JP5263665B2 - Cu alloy film for wiring film and sputtering target material for forming wiring film - Google Patents

Cu alloy film for wiring film and sputtering target material for forming wiring film Download PDF

Info

Publication number
JP5263665B2
JP5263665B2 JP2008243573A JP2008243573A JP5263665B2 JP 5263665 B2 JP5263665 B2 JP 5263665B2 JP 2008243573 A JP2008243573 A JP 2008243573A JP 2008243573 A JP2008243573 A JP 2008243573A JP 5263665 B2 JP5263665 B2 JP 5263665B2
Authority
JP
Japan
Prior art keywords
film
alloy
alloy film
resistance
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008243573A
Other languages
Japanese (ja)
Other versions
JP2009097085A (en
Inventor
英夫 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2008243573A priority Critical patent/JP5263665B2/en
Publication of JP2009097085A publication Critical patent/JP2009097085A/en
Application granted granted Critical
Publication of JP5263665B2 publication Critical patent/JP5263665B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Cu alloy film which can reduce the resistance of a wiring film of a flat panel display device or the like in a process temperature region, and which has heat resistance to suppress hillocks and voids caused in a Cu based film, and to provide a sputtering target material for forming the Cu alloy film. <P>SOLUTION: The Cu alloy film for wiring film contains, as additional elements, B of 0.1 to 1.0 atomic%, and further contains Mn and/or Ni of 0.1 to 2.0 atomic%, and the balance Cu with inevitable impurities. The sputtering target material is used for forming the Cu alloy film for wiring film. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、基板上に薄膜を形成して製造される平面表示装置(Flat Panel Display、以下、FPDという)等に用いられる配線膜および配線膜形成に用いられるスパッタリングタ−ゲット材に関するものである。   The present invention relates to a wiring film used in a flat display device (Flat Panel Display, hereinafter referred to as FPD) manufactured by forming a thin film on a substrate, and a sputtering target material used for forming the wiring film. .

ガラス基板またはSiウェハ−上に薄膜を積層して製造されるFPDとしては、例えば、液晶ディスプレイ(以下、LCDという)、プラズマディスプレイパネル(以下、PDPという)、フィールドエミッションディスプレイ(以下、FEDという)、エレクトロルミネッセンスディスプレイ(以下、ELDという)、電子ペーパー等の種々の新規製品が活発に研究、開発がされている。   Examples of the FPD manufactured by laminating a thin film on a glass substrate or Si wafer include, for example, a liquid crystal display (hereinafter referred to as LCD), a plasma display panel (hereinafter referred to as PDP), and a field emission display (hereinafter referred to as FED). Various new products such as electroluminescence display (hereinafter referred to as ELD) and electronic paper have been actively researched and developed.

これらのFPDに用いられる薄膜トランジスタ(TFT)等の配線膜としては、ディスプレイの大型化に伴って動画を表示するための高速駆動が必要であり、低抵抗な配線膜としてAlおよびAl合金のAl系膜が用いられている。近年は、さらなるディスプレイサイズの大型化、高精細化に伴い、より低抵抗な配線としてCu系の配線が注目されている。   As a wiring film such as a thin film transistor (TFT) used in these FPDs, high-speed driving for displaying a moving image is required as the display is enlarged, and Al and Al alloys of Al and Al alloys are used as a low resistance wiring film. A membrane is used. In recent years, with further increase in display size and definition, Cu-based wiring has attracted attention as a wiring with lower resistance.

Cuは、Alよりも低抵抗で、エレクトロマイグレーションやストレスマイグレーションに対する耐性がともに優れていると考えられており、LSIの分野では既に用いられており、FPD分野でも次世代の配線材料として有望視されている。しかしながら、LSIの高集積化に伴い純Cuでは耐エレクトロマイグレーション性や耐ストレスマイグレーション性が不十分であると考えられている。そこで、Cuに添加元素を加えることでこれらのマイグレーション耐性を向上させることが提案されている(例えば、特許文献1参照)。
特開平6−177117号公報
Cu has a lower resistance than Al and is considered to be superior in both resistance to electromigration and stress migration. It has already been used in the LSI field, and is expected as a next-generation wiring material in the FPD field. ing. However, with the high integration of LSI, pure Cu is considered to have insufficient electromigration resistance and stress migration resistance. Therefore, it has been proposed to improve these migration resistances by adding an additive element to Cu (see, for example, Patent Document 1).
JP-A-6-177117

特許文献1で提案されているCu合金膜は、LSI等のSiウェハ−上にデバイスを形成する場合に、純Cuに比べて、より高いエレクトロマイグレーション性、ストレスマイグレーション性を有する有用なCu合金膜である。しかし、本発明者の検討によれば、提案されているCu合金膜をガラス基板上に形成した場合には、製造プロセス中の加熱処理を行っても、十分に抵抗値が下がらないことを確認した。また、250℃程度の加熱処理を行ったところCu合金膜にヒロックと呼ばれる突起やボイドと呼ばれる空孔が発生する場合があり、耐熱性に問題があることも確認した。
また、最も一般的なFPDである駆動素子にアモルファスシリコン-TFTを用いる液晶ディスプレイ(LCD)では、透明なガラス基板上にデバイスを形成し、その製造工程中の加熱温度は250〜350℃程度であり、今後さらに低温化すると予想されている。このため、上記した課題である耐熱性を有しつつ、200〜250℃程度の製造プロセス温度域による加熱処理で、低抵抗化が実現できるFPDに最適なCu合金配線膜が要望されている。
The Cu alloy film proposed in Patent Document 1 is a useful Cu alloy film having higher electromigration property and stress migration property than pure Cu when a device is formed on a Si wafer such as LSI. It is. However, according to the inventor's study, when the proposed Cu alloy film is formed on a glass substrate, it is confirmed that the resistance value does not sufficiently decrease even if the heat treatment during the manufacturing process is performed. did. Further, when heat treatment at about 250 ° C. was performed, protrusions called hillocks and voids called voids were sometimes generated in the Cu alloy film, and it was confirmed that there was a problem in heat resistance.
In addition, in a liquid crystal display (LCD) using amorphous silicon-TFT as a driving element which is the most common FPD, a device is formed on a transparent glass substrate, and the heating temperature during the manufacturing process is about 250 to 350 ° C. Yes, it is expected to further decrease in the future. For this reason, there is a demand for a Cu alloy wiring film that is optimal for an FPD that can realize low resistance by heat treatment in a manufacturing process temperature range of about 200 to 250 ° C. while having heat resistance as the above-described problem.

本発明の目的は、上記の課題に鑑み、FPD等の配線膜のプロセス温度域での低抵抗化が可能であるとともに、Cu系膜で発生するヒロックおよびボイドを抑制可能な耐熱性を有するCu合金膜とそのCu合金膜を形成するためのスパッタリングターゲット材を提供することである。   In view of the above problems, an object of the present invention is to reduce the resistance of a wiring film such as an FPD in the process temperature range and to have a heat resistance capable of suppressing hillocks and voids generated in a Cu-based film. It is to provide a sputtering target material for forming an alloy film and its Cu alloy film.

本発明者は、上記の課題を解決すべく、鋭意検討を行った結果、Cu合金膜として、CuにBとMnおよび/またはNiとを適量添加することで、低抵抗で、かつヒロックやボイドの発生を抑制可能な耐熱性を有することが可能となることを見出し本発明に到達した。
すなわち、本発明は、添加元素としてBを0.1〜1.0原子%、さらにMnおよび/またはNiを0.1〜2.0原子%含み、残部Cuおよび不可避的不純物からなる配線膜用Cu合金膜である。
また、本発明は上記組成の配線膜用Cu合金膜を得るための、添加元素としてBを0.1〜1.0原子%、さらにMnおよび/またはNiを0.1〜2.0原子%含み、残部Cuおよび不可避的不純物からなる配線膜形成用スパッタリングターゲット材である。
As a result of intensive studies to solve the above-mentioned problems, the present inventor has added low amounts of B, Mn and / or Ni to Cu as a Cu alloy film. The inventors have found that it is possible to have heat resistance capable of suppressing the generation of the present invention, and reached the present invention.
That is, the present invention is for a wiring film comprising B as an additive element in an amount of 0.1 to 1.0 atomic%, further containing Mn and / or Ni in an amount of 0.1 to 2.0 atomic%, and the balance being Cu and inevitable impurities. Cu alloy film.
Further, in the present invention, B is 0.1 to 1.0 atomic%, and Mn and / or Ni is 0.1 to 2.0 atomic% as additive elements for obtaining a Cu alloy film for a wiring film having the above composition. It is a sputtering target material for forming a wiring film comprising the remaining Cu and inevitable impurities.

本発明は、低抵抗、かつヒロック耐性、ボイド耐性を有するCu合金膜を実現できるために、今後低抵抗化が必要な大型液晶TVや電子ペ−パ−等のFPD用配線膜としてきわめて有効なものとなる。また、本発明の配線膜用Cu合金膜を形成する場合、ターゲット材を用いたスパッタリングが最適である。   Since the present invention can realize a Cu alloy film having low resistance, hillock resistance, and void resistance, it is extremely effective as an FPD wiring film for large liquid crystal TVs, electronic papers, and the like that are required to have low resistance in the future. It will be a thing. Moreover, when forming the Cu alloy film for wiring films of the present invention, sputtering using a target material is optimal.

本発明の重要な特徴は、FPD用の配線膜に要求される低抵抗化を実現しつつ、充分なヒロック耐性、ボイド耐性を有する配線膜を得るための最適な合金構成として、CuにBとMnおよび/またはNiとを複合添加したCu合金膜を見出したところにある。   An important feature of the present invention is that, as an optimum alloy configuration for obtaining a wiring film having sufficient hillock resistance and void resistance while realizing the low resistance required for the wiring film for FPD, A Cu alloy film in which Mn and / or Ni is added in combination is found.

以下に本発明の配線膜用Cu合金膜で、添加元素にBとMnおよび/またはNiを選定した理由およびその添加量を選定した理由を説明する。
まず、CuにBを添加する効果は、Cu合金膜をスパッタ成膜した後に、150〜250℃の低温域で加熱処理した場合でも、抵抗値を成膜時に比べて格段に低下させることができる点と加熱処理した時のヒロック耐性を向上できる点にある。その効果が得られる理由は明確ではないが、次のように推測される。スパッタリング法により基板上に薄膜を形成した際には、添加元素は非平衡状態で固溶される。Cuに対してBは固溶域がほとんどなく、また、Bは軽元素であるために、低い温度の加熱処理でもCuのマトリクスからBが粒界や膜表面に吐出されるため抵抗値が低減できるものと考えられる。また、加熱処理の際にCuのマトリクスからBが粒界や膜表面に吐出されることで膜の圧縮応力が緩和されるためヒロック耐性が向上するものと考えられる。
なお、上記の効果は0.1原子%以上のB添加で明確となり、1.0原子%を超えてBを添加すると膜が剥がれ易くなり望ましくないため、Bの添加量としては、0.1〜1.0原子%としている。
The reason for selecting B and Mn and / or Ni as additive elements and the reason for selecting the addition amount in the Cu alloy film for wiring films of the present invention will be described below.
First, the effect of adding B to Cu is that when a Cu alloy film is formed by sputtering, even when heat treatment is performed at a low temperature range of 150 to 250 ° C., the resistance value can be significantly reduced as compared with the time of film formation. It is in the point which can improve the hillock tolerance at the time and heat-processing. The reason why the effect is obtained is not clear, but is presumed as follows. When a thin film is formed on a substrate by sputtering, the additive element is dissolved in a non-equilibrium state. B has almost no solid solution region with respect to Cu, and since B is a light element, the resistance value is reduced because B is ejected from the Cu matrix to the grain boundaries and the film surface even at low temperature heat treatment. It is considered possible. In addition, it is considered that the hillock resistance is improved because B is discharged from the Cu matrix to the grain boundaries and the film surface during the heat treatment, thereby reducing the compressive stress of the film.
The above effect becomes clear when B is added in an amount of 0.1 atomic% or more, and if B is added in excess of 1.0 atomic%, the film tends to peel off, which is undesirable. ˜1.0 atomic%.

さらに、Cuに対してMnおよび/またはNiを0.1〜2.0原子%添加することで、Cu膜で発生するボイドを抑制する高い効果が得られる。その理由は以下のように推測している。Mn、NiはCuに対して固溶し易い元素であり、CuにMn、Niが固溶することで、加熱時のCu原子の移動を抑制し、その結果ボイドの発生が抑制されるものと考えられる。
さらに、Cuに対して、BとMn、Niを組み合わせて複合添加することでヒロックやボイドの発生を抑制しつつ、150〜250℃の加熱処理で抵抗値が低下する効果を有するCu合金を得ることができる。その理由は明確ではないが、BはMn、Niと化合物を発現する元素であるため、加熱処理によってBと一部のMnやNiとが結合し化合物として、Cuのマトリクスから吐出されるためと考えられる。なお、以上の効果は、0.1原子%から現れるが、2.0原子%を超えて添加すると抵抗値が増加し、加熱後も低い抵抗値を得難くなるため、Mnおよび/またはNiの添加量としては、0.1〜2.0原子%としている。
Further, by adding 0.1 to 2.0 atomic% of Mn and / or Ni with respect to Cu, a high effect of suppressing voids generated in the Cu film can be obtained. The reason is presumed as follows. Mn and Ni are elements that are easily dissolved in Cu, and Mn and Ni are dissolved in Cu to suppress the movement of Cu atoms during heating, and as a result, the generation of voids is suppressed. Conceivable.
Furthermore, Cu alloy which has the effect that resistance value falls with 150-250 degreeC heat processing is obtained, suppressing generation | occurrence | production of a hillock and a void by combining and adding B, Mn, and Ni with respect to Cu. be able to. The reason is not clear, but B is an element that expresses Mn, Ni and a compound, so that B and a part of Mn and Ni are combined by heat treatment and discharged as a compound from a Cu matrix. Conceivable. The above effect appears from 0.1 atomic%, but if added over 2.0 atomic%, the resistance value increases and it becomes difficult to obtain a low resistance value even after heating, so Mn and / or Ni The addition amount is 0.1 to 2.0 atomic%.

なお、ヒロック耐性やボイド耐性を維持しつつ、特に、200〜250℃の加熱処理で4μΩcm以下の比抵抗を得るためには、Bの添加量は0.1〜0.5原子%、Mnおよび/またはNiの添加量は0.1〜1.0原子%とすることが望ましい。   In order to obtain a specific resistance of 4 μΩcm or less by heat treatment at 200 to 250 ° C. while maintaining hillock resistance and void resistance, the addition amount of B is 0.1 to 0.5 atomic%, Mn and The addition amount of Ni is preferably 0.1 to 1.0 atomic%.

また、本発明のCu合金膜を形成する際に用いる基板としては、ガラス基板、Siウェハーを用いることが好適である。これらの基板は表示装置を製造する上でプロセス安定性に優れるとともに、本発明のCu合金膜を形成する際に基板を加熱することで、室温で成膜する場合よりも低い抵抗値を有するCu合金膜を形成することが可能となる。   Moreover, as a board | substrate used when forming Cu alloy film of this invention, it is suitable to use a glass substrate and Si wafer. These substrates are excellent in process stability in manufacturing a display device, and have a lower resistance than that formed at room temperature by heating the substrate when forming the Cu alloy film of the present invention. An alloy film can be formed.

また、本発明のCu合金膜は、安定した特性を得るために膜厚としては100〜300nmとすることが望ましい。膜厚が100nm未満であると、膜が薄いために表面散乱の影響が大きくなり抵抗値が増加しやすくなる。一方、膜厚が300nmを超えると、結晶粒が成長して膜表面形態の凹凸が大きくなり平滑性が保てなくなるとともに、膜応力によって膜が剥れやすくなったり、膜を形成する際に時間がかかり、生産性が低下するためである。   Further, the Cu alloy film of the present invention desirably has a film thickness of 100 to 300 nm in order to obtain stable characteristics. When the film thickness is less than 100 nm, since the film is thin, the influence of surface scattering increases, and the resistance value tends to increase. On the other hand, if the film thickness exceeds 300 nm, the crystal grains grow and the unevenness of the film surface form becomes large and smoothness cannot be maintained, and the film becomes easy to peel off due to film stress, or it takes time to form the film. This is because productivity is reduced.

また、本発明の配線膜用Cu合金膜を形成する場合には、Cu合金膜と同じ組成を有する配線膜形成用スパッタリングターゲット材を用いたスパッタリングが最適である。スパッタリング法では、ターゲット材とほぼ同組成の膜が形成できるためであり、本発明のCu合金膜を安定に形成することが可能となる。   Moreover, when forming the Cu alloy film for wiring films of the present invention, sputtering using a wiring film forming sputtering target material having the same composition as the Cu alloy film is optimal. This is because sputtering can form a film having almost the same composition as the target material, and the Cu alloy film of the present invention can be formed stably.

ターゲット材の製造方法については種々あるが、一般にターゲット材に要求される高純度、均一組織、高密度等を達成できるものであれば良い。例えば、真空溶解法により所定の組成に調整した溶湯を金属製の鋳型に鋳込み、さらにその後、鍛造、圧延等の塑性加工により板状に加工し、機械加工により所定の形状のターゲットに仕上げることで製造できる。また、さらに均一な組織を得るために粉末焼結法、またはスプレ−フォ−ミング法(液滴堆積法)等で急冷凝固したインゴットを用いてもよい。   There are various methods for producing the target material, and any method can be used as long as it can achieve the high purity, uniform structure, high density, and the like generally required for the target material. For example, a molten metal adjusted to a predetermined composition by a vacuum melting method is cast into a metal mold, and then processed into a plate shape by plastic processing such as forging and rolling, and finished to a target having a predetermined shape by machining. Can be manufactured. In order to obtain a more uniform structure, an ingot rapidly solidified by a powder sintering method or a spray forming method (droplet deposition method) may be used.

なお、本発明のCu合金膜および配線膜形成用スパッタリングターゲット材は、添加元素以外の成分元素はCuおよび不可避的不純物としている。すなわち、本発明の作用を損なわない範囲で、ガス成分である酸素、窒素、炭素等の不可避的不純物を含んでもよい。例えば、ガス成分の酸素、窒素、炭素は各々50ppm以下であり、ガス成分を除いた純度として99.9%以上であることが望ましい。   In the sputtering target material for forming a Cu alloy film and a wiring film of the present invention, component elements other than additive elements are Cu and inevitable impurities. That is, inevitable impurities such as oxygen, nitrogen, and carbon, which are gas components, may be included as long as the effects of the present invention are not impaired. For example, oxygen, nitrogen, and carbon in the gas components are each 50 ppm or less, and the purity excluding the gas components is preferably 99.9% or more.

次に、本発明の具体的な実施例について説明する。
まず、以下に述べる方法でCu合金タ−ゲット材を製造した。
Cuに各種の添加元素を加えたCu合金膜の目標組成と実質的に同一となるように原料を配合し真空溶解炉にて溶解した後、鋳造することでCu合金インゴットを作製した。次にCu合金インゴットを機械加工により直径100mm、厚さ5mmのスパッタリングターゲット材を作製した。
また、比較例として同一寸法の純Cuターゲットも同様の方法によりに作製した。
上記で作製した種々の組成のターゲット材を用いてスパッタリング法により、寸法100×100mmの平滑なガラス基板上に、膜厚200nmの純Cu膜およびCu合金膜を形成し、4探針法により比抵抗を測定した。測定結果を表1に示す。
Next, specific examples of the present invention will be described.
First, a Cu alloy target material was manufactured by the method described below.
A Cu alloy ingot was prepared by casting the raw materials so as to be substantially the same as the target composition of the Cu alloy film obtained by adding various additive elements to Cu, melting in a vacuum melting furnace, and casting. Next, a sputtering target material having a diameter of 100 mm and a thickness of 5 mm was produced by machining a Cu alloy ingot.
Moreover, the pure Cu target of the same dimension was produced by the same method as a comparative example.
A pure Cu film and a Cu alloy film having a film thickness of 200 nm are formed on a smooth glass substrate having a size of 100 × 100 mm by sputtering using the target materials having various compositions prepared as described above. Resistance was measured. The measurement results are shown in Table 1.

また、上記で形成した純Cu膜およびCu合金膜を25×50mmの大きさに切断し、0.5Pa以下に減圧した真空雰囲気で、温度250℃、1時間の加熱処理を施した後に比抵抗を測定した。さらに、純Cu膜およびCu合金膜の膜表面状況を電解放射型走査型電子顕微鏡(以下FE−SEMという)により観察した。FE−SEMによる膜表面観察は、膜面に対して斜め45゜方向から観察し、観察倍率は5万倍で行った。そして、膜表面にヒロックまたはボイドが発生していない物を良好として○、膜表面にヒロックまたはボイドの発生している物を×と評価して、加熱処理後の比抵抗とともに膜表面評価として表1に示す。
また、試料1、2、7、8、9の加熱処理後の膜表面状況を観察したFE−SEM像について、図1から図5に示す。
Further, the pure Cu film and the Cu alloy film formed as above were cut into a size of 25 × 50 mm and subjected to heat treatment at a temperature of 250 ° C. for 1 hour in a vacuum atmosphere reduced to 0.5 Pa or less, and then the specific resistance. Was measured. Furthermore, the film surface conditions of the pure Cu film and the Cu alloy film were observed with an electrolytic emission scanning electron microscope (hereinafter referred to as FE-SEM). The film surface observation by FE-SEM was performed from a direction oblique to the film surface at an angle of 45 °, and the observation magnification was 50,000 times. The film surface was evaluated as good when no hillocks or voids were generated on the film surface, and was evaluated as x when hillocks or voids were generated on the film surface. It is shown in 1.
In addition, FIGS. 1 to 5 show FE-SEM images obtained by observing the film surface conditions of Samples 1, 2, 7, 8, and 9 after the heat treatment.

表1や図1〜図5に示すように、純Cuは、抵抗値は低いが、加熱処理後に結晶粒の成長とともにボイドが発生していることがわかる。また、Cu-Al合金やCu-Si合金では加熱処理後にヒロックが発生すると同時に、加熱処理後の比抵抗が4μΩcmを超えており、充分な低抵抗化が図れていない。それに対して、本発明のCu-Ni-B、Cu-Mn-Bでは加熱処理後にボイドやヒロックの発生もなく、また、比抵抗が4μΩcm未満に低下させることが可能であることがわかる。   As shown in Table 1 and FIGS. 1 to 5, pure Cu has a low resistance value, but it can be seen that voids are generated along with the growth of crystal grains after the heat treatment. Further, in the Cu—Al alloy or Cu—Si alloy, hillocks are generated after the heat treatment, and at the same time, the specific resistance after the heat treatment exceeds 4 μΩcm, and the resistance cannot be sufficiently lowered. In contrast, Cu-Ni-B and Cu-Mn-B of the present invention do not generate voids or hillocks after heat treatment, and the specific resistance can be reduced to less than 4 μΩcm.

実施例1で作製した純Cu、Cu−1.0%Ni−0.5%B(原子%)、Cu−0.5%Mn−0.5%B(原子%)のスパッタリングターゲットを使用して、実施例1と同様にそれぞれ、ガラス基板上に純CuおよびCu合金膜を形成した試料を作製した。その後、それぞれの試料を0.5Pa以下に減圧した真空雰囲気中、100〜250℃の温度範囲で、1時間の加熱処理を施した後に比抵抗を測定した。測定した結果から、加熱温度と比抵抗の関係を図6に示す。
図6からは、本発明のCu-Ni-B合金膜およびCu-Mn-B合金膜は、加熱温度の上昇とともに徐々に比抵抗が低下し、特に200℃以上の加熱処理で格段に比抵抗が低下することが分かる。
Using the pure Cu, Cu-1.0% Ni-0.5% B (atomic%), Cu-0.5% Mn-0.5% B (atomic%) sputtering target prepared in Example 1. In the same manner as in Example 1, samples were prepared in which pure Cu and Cu alloy films were formed on a glass substrate. Then, the specific resistance was measured after heat-processing for 1 hour in the temperature range of 100-250 degreeC in the vacuum atmosphere which pressure-reduced each sample to 0.5 Pa or less. From the measurement results, the relationship between the heating temperature and the specific resistance is shown in FIG.
From FIG. 6, the specific resistance of the Cu—Ni—B alloy film and the Cu—Mn—B alloy film of the present invention gradually decreases as the heating temperature rises. It turns out that falls.

実施例1における試料1の純Cu膜を加熱処理した後に膜表面観察した電解放射型走査型電子顕微鏡写真である。2 is an electrolytic emission scanning electron micrograph of the film surface observed after heat treatment of a pure Cu film of Sample 1 in Example 1. FIG. 実施例1における試料2のCu合金膜を加熱処理した後に膜表面観察した電解放射型走査型電子顕微鏡写真である。It is the electrolysis radiation type scanning electron micrograph which observed the film | membrane surface after heat-processing the Cu alloy film of the sample 2 in Example 1. FIG. 実施例1における試料7のCu合金膜を加熱処理した後に膜表面観察した電解放射型走査型電子顕微鏡写真である。FIG. 3 is an electrolytic emission scanning electron micrograph of the film surface observed after heat treatment of the Cu alloy film of Sample 7 in Example 1. FIG. 実施例1における試料8のCu合金膜を加熱処理した後に膜表面観察した電解放射型走査型電子顕微鏡写真である。4 is an electro-radiation scanning electron micrograph of the film surface observed after heat-treating the Cu alloy film of Sample 8 in Example 1. FIG. 実施例1における試料9のCu合金膜を加熱処理した後に膜表面観察した電解放射型走査型電子顕微鏡写真である。FIG. 3 is an electrolytic emission scanning electron micrograph of the film surface observed after heat-treating the Cu alloy film of Sample 9 in Example 1. FIG. 実施例2における加熱温度と比抵抗の関係を示す図である。It is a figure which shows the relationship between the heating temperature and specific resistance in Example 2. FIG.

Claims (2)

添加元素としてBを0.1〜1.0原子%、さらにMnおよび/またはNiを0.1〜2.0原子%含み、残部Cuおよび不可避的不純物からなることを特徴とする配線膜用Cu合金膜。   Cu for wiring films, characterized in that it contains 0.1 to 1.0 atomic% of B as an additive element and 0.1 to 2.0 atomic% of Mn and / or Ni, and consists of the balance Cu and inevitable impurities. Alloy film. 添加元素としてBを0.1〜1.0原子%、さらにMnおよび/またはNiを0.1〜2.0原子%含み、残部Cuおよび不可避的不純物からなることを特徴とする配線膜形成用スパッタリングターゲット材。   For forming a wiring film, comprising 0.1 to 1.0 atomic% of B as an additive element, 0.1 to 2.0 atomic% of Mn and / or Ni, and the balance being Cu and inevitable impurities Sputtering target material.
JP2008243573A 2007-09-25 2008-09-24 Cu alloy film for wiring film and sputtering target material for forming wiring film Active JP5263665B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008243573A JP5263665B2 (en) 2007-09-25 2008-09-24 Cu alloy film for wiring film and sputtering target material for forming wiring film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007246696 2007-09-25
JP2007246696 2007-09-25
JP2008243573A JP5263665B2 (en) 2007-09-25 2008-09-24 Cu alloy film for wiring film and sputtering target material for forming wiring film

Publications (2)

Publication Number Publication Date
JP2009097085A JP2009097085A (en) 2009-05-07
JP5263665B2 true JP5263665B2 (en) 2013-08-14

Family

ID=40700361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008243573A Active JP5263665B2 (en) 2007-09-25 2008-09-24 Cu alloy film for wiring film and sputtering target material for forming wiring film

Country Status (1)

Country Link
JP (1) JP5263665B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5756319B2 (en) * 2011-03-31 2015-07-29 株式会社神戸製鋼所 Cu alloy film and display device or electronic device including the same
JP5329726B2 (en) * 2011-09-14 2013-10-30 Jx日鉱日石金属株式会社 High purity copper manganese alloy sputtering target
EP2837710B1 (en) 2011-09-14 2019-05-15 JX Nippon Mining & Metals Corporation Production method for a high-purity copper-manganese-alloy sputtering target
CN104066868B (en) 2012-01-23 2016-09-28 吉坤日矿日石金属株式会社 High-purity copper-manganese-alloy sputtering target
CN106480348B (en) * 2015-08-24 2018-03-20 湖南稀土院有限责任公司 A kind of grey control rod absorbent material and preparation method thereof
CN106435261B (en) * 2016-11-28 2018-01-12 河北宏靶科技有限公司 A kind of long-life copper manganese-base alloy target and its processing method for having ultrafine-grained (UFG) microstructure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4082898A (en) * 1975-06-23 1978-04-04 Ppg Industries, Inc. Electroless deposition of electrically nonconductive copper-boron coatings on nonmetallic substrates
EP0067257B1 (en) * 1981-06-15 1986-02-05 Asahi Glass Company Ltd. Heat radiation reflecting glass and preparation thereof
US20040072009A1 (en) * 1999-12-16 2004-04-15 Segal Vladimir M. Copper sputtering targets and methods of forming copper sputtering targets
JP4496518B2 (en) * 2002-08-19 2010-07-07 日立金属株式会社 Thin film wiring
CN101473059B (en) * 2006-10-03 2013-03-20 Jx日矿日石金属株式会社 Cu-Mn alloy sputtering target and semiconductor wiring

Also Published As

Publication number Publication date
JP2009097085A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
WO2020122112A1 (en) Pure copper plate
JP5263665B2 (en) Cu alloy film for wiring film and sputtering target material for forming wiring film
TWI452161B (en) Method for producing oxygen-containing copper alloy film
JP4415303B2 (en) Sputtering target for thin film formation
TW201111536A (en) Copper material for use in a sputtering target, and manufacturing method therefor
JPWO2011111373A1 (en) Sputtering target, manufacturing method thereof, and manufacturing method of semiconductor element
TW201309828A (en) Titanium target for sputtering
TW201305353A (en) Silver alloy sputtering target for forming electroconductive film, and method for manufacture same
JP4022891B2 (en) Al alloy film for wiring film and sputtering target material for forming wiring film
KR20210029744A (en) Copper alloy sputtering target and manufacturing method of copper alloy sputtering target
JP6325641B1 (en) Aluminum alloy sputtering target
JP7131376B2 (en) Copper material for sputtering targets
JP5144576B2 (en) Titanium target for sputtering
KR20150114584A (en) Titanium target for sputtering
JP6375829B2 (en) Ag alloy sputtering target
WO2017022320A1 (en) Aluminum sputtering target
JP2008263191A (en) Metal thin-film wiring
JP5510812B2 (en) Cu alloy film for wiring film and sputtering target material for forming wiring film
JP2010222616A (en) Cu ALLOY FILM FOR WIRING FILM, AND SPUTTERING TARGET MATERIAL FOR FORMING WIRING FILM
JP5842806B2 (en) Copper alloy hot rolled plate for sputtering target and sputtering target
JP6331824B2 (en) Copper alloy sputtering target
JP2003293054A (en) Ag ALLOY FILM FOR ELECTRONIC PART AND SPUTTERING TARGET MATERIAL FOR FORMING Ag ALLOY FILM
TW201207135A (en) Titanium target for sputtering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130418

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5263665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350