JP4264302B2 - Silver alloy sputtering target and manufacturing method thereof - Google Patents

Silver alloy sputtering target and manufacturing method thereof Download PDF

Info

Publication number
JP4264302B2
JP4264302B2 JP2003169897A JP2003169897A JP4264302B2 JP 4264302 B2 JP4264302 B2 JP 4264302B2 JP 2003169897 A JP2003169897 A JP 2003169897A JP 2003169897 A JP2003169897 A JP 2003169897A JP 4264302 B2 JP4264302 B2 JP 4264302B2
Authority
JP
Japan
Prior art keywords
silver alloy
crystal orientation
target
less
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003169897A
Other languages
Japanese (ja)
Other versions
JP2004084065A (en
Inventor
均 松崎
勝寿 高木
淳一 中井
靖夫 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Research Institute Inc
Original Assignee
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Research Institute Inc filed Critical Kobelco Research Institute Inc
Priority to JP2003169897A priority Critical patent/JP4264302B2/en
Publication of JP2004084065A publication Critical patent/JP2004084065A/en
Application granted granted Critical
Publication of JP4264302B2 publication Critical patent/JP4264302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、スパッタリング法で薄膜を形成する際に使用される銀合金スパッタリングターゲットに関し、詳細には、膜厚や成分組成の均一な薄膜を形成することのできる銀合金スパッタリングターゲットに関するものである。
【0002】
【従来の技術】
純銀または銀合金の薄膜は、高反射率かつ低電気抵抗率という特性を有するため、光学記録媒体の反射膜や、反射型液晶ディスプレイの電極・反射膜等に適用されている。
【0003】
しかし純銀の薄膜は、空気中に長時間曝された場合や高温高湿下に曝された場合等に薄膜表面が酸化されやすく、また銀結晶粒が成長したり、銀原子が凝集したりする等の現象が生じやすく、これらに起因して、導電性の劣化や反射率の低下が生じたり、基板との密着性が劣化したりするといった問題が発生する。従って、最近では純銀本来の高い反射率を維持しつつ、耐食性等を向上させるべく合金元素添加による改善が多数試みられている。そして、この様な薄膜の改善に併せて、銀合金薄膜形成に用いるターゲットについても検討がなされており、例えば、特許文献1には、Agを主成分とし、耐候性を向上させるためPdを0.1〜3wt%含有させ、更にPd添加による電気抵抗率の増加を抑制すべくAl、Au、Pt、Cu、Ta、Cr、Ti、Ni、Co、Siよりなる群から選択される複数の元素を0.1〜3wt%の範囲内で含有させたスパッタリングターゲットが電子部品用金属材料の一つとして示されている。
【0004】
特許文献2には、スパッタリング時のガス雰囲気中の酸素等による悪影響を防止し、かつ耐湿性を改善すべく金を0.1〜2.5at%添加し、更に金添加による光透過率の低下を抑制するため銅を0.3〜3at%の範囲内で含有させた銀合金スパッタリングターゲット、または銀ターゲットの一部に金および銅を該比率となるよう埋め込んだ複合金属からなるスパッタリングターゲットが提案されている。
【0005】
更に特許文献3には、銀または銀合金のスパッタリングターゲットであって、スパッタリングによる成膜の際にターゲットのスパッタレートを高めて、効率よくスパッタリングを行うため、ターゲットの結晶構造を面心立方構造とし、かつ結晶配向が((111)+(200))/(220)面配向度比で2.20以上となるようにすることが提案されている。
【0006】
ところで、スパッタリング法で形成された薄膜を、例えば片面2層構造のDVDにおける半透過反射膜として使用する場合、膜厚は、100Å程度と非常に薄く、該薄膜の膜厚の均一性が、反射率、透過率等の特性に大きな影響を与えることから、特に膜厚のより均一な薄膜を形成することが重要視されている。また次世代の光学記録媒体の反射膜として使用する場合、記録時のレーザーパワーによる熱を速く伝導させなければならないことから、優れた光学特性のみならず、熱伝導率が面内で均一でかつ高いことも要求されているが、該特性を満たすには、薄膜の膜厚が均一であること、更には薄膜の成分組成が均一であることが条件として挙げられる。
【0007】
この様に光学記録媒体の反射膜や半透過反射膜等として用いられる薄膜をスパッタリング法で形成するにあたっては、従来技術の如くターゲットの組成や結晶配向度比を制御したとしても、光学記録媒体の反射膜として高反射率や高熱伝導率等の特性を発揮し得る、膜厚や成分組成の均一な薄膜を確実に得ることができないことから、ターゲットの更なる改善を要すると考える。
【0008】
【特許文献1】
特開2001−192752号公報
【特許文献2】
特開平9−324264号公報
【特許文献3】
特開2000−239835号公報
【0009】
【発明が解決しようとする課題】
本発明は、この様な事情に鑑みてなされたものであって、その目的は、膜厚や成分組成の均一な薄膜をスパッタリング法で形成するのに有用な銀合金スパッタリングターゲットを提供することにある。
【0010】
【課題を解決するための手段】
本発明に係る銀合金スパッタリングターゲットとは、任意の4箇所についてX線回折法によって結晶配向強度を求め、最も高い結晶配向強度(Xa)を示す方位が4測定箇所で同一であり、かつ各測定箇所における最も高い結晶配向強度(Xa)と2番目に高い結晶配向強度(Xb)との強度比(Xb/Xa)のばらつきが4測定箇所で20%以下であるところに特徴を有するものである。前記2番目に高い結晶配向強度(Xb)を示す方位が、4測定箇所で同一であることを好ましい形態とする。
【0011】
尚、前記「最も高い結晶配向強度(Xa)と2番目に高い結晶配向強度(Xb)の強度比(Xb/Xa)のばらつき」とは、次の様にして求める。即ち、任意の4箇所についてX線回折法で結晶配向強度を求め、各測定箇所にて、最も高い結晶配向強度(Xa)と2番目に高い結晶配向強度(Xb)の強度比(Xb/Xa)の4測定箇所の平均:AVE(Xb/Xa)を求める。次に4測定箇所の(Xb/Xa)の最大値をMAX(Xb/Xa)とし、(Xb/Xa)の最小値をMIN(Xb/Xa)として求めた下記(2)または(3)の絶対値のうち、大きい方を%で示したものである。
|MAX(Xb/Xa)−AVE(Xb/Xa)|/AVE(Xb/Xa) …(2)
|MIN(Xb/Xa)−AVE(Xb/Xa)|/AVE(Xb/Xa) …(3)
また、本発明の銀合金スパッタリングターゲットは、平均結晶粒径が100μm以下で、最大結晶粒径が200μm以下を満たすものであれば、該ターゲットを用いて形成される薄膜の特性が均一となるので好ましい。特に、結晶粒界または/および結晶粒内に、銀と合金元素の化合物相が存在する銀合金スパッタリングターゲットの場合、該化合物相の円相当直径が、平均で30μm以下であり、かつ該円相当直径の最大値が50μm以下であることを好ましい形態とする。
【0012】
尚、前記「平均結晶粒径」とは、次の様な測定方法で求められるものである。即ち、▲1▼50〜100倍の光学顕微鏡観察写真に、図1に示すように顕微鏡観察写真の縁の端から端まで直線を複数本引く。直線数は4本以上とすることが定量精度の観点から望ましく、直線の引き方は、例えば図1(a)の様な井桁状や図1(b)の様な放射状とすることができる。次に▲2▼直線上にある結晶粒界の数nを測定する。そして▲3▼下記式(4)から平均結晶粒径dを求め、複数本の直線のdから平均値を求める。
【0013】
d=L/n/m …(4)
[式中、dは1本の直線から求めた平均結晶粒径を示し、Lは1本の直線の長さを示し、nは1本の直線上の結晶粒界の数を示し、mは倍率を示す]
また、前記「最大結晶粒径」は、50〜100倍の光学顕微鏡の視野で任意に5箇所以上を観察し、全視野の合計20mm2の範囲内で最大の結晶についてその粒径を円相当直径換算して求めたものである。
【0014】
前記「結晶粒界または/および結晶粒内に存在する銀と合金元素の化合物相の円相当直径の平均」とは、100〜200倍の光学顕微鏡の視野で任意に5箇所以上を観察し、全視野で合計20mm2の範囲内にある各化合物相を円相当直径に換算し、これらの平均値を求めたものである。また「銀と合金元素の化合物相の円相当直径の最大値」とは、前記合計20mm2の範囲内の最大化合物相の円相当直径をいう。
【0015】
本発明は、上記規定の結晶配向を満たす銀合金スパッタリングターゲットを製造する方法も規定するものであって、加工率30〜70%で冷間加工または温間加工を行い、その後、保持温度:500〜600℃、かつ保持時間:0.75〜3時間の条件で熱処理を行うことを要件とする。尚、結晶粒径の小さな銀合金スパッタリングターゲットを得るには、前記熱処理を、
保持温度:500〜600℃、かつ
保持時間:下記式(1)の範囲内で行うことが推奨される。
【0016】
(−0.005×T+ 3.5)≦t≦(−0.01×T+ 8) …(1)
[式(1)中、Tは保持温度(℃)、tは保持時間(時間)を示す]
【0017】
【発明の実施の形態】
本発明者らは、前述した様な状況の下で、スパッタリングにて膜厚や成分組成の均一な薄膜を形成することのできる銀合金スパッタリングターゲット(以下、単に「ターゲット」ということがある)を得るべく様々な観点から検討を行った。その結果、ターゲットの結晶配向を制御することが特に有効であることを見出し、本発明に想到した。以下、本発明でターゲットの結晶配向を規定した理由について詳述する。
【0018】
まず本発明は、ターゲットの任意の4箇所で結晶配向強度をX線回折法で求めた場合の、最も高い結晶配向強度(Xa)を示す方位が4測定箇所で同一であることを必須要件とする。
【0019】
即ち、本発明は、最も高い結晶配向強度を示す方位を特に規定せず、(111)面、(200)面、(220)面、(311)面等のいずれが最も高い結晶配向強度を示す方位であってもよいが、この最高結晶配向強度を示す方位が任意の4測定箇所で同一である必要がある。この様に、任意の位置における最高結晶配向強度を示す方位が同一であれば、スパッタリング時に基板に到達する原子数が基板面内で均一となり、膜厚の均一な薄膜を得ることができる。
【0020】
尚、最も高い結晶配向強度を示す方位が(111)面であれば、スパッタリング時の成膜速度を高めることができるので好ましい。
【0021】
更に、各測定箇所における最も高い結晶配向強度(Xa)と2番目に高い結晶配向強度(Xb)の強度比(Xb/Xa)のばらつきが4測定箇所で20%以下であることが好ましい。
【0022】
上記の様に最も高い結晶配向強度を示す方位がターゲットの任意の位置において同一であったとしても、最も高い結晶配向強度(Xa)と2番目に高い結晶配向強度(Xb)の強度比(Xb/Xa)のばらつきが大きすぎる場合には、スパッタリング時に基板に到達する原子数が基板面内で不均一となりやすく、均一な膜厚の薄膜が得られにくいからである。前記強度比のばらつきが10%以下であることがより好ましい。
【0023】
尚、ターゲットの任意の位置において上記ばらつきが規定範囲内であれば、2番目に高い結晶配向強度(Xb)の方位が測定箇所間で異なっていてもよいが、前記2番目に高い結晶配向強度(Xb)を示す方位が、4測定箇所で同一である方が、基板に到達する原子数が基板面内で均一となりやすく、膜厚の均一な薄膜が得られ易いので好ましい。
【0024】
この様に結晶配向を規定するとともに、銀結晶の結晶粒径や結晶粒界または/および結晶粒内に存在する銀と合金元素の化合物相のサイズを制御すれば、スパッタリングで膜厚や成分組成の均一な薄膜を形成できるので好ましい。
【0025】
具体的には、ターゲットの平均結晶粒径を100μm以下とし、かつ最大結晶粒径を200μm以下とするのがよい。
【0026】
上記平均結晶粒径の小さいターゲットとすることで、膜厚の均一な薄膜を容易に形成でき、結果として光学記録媒体等の性能を高めることができる。前記平均結晶粒径は、75μm以下とするのがより好ましく、更に好ましくは50μm以下である。
【0027】
また、平均結晶粒径が100μm以下であっても、極端に粒径の大きい結晶粒が存在する場合には、形成された薄膜の膜厚が局所的に不均一となりやすい。従って、性能の局所的な劣化が抑制された光学記録媒体を得るには、薄膜形成に用いるターゲットの結晶粒径を最大でも200μm以下に抑えるのがよく、より好ましくは150μm以下、更に好ましくは100μm以下である。
【0028】
銀合金スパッタリングターゲットの結晶粒界または/および結晶粒内に、銀と合金元素の化合物相が存在する場合には、該化合物相のサイズも併せて制御するのがよい。
【0029】
上記化合物相のサイズがより小さい方が、形成された薄膜の成分組成が均一となり易いため望ましく、化合物相のサイズを円相当直径で示した場合に、その平均が30μm以下であるのがよい。より好ましくは円相当直径換算で平均20μm以下である。
【0030】
またそのサイズが平均で30μm以下であっても、極端に大きい化合物相が存在する場合には、スパッタリングの放電状態が不安定となりやすく、成分組成の均一な薄膜が得られ難くなる。従って最大化合物相は、円相当直径で50μm以下であるのがよく、より好ましくは30μm以下である。
【0031】
尚、本発明は、前記化合物相の成分組成等まで特定するものでなく、例えばAg−Nd系合金ターゲットに存在するAg51Nd14やAg2Nd等、Ag−Y系合金ターゲットに存在するAg5114やAg2Y等、Ag−Ti系合金ターゲットに存在するAgTi等が、制御の対象となる化合物相として挙げられる。
【0032】
上記規定の結晶配向を満たすターゲットを得るには、製造工程において、加工率30〜70%で冷間加工または温間加工を行うのがよい。この様に冷間加工または温間加工を施すことによって、ほぼ製品形状となるまで成形できるとともに、加工歪が蓄積され、その後の熱処理で再結晶させて結晶配向の均一化を図ることができる。
【0033】
加工率が30%未満の場合には付与する歪量が不足するため、その後に熱処理を施したとしても部分的にしか再結晶されず、結晶配向の均一化を十分に達成できない。好ましくは35%以上の加工率で冷間加工または温間加工を行うのがよい。一方、加工率が70%を超えると、熱処理時の再結晶速度が速くなりすぎ、この場合も結果として、結晶配向のばらつきが生じ易くなる。好ましくは加工率65%以下の範囲で行うのがよい。
【0034】
尚、前記加工率とは、[(加工前の材料の寸法−加工後の材料の寸法)/加工前の材料の寸法]×100(%)をいい(以下同じ)、例えば、板状材料を用いて鍛造や圧延を行い、板状のものを製造する場合には、前記「寸法」として板厚を用いて加工率を算出することができる。また、円柱状材料を用いて板状のものを製造する場合には、加工方法によって加工率の算出方法が異なり、例えば、円柱状材料の高さ方向に力を加えて鍛造や圧延を行う場合には、[(加工前の円柱状材料の高さ−加工後の板状材料の厚さ)/加工前の円柱状材料の高さ]×100(%)から加工率を求めることができ、また、円柱状材料の径方向に力を加えて鍛造や圧延を行う場合には、[(加工前の円柱状材料の直径−加工後の板状材料の厚さ)/加工前の円柱状材料の直径]×100(%)から加工率を求めることができる。
【0035】
また冷間加工または温間加工後に、保持温度:500〜600℃、かつ保持時間:0.75〜3時間の条件で熱処理を行う。この様に熱処理を施すことによって、結晶配向の均一化を図ることができる。
【0036】
前記保持温度が、500℃を下回ると再結晶されるまでの所要時間が長くなり、一方、保持温度が600℃を超えると再結晶速度が速くなり、材料の歪量にばらつきがある場合には、歪量の大きい箇所で再結晶が促進されて、均一な結晶配向を得るのが困難となるので好ましくない。より好ましくは520〜580℃の範囲内で熱処理を行う。
【0037】
また、保持温度が適正範囲であっても、保持時間が短すぎる場合には十分に再結晶が行われず、一方、保持時間が長すぎる場合には再結晶が進みすぎて、均一な結晶配向を得るのが困難となる。従って保持時間は、0.75〜3時間の範囲内とするのがよい。
【0038】
結晶粒の微細化を図るには、
保持温度:500〜600℃(より好ましくは520〜580℃)、かつ
保持時間:下記式(1)の範囲内で熱処理を行うのが好ましい。
【0039】
(−0.005×T+ 3.5)≦t≦(−0.01×T+ 8) …(1)
[式(1)中、Tは保持温度(℃)、tは保持時間(時間)を示す]
保持時間は、上記式(1)の範囲の中でも、特に下記式(5)で規定する範囲内とすることが推奨される。熱処理における上記保持時間および保持温度の好ましい範囲およびより好ましい範囲について図2に示す。
【0040】
(−0.005×T+ 3.75)≦t≦(−0.01×T+ 7.5) …(5)
[式(5)中、Tは保持温度(℃)、tは保持時間(時間)を示す]
本発明では、ターゲットの製造におけるその他の条件まで厳密に規定するものでなく、例えば次の様にしてターゲットを得ることができる。即ち、所定の成分組成を有する銀合金材料を溶解し、鋳造して鋳塊を得た後、必要に応じて熱間鍛造または熱間圧延等の熱間加工を施す。次に上記条件で、冷間加工または温間加工と熱処理を行い、その後、機械加工を施して所定の形状とすることが推奨される方法の一つとして挙げられる。
【0041】
前記銀合金材料の溶解は、抵抗加熱式電気炉による大気溶解や真空または不活性雰囲気での誘導溶解等を適用すればよい。銀合金の溶湯は、酸素の溶解度が高いため、前記大気溶解の場合には、黒鉛るつぼを用いかつ溶湯表面をフラックスで覆い、酸化防止を充分に図る必要がある。酸化防止の観点からは、真空または不活性雰囲気下で溶解を行うことが好ましい。また、前記鋳造方法は、特に限定するものではなく、金型や黒鉛鋳型を用いて行う鋳造のみならず、銀合金材料と反応しないことを条件に、耐火物や砂型等を使用した徐冷鋳造を適用することも可能である。
【0042】
熱間加工は必須ではないが、形状が円柱状のものを直方体状や板状にする場合など、必要に応じて熱間鍛造または熱間圧延等を行ってもよい。ただし、熱間加工における加工率は、次工程の冷間加工または温間加工で規定の加工率を確保できる範囲内とする必要がある。冷間加工または温間加工での加工が不十分だと、歪が不足して再結晶化を図ることができず、結果として結晶配向が均一化されないからである。熱間加工を行う場合のその他の条件については特に限定されず、加工温度や加工時間は通常行われている範囲内とすればよい。
【0043】
尚、これらの製造条件は、操業するにあたって予め予備実験を行い、合金元素の種類や添加量に応じた最適な加工・熱処理条件を求めておくことが望ましい。
【0044】
本発明はターゲットの成分組成まで特定するものではないが、上記ターゲットを得るにあたっては、例えば、下記の様な成分組成のものを用いることが推奨される。
【0045】
即ち、前掲の様に、本発明のターゲットは銀をベースに下記の元素が添加されているものであり、合金元素として、形成される薄膜の結晶粒径を微細化し、熱に対して安定化させるのに有効なNdを1.0at%(原子比の意味、以下同じ)以下、Ndと同様の効果を発揮する希土類元素(Y等)を1.0at%以下、形成される薄膜の耐食性を向上させる効果を有するAuを2.0at%以下、Auと同様に、得られた薄膜の耐食性を向上させる効果を有するCuを2.0at%以下の範囲内で、また、その他の元素としてTiやZnが、1種または2種以上添加されたものがよい。また、本発明のターゲットは、ターゲットの製造に用いる原料あるいはターゲット製造時の雰囲気に起因する不純物等が、本発明で規定する結晶組織の形成に影響を与えない範囲内で含まれていてもよい。
【0046】
本発明のターゲットは、例えばDCスパッタリング法、RFスパッタリング法、マグネトロンスパッタリング法、反応性スパッタリング法等のいずれのスパッタリング法にも適用でき、約20〜5000Åの銀合金薄膜を形成するのに有効である。尚、ターゲットの形状は、用いるスパッタリング装置に応じて適宜設計変更すればよい。
【0047】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
【0048】
実施例1
・銀合金材:Ag−1.0at%Cu−0.7at%Au
・製造方法:
▲1▼本発明例
誘導溶解(Ar雰囲気)→鋳造(金型を用いて板状に鋳造)→冷間圧延(加工率50%)→熱処理(520℃×2時間)→機械加工(直径200mm、厚さ6mmの円板形状)
▲2▼比較例
誘導溶解(Ar雰囲気)→鋳造(金型を用いて板状に鋳造)→熱間圧延(圧延開始時の温度700℃、加工率70%)→熱処理(500℃×1時間)→機械加工(直径200mm、厚さ6mmの円板形状)
得られたターゲットの結晶配向について次の様にして調べた。即ち、ターゲット表面の任意の4箇所について、下記の条件でX線回折を行い、結晶配向強度を調べたところ、本発明例について図3の測定結果が得られ、比較例について図4の測定結果が得られた。この様な測定結果から、最も高い結晶配向強度(Xa)を示す方位および2番目に高い結晶配向強度(Xb)を示す方位を調べ、更に上述の様にして、各測定箇所における最も高い結晶配向強度(Xa)と2番目に高い結晶配向強度(Xb)の強度比(Xb/Xa)のばらつきを求めた。尚、最も高い結晶配向強度(Xa)を示す方位が4箇所で異なる場合は、上記ばらつきを求めていない(以下の実施例についても同じ)。
【0049】
X線回折装置:理学電機製 RINT 1500
ターゲット:Cu
管電圧:50kV
管電流:200mA
走査速度:4°/min
試料回転:100回/min
また、得られたターゲットの金属組織を次の様にして調べた。即ち、機械加工後のターゲットから10mm×10mm×10mmの立方体形状の試料を採取し、観察面を研磨後、光学顕微鏡にて50〜100倍で観察し、写真撮影を行い、上述の方法で、ターゲットの平均結晶粒径と最大結晶粒径を求めた。尚、前記顕微鏡観察では、結晶粒が容易に観察できるよう光学顕微鏡にて適宜偏光をかけた。これらの結果を表1に示す。
【0050】
次に得られた各ターゲットをそれぞれ用いて、DCマグネトロンスパッタリング法[Arガス圧:0.267Pa(2mTorr)、スパッタパワー:1000W、基板温度:室温]で、膜厚が平均1000Åの薄膜を直径12cmのガラス基板上に形成した。そして、得られた薄膜の任意の中心線の端から順に5箇所の膜厚を測定した。その結果を表1に併記する。
【0051】
更に得られた薄膜について、円板状の薄膜形成基板の任意の中心線の端から順に、X線マイクロアナリシス法(EPMA)で、合金元素の含有量分布を測定したところ、図5に示す結果が得られた。
【0052】
【表1】

Figure 0004264302
【0053】
これらの結果より、本発明の要件を満たすターゲットをスパッタリングすれば、膜厚分布が一定で、安定した特性を発揮し得る銀合金薄膜が得られることがわかる。尚、上記成分組成のターゲットの場合、上記図5から、本発明例と比較例とで成分組成分布の相違はほとんどみられなかった。
【0054】
実施例2
・銀合金材:Ag−0.8at%Y−1.0at%Au
・製造方法:
▲1▼本発明例
真空誘導溶解→鋳造(金型を用いて円柱状インゴットを製造)→熱間鍛造(700℃、加工率30%、スラブを製造)→冷間圧延(加工率50%)→熱処理(550℃×1.5時間)→機械加工(実施例1と同じ形状に加工)
▲2▼比較例
真空誘導溶解→鋳造(金型を用いて円柱状インゴットを製造)→熱間鍛造(650℃、加工率60%、スラブを製造)→熱処理(400℃×1時間)→機械加工(実施例1と同じ形状に加工)
得られたターゲットについて、実施例1と同様にして結晶配向強度を測定し、最も高い結晶配向強度(Xa)を示す方位、2番目に高い結晶配向強度(Xb)を示す方位、および各測定箇所における最も高い結晶配向強度(Xa)と2番目に高い結晶配向強度(Xb)との強度比(Xb/Xa)のばらつきを求めた。
【0055】
また得られたターゲットの金属組織を前記実施例1と同様にして調べた。尚、本実施例で用いた銀合金材は、結晶粒界/結晶粒内に銀と合金元素の化合物相が存在するものであり、該化合物相のサイズは次の様にして調べた。
【0056】
即ち、前記結晶粒径の測定と同様の試料の観察面を研磨後、化合物の輪郭を明確にするため硝酸等で試料表面を腐食するなど適当なエッチングを施した後、上述した通り、光学顕微鏡にて100〜200倍で任意に5箇所以上を観察し、全視野で合計20mm2の範囲内に存在する各化合物相の円相当直径を求め、その平均値を得た。また該合計視野における最大化合物相の円相当直径を求めた。
【0057】
上記化合物相を認識し難い場合には、前記光学顕微鏡観察の代わりにEPMAによる面分析(マッピング)を行い、通常の画像解析法で該化合物相サイズの平均値および最大値を求めるようにしてもよい。これらの結果を表2に示す。
【0058】
次に得られた各ターゲットを用いて、前記実施例1と同様にして薄膜を形成し、得られた薄膜の膜厚分布と成分組成分布を評価した。膜厚分布を表2に示し、成分組成分布を図6に示す。
【0059】
【表2】
Figure 0004264302
【0060】
これらの結果より、本発明の要件を満たすターゲットをスパッタリングすれば、膜厚分布が一定で、安定した特性を発揮し得る銀合金薄膜が得られることがわかる。また図6から、ターゲットの結晶粒径を本発明で好ましい範囲内とすれば、成分組成分布のより均一な薄膜を形成できることがわかる。
【0061】
実施例3
・銀合金材:Ag−0.4at%Nd−0.5at%Cu
・製造方法:
▲1▼本発明例
真空誘導溶解→鋳造(金型を用いて円柱状インゴットを製造)→熱間鍛造(700℃、加工率35%、スラブを製造)→冷間圧延(加工率50%)→熱処理(550℃×1時間)→機械加工(実施例1と同じ形状に加工)
▲2▼比較例
真空誘導溶解→鋳造(金型を用いて円柱状インゴットを製造)→熱処理(500℃×1時間)→機械加工(実施例1と同じ形状に加工)
得られたターゲットについて、実施例1と同様に結晶配向強度を測定し、最も高い結晶配向強度(Xa)を示す方位、2番目に高い結晶配向強度(Xb)を示す方位、および各測定箇所における最も高い結晶配向強度(Xa)と2番目に高い結晶配向強度(Xb)の強度比(Xb/Xa)のばらつきを求めた。また得られたターゲットの金属組織を前記実施例1および2と同様にして調べた。これらの結果を表3に示す。
【0062】
更に得られた各ターゲットを用い、前記実施例1と同様にして薄膜を形成し、得られた薄膜の膜厚分布および成分組成分布を評価した。膜厚分布を表3に示し、成分組成分布を図7に示す。
【0063】
【表3】
Figure 0004264302
【0064】
これらの結果より、本発明の要件を満たすターゲットをスパッタリングすれば、膜厚分布および成分組成分布が一定で、安定した特性を発揮し得る銀合金薄膜が得られることがわかる。
【0065】
実施例4
次に、表4に示す成分組成の銀合金材料を用い、表4に示す種々の方法でターゲットを製造して、得られたターゲットの結晶配向強度を前記実施例1と同様にして測定し、最も高い結晶配向強度(Xa)を示す方位、2番目に高い結晶配向強度(Xb)を示す方位、および各測定箇所における最も高い結晶配向強度(Xa)と2番目に高い結晶配向強度(Xb)との強度比(Xb/Xa)のばらつきを求めた。更に、得られたターゲットの金属組織を前記実施例1および2と同様にして調べた。
【0066】
また各ターゲットを用いて、前記実施例1と同様に薄膜を形成し、得られた薄膜の膜厚分布および成分組成分布を評価した。
【0067】
本実施例では、膜厚分布の評価を、形成された薄膜の任意の中心線の端から順に5箇所の膜厚を測定して最小膜厚と最大膜厚の比(最小膜厚/最大膜厚)を求めて行い、該比が0.90以上の場合を膜厚がほぼ均一であると判断した。また、成分組成分布については次の様にして評価した。即ち、銀と合金元素1種類の2元系銀合金の場合には、薄膜の任意の中心線の端から順に5箇所の合金元素の含有量を求めて、合金元素の(含有量最小値/含有量最大値)で成分組成分布の評価を行い、また銀と合金元素2種類の3元系銀合金の場合には、該2種の合金元素のうち(含有量最小値/含有量最大値)の最低値を示す合金元素の(含有量最小値/含有量最大値)で評価を行い、該比が0.90以上の場合を成分組成分布がほぼ均一であると判断した。これらの測定結果を表5に示す。
【0068】
【表4】
Figure 0004264302
【0069】
【表5】
Figure 0004264302
【0070】
表4および表5から次のように考察することができる。尚、以下のNo.は表4および表5における実験No.を示す。
【0071】
No.1〜7のターゲットは、本発明の要件を満足するものであることから、スパッタリング法で薄膜の形成に用いた場合に、膜厚分布および成分組成分布が均一で、安定した高反射率、優れた熱伝導性等の特性を発揮し得る薄膜が得られたことがわかる。尚、最も高い結晶配向強度(Xa)を示す方位が4測定箇所で同一であることに加えて、2番目に高い結晶配向強度(Xb)を示す方位も4測定箇所で同一であるターゲットの場合には、膜厚分布のより均一な薄膜が得られることがわかる。
【0072】
これに対し、No.8〜10は、本発明の要件を満足せず、最も高い結晶配向強度(Xa)を示す方位が測定箇所全てにおいて同一でなく、各測定箇所における最も高い結晶配向強度(Xa)と2番目に高い結晶配向強度(Xb)の強度比(Xb/Xa)のばらつきが大きく、また結晶粒径も大きいため、得られた薄膜はいずれも膜厚分布や成分組成分布が一定でなく、安定した前記特性の発揮を期待することができない。
【0073】
実施例5
・銀合金材:Ag−0.4at%Nd−0.5at%Cu
・製造方法:
▲1▼本発明例
誘導溶解(Ar雰囲気)→鋳造(金型を用いて板状に鋳造)→熱間圧延(圧延開始時の温度650℃、加工率70%)→冷間圧延(加工率50%)→熱処理(500℃×2時間)→機械加工(直径200mm、厚さ6mmの円板形状)
▲2▼比較例
誘導溶解(Ar雰囲気)→鋳造(金型を用いて板状に鋳造)→熱間圧延(圧延開始時の温度700℃、加工率40%)→熱処理(500℃×1時間)→機械加工(直径200mm、厚さ6mmの円板形状)
得られたターゲットの結晶配向強度を実施例1と同様にして測定して、最も高い結晶配向強度(Xa)を示す方位、2番目に高い結晶配向強度(Xb)を示す方位、および各測定箇所における最も高い結晶配向強度(Xa)と2番目に高い結晶配向強度(Xb)との強度比(Xb/Xa)のばらつきを求めた。更に、得られたターゲットの金属組織を前記実施例1および2と同様にして調べた。これらの結果を表6に示す。
【0074】
また該ターゲットを用い、前記実施例1と同様の方法で薄膜を形成し、得られた薄膜の膜厚分布および成分組成分布を前記実施例1と同様にして評価した。薄膜の膜厚分布を下記表6に示し、成分組成分布を図8に示す。
【0075】
【表6】
Figure 0004264302
【0076】
これらの結果より、本発明の要件を満たす金属組織のターゲットをスパッタリングに用いると、薄膜面内の膜厚分布が一定であり、安定した特性を発揮し得る銀合金薄膜が得られることがわかる。尚、図8から、本発明例のターゲットの成分組成分布は比較例よりも均一であることがわかる。
【0077】
実施例6
・銀合金材:Ag−0.8at%Y−1.0at%Au
・製造方法:
▲1▼本発明例
真空誘導溶解→鋳造(金型を用いて円柱状インゴットを製造)→熱間鍛造(700℃、加工率35%)→熱間加工(圧延開始時の温度700℃、加工率35%)→冷間圧延(加工率50%)→熱処理(550℃×1.5時間)→機械加工(実施例1と同じ形状に加工)
▲2▼比較例
真空誘導溶解→鋳造(金型を用いて円柱状インゴットを製造)→熱間鍛造(650℃、加工率40%、円柱状に成形)→熱処理(400℃×1時間)→機械加工(実施例1と同じ形状に加工)
得られたターゲットの結晶配向強度を前記実施例1と同様にして測定し、最も高い結晶配向強度(Xa)を示す方位、2番目に高い結晶配向強度(Xb)を示す方位、および各測定箇所における最も高い結晶配向強度(Xa)と2番目に高い結晶配向強度(Xb)との強度比(Xb/Xa)のばらつきを求めた。更に、得られたターゲットの金属組織を実施例1および2と同様にして調べた。これらの結果を表7に示す。
【0078】
また得られた各ターゲットを用いて、前記実施例1と同様の方法で薄膜を形成し、得られた薄膜の膜厚分布および成分組成分布を評価した。薄膜の膜厚分布を下記表7に示し、成分組成分布を図9に示す。
【0079】
【表7】
Figure 0004264302
【0080】
これらの結果より、本発明の要件を満たす金属組織のターゲットをスパッタリングすると、膜厚分布および成分組成分布が一定で、安定した特性を発揮し得る銀合金薄膜が得られることがわかる。
【0081】
実施例7
・銀合金材:Ag−0.5at%Ti
・製造方法:
▲1▼本発明例
真空誘導溶解→鋳造(金型を用いて円柱状インゴットを製造)→熱間鍛造(700℃、加工率25%)→熱間圧延(圧延開始時の温度650℃、加工率40%)→冷間圧延(加工率50%)→熱処理(550℃×1時間)→機械加工(実施例1と同じ形状に加工)
▲2▼比較例
真空誘導溶解→鋳造(金型を用いて円柱状インゴットを製造)→熱処理(500℃×1時間)→機械加工(実施例1と同じ形状に加工)
実施例1と同様にして得られたターゲットの結晶配向強度を測定し、最も高い結晶配向強度(Xa)を示す方位、2番目に高い結晶配向強度(Xb)を示す方位、および各測定箇所における最も高い結晶配向強度(Xa)と2番目に高い結晶配向強度(Xb)との強度比(Xb/Xa)のばらつきを求めた。更に、得られたターゲットの金属組織を前記実施例1および2と同様にして調べた。これらの結果を表8に示す。
【0082】
また得られた各ターゲットを用い、前記実施例1と同様の方法で薄膜を形成し、得られた薄膜の膜厚分布および成分組成分布を前記実施例1と同様にして測定した。薄膜の膜厚分布を下記表8に示し、成分組成分布を図10に示す。
【0083】
【表8】
Figure 0004264302
【0084】
これらの結果より、本発明の要件を満たす金属組織のターゲットをスパッタリングすると、膜厚分布および成分組成分布が一定で、安定した特性を発揮し得る銀合金薄膜が得られることがわかる。
【0085】
実施例8
次に、表9に示す成分組成の銀合金材料を用い、表9に示す種々の方法でターゲットを製造し、前記実施例1と同様にして、得られたターゲットの最も高い結晶配向強度(Xa)を示す方位、2番目に高い結晶配向強度(Xb)を示す方位、および各測定箇所における最も高い結晶配向強度(Xa)と2番目に高い結晶配向強度(Xb)との強度比(Xb/Xa)のばらつきを求めた。更に、得られたターゲットの金属組織を前記実施例1および2と同様にして調べた。これらの結果を表10に示す。
【0086】
また該ターゲットを用い、前記実施例1と同様の方法で薄膜を形成し、得られた薄膜の膜厚分布および成分組成分布を前記実施例4と同様にして評価した。
【0087】
【表9】
Figure 0004264302
【0088】
【表10】
Figure 0004264302
【0089】
表9および表10から次のように考察することができる。尚、以下のNo.は表9および表10における実験No.を示す。
【0090】
No.1〜7のターゲットは、本発明の要件を満足するものであることから、スパッタリング法で薄膜の形成に用いた場合に、膜厚分布および成分組成分布が均一で、安定した高反射率、高熱伝導率等の特性を発揮しうる薄膜が得られていることがわかる。これに対し、No.8,9は、本発明の要件を満足するものでなく、得られた薄膜は、いずれも膜厚分布や組成分布が均一でなく、安定した前記特性の発揮を期待することができない。
【0091】
実施例9
本発明者らは、更に表11に示す成分組成の銀合金材料を用い、表11に示す種々の方法でターゲットを製造し、得られたターゲットの最も高い結晶配向強度(Xa)を示す方位、2番目に高い結晶配向強度(Xb)を示す方位、および各測定箇所における最も高い結晶配向強度(Xa)と2番目に高い結晶配向強度(Xb)との強度比(Xb/Xa)のばらつきを求めた。更に、得られたターゲットの金属組織を前記実施例1および2と同様にして調べた。これらの結果を表12に示す。
【0092】
また得られた各ターゲットを用いて、前記実施例1と同様の方法で薄膜を形成し、得られた薄膜の膜厚分布および成分組成分布を前記実施例4と同様に評価した。
【0093】
【表11】
Figure 0004264302
【0094】
【表12】
Figure 0004264302
【0095】
表11および表12から次のように考察することができる。尚、以下のNo.は表11および表12における実験No.を示す。
【0096】
No.1〜5のターゲットは、本発明の要件を満足するものであることから、スパッタリング法で薄膜の形成に用いた場合に、膜厚分布および成分組成分布が均一で、安定した高反射率、高熱伝導率等の特性を発揮しうる薄膜が得られた。
【0097】
特に、結晶配向とともに、ターゲットの結晶粒径や結晶粒界/結晶粒内の銀と合金元素との化合物相を、本発明で好ましいとする範囲内に制御すれば、膜厚分布や成分組成分布のより均一な薄膜を形成できることがわかる。
【0098】
これに対し、No.6,7は、本発明の要件を満足するものでなく、得られた薄膜は、いずれも膜厚分布や成分組成分布が均一でなく、安定した前記特性の発揮を期待することができない。
【0099】
【発明の効果】
本発明は上記のように構成されており、膜厚分布や成分組成分布の均一な銀合金薄膜をスパッタリング法で形成するのに有用なターゲットを提供するものである。この様なターゲットを用い、スパッタリング法で形成された銀合金薄膜は、安定した高反射率や高熱伝導率等の特性を発揮し、片面2層構造のDVDにおける半透過反射膜や次世代光学記録媒体の反射膜といった光学記録媒体の反射膜や、反射型液晶ディスプレイの電極・反射膜等に適用した場合に、これらの性能をより高めることができる。
【図面の簡単な説明】
【図1】ターゲットの平均結晶粒径を光学顕微鏡観察写真から求める方法を示す図である。
【図2】本発明で規定する熱処理条件の範囲を示す図である。
【図3】実施例1の本発明例で得られたターゲットのX線回折法による結晶配向強度の測定結果を示す図である。
【図4】実施例1の比較例で得られたターゲットのX線回折法による結晶配向強度の測定結果を示す図である。
【図5】実施例1にて得られたAg合金薄膜中の合金元素の含有量分布(成分組成分布)を示す図である。
【図6】実施例2にて得られたAg合金薄膜中の合金元素の含有量分布(成分組成分布)を示す図である。
【図7】実施例3にて得られたAg合金薄膜中の合金元素の含有量分布(成分組成分布)を示す図である。
【図8】実施例5にて得られたAg合金薄膜中の合金元素の含有量分布(成分組成分布)を示す図である。
【図9】実施例6にて得られたAg合金薄膜中の合金元素の含有量分布(成分組成分布)を示す図である。
【図10】実施例7にて得られたAg合金薄膜中の合金元素の含有量分布(成分組成分布)を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silver alloy sputtering target used when forming a thin film by a sputtering method, and more particularly, to a silver alloy sputtering target capable of forming a thin film having a uniform film thickness and component composition.
[0002]
[Prior art]
Pure silver or silver alloy thin films have high reflectivity and low electrical resistivity, and are therefore applied to reflective films for optical recording media, electrodes and reflective films for reflective liquid crystal displays, and the like.
[0003]
However, a pure silver thin film tends to oxidize when exposed to air for a long time or under high temperature and high humidity, and silver crystal grains grow or silver atoms aggregate. Such a phenomenon tends to occur, and due to these, problems such as deterioration of conductivity, reduction of reflectance, and deterioration of adhesion to the substrate occur. Therefore, recently, many attempts have been made to improve by adding alloying elements in order to improve the corrosion resistance and the like while maintaining the high reflectance inherent in pure silver. Along with the improvement of such thin films, a target used for forming a silver alloy thin film has been studied. For example, Patent Document 1 discloses that Pd is 0 in order to improve the weather resistance with Ag as a main component. A plurality of elements selected from the group consisting of Al, Au, Pt, Cu, Ta, Cr, Ti, Ni, Co, and Si in order to suppress the increase in electrical resistivity due to addition of Pd. Is shown as one of metal materials for electronic parts.
[0004]
In Patent Document 2, gold is added in an amount of 0.1 to 2.5 at% to prevent adverse effects due to oxygen or the like in the gas atmosphere at the time of sputtering and to improve moisture resistance, and further, light transmittance is reduced due to the addition of gold. Proposal of a silver alloy sputtering target containing copper in a range of 0.3 to 3 at% or a composite target in which gold and copper are embedded in a part of the silver target so as to have this ratio Has been.
[0005]
Further, Patent Document 3 discloses a sputtering target made of silver or a silver alloy, and in order to efficiently perform sputtering by increasing the sputtering rate of the target during film formation by sputtering, the crystal structure of the target has a face-centered cubic structure. In addition, it has been proposed that the crystal orientation be 2.20 or more in the ((111) + (200)) / (220) plane orientation ratio.
[0006]
By the way, when a thin film formed by sputtering is used as, for example, a semi-transmissive reflective film in a DVD having a single-sided two-layer structure, the film thickness is very thin, about 100 mm, and the film thickness uniformity is reflected. In particular, the formation of a thin film having a more uniform film thickness is regarded as important because it has a great influence on characteristics such as rate and transmittance. In addition, when used as a reflective film for next-generation optical recording media, heat from the laser power during recording must be conducted quickly, so that not only excellent optical properties but also thermal conductivity is uniform in the plane and Although it is also required to be high, in order to satisfy this characteristic, the film thickness must be uniform, and further, the composition of the thin film must be uniform.
[0007]
Thus, when forming a thin film used as a reflective film or a semi-transmissive reflective film of an optical recording medium by a sputtering method, even if the composition of the target and the crystal orientation ratio are controlled as in the prior art, the optical recording medium Since it is not possible to reliably obtain a thin film having a uniform film thickness and component composition that can exhibit characteristics such as high reflectance and high thermal conductivity as a reflective film, it is considered that further improvement of the target is required.
[0008]
[Patent Document 1]
JP 2001-192752 A
[Patent Document 2]
JP-A-9-324264
[Patent Document 3]
JP 2000-239835 A
[0009]
[Problems to be solved by the invention]
This invention is made | formed in view of such a situation, The objective is to provide a silver alloy sputtering target useful for forming a thin film with a uniform film thickness and component composition by sputtering method. is there.
[0010]
[Means for Solving the Problems]
With the silver alloy sputtering target according to the present invention, the crystal orientation strength is obtained by X-ray diffraction method at any four locations, and the highest crystal orientation strength (Xa) Indicating the same crystal orientation at four measurement points, and the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) And the intensity ratio (Xb/ Xa) Is characterized by a variation of 20% or less at four measurement points. The second highest crystal orientation strength (Xb) Are the same at the four measurement points.
[0011]
The above-mentioned “highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) Intensity ratio (Xb/ Xa) ”Is obtained as follows. That is, the crystal orientation strength is obtained by X-ray diffraction at any four locations, and the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) Intensity ratio (Xb/ Xa) Average of 4 measurement points: AVE (Xb/ Xa) Next, (Xb/ Xa) MAX (Xb/ Xa) And (Xb/ Xa) Minimum value of MIN (Xb/ XaAmong the absolute values of the following (2) or (3) obtained as), the larger one is indicated by%.
| MAX (Xb/ Xa) -AVE (Xb/ Xa) | / AVE (Xb/ Xa(2)
| MIN (Xb/ Xa) -AVE (Xb/ Xa) | / AVE (Xb/ Xa(3)
In addition, if the silver alloy sputtering target of the present invention has an average crystal grain size of 100 μm or less and a maximum crystal grain size of 200 μm or less, the characteristics of the thin film formed using the target become uniform. preferable. In particular, in the case of a silver alloy sputtering target in which a compound phase of silver and an alloy element exists in the crystal grain boundary or / and in the crystal grain, the equivalent circle diameter of the compound phase is 30 μm or less on average, and the equivalent circle The maximum value of the diameter is preferably 50 μm or less.
[0012]
The “average crystal grain size” is obtained by the following measuring method. That is, (1) a plurality of straight lines are drawn from the edge of the microscopic observation photograph to the end thereof as shown in FIG. The number of straight lines is preferably four or more from the viewpoint of quantitative accuracy, and the straight lines can be drawn in the form of a cross beam as shown in FIG. 1A or a radial shape as shown in FIG. Next, the number n of grain boundaries on the straight line (2) is measured. (3) The average crystal grain size d is obtained from the following formula (4), and the average value is obtained from d of a plurality of straight lines.
[0013]
d = L / n / m (4)
[Wherein, d represents the average grain size obtained from one straight line, L represents the length of one straight line, n represents the number of grain boundaries on one straight line, and m represents Show magnification]
In addition, the “maximum crystal grain size” is arbitrarily observed at 5 or more places in the field of view of an optical microscope of 50 to 100 times, and the total field of view is 20 mm in total.2The grain size of the largest crystal within the range of is obtained by converting to the equivalent circle diameter.
[0014]
The “average of the equivalent circle diameter of the compound phase of silver and the alloying element existing in the crystal grain boundary or / and in the crystal grain” is arbitrarily observed at five or more places in the field of view of an optical microscope of 100 to 200 times, 20mm total in all fields of view2Each compound phase within the range is converted into an equivalent circle diameter, and an average value thereof is obtained. In addition, “the maximum value of the equivalent circle diameter of the compound phase of silver and the alloy element” means the total of 20 mm.2The equivalent circle diameter of the largest compound phase within the range of
[0015]
The present invention also prescribes a method for producing a silver alloy sputtering target satisfying the above prescribed crystal orientation, and performs cold working or warm working at a working rate of 30 to 70%, and then holding temperature: 500. It is necessary to perform heat treatment under the conditions of ˜600 ° C. and holding time: 0.75 to 3 hours. In order to obtain a silver alloy sputtering target having a small crystal grain size, the heat treatment is
Holding temperature: 500-600 ° C, and
Holding time: It is recommended to perform within the range of the following formula (1).
[0016]
(−0.005 × T + 3.5) ≦ t ≦ (−0.01 × T + 8) (1)
[In formula (1), T represents a holding temperature (° C.), and t represents a holding time (hour)]
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The inventors have prepared a silver alloy sputtering target (hereinafter sometimes simply referred to as “target”) capable of forming a thin film having a uniform film thickness and component composition by sputtering under the circumstances as described above. We examined from various viewpoints as much as possible. As a result, the inventors have found that it is particularly effective to control the crystal orientation of the target, and have arrived at the present invention. Hereinafter, the reason why the crystal orientation of the target is defined in the present invention will be described in detail.
[0018]
First, in the present invention, the highest crystal orientation strength (Xa) Must be the same at four measurement points.
[0019]
That is, the present invention does not particularly define the orientation showing the highest crystal orientation strength, and any of the (111) plane, (200) plane, (220) plane, (311) plane, etc. shows the highest crystal orientation strength. Although it may be an orientation, the orientation indicating the highest crystal orientation strength needs to be the same at any four measurement locations. In this way, if the orientation indicating the highest crystal orientation strength at an arbitrary position is the same, the number of atoms reaching the substrate at the time of sputtering becomes uniform within the substrate surface, and a thin film having a uniform thickness can be obtained.
[0020]
Note that it is preferable that the orientation showing the highest crystal orientation strength is the (111) plane because the film formation rate during sputtering can be increased.
[0021]
Furthermore, the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) Intensity ratio (Xb/ Xa) Is preferably 20% or less at four measurement points.
[0022]
Even if the orientation showing the highest crystal orientation strength is the same at any position of the target as described above, the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) Intensity ratio (Xb/ XaThis is because the number of atoms reaching the substrate during sputtering is likely to be nonuniform within the substrate surface, and it is difficult to obtain a thin film having a uniform thickness. The variation in the intensity ratio is more preferably 10% or less.
[0023]
If the above variation is within a specified range at an arbitrary position of the target, the second highest crystal orientation strength (Xb) May be different between the measurement points, but the second highest crystal orientation strength (Xb) Is the same at the four measurement locations, since the number of atoms reaching the substrate is likely to be uniform within the substrate surface, and a thin film having a uniform thickness is easily obtained.
[0024]
If the crystal orientation is regulated in this way and the crystal grain size of silver crystals and / or the grain boundaries or / and the size of the compound phase of silver and alloy elements present in the crystal grains are controlled, the film thickness and composition of components can be determined by sputtering. It is preferable because a uniform thin film can be formed.
[0025]
Specifically, it is preferable that the average crystal grain size of the target is 100 μm or less and the maximum crystal grain size is 200 μm or less.
[0026]
By using the target having a small average crystal grain size, a thin film having a uniform film thickness can be easily formed, and as a result, the performance of an optical recording medium or the like can be improved. The average crystal grain size is more preferably 75 μm or less, and still more preferably 50 μm or less.
[0027]
Even if the average crystal grain size is 100 μm or less, the thickness of the formed thin film tends to be locally non-uniform when crystal grains having an extremely large grain size are present. Therefore, in order to obtain an optical recording medium in which local degradation of performance is suppressed, the crystal grain size of the target used for thin film formation should be suppressed to 200 μm or less at the maximum, more preferably 150 μm or less, and still more preferably 100 μm. It is as follows.
[0028]
In the case where a compound phase of silver and an alloy element exists in the crystal grain boundary or / and crystal grains of the silver alloy sputtering target, the size of the compound phase is also preferably controlled.
[0029]
The smaller compound phase size is desirable because the component composition of the formed thin film tends to be uniform, and when the compound phase size is indicated by the equivalent circle diameter, the average is preferably 30 μm or less. More preferably, the average is 20 μm or less in terms of equivalent circle diameter.
[0030]
Even if the size is 30 μm or less on average, if an extremely large compound phase is present, the discharge state of sputtering tends to become unstable, and it becomes difficult to obtain a thin film having a uniform composition. Therefore, the maximum compound phase should be 50 μm or less in terms of equivalent circle diameter, and more preferably 30 μm or less.
[0031]
Note that the present invention does not specify the component composition of the compound phase or the like. For example, Ag present in an Ag—Nd alloy target51Nd14And Ag2Ag present in Ag-Y alloy target such as Nd51Y14And Ag2Examples of the compound phase to be controlled include AgTi and the like present in the Ag—Ti alloy target.
[0032]
In order to obtain a target satisfying the above prescribed crystal orientation, it is preferable to perform cold working or warm working at a working rate of 30 to 70% in the manufacturing process. By performing the cold working or the warm working in this way, it can be molded until it is almost in the shape of a product, and the processing strain is accumulated, and the crystal orientation can be made uniform by recrystallization by the subsequent heat treatment.
[0033]
When the processing rate is less than 30%, the amount of strain to be applied is insufficient, so even if a heat treatment is performed thereafter, it is only partially recrystallized, so that uniform crystal orientation cannot be achieved sufficiently. Preferably, cold working or warm working is performed at a working rate of 35% or more. On the other hand, when the processing rate exceeds 70%, the recrystallization speed during the heat treatment becomes too high, and as a result, the crystal orientation is likely to vary. Preferably, it is good to carry out in the range of 65% or less of processing rate.
[0034]
The processing rate means [(size of material before processing−size of material after processing) / size of material before processing] × 100 (%) (hereinafter the same), for example, a plate-like material. When forging or rolling is used to produce a plate-like product, the processing rate can be calculated using the plate thickness as the “dimension”. In addition, when manufacturing a plate-like material using a cylindrical material, the processing rate calculation method differs depending on the processing method, for example, when forging or rolling is performed by applying a force in the height direction of the cylindrical material The processing rate can be calculated from [(height of columnar material before processing−thickness of plate material after processing) / height of columnar material before processing] × 100 (%), In addition, when forging or rolling is performed by applying force in the radial direction of the cylindrical material, [(diameter of cylindrical material before processing−thickness of plate material after processing) / cylindrical material before processing) Of diameter] × 100 (%).
[0035]
Further, after cold working or warm working, heat treatment is performed under conditions of holding temperature: 500 to 600 ° C. and holding time: 0.75 to 3 hours. By performing the heat treatment in this manner, the crystal orientation can be made uniform.
[0036]
When the holding temperature is lower than 500 ° C., the time required until recrystallization becomes longer. On the other hand, when the holding temperature exceeds 600 ° C., the recrystallization speed is increased, and the strain amount of the material varies. This is not preferable because recrystallization is promoted at a portion having a large amount of strain and it becomes difficult to obtain a uniform crystal orientation. More preferably, heat treatment is performed within a range of 520 to 580 ° C.
[0037]
Even if the holding temperature is in the proper range, if the holding time is too short, recrystallization will not be performed sufficiently, while if the holding time is too long, recrystallization will proceed too much, resulting in uniform crystal orientation. It becomes difficult to obtain. Accordingly, the holding time is preferably in the range of 0.75 to 3 hours.
[0038]
To make crystal grains finer,
Holding temperature: 500-600 ° C (more preferably 520-580 ° C), and
Holding time: It is preferable to perform the heat treatment within the range of the following formula (1).
[0039]
(−0.005 × T + 3.5) ≦ t ≦ (−0.01 × T + 8) (1)
[In formula (1), T represents a holding temperature (° C.), and t represents a holding time (hour)]
It is recommended that the holding time be within the range specified by the following formula (5) among the ranges of the above formula (1). FIG. 2 shows a preferable range and a more preferable range of the holding time and holding temperature in the heat treatment.
[0040]
(−0.005 × T + 3.75) ≦ t ≦ (−0.01 × T + 7.5) (5)
[In formula (5), T represents a holding temperature (° C.), and t represents a holding time (hour)]
In the present invention, other conditions in the production of the target are not strictly defined. For example, the target can be obtained as follows. That is, after a silver alloy material having a predetermined component composition is melted and cast to obtain an ingot, hot working such as hot forging or hot rolling is performed as necessary. Next, one of the recommended methods is to perform cold working or warm working and heat treatment under the above conditions, and then perform machining to obtain a predetermined shape.
[0041]
The silver alloy material may be melted by air melting using a resistance heating type electric furnace or induction melting in a vacuum or an inert atmosphere. Since the melt of silver alloy has high oxygen solubility, in the case of melting in the atmosphere, it is necessary to sufficiently prevent oxidation by using a graphite crucible and covering the surface of the melt with a flux. From the viewpoint of preventing oxidation, it is preferable to perform dissolution in a vacuum or an inert atmosphere. Further, the casting method is not particularly limited, and is not only a casting performed using a mold or a graphite mold, but also a slow cooling casting using a refractory or a sand mold on the condition that it does not react with a silver alloy material. It is also possible to apply.
[0042]
Hot working is not essential, but hot forging, hot rolling, or the like may be performed as necessary, for example, when a cylindrical shape is formed into a rectangular parallelepiped shape or a plate shape. However, the processing rate in the hot processing needs to be within a range in which a prescribed processing rate can be secured by cold processing or warm processing in the next process. This is because if the cold working or warm working is insufficient, the strain is insufficient and recrystallization cannot be achieved, and as a result, the crystal orientation is not uniformized. Other conditions in the case of performing hot working are not particularly limited, and the working temperature and working time may be within the normal working range.
[0043]
In addition, it is desirable that these manufacturing conditions are obtained by conducting preliminary experiments in advance for operation, and obtaining optimum processing and heat treatment conditions according to the type and addition amount of alloy elements.
[0044]
Although the present invention does not specify the component composition of the target, it is recommended to use, for example, those having the following component composition in order to obtain the target.
[0045]
In other words, as described above, the target of the present invention is based on silver to which the following elements are added. As an alloying element, the crystal grain size of the formed thin film is made finer and stabilized against heat. Nd is 1.0 at% (meaning of atomic ratio, the same shall apply hereinafter) or less, and 1.0 at% or less of a rare earth element (Y or the like) that exhibits the same effect as Nd is effective for reducing the corrosion resistance of the formed thin film. Au having an effect of improving is 2.0 at% or less, and similarly to Au, Cu having an effect of improving the corrosion resistance of the obtained thin film is within 2.0 at% or less, and other elements are Ti and What added 1 type (s) or 2 or more types of Zn is good. Further, the target of the present invention may contain impurities, etc. resulting from the raw material used for target production or the atmosphere during target production within a range that does not affect the formation of the crystal structure defined in the present invention. .
[0046]
The target of the present invention can be applied to any sputtering method such as DC sputtering method, RF sputtering method, magnetron sputtering method, reactive sputtering method and the like, and is effective for forming a silver alloy thin film of about 20 to 5000 mm. . Note that the shape of the target may be appropriately changed depending on the sputtering apparatus to be used.
[0047]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
[0048]
Example 1
Silver alloy material: Ag-1.0at% Cu-0.7at% Au
·Production method:
(1) Example of the present invention
Induction melting (Ar atmosphere) → Casting (casting into a plate using a mold) → Cold rolling (working rate 50%) → Heat treatment (520 ° C. × 2 hours) → Machining (circle with a diameter of 200 mm and a thickness of 6 mm) Plate shape)
(2) Comparative example
Induction melting (Ar atmosphere) → Casting (casting into a plate using a mold) → Hot rolling (Temperature at the start of rolling 700 ° C., processing rate 70%) → Heat treatment (500 ° C. × 1 hour) → Machining ( Disk shape with a diameter of 200mm and a thickness of 6mm)
The crystal orientation of the obtained target was examined as follows. That is, X-ray diffraction was performed at any four locations on the target surface under the following conditions to examine the crystal orientation strength. As a result, the measurement results of FIG. 3 were obtained for the present invention example, and the measurement results of FIG. was gotten. From such measurement results, the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb), And further as described above, the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) Intensity ratio (Xb/ Xa) Variation. The highest crystal orientation strength (Xa) Is different at four locations, the above variation is not obtained (the same applies to the following examples).
[0049]
X-ray diffractometer: RINT 1500 manufactured by Rigaku Corporation
Target: Cu
Tube voltage: 50 kV
Tube current: 200 mA
Scanning speed: 4 ° / min
Sample rotation: 100 times / min
Further, the metal structure of the obtained target was examined as follows. That is, a 10 mm × 10 mm × 10 mm cubic sample was taken from the machined target, the observation surface was polished, then observed with an optical microscope at 50 to 100 times, photographed, and the method described above, The average crystal grain size and the maximum crystal grain size of the target were determined. In the microscopic observation, polarized light was appropriately applied with an optical microscope so that the crystal grains could be easily observed. These results are shown in Table 1.
[0050]
Next, using each of the obtained targets, a DC magnetron sputtering method [Ar gas pressure: 0.267 Pa (2 mTorr), sputtering power: 1000 W, substrate temperature: room temperature], and a thin film with an average thickness of 1000 mm is 12 cm in diameter. Formed on a glass substrate. And the film thickness of five places was measured in order from the edge of arbitrary center lines of the obtained thin film. The results are also shown in Table 1.
[0051]
Further, with respect to the obtained thin film, the content distribution of the alloy element was measured by the X-ray microanalysis method (EPMA) in order from the end of the arbitrary center line of the disk-shaped thin film forming substrate. The result shown in FIG. was gotten.
[0052]
[Table 1]
Figure 0004264302
[0053]
From these results, it can be seen that if a target satisfying the requirements of the present invention is sputtered, a silver alloy thin film having a constant film thickness distribution and exhibiting stable characteristics can be obtained. In the case of the target of the above component composition, from FIG. 5, almost no difference in the component composition distribution was observed between the inventive example and the comparative example.
[0054]
Example 2
Silver alloy material: Ag-0.8at% Y-1.0at% Au
·Production method:
(1) Example of the present invention
Vacuum induction melting → Casting (Manufacturing cylindrical ingot using mold) → Hot forging (700 ° C, processing rate 30%, manufacturing slab) → Cold rolling (processing rate 50%) → Heat treatment (550 ° C × 1.5 hours) → machining (processing into the same shape as in Example 1)
(2) Comparative example
Vacuum induction melting → Casting (Manufacturing cylindrical ingot using mold) → Hot forging (650 ° C., processing rate 60%, manufacturing slab) → Heat treatment (400 ° C. × 1 hour) → Machining (Example 1) To the same shape)
For the obtained target, the crystal orientation strength was measured in the same manner as in Example 1, and the highest crystal orientation strength (Xa), The second highest crystal orientation strength (Xb) And the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) And the intensity ratio (Xb/ Xa) Variation.
[0055]
Further, the metal structure of the obtained target was examined in the same manner as in Example 1. Note that the silver alloy material used in this example has a compound phase of silver and an alloy element in the grain boundary / crystal grain, and the size of the compound phase was examined as follows.
[0056]
That is, after polishing the observation surface of the sample similar to the measurement of the crystal grain size, after performing appropriate etching such as corroding the sample surface with nitric acid or the like to clarify the contour of the compound, as described above, the optical microscope is used. Observe 5 or more arbitrarily at 100 to 200 times with a total field of view of 20mm2The equivalent circle diameter of each compound phase existing in the range of was obtained, and the average value was obtained. Further, the equivalent circle diameter of the maximum compound phase in the total visual field was determined.
[0057]
If it is difficult to recognize the compound phase, surface analysis (mapping) is performed by EPMA instead of the optical microscope observation, and the average value and the maximum value of the compound phase size may be obtained by a normal image analysis method. Good. These results are shown in Table 2.
[0058]
Next, using each target obtained, a thin film was formed in the same manner as in Example 1, and the film thickness distribution and component composition distribution of the obtained thin film were evaluated. The film thickness distribution is shown in Table 2, and the component composition distribution is shown in FIG.
[0059]
[Table 2]
Figure 0004264302
[0060]
From these results, it can be seen that if a target satisfying the requirements of the present invention is sputtered, a silver alloy thin film having a constant film thickness distribution and exhibiting stable characteristics can be obtained. FIG. 6 also shows that a thin film with a more uniform component composition distribution can be formed if the crystal grain size of the target is within the preferred range of the present invention.
[0061]
Example 3
Silver alloy material: Ag-0.4at% Nd-0.5at% Cu
·Production method:
(1) Example of the present invention
Vacuum induction melting → Casting (Manufacturing cylindrical ingot using mold) → Hot forging (700 ° C, processing rate 35%, manufacturing slab) → Cold rolling (processing rate 50%) → Heat treatment (550 ° C × 1 hour) → machining (processing to the same shape as Example 1)
(2) Comparative example
Vacuum induction melting → Casting (Manufacturing cylindrical ingot using a mold) → Heat treatment (500 ° C. × 1 hour) → Machining (processing into the same shape as Example 1)
For the obtained target, the crystal orientation strength was measured in the same manner as in Example 1, and the highest crystal orientation strength (Xa), The second highest crystal orientation strength (Xb) And the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) Intensity ratio (Xb/ Xa) Variation. Further, the metal structure of the obtained target was examined in the same manner as in Examples 1 and 2. These results are shown in Table 3.
[0062]
Further, using each of the obtained targets, a thin film was formed in the same manner as in Example 1, and the film thickness distribution and component composition distribution of the obtained thin film were evaluated. The film thickness distribution is shown in Table 3, and the component composition distribution is shown in FIG.
[0063]
[Table 3]
Figure 0004264302
[0064]
From these results, it can be seen that if a target satisfying the requirements of the present invention is sputtered, a silver alloy thin film can be obtained in which the film thickness distribution and the component composition distribution are constant and can exhibit stable characteristics.
[0065]
Example 4
Next, using the silver alloy material having the component composition shown in Table 4, the target was produced by various methods shown in Table 4, and the crystal orientation strength of the obtained target was measured in the same manner as in Example 1, Highest crystal orientation strength (Xa), The second highest crystal orientation strength (Xb) And the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) And the intensity ratio (Xb/ Xa) Variation. Further, the metal structure of the obtained target was examined in the same manner as in Examples 1 and 2.
[0066]
Moreover, using each target, the thin film was formed similarly to the said Example 1, and the film thickness distribution and component composition distribution of the obtained thin film were evaluated.
[0067]
In this example, the film thickness distribution was evaluated by measuring the film thickness at five locations in order from the end of any center line of the formed thin film, and the ratio of the minimum film thickness to the maximum film thickness (minimum film thickness / maximum film thickness). The thickness was determined to be substantially uniform when the ratio was 0.90 or more. The component composition distribution was evaluated as follows. That is, in the case of a binary silver alloy of one kind of silver and an alloy element, the contents of five alloy elements are determined in order from the end of an arbitrary center line of the thin film, and the alloy element (content minimum value / In the case of a ternary silver alloy of two types of silver and alloy elements, the minimum content / maximum value of the two alloy elements is evaluated. Evaluation was performed using (content minimum value / content maximum value) of the alloy element showing the minimum value of (), and when the ratio was 0.90 or more, it was determined that the component composition distribution was almost uniform. These measurement results are shown in Table 5.
[0068]
[Table 4]
Figure 0004264302
[0069]
[Table 5]
Figure 0004264302
[0070]
From Tables 4 and 5, it can be considered as follows. The following No. Is the experiment No. in Table 4 and Table 5. Indicates.
[0071]
No. Since the targets 1 to 7 satisfy the requirements of the present invention, when used for forming a thin film by sputtering, the film thickness distribution and the component composition distribution are uniform, stable high reflectance, and excellent It can be seen that a thin film capable of exhibiting characteristics such as thermal conductivity was obtained. The highest crystal orientation strength (Xa) Indicating the same orientation at the four measurement points, in addition to the second highest crystal orientation strength (XbIt can be seen that a thin film having a more uniform film thickness distribution can be obtained in the case of targets having the same orientation at four measurement points.
[0072]
In contrast, no. 8 to 10 do not satisfy the requirements of the present invention, and the highest crystal orientation strength (Xa) Is not the same in all the measurement locations, and the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) Intensity ratio (Xb/ Xa) And the crystal grain size are large, and any of the thin films obtained has a non-constant film thickness distribution and component composition distribution, and stable performance cannot be expected.
[0073]
Example 5
Silver alloy material: Ag-0.4at% Nd-0.5at% Cu
·Production method:
(1) Example of the present invention
Induction melting (Ar atmosphere) → Casting (casting into a plate using a mold) → Hot rolling (Temperature at 650 ° C., processing rate 70%) → Cold rolling (Processing rate 50%) → Heat treatment ( 500 ° C x 2 hours) → Machining (disk shape with a diameter of 200 mm and a thickness of 6 mm)
(2) Comparative example
Induction melting (Ar atmosphere) → Casting (casting into a plate using a mold) → Hot rolling (Temperature starting at 700 ° C., processing rate 40%) → Heat treatment (500 ° C. × 1 hour) → Machining ( Disk shape with a diameter of 200mm and a thickness of 6mm)
The crystal orientation strength of the obtained target was measured in the same manner as in Example 1, and the highest crystal orientation strength (Xa), The second highest crystal orientation strength (Xb) And the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) And the intensity ratio (Xb/ Xa) Variation. Further, the metal structure of the obtained target was examined in the same manner as in Examples 1 and 2. These results are shown in Table 6.
[0074]
Further, using this target, a thin film was formed by the same method as in Example 1, and the film thickness distribution and component composition distribution of the obtained thin film were evaluated in the same manner as in Example 1. The film thickness distribution of the thin film is shown in Table 6 below, and the component composition distribution is shown in FIG.
[0075]
[Table 6]
Figure 0004264302
[0076]
From these results, it can be seen that when a metal structure target satisfying the requirements of the present invention is used for sputtering, a film thickness distribution in the thin film plane is constant and a silver alloy thin film capable of exhibiting stable characteristics can be obtained. 8 that the component composition distribution of the target of the example of the present invention is more uniform than that of the comparative example.
[0077]
Example 6
Silver alloy material: Ag-0.8at% Y-1.0at% Au
·Production method:
(1) Example of the present invention
Vacuum induction melting → Casting (Manufacturing cylindrical ingot using a mold) → Hot forging (700 ° C., processing rate 35%) → Hot processing (Temperature starting temperature 700 ° C., processing rate 35%) → Cold Cold rolling (working rate 50%) → heat treatment (550 ° C. × 1.5 hours) → machining (working in the same shape as in Example 1)
(2) Comparative example
Vacuum induction melting → Casting (Manufacturing a cylindrical ingot using a mold) → Hot forging (650 ° C., processing rate 40%, forming into a cylindrical shape) → Heat treatment (400 ° C. × 1 hour) → Machining (Example) Processed to the same shape as 1)
The crystal orientation strength of the obtained target was measured in the same manner as in Example 1, and the highest crystal orientation strength (Xa), The second highest crystal orientation strength (Xb) And the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) And the intensity ratio (Xb/ Xa) Variation. Further, the metal structure of the obtained target was examined in the same manner as in Examples 1 and 2. These results are shown in Table 7.
[0078]
Moreover, using each obtained target, a thin film was formed in the same manner as in Example 1, and the film thickness distribution and component composition distribution of the obtained thin film were evaluated. The film thickness distribution of the thin film is shown in Table 7 below, and the component composition distribution is shown in FIG.
[0079]
[Table 7]
Figure 0004264302
[0080]
From these results, it is understood that when a target having a metal structure that satisfies the requirements of the present invention is sputtered, a silver alloy thin film that has a constant film thickness distribution and component composition distribution and can exhibit stable characteristics is obtained.
[0081]
Example 7
Silver alloy material: Ag-0.5at% Ti
·Production method:
(1) Example of the present invention
Vacuum induction melting → Casting (Manufacturing cylindrical ingot using a mold) → Hot forging (700 ° C., processing rate 25%) → Hot rolling (rolling temperature 650 ° C., processing rate 40%) → Cold Cold rolling (processing rate 50%) → heat treatment (550 ° C. × 1 hour) → machining (processing into the same shape as Example 1)
(2) Comparative example
Vacuum induction melting → Casting (Manufacturing cylindrical ingot using a mold) → Heat treatment (500 ° C. × 1 hour) → Machining (processing into the same shape as Example 1)
The crystal orientation strength of the target obtained in the same manner as in Example 1 was measured, and the highest crystal orientation strength (Xa), The second highest crystal orientation strength (Xb) And the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) And the intensity ratio (Xb/ Xa) Variation. Further, the metal structure of the obtained target was examined in the same manner as in Examples 1 and 2. These results are shown in Table 8.
[0082]
A thin film was formed by the same method as in Example 1 using each of the obtained targets, and the film thickness distribution and component composition distribution of the obtained thin film were measured in the same manner as in Example 1. The film thickness distribution of the thin film is shown in Table 8 below, and the component composition distribution is shown in FIG.
[0083]
[Table 8]
Figure 0004264302
[0084]
From these results, it is understood that when a target having a metal structure that satisfies the requirements of the present invention is sputtered, a silver alloy thin film that has a constant film thickness distribution and component composition distribution and can exhibit stable characteristics is obtained.
[0085]
Example 8
Next, using the silver alloy material of the component composition shown in Table 9, the target was manufactured by various methods shown in Table 9, and in the same manner as in Example 1, the highest crystal orientation strength (Xa), The second highest crystal orientation strength (Xb) And the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) And the intensity ratio (Xb/ Xa) Variation. Further, the metal structure of the obtained target was examined in the same manner as in Examples 1 and 2. These results are shown in Table 10.
[0086]
Further, using this target, a thin film was formed by the same method as in Example 1, and the film thickness distribution and component composition distribution of the obtained thin film were evaluated in the same manner as in Example 4.
[0087]
[Table 9]
Figure 0004264302
[0088]
[Table 10]
Figure 0004264302
[0089]
From Table 9 and Table 10, it can be considered as follows. The following No. Is the experiment No. in Table 9 and Table 10. Indicates.
[0090]
No. Since the targets 1 to 7 satisfy the requirements of the present invention, when used for forming a thin film by sputtering, the film thickness distribution and the component composition distribution are uniform, stable high reflectance, high heat It turns out that the thin film which can exhibit characteristics, such as conductivity, is obtained. In contrast, no. Nos. 8 and 9 do not satisfy the requirements of the present invention, and none of the obtained thin films have a uniform film thickness distribution or composition distribution, and cannot be expected to exhibit the above-mentioned characteristics stably.
[0091]
Example 9
The present inventors further produced a target by various methods shown in Table 11 using a silver alloy material having the component composition shown in Table 11, and obtained the target with the highest crystal orientation strength (Xa), The second highest crystal orientation strength (Xb) And the highest crystal orientation strength (Xa) And the second highest crystal orientation strength (Xb) And the intensity ratio (Xb/ Xa) Variation. Further, the metal structure of the obtained target was examined in the same manner as in Examples 1 and 2. These results are shown in Table 12.
[0092]
A thin film was formed by the same method as in Example 1 using each of the obtained targets, and the film thickness distribution and component composition distribution of the obtained thin film were evaluated in the same manner as in Example 4.
[0093]
[Table 11]
Figure 0004264302
[0094]
[Table 12]
Figure 0004264302
[0095]
Table 11 and Table 12 can be considered as follows. The following No. Is the experiment No. in Table 11 and Table 12. Indicates.
[0096]
No. Since the targets 1 to 5 satisfy the requirements of the present invention, when used for forming a thin film by a sputtering method, the film thickness distribution and the component composition distribution are uniform, stable high reflectivity, and high heat. A thin film capable of exhibiting characteristics such as conductivity was obtained.
[0097]
In particular, if the crystal grain orientation, the grain size of the target, and the compound phase of the grain boundary / silver within the grain and the alloy element are controlled within the range preferred in the present invention, the film thickness distribution and the component composition distribution It can be seen that a more uniform thin film can be formed.
[0098]
In contrast, no. Nos. 6 and 7 do not satisfy the requirements of the present invention, and none of the obtained thin films have a uniform film thickness distribution or component composition distribution, and cannot be expected to exhibit stable characteristics.
[0099]
【The invention's effect】
This invention is comprised as mentioned above and provides the target useful for forming the silver alloy thin film with uniform film thickness distribution and component composition distribution by sputtering method. A silver alloy thin film formed by sputtering using such a target exhibits characteristics such as stable high reflectance and high thermal conductivity, and transflective film and next-generation optical recording in a single-sided dual-layer DVD. When applied to a reflective film of an optical recording medium such as a reflective film of a medium, an electrode / reflective film of a reflective liquid crystal display, etc., these performances can be further enhanced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a method for obtaining an average crystal grain size of a target from an optical microscope observation photograph.
FIG. 2 is a diagram showing a range of heat treatment conditions defined in the present invention.
FIG. 3 is a diagram showing the measurement results of the crystal orientation strength of the target obtained in Example 1 of the present invention by the X-ray diffraction method.
4 is a graph showing the measurement results of the crystal orientation strength of the target obtained in the comparative example of Example 1 by the X-ray diffraction method. FIG.
5 is a view showing the content distribution (component composition distribution) of alloy elements in the Ag alloy thin film obtained in Example 1. FIG.
6 is a view showing a content distribution (component composition distribution) of alloy elements in an Ag alloy thin film obtained in Example 2. FIG.
7 is a view showing a content distribution (component composition distribution) of alloy elements in an Ag alloy thin film obtained in Example 3. FIG.
8 is a view showing the content distribution (component composition distribution) of alloy elements in the Ag alloy thin film obtained in Example 5. FIG.
9 is a view showing the content distribution (component composition distribution) of alloy elements in the Ag alloy thin film obtained in Example 6. FIG.
10 is a view showing a content distribution (component composition distribution) of alloy elements in an Ag alloy thin film obtained in Example 7. FIG.

Claims (6)

Nd:1.0at%以下またはY:1.0at%以下を含む銀合金からなるものであって、
任意の4箇所についてX線回折法によって結晶配向強度を求めた場合に
最も高い結晶配向強度(X)を示す方位が4測定箇所で(111)面と同一であり、かつ各測定箇所における最も高い結晶配向強度(X)と2番目に高い結晶配向強度(X)の強度比(X/X)のばらつきが20%以下であることを特徴とする銀合金スパッタリングターゲット。
It is made of a silver alloy containing Nd: 1.0 at% or less or Y: 1.0 at% or less,
When the determined crystal orientation intensity by X-ray diffractometry for any four points,
The orientation indicating the highest crystal orientation strength (X a ) is the same as the (111) plane at four measurement locations, and the highest crystal orientation strength (X a ) and the second highest crystal orientation strength (X at each measurement location) silver alloy sputtering target variation in the intensity ratio of b) (X b / X a ) is equal to or less than 20%.
更に、Au:2.0at%以下またはCu:2.0at%以下を含む銀合金からなる請求項1に記載の銀合金スパッタリングターゲット。The silver alloy sputtering target according to claim 1, further comprising a silver alloy containing Au: 2.0 at% or less or Cu: 2.0 at% or less. 2番目に高い結晶配向強度(X)を示す方位が4測定箇所で同一である請求項1または2に記載の銀合金スパッタリングターゲット。The silver alloy sputtering target according to claim 1 or 2 , wherein the orientation indicating the second highest crystal orientation strength ( Xb ) is the same at four measurement points. 平均結晶粒径が100μm以下で、最大結晶粒径が200μm以下である請求項1〜3のいずれかに記載の銀合金スパッタリングターゲット。The silver alloy sputtering target according to any one of claims 1 to 3, wherein the average crystal grain size is 100 µm or less and the maximum crystal grain size is 200 µm or less. 結晶粒界または/および結晶粒内に存在する銀と合金元素の化合物相の円相当直径が、平均で30μm以下であり、かつ該円相当直径の最大値が50μm以下である請求項1〜のいずれかに記載の銀合金スパッタリングターゲット。Circle equivalent diameter of compound phase silver alloy elements present in the crystal grain boundaries and / or within the crystal grains, average and is 30μm or less, and claims 1-4 maximum value of the circle equivalent diameter is 50μm or less A silver alloy sputtering target according to any one of the above. 請求項1〜のいずれかに記載の銀合金スパッタリングターゲットを製造する方法であって、加工率30〜70%で冷間加工または温間加工を行い、その後、保持温度:500〜600℃、かつ保持時間:0.75〜3時間かつ下記式(1)の範囲内の条件で熱処理を行うことを特徴とする銀合金スパッタリングターゲットの製造方法。
(− 0.005 ×T+ 3.5 )≦t≦(− 0.01 ×T+ 8 ) …(1)
[式(1)中、Tは保持温度(℃)、tは保持時間(時間)を示す]
A method for producing the silver alloy sputtering target according to any one of claims 1 to 5 , wherein cold working or warm working is performed at a working rate of 30 to 70%, and then a holding temperature: 500 to 600 ° C, And holding time: 0.75-3 hours, and heat processing is performed on the conditions within the range of following formula (1), The manufacturing method of the silver alloy sputtering target characterized by the above-mentioned.
( −0.005 × T + 3.5 ) ≦ t ≦ ( −0.01 × T + 8 ) (1)
[In formula (1), T represents a holding temperature (° C.), and t represents a holding time (hour)]
JP2003169897A 2002-06-24 2003-06-13 Silver alloy sputtering target and manufacturing method thereof Expired - Lifetime JP4264302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003169897A JP4264302B2 (en) 2002-06-24 2003-06-13 Silver alloy sputtering target and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002183463 2002-06-24
JP2002183462 2002-06-24
JP2003169897A JP4264302B2 (en) 2002-06-24 2003-06-13 Silver alloy sputtering target and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004084065A JP2004084065A (en) 2004-03-18
JP4264302B2 true JP4264302B2 (en) 2009-05-13

Family

ID=32074118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169897A Expired - Lifetime JP4264302B2 (en) 2002-06-24 2003-06-13 Silver alloy sputtering target and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4264302B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4384453B2 (en) 2003-07-16 2009-12-16 株式会社神戸製鋼所 Ag-based sputtering target and manufacturing method thereof
WO2006132413A1 (en) * 2005-06-10 2006-12-14 Tanaka Kikinzoku Kogyo K.K. Silver alloy for electrode, wiring and electromagnetic shielding
JPWO2006132417A1 (en) * 2005-06-10 2009-01-08 田中貴金属工業株式会社 Silver alloy with excellent reflectivity and transmittance maintenance characteristics
JP4694543B2 (en) 2007-08-29 2011-06-08 株式会社コベルコ科研 Ag-based alloy sputtering target and manufacturing method thereof
JP5046890B2 (en) 2007-11-29 2012-10-10 株式会社コベルコ科研 Ag-based sputtering target
JP4793502B2 (en) * 2009-10-06 2011-10-12 三菱マテリアル株式会社 Silver alloy target for forming reflective electrode film of organic EL element and method for producing the same
WO2011077766A1 (en) * 2009-12-25 2011-06-30 日本電波工業株式会社 Oscillator electrode material having excellent aging characteristics, piezoelectric oscillator using the material and sputtering target comprising the material
JP5472353B2 (en) * 2012-03-27 2014-04-16 三菱マテリアル株式会社 Silver-based cylindrical target and manufacturing method thereof
DE102012006718B3 (en) * 2012-04-04 2013-07-18 Heraeus Materials Technology Gmbh & Co. Kg Planar or tubular sputtering target and method of making the same

Also Published As

Publication number Publication date
JP2004084065A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
KR100568392B1 (en) Silver alloy sputtering target and process for producing the same
JP3993530B2 (en) Ag-Bi alloy sputtering target and method for producing the same
TWI752189B (en) Aluminum alloys and articles with high elemental content
TWI245806B (en) Thin film aluminum alloy and sputtering target to form the same
EP1194607A2 (en) Copper sputtering target assembly and method of making same
JP4305809B2 (en) Ag alloy-based sputtering target material
JP4264302B2 (en) Silver alloy sputtering target and manufacturing method thereof
JP7094220B2 (en) Silver alloy sputtering target
WO2014021173A1 (en) SPUTTERING TARGET FOR FORMING Cu ALLOY THIN FILM, AND METHOD FOR MANUFACTURING SAME
TWI608108B (en) Sputtering target based on a silver alloy
US20090022622A1 (en) Ternary aluminum alloy films and targets for manufacturing flat panel displays
JP2006513316A (en) Thin film and method for forming a thin film using an ECAE target
TWI602931B (en) Aluminum sputtering target
JP5830907B2 (en) Silver alloy sputtering target for forming conductive film and method for producing the same
EP1390552A1 (en) Nickel-titanium sputter target alloy
JP6791313B1 (en) Nickel alloy sputtering target
KR20090112478A (en) Electromagnetic interference shielding Ag-based materials and films
JP2003293054A (en) Ag ALLOY FILM FOR ELECTRONIC PART AND SPUTTERING TARGET MATERIAL FOR FORMING Ag ALLOY FILM
JP2000178723A (en) Aluminum-titanium alloy sputtering target for forming reflective film of optical recording medium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040811

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4264302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

EXPY Cancellation because of completion of term