JP4569863B2 - Ag alloy sputtering target material and Ag alloy film - Google Patents
Ag alloy sputtering target material and Ag alloy film Download PDFInfo
- Publication number
- JP4569863B2 JP4569863B2 JP2004130832A JP2004130832A JP4569863B2 JP 4569863 B2 JP4569863 B2 JP 4569863B2 JP 2004130832 A JP2004130832 A JP 2004130832A JP 2004130832 A JP2004130832 A JP 2004130832A JP 4569863 B2 JP4569863 B2 JP 4569863B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- target material
- film
- less
- sputtering target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910001316 Ag alloy Inorganic materials 0.000 title claims description 62
- 239000013077 target material Substances 0.000 title claims description 55
- 238000005477 sputtering target Methods 0.000 title claims description 23
- 239000013078 crystal Substances 0.000 claims description 20
- 239000000654 additive Substances 0.000 claims description 10
- 230000000996 additive effect Effects 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 3
- 239000010408 film Substances 0.000 description 35
- 239000002585 base Substances 0.000 description 15
- 238000004544 sputter deposition Methods 0.000 description 15
- 239000000758 substrate Substances 0.000 description 13
- 230000002159 abnormal effect Effects 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 8
- 239000010409 thin film Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- -1 Na and K Chemical class 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910018594 Si-Cu Inorganic materials 0.000 description 1
- 229910008465 Si—Cu Inorganic materials 0.000 description 1
- 229910008310 Si—Ge Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Description
本発明は、基板上に金属膜を形成して製造する薄膜電子部品において、低い電気抵抗や高い反射率と耐食性、耐熱性、密着性を要求されるAg合金薄膜の形成に用いられるAg合金スパッタリングターゲット材およびそのAg合金スパッタリングターゲット材で形成するAg合金膜に関するものである。 The present invention relates to an Ag alloy sputtering used for forming an Ag alloy thin film that requires low electrical resistance, high reflectance, corrosion resistance, heat resistance, and adhesion in a thin film electronic component manufactured by forming a metal film on a substrate. The present invention relates to a target material and an Ag alloy film formed from the Ag alloy sputtering target material.
現在、光ディスク用の反射膜等において一部ではAg合金膜が用いられている。また、今後の伸長分野の一つとして平面表示装置(以下、FPDという)市場がある。その代表である液晶ディスプレイ(以下、LCDという)においては、低消費電力の必要な小型の携帯機器用に反射型とバックライトを用いた透過型の両者を兼ね備えた半透過型ディスプレイが用いられている。この反射膜には従来からAl合金が用いられているが、より高い反射特性と耐熱性を有したAg合金膜が検討されている。また、大画面化、高精細化、高速応答化のために低抵抗な配線材料が望まれているため、従来のAlやAl合金より低抵抗なAg合金膜が上述のように検討されている。また、樹脂基板上に低温で薄膜形成するシ−トディスプレイ等では加熱を行わないで低抵抗な配線膜が形成できるAg合金膜が有用であると考えられている。 At present, Ag alloy films are partially used in reflective films for optical disks and the like. One of the future growth fields is the flat panel display (hereinafter referred to as FPD) market. In a typical liquid crystal display (hereinafter referred to as LCD), a transflective display having both a reflective type and a transmissive type using a backlight is used for small portable devices requiring low power consumption. Yes. Al alloy is conventionally used for the reflective film, but an Ag alloy film having higher reflective characteristics and heat resistance has been studied. In addition, since a low-resistance wiring material is desired for a large screen, high definition, and high-speed response, an Ag alloy film having a resistance lower than that of conventional Al or Al alloy has been studied as described above. . Further, it is considered that an Ag alloy film that can form a low resistance wiring film without heating is useful in a sheet display or the like that forms a thin film on a resin substrate at a low temperature.
上記の特性を有するAg合金としては、低抵抗なAgの耐食性の改善を図るためにAgにPdやCu、Tiを添加したAg合金が提案されている(例えば、特許文献1、特許文献2参照)。また、光記録用の反射膜を形成するために、Auを添加したAg合金タ−ゲット材(例えば、特許文献3参照)やAgにRuとAuを加えたAg合金(例えば、特許文献4)、また、AgにCuとNdを加えたAg合金(例えば特許文献5)が提案されている。
前述の特許文献1乃至5には、Agの薄膜特性を改善のために、Agを合金化する場合の添加元素による効果に重点がおかれて検討されており、Ag合金スパッタリングターゲット材自体の製造上の問題やスパッタリングターゲット材のスパッタ特性に関して何ら検討されていない状況にある。
本発明の目的は、電子デバイスに要求される低い電気抵抗と、耐熱性、耐食性、そして基板への密着性を兼ね備えたAg合金膜を安定的かつ大面積のFPD基板に均一に形成するための薄膜形成用のAg合金スパッタリングターゲット材およびそのAg合金スパッタリングターゲット材で形成するAg合金膜を提供することにある。
In Patent Documents 1 to 5 described above, in order to improve the thin film characteristics of Ag, examination is made with an emphasis on the effect of additive elements when alloying Ag, and the production of the Ag alloy sputtering target material itself is studied. There is no study on the above problems or the sputtering characteristics of the sputtering target material.
An object of the present invention is to stably form an Ag alloy film having low electrical resistance required for an electronic device, heat resistance, corrosion resistance, and adhesion to a substrate on a stable and large-area FPD substrate. An object of the present invention is to provide an Ag alloy sputtering target material for forming a thin film and an Ag alloy film formed from the Ag alloy sputtering target material.
本発明者らは、上記の課題を解決すべく、鋭意検討を行った結果、Ag合金スパッタリングターゲット材の金属組織を制御することで、電子デバイスに要求される膜特性を有するAg合金膜を安定的かつ大面積の基板に均一に形成するための薄膜形成用のAg合金スパッタリングターゲット材を見いだし、本発明に到達した。 As a result of intensive studies to solve the above problems, the present inventors have stabilized the Ag alloy film having film characteristics required for electronic devices by controlling the metal structure of the Ag alloy sputtering target material. The present inventors have found an Ag alloy sputtering target material for forming a thin film for uniform formation on a target and large-area substrate, and reached the present invention.
すなわち、本発明は、添加元素として、Siを0.1〜0.7原子%、Cuおよび/またはGeを合計で0.1〜1.0原子%含有し、残部不可避的不純物およびAgからなるスパッタリングターゲット材であって、Agを主体とする平均結晶粒径が100μm以下である基地中に、添加元素を含む長径が30μm以下である第二相が分散した再結晶組織を有し、ビッカース硬さが60HV以下であるAg合金スパッタリングターゲット材である。 That is, the present invention contains 0.1 to 0.7 atomic% of Si and 0.1 to 1.0 atomic% of Cu and / or Ge in total as additive elements, and the balance consists of inevitable impurities and Ag. A sputtering target material having a recrystallized structure in which a second phase having a major axis of 30 μm or less containing an additive element is dispersed in a base having an average crystal grain size of 100 μm or less mainly composed of Ag, and having a Vickers hardness This is an Ag alloy sputtering target material having a thickness of 60 HV or less.
本発明であれば、電子デバイスに要求される高い膜特性である低い電気抵抗と、耐熱性、耐食性、そして基板への密着性を兼ね備えたAg合金膜を安定に形成できるスパッタリングターゲット材を得ることが可能である。このため、高品位かつ大型の平面表示装置等の製造に有用であり、産業上の利用価値は高い。 According to the present invention, a sputtering target material capable of stably forming an Ag alloy film having low electrical resistance, which is a high film characteristic required for an electronic device, heat resistance, corrosion resistance, and adhesion to a substrate is obtained. Is possible. For this reason, it is useful for manufacturing a high-quality and large-sized flat display device and the like, and its industrial utility value is high.
本発明における最大の特徴の一つは、Agを主体とする基地中に、添加元素を含む第二相が分散した再結晶組織を有し、ビッカース硬さが60HV以下であるAg合金スパッタリングターゲット材を実現したことである。以下に本発明のAg合金スパッタリングターゲット材の組成、金属組織および限定理由を詳細に述べる。 One of the greatest features of the present invention is an Ag alloy sputtering target material having a recrystallized structure in which a second phase containing an additive element is dispersed in a base mainly composed of Ag and having a Vickers hardness of 60 HV or less. Is achieved. The composition, metal structure and reason for limitation of the Ag alloy sputtering target material of the present invention will be described in detail below.
本発明のAg合金スパッタリングターゲット材は、スパッタリングにより薄膜を形成した場合に、耐食性や耐熱性、電子部品を形成する際に使用されるガラス基板やSiウェハ基板との密着性を向上させるために、Agに対してSi、Cu、Geを添加した合金組成を有する。
SiはAgと分離する元素であるため、Ag合金膜を微細化させるとともに耐熱性の向上と耐食性の向上に効果のある元素であるとともに、添加した場合の抵抗値の増加が少ない元素である。
The Ag alloy sputtering target material of the present invention, when a thin film is formed by sputtering, in order to improve the corrosion resistance and heat resistance, adhesion to a glass substrate or Si wafer substrate used when forming an electronic component, It has an alloy composition in which Si, Cu, and Ge are added to Ag.
Since Si is an element that separates from Ag, it is an element that is effective in making the Ag alloy film finer and improving heat resistance and corrosion resistance, and is an element that does not increase in resistance when added.
また、Cu、GeはAgに対して添加することで耐食性を改善することができる元素である。そして、Cu、GeはAgに対して高温域で固溶し、低温域で分離する元素であるとともにSiとは固溶域を有するか、化合物を形成する元素である。このため、Agにこれらを複合添加することにより結晶粒の微細化と、加熱時の粒界、膜表面への添加元素の分離効果により耐食性の向上と基板との密着性の向上に効果がある。
そこで、Agの有する低電気抵抗かつ高反射という特性を維持しつつ、上記の効果を得るためには、Siは0.1〜0.7原子%、Cuおよび/またはGeは合計で0.1〜1.0原子%の範囲で複合添加することが好ましい。
Cu and Ge are elements that can improve the corrosion resistance when added to Ag. Cu and Ge are elements that dissolve in Ag in a high temperature range and are separated in a low temperature range, and Si is an element that has a solid solution range or forms a compound. For this reason, composite addition of these to Ag has the effect of improving the corrosion resistance and improving the adhesion to the substrate due to the refinement of crystal grains and the effect of separating the added elements on the grain boundaries and film surface during heating. .
Therefore, in order to obtain the above effect while maintaining the low electrical resistance and high reflection characteristics of Ag, Si is 0.1 to 0.7 atomic%, and Cu and / or Ge is 0.1 in total. It is preferable to add in the range of ˜1.0 atomic%.
本発明のAg合金スパッタリングターゲット材は、上記の合金組成において、塑性加工時に導入された加工歪を加熱処理により開放した再結晶組織とし、ビッカース硬さで60HV以下に制御する。塑性加工を施しただけで再結晶組織でないAg合金組織では、ターゲット材は、その組織内に歪みが残留している。そのため、スパッタリング時にターゲット材の表面がArガスで叩かれて粒子を放出する際に、格子の歪みを開放しようと原子が再配列のために移動して、原子結合が切れやすくなり、巨大なスパッタ粒子であるクラスターがターゲット材から放出されスプラッシュが発生するという問題がある。 The Ag alloy sputtering target material of the present invention has a recrystallized structure in which the processing strain introduced at the time of plastic working is released by heat treatment in the above alloy composition, and the Vickers hardness is controlled to 60 HV or less. In an Ag alloy structure that is not recrystallized only by being subjected to plastic working, the target material remains strained in the structure. Therefore, when the surface of the target material is struck by Ar gas during sputtering and the particles are released, the atoms move for rearrangement to release the lattice distortion, and the atomic bonds are easily broken, resulting in a huge spatter. There is a problem that the clusters as particles are released from the target material and splash occurs.
また、再結晶組織でないターゲット材では、スパッタリング時に効率の高い成膜を行うために投入電力を増加させると、タ−ゲット材の表面温度が上昇し、再結晶が起こり、タ−ゲット材を使用するにつれて成膜速度や膜特性が変化するという問題がある。特に、FPD用に使用される大型のタ−ゲット材では、スパッタリング時にスパッタ面の裏面に配置された磁気回路が移動する方式を利用することが多いため、磁気回路の直上が部分的に加熱され、タ−ゲット材の再結晶に伴ってソリが発生し、基板とタ−ゲット材の間の距離が変化したり、膜厚分布の変化や膜特性の安定性が低下するという問題が発生する。そのため、結晶組織の歪みを十分に解放した再結晶組織とする必要があり、その硬さはビッカ−ス硬さで60HV以下に軟化させておく必要がある。より好ましくは50HV以下まで十分に軟化させて、結晶組織中の歪を除去しておくことが望ましい。 Also, for target materials that are not recrystallized structures, if the input power is increased in order to perform film formation with high efficiency during sputtering, the surface temperature of the target material rises and recrystallization occurs, and the target material is used. There is a problem that the film forming speed and film characteristics change as the time elapses. In particular, large target materials used for FPD often use a method in which a magnetic circuit arranged on the back surface of the sputtering surface moves during sputtering, so that the portion directly above the magnetic circuit is partially heated. As the target material is recrystallized, warping occurs, causing a problem that the distance between the substrate and the target material changes, the film thickness distribution changes, and the stability of the film characteristics decreases. . Therefore, it is necessary to obtain a recrystallized structure in which the distortion of the crystal structure is sufficiently released, and the hardness thereof needs to be softened to 60 HV or less in terms of Vickers hardness. More preferably, it is desirable to remove the strain in the crystal structure by sufficiently softening to 50 HV or less.
また、本発明のAg合金スパッタリングターゲット材は、Agを主体とする基地の平均結晶粒径が100μm以下であることが好ましい。それは、Agを主体とする基地の結晶粒が大きいと、スパッタリングの際にスパッタ表面が消費されてスパッタリングターゲット材上に現れるエロージョン部表面の凹凸が大きくなり、形成されるAg合金膜の膜厚均一性の低下、大投入電力時のマイクロアークと呼ばれる異常放電の誘発頻度の増加とそれに伴うスプラッシュ(異常飛沫)の発生等の問題を引き起こすためである。このため、Agを主体とする基地の平均結晶粒径は、最大でも100μm以下、より好ましくは50μm以下とすることが望ましい。さらに、より好ましくはタ−ゲット材の結晶組織は均一微細であることが望ましく、平均結晶粒径のみでなく、最大結晶粒径と最小結晶粒径の差が50%以下であることが望ましい。 In the Ag alloy sputtering target material of the present invention, it is preferable that the average crystal grain size of the base mainly composed of Ag is 100 μm or less. That is, if the base crystal grains mainly composed of Ag are large, the sputter surface is consumed during sputtering, and the unevenness of the surface of the erosion portion appearing on the sputtering target material becomes large, and the film thickness of the formed Ag alloy film is uniform. This is because problems such as a decrease in performance, an increase in the frequency of occurrence of abnormal discharge called micro arc at the time of large input power, and the occurrence of splash (abnormal splash) associated therewith. For this reason, it is desirable that the average crystal grain size of the base mainly composed of Ag is 100 μm or less, more preferably 50 μm or less at the maximum. More preferably, the crystal structure of the target material is desirably uniform and fine, and not only the average crystal grain size but also the difference between the maximum crystal grain size and the minimum crystal grain size is 50% or less.
また、本発明のAg合金スパッタリングターゲット材の金属組織としては、添加元素を含む第二相の長径を30μm以下とすることが望ましい。それは、第二相はAgを主体とする基地よりも、導電性やスパッタリング効率が劣るため、突起として残りやすく、第二相が大きくなると大きな突起となって異常放電の誘発や異物の発生等の原因となり、安定にAg合金膜を得ることができなくなるためである。また、第二相は、脆弱な金属相であるため、タ−ゲット材を製造する際の圧延や機械加工時にクラックや割れの起点となり、タ−ゲット材の安定製造を阻害する。このため、この第二相は小さく分断している方が望ましく、その長径は30μm以下、より好ましくは10μm以下であることが望ましい。
なお、添加元素を含む第二相の長径とは、該金属間化合物相の断面の任意の2点を結ぶ直線のうち最大のものをいう。
Moreover, as a metal structure of the Ag alloy sputtering target material of this invention, it is desirable that the major axis of the 2nd phase containing an additional element shall be 30 micrometers or less. The second phase is inferior in conductivity and sputtering efficiency to the base mainly composed of Ag, so it tends to remain as a projection, and when the second phase becomes large, it becomes a large projection and induces abnormal discharge, generation of foreign matter, etc. This is because the Ag alloy film cannot be stably obtained. Further, since the second phase is a fragile metal phase, it becomes a starting point of cracks or cracks during rolling or machining when the target material is manufactured, and hinders stable production of the target material. For this reason, it is desirable that the second phase is divided into small pieces, and the major axis is 30 μm or less, more preferably 10 μm or less.
The major axis of the second phase containing the additive element is the largest of the straight lines connecting any two points on the cross section of the intermetallic compound phase.
次に、本発明のAg合金系スパッタリングターゲット材の組織を得るための好ましい製造方法を以下に説明する。
本発明のAg合金ターゲット材の重要な特徴は、前述の通り、添加元素を含む第二相が分散した再結晶組織を有し、そのビッカース硬さが60HV以下に制御する点にある。この組織制御のためには、Ag合金鋼塊を鍛造、圧延等の塑性加工によって強圧下を施した後に、加工歪を除去するための熱処理を行うと良い。この際、塑性加工時の塑性加工率を75%以上とし、その後600〜800℃で熱処理することで、Agを主体とする基地を微細な結晶粒を有する再結晶組織とすると同時に、添加元素を含む第二相をより微細に分断することを促進することが可能となる。
Next, the preferable manufacturing method for obtaining the structure | tissue of Ag alloy type sputtering target material of this invention is demonstrated below.
As described above, an important feature of the Ag alloy target material of the present invention is that it has a recrystallized structure in which a second phase containing an additive element is dispersed, and its Vickers hardness is controlled to 60 HV or less. In order to control the structure, it is preferable to heat-treat the Ag alloy steel ingot after removing it by a high pressure by plastic working such as forging and rolling, and for removing processing strain. At this time, the plastic working rate at the time of plastic working is set to 75% or more, and then heat treatment is performed at 600 to 800 ° C., so that the base mainly composed of Ag becomes a recrystallized structure having fine crystal grains, and at the same time the additive element is added. It becomes possible to promote finely dividing the second phase to be contained.
塑性加工率を75%以上とするのは、十分な加工歪みを導入するためと、前記の第二相を微細に分断させるためである。塑性加工率が75%以下では、Ag合金のターゲット素材に十分な加工歪を導入することができず、熱処理を行っても均一かつ微細な再結晶組織が得られないためである。上記のように75%以上の塑性加工率の条件を満たす方法で加工した板状のターゲット素材を加熱温度600〜800℃で熱処理を施すことで、ビッカ−ス硬さで60HV以下の格子歪みを解放した再結晶組織を有するターゲット素材を得ることが可能となる。また、Agを主体とする基地の平均結晶粒径を100μm以下と微細な組織とすることが可能となる。ここで、熱処理温度を600〜800℃とするのは、600℃以下では十分な再結晶が起こらず加工歪が残留した不均一な組織となるためであり、800℃を越えるとAgを主体とする基地の結晶粒が成長して粗大なものとなるためである。 The reason why the plastic working rate is 75% or more is to introduce sufficient working strain and to finely divide the second phase. This is because when the plastic working rate is 75% or less, sufficient working strain cannot be introduced into the target material of the Ag alloy, and a uniform and fine recrystallized structure cannot be obtained even if heat treatment is performed. By applying heat treatment at a heating temperature of 600 to 800 ° C. to the plate-like target material processed by the method satisfying the plastic processing rate of 75% or more as described above, a lattice strain of 60 HV or less is obtained in Vickers hardness. It is possible to obtain a target material having a released recrystallized structure. In addition, the average crystal grain size of the base mainly composed of Ag can be made as fine as 100 μm or less. Here, the reason why the heat treatment temperature is set to 600 to 800 ° C. is that when the temperature is 600 ° C. or less, sufficient recrystallization does not occur and a non-uniform structure in which processing strain remains is left. This is because the base crystal grains grow and become coarse.
なお、本発明のAg合金スパッタリングターゲット材は、添加元素として含有されるSi、Cu、Ge以外の成分元素は実質的にAgであるが、本発明の作用を損なわない範囲で、ガス成分である酸素、窒素、炭素やアルカリ金属であるNa、K等や遷移金属であるFe、Co等の不可避的不純物を含んでもよい。
例えば、ガス成分の酸素、炭素、窒素は各々50ppm以下、アルカリ金属のNa、Kは5ppm以下、Fe、Coは100ppm以下等であり、ガス成分を除いた純度として99.9%以上であることが望ましい。
In the Ag alloy sputtering target material of the present invention, the component elements other than Si, Cu, and Ge contained as additive elements are substantially Ag, but are gas components as long as the effects of the present invention are not impaired. It may contain unavoidable impurities such as oxygen, nitrogen, carbon and alkali metals such as Na and K, and transition metals such as Fe and Co.
For example, oxygen, carbon, and nitrogen of gas components are each 50 ppm or less, alkali metals Na, K are 5 ppm or less, Fe, Co are 100 ppm or less, and the purity excluding gas components is 99.9% or more. Is desirable.
また、本発明のAg合金スパッタリングターゲット材を用いることで、安定して低い比抵抗を有するAg合金膜を得ることができる。 Moreover, by using the Ag alloy sputtering target material of the present invention, an Ag alloy film having a stable low specific resistance can be obtained.
AgにSi、Cu、Geを添加した70kgの原料を真空溶解炉にて溶解し、内寸80mm×245mm×高さ350mmのケ−スに鋳造したAg−Si−CuおよびAg−Si−GeのAg合金鋼塊を作製した。各Ag合金インゴットを表1に示す条件で塑性加工および熱処理を行い、その後、機械加工により127mm×457mm×8mmのAg合金ターゲット材を作製した。
表1にAg合金素材の製造条件を示す。
Ag-Si-Cu and Ag-Si-Ge of 70 kg of raw material with Si, Cu and Ge added to Ag were melted in a vacuum melting furnace and cast into a case with an inner size of 80 mm x 245 mm x height of 350 mm. An Ag alloy steel ingot was produced. Each Ag alloy ingot was subjected to plastic working and heat treatment under the conditions shown in Table 1, and then a 127 mm × 457 mm × 8 mm Ag alloy target material was produced by machining.
Table 1 shows the production conditions for the Ag alloy material.
前記の各Ag合金タ−ゲット材から寸法10×10mmの試験片を採取し、JIS−Z2244に準じて試験荷重は100gでビッカ−ス硬さを測定した。また、前記試験片を鏡面研磨後、光学顕微鏡で400倍に拡大してミクロ組織を観察し、そのミクロ組織写真を撮影し、その10視野で、Agを主体とする基地の平均結晶粒径、第二相の長径を測定評価した。その結果を表2に示す。なお、Agを主体とする基地の平均結晶粒径は、切断法を適応して測定した。ここでの切断法とは、上記の光学顕微鏡で400倍に拡大したのミクロ組織写真上で、70mmの長さの線上において、Agを主体とする基地の占有する長さを、その線と交わるAgを主体とする基地の個数で割ったものである。
また、本発明の代表的なAg合金の組織として、試料No.3の光学顕微鏡写真を図1に示す。
A test piece having a size of 10 × 10 mm was taken from each of the above Ag alloy target materials, and the Vickers hardness was measured with a test load of 100 g in accordance with JIS-Z2244. Further, after mirror polishing the specimen, the microstructure was magnified 400 times with an optical microscope, the microstructure photograph was taken, and the average crystal grain size of the base mainly composed of Ag in its 10 fields of view, The major axis of the second phase was measured and evaluated. The results are shown in Table 2. The average crystal grain size of the base mainly composed of Ag was measured by applying a cutting method. The cutting method here means that the length occupied by the base mainly composed of Ag intersects with the line on the 70 mm long line on the microstructure photograph magnified 400 times with the above optical microscope. Dividing by the number of bases mainly composed of Ag.
In addition, as a typical Ag alloy structure of the present invention, Sample No. An optical micrograph of 3 is shown in FIG.
さらに、上記で作製した各Ag合金ターゲット材を用いてAr圧力0.5Pa、投入電力10kWの条件で、300mm×400mmのガラス基板上に膜厚200nmのAg合金膜をスパッタリングにより形成した。初期のプリスパッタを1時間行った後に、200kW・hまでスパッタした際の異常放電数をア−キングモニタ−で測定し、単位時間当たりの異常放電発生頻度とした。なお、異常放電の発生頻度がスプラッシュの発生頻度とほぼ一致する。また、スパッタリング終了後、各Ag合金タ−ゲット材をスパッタリング装置から取り外し、Ag合金タ−ゲット材の反り量を測定した。また、上記で成膜した180kW・h時の各Ag合金膜を東京応化製OFPR−800レジストを形成して、フォトマスクを用いて紫外線でレジストを露光後、有機アルカリ現像液NMD−3で現像し、幅30μmの短冊状のレジストパターンを作製した。その後、リン酸、硝酸、酢酸の混合液でエッチングし、洗浄した後レジストを除去し、短冊状のAg合金膜を作製し、基板内9点で膜厚を測定し標準偏差を平均値で割った100分率をもとめて膜厚分布とした。以上の結果を表3に示す。 Furthermore, an Ag alloy film having a film thickness of 200 nm was formed on a 300 mm × 400 mm glass substrate by sputtering under the conditions of Ar pressure of 0.5 Pa and input power of 10 kW using each of the Ag alloy target materials prepared above. After performing the initial pre-sputtering for 1 hour, the number of abnormal discharges at the time of sputtering up to 200 kW · h was measured with an arcing monitor, and the frequency of abnormal discharges per unit time was determined. Note that the frequency of occurrence of abnormal discharge substantially matches the frequency of occurrence of splash. Moreover, after completion | finish of sputtering, each Ag alloy target material was removed from the sputtering device, and the curvature amount of Ag alloy target material was measured. Further, each of the Ag alloy films formed as described above at 180 kW · h is formed with Tokyo Ohka's OFPR-800 resist, exposed to ultraviolet rays using a photomask, and then developed with an organic alkali developer NMD-3. A strip-shaped resist pattern having a width of 30 μm was prepared. Thereafter, etching is performed with a mixed solution of phosphoric acid, nitric acid, and acetic acid. After cleaning, the resist is removed, a strip-shaped Ag alloy film is produced, the film thickness is measured at 9 points in the substrate, and the standard deviation is divided by the average value. In addition, the film thickness distribution was calculated from the 100 minutes. The above results are shown in Table 3.
表1〜表3に示すように、AgにSiとCuおよびまたはGeを所定量含有したAg合金ターゲット材において、塑性加工後の歪を除去してビッカース硬さを60HV以下に制御した試料No.1〜6では、異常放電の発生頻度が7ケ/時間以下と非常に低い値を示していることが分かる。また、試料No.1〜6のAg合金ターゲット材では、Agを主体とする基地の平均結晶粒径が100μm以下であり、第二相の長径も20μm以下と微細に分散していることが分かる。 As shown in Tables 1 to 3, in an Ag alloy target material containing a predetermined amount of Si and Cu and / or Ge in Ag, sample No. 1 was obtained by removing strain after plastic processing and controlling the Vickers hardness to 60 HV or less. 1 to 6 indicate that the occurrence frequency of abnormal discharge is a very low value of 7 units / hour or less. Sample No. In the Ag alloy target materials of 1 to 6, it can be seen that the average crystal grain size of the base mainly composed of Ag is 100 μm or less, and the major axis of the second phase is also finely dispersed as 20 μm or less.
さらに、ビッカ−ス硬さが50HV以下であり、Agを主体とする基地の平均結晶粒径が50μm以下である試料No.3においては、異常放電の発生が測定されなかったことからも、より優れたスパッタリング特性を有するAg合金ターゲット材であることがわかる。 Further, Sample No. 5 having a Vickers hardness of 50 HV or less and an average crystal grain size of a base mainly composed of Ag of 50 μm or less. No. 3 shows that the occurrence of abnormal discharge was not measured, which indicates that the Ag alloy target material has more excellent sputtering characteristics.
一方、ビッカ−ス硬さが60HVを超える試料No.7〜10のAg合金ターゲット材においては、異常放電発生頻度が32ケ/時間を超える高い値を示して、タ−ゲット材の反り量も2mm以上と大きいとともに、成膜された膜の基板内での膜厚分布のばらつきも高い。特に、塑性加工後に熱処理を行わない、組織中に歪みを内包したファイバ−状の組織である試料No.7のAg合金ターゲット材ではビッカ−ス硬さで100HVを越え、異常放電の発生頻度が133ケ/時間と非常に高い。また、塑性加工率が低い、試料No.10のAg合金ターゲット材では、溶解鋳造ままの巨大な結晶粒と、分断されない第二相が残存するために同様にタ−ゲット材として良好な特性が得られないことがわかる。 On the other hand, Sample No. with Vickers hardness exceeding 60 HV. In the 7-10 Ag alloy target material, the frequency of abnormal discharge occurrence is a high value exceeding 32 units / hour, the amount of warpage of the target material is as large as 2 mm or more, and the film is formed in the substrate. Variation in film thickness distribution is also high. In particular, Sample No. which is a fiber-like structure in which strain is included in the structure, in which heat treatment is not performed after plastic working. No. 7 Ag alloy target material has a Vickers hardness of over 100 HV, and the frequency of occurrence of abnormal discharge is as extremely high as 133 units / hour. In addition, sample No. with low plastic working rate. It can be seen that the 10 Ag alloy target material does not have good characteristics as a target material because huge crystal grains as melted as cast and a second phase that is not divided remain.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004130832A JP4569863B2 (en) | 2004-04-27 | 2004-04-27 | Ag alloy sputtering target material and Ag alloy film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004130832A JP4569863B2 (en) | 2004-04-27 | 2004-04-27 | Ag alloy sputtering target material and Ag alloy film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005314717A JP2005314717A (en) | 2005-11-10 |
JP4569863B2 true JP4569863B2 (en) | 2010-10-27 |
Family
ID=35442447
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004130832A Expired - Fee Related JP4569863B2 (en) | 2004-04-27 | 2004-04-27 | Ag alloy sputtering target material and Ag alloy film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4569863B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009024212A (en) * | 2007-07-19 | 2009-02-05 | Mitsubishi Materials Corp | HIGH HARDNESS Ag ALLOY SPUTTERING TARGET FOR FORMING REFLECTIVE FILM OF OPTICAL RECORDING MEDIUM |
JP4694543B2 (en) | 2007-08-29 | 2011-06-08 | 株式会社コベルコ科研 | Ag-based alloy sputtering target and manufacturing method thereof |
JP5046890B2 (en) | 2007-11-29 | 2012-10-10 | 株式会社コベルコ科研 | Ag-based sputtering target |
JP5636996B2 (en) * | 2011-02-14 | 2014-12-10 | 日立金属株式会社 | Substrate with piezoelectric film, method for manufacturing substrate with piezoelectric film, and film forming apparatus |
JP5159962B1 (en) * | 2012-01-10 | 2013-03-13 | 三菱マテリアル株式会社 | Silver alloy sputtering target for forming conductive film and method for producing the same |
JP5159963B1 (en) * | 2012-01-13 | 2013-03-13 | 三菱マテリアル株式会社 | Silver alloy sputtering target for forming conductive film and method for producing the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003155561A (en) * | 2001-11-19 | 2003-05-30 | Mitsubishi Materials Corp | Silver alloy sputtering target for forming reflection layer of optical recording medium |
JP2004002929A (en) * | 2001-08-03 | 2004-01-08 | Furuya Kinzoku:Kk | Silver alloy, sputtering target, reflector for reflection lcd, reflection wiring electrode, thin film, manufacturing method therefor, optical recording medium, electro magnetic wave shield, metal material for electronic part, wiring material, electronic part, electronic appliance, processing method of metal film, electron optical part, laminate, and glass of building material |
-
2004
- 2004-04-27 JP JP2004130832A patent/JP4569863B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004002929A (en) * | 2001-08-03 | 2004-01-08 | Furuya Kinzoku:Kk | Silver alloy, sputtering target, reflector for reflection lcd, reflection wiring electrode, thin film, manufacturing method therefor, optical recording medium, electro magnetic wave shield, metal material for electronic part, wiring material, electronic part, electronic appliance, processing method of metal film, electron optical part, laminate, and glass of building material |
JP2003155561A (en) * | 2001-11-19 | 2003-05-30 | Mitsubishi Materials Corp | Silver alloy sputtering target for forming reflection layer of optical recording medium |
Also Published As
Publication number | Publication date |
---|---|
JP2005314717A (en) | 2005-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI752189B (en) | Aluminum alloys and articles with high elemental content | |
JP4305809B2 (en) | Ag alloy-based sputtering target material | |
JP6727749B2 (en) | Copper material for high purity copper sputtering target and high purity copper sputtering target | |
WO2007040014A1 (en) | Sputtering target | |
TWI602931B (en) | Aluminum sputtering target | |
JP4415303B2 (en) | Sputtering target for thin film formation | |
KR20210029744A (en) | Copper alloy sputtering target and manufacturing method of copper alloy sputtering target | |
JP6435981B2 (en) | Copper alloy sputtering target | |
JP4605494B2 (en) | Ag alloy sputtering target material | |
JP6356357B2 (en) | Ti-Ta alloy sputtering target and manufacturing method thereof | |
JP4569863B2 (en) | Ag alloy sputtering target material and Ag alloy film | |
JP5263665B2 (en) | Cu alloy film for wiring film and sputtering target material for forming wiring film | |
JP6440866B2 (en) | Ti-Nb alloy sputtering target and manufacturing method thereof | |
JP2012219307A (en) | Silver alloy sputtering target for forming conductive film and method for manufacturing the same | |
JP6377021B2 (en) | Al alloy sputtering target | |
JP5113031B2 (en) | High purity shape memory alloy target and alloy thin film | |
JP2002069626A (en) | Sputtering target and its production method | |
JPH01222047A (en) | Backing plate made of copper or copper alloy | |
WO2000031316A1 (en) | Co-Ti ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF | |
JP2003293054A (en) | Ag ALLOY FILM FOR ELECTRONIC PART AND SPUTTERING TARGET MATERIAL FOR FORMING Ag ALLOY FILM | |
JP6331824B2 (en) | Copper alloy sputtering target | |
JPH09235666A (en) | Aluminum base target material for liquid crystal display and its production | |
JP2005200738A (en) | High-purity shape memory alloy, target made from the same, and film made from the same | |
JP5118618B2 (en) | High purity shape memory alloy target and alloy thin film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070313 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090403 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100416 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100524 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100716 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100729 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130820 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |