium that can be used over a long period of time can be manufactured, which can greatly contribute to the development of the media industry.
原料として純度:99.99質量%以上の高純度Ag、純度:99.99質量%以上の高純度Cu、Ag箔に包んだ純度:99.9質量%以上のGa、Ag−5質量%Ca母合金、Ag−1質量%Be母合金およびAg−3質量%Si母合金を用意した。
Agを高周波真空溶解炉にて溶解することによりAg溶湯を作製し、さらにAgおよびCuを高周波真空溶解炉にて溶解することによりAg−Cu合金溶湯を作製した。得られたAg溶湯およびAg−Cu合金溶湯に、Ag箔に包んだGa、Ag−5質量%Ca母合金、Ag−1質量%Be母合金およびAg−3質量%Si母合金を添加してAg合金溶湯を作製し、得られたAg合金溶湯を黒鉛製鋳型にArガス雰囲気中で鋳造することによりインゴットを作製し、得られたインゴットを550℃、2時間保持の条件で加熱し水冷した後、所定の大きさに切断し、次いで冷間圧延し、その後、600℃、1時間保持の条件で熱処理を加えた後、機械加工することにより直径:125mm、厚さ:5mmの寸法を有し、表1に示される成分組成を有する本発明ターゲット1〜19、比較ターゲット1〜9を作製した。
さらに、前記Ag溶湯にAg箔に包んだGaを添加して同様にして表1に示される成分組成を有する従来ターゲット1を製造した。
Purity: High purity Ag of 99.99% by mass or more as a raw material, Purity: High purity Cu of 99.99% by mass or more, Purity wrapped in Ag foil: 99.9% by mass or more of Ga, Ag-5% by mass Ca A mother alloy, an Ag-1 mass% Be mother alloy, and an Ag-3 mass% Si mother alloy were prepared.
Ag melt was prepared by melting Ag in a high frequency vacuum melting furnace, and further Ag and Cu alloy was prepared by melting Ag and Cu in a high frequency vacuum melting furnace. Ga, Ag-5 mass% Ca master alloy, Ag-1 mass% Be master alloy and Ag-3 mass% Si mother alloy wrapped in Ag foil were added to the obtained Ag melt and Ag-Cu alloy melt. A molten Ag alloy was prepared, and the obtained Ag alloy was cast into a graphite mold in an Ar gas atmosphere to prepare an ingot. The obtained ingot was heated at 550 ° C. for 2 hours and cooled with water. Then, it is cut into a predetermined size, then cold-rolled, and then heat treated under conditions of 600 ° C. for 1 hour, and then machined to have a diameter of 125 mm and a thickness of 5 mm. And this invention target 1-19 and comparative target 1-9 which have a component composition shown by Table 1 were produced.
Further, the conventional target 1 having the component composition shown in Table 1 was manufactured by adding Ga wrapped in Ag foil to the molten Ag.
本発明ターゲット1〜19、比較ターゲット1〜9および従来ターゲット1をそれぞれ無酸素銅製のバッキングプレートにはんだ付けし、これを直流マグネトロンスパッタ装置に装着し、真空排気装置にて直流マグネトロンスパッタ装置内を1×10-4Paまで排気した後、Arガスを導入して1.0Paのスパッタガス圧とし、続いて直流電源にてターゲットに100Wの直流スパッタ電力を印加し、前記ターゲットに対抗しかつ70mmの間隔を設けてターゲットと平行に配置した縦:30mm、横:30mm、厚さ:0.5mmの無アルカリガラス基板と前記ターゲットの間にプラズマを発生させ、厚さ:100nmの表2に示される成分組成を有する本発明Ag合金反射膜1〜19、比較Ag合金反射膜1〜9および従来Ag合金反射膜1を形成した。 The present invention targets 1 to 19, the comparative targets 1 to 9, and the conventional target 1 are each soldered to a backing plate made of oxygen-free copper, and this is mounted on a DC magnetron sputtering device, and the inside of the DC magnetron sputtering device is evacuated by a vacuum exhaust device. After evacuating to 1 × 10 −4 Pa, Ar gas is introduced to a sputtering gas pressure of 1.0 Pa, and then 100 W DC sputtering power is applied to the target with a DC power source to counter the target and 70 mm. A plasma was generated between an alkali-free glass substrate having a length of 30 mm, a width of 30 mm, and a thickness of 0.5 mm arranged in parallel with the target at a distance of 100 mm, and the thickness is shown in Table 2 with a thickness of 100 nm. Inventive Ag alloy reflective films 1-19 having comparative composition, comparative Ag alloy reflective films 1-9, and conventional Ag alloy antireflective films To form a film 1.
このようにして形成した厚さ:100nmのAg合金反射膜について、下記の試験を行った。
(a)膜の耐食性試験
Ag合金反射膜の成膜直後の反射率を分光光度計により測定してその結果を表1に示し、その後、形成したAg合金反射膜を温度:80℃、相対湿度:85%の恒温恒湿槽にて200時間保持したのち、再度同じ条件で反射率を測定した。得られた反射率データから、波長:405nmおよび650nmにおける各反射率を求め、その結果を表2〜3に示して光記録媒体の反射膜として耐食性を評価した。
The following test was conducted on the Ag alloy reflective film having a thickness of 100 nm formed as described above.
(A) Corrosion resistance test of film The reflectance immediately after film formation of the Ag alloy reflective film was measured with a spectrophotometer, and the results are shown in Table 1. Thereafter, the formed Ag alloy reflective film was temperature: 80 ° C., relative humidity. : After holding in an 85% constant temperature and humidity chamber for 200 hours, the reflectance was measured again under the same conditions. Respective reflectances at wavelengths of 405 nm and 650 nm were determined from the obtained reflectance data, and the results are shown in Tables 2 to 3 to evaluate the corrosion resistance as a reflective film of the optical recording medium.
(b)膜の熱伝導率試験
Ag合金反射膜の比抵抗を四探針法により測定し、ウィーデマンフランツの法則に基づく式:κ=2.44×10−8T/ρ(ただし、κ:熱伝導率、T:絶対温度、ρ:比抵抗)により比抵抗値から熱伝導率を計算により求め、その結果を表2〜3に示した。
(B) Thermal conductivity test of the film The specific resistance of the Ag alloy reflective film was measured by the four-probe method, and the formula based on the Wiedemann Franz law: κ = 2.44 × 10 −8 T / ρ (where κ : Thermal conductivity, T: absolute temperature, ρ: specific resistance), the thermal conductivity was calculated from the specific resistance value, and the results are shown in Tables 2-3.
(c)結晶粒の粗大化試験
Ag合金反射膜の成膜直後の平均面粗さを走査型プローブ顕微鏡により測定してその結果を表2〜3に示し、その後、形成したAg合金反射膜を真空中、温度:250℃、30分間保持したのち、再度同じ条件で表面粗さを測定し、その結果を表2〜3に示して結晶粒の粗大化のしやすさを評価した。
ただし、走査型プローブ顕微鏡にはセイコーインスツルメンツ株式会社製SPA−400AFMを用い、1μm×1μmの領域の平均面粗さ(Ra)を測定した。平均面粗さはJISB0601で定義される中心線平均粗さを面に対して適用できるように三次元に拡張したものであり、次式で表されるものである。
Ra=1/S0∫∫|F(X,Y)−Z0|dXdY
ただし、F(X,Y):全測定データの示す面、
S0:指定面が理想的にフラットであると仮定したときの面積、
Z0:指定面内のZデータの平均値。
(C) Crystal grain coarsening test The average surface roughness immediately after film formation of the Ag alloy reflective film was measured with a scanning probe microscope, and the results are shown in Tables 2 to 3. Thereafter, the formed Ag alloy reflective film was After maintaining in vacuum at a temperature of 250 ° C. for 30 minutes, the surface roughness was measured again under the same conditions, and the results are shown in Tables 2 to 3 to evaluate the ease of coarsening of crystal grains.
However, SPA-400AFM manufactured by Seiko Instruments Inc. was used for the scanning probe microscope, and the average surface roughness (Ra) of a 1 μm × 1 μm region was measured. The average surface roughness is a three-dimensional extension of the centerline average roughness defined in JIS B0601 so that it can be applied to the surface, and is expressed by the following equation.
Ra = 1 / S 0 ∫∫ | F (X, Y) −Z 0 | dXdY
Where F (X, Y): the surface indicated by all measurement data,
S 0 : area when the designated surface is assumed to be ideally flat,
Z 0 : Average value of Z data in the specified plane.
表1〜3に示される結果から、この発明の本発明ターゲット1〜19を用いてスパッタリングを行うことにより得られたAg合金反射膜は、従来ターゲット1を用いてスパッタリングを行うことにより得られたAg合金反射膜に比べて、温度:80℃、相対湿度:85%の恒温恒湿槽にて200時間保持後の反射率の低下が少なく、熱伝導率に優れ、さらに結晶粒が粗大化し難いことがわかる。しかし、この発明の範囲から外れてGa並びにCa、BeおよびSiを含む比較ターゲット1〜9を用いて作製したAg合金反射膜は、反射率が低下したり、熱伝導率が低下したり、さらに結晶粒が粗大化したりして好ましくない特性が現れることが分かる。
From the results shown in Tables 1 to 3, the Ag alloy reflective film obtained by performing sputtering using the present invention targets 1 to 19 of the present invention was obtained by performing sputtering using the conventional target 1. Compared to an Ag alloy reflective film, there is little decrease in reflectivity after holding for 200 hours in a constant temperature and humidity chamber of temperature: 80 ° C. and relative humidity: 85%, excellent thermal conductivity, and crystal grains are difficult to coarsen. I understand that. However, the Ag alloy reflective film produced using the comparative targets 1 to 9 containing Ga and Ca, Be and Si outside the scope of the present invention has a reduced reflectivity, a reduced thermal conductivity, It can be seen that undesirable characteristics appear due to the coarsening of crystal grains.
Claims (4)
Ga: 0.05 to 2.0% by mass, further containing one or more of Ca, Be and Si in total of 0.001 to 0.1% by mass, and Cu: 0 A silver alloy sputtering target for forming a reflective film of an optical recording medium, comprising: a silver alloy having a composition of 0.1 to 3.0% by mass with the balance being made of Ag and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004312002A JP4186224B2 (en) | 2004-10-27 | 2004-10-27 | Reflective film for optical recording medium and Ag alloy sputtering target for forming the reflective film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004312002A JP4186224B2 (en) | 2004-10-27 | 2004-10-27 | Reflective film for optical recording medium and Ag alloy sputtering target for forming the reflective film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006127594A JP2006127594A (en) | 2006-05-18 |
JP4186224B2 true JP4186224B2 (en) | 2008-11-26 |
Family
ID=36722187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004312002A Expired - Fee Related JP4186224B2 (en) | 2004-10-27 | 2004-10-27 | Reflective film for optical recording medium and Ag alloy sputtering target for forming the reflective film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4186224B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020211553A1 (en) * | 2019-04-17 | 2020-10-22 | 京东方科技集团股份有限公司 | Transparent display device and manufacturing method and driving method therefor, and temperature induction window |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2045631B1 (en) * | 2006-11-17 | 2012-04-25 | Tanaka Kikinzoku Kogyo K.K. | Thin film for reflection film or semi-transparent reflection film, sputtering target and optical recording medium |
JP2009024212A (en) * | 2007-07-19 | 2009-02-05 | Mitsubishi Materials Corp | HIGH HARDNESS Ag ALLOY SPUTTERING TARGET FOR FORMING REFLECTIVE FILM OF OPTICAL RECORDING MEDIUM |
WO2018003029A1 (en) | 2016-06-29 | 2018-01-04 | 三菱電機株式会社 | Alternating-current electric vehicle |
-
2004
- 2004-10-27 JP JP2004312002A patent/JP4186224B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020211553A1 (en) * | 2019-04-17 | 2020-10-22 | 京东方科技集团股份有限公司 | Transparent display device and manufacturing method and driving method therefor, and temperature induction window |
Also Published As
Publication number | Publication date |
---|---|
JP2006127594A (en) | 2006-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4379602B2 (en) | Optical recording medium having translucent reflective film or reflective film as constituent layer, and Ag alloy sputtering target used for forming said reflective film | |
JP3772972B2 (en) | Silver alloy sputtering target for reflection layer formation of optical recording media | |
JP2007066417A (en) | Aluminum alloy reflection film for optical recording medium having excellent corrosion resistance and surface smoothness and sputtering target for forming the reflection film | |
JP2009024212A (en) | HIGH HARDNESS Ag ALLOY SPUTTERING TARGET FOR FORMING REFLECTIVE FILM OF OPTICAL RECORDING MEDIUM | |
JP4186224B2 (en) | Reflective film for optical recording medium and Ag alloy sputtering target for forming the reflective film | |
JP4864538B2 (en) | Translucent reflective film for optical recording medium and Ag alloy sputtering target for forming the translucent reflective film | |
JP3915114B2 (en) | Silver alloy sputtering target for reflection film formation of optical recording media | |
JP3968662B2 (en) | Silver alloy sputtering target for reflection film formation of optical recording media | |
JP4186221B2 (en) | Reflective film and translucent reflective film for optical recording medium, and Ag alloy sputtering target for forming these reflective films | |
US8815149B2 (en) | Semi-reflective film and reflective film for optical recording medium, and Ag alloy sputtering target for forming semi-reflective film or reflective film for optical recording medium | |
JP3770156B2 (en) | Silver alloy sputtering target for reflecting film formation of optical recording medium and reflecting film formed using this target | |
JP3772971B2 (en) | Silver alloy sputtering target for reflection layer formation of optical recording media | |
JP4186223B2 (en) | Reflective film and translucent reflective film for optical recording medium, and Ag alloy sputtering target for forming these reflective films | |
CN100446102C (en) | Silver alloy sputtering target for forming reflection layer of optical recording medium | |
JP4186222B2 (en) | Reflective film and translucent reflective film for optical recording medium, and Ag alloy sputtering target for forming these reflective films | |
JP3803864B2 (en) | Silver alloy sputtering target for reflection layer formation of optical recording media | |
JP5287028B2 (en) | Ag alloy sputtering target for forming translucent reflective film of optical recording medium | |
JP4069660B2 (en) | Silver alloy sputtering target for forming total reflection layer or translucent reflection layer of optical recording medium | |
JP2003160860A (en) | Silver alloy sputtering target for forming reflection coat on optical recording medium | |
JP4553149B2 (en) | Translucent reflective film and reflective film for optical recording medium, and Ag alloy sputtering target for forming these translucent reflective film and reflective film | |
JP4693104B2 (en) | Translucent reflective film for optical recording medium and Ag alloy sputtering target for forming the translucent reflective film | |
JP4023135B2 (en) | Silver alloy sputtering target for reflection layer formation of optical recording media | |
JP2006012318A (en) | Laminated reflection film for optical recording medium and its forming method | |
JP2898112B2 (en) | Melted Al alloy sputtering target for forming Al alloy thin film for reflective film of optical recording medium with excellent composition uniformity | |
JP2003155559A (en) | Silver alloy sputtering target for forming reflection layer of optical recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070329 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080811 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080818 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080831 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4186224 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110919 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120919 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130919 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |