JP2004084065A - Silver alloy sputtering target and its producing method - Google Patents

Silver alloy sputtering target and its producing method Download PDF

Info

Publication number
JP2004084065A
JP2004084065A JP2003169897A JP2003169897A JP2004084065A JP 2004084065 A JP2004084065 A JP 2004084065A JP 2003169897 A JP2003169897 A JP 2003169897A JP 2003169897 A JP2003169897 A JP 2003169897A JP 2004084065 A JP2004084065 A JP 2004084065A
Authority
JP
Japan
Prior art keywords
crystal orientation
target
thin film
silver alloy
highest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003169897A
Other languages
Japanese (ja)
Other versions
JP4264302B2 (en
Inventor
Hitoshi Matsuzaki
松崎 均
Katsuhisa Takagi
高木 勝寿
Junichi Nakai
中井 淳一
Yasuo Nakane
中根 靖夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Research Institute Inc
Original Assignee
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Research Institute Inc filed Critical Kobelco Research Institute Inc
Priority to JP2003169897A priority Critical patent/JP4264302B2/en
Publication of JP2004084065A publication Critical patent/JP2004084065A/en
Application granted granted Critical
Publication of JP4264302B2 publication Critical patent/JP4264302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a target useful to form a silver alloy thin film having especially uniform film thickness with a spattering method. <P>SOLUTION: In this silver spattering target, in the case of obtaining a crystal oriented strength to optional four positions with an X-ray diffraction method, an orientation showing the highest crystal oriented strength (Xa) is the same at the four measured positions, and the deviation in the strength ratio (Xb/Xa) of the highest crystal oriented strength (Xa) and the second highest crystal oriented strength (Xb) is made to be ≤ 20%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、スパッタリング法で薄膜を形成する際に使用される銀合金スパッタリングターゲットに関し、詳細には、膜厚や成分組成の均一な薄膜を形成することのできる銀合金スパッタリングターゲットに関するものである。
【0002】
【従来の技術】
純銀または銀合金の薄膜は、高反射率かつ低電気抵抗率という特性を有するため、光学記録媒体の反射膜や、反射型液晶ディスプレイの電極・反射膜等に適用されている。
【0003】
しかし純銀の薄膜は、空気中に長時間曝された場合や高温高湿下に曝された場合等に薄膜表面が酸化されやすく、また銀結晶粒が成長したり、銀原子が凝集したりする等の現象が生じやすく、これらに起因して、導電性の劣化や反射率の低下が生じたり、基板との密着性が劣化したりするといった問題が発生する。従って、最近では純銀本来の高い反射率を維持しつつ、耐食性等を向上させるべく合金元素添加による改善が多数試みられている。そして、この様な薄膜の改善に併せて、銀合金薄膜形成に用いるターゲットについても検討がなされており、例えば、特許文献1には、Agを主成分とし、耐候性を向上させるためPdを0.1〜3wt%含有させ、更にPd添加による電気抵抗率の増加を抑制すべくAl、Au、Pt、Cu、Ta、Cr、Ti、Ni、Co、Siよりなる群から選択される複数の元素を0.1〜3wt%の範囲内で含有させたスパッタリングターゲットが電子部品用金属材料の一つとして示されている。
【0004】
特許文献2には、スパッタリング時のガス雰囲気中の酸素等による悪影響を防止し、かつ耐湿性を改善すべく金を0.1〜2.5at%添加し、更に金添加による光透過率の低下を抑制するため銅を0.3〜3at%の範囲内で含有させた銀合金スパッタリングターゲット、または銀ターゲットの一部に金および銅を該比率となるよう埋め込んだ複合金属からなるスパッタリングターゲットが提案されている。
【0005】
更に特許文献3には、銀または銀合金のスパッタリングターゲットであって、スパッタリングによる成膜の際にターゲットのスパッタレートを高めて、効率よくスパッタリングを行うため、ターゲットの結晶構造を面心立方構造とし、かつ結晶配向が((111)+(200))/(220)面配向度比で2.20以上となるようにすることが提案されている。
【0006】
ところで、スパッタリング法で形成された薄膜を、例えば片面2層構造のDVDにおける半透過反射膜として使用する場合、膜厚は、100Å程度と非常に薄く、該薄膜の膜厚の均一性が、反射率、透過率等の特性に大きな影響を与えることから、特に膜厚のより均一な薄膜を形成することが重要視されている。また次世代の光学記録媒体の反射膜として使用する場合、記録時のレーザーパワーによる熱を速く伝導させなければならないことから、優れた光学特性のみならず、熱伝導率が面内で均一でかつ高いことも要求されているが、該特性を満たすには、薄膜の膜厚が均一であること、更には薄膜の成分組成が均一であることが条件として挙げられる。
【0007】
この様に光学記録媒体の反射膜や半透過反射膜等として用いられる薄膜をスパッタリング法で形成するにあたっては、従来技術の如くターゲットの組成や結晶配向度比を制御したとしても、光学記録媒体の反射膜として高反射率や高熱伝導率等の特性を発揮し得る、膜厚や成分組成の均一な薄膜を確実に得ることができないことから、ターゲットの更なる改善を要すると考える。
【0008】
【特許文献1】
特開2001−192752号公報
【特許文献2】
特開平9−324264号公報
【特許文献3】
特開2000−239835号公報
【0009】
【発明が解決しようとする課題】
本発明は、この様な事情に鑑みてなされたものであって、その目的は、膜厚や成分組成の均一な薄膜をスパッタリング法で形成するのに有用な銀合金スパッタリングターゲットを提供することにある。
【0010】
【課題を解決するための手段】
本発明に係る銀合金スパッタリングターゲットとは、任意の4箇所についてX線回折法によって結晶配向強度を求め、最も高い結晶配向強度(X)を示す方位が4測定箇所で同一であり、かつ各測定箇所における最も高い結晶配向強度(X)と2番目に高い結晶配向強度(X)との強度比(X/X)のばらつきが4測定箇所で20%以下であるところに特徴を有するものである。前記2番目に高い結晶配向強度(X)を示す方位が、4測定箇所で同一であることを好ましい形態とする。
【0011】
尚、前記「最も高い結晶配向強度(X)と2番目に高い結晶配向強度(X)の強度比(X/X)のばらつき」とは、次の様にして求める。即ち、任意の4箇所についてX線回折法で結晶配向強度を求め、各測定箇所にて、最も高い結晶配向強度(X)と2番目に高い結晶配向強度(X)の強度比(X/X)の4測定箇所の平均:AVE(X/X)を求める。次に4測定箇所の(X/X)の最大値をMAX(X/X)とし、(X/X)の最小値をMIN(X/X)として求めた下記(2)または(3)の絶対値のうち、大きい方を%で示したものである。
|MAX(X/X)−AVE(X/X)|/AVE(X/X)  …(2)
|MIN(X/X)−AVE(X/X)|/AVE(X/X)  …(3)
また、本発明の銀合金スパッタリングターゲットは、平均結晶粒径が100μm以下で、最大結晶粒径が200μm以下を満たすものであれば、該ターゲットを用いて形成される薄膜の特性が均一となるので好ましい。特に、結晶粒界または/および結晶粒内に、銀と合金元素の化合物相が存在する銀合金スパッタリングターゲットの場合、該化合物相の円相当直径が、平均で30μm以下であり、かつ該円相当直径の最大値が50μm以下であることを好ましい形態とする。
【0012】
尚、前記「平均結晶粒径」とは、次の様な測定方法で求められるものである。即ち、▲1▼50〜100倍の光学顕微鏡観察写真に、図1に示すように顕微鏡観察写真の縁の端から端まで直線を複数本引く。直線数は4本以上とすることが定量精度の観点から望ましく、直線の引き方は、例えば図1(a)の様な井桁状や図1(b)の様な放射状とすることができる。次に▲2▼直線上にある結晶粒界の数nを測定する。そして▲3▼下記式(4)から平均結晶粒径dを求め、複数本の直線のdから平均値を求める。
【0013】
d=L/n/m  …(4)
[式中、dは1本の直線から求めた平均結晶粒径を示し、Lは1本の直線の長さを示し、nは1本の直線上の結晶粒界の数を示し、mは倍率を示す]
また、前記「最大結晶粒径」は、50〜100倍の光学顕微鏡の視野で任意に5箇所以上を観察し、全視野の合計20mmの範囲内で最大の結晶についてその粒径を円相当直径換算して求めたものである。
【0014】
前記「結晶粒界または/および結晶粒内に存在する銀と合金元素の化合物相の円相当直径の平均」とは、100〜200倍の光学顕微鏡の視野で任意に5箇所以上を観察し、全視野で合計20mmの範囲内にある各化合物相を円相当直径に換算し、これらの平均値を求めたものである。また「銀と合金元素の化合物相の円相当直径の最大値」とは、前記合計20mmの範囲内の最大化合物相の円相当直径をいう。
【0015】
本発明は、上記規定の結晶配向を満たす銀合金スパッタリングターゲットを製造する方法も規定するものであって、加工率30〜70%で冷間加工または温間加工を行い、その後、保持温度:500〜600℃、かつ保持時間:0.75〜3時間の条件で熱処理を行うことを要件とする。尚、結晶粒径の小さな銀合金スパッタリングターゲットを得るには、前記熱処理を、
保持温度:500〜600℃、かつ
保持時間:下記式(1)の範囲内で行うことが推奨される。
【0016】
(−0.005×T+ 3.5)≦t≦(−0.01×T+ 8)     …(1)
[式(1)中、Tは保持温度(℃)、tは保持時間(時間)を示す]
【0017】
【発明の実施の形態】
本発明者らは、前述した様な状況の下で、スパッタリングにて膜厚や成分組成の均一な薄膜を形成することのできる銀合金スパッタリングターゲット(以下、単に「ターゲット」ということがある)を得るべく様々な観点から検討を行った。その結果、ターゲットの結晶配向を制御することが特に有効であることを見出し、本発明に想到した。以下、本発明でターゲットの結晶配向を規定した理由について詳述する。
【0018】
まず本発明は、ターゲットの任意の4箇所で結晶配向強度をX線回折法で求めた場合の、最も高い結晶配向強度(X)を示す方位が4測定箇所で同一であることを必須要件とする。
【0019】
即ち、本発明は、最も高い結晶配向強度を示す方位を特に規定せず、(111)面、(200)面、(220)面、(311)面等のいずれが最も高い結晶配向強度を示す方位であってもよいが、この最高結晶配向強度を示す方位が任意の4測定箇所で同一である必要がある。この様に、任意の位置における最高結晶配向強度を示す方位が同一であれば、スパッタリング時に基板に到達する原子数が基板面内で均一となり、膜厚の均一な薄膜を得ることができる。
【0020】
尚、最も高い結晶配向強度を示す方位が(111)面であれば、スパッタリング時の成膜速度を高めることができるので好ましい。
【0021】
更に、各測定箇所における最も高い結晶配向強度(X)と2番目に高い結晶配向強度(X)の強度比(X/X)のばらつきが4測定箇所で20%以下であることが好ましい。
