JP5510812B2 - Cu alloy film for wiring film and sputtering target material for forming wiring film - Google Patents
Cu alloy film for wiring film and sputtering target material for forming wiring film Download PDFInfo
- Publication number
- JP5510812B2 JP5510812B2 JP2010063774A JP2010063774A JP5510812B2 JP 5510812 B2 JP5510812 B2 JP 5510812B2 JP 2010063774 A JP2010063774 A JP 2010063774A JP 2010063774 A JP2010063774 A JP 2010063774A JP 5510812 B2 JP5510812 B2 JP 5510812B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- alloy
- resistance
- wiring film
- atomic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Physical Vapour Deposition (AREA)
Description
本発明は、基板上に薄膜を形成して製造される平面表示装置(Flat Panel Display、以下、FPDという)等に用いられる配線膜および配線膜形成に用いられるスパッタリングタ−ゲット材に関するものである。 The present invention relates to a wiring film used in a flat display device (Flat Panel Display, hereinafter referred to as FPD) manufactured by forming a thin film on a substrate, and a sputtering target material used for forming the wiring film. .
ガラス基板またはSiウェハ−上に薄膜を積層して製造されるFPDとしては、例えば、液晶ディスプレイ(以下、LCDという)、プラズマディスプレイパネル(以下、PDPという)、フィールドエミッションディスプレイ(以下、FEDという)、エレクトロルミネッセンスディスプレイ(以下、ELDという)、電子ペーパー等が知られており、種々の新規製品が活発に研究、開発されている。 Examples of the FPD manufactured by laminating a thin film on a glass substrate or Si wafer include, for example, a liquid crystal display (hereinafter referred to as LCD), a plasma display panel (hereinafter referred to as PDP), and a field emission display (hereinafter referred to as FED). Electroluminescence display (hereinafter referred to as ELD), electronic paper, and the like are known, and various new products are actively researched and developed.
これらのFPDに用いられる薄膜トランジスタ(TFT)等の配線膜としては、ディスプレイの大型化に伴って動画を表示するための高速駆動が必要であり、低抵抗な配線膜としてAlおよびAl合金のAl系膜が用いられている。近年は、さらなるディスプレイサイズの大型化、高精細化に伴い、より低抵抗な配線としてCu系の配線が注目されている。 As a wiring film such as a thin film transistor (TFT) used in these FPDs, high-speed driving for displaying a moving image is required as the display is enlarged, and Al and Al alloys of Al and Al alloys are used as a low resistance wiring film. A membrane is used. In recent years, with further increase in display size and definition, Cu-based wiring has attracted attention as a wiring with lower resistance.
Cuは、Alよりも低抵抗で、エレクトロマイグレーションやストレスマイグレーションに対する耐性がともに優れていると考えられており、LSIの分野では既に配線膜として用いられている。しかしながら、LSIの高集積化に伴い純Cuでは耐エレクトロマイグレーション性や耐ストレスマイグレーション性が不十分であると考えられており、Cuに添加元素としてAlやSiを加えることでこれらのマイグレーション耐性を向上させることが提案されている(例えば、特許文献1参照)。 Cu is considered to have lower resistance than Al and excellent resistance to electromigration and stress migration, and has already been used as a wiring film in the field of LSI. However, with the high integration of LSI, pure Cu is considered to have insufficient electromigration resistance and stress migration resistance, and these migration resistance can be improved by adding Al or Si as additive elements to Cu. (For example, refer to Patent Document 1).
特許文献1で提案されているCu合金膜は、LSI等の分野でSiウェハ−上にデバイスを形成する場合に、純Cuに比べて、より高い耐エレクトロマイグレーション性、および耐ストレスマイグレーション性を有する有用なCu合金膜である。しかし、本発明者の検討によれば、提案されているCu合金膜をガラス基板上に形成した場合には、製造プロセス中の加熱処理を行っても、十分に抵抗値が下がらないことを確認した。また、250℃程度の加熱処理を行ったところCu合金膜にヒロックと呼ばれる突起やボイドと呼ばれる空孔が発生する場合があり、耐熱性に問題があることも確認した。
ところで、最も一般的なFPDである、駆動素子にアモルファスシリコン-TFTを用いる液晶ディスプレイ(LCD)では透明なガラス基板上にデバイスを形成し、その製造工程中の加熱温度は250〜350℃程度であり、今後さらに低温化すると予想されている。このため、耐熱性を有しつつ、200〜250℃程度の製造プロセス温度域による加熱処理において、低抵抗化を実現できるFPDに最適なCu合金配線膜が要望されている。
The Cu alloy film proposed in Patent Document 1 has higher electromigration resistance and stress migration resistance than pure Cu when a device is formed on a Si wafer in the field of LSI or the like. It is a useful Cu alloy film. However, according to the inventor's study, when the proposed Cu alloy film is formed on a glass substrate, it is confirmed that the resistance value does not sufficiently decrease even if the heat treatment during the manufacturing process is performed. did. Further, when heat treatment at about 250 ° C. was performed, protrusions called hillocks and voids called voids were sometimes generated in the Cu alloy film, and it was confirmed that there was a problem in heat resistance.
By the way, in a liquid crystal display (LCD) using amorphous silicon-TFT as a driving element, which is the most common FPD, a device is formed on a transparent glass substrate, and the heating temperature during the manufacturing process is about 250 to 350 ° C. Yes, it is expected to further decrease in the future. For this reason, there is a demand for a Cu alloy wiring film that is optimal for an FPD that can achieve low resistance in heat treatment in a manufacturing process temperature range of about 200 to 250 ° C. while having heat resistance.
本発明の目的は、上記の課題に鑑み、FPD等の配線膜のプロセス温度域での低抵抗化が可能であるとともに、Cu系膜で発生するヒロックおよびボイドを抑制可能な耐熱性を有するCu合金膜とそのCu合金膜を形成するためのスパッタリングターゲット材を提供することである。 In view of the above problems, an object of the present invention is to reduce the resistance of a wiring film such as an FPD in the process temperature range and to have a heat resistance capable of suppressing hillocks and voids generated in a Cu-based film. It is to provide a sputtering target material for forming an alloy film and its Cu alloy film.
本発明者は、上記の課題を解決すべく、鋭意検討を行った結果、Cuに適量のBとAgとを複合添加することで、低抵抗で、かつヒロックやボイドの発生を抑制可能な耐熱性を有するCu合金膜が得られることを見出し本発明に到達した。
すなわち、本発明は、添加元素としてBを0.1〜1.0原子%、さらにAgを0.1〜2.0原子%含み、残部Cuおよび不可避的不純物からなる配線膜用Cu合金膜である。
また、本発明は上記組成の配線膜用Cu合金膜を得るための、添加元素としてBを0.1〜1.0原子%、さらにAgを0.1〜2.0原子%含み、残部Cuおよび不可避的不純物からなる配線膜形成用スパッタリングターゲット材である。
As a result of intensive studies to solve the above problems, the present inventor has a low resistance and heat resistance that can suppress generation of hillocks and voids by adding a suitable amount of B and Ag to Cu. The present inventors have found that a Cu alloy film having properties can be obtained.
That is, the present invention provides a Cu alloy film for a wiring film comprising 0.1 to 1.0 atomic% of B as an additive element and 0.1 to 2.0 atomic% of Ag, and the balance Cu and unavoidable impurities. is there.
Further, the present invention contains 0.1 to 1.0 atomic% of B as additive elements and 0.1 to 2.0 atomic% of Ag as additive elements for obtaining a Cu alloy film for a wiring film having the above composition, with the balance being Cu. And a sputtering target material for forming a wiring film comprising inevitable impurities.
本発明は、低抵抗、かつヒロック耐性、ボイド耐性を有するCu合金膜を実現でき、今後低抵抗化が必要な大型液晶TVや電子ペ−パ−等のFPD用配線膜としてきわめて有効なものとなる。 INDUSTRIAL APPLICABILITY The present invention can realize a Cu alloy film having low resistance, hillock resistance, and void resistance, and is extremely effective as a wiring film for FPDs such as large liquid crystal TVs and electronic papers that require lower resistance in the future. Become.
本発明の重要な特徴は、FPD用の配線膜に要求される低抵抗化を実現しつつ、充分なヒロック耐性、ボイド耐性を有する配線膜を得るための最適な合金構成として、CuにBとAgとを複合添加したCu合金膜を見出したところにある。 An important feature of the present invention is that, as an optimum alloy configuration for obtaining a wiring film having sufficient hillock resistance and void resistance while realizing the low resistance required for the wiring film for FPD, A Cu alloy film in which Ag is added in combination is found.
以下に本発明の配線膜用Cu合金膜で、添加元素にBとAgを選定した理由およびその添加量を選定した理由を説明する。
まず、CuにBを添加する効果は、Cu合金膜をスパッタ成膜した後に、200〜250℃の低温域で加熱処理した場合でも、抵抗値を成膜時に比べて格段に低下させることができる点と、加熱処理した時のヒロック耐性を向上できる点にある。その効果が得られる理由は明確ではないが、次のように推測される。スパッタリング法により基板上に薄膜を形成した際には、添加元素は非平衡状態で固溶される。BはCuに対して固溶域がほとんどなく、またBは軽元素であるために、低い温度の加熱処理でもCuのマトリクスからBが粒界や膜表面に吐出されるため抵抗値が低減できるものと考えられる。また、加熱処理の際にCuのマトリクスからBが粒界や膜表面に吐出されることで膜の圧縮応力が緩和されるためヒロック耐性が向上するものと考えられる。
上記の効果は0.1原子%以上のB添加で明確となり、1.0原子%を超えてBを添加すると膜が剥がれ易くなり望ましくないため、Bの添加量としては、0.1〜1.0原子%としている。
The reason for selecting B and Ag as additive elements and the reason for selecting the addition amount in the Cu alloy film for wiring films of the present invention will be described below.
First, the effect of adding B to Cu is that when a Cu alloy film is formed by sputtering, even when heat treatment is performed at a low temperature range of 200 to 250 ° C., the resistance value can be significantly reduced as compared with the time of film formation. It is in the point which can improve the hillock tolerance at the time of heat-processing. The reason why the effect is obtained is not clear, but is presumed as follows. When a thin film is formed on a substrate by sputtering, the additive element is dissolved in a non-equilibrium state. Since B has almost no solid solution region with respect to Cu, and B is a light element, the resistance value can be reduced because B is ejected from the Cu matrix to the grain boundaries and the film surface even by heat treatment at a low temperature. It is considered a thing. In addition, it is considered that the hillock resistance is improved because B is discharged from the Cu matrix to the grain boundaries and the film surface during the heat treatment, thereby reducing the compressive stress of the film.
The above effect becomes clear when B is added in an amount of 0.1 atomic% or more. If B is added in excess of 1.0 atomic%, the film tends to peel off, which is undesirable. 0.0 atomic%.
さらに、Cuに対してAgを0.1〜2.0原子%添加することで、Cu膜で発生するボイドを抑制する高い効果が得られる。その理由は以下のように推測している。Agは800℃の高温域においてCuに約5原子%固溶する元素であり、スパッタリングでCu合金膜を形成した場合にCuにAgが固溶することで、加熱時のCu原子の移動が抑制され、その結果ボイドの発生が抑制されるものと考えられる。
さらに、Cuに対して、BとAgを組み合わせて複合添加することでヒロックやボイドの発生を抑制しつつ、200〜250℃の加熱処理で抵抗値が低下する効果を有するCu合金を得ることことができる。その理由は明確ではないが、BはAgと化合物を発現する元素であるため、加熱処理によってBとAgとが結合し化合物として、Cuのマトリクスから吐出されるためと考えられる。以上の効果は、Agの添加量として0.1原子%から現れるが、2.0原子%を超えて添加すると抵抗値が増加し、加熱後も低い抵抗値を得難くなるため、Agの添加量は、0.1〜2.0原子%としている。
また、ヒロックやボイドの発生を抑制しつつ、より低抵抗なCu合金膜を得るには、Agを0.1〜1.0原子%、Bを0.1〜0.5原子%とすることが望ましい。
Furthermore, the high effect which suppresses the void which generate | occur | produces in Cu film | membrane is acquired by adding 0.1-2.0 atomic% of Ag with respect to Cu. The reason is presumed as follows. Ag is an element that dissolves approximately 5 atomic% in Cu at a high temperature range of 800 ° C. When a Cu alloy film is formed by sputtering, Ag dissolves in Cu to suppress the movement of Cu atoms during heating. As a result, the generation of voids is considered to be suppressed.
Furthermore, obtaining Cu alloy which has the effect that resistance value falls by 200-250 degreeC heat processing, suppressing generation | occurrence | production of a hillock or a void by combining and adding B and Ag with respect to Cu. Can do. Although the reason is not clear, it is considered that B is an element that expresses Ag and a compound, so that B and Ag are combined by heat treatment and discharged as a compound from a Cu matrix. The above effects appear from 0.1 atomic% as the addition amount of Ag. However, if the addition amount exceeds 2.0 atomic%, the resistance value increases and it becomes difficult to obtain a low resistance value even after heating. The amount is 0.1 to 2.0 atomic%.
Further, in order to obtain a Cu alloy film having a lower resistance while suppressing generation of hillocks and voids, Ag is set to 0.1 to 1.0 atomic% and B is set to 0.1 to 0.5 atomic%. Is desirable.
また、本発明の配線膜用Cu合金膜を形成する場合には、Cu合金膜と同じ組成を有する配線膜形成用スパッタリングターゲット材を用いたスパッタリングが最適である。スパッタリング法では、ターゲット材とほぼ同組成の膜が形成できるためであり、本発明のCu合金膜を安定に形成することが可能となる。 Moreover, when forming the Cu alloy film for wiring films of the present invention, sputtering using a wiring film forming sputtering target material having the same composition as the Cu alloy film is optimal. This is because sputtering can form a film having almost the same composition as the target material, and the Cu alloy film of the present invention can be formed stably.
ターゲット材の製造方法については種々あるが、一般にターゲット材に要求される高純度、均一組織、高密度等を達成できるものであればよい。例えば、真空溶解法により所定の組成に調整した溶湯を金属製の鋳型に鋳込み、さらにその後、鍛造、圧延等の塑性加工により板状に加工し、機械加工により所定の形状のターゲットに仕上げることで製造できる。また、さらに均一な組織を得るために粉末焼結法、またはスプレ−フォ−ミング法(液滴堆積法)等で急冷凝固したインゴットを用いてもよい。 Although there are various methods for producing the target material, any method may be used as long as it can achieve the high purity, uniform structure, high density and the like generally required for the target material. For example, a molten metal adjusted to a predetermined composition by a vacuum melting method is cast into a metal mold, and then processed into a plate shape by plastic processing such as forging and rolling, and finished to a target having a predetermined shape by machining. Can be manufactured. In order to obtain a more uniform structure, an ingot rapidly solidified by a powder sintering method or a spray forming method (droplet deposition method) may be used.
なお、本発明のCu合金膜および配線膜形成用スパッタリングターゲット材は、添加元素以外の成分元素はCuおよび不可避的不純物としている。すなわち、本発明の作用を損なわない範囲で、ガス成分である酸素、窒素、炭素等の不可避的不純物を含んでもよい。例えば、ガス成分の酸素、窒素、炭素は各々50ppm以下であり、ガス成分を除いた純度として99.9%以上であることが望ましい。 In the sputtering target material for forming a Cu alloy film and a wiring film of the present invention, component elements other than additive elements are Cu and inevitable impurities. That is, inevitable impurities such as oxygen, nitrogen, and carbon, which are gas components, may be included as long as the effects of the present invention are not impaired. For example, oxygen, nitrogen, and carbon in the gas components are each 50 ppm or less, and the purity excluding the gas components is preferably 99.9% or more.
次に、本発明の具体的な実施例について説明する。
まず、以下に述べる方法でCu合金タ−ゲット材を製造した。
Cuに表1に示す各種の添加元素を加えたCu合金膜の目標組成と実質的に同一となるように、それぞれ純度99.9%以上の原料を配合し真空溶解炉にて溶解した後、鋳造することでCu合金インゴットを作製した。次にCu合金インゴットを機械加工により直径100mm、厚さ5mmのスパッタリングターゲット材を作製した。
比較例として同一寸法の純Cuターゲットも同様の方法によりに作製した。
上記で作製した種々の組成のターゲット材を用いてスパッタリング法により、寸法100×100mmの平滑なガラス基板上に、膜厚200nmのCu合金膜および純Cu膜を形成し、4探針法により比抵抗を測定した。測定結果を表1に示す。
なお、試料1、2、3および4のターゲット材の酸素量、炭素量を赤外線吸収法、窒素量を熱伝導度法で定量分析した結果、酸素量はそれぞれ18ppm、18ppm、21ppm、20ppm、炭素量はそれぞれ7ppm、6ppm、5ppm、10ppm、窒素量はそれぞれ10ppm、10ppm、10ppm、10ppmであった。
Next, specific examples of the present invention will be described.
First, a Cu alloy target material was manufactured by the method described below.
After mixing the raw materials having a purity of 99.9% or more and melting them in a vacuum melting furnace so as to be substantially the same as the target composition of the Cu alloy film obtained by adding various additive elements shown in Table 1 to Cu, A Cu alloy ingot was produced by casting. Next, a sputtering target material having a diameter of 100 mm and a thickness of 5 mm was produced by machining a Cu alloy ingot.