【0022】
上記の様に最も高い結晶配向強度を示す方位がターゲットの任意の位置において同一であったとしても、最も高い結晶配向強度(X)と2番目に高い結晶配向強度(X)の強度比(X/X)のばらつきが大きすぎる場合には、スパッタリング時に基板に到達する原子数が基板面内で不均一となりやすく、均一な膜厚の薄膜が得られにくいからである。前記強度比のばらつきが10%以下であることがより好ましい。
【0023】
尚、ターゲットの任意の位置において上記ばらつきが規定範囲内であれば、2番目に高い結晶配向強度(X)の方位が測定箇所間で異なっていてもよいが、前記2番目に高い結晶配向強度(X)を示す方位が、4測定箇所で同一である方が、基板に到達する原子数が基板面内で均一となりやすく、膜厚の均一な薄膜が得られ易いので好ましい。
【0024】
この様に結晶配向を規定するとともに、銀結晶の結晶粒径や結晶粒界または/および結晶粒内に存在する銀と合金元素の化合物相のサイズを制御すれば、スパッタリングで膜厚や成分組成の均一な薄膜を形成できるので好ましい。
【0025】
具体的には、ターゲットの平均結晶粒径を100μm以下とし、かつ最大結晶粒径を200μm以下とするのがよい。
【0026】
上記平均結晶粒径の小さいターゲットとすることで、膜厚の均一な薄膜を容易に形成でき、結果として光学記録媒体等の性能を高めることができる。前記平均結晶粒径は、75μm以下とするのがより好ましく、更に好ましくは50μm以下である。
【0027】
また、平均結晶粒径が100μm以下であっても、極端に粒径の大きい結晶粒が存在する場合には、形成された薄膜の膜厚が局所的に不均一となりやすい。従って、性能の局所的な劣化が抑制された光学記録媒体を得るには、薄膜形成に用いるターゲットの結晶粒径を最大でも200μm以下に抑えるのがよく、より好ましくは150μm以下、更に好ましくは100μm以下である。
【0028】
銀合金スパッタリングターゲットの結晶粒界または/および結晶粒内に、銀と合金元素の化合物相が存在する場合には、該化合物相のサイズも併せて制御するのがよい。
【0029】
上記化合物相のサイズがより小さい方が、形成された薄膜の成分組成が均一となり易いため望ましく、化合物相のサイズを円相当直径で示した場合に、その平均が30μm以下であるのがよい。より好ましくは円相当直径換算で平均20μm以下である。
【0030】
またそのサイズが平均で30μm以下であっても、極端に大きい化合物相が存在する場合には、スパッタリングの放電状態が不安定となりやすく、成分組成の均一な薄膜が得られ難くなる。従って最大化合物相は、円相当直径で50μm以下であるのがよく、より好ましくは30μm以下である。
【0031】
尚、本発明は、前記化合物相の成分組成等まで特定するものでなく、例えばAg−Nd系合金ターゲットに存在するAg51Nd14やAgNd等、Ag−Y系合金ターゲットに存在するAg5114やAgY等、Ag−Ti系合金ターゲットに存在するAgTi等が、制御の対象となる化合物相として挙げられる。
【0032】
上記規定の結晶配向を満たすターゲットを得るには、製造工程において、加工率30〜70%で冷間加工または温間加工を行うのがよい。この様に冷間加工または温間加工を施すことによって、ほぼ製品形状となるまで成形できるとともに、加工歪が蓄積され、その後の熱処理で再結晶させて結晶配向の均一化を図ることができる。
【0033】
加工率が30%未満の場合には付与する歪量が不足するため、その後に熱処理を施したとしても部分的にしか再結晶されず、結晶配向の均一化を十分に達成できない。好ましくは35%以上の加工率で冷間加工または温間加工を行うのがよい。一方、加工率が70%を超えると、熱処理時の再結晶速度が速くなりすぎ、この場合も結果として、結晶配向のばらつきが生じ易くなる。好ましくは加工率65%以下の範囲で行うのがよい。
【0034】
尚、前記加工率とは、[(加工前の材料の寸法−加工後の材料の寸法)/加工前の材料の寸法]×100(%)をいい(以下同じ)、例えば、板状材料を用いて鍛造や圧延を行い、板状のものを製造する場合には、前記「寸法」として板厚を用いて加工率を算出することができる。また、円柱状材料を用いて板状のものを製造する場合には、加工方法によって加工率の算出方法が異なり、例えば、円柱状材料の高さ方向に力を加えて鍛造や圧延を行う場合には、[(加工前の円柱状材料の高さ−加工後の板状材料の厚さ)/加工前の円柱状材料の高さ]×100(%)から加工率を求めることができ、また、円柱状材料の径方向に力を加えて鍛造や圧延を行う場合には、[(加工前の円柱状材料の直径−加工後の板状材料の厚さ)/加工前の円柱状材料の直径]×100(%)から加工率を求めることができる。
【0035】
また冷間加工または温間加工後に、保持温度:500〜600℃、かつ保持時間:0.75〜3時間の条件で熱処理を行う。この様に熱処理を施すことによって、結晶配向の均一化を図ることができる。
【0036】
前記保持温度が、500℃を下回ると再結晶されるまでの所要時間が長くなり、一方、保持温度が600℃を超えると再結晶速度が速くなり、材料の歪量にばらつきがある場合には、歪量の大きい箇所で再結晶が促進されて、均一な結晶配向を得るのが困難となるので好ましくない。より好ましくは520〜580℃の範囲内で熱処理を行う。
【0037】
また、保持温度が適正範囲であっても、保持時間が短すぎる場合には十分に再結晶が行われず、一方、保持時間が長すぎる場合には再結晶が進みすぎて、均一な結晶配向を得るのが困難となる。従って保持時間は、0.75〜3時間の範囲内とするのがよい。
【0038】
結晶粒の微細化を図るには、
保持温度:500〜600℃(より好ましくは520〜580℃)、かつ
保持時間:下記式(1)の範囲内で熱処理を行うのが好ましい。
【0039】
(−0.005×T+ 3.5)≦t≦(−0.01×T+ 8)     …(1)
[式(1)中、Tは保持温度(℃)、tは保持時間(時間)を示す]
保持時間は、上記式(1)の範囲の中でも、特に下記式(5)で規定する範囲内とすることが推奨される。熱処理における上記保持時間および保持温度の好ましい範囲およびより好ましい範囲について図2に示す。
【0040】
(−0.005×T+ 3.75)≦t≦(−0.01×T+ 7.5)     …(5)
[式(5)中、Tは保持温度(℃)、tは保持時間(時間)を示す]
本発明では、ターゲットの製造におけるその他の条件まで厳密に規定するものでなく、例えば次の様にしてターゲットを得ることができる。即ち、所定の成分組成を有する銀合金材料を溶解し、鋳造して鋳塊を得た後、必要に応じて熱間鍛造または熱間圧延等の熱間加工を施す。次に上記条件で、冷間加工または温間加工と熱処理を行い、その後、機械加工を施して所定の形状とすることが推奨される方法の一つとして挙げられる。
【0041】
前記銀合金材料の溶解は、抵抗加熱式電気炉による大気溶解や真空または不活性雰囲気での誘導溶解等を適用すればよい。銀合金の溶湯は、酸素の溶解度が高いため、前記大気溶解の場合には、黒鉛るつぼを用いかつ溶湯表面をフラックスで覆い、酸化防止を充分に図る必要がある。酸化防止の観点からは、真空または不活性雰囲気下で溶解を行うことが好ましい。また、前記鋳造方法は、特に限定するものではなく、金型や黒鉛鋳型を用いて行う鋳造のみならず、銀合金材料と反応しないことを条件に、耐火物や砂型等を使用した徐冷鋳造を適用することも可能である。
【0042】
熱間加工は必須ではないが、形状が円柱状のものを直方体状や板状にする場合など、必要に応じて熱間鍛造または熱間圧延等を行ってもよい。ただし、熱間加工における加工率は、次工程の冷間加工または温間加工で規定の加工率を確保できる範囲内とする必要がある。冷間加工または温間加工での加工が不十分だと、歪が不足して再結晶化を図ることができず、結果として結晶配向が均一化されないからである。熱間加工を行う場合のその他の条件については特に限定されず、加工温度や加工時間は通常行われている範囲内とすればよい。
【0043】
尚、これらの製造条件は、操業するにあたって予め予備実験を行い、合金元素の種類や添加量に応じた最適な加工・熱処理条件を求めておくことが望ましい。
【0044】
本発明はターゲットの成分組成まで特定するものではないが、上記ターゲットを得るにあたっては、例えば、下記の様な成分組成のものを用いることが推奨される。
【0045】
即ち、前掲の様に、本発明のターゲットは銀をベースに下記の元素が添加されているものであり、合金元素として、形成される薄膜の結晶粒径を微細化し、熱に対して安定化させるのに有効なNdを1.0at%(原子比の意味、以下同じ)以下、Ndと同様の効果を発揮する希土類元素(Y等)を1.0at%以下、形成される薄膜の耐食性を向上させる効果を有するAuを2.0at%以下、Auと同様に、得られた薄膜の耐食性を向上させる効果を有するCuを2.0at%以下の範囲内で、また、その他の元素としてTiやZnが、1種または2種以上添加されたものがよい。また、本発明のターゲットは、ターゲットの製造に用いる原料あるいはターゲット製造時の雰囲気に起因する不純物等が、本発明で規定する結晶組織の形成に影響を与えない範囲内で含まれていてもよい。
【0046】
本発明のターゲットは、例えばDCスパッタリング法、RFスパッタリング法、マグネトロンスパッタリング法、反応性スパッタリング法等のいずれのスパッタリング法にも適用でき、約20〜5000Åの銀合金薄膜を形成するのに有効である。尚、ターゲットの形状は、用いるスパッタリング装置に応じて適宜設計変更すればよい。
【0047】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0048】
実施例1
・銀合金材:Ag−1.0at%Cu−0.7at%Au
・製造方法:
▲1▼本発明例
誘導溶解(Ar雰囲気)→鋳造(金型を用いて板状に鋳造)→冷間圧延(加工率50%)→熱処理(520℃×2時間)→機械加工(直径200mm、厚さ6mmの円板形状)
▲2▼比較例
誘導溶解(Ar雰囲気)→鋳造(金型を用いて板状に鋳造)→熱間圧延(圧延開始時の温度700℃、加工率70%)→熱処理(500℃×1時間)→機械加工(直径200mm、厚さ6mmの円板形状)
得られたターゲットの結晶配向について次の様にして調べた。即ち、ターゲット表面の任意の4箇所について、下記の条件でX線回折を行い、結晶配向強度を調べたところ、本発明例について図3の測定結果が得られ、比較例について図4の測定結果が得られた。この様な測定結果から、最も高い結晶配向強度(X)を示す方位および2番目に高い結晶配向強度(X)を示す方位を調べ、更に上述の様にして、各測定箇所における最も高い結晶配向強度(X)と2番目に高い結晶配向強度(X)の強度比(X/X)のばらつきを求めた。尚、最も高い結晶配向強度(X)を示す方位が4箇所で異なる場合は、上記ばらつきを求めていない(以下の実施例についても同じ)。
【0049】
X線回折装置:理学電機製 RINT 1500
ターゲット:Cu
管電圧:50kV
管電流:200mA
走査速度:4°/min
試料回転:100回/min
また、得られたターゲットの金属組織を次の様にして調べた。即ち、機械加工後のターゲットから10mm×10mm×10mmの立方体形状の試料を採取し、観察面を研磨後、光学顕微鏡にて50〜100倍で観察し、写真撮影を行い、上述の方法で、ターゲットの平均結晶粒径と最大結晶粒径を求めた。尚、前記顕微鏡観察では、結晶粒が容易に観察できるよう光学顕微鏡にて適宜偏光をかけた。これらの結果を表1に示す。
【0050】
次に得られた各ターゲットをそれぞれ用いて、DCマグネトロンスパッタリング法[Arガス圧:0.267Pa(2mTorr)、スパッタパワー:1000W、基板温度:室温]で、膜厚が平均1000Åの薄膜を直径12cmのガラス基板上に形成した。そして、得られた薄膜の任意の中心線の端から順に5箇所の膜厚を測定した。その結果を表1に併記する。
【0051】
更に得られた薄膜について、円板状の薄膜形成基板の任意の中心線の端から順に、X線マイクロアナリシス法(EPMA)で、合金元素の含有量分布を測定したところ、図5に示す結果が得られた。
【0052】
【表1】

Figure 2004084065
【0053】
これらの結果より、本発明の要件を満たすターゲットをスパッタリングすれば、膜厚分布が一定で、安定した特性を発揮し得る銀合金薄膜が得られることがわかる。尚、上記成分組成のターゲットの場合、上記図5から、本発明例と比較例とで成分組成分布の相違はほとんどみられなかった。
【0054】
実施例2
・銀合金材:Ag−0.8at%Y−1.0at%Au
・製造方法:
▲1▼本発明例
真空誘導溶解→鋳造(金型を用いて円柱状インゴットを製造)→熱間鍛造(700℃、加工率30%、スラブを製造)→冷間圧延(加工率50%)→熱処理(550℃×1.5時間)→機械加工(実施例1と同じ形状に加工)
▲2▼比較例
真空誘導溶解→鋳造(金型を用いて円柱状インゴットを製造)→熱間鍛造(650℃、加工率60%、スラブを製造)→熱処理(400℃×1時間)→機械加工(実施例1と同じ形状に加工)
得られたターゲットについて、実施例1と同様にして結晶配向強度を測定し、最も高い結晶配向強度(X)を示す方位、2番目に高い結晶配向強度(X)を示す方位、および各測定箇所における最も高い結晶配向強度(X)と2番目に高い結晶配向強度(X)との強度比(X/X)のばらつきを求めた。
【0055】
また得られたターゲットの金属組織を前記実施例1と同様にして調べた。尚、本実施例で用いた銀合金材は、結晶粒界/結晶粒内に銀と合金元素の化合物相が存在するものであり、該化合物相のサイズは次の様にして調べた。
【0056】
即ち、前記結晶粒径の測定と同様の試料の観察面を研磨後、化合物の輪郭を明確にするため硝酸等で試料表面を腐食するなど適当なエッチングを施した後、上述した通り、光学顕微鏡にて100〜200倍で任意に5箇所以上を観察し、全視野で合計20mmの範囲内に存在する各化合物相の円相当直径を求め、その平均値を得た。また該合計視野における最大化合物相の円相当直径を求めた。
【0057】
上記化合物相を認識し難い場合には、前記光学顕微鏡観察の代わりにEPMAによる面分析(マッピング)を行い、通常の画像解析法で該化合物相サイズの平均値および最大値を求めるようにしてもよい。これらの結果を表2に示す。
【0058】
次に得られた各ターゲットを用いて、前記実施例1と同様にして薄膜を形成し、得られた薄膜の膜厚分布と成分組成分布を評価した。膜厚分布を表2に示し、成分組成分布を図6に示す。
【0059】
【表2】
Figure 2004084065
【0060】
これらの結果より、本発明の要件を満たすターゲットをスパッタリングすれば、膜厚分布が一定で、安定した特性を発揮し得る銀合金薄膜が得られることがわかる。また図6から、ターゲットの結晶粒径を本発明で好ましい範囲内とすれば、成分組成分布のより均一な薄膜を形成できることがわかる。
【0061】
実施例3
・銀合金材:Ag−0.4at%Nd−0.5at%Cu
・製造方法:
▲1▼本発明例
真空誘導溶解→鋳造(金型を用いて円柱状インゴットを製造)→熱間鍛造(700℃、加工率35%、スラブを製造)→冷間圧延(加工率50%)→熱処理(550℃×1時間)→機械加工(実施例1と同じ形状に加工)
▲2▼比較例
真空誘導溶解→鋳造(金型を用いて円柱状インゴットを製造)→熱処理(500℃×1時間)→機械加工(実施例1と同じ形状に加工)
得られたターゲットについて、実施例1と同様に結晶配向強度を測定し、最も高い結晶配向強度(X)を示す方位、2番目に高い結晶配向強度(X)を示す方位、および各測定箇所における最も高い結晶配向強度(X)と2番目に高い結晶配向強度(X)の強度比(X/X)のばらつきを求めた。また得られたターゲットの金属組織を前記実施例1および2と同様にして調べた。これらの結果を表3に示す。
【0062】
更に得られた各ターゲットを用い、前記実施例1と同様にして薄膜を形成し、得られた薄膜の膜厚分布および成分組成分布を評価した。膜厚分布を表3に示し、成分組成分布を図7に示す。
【0063】
【表3】
Figure 2004084065
【0064】
これらの結果より、本発明の要件を満たすターゲットをスパッタリングすれば、膜厚分布および成分組成分布が一定で、安定した特性を発揮し得る銀合金薄膜が得られることがわかる。
【0065】
実施例4
次に、表4に示す成分組成の銀合金材料を用い、表4に示す種々の方法でターゲットを製造して、得られたターゲットの結晶配向強度を前記実施例1と同様にして測定し、最も高い結晶配向強度(X)を示す方位、2番目に高い結晶配向強度(X)を示す方位、および各測定箇所における最も高い結晶配向強度(X)と2番目に高い結晶配向強度(X)との強度比(X/X)のばらつきを求めた。更に、得られたターゲットの金属組織を前記実施例1および2と同様にして調べた。
【0066】
また各ターゲットを用いて、前記実施例1と同様に薄膜を形成し、得られた薄膜の膜厚分布および成分組成分布を評価した。
【0067】
本実施例では、膜厚分布の評価を、形成された薄膜の任意の中心線の端から順に5箇所の膜厚を測定して最小膜厚と最大膜厚の比(最小膜厚/最大膜厚)を求めて行い、該比が0.90以上の場合を膜厚がほぼ均一であると判断した。また、成分組成分布については次の様にして評価した。即ち、銀と合金元素1種類の2元系銀合金の場合には、薄膜の任意の中心線の端から順に5箇所の合金元素の含有量を求めて、合金元素の(含有量最小値/含有量最大値)で成分組成分布の評価を行い、また銀と合金元素2種類の3元系銀合金の場合には、該2種の合金元素のうち(含有量最小値/含有量最大値)の最低値を示す合金元素の(含有量最小値/含有量最大値)で評価を行い、該比が0.90以上の場合を成分組成分布がほぼ均一であると判断した。これらの測定結果を表5に示す。
【0068】
【表4】
Figure 2004084065
【0069】
【表5】
Figure 2004084065
【0070】
表4および表5から次のように考察することができる。尚、以下のNo.は表4および表5における実験No.を示す。
【0071】
No.1〜7のターゲットは、本発明の要件を満足するものであることから、スパッタリング法で薄膜の形成に用いた場合に、膜厚分布および成分組成分布が均一で、安定した高反射率、優れた熱伝導性等の特性を発揮し得る薄膜が得られたことがわかる。尚、最も高い結晶配向強度(X)を示す方位が4測定箇所で同一であることに加えて、2番目に高い結晶配向強度(X)を示す方位も4測定箇所で同一であるターゲットの場合には、膜厚分布のより均一な薄膜が得られることがわかる。
【0072】
これに対し、No.8〜10は、本発明の要件を満足せず、最も高い結晶配向強度(X)を示す方位が測定箇所全てにおいて同一でなく、各測定箇所における最も高い結晶配向強度(X)と2番目に高い結晶配向強度(X)の強度比(X/X)のばらつきが大きく、また結晶粒径も大きいため、得られた薄膜はいずれも膜厚分布や成分組成分布が一定でなく、安定した前記特性の発揮を期待することができない。
【0073】
実施例5
・銀合金材:Ag−0.4at%Nd−0.5at%Cu
・製造方法:
▲1▼本発明例
誘導溶解(Ar雰囲気)→鋳造(金型を用いて板状に鋳造)→熱間圧延(圧延開始時の温度650℃、加工率70%)→冷間圧延(加工率50%)→熱処理(500℃×2時間)→機械加工(直径200mm、厚さ6mmの円板形状)
▲2▼比較例
誘導溶解(Ar雰囲気)→鋳造(金型を用いて板状に鋳造)→熱間圧延(圧延開始時の温度700℃、加工率40%)→熱処理(500℃×1時間)→機械加工(直径200mm、厚さ6mmの円板形状)
得られたターゲットの結晶配向強度を実施例1と同様にして測定して、最も高い結晶配向強度(X)を示す方位、2番目に高い結晶配向強度(X)を示す方位、および各測定箇所における最も高い結晶配向強度(X)と2番目に高い結晶配向強度(X)との強度比(X/X)のばらつきを求めた。更に、得られたターゲットの金属組織を前記実施例1および2と同様にして調べた。これらの結果を表6に示す。
【0074】
また該ターゲットを用い、前記実施例1と同様の方法で薄膜を形成し、得られた薄膜の膜厚分布および成分組成分布を前記実施例1と同様にして評価した。薄膜の膜厚分布を下記表6に示し、成分組成分布を図8に示す。
【0075】
【表6】
Figure 2004084065
【0076】
これらの結果より、本発明の要件を満たす金属組織のターゲットをスパッタリングに用いると、薄膜面内の膜厚分布が一定であり、安定した特性を発揮し得る銀合金薄膜が得られることがわかる。尚、図8から、本発明例のターゲットの成分組成分布は比較例よりも均一であることがわかる。
【0077】
実施例6
・銀合金材:Ag−0.8at%Y−1.0at%Au
・製造方法:
▲1▼本発明例
真空誘導溶解→鋳造(金型を用いて円柱状インゴットを製造)→熱間鍛造(700℃、加工率35%)→熱間加工(圧延開始時の温度700℃、加工率35%)→冷間圧延(加工率50%)→熱処理(550℃×1.5時間)→機械加工(実施例1と同じ形状に加工)
▲2▼比較例
真空誘導溶解→鋳造(金型を用いて円柱状インゴットを製造)→熱間鍛造(650℃、加工率40%、円柱状に成形)→熱処理(400℃×1時間)→機械加工(実施例1と同じ形状に加工)
得られたターゲットの結晶配向強度を前記実施例1と同様にして測定し、最も高い結晶配向強度(X)を示す方位、2番目に高い結晶配向強度(X)を示す方位、および各測定箇所における最も高い結晶配向強度(X)と2番目に高い結晶配向強度(X)との強度比(X/X)のばらつきを求めた。更に、得られたターゲットの金属組織を実施例1および2と同様にして調べた。これらの結果を表7に示す。
【0078】
また得られた各ターゲットを用いて、前記実施例1と同様の方法で薄膜を形成し、得られた薄膜の膜厚分布および成分組成分布を評価した。薄膜の膜厚分布を下記表7に示し、成分組成分布を図9に示す。
【0079】
【表7】
Figure 2004084065
【0080】
これらの結果より、本発明の要件を満たす金属組織のターゲットをスパッタリングすると、膜厚分布および成分組成分布が一定で、安定した特性を発揮し得る銀合金薄膜が得られることがわかる。
【0081】
実施例7
・銀合金材:Ag−0.5at%Ti
・製造方法:
▲1▼本発明例
真空誘導溶解→鋳造(金型を用いて円柱状インゴットを製造)→熱間鍛造(700℃、加工率25%)→熱間圧延(圧延開始時の温度650℃、加工率40%)→冷間圧延(加工率50%)→熱処理(550℃×1時間)→機械加工(実施例1と同じ形状に加工)
▲2▼比較例
真空誘導溶解→鋳造(金型を用いて円柱状インゴットを製造)→熱処理(500℃×1時間)→機械加工(実施例1と同じ形状に加工)
実施例1と同様にして得られたターゲットの結晶配向強度を測定し、最も高い結晶配向強度(X)を示す方位、2番目に高い結晶配向強度(X)を示す方位、および各測定箇所における最も高い結晶配向強度(X)と2番目に高い結晶配向強度(X)との強度比(X/X)のばらつきを求めた。更に、得られたターゲットの金属組織を前記実施例1および2と同様にして調べた。これらの結果を表8に示す。
【0082】
また得られた各ターゲットを用い、前記実施例1と同様の方法で薄膜を形成し、得られた薄膜の膜厚分布および成分組成分布を前記実施例1と同様にして測定した。薄膜の膜厚分布を下記表8に示し、成分組成分布を図10に示す。
【0083】
【表8】
Figure 2004084065
【0084】
これらの結果より、本発明の要件を満たす金属組織のターゲットをスパッタリングすると、膜厚分布および成分組成分布が一定で、安定した特性を発揮し得る銀合金薄膜が得られることがわかる。
【0085】
実施例8
次に、表9に示す成分組成の銀合金材料を用い、表9に示す種々の方法でターゲットを製造し、前記実施例1と同様にして、得られたターゲットの最も高い結晶配向強度(X)を示す方位、2番目に高い結晶配向強度(X)を示す方位、および各測定箇所における最も高い結晶配向強度(X)と2番目に高い結晶配向強度(X)との強度比(X/X)のばらつきを求めた。更に、得られたターゲットの金属組織を前記実施例1および2と同様にして調べた。これらの結果を表10に示す。
【0086】
また該ターゲットを用い、前記実施例1と同様の方法で薄膜を形成し、得られた薄膜の膜厚分布および成分組成分布を前記実施例4と同様にして評価した。
【0087】
【表9】
Figure 2004084065
【0088】
【表10】
Figure 2004084065
【0089】
表9および表10から次のように考察することができる。尚、以下のNo.は表9および表10における実験No.を示す。
【0090】
No.1〜7のターゲットは、本発明の要件を満足するものであることから、スパッタリング法で薄膜の形成に用いた場合に、膜厚分布および成分組成分布が均一で、安定した高反射率、高熱伝導率等の特性を発揮しうる薄膜が得られていることがわかる。これに対し、No.8,9は、本発明の要件を満足するものでなく、得られた薄膜は、いずれも膜厚分布や組成分布が均一でなく、安定した前記特性の発揮を期待することができない。
【0091】
実施例9
本発明者らは、更に表11に示す成分組成の銀合金材料を用い、表11に示す種々の方法でターゲットを製造し、得られたターゲットの最も高い結晶配向強度(X)を示す方位、2番目に高い結晶配向強度(X)を示す方位、および各測定箇所における最も高い結晶配向強度(X)と2番目に高い結晶配向強度(X)との強度比(X/X)のばらつきを求めた。更に、得られたターゲットの金属組織を前記実施例1および2と同様にして調べた。これらの結果を表12に示す。
【0092】
また得られた各ターゲットを用いて、前記実施例1と同様の方法で薄膜を形成し、得られた薄膜の膜厚分布および成分組成分布を前記実施例4と同様に評価した。
【0093】
【表11】
Figure 2004084065
【0094】
【表12】
Figure 2004084065
【0095】
表11および表12から次のように考察することができる。尚、以下のNo.は表11および表12における実験No.を示す。
【0096】
No.1〜5のターゲットは、本発明の要件を満足するものであることから、スパッタリング法で薄膜の形成に用いた場合に、膜厚分布および成分組成分布が均一で、安定した高反射率、高熱伝導率等の特性を発揮しうる薄膜が得られた。
【0097】
特に、結晶配向とともに、ターゲットの結晶粒径や結晶粒界/結晶粒内の銀と合金元素との化合物相を、本発明で好ましいとする範囲内に制御すれば、膜厚分布や成分組成分布のより均一な薄膜を形成できることがわかる。
【0098】
これに対し、No.6,7は、本発明の要件を満足するものでなく、得られた薄膜は、いずれも膜厚分布や成分組成分布が均一でなく、安定した前記特性の発揮を期待することができない。
【0099】
【発明の効果】
本発明は上記のように構成されており、膜厚分布や成分組成分布の均一な銀合金薄膜をスパッタリング法で形成するのに有用なターゲットを提供するものである。この様なターゲットを用い、スパッタリング法で形成された銀合金薄膜は、安定した高反射率や高熱伝導率等の特性を発揮し、片面2層構造のDVDにおける半透過反射膜や次世代光学記録媒体の反射膜といった光学記録媒体の反射膜や、反射型液晶ディスプレイの電極・反射膜等に適用した場合に、これらの性能をより高めることができる。
【図面の簡単な説明】
【図1】ターゲットの平均結晶粒径を光学顕微鏡観察写真から求める方法を示す図である。
【図2】本発明で規定する熱処理条件の範囲を示す図である。
【図3】実施例1の本発明例で得られたターゲットのX線回折法による結晶配向強度の測定結果を示す図である。
【図4】実施例1の比較例で得られたターゲットのX線回折法による結晶配向強度の測定結果を示す図である。
【図5】実施例1にて得られたAg合金薄膜中の合金元素の含有量分布(成分組成分布)を示す図である。
【図6】実施例2にて得られたAg合金薄膜中の合金元素の含有量分布(成分組成分布)を示す図である。
【図7】実施例3にて得られたAg合金薄膜中の合金元素の含有量分布(成分組成分布)を示す図である。
【図8】実施例5にて得られたAg合金薄膜中の合金元素の含有量分布(成分組成分布)を示す図である。
【図9】実施例6にて得られたAg合金薄膜中の合金元素の含有量分布(成分組成分布)を示す図である。
【図10】実施例7にて得られたAg合金薄膜中の合金元素の含有量分布(成分組成分布)を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a silver alloy sputtering target used when forming a thin film by a sputtering method, and more particularly, to a silver alloy sputtering target capable of forming a thin film having a uniform thickness and composition.
[0002]
[Prior art]
A thin film of pure silver or a silver alloy has characteristics of high reflectivity and low electric resistivity, and is therefore applied to a reflective film of an optical recording medium, an electrode and a reflective film of a reflective liquid crystal display, and the like.
[0003]
However, the pure silver thin film is easily oxidized when exposed to air for a long time or exposed to high temperature and high humidity, and silver crystal grains grow and silver atoms aggregate. Phenomena such as this are likely to occur, and as a result, problems such as deterioration of conductivity, decrease of reflectance, and deterioration of adhesion to a substrate occur. Therefore, recently, many attempts have been made to improve the corrosion resistance and the like by adding alloying elements while maintaining the high reflectance inherent in pure silver. Along with such improvement of the thin film, studies are also being made on a target used for forming a silver alloy thin film. For example, Patent Document 1 discloses that a main component of Ag is Pd and Pd is set at 0 to improve weather resistance. Plural elements selected from the group consisting of Al, Au, Pt, Cu, Ta, Cr, Ti, Ni, Co, and Si so as to contain from 1 to 3 wt% and further suppress an increase in electric resistivity due to addition of Pd. Is contained in a range of 0.1 to 3 wt% as one of the metal materials for electronic components.
[0004]
Patent Document 2 discloses that 0.1 to 2.5 at% of gold is added to prevent adverse effects due to oxygen or the like in a gas atmosphere at the time of sputtering, and to improve moisture resistance. Silver alloy sputtering target containing copper in the range of 0.3 to 3 at% or copper / silicon sputtering target composed of a composite metal in which gold and copper are buried in a part of the silver target so as to have the above ratio is proposed. Have been.
[0005]
Furthermore, Patent Document 3 discloses a sputtering target of silver or a silver alloy, in which the target has a crystal structure of a face-centered cubic structure in order to increase the sputtering rate of the target during film formation by sputtering and perform sputtering efficiently. In addition, it has been proposed that the crystal orientation should be 2.20 or more in ((111) + (200)) / (220) plane orientation ratio.
[0006]
By the way, when a thin film formed by a sputtering method is used as a transflective film in a DVD having a single-sided two-layer structure, for example, the film thickness is as thin as about 100 °, and the uniformity of the film thickness is high. Since it greatly affects characteristics such as transmittance and transmittance, it is particularly important to form a thin film having a more uniform thickness. In addition, when used as a reflective film for next-generation optical recording media, heat due to laser power during recording must be quickly conducted, so that not only excellent optical characteristics but also thermal conductivity is uniform in the plane and Although high properties are also required, in order to satisfy the above-mentioned characteristics, it is required that the thickness of the thin film be uniform and that the component composition of the thin film be uniform.
[0007]
In forming a thin film used as a reflective film or a semi-transmissive reflective film of an optical recording medium by a sputtering method as described above, even if the composition of the target and the crystal orientation ratio are controlled as in the prior art, the optical recording medium is Since it is not possible to reliably obtain a thin film having a uniform film thickness and component composition that can exhibit characteristics such as high reflectivity and high thermal conductivity as a reflective film, further improvement of the target is considered necessary.
[0008]
[Patent Document 1]
JP 2001-192752 A
[Patent Document 2]
JP-A-9-324264
[Patent Document 3]
JP 2000-239835 A
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a silver alloy sputtering target that is useful for forming a thin film having a uniform thickness and a uniform component composition by a sputtering method. is there.
[0010]
[Means for Solving the Problems]
With the silver alloy sputtering target according to the present invention, the crystal orientation strength at any four locations is determined by X-ray diffraction, and the highest crystal orientation strength (Xa) Are the same at the four measurement points, and the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) And the intensity ratio (Xb/ XaThe characteristic feature is that the variation in (1) is 20% or less at four measurement points. The second highest crystal orientation strength (XbThe preferred form is that the azimuth indicated by ()) is the same at four measurement points.
[0011]
In addition, the "highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) Intensity ratio (Xb/ Xa)) Is obtained as follows. That is, the crystal orientation intensity was determined by X-ray diffraction at four arbitrary locations, and the highest crystal orientation intensity (Xa) And the second highest crystal orientation strength (Xb) Intensity ratio (Xb/ Xa) Average of four measurement points: AVE (Xb/ Xa). Next, (Xb/ Xa) Is the maximum value of MAX (Xb/ Xa) And (Xb/ Xa) Is the minimum value of MIN (Xb/ XaThe larger one of the absolute values of the following (2) or (3) obtained as ()) is indicated by%.
| MAX (Xb/ Xa) -AVE (Xb/ Xa) | / AVE (Xb/ Xa)… (2)
| MIN (Xb/ Xa) -AVE (Xb/ Xa) | / AVE (Xb/ Xa)… (3)
In addition, the silver alloy sputtering target of the present invention has an average crystal grain size of 100 μm or less, and if the maximum crystal grain size satisfies 200 μm or less, characteristics of a thin film formed using the target become uniform. preferable. In particular, in the case of a silver alloy sputtering target in which a compound phase of silver and an alloy element is present in a crystal grain boundary or / and a crystal grain, the equivalent circle diameter of the compound phase is 30 μm or less on average, and It is preferable that the maximum value of the diameter is 50 μm or less.
[0012]
The “average crystal grain size” is determined by the following measuring method. That is, {circle around (1)} a plurality of straight lines are drawn from the edge to the end of the microscopic photograph as shown in FIG. The number of straight lines is desirably four or more from the viewpoint of quantitative accuracy, and the way of drawing straight lines can be, for example, a cross-girder shape as shown in FIG. 1 (a) or a radial shape as shown in FIG. 1 (b). Next, (2) the number n of crystal grain boundaries on a straight line is measured. (3) An average crystal grain size d is obtained from the following equation (4), and an average value is obtained from a plurality of straight lines d.
[0013]
d = L / n / m (4)
[In the formula, d indicates an average crystal grain size obtained from one straight line, L indicates the length of one straight line, n indicates the number of grain boundaries on one straight line, and m indicates the number of grain boundaries on one straight line. Indicates magnification]
In addition, the “maximum crystal grain size” is obtained by observing arbitrarily five or more places in a visual field of an optical microscope of 50 to 100 times, and a total2Is determined by converting the particle size of the largest crystal within the range of the above into a circle equivalent diameter.
[0014]
The "average of the equivalent circle diameter of the compound phase of silver and the alloy element present in the crystal grain boundaries or / and the crystal grains" means arbitrarily observing five or more places in a visual field of an optical microscope of 100 to 200 times, 20mm in total field of view2Are converted into circle equivalent diameters, and the average value of these is calculated. The “maximum equivalent circle diameter of the compound phase of silver and the alloying element” refers to the total of 20 mm2Means the circle-equivalent diameter of the largest compound phase within the range.
[0015]
The present invention also specifies a method for producing a silver alloy sputtering target satisfying the above specified crystal orientation, wherein cold working or warm working is performed at a working ratio of 30 to 70%, and thereafter, a holding temperature: 500 It is required that the heat treatment be performed under the conditions of -600 ° C and holding time: 0.75-3 hours. In addition, in order to obtain a silver alloy sputtering target having a small crystal grain size, the heat treatment is performed.
Holding temperature: 500-600 ° C, and
Retention time: It is recommended to perform within the range of the following formula (1).
[0016]
(−0.005 × T + 3.5) ≦ t ≦ (−0.01 × T + 8) (1)
[In the formula (1), T indicates a holding temperature (° C.) and t indicates a holding time (hour)]
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have developed a silver alloy sputtering target (hereinafter, sometimes simply referred to as a “target”) capable of forming a thin film having a uniform film thickness and component composition by sputtering under the above-described circumstances. The study was conducted from various viewpoints in order to obtain it. As a result, it has been found that controlling the crystal orientation of the target is particularly effective, and the present invention has been made. Hereinafter, the reason for defining the crystal orientation of the target in the present invention will be described in detail.
[0018]
First, according to the present invention, when the crystal orientation intensity at any four positions of the target is determined by the X-ray diffraction method, the highest crystal orientation intensity (Xa) Is an essential requirement that the azimuths indicated at the four points are the same.
[0019]
That is, in the present invention, the orientation showing the highest crystal orientation strength is not particularly defined, and any one of the (111) plane, the (200) plane, the (220) plane, and the (311) plane shows the highest crystal orientation strength. The orientation may be the same, but the orientation showing the highest crystal orientation intensity needs to be the same at any four measurement points. As described above, if the orientation showing the highest crystal orientation intensity at an arbitrary position is the same, the number of atoms reaching the substrate during sputtering becomes uniform in the substrate plane, and a thin film having a uniform film thickness can be obtained.
[0020]
Note that it is preferable that the orientation showing the highest crystal orientation strength be the (111) plane because the film formation rate during sputtering can be increased.
[0021]
Furthermore, the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) Intensity ratio (Xb/ Xa) Is preferably 20% or less at four measurement points.
[0022]
Even if the orientation showing the highest crystal orientation strength is the same at any position on the target as described above, the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) Intensity ratio (Xb/ XaThis is because, if the variation is too large, the number of atoms reaching the substrate during sputtering tends to be non-uniform in the substrate surface, and it is difficult to obtain a thin film having a uniform thickness. More preferably, the variation of the intensity ratio is 10% or less.
[0023]
If the variation is within a specified range at an arbitrary position on the target, the second highest crystal orientation intensity (Xb) May be different between measurement points, but the second highest crystal orientation intensity (XbIt is preferable that the orientations indicated in ()) be the same at the four measurement points, because the number of atoms reaching the substrate is likely to be uniform in the substrate surface, and a thin film having a uniform thickness is easily obtained.
[0024]
By controlling the crystal orientation in this way and controlling the crystal grain size of silver crystals and the size of the compound phase of silver and alloy elements present in the crystal grain boundaries and / or in the crystal grains, the film thickness and component composition can be obtained by sputtering. This is preferable because a uniform thin film can be formed.
[0025]
Specifically, it is preferable that the average crystal grain size of the target be 100 μm or less and the maximum crystal grain size be 200 μm or less.
[0026]
By using a target having a small average crystal grain size, a thin film having a uniform thickness can be easily formed, and as a result, the performance of an optical recording medium or the like can be improved. The average crystal grain size is more preferably 75 μm or less, and still more preferably 50 μm or less.
[0027]
Even when the average crystal grain size is 100 μm or less, the thickness of the formed thin film tends to be locally non-uniform when extremely large crystal grains exist. Therefore, in order to obtain an optical recording medium in which local deterioration of performance is suppressed, the crystal grain size of a target used for forming a thin film is preferably suppressed to 200 μm or less at the maximum, more preferably 150 μm or less, and further preferably 100 μm or less. It is as follows.
[0028]
In the case where a compound phase of silver and an alloy element exists in a crystal grain boundary or / and a crystal grain of the silver alloy sputtering target, the size of the compound phase is preferably controlled together.
[0029]
It is desirable that the size of the compound phase is smaller, because the component composition of the formed thin film is likely to be uniform. When the size of the compound phase is represented by a circle-equivalent diameter, the average is preferably 30 μm or less. More preferably, the average is 20 μm or less in terms of equivalent circle diameter.
[0030]
Even when the average size is 30 μm or less, when an extremely large compound phase is present, the discharge state of sputtering tends to be unstable, and it is difficult to obtain a thin film having a uniform component composition. Therefore, the maximum compound phase should have a circle equivalent diameter of 50 μm or less, more preferably 30 μm or less.
[0031]
It should be noted that the present invention does not specify the component composition or the like of the compound phase, but includes, for example, Ag present in an Ag—Nd-based alloy target.51Nd14And Ag2Ag present in Ag-Y based alloy target such as Nd51Y14And Ag2Ag and the like present in the Ag-Ti alloy target, such as Y, can be cited as the compound phase to be controlled.
[0032]
In order to obtain a target satisfying the above specified crystal orientation, it is preferable to perform cold working or warm working at a working ratio of 30 to 70% in the manufacturing process. By performing the cold working or the warm working in this way, it is possible to form the product into a substantially product shape, accumulate working strain, and recrystallize by a subsequent heat treatment to make the crystal orientation uniform.
[0033]
If the working ratio is less than 30%, the amount of strain to be imparted is insufficient, so that even if heat treatment is performed thereafter, recrystallization is only partially performed, and uniform crystal orientation cannot be sufficiently achieved. Preferably, cold working or warm working is performed at a working ratio of 35% or more. On the other hand, if the working ratio exceeds 70%, the recrystallization rate during the heat treatment becomes too fast, and in this case, as a result, the crystal orientation tends to vary. Preferably, it is performed in the range of a processing rate of 65% or less.
[0034]
In addition, the said processing rate means [(size of material before processing-dimension of material after processing) / size of material before processing] x 100 (%) (the same applies hereinafter). When forging or rolling is performed to produce a plate-like product, the working ratio can be calculated using the plate thickness as the “dimension”. Further, when manufacturing a plate-shaped material using a cylindrical material, the calculation method of the processing rate is different depending on the processing method, for example, when forging or rolling by applying a force in the height direction of the cylindrical material The processing rate can be calculated from [(height of columnar material before processing−thickness of plate material after processing) / height of columnar material before processing] × 100 (%). Further, when forging or rolling is performed by applying a force in the radial direction of the columnar material, [((diameter of columnar material before processing−thickness of plate material after processing) / columnar material before processing) The processing rate can be obtained from [diameter of] × 100 (%).
[0035]
After cold working or warm working, heat treatment is performed under the conditions of a holding temperature of 500 to 600 ° C. and a holding time of 0.75 to 3 hours. By performing the heat treatment in this manner, the crystal orientation can be made uniform.
[0036]
When the holding temperature is lower than 500 ° C., the time required for recrystallization increases, while when the holding temperature exceeds 600 ° C., the recrystallization speed increases, and when the distortion amount of the material varies, In addition, recrystallization is promoted at a portion where the amount of strain is large, and it becomes difficult to obtain a uniform crystal orientation, which is not preferable. More preferably, the heat treatment is performed in the range of 520 to 580 ° C.
[0037]
Further, even when the holding temperature is within the proper range, if the holding time is too short, the recrystallization is not sufficiently performed, while if the holding time is too long, the recrystallization proceeds too much, and a uniform crystal orientation is obtained. It is difficult to obtain. Therefore, the holding time is preferably set in the range of 0.75 to 3 hours.
[0038]
In order to achieve finer grains,
Holding temperature: 500-600 ° C (more preferably 520-580 ° C), and
Holding time: It is preferable to perform the heat treatment within the range of the following formula (1).
[0039]
(−0.005 × T + 3.5) ≦ t ≦ (−0.01 × T + 8) (1)
[In the formula (1), T indicates a holding temperature (° C.) and t indicates a holding time (hour)]
It is recommended that the holding time be within the range defined by the following formula (5), particularly within the range of the above formula (1). FIG. 2 shows a preferable range and a more preferable range of the holding time and the holding temperature in the heat treatment.
[0040]
(−0.005 × T + 3.75) ≦ t ≦ (−0.01 × T + 7.5) (5)
[In the formula (5), T indicates a holding temperature (° C.) and t indicates a holding time (hour)]
In the present invention, other conditions in the production of the target are not strictly specified. For example, the target can be obtained as follows. That is, after a silver alloy material having a predetermined component composition is melted and cast to obtain an ingot, hot working such as hot forging or hot rolling is performed as necessary. Next, as one of the recommended methods, it is recommended to perform cold working or warm working and heat treatment under the above-described conditions, and then perform machining to obtain a predetermined shape.
[0041]
The melting of the silver alloy material may be performed by air melting using a resistance heating electric furnace or induction melting in a vacuum or inert atmosphere. Since the molten silver alloy has high oxygen solubility, it is necessary to sufficiently prevent oxidation by using a graphite crucible and covering the surface of the molten metal with a flux in the case of the above-mentioned melting in the atmosphere. From the viewpoint of preventing oxidation, the dissolution is preferably performed in a vacuum or an inert atmosphere. In addition, the casting method is not particularly limited, and not only casting performed using a mold or a graphite mold, but also slow cooling casting using a refractory or a sand mold, provided that it does not react with a silver alloy material. It is also possible to apply
[0042]
Although hot working is not indispensable, hot forging or hot rolling may be performed as necessary, for example, when a columnar shape is formed into a rectangular parallelepiped or plate shape. However, the working rate in the hot working needs to be within a range where a specified working rate can be secured in the next step of cold working or warm working. If the cold working or the warm working is insufficient, the strain is insufficient and recrystallization cannot be achieved, and as a result, the crystal orientation is not uniform. Other conditions for performing the hot working are not particularly limited, and the working temperature and the working time may be within the range usually performed.
[0043]
As for these manufacturing conditions, it is desirable to conduct preliminary experiments in advance in operation and to determine optimum processing and heat treatment conditions according to the type and the addition amount of alloy elements.
[0044]
Although the present invention does not specify the component composition of the target, it is recommended to use, for example, one having the following component composition in obtaining the target.
[0045]
That is, as described above, the target of the present invention is one in which the following elements are added based on silver, and as an alloying element, the crystal grain size of the formed thin film is reduced, and the target is stabilized against heat. The effective Nd is 1.0 at% or less (meaning of atomic ratio, the same applies hereinafter), the rare earth element (Y etc.) exhibiting the same effect as Nd is 1.0 at% or less, and the corrosion resistance of the formed thin film is reduced Au having an effect of improving the content is 2.0 at% or less, and Cu having the effect of improving the corrosion resistance of the obtained thin film is within a range of 2.0 at% or less, similarly to Au. It is preferable that one or two or more kinds of Zn are added. In addition, the target of the present invention may contain impurities and the like caused by a raw material used for manufacturing the target or an atmosphere at the time of manufacturing the target within a range that does not affect the formation of the crystal structure defined by the present invention. .
[0046]
The target of the present invention can be applied to any sputtering method such as a DC sputtering method, an RF sputtering method, a magnetron sputtering method, and a reactive sputtering method, and is effective for forming a silver alloy thin film of about 20 to 5000 °. . Note that the shape of the target may be appropriately changed in design according to the sputtering apparatus to be used.
[0047]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples. However, the present invention is not limited to the following Examples, and may be appropriately modified within a range that can be adapted to the purpose of the preceding and the following. The present invention can be implemented, and all of them are included in the technical scope of the present invention.
[0048]
Example 1
-Silver alloy material: Ag-1.0at% Cu-0.7at% Au
·Production method:
(1) Example of the present invention
Induction melting (Ar atmosphere) → Casting (casting into a plate using a mold) → Cold rolling (working rate 50%) → Heat treatment (520 ° C × 2 hours) → Machining (200 mm diameter, 6 mm thick circle) Plate shape)
(2) Comparative example
Induction melting (Ar atmosphere) → Casting (casting into a plate using a mold) → Hot rolling (temperature at the start of rolling 700 ° C, working ratio 70%) → Heat treatment (500 ° C × 1 hour) → Machining ( (Disc shape with a diameter of 200 mm and a thickness of 6 mm)
The crystal orientation of the obtained target was examined as follows. That is, X-ray diffraction was performed at any four locations on the target surface under the following conditions, and the crystal orientation intensity was examined. The measurement results of FIG. 3 were obtained for the present invention, and the measurement results of FIG. was gotten. From these measurement results, the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb), And as described above, the highest crystal orientation intensity (Xa) And the second highest crystal orientation strength (Xb) Intensity ratio (Xb/ Xa) Was determined. The highest crystal orientation strength (XaIn the case where the azimuths indicated by ()) are different at four positions, the above-mentioned variation is not obtained (the same applies to the following examples).
[0049]
X-ray diffraction device: RINT 1500 manufactured by Rigaku Denki
Target: Cu
Tube voltage: 50 kV
Tube current: 200 mA
Scanning speed: 4 ° / min
Sample rotation: 100 times / min
The metal structure of the obtained target was examined as follows. That is, a cubic sample of 10 mm × 10 mm × 10 mm is collected from the target after machining, the observation surface is polished, observed with an optical microscope at a magnification of 50 to 100 times, photographed, and the above-mentioned method is used. The average crystal grain size and the maximum crystal grain size of the target were determined. In the microscopic observation, polarized light was appropriately applied with an optical microscope so that the crystal grains could be easily observed. Table 1 shows the results.
[0050]
Next, using each of the obtained targets, a thin film having an average thickness of 1000 mm was formed by a DC magnetron sputtering method (Ar gas pressure: 0.267 Pa (2 mTorr), sputtering power: 1000 W, substrate temperature: room temperature) with a diameter of 12 cm. Formed on a glass substrate. The thickness of the obtained thin film was measured at five points in order from the end of an arbitrary center line. The results are also shown in Table 1.
[0051]
Further, the obtained thin film was subjected to X-ray microanalysis (EPMA) to measure the content distribution of alloy elements in order from the end of an arbitrary center line of the disk-shaped thin film forming substrate. was gotten.
[0052]
[Table 1]
Figure 2004084065
[0053]
From these results, it can be seen that, when a target satisfying the requirements of the present invention is sputtered, a silver alloy thin film having a constant film thickness distribution and exhibiting stable characteristics can be obtained. In the case of the target having the above-mentioned component composition, from FIG. 5, there was almost no difference in the component composition distribution between the present invention example and the comparative example.
[0054]
Example 2
-Silver alloy material: Ag-0.8at% Y-1.0at% Au
·Production method:
(1) Example of the present invention
Vacuum induction melting → Casting (manufacturing a cylindrical ingot using a mold) → Hot forging (700 ° C, working rate 30%, manufacturing slab) → cold rolling (working rate 50%) → heat treatment (550 ° C × 1.5 hours) → Machining (working into the same shape as in Example 1)
(2) Comparative example
Vacuum induction melting → casting (manufacturing a cylindrical ingot using a mold) → hot forging (650 ° C, working rate 60%, manufacturing a slab) → heat treatment (400 ° C × 1 hour) → machining (Example 1) Processed into the same shape as
The crystal orientation intensity of the obtained target was measured in the same manner as in Example 1, and the highest crystal orientation intensity (Xa), The second highest crystal orientation strength (Xb), And the highest crystal orientation intensity (Xa) And the second highest crystal orientation strength (Xb) And the intensity ratio (Xb/ Xa) Was determined.
[0055]
The metal structure of the obtained target was examined in the same manner as in Example 1. The silver alloy material used in this example had a compound phase of silver and an alloy element in the crystal grain boundaries / crystal grains, and the size of the compound phase was examined as follows.
[0056]
That is, after polishing the observation surface of the sample in the same manner as in the measurement of the crystal grain size, after performing appropriate etching such as corroding the sample surface with nitric acid or the like in order to clarify the contour of the compound, the optical microscope is used as described above. Observation of 5 or more positions at 100 to 200 times with a total of 20 mm in all visual fields2The equivalent circle diameter of each compound phase present in the range was determined, and the average value was obtained. The circle equivalent diameter of the largest compound phase in the total visual field was determined.
[0057]
When it is difficult to recognize the compound phase, a surface analysis (mapping) by EPMA is performed instead of the optical microscope observation, and the average value and the maximum value of the compound phase size are obtained by a normal image analysis method. Good. Table 2 shows the results.
[0058]
Next, using each of the obtained targets, a thin film was formed in the same manner as in Example 1, and the film thickness distribution and the component composition distribution of the obtained thin film were evaluated. The film thickness distribution is shown in Table 2, and the component composition distribution is shown in FIG.
[0059]
[Table 2]
Figure 2004084065
[0060]
From these results, it can be seen that, when a target satisfying the requirements of the present invention is sputtered, a silver alloy thin film having a constant film thickness distribution and exhibiting stable characteristics can be obtained. FIG. 6 shows that a thin film having a more uniform component composition distribution can be formed when the crystal grain size of the target is within the preferable range in the present invention.
[0061]
Example 3
・ Silver alloy material: Ag-0.4at% Nd-0.5at% Cu
·Production method:
(1) Example of the present invention
Vacuum induction melting → Casting (manufacturing a cylindrical ingot using a mold) → Hot forging (700 ° C, working rate 35%, manufacturing slab) → cold rolling (working rate 50%) → heat treatment (550 ° C x 1 hour) → Machining (Processing to the same shape as in Example 1)
(2) Comparative example
Vacuum induction melting → Casting (manufacturing a cylindrical ingot using a mold) → Heat treatment (500 ° C. × 1 hour) → Machining (working into the same shape as in Example 1)
The crystal orientation strength of the obtained target was measured in the same manner as in Example 1, and the highest crystal orientation strength (Xa), The second highest crystal orientation strength (Xb), And the highest crystal orientation intensity (Xa) And the second highest crystal orientation strength (Xb) Intensity ratio (Xb/ Xa) Was determined. The metal structure of the obtained target was examined in the same manner as in Examples 1 and 2. Table 3 shows the results.
[0062]
Further, using each of the obtained targets, a thin film was formed in the same manner as in Example 1, and the film thickness distribution and the component composition distribution of the obtained thin film were evaluated. Table 3 shows the film thickness distribution, and FIG. 7 shows the component composition distribution.
[0063]
[Table 3]
Figure 2004084065
[0064]
From these results, it can be understood that, when a target satisfying the requirements of the present invention is sputtered, a silver alloy thin film having a constant film thickness distribution and component composition distribution and capable of exhibiting stable characteristics can be obtained.
[0065]
Example 4
Next, using a silver alloy material having a component composition shown in Table 4, a target was manufactured by various methods shown in Table 4, and the crystal orientation strength of the obtained target was measured in the same manner as in Example 1 above. The highest crystal orientation strength (Xa), The second highest crystal orientation strength (Xb), And the highest crystal orientation intensity (Xa) And the second highest crystal orientation strength (Xb) And the intensity ratio (Xb/ Xa) Was determined. Further, the metal structure of the obtained target was examined in the same manner as in Examples 1 and 2.
[0066]
Using each target, a thin film was formed in the same manner as in Example 1, and the film thickness distribution and the component composition distribution of the obtained thin film were evaluated.
[0067]
In this embodiment, the film thickness distribution is evaluated by measuring the film thickness at five points in order from the end of an arbitrary center line of the formed thin film and determining the ratio of the minimum film thickness to the maximum film thickness (minimum film thickness / maximum film thickness). The thickness was determined, and when the ratio was 0.90 or more, the film thickness was determined to be substantially uniform. The component composition distribution was evaluated as follows. That is, in the case of a binary silver alloy of silver and one alloying element, the content of the alloying element at five places is determined in order from the end of an arbitrary center line of the thin film, and the (content minimum value / The component composition distribution is evaluated based on the maximum value of the content. In the case of a ternary silver alloy containing two kinds of silver and alloying elements, of the two alloy elements, (minimum content / maximum content) The evaluation was made based on (minimum content / maximum content) of the alloying element showing the lowest value of ()), and it was judged that the component composition distribution was almost uniform when the ratio was 0.90 or more. Table 5 shows the measurement results.
[0068]
[Table 4]
Figure 2004084065
[0069]
[Table 5]
Figure 2004084065
[0070]
From Tables 4 and 5, the following can be considered. In addition, the following No. Is the experiment No. in Tables 4 and 5. Is shown.
[0071]
No. Since the targets 1 to 7 satisfy the requirements of the present invention, when used for forming a thin film by a sputtering method, the film thickness distribution and the component composition distribution are uniform, and a stable high reflectivity is excellent. It can be seen that a thin film capable of exhibiting characteristics such as thermal conductivity was obtained. The highest crystal orientation strength (Xa) Is the same at the four measurement points, and the second highest crystal orientation intensity (XbIt can be seen that, in the case of a target in which the directions indicated by ()) are the same at four measurement points, a thin film having a more uniform film thickness distribution can be obtained.
[0072]
On the other hand, no. 8 to 10 do not satisfy the requirements of the present invention and have the highest crystal orientation strength (Xa) Are not the same at all measurement points, and the highest crystal orientation intensity (Xa) And the second highest crystal orientation strength (Xb) Intensity ratio (Xb/ Xa) And the crystal grain size are large, the resulting thin films are not all uniform in film thickness distribution and component composition distribution, and cannot exhibit stable characteristics.
[0073]
Example 5
・ Silver alloy material: Ag-0.4at% Nd-0.5at% Cu
·Production method:
(1) Example of the present invention
Induction melting (Ar atmosphere) → Casting (casting into a plate using a mold) → Hot rolling (650 ° C. at the start of rolling, working ratio 70%) → Cold rolling (working ratio 50%) → Heat treatment ( 500 ° C x 2 hours) → Machining (200mm diameter, 6mm thick disk)
(2) Comparative example
Induction melting (Ar atmosphere) → casting (casting into a plate using a mold) → hot rolling (temperature at the start of rolling 700 ° C, working ratio 40%) → heat treatment (500 ° C × 1 hour) → machining ( (Disc shape with a diameter of 200 mm and a thickness of 6 mm)
The crystal orientation strength of the obtained target was measured in the same manner as in Example 1, and the highest crystal orientation strength (Xa), The second highest crystal orientation strength (Xb), And the highest crystal orientation intensity (Xa) And the second highest crystal orientation strength (Xb) And the intensity ratio (Xb/ Xa) Was determined. Further, the metal structure of the obtained target was examined in the same manner as in Examples 1 and 2. Table 6 shows the results.
[0074]
Using the target, a thin film was formed in the same manner as in Example 1, and the film thickness distribution and the component composition distribution of the obtained thin film were evaluated in the same manner as in Example 1. The thickness distribution of the thin film is shown in Table 6 below, and the component composition distribution is shown in FIG.
[0075]
[Table 6]
Figure 2004084065
[0076]
From these results, it is understood that when a target having a metal structure satisfying the requirements of the present invention is used for sputtering, a silver alloy thin film having a constant thickness distribution in the thin film surface and exhibiting stable characteristics can be obtained. From FIG. 8, it can be seen that the component composition distribution of the target of the present invention is more uniform than that of the comparative example.
[0077]
Example 6
-Silver alloy material: Ag-0.8at% Y-1.0at% Au
·Production method:
(1) Example of the present invention
Vacuum induction melting → casting (manufacturing a cylindrical ingot using a mold) → hot forging (700 ° C, working rate 35%) → hot working (rolling start temperature 700 ° C, working rate 35%) → cold Cold rolling (working rate 50%) → heat treatment (550 ° C x 1.5 hours) → machining (working into the same shape as in Example 1)
(2) Comparative example
Vacuum induction melting → casting (manufacturing a cylindrical ingot using a mold) → hot forging (650 ° C, working ratio 40%, forming into a cylindrical shape) → heat treatment (400 ° C × 1 hour) → machining (Example) Processed into the same shape as 1)
The crystal orientation strength of the obtained target was measured in the same manner as in Example 1, and the highest crystal orientation strength (Xa), The second highest crystal orientation strength (Xb), And the highest crystal orientation intensity (Xa) And the second highest crystal orientation strength (Xb) And the intensity ratio (Xb/ Xa) Was determined. Further, the metal structure of the obtained target was examined in the same manner as in Examples 1 and 2. Table 7 shows the results.
[0078]
Using each of the obtained targets, a thin film was formed in the same manner as in Example 1, and the film thickness distribution and the component composition distribution of the obtained thin film were evaluated. The film thickness distribution of the thin film is shown in Table 7 below, and the component composition distribution is shown in FIG.
[0079]
[Table 7]
Figure 2004084065
[0080]
From these results, it can be seen that when a target having a metal structure satisfying the requirements of the present invention is sputtered, a silver alloy thin film having a constant film thickness distribution and component composition distribution and exhibiting stable characteristics can be obtained.
[0081]
Example 7
・ Silver alloy material: Ag-0.5at% Ti
·Production method:
(1) Example of the present invention
Vacuum induction melting → casting (manufacturing a cylindrical ingot using a mold) → hot forging (700 ° C, working rate 25%) → hot rolling (rolling start temperature 650 ° C, working rate 40%) → cold Cold rolling (processing rate 50%) → heat treatment (550 ° C × 1 hour) → machining (processing to the same shape as in Example 1)
(2) Comparative example
Vacuum induction melting → Casting (manufacturing a cylindrical ingot using a mold) → Heat treatment (500 ° C. × 1 hour) → Machining (working into the same shape as in Example 1)
The crystal orientation intensity of the target obtained in the same manner as in Example 1 was measured, and the highest crystal orientation intensity (Xa), The second highest crystal orientation strength (Xb), And the highest crystal orientation intensity (Xa) And the second highest crystal orientation strength (Xb) And the intensity ratio (Xb/ Xa) Was determined. Further, the metal structure of the obtained target was examined in the same manner as in Examples 1 and 2. Table 8 shows the results.
[0082]
Using each of the obtained targets, a thin film was formed in the same manner as in Example 1, and the film thickness distribution and the component composition distribution of the obtained thin film were measured in the same manner as in Example 1. The thickness distribution of the thin film is shown in Table 8 below, and the component composition distribution is shown in FIG.
[0083]
[Table 8]
Figure 2004084065
[0084]
From these results, it can be seen that when a target having a metal structure satisfying the requirements of the present invention is sputtered, a silver alloy thin film having a constant film thickness distribution and component composition distribution and exhibiting stable characteristics can be obtained.
[0085]
Example 8
Next, targets were manufactured by various methods shown in Table 9 using silver alloy materials having the component compositions shown in Table 9, and in the same manner as in Example 1, the obtained target had the highest crystal orientation strength (Xa), The second highest crystal orientation strength (Xb), And the highest crystal orientation intensity (Xa) And the second highest crystal orientation strength (Xb) And the intensity ratio (Xb/ Xa) Was determined. Further, the metal structure of the obtained target was examined in the same manner as in Examples 1 and 2. Table 10 shows the results.
[0086]
Using the target, a thin film was formed in the same manner as in Example 1, and the film thickness distribution and component composition distribution of the obtained thin film were evaluated in the same manner as in Example 4.
[0087]
[Table 9]
Figure 2004084065
[0088]
[Table 10]
Figure 2004084065
[0089]
From Tables 9 and 10, the following can be considered. In addition, the following No. Is the experiment No. in Tables 9 and 10. Is shown.
[0090]
No. Since the targets Nos. 1 to 7 satisfy the requirements of the present invention, when used for forming a thin film by a sputtering method, the film thickness distribution and the component composition distribution are uniform, and a stable high reflectance and high heat It can be seen that a thin film capable of exhibiting properties such as conductivity has been obtained. On the other hand, no. Nos. 8 and 9 do not satisfy the requirements of the present invention, and none of the obtained thin films has a uniform film thickness distribution or composition distribution, so that stable performance of the above characteristics cannot be expected.
[0091]
Example 9
The present inventors further manufactured a target by using a silver alloy material having a component composition shown in Table 11 by various methods shown in Table 11, and obtained the highest crystal orientation strength (Xa), The second highest crystal orientation strength (Xb), And the highest crystal orientation intensity (Xa) And the second highest crystal orientation strength (Xb) And the intensity ratio (Xb/ Xa) Was determined. Further, the metal structure of the obtained target was examined in the same manner as in Examples 1 and 2. Table 12 shows the results.
[0092]
Using each of the obtained targets, a thin film was formed in the same manner as in Example 1, and the film thickness distribution and the component composition distribution of the obtained thin film were evaluated in the same manner as in Example 4.
[0093]
[Table 11]
Figure 2004084065
[0094]
[Table 12]
Figure 2004084065
[0095]
From Tables 11 and 12, the following can be considered. In addition, the following No. Is the experiment No. in Tables 11 and 12. Is shown.
[0096]
No. Since the targets Nos. 1 to 5 satisfy the requirements of the present invention, when used for forming a thin film by a sputtering method, the film thickness distribution and the component composition distribution are uniform, and stable high reflectance and high heat A thin film capable of exhibiting properties such as conductivity was obtained.
[0097]
In particular, by controlling the crystal grain size of the target and the compound phase of silver and the alloying element in the grain boundary / crystal grain within the range preferable in the present invention, the film thickness distribution and the component composition distribution can be obtained. It can be seen that a more uniform thin film can be formed.
[0098]
On the other hand, no. Samples Nos. 6 and 7 do not satisfy the requirements of the present invention, and none of the obtained thin films has a uniform film thickness distribution or component composition distribution, so that it is not possible to expect stable performance of the above characteristics.
[0099]
【The invention's effect】
The present invention is configured as described above, and provides a target useful for forming a silver alloy thin film having a uniform thickness distribution and a uniform composition distribution by a sputtering method. Using such a target, a silver alloy thin film formed by a sputtering method exhibits stable characteristics such as high reflectivity and high thermal conductivity. When applied to a reflection film of an optical recording medium such as a reflection film of a medium, or an electrode or a reflection film of a reflection type liquid crystal display, these performances can be further improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a method for obtaining an average crystal grain size of a target from an optical microscope observation photograph.
FIG. 2 is a diagram showing a range of heat treatment conditions specified in the present invention.
FIG. 3 is a view showing the results of measuring the crystal orientation intensity of the target obtained in Example 1 of the present invention by the X-ray diffraction method.
FIG. 4 is a diagram showing the results of measuring the crystal orientation intensity of a target obtained in a comparative example of Example 1 by an X-ray diffraction method.
FIG. 5 is a view showing a content distribution (component composition distribution) of alloy elements in an Ag alloy thin film obtained in Example 1.
FIG. 6 is a view showing a content distribution (component composition distribution) of alloy elements in an Ag alloy thin film obtained in Example 2.
FIG. 7 is a view showing a content distribution (component composition distribution) of alloy elements in an Ag alloy thin film obtained in Example 3.
FIG. 8 is a view showing a content distribution (component composition distribution) of alloy elements in an Ag alloy thin film obtained in Example 5.
FIG. 9 is a view showing a content distribution (component composition distribution) of alloy elements in an Ag alloy thin film obtained in Example 6.
10 is a view showing a content distribution (component composition distribution) of alloy elements in an Ag alloy thin film obtained in Example 7. FIG.

Claims (6)

任意の4箇所についてX線回折法によって結晶配向強度を求め、最も高い結晶配向強度(X)を示す方位が4測定箇所で同一であり、かつ各測定箇所における最も高い結晶配向強度(X)と2番目に高い結晶配向強度(X)の強度比(X/X)のばらつきが20%以下であることを特徴とする銀合金スパッタリングターゲット。Calculated crystal orientation intensity by X-ray diffractometry for any four points, the highest orientation showing a crystal orientation intensity (X a) and is the same in 4 measurement point, and the highest crystal orientation intensity (X a at each measurement point ) And the second highest crystal orientation intensity (X b ) have an intensity ratio (X b / X a ) of not more than 20%. 2番目に高い結晶配向強度(X)を示す方位が4測定箇所で同一である請求項1に記載の銀合金スパッタリングターゲット。2. The silver alloy sputtering target according to claim 1, wherein the orientation showing the second highest crystal orientation strength (X b ) is the same at four measurement points. 平均結晶粒径が100μm以下で、最大結晶粒径が200μm以下である請求項1または2に記載の銀合金スパッタリングターゲット。The silver alloy sputtering target according to claim 1, wherein the average crystal grain size is 100 μm or less, and the maximum crystal grain size is 200 μm or less. 結晶粒界または/および結晶粒内に存在する銀と合金元素の化合物相の円相当直径が、平均で30μm以下であり、かつ該円相当直径の最大値が50μm以下である請求項1〜3のいずれかに記載の銀合金スパッタリングターゲット。The average equivalent circle diameter of a compound phase of silver and an alloy element present in a crystal grain boundary and / or a crystal grain is 30 μm or less, and the maximum value of the circle equivalent diameter is 50 μm or less. The silver alloy sputtering target according to any one of the above. 請求項1〜4のいずれかに記載の銀合金スパッタリングターゲットを製造する方法であって、加工率30〜70%で冷間加工または温間加工を行い、その後、保持温度:500〜600℃、かつ保持時間:0.75〜3時間の条件で熱処理を行うことを特徴とする銀合金スパッタリングターゲットの製造方法。The method for producing a silver alloy sputtering target according to any one of claims 1 to 4, wherein cold working or warm working is performed at a working rate of 30 to 70%, and thereafter, a holding temperature: 500 to 600 ° C, A method for producing a silver alloy sputtering target, wherein heat treatment is performed under the condition of holding time: 0.75 to 3 hours. 前記熱処理を、
保持温度:500〜600℃、かつ
保持時間:下記式(1)の範囲内で
行う請求項5に記載の銀合金スパッタリングターゲットの製造方法。
(−0.005×T+ 3.5)≦t≦(−0.01×T+ 8)     …(1)
[式(1)中、Tは保持温度(℃)、tは保持時間(時間)を示す]
The heat treatment,
The method for producing a silver alloy sputtering target according to claim 5, wherein the holding temperature is in the range of 500 to 600 ° C and the holding time is in the range of the following formula (1).
(−0.005 × T + 3.5) ≦ t ≦ (−0.01 × T + 8) (1)
[In the formula (1), T indicates a holding temperature (° C.) and t indicates a holding time (hour)]
JP2003169897A 2002-06-24 2003-06-13 Silver alloy sputtering target and manufacturing method thereof Expired - Lifetime JP4264302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003169897A JP4264302B2 (en) 2002-06-24 2003-06-13 Silver alloy sputtering target and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002183463 2002-06-24
JP2002183462 2002-06-24
JP2003169897A JP4264302B2 (en) 2002-06-24 2003-06-13 Silver alloy sputtering target and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004084065A true JP2004084065A (en) 2004-03-18
JP4264302B2 JP4264302B2 (en) 2009-05-13

Family

ID=32074118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169897A Expired - Lifetime JP4264302B2 (en) 2002-06-24 2003-06-13 Silver alloy sputtering target and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4264302B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007923A1 (en) * 2003-07-16 2005-01-27 Kabushiki Kaisha Kobe Seiko Sho Ag BASE SPUTTERING TARGET AND PROCESS FOR PRODUCING THE SAME
WO2006132413A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy for electrode, wiring and electromagnetic shielding
WO2006132417A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy excellent in reflectance/transmittance maintaining characteristics
EP2031086A1 (en) 2007-08-29 2009-03-04 Kobelco Research Institute , Inc. Ag base alloy sputtering target and method for manufacturing the same
EP2067873A1 (en) 2007-11-29 2009-06-10 Kobelco Research Institute , Inc. Ag-based sputtering target
WO2011043486A1 (en) * 2009-10-06 2011-04-14 三菱マテリアル株式会社 Silver alloy target for forming reflection electrode film for organic el element, and method for manufacturing the silver alloy target
WO2011077766A1 (en) * 2009-12-25 2011-06-30 日本電波工業株式会社 Oscillator electrode material having excellent aging characteristics, piezoelectric oscillator using the material and sputtering target comprising the material
WO2013145424A1 (en) * 2012-03-27 2013-10-03 三菱マテリアル株式会社 Silver-based cylindrical target and process for manufacturing same
JP2013216976A (en) * 2012-04-04 2013-10-24 Heraeus Materials Technology Gmbh & Co Kg Flat or tubular sputtering target and manufacturing method therefor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8123875B2 (en) 2003-07-16 2012-02-28 Kabushiki Kaisha Kobe Seiko Sho AG base sputtering target and process for producing the same
US7763126B2 (en) 2003-07-16 2010-07-27 Kabushiki Kaisha Kobe Seiko Sho Ag base sputtering target and process for producing the same
WO2005007923A1 (en) * 2003-07-16 2005-01-27 Kabushiki Kaisha Kobe Seiko Sho Ag BASE SPUTTERING TARGET AND PROCESS FOR PRODUCING THE SAME
WO2006132413A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy for electrode, wiring and electromagnetic shielding
WO2006132417A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy excellent in reflectance/transmittance maintaining characteristics
JPWO2006132413A1 (en) * 2005-06-10 2009-01-08 田中貴金属工業株式会社 Silver alloy for electrode, wiring and electromagnetic shielding
JPWO2006132417A1 (en) * 2005-06-10 2009-01-08 田中貴金属工業株式会社 Silver alloy with excellent reflectivity and transmittance maintenance characteristics
EP2031086A1 (en) 2007-08-29 2009-03-04 Kobelco Research Institute , Inc. Ag base alloy sputtering target and method for manufacturing the same
EP2067873A1 (en) 2007-11-29 2009-06-10 Kobelco Research Institute , Inc. Ag-based sputtering target
WO2011043486A1 (en) * 2009-10-06 2011-04-14 三菱マテリアル株式会社 Silver alloy target for forming reflection electrode film for organic el element, and method for manufacturing the silver alloy target
US8821769B2 (en) 2009-10-06 2014-09-02 Mitsubishi Materials Corporation Silver alloy target for forming reflection electrode film for organic EL element, and method for manufacturing the silver alloy target
EP2487274A4 (en) * 2009-10-06 2017-05-24 Mitsubishi Materials Corporation Silver alloy target for forming reflection electrode film for organic el element, and method for manufacturing the silver alloy target
WO2011077766A1 (en) * 2009-12-25 2011-06-30 日本電波工業株式会社 Oscillator electrode material having excellent aging characteristics, piezoelectric oscillator using the material and sputtering target comprising the material
JP5400898B2 (en) * 2009-12-25 2014-01-29 日本電波工業株式会社 Electrode material for vibrator having excellent aging characteristics, piezoelectric vibrator using the material, and sputtering target comprising the material
US9065418B2 (en) 2009-12-25 2015-06-23 Nihon Dempa Kogyo Co. Ltd. Resonator electrode material excellent in aging property, piezoelectric resonator using the same material, and sputtering target made of the same material
WO2013145424A1 (en) * 2012-03-27 2013-10-03 三菱マテリアル株式会社 Silver-based cylindrical target and process for manufacturing same
JP2013204052A (en) * 2012-03-27 2013-10-07 Mitsubishi Materials Corp Silver-based cylindrical target and method for manufacturing the same
JP2013216976A (en) * 2012-04-04 2013-10-24 Heraeus Materials Technology Gmbh & Co Kg Flat or tubular sputtering target and manufacturing method therefor

Also Published As

Publication number Publication date
JP4264302B2 (en) 2009-05-13

Similar Documents

Publication Publication Date Title
KR100568392B1 (en) Silver alloy sputtering target and process for producing the same
JP3993530B2 (en) Ag-Bi alloy sputtering target and method for producing the same
TWI752189B (en) Aluminum alloys and articles with high elemental content
JP4305809B2 (en) Ag alloy-based sputtering target material
JP2000199054A (en) Aluminum alloy sputtering target material
TWI602931B (en) Aluminum sputtering target
EP1811050A2 (en) Magnetic sputter targets manufactured using directional solidification
JP4264302B2 (en) Silver alloy sputtering target and manufacturing method thereof
JP7094220B2 (en) Silver alloy sputtering target
US8097100B2 (en) Ternary aluminum alloy films and targets for manufacturing flat panel displays
US20040256218A1 (en) Thin films and methods of forming thin films utilizing ECAE-targets
JP2671397B2 (en) Target for magnetron sputtering
JP2019163544A (en) Sputtering target, titanium nitride film, wiring layer, and semiconductor device
JP2002069626A (en) Sputtering target and its production method
JP6791313B1 (en) Nickel alloy sputtering target
JP2003293054A (en) Ag ALLOY FILM FOR ELECTRONIC PART AND SPUTTERING TARGET MATERIAL FOR FORMING Ag ALLOY FILM
WO2000031316A1 (en) Co-Ti ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF
TW202245018A (en) Hot-rolled copper alloy sheet and sputtering target
KR20090112478A (en) Electromagnetic interference shielding Ag-based materials and films
JP2000178723A (en) Aluminum-titanium alloy sputtering target for forming reflective film of optical recording medium
JP2003183818A (en) METHOD FOR MANUFACTURING Al-BASE TARGET MATERIAL FOR SPUTTERING

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4264302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

EXPY Cancellation because of completion of term