As a comparative example, a pure Cu target having the same dimensions was produced by the same method.
A sputtering material is used to form a Cu alloy film having a thickness of 200 nm and a pure Cu film on a smooth glass substrate having a size of 100 × 100 mm, using the target materials having various compositions prepared above. Resistance was measured. The measurement results are shown in Table 1.
As a result of quantitative analysis of the oxygen content and carbon content of the target materials of Samples 1, 2, 3 and 4 by the infrared absorption method and nitrogen content by the thermal conductivity method, the oxygen content was 18 ppm, 18 ppm, 21 ppm, 20 ppm and carbon, respectively. The amounts were 7 ppm, 6 ppm, 5 ppm, and 10 ppm, respectively, and the nitrogen amounts were 10 ppm, 10 ppm, 10 ppm, and 10 ppm, respectively.
また、上記で形成したCu合金膜および純Cu膜を25×50mmの大きさに切断し、1×10−1Pa以下に減圧した真空雰囲気で、温度250℃、1時間の加熱処理を施した後に比抵抗を測定した。さらに、Cu合金膜および純Cu膜の膜表面状況を電界放射型走査電子顕微鏡(以下FE−SEMという)により観察した。FE−SEMによる膜表面観察は、膜面に対して斜め45゜方向から観察し、観察倍率は5万倍で行った。そして、膜表面にヒロックやボイドまたは膜剥がれが発生していない物を良好として○、膜表面にヒロックやボイドまたは膜剥がれの発生している物を×と評価して、加熱処理後の比抵抗とともに膜表面評価として表1に示す。
また、試料1、7、8、9の加熱処理後の膜表面状況を観察したFE−SEM像について、それぞれ図1から図4に示す。
Further, the Cu alloy film and the pure Cu film formed above were cut into a size of 25 × 50 mm and subjected to heat treatment at a temperature of 250 ° C. for 1 hour in a vacuum atmosphere reduced to 1 × 10 −1 Pa or less. The specific resistance was measured later. Furthermore, the surface conditions of the Cu alloy film and the pure Cu film were observed with a field emission scanning electron microscope (hereinafter referred to as FE-SEM). The film surface observation by FE-SEM was performed from a direction oblique to the film surface at an angle of 45 °, and the observation magnification was 50,000 times. Evaluate that the film surface does not have hillocks, voids, or film peeling as good, and evaluate the film surface that has hillocks, voids, or film peeling as x, and the specific resistance after heat treatment In addition, Table 1 shows the film surface evaluation.
In addition, FE-SEM images obtained by observing the film surface conditions after heat treatment of Samples 1, 7, 8, and 9 are shown in FIGS. 1 to 4, respectively.
表1や図1〜図4に示すように、純Cuは、抵抗値は低いが、加熱処理後に結晶粒の成長とともにボイドが発生していることがわかる。また、Cu−Al合金やCu−Si合金では加熱処理後にヒロックが発生すると同時に、加熱処理後の比抵抗が4μΩcmを超えており、充分な低抵抗化が図れていない。それに対して、本発明のCu−Ag−B合金では加熱処理後にボイドやヒロックの発生もなく、また、比抵抗を4μΩcm未満に低下させることが可能であることがわかる。また、Agの添加量が多いとヒロックが発生し易くなり、Bの添加量が多いと密着性が低下して膜剥がれが発生し易くなる。Agは低温でCuに対する固溶域が少ないために、Agの添加量が多くなると加熱時に析出してヒロックを発生し易くなると考えられる。 As shown in Table 1 and FIGS. 1 to 4, pure Cu has a low resistance value, but it can be seen that voids are generated along with the growth of crystal grains after the heat treatment. Further, in the Cu—Al alloy or Cu—Si alloy, hillocks are generated after the heat treatment, and at the same time, the specific resistance after the heat treatment exceeds 4 μΩcm, and the resistance cannot be sufficiently lowered. On the other hand, it can be seen that the Cu-Ag-B alloy of the present invention does not generate voids or hillocks after the heat treatment and can reduce the specific resistance to less than 4 μΩcm. Further, if the added amount of Ag is large, hillocks are likely to occur, and if the added amount of B is large, the adhesiveness is lowered and film peeling is likely to occur. Since Ag has a low solid solution region with respect to Cu at a low temperature, it is considered that when the amount of Ag added is large, it precipitates during heating and tends to generate hillocks.
実施例1で作製した本発明例のCu−0.3%Ag−0.5%B(原子%)、比較例の純Cu、Cu−1.0Al(原子%)、Cu−1.0Si(原子%)の各スパッタリングターゲットを使用して、実施例1と同様にそれぞれ、ガラス基板上にCu合金膜および純Cuを形成した試料を作製した。その後、それぞれの試料を1×10−1Pa以下に減圧した真空雰囲気中、100〜250℃の温度範囲で、1時間の加熱処理を施した後に比抵抗を測定した。測定した結果から、加熱温度と比抵抗の関係を図5に示す。
図5からは、本発明のCu−Ag−B合金膜は、加熱温度の上昇とともに徐々に比抵抗が低下し、特に200℃以上の加熱処理で格段に比抵抗が低下することが分かる。
Cu-0.3% Ag-0.5% B (atomic%) of the present invention example produced in Example 1, pure Cu, Cu-1.0 Al (atomic%), Cu-1.0 Si (comparative example) Samples in which a Cu alloy film and pure Cu were formed on a glass substrate were prepared in the same manner as in Example 1 using each atomic target. Then, the specific resistance was measured after heat-processing for 1 hour in the temperature range of 100-250 degreeC in the vacuum atmosphere which pressure-reduced each sample to 1x10 < -1 > Pa or less. From the measurement results, the relationship between the heating temperature and the specific resistance is shown in FIG.
From FIG. 5, it can be seen that the specific resistance of the Cu—Ag—B alloy film of the present invention gradually decreases with increasing heating temperature, and the specific resistance decreases particularly with heat treatment at 200 ° C. or higher.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010063774A JP5510812B2 (en) | 2009-03-23 | 2010-03-19 | Cu alloy film for wiring film and sputtering target material for forming wiring film |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009069420 | 2009-03-23 | ||
JP2009069420 | 2009-03-23 | ||
JP2010063774A JP5510812B2 (en) | 2009-03-23 | 2010-03-19 | Cu alloy film for wiring film and sputtering target material for forming wiring film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010248623A JP2010248623A (en) | 2010-11-04 |
JP5510812B2 true JP5510812B2 (en) | 2014-06-04 |
Family
ID=43311269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010063774A Active JP5510812B2 (en) | 2009-03-23 | 2010-03-19 | Cu alloy film for wiring film and sputtering target material for forming wiring film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5510812B2 (en) |
-
2010
- 2010-03-19 JP JP2010063774A patent/JP5510812B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010248623A (en) | 2010-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4432015B2 (en) | Sputtering target for thin film wiring formation | |
TWI452161B (en) | Method for producing oxygen-containing copper alloy film | |
KR20160067198A (en) | Sputtering target for forming wiring film of flat panel display | |
TW201339327A (en) | Silver cylindrical target and method for producing the same | |
TWI525203B (en) | Silver alloy sputtering target for forming conductive film and its manufacturing method | |
JP2010103331A (en) | Sputtering target for forming wiring film for thin-film transistor | |
JP5263665B2 (en) | Cu alloy film for wiring film and sputtering target material for forming wiring film | |
JP4415303B2 (en) | Sputtering target for thin film formation | |
WO2013038962A1 (en) | High-purity copper-manganese-alloy sputtering target | |
JP2020117806A (en) | Copper alloy sputtering target | |
KR20210029744A (en) | Copper alloy sputtering target and manufacturing method of copper alloy sputtering target | |
JP2005171378A (en) | Al ALLOY FILM FOR WIRING FILM AND SPUTTERING TARGET MATERIAL FOR FORMING WIRING FILM | |
TW201821627A (en) | Aluminum alloy sputtering target | |
JP4743645B2 (en) | Metal thin film wiring | |
US20210140032A1 (en) | Aluminum alloy target and method of producing the same | |
JP5510812B2 (en) | Cu alloy film for wiring film and sputtering target material for forming wiring film | |
JP6678501B2 (en) | Sputtering target and method for manufacturing the same | |
JP6331824B2 (en) | Copper alloy sputtering target | |
JP2010222616A (en) | Cu ALLOY FILM FOR WIRING FILM, AND SPUTTERING TARGET MATERIAL FOR FORMING WIRING FILM | |
JP5842806B2 (en) | Copper alloy hot rolled plate for sputtering target and sputtering target | |
TW201631168A (en) | Copper-based alloy sputtering target | |
TW201207135A (en) | Titanium target for sputtering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140228 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140313 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5510812 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